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Abstract 

Knowledge refinement tools seek to correct faulty rule-based systems by identifying and 
repairing faults indicated by training examples that provide evidence of faults. This thesis 
proposes mechanisms that improve the effectiveness and efficiency of refinement tools by 
the best use and selection of training examples. 

The refinement task is sufficiently complex that the space of possible refinements de­
mands a heuristic search. Refinement tools typically use hill-climbing search to identify 
suitable repairs but run the risk of getting caught in local optima. A novel contribution of 
this thesis is solving the local optima problem by converting the hill-climbing search into a 
best-first search that can backtrack to previous refinement states. The thesis explores how 
different backtracking heuristics and training example ordering heuristics affect refinement 

effectiveness and efficiency. 
Refinement tools rely on a representative set of training examples to identify faults 

and influence repair choices. In real environments it is often difficult to obtain a large 
set of training examples, since each problem-solving task must be labelled with the ex­
pert's solution. Another novel aspect introduced in this thesis is informed selection of 
examples for knowledge refinement, where suitable examples are selected from a set of 
unlabelled examples, so that only the subset requires to be labelled. Conversely, if a large 
set of labelled examples is available, it still makes sense to have mechanisms that can 
select a representative set of examples beneficial for the refinement task, thereby avoiding 

unnecessary example processing costs. 
Finally, an experimental evaluation of example utilisation and selection strategies on 

two artificial domains and one real application are presented. Informed backtracking is 
able to effectively deal with local optima by moving search to more promising areas, 
while informed ordering of training examples reduces search effort by ensuring that more 
pressing faults are dealt with early on in the search. Additionally, example selection 
methods achieve similar refinement accuracy with significantly fewer examples. 
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Chapter 1 

Introduction 

Decision support systems such as medical diagnosis, advisory systems, and design systems 

typically require extensive knowledge of the subject at hand. Systems that aim to capture 

and model the underlying knowledge from an expert in the particular application area 

(domain) are referred to as Knowledge Based Systems (KBSs). The KBS development life 

cycle consists of knowledge elicitation, knowledge representation, debugging and mainte­

nance. Successful completion of this cycle is heavily reliant on the interaction between 

the developer and the expert. Therefore, tools that can help automate some or most of 

the tasks involved during this cycle are certain to reduce the expert's and developer's 

effort. Refinement tools focus on the debugging and maintenance stages, and they seek 

to automate these two stages by identifying and correcting mismatches between the world 

modeled by the KBS and the real world. Episodes of expert problem solving represent the 

real world and are maintained as training examples. Crucial to the successful operation 

of the refinement tool is the availability of a set of training examples representative of the 

expertise captured by the KBS. 

The purpose of this chapter is to introduce knowledge refinement, project motivations 

and an overview of future chapters. The task of knowledge refinement and a general 

formalism is outlined in Section 1.1. Weaknesses in existing refinement tools in Sec­

tion 1.2 forms project motivations and objectives in Section 1.3. Section 1.4 introduces 

the KRusTWorks project, since the research reported in this thesis was carried out as 

part of that project. The structure of training examples with respect to three application 

domains and a synopsis of the thesis follows in Sections 1.5 and 1.6. 

1 
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1.1 The Refinement of Knowledge Based Systems 

[IOJ 
=/=1 :=::P 

Refinement Tool 

Problem 

Training Examples 

> 
Refined 

KBS 

Figure 1.1: General task of a refinement tool. 

The task ofrefinement tools can be viewed as learning to adapt knowledge (Figure 1.1). 

The input to the refinement tool is the buggy KBS and a set of training examples each 

comprising the expert's solution given a problem. The output is the refined KBS. Here, 

we are particularly interested in the refinement of rule-based systems, and formalise the 

task of KBS refinement (knowledge refinement) as follows. Given a KBS, that does not 

completely reproduce an expert's problem solving behaviour for a set of training examples, 

the task of the refinement tool is to: 

1. discover faulty problem solving behaviour of the KBS , by identifying mismatches 

between the expert's solution and the KBS's solution for a given problem; 

2. propose one or more potential refinements to rules in the KBS modifying its problem 

solving behaviour such that the expert's solution can be achieved; 

3. implement the refinements as refined KBSs; and 

4. select the best refined KBS if many are proposed, with the aim of improving the 

KBS's empirical performance on the training examples. 

Steps 2 and 3 involve the refinement algorithm. The emphasis of Steps 1 and 4 is on 

the use and selection of training examples. Accordingly, training examples provide fault 

evidence in Step 1, and provide a test-bed for evaluating refined KBSs in Step 4. 
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1.2 Weaknesses in Existing Systems 

The development of refinement algorithms have progressed considerably in recent years, 

from tools developed for refining KBSs written for a specific shell (Wogulis & pazzani 

1993, Ourston & Mooney 1994) to those that are applicable more generally (Craw & 

Boswell 1999). However, existing systems have mainly concentrated on improving the 

refinement algorithm and are limited to elementary example handling procedures. These 

procedures do not exploit training examples as a means to guide the refinement pro­

cess. Furthermore, informed example selection methods for knowledge refinement is non­

existent, and therefore needs to be discovered and automated. 

1.2.1 Hill Climbing Search and the Problem of Local Optima 

Typically refinement tools adopt an incremental approach where each application of the 

refinement algorithm attempts to fix one or more, but typically not all of the training exam­

ples that provide fault evidence. The refinement task is sufficiently complex that the space 

of possible refinements demands a heuristic search. EITHER (Ourston & Mooney 1994) 

and FORTE (Richards & Mooney 1995) try to fix the outstanding fault that is indicated 

by the largest number of examples, and selects the refinement with the fewest changes 

to rules which are farthest from the outcome. Craw's (1996) approach to refinement also 

applies hill-climbing search where the refined KBS that fixes the largest number of ex­

amples is selected, but generates many refined KBSs designed to fix a single incorrectly 

solved training example at a time. The result is that refinement tools are dogged by the 

standard hill-climbing problem of getting caught in local maxima, where the performance 

of the KBS must be reduced before an overall improvement can be gained. However, most 

refinement tools do not explicitly handle this problem, instead they employ induction or 

non-generic fixes that circumvent the situation. 

1.2.2 Passive Selection of Training Examples 

Refinement tools have achieved the initial goal of reducing expert and developer effort 

by adopting abductive, deductive and inductive techniques that automate the knowledge 

debugging and maintenance stages in the KBS development cycle (Mooney 1997). The 

success of these techniques depends on the availability of a representative set of training 
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examples. Typically, access to such a set is only possible through considerable interaction 

with the expert. Presently, all refinement tools adopt a passive approach to training ex­

ample selection. This means that refinement tools do not actively select training examples 

that are desirable from a refinement point of view, instead they expect a training set that 

covers the KBS's expertise to be available. Clearly, this is not a realistic expectation, 

where a busy expert cannot be expected to provide solutions to hundreds of random prob­

lem situations with the hope of covering the gamut of expertise. Even if a comprehensive 

training set is available refinement tools must still be able to deal with skewed training 

example distributions, because refinement tools aim to improve the empirical performance 

of the KBS when employing training examples as a test-bed during refinement selection. 

1.3 Project Objectives 

The weaknesses of refinement tools just identified provides new directions and opportuni­

ties for further research within the knowledge refinement context. The objectives of this 

research are two fold: 

• Refinement search, to improve the effectiveness of incremental refinement by solving 

the local maxima problem. The approach adopted with respect to this problem is 

to modify the sequence of incremental refinements by retreating to previous states 

of refinement. Additionally, a more pro-active approach to incremental refinement 

suggests an investigation into refinement sequence pre-planning, with the aim of 

improving the efficiency of incremental refinement. 

• Example selection, to enable refinement tools to actively select training examples 

given the refinement purpose of providing fault evidence or forming a test-bed upon 

which proposed refinements can be competitively evaluated. 

Interestingly the strategies to achieve these objectives necessitated cross-fertilisation be­

tween knowledge refinement, search methods from the constraint satisfaction paradigm 

and selective sampling techniques from the machine learning community. 
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1.4 The Refinement Tool 

The research reported in this thesis was carried out as part of the larger KRusTWorks 

project!, which aims to develop a generic knowledge refinement framework. Given a 

specific rule-base shell, this framework is used to generate a refinement tool, a KRUSTtool, 

by re-using core refinement modules. These modules are applied to generic knowledge 

structures which model the problem solving behaviour of the rule-base. The structures 

are formed by translators that work on the specific rules and the associated traces (Craw 

& Boswell 1999). The currently developed framework is able to deal with faulty KBSs 

implemented in shells incorporating reasoning strategies that can be forward-chaining, 

backward-chaining or both. We will work with a KRusTtool, in particular the Clips 

KRUSTtool. However, developed methods with regards to the utilisation and selection of 

training examples need not be specific to just this KRusTtool and should be applicable in 

a wider context. 

1.5 Evaluation Domains 

The evaluation is based on two artificial domains and one real domain. Ideally, with each 

test domain we would have access to a buggy KBS and a sufficiently large data set for 

training and testing purposes. Unfortunately, access to an industrial expert system during 

its debugging stage is hard to achieve. Instead we can obtain a KBS assumed to be correct, 

and create a faulty KBS by adding controlled corruptions to a copy of the original. The 

advantage of this approach is that in situations where training examples are not readily 

available, or are not sufficiently representative of the KBS's expertise, the original KBS 

can be exploited to generate new examples. We ensure that corruptions to the KBS are 

refinable by the KRUSTtool, because here we are interested in improving example selection 

and utilisation methods, in contrast to improving refinement operator diversity. Therefore, 

the types of corruptions are restricted to four KRusTtool refinement operators: 

Delete Rule : triggered by an extra rule corruption; 

Remove Condition : triggered by an extra condition in a rule or an extra disjunction 

in a rule condition; 

lThe KRUSTWorks project is supported by EPSRC grant GR/L38387 awarded to Susan Craw. 
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Change Comparison Value: triggered by a rule condition with an incorrect compari-

son value; and 

Change Comparison Operator : triggered by a rule condition with an incorrect math­

ematical comparison operator. 

Essentially, introducing corruptions that the refinement tool is unable to fix will not help 

ascertain anything about example selection and utilisation. What we need is pro-active 

corruptions designed to provoke fault evidence. 

Typically, training examples must be converted in to a programming environment 

specific format, where the environment is the one in which the KBS was developed. The 

problem part of the training example is maintained as a set of observables represented as 

facts and is employed to initialise the KBS with the problem task. The solution part is 

represented in a format enabling easy comparison with the KBS's solution. 

1.5.1 Student Loans 

The Student Loans Advisor has been widely used to evaluate various knowledge refinement 

systems (Murphy & Pazzani 1994, Pazzani & Brunk 1991). The purpose of the advisor is 

to determine whether a student given his/her circumstances should or should not repay a 

US educational loan. The data set and the KBS in Prolog can be obtained from the UCI 

repository (Blake, Keogh & Merz 1998). The data set consists of 1000 labelled examples. 

We use a Clips version of the student loans KBS containing 20 rules. For experimentation 

purposes the KBS was corrupted by introducing 5 corruptions (see Appendix A): an 

extra rule, a changed comparison operator and an extra condition in 3 rules. 

Observables: (male student44) 
(absence student44 9) 
(enrolled student44 uci 1) 
(unemployed student44 no) 
(disabled student44 no) 
(enlisted student44 no) 

Expert Solution (label): Cno_payment_due student44 yes) 

Figure 1.2: A training example from the Student Loans domain. 

Figure 1.2 shows a typical training example from this problem domain, comprising the 
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observables and the expert's solution (also referred to as the example's label). This training 

example is a positive instance of the class no_payment_due, and corresponds to student, 

student44. In contrast a negative instance of class no_payment_due, would consist of a 

label such as (no_payment_due studentX no). A domain comprising of just positive or 

negative instances of a single concept is referred to as a binary classed domain. Of the 

1000 examples 643 are positive and the rest are negative. 

A set of 100 training examples and a disjoint set of 100 testing examples are randomly 

selected from the 1000 data set for experimentation. The Clips KRUSTtool is run with 

increasing subsets of the 100 training examples and the refined KBS is evaluated on the 

independent test examples, with final results typically averaged over ten runs. The ma­

jority of experiments reported in the thesis using the student loans adviser is designed in 

this manner unless otherwise stated. 

1.5.2 Soybean 

The Soybean disease diagnosis system has been widely used to evaluate various machine 

learning algorithms and refinement systems (Carbonara & Sleeman 1999, Schlimmer 1988, 

Michalski & Chilausky 1980). Given several symptoms of disease in soybean plants this 

system is able to classify them into one of 19 possible diseases. Unlike the binary class 

Student Loans domain, here we have a multi class domain. A large data set consisting 

of 307 examples, and a small data set consisting of 47 examples was obtained from the 

UCI repository (Blake et al. 1998). A data set of 337 labelled examples for experimen­

tation was formed by merging the large and small soybean data sets and selecting those 

examples classified in 15 of the 19 classes. While each of the 15 classes on average had 

20 representative examples the remaining 4 classes seemed unjustified because they were 

represented by just 17 examples in total. 

The original Soybean KBS has certainty-factors associating probabilistic weights to 

certain disease symptoms (Michalski & Chilausky 1980). As the KRUSTtool presently does 

not have certainty-factor related refinement operators this original Soybean KBS was not 

suited for our task. Carbonara & Sleeman (1999) dealt with this problem by translating 

the rules into a non-probabilistic form by deleting any symptoms from the theory that 

had a weight less than 0.8. The translated KBS has only a 12.3% accuracy on the labelled 

examples and is ideal for evaluation of a refinement tool's refinement operator capabilities. 
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However, for evaluation of example use and selection techniques it makes sense to work 

with a training set that has a more balanced number of true and false examples. Therefore, 

a new Clips soybean KBS with 46 rules was created by incorporating rule chaining into 

the rule set generated by c4. 5rules (Quinlan 1993). Two corrupted versions of this KBS 

are used, with the aim of achieving two different levels of corruption: 

• corrupted in 7 places, by adding and modifying antecedents in rules covering 4 of 

the 15 classes (see Appendix B.1); and 

• corrupted in 13 places, by adding and modifying antecedents in rules covering 8 of 

the 15 classes (see Appendix B.2) 

These two KBSs tend to have a flat structure when compared to the more straggling 

Student Loans KBS. The reason for this is that the initial Soybean KBS was generated 

using c4. 5rules and therefore, inherits the flat structure characteristic of induced rules. 

Observables: (fruit_pods plantl norm) 
(fruit_spots plantl absent) 
(fruiting_bodies plantl present) 
(leafspotsJlalo plantl absent) 
(leaves plantl abnorm) 
(plant~rovth plantl abnorm) 
(plant_stand plantl norm) 
(seed plantl norm) 
(roots plantl norm) 
(stem plantl abnorm) 
(mycelium plantl absent) 

Expert Solution (label): (diagnosis plantl diaporthe-stem-canker) 

Figure 1.3: A training example from the Soybean Disease domain. 

Figure 1.3 shows a typical training example from the Soybean problem domain, com­

prising the observables and the expert's solution. Here, a training example is described 

using 35 observables and is clearly more realistic than a training example from the Student 

Loans domain. A set of 100 training examples and a disjoint set of 100 testing examples 

are randomly selected from the 337 data set. The Clips KRUSTtool is run with increasing 

subsets of the 100 training examples and evaluated on the 100 testing examples, with final 

results typically averaged over ten test runs. 



1.5. Evaluation Domains 9 

1.5.3 Manned Maneuvering Unit (MMU) 

The MMU fault diagnosis system is a real application consisting of 104 rules with each 

rule on average comprising 8 antecedents. The system is written in Clips and was used 

in (Boswell & Craw 2000) to evaluate the KRUSTtool's refinement operators. NASA's MMU 

is a one-man, nitrogen-propelled backpack that attaches on to an astronaut's spacesuit. 

This jet pack enables the astronaut to fly untethered in or around the orbiter. Given infor­

mation about the MMU'S operator controls and measurements the MMU system provides 

automatic fault diagnosis, and generates recovery procedures for the MMU. A data set of 

100 labelled examples were formed by augmenting the 6 examples supplied with the MMU 

system, with 94 manually generated examples. Manual generation aimed at covering the 

problem space uniformly and involved determining the range of possible values for observ­

abIes by examining the existing examples and the rule-base. The original KBS was then 

used to determine the correct diagnosis for the 94 examples. Essentially the original KBS 

acted as the expert or oracle providing labels for the 94 examples. 

The expert reasoning modeled by the MMU KBS is complex and difficult to monitor 

when compared to the Student Loans or the Soybean KBSs. The primary contributory 

factor to this complexity, is the non-monotonic behaviour of the MMU KBS, whereby facts 

asserted by rules are retracted in subsequent rule activations. Additionally, the presence 

of negated conditions, antecedents comprising both disjunctions and conjunctions, and 

different rule priorities are further contributory factors. 

The original KBS had two corruptions: a generalised disjunction in one rule and an 

extra negated condition in another rule. For experimentation purposes a copy of the 

original faulty KBS was further corrupted by introducing 12 corruptions to 12 rules (see 

Appendix C): a generalised disjunction in 2 rules, an extra condition in 8 rules, and 

an extra negated condition in 2 rules. Note that the corruptions were random and not 

controlled, because it is difficult to anticipate the inherent behaviour of the MMU KBS. 

Refining a faulty MMU KBS requires significant processing power and refinement time. 

Therefore, for development purposes Student Loans and Soybean domains have the added 

advantage of being economical, simpler and easier to monitor. However, the MMU problem 

domain being a real one, makes it an ideal candidate for testing of implemented methods 

in Chapter 7. 
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(side a on) 
(side bon) 
(aah off) 
(gyro off) 
(fuel-used-a 0) 
(fuel-used-b 0) 
(xfeed-a closed) 
(xfeed-b closed) 
(tank-pres sure-was a 500) 
(task-pressure-was b 500) 
(tank-pressure-current a 500) 
(tank-pressure-current b 500) 

Expert Solution (label): (conclusion cea failure side-a) 

Figure 1.4: A training example from the MMU domain. 

Figure 1.4 shows a typical training example comprising the observables and the ex­

pert's solution. The number of observables describing each example is not fixed, but on 

average an example is described by 40 observables. The incremental experimental design 

using 100 training and 100 testing examples is not suitable, because the MMU data set 

is comparatively smaller than the sets used for Student Loans and Soybean. Therefore, 

for this domain we adopt the 5x2 cross-validation (5x2cv) experimental design method 

proposed in (Dietterich 1998). This involves 10 test runs obtained as follows: 

Repeat 5 times 

Randomly partition the data set into 2 equal-sized sets 81 and 82 

train on 81 and test on 82 

train on 82 and test on 81 

The 5x2cv design is well suited here, because partitioning the 100 data set gives us a suf­

ficiently large training and testing set of size 50. Furthermore, 5x2cv comes recommended 

as it has good type I error, i.e. low probability of incorrectly detecting a difference when 

no difference exists. 
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1.6 Synopsis 

The first part of the thesis concerns the project background. Chapter 1 has provided a 

general overview of knowledge refinement, objectives and problem domains. The literature 

survey in Chapter 2 is organised under three sections: knowledge refinement; constraint 

satisfaction search strategies; and selective sampling. 

The second part of the thesis deals with refinement search. Incremental refinement 

with the KRusTtool is described in Chapter 3. Here, the local optima problem of hill­

climbing search is highlighted and strategies to deal with this problem are incorporated 

with the KRUSTtool. Evaluation of search strategies on the student loans domain indicate 

that solving the local optima problem improves the KRUSTtool's effectiveness but efficiency 

can be undermined. Therefore, in Chapter 4 we investigate how KRusTtool's efficiency 

might be improved, and for this purpose training example ordering strategies that effect 

the sequence of incremental refinements is presented. 

The third part of the thesis concentrates on informed selection of training examples. 

In Chapter 5 a clustering framework which aids the KRUSTtool to actively select training 

examples for providing fault evidence is described. The emphasis of Chapter 6 is active 

selection of training examples for refinement filtering. One of the selection techniques 

builds on the clustering framework in Chapter 5 while the others exploit the diversity 

amongst generated refined KBSs when voting for or against selecting examples for refine­

ment filtering. We use student loans and soybean domains to evaluate several selection 

strategies. 

The rest of the thesis consists of evaluations, conclusions and future directions. Chap­

ter 7 reports on experiments carried out on all three problem domains, comparing several 

KRUSTtool variants formed by combining refinement search and example selection meth­

ods. Finally, Chapter 8 presents project conclusions and suggestions for future research. 



Chapter 2 

Literature Survey 

The survey on refinement systems places particular emphasis on the use of training exam­

ples. The refinement process is driven by training examples and involves a search for the 

best refinement through the space of possible refinements. This highlights the need for 

effective search strategies that are to some extent lacking in current refinement systems. 

For this purpose, a significant part of this chapter is also dedicated to the study of effi­

cient search algorithms employed by a different class of AI problems. Another issue that 

is not sufficiently addressed by refinement systems, is example selection mechanisms. This 

necessitated an investigation of example sampling strategies that are currently employed 

by the machine learning community. Therefore, this literature survey consists of three 

distinct sections: 

• the use of training examples for knowledge refinement (Section 2.1); 

• search strategies that might be beneficial when searching the space of possible re­

finements (Section 2.2); and 

• training example selection techniques that are employed by machine learning algo­

rithms (Section 2.3). 

2.1 Use of Training Exam pIes for Know ledge Refinement 

Training examples can be processed a single example at a time, where the refinement 

system reacts to fault evidence by a single training example. Alternatively, multiple train-

12 
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ing examples might be processed as a batch, where the refinement system implements 

refinements once fault evidence provided by all training examples is analysed. 

2.1.1 Refinement Driven by an Example At a Time 

The KRUST (Craw 1996) knowledge refinement system iteratively refines a faulty KBS by 

processing a single example at a time and can be applied to KBSs from both classifica­

tion (Craw & Hutton 1995) and design domains (Boswell, Craw & Rowe 1997). Figure 2.1 

illustrates the knowledge refinement tasks undertaken by KRUST. The input to KRUST 

consists of the faulty KBS and a set of training examples, el, ... , en. At each iteration of 

the refinement algorithm, a single training example referred to as the refinement example, 

is presented to KRUST. If the refinement example is correctly solved then refinement is 

not required, otherwise the fault evidence is employed to identify the cause of the faulty 

problem solving behaviour, generate several potential refinements and implement them as 

refined KBSs. The generation of multiple refined KBSs is a unique feature of KRUST, and 

at the filtering stage less promising refined KBSs get discarded. 

Identify 

Faults 

Generate and 

Implement 

Refined KBSs 

Training 
Chestnuts Examples ' __ "".,,-_rl' '~-"'T""'-""" 

1·········· .. ······ .. ···_·_····· .. ······· .. ········ .. ·····1 j······································· .. ···· .. ··l 
! Filter i i Select Best ! 
i Refined KBSs I i Refined KBS ! 
t ........................ .................................. J t ................................................. 1 

Figure 2.1: The basic operations in KRUST. 

Several filters are employed by KRUST in order to select the best refined KBS. KRUST 

prefers refined KBSs with highest accuracy on previously solved examples. Problems 

can arise when proposed refined KBSs have the effect of undoing previous refinements, 
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thereby causing inconsistencies with previously solved refinement examples. KRUST deals 

with these inconsistencies by adding a new rule that explicitly fixes the fault exposed 

by the current refinement example. Although such a strategy ensures that the current 

refinement example is solved without undoing previous refinements, the outcome is a 

specialised refinement that overfits the example. However, if refined KBSs consistent 

with previously solved examples are found, the accuracy filter selects the refined KBS 

with highest accuracy on the remaining training examples. KRUST can also incorporate 

a chestnut filter, which ranks refined KBSs by accuracy on a selected subset of special 

examples called chestnuts. An expert identifies these chestnuts as compulsory problem 

solving tasks that the selected refined KBS must solve correctly. Such a filter can only 

be employed if chestnuts are provided by an expert prior to the refinement process. The 

outcome of the filtering stage is the best refined KBS which is the output KBS in this 

iteration, and the input KBS in the subsequent iteration. Generally the filters enforce a 

greedy hill-climbing search that runs the risk of getting caught in local optima. 

The operation of KRUST suggests the role of training examples for refinement to be 

two-fold: 

• to drive the refinement process by providing fault evidence; and 

• to provide a test bed on which refined KBSs can be competitively evaluated in order 

to select the best refined KBS during refinement filtering. 

As with learning algorithms it is important that training examples employed by refinement 

systems are selected with its usage in mind (Blum & Langley 1997). For instance, since 

refinement is triggered only in the presence of incorrectly solved training examples, it 

makes sense to ensure that such examples are included in the training set. Similarly, for 

filtering purposes, it makes sense to select examples that are affected by the implemented 

refinements. Experiments reported in (Palmer & Craw 1997, Palmer & Craw 1996), show 

that refined KBSs with improved accuracy were obtained when training examples are 

carefully selected to have at least one example that provides fault evidence, compared 

to random selection. They also introduce the notion of selecting awkward examples for 

filtering purposes, to ensure that refined KBSs are evaluated on examples relevant to the 

refined KBSs being evaluated. In Figure 2.1, adding the awkward cases filter will result in 

an extra filter level after the chestnut filter but before the selection of the refined KBS with 
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highest accuracy. Essentially, such a filter aims to identify examples that are affected by 

the refinement by selecting examples that meet certain criteria. These criteria are derived 

according to the effect of the proposed refinement on rule activations and on the system 

solution. 

• Results changed criteria, select examples that as a result of refinement are now solved 

differently. 

• Paths diverge criteria, select examples that in addition to results changed criteria, 

are now incorrectly solved as a result of over-specialisation. 

• Maximally false criteria, select examples that in addition to results changed criteria, 

are now incorrectly solved as a result of over-generalisation. 

Identifying examples that fall into these criteria involve examining changes in system 

solution, detailed analysis of changes in rule activations and fact assertions. For KBSs 

with large numbers of rules, fact assertions and retractions a detailed analysis with each 

example is impractical. 

The COAST (Rajamoney 1990) refinement system processes a single training example 

at a time and incorporates a filtering mechanism that aims to maintain consistency with 

previously solved examples. COAST refines KBSs that model knowledge about physical 

process theories. The refinement process is triggered when the predicted behaviour of 

a physical process scenario, is different from the observed behaviour as captured by a 

training example. Once refined theories are proposed, the best is selected by means of 

several filters. The filtering mechanism, exemplar-based theory rejection ensures that: 

• refinements are accepted only when they are consistent with observed behaviours of 

previously solved examples; and 

• the best refinement is selected by evaluation on a selected subset of relevant examples 

that are affected by the refinement. 

The selected refinement is incorporated into the KBS. Close parallels can be drawn between 

the motivations behind KRUST'S awkward example filter, and COAST'S filter mechanism 

based on examples affected by the implemented refinement. Unlike KRUST, COAST must 

generate refinements that are consistent with previously solved examples. However, it is 
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not clear from the literature whether COAST is always able to generate consistent refine­

ments, and if not, what remedial procedures might be required. An interesting feature of 

COAST is the manner by which training examples are indexed according to sub-parts of 

the theory that they exercise. This enables quick identification of affected examples by 

changes to parts of the theory during filtering. 

The explanation based approach employed by ODYSSEUS (Wilkins 1988, Wilkins 1990) 

extends incomplete domain theories developed using the MINERVA expert system shell. 

ODYSSEUS observes an expert operating in a diagnosis problem domain, and monitors the 

explanation generated by the system for the expert's actions. Each action is analysed 

individually, analogous to processing a single example at a time. Unlike training examples 

used by most other refinement systems, here each training example constitutes a single 

feature value instead of a set of feature value pairs. The resulting training example is 

far more fine-grained than the typical training example employed by other refinement 

systems. Furthermore, as many training examples form a single diagnostic session of an 

expert, the order of examples is important as it captures the implicit information about 

the current reasoning and possible diagnosis. Refinement is triggered when ODYSSEUS 

is unable to explain an expert's action. Once a refinement is generated it needs to be 

validated. For this purpose ODYSSEUS has associated with each type of refinement a 

validation procedure, called a confirmation decision procedure (CDP). For instance in a 

medical domain if a refinement suggests the addition of a new clarifying question to the 

patient, the associated CDP will check that the clarifying question is linked to many disease 

hypotheses and can effectively eliminate a high percentage of these hypotheses. Similarly 

if a refinement involves the addition of a rule, the associated CDP will check whether 

the rule meets the goodness measures, such as simplicity, redundancy etc. It is clear 

that ODYSSEUS'S approach to refinement filtering exploits the underlying domain theory 

and structural information of the proposed refinement. This is in contrast to selecting 

refinements based on accuracy on training examples. 

The FOCL (Pazzani & Kibler 1990) system learns relational concepts from an existing 

rule base using explanation based learning and inductive learning. KR-FoCL (pazzani 

& Brunk 1991), is a refinement system that complements the explanation based learning 

component of FOCL. Learning experiences are recorded by FOCL and contain information 

about rules that were used for learning, any conditions or rules that needed to be induced, 
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together with details of correctly and incorrectly solved examples. KR-FoCL uses these 

experiences to identify potential faults in the rule base by applying several refinement 

heuristics. Like KRUST, refinement generation in KR-FoCL is triggered by a single exam­

ple. However, unlike the explicit fault evidence that triggers KRUST'S refinement process, 

with KR-FoCL, fault evidence is established by reasoning from FOCL'S learning experi­

ence. Consequently, several refinements are proposed, and user-interaction is exploited to 

select the best one. Therefore, like ODYSSEUS, training examples are used only to detect 

faults and not for filtering purposes. 

CLIPS-R is a refinement system that is built explicitly with the refinement of Clips 

KBSs in mind (Murphy & Pazzani 1994). Interestingly, CLIPS-R executes all examples 

on the rule-base to establish the sequence in which examples are to drive the refinement 

process. Essentially, CLIPS-R forces a sequence on refinements by dealing with examples 

that seem to indicate the most pressing faults in the rule base first. For this purpose a tree 

structure is constructed where each node represents a rule activation and tree traversal 

captures the sequence of rule activations leading to a leaf node. The leaf nodes contain 

groups of examples with similar rule activations. It is possible that an example can be in 

one or more leaf nodes depending on rule activations. Additionally, each node records the 

proportion of examples incorrectly solved with respect to the rule activation represented 

by that node. This means that the root will have the highest error-rate, while leaf nodes 

will typically have lower error-rates as examples get dispersed to various branches with tree 

traversal. CLIPs-R selects the examples at the leaf node with highest error-rate to drive 

the refinement process. Enforcing an order on training examples in this manner will affect 

the sequence in which refinements get implemented. However, ordering based on error 

rate alone can be adversely affected when example distribution is skewed. Nevertheless, 

the idea of processing examples in a predetermined sequence is an interesting concept 

that we have not seen with other refinement systems discussed so far. Note however, that 

although CLIPS-R uses all training examples to form the tree, once the relevant leaf node is 

identified, it processes a single example at a time. Like KRUST, CLIPs-R generates several 

refinements and evaluates them on all training examples, selecting a single refinement 

with highest accuracy. Hill climbing in this manner makes CLIPs-R susceptible to getting 

caught in local optima just like KRUST. 
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2.1.2 Refinement Driven by Multiple Examples 

Refinement systems that deal with a batch of training examples, must process fault evi­

dence provided by all training examples in the batch before generating refinements. Deal­

ing with multiple fault evidence entails establishing suitable criteria that helps prioritise 

repairs. The approach adopted by EITHER and FORTE, is a greedy algorithm that im­

plements those refinements that fix the highest number of incorrectly solved examples. 

Both refinement systems have been developed primarily for problems in the classification 

domain. 

Faulty KBS and 
Training Examples 

DEDUCTION 
(identify faults and fix 

failing negatives) 

ABDUCTION 
(fix failing positives) 

failing positives 
that cannot be fixed 

failing negatives 
that cannot be fixed 

INDUCTION 

Figure 2.2: The EITHER architecture. 

EITHER (Ourston & Mooney 1994, Mooney & Ourston 1991) is a knowledge refinement 

system that can fix faulty Prolog KBSs restricted to horn clauses without variables. EI­

THER operates in batch mode, processing a complete set of training examples at once. The 
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set of training ('xamples consists of correctly and incorrectly classified examples. Correctly 

dassifit'(i ('xalllpit's help focus the refinement while incorrectly classified examples provide 

fault ('vidence and drives refinement. EITHER groups the incorrectly classified examples 

into two catpgori('s ba.sed on the type of fault evidence they provide: 

• failing posit iws, ('xa.mples not. provable in their own class; and 

• fa.iling l1('ga.tivl's, pxamples provable in classes other than their own class. 

The refim'lJlent algorithm consists of three distinct modules (see Figure 2.2) and enforces 

an orcit'r on the incorft'Ctly classified examples that drive the refinement process. Failing 

negat ivt'S are d('alt with first, followed by failing positives, and failing examples of either 

type that cannot be fixed individually are dealt by the induction module. Additionally, 

corft'('tly da..'\sifit'd ('xa.mples guide t.h(' induction process when learning new rules and an­

tp(,pdl'nls. During the deduction and abduction phases, EITHER ensures that proposed 

rpfiIH'lIIl'nts a.rt' all consistent with previously correctly solved examples. When cons is­

tpnt rt'fim'nU'nts cannot he proposed, EITHER avoids dealing with uncorrected examples 

hy initiating induction. This ensures t.hat the accuracy of the refined KBS is always im­

proved. ttwft'hy avoiding local optima. Unlike KRUST, EITHER does not generate multiple 

rcfiIH'nl(~nts, instead it prefers the smallest number of fixes that correct the largest num­

lwr of ('xalllpics. However, in doing so EITHER is restricted to a small proportion of the 

refinl'lllcnt st'arch space, and can often overlook promising solutions. 

FORTE'S (Ridmnls & Mooney 1991, Richards & Mooney 1995) ability to refine Prolog 

KBSs consisting of horn clauses with variables makes it superior to EITHER. FORTE uses 

ttl(' wlllplt'tt' training set. to identify potential refinement points in the KBS. A refinement 

point is simply a localised area in the rule-base that corresponds to the fault evidence 

provilil'd hy OIW or 1I10re training examples. Each of the refinement points are assigned 

a scon' n'tipct.ing its repa.ir potent.ia.l, which is basically the potential increase in accu­

r;u'y. TIlt' sroft' is a.'i('('rt.ailwd by determining the number of incorrectly solved training 

('xampll's t hat will Ill' rorrt'dly solwd a.s a. result of fixing the identified refinement point. 

F'or instance, if a pott'ntial refillemellt. for a given refinement point would result in five 

innlrft'(,tly solvl'(l training examples being solved correctly, then the refinement point is 

a. ... 'ii~IlI'(1 a SCOft' of tiV('. Notiet, tha.t t.he refinement score does not reflect the number 

of ('orft'('tly solvl'(l training examples that lIlay get unsolved as a result of the proposed 
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refinement. Once scores are assigned, the refinement points are sorted by highest to low­

est refinement potential. Essentially, this scoring and sorting mechanism helps FORTE to 

prioritise refinements, however like the tree structure employed by CLIPS-R, sorting can 

be adversely affected when example distribution is skewed. 

FORTE generates refinements for each identified refinement point. The generated re­

finements are scored by the actual increase in accuracy on training examples. FORTE stops 

generating refinements when the potential of the next refinement point is less than the 

actual accuracy increase of the best refinement so far. FORTE'S global view of refinement 

generation based on accuracy on all training examples is once again an attempt to avoid 

getting caught in local optima, however, this is not guaranteed. 

The AUDREyII (Wogulis & Pazzani 1993) refinement system can be applied to KBSs 

that deal with binary classification problems. AUDREyII adopts a two-stage process: 

• a specialisation stage that deals with false negatives, which are positive examples 

incorrectly classified as negative; and 

• a generalisation stage that fixes false positives, which are negative examples incor­

rectly classified as positive. 

During specialisation, AUDREyII's hill-climbing search selects the refinement that fixes the 

most number of false negatives. In the generalisation stage, false positive examples are 

randomly selected and processed one at a time. This two-stage approach can be viewed as 

a form of example ordering, and is distantly related to EITHER'S deduction module dealing 

with failing negatives, followed by the abduction module dealing with failing positives. 

2.1.3 Role of Training Examples for Refinement 

Table 2.1 attempts to categorise the refinement systems discussed in this Section according 

to their use of training examples, thus highlighting the following roles for training examples 

within the refinement context: 

• driving the refinement process; 

• assisting with refinement filtering; and 

• enforcing a sequence on refinement implementation. 
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The first two roles are obvious and are commonly seen with most refinement systems. The 

third is less obvious, where the order in which single or subsets of examples are processed 

will influence refinement sequence and so the refinements that get implemented. The rows 

in the contingency table specify whether a single example or multiple examples can be 

employed with each refinement role. Clearly it does not make sense to employ a single 

example for the filtering and sequencing roles. 

Driving Refinement 
Refinement Filtering Sequencing Refinements 

Single 
KRUST 
COAST 

Example ODYSSEUS 
KR-FoCL 
CLIPs-R 

Multiple 
EITHER KRUST CLIPS-R (tree structure) 
FORTE CLIPS-R FORTE (refinement points) 

Examples AUDREyII FORTE EITHER (3 stage approach) 
AUDREyII AUDREyII (2 stage approach) 

Table 2.1: Contingency Table Demonstrating the Use of Training Examples. 

2.2 Know ledge Refinement as Search 

The generation and selection of the best refinement is a common goal for all refinement 

systems. With KRUST, as each example is processed in a single refinement cycle, the refine­

ment algorithm selects the best refined KBS from a set of generated potential refinements. 

Essentially, a search for the best refinement through the space of possible refinements. 

This section introduces the Constraint Satisfaction Problem (CSP) which is a different 

problem to that of knowledge refinement. Approaches to solve CSPs involve search strate­

gies that interestingly employ various heuristics that deal with search dead-ends. We are 

interested in investigating how knowledge refinement systems might benefit from these 

heuristics as a means to solve the local optima problem, provided that refinement systems 

are able to identify local optima when they occur. 

The conventional CSP consists of a set of ordered variables {VI, ... , Vn }, a finite domain 

Di for each variable Vi, and a set of constraints {CI , ... , Cm }, restricting the values that 

the variables can simultaneously take. A CSP solution is an instantiation of each variable 
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with a value from its respective domain, such that none of the constraints are violated 

(Tsang 1993). CSP search strategies fall under two broad approaches (Bartak 1999): 

• the constructive approach, where solutions are sought by systematically traversing 

through the space of partial solutions; and 

• the repair based approach of non-systematically exploring the space of complete 

solutions. 

2.2.1 Constructive Approach 

The constructive search strategy attempts to incrementally extend a partial CSP solution 

towards a complete solution, by instantiating one variable at a time. However, when a 

variable cannot be instantiated by a value from its domain without violating one or more 

constraints, the search strategy will fail to extend the partial solution. Essentially the 

search has encountered a dead-end, and terminating the search at this point is not an 

option, since there are variables yet to be instantiated. The backtracking paradigm is the 

most common algorithm for performing constructive search and dealing with dead-ends. 

Various backtracking algorithms have been proposed which undo the partial CSP solution, 

and resume the constructive process of extending the solution from a previous variable 

instantiation (Kondrak & van Beek 1997, Tsang, Borrett & Kwan 1994, Kumar 1992). 

Here, we look at three well known backtracking algorithms, that deal with the inability 

to instantiate variable Vj having successfully instantiated Vl ... Vj-l. 

Chronological Backtracking (BT) (Bitner & Reingold 1975), steps back to the most re­

cently instantiated variable Vj-l, and continues the search by finding a new instantia­

tion for Vj-l consistent with the current partial solution VI ... Vj-2. Upon exhausting 

all instantiations in Vj-l'S domain, BT backtracks to the next most recently instan­

tiated variable Vj-2. In this manner BT recursively backtracks to previous variables, 

until it has identified a value for a variable, consistent with the values in the current 

partial solution. 

BackJumping (BJ) (Gaschnig 1979), does not simply step back to the previous variable 

Vj-l, instead, it jumps back to the most recent variable Vi whose instantiation is 

in conflict with vi's, and continues the search by finding a new instantiation for Vi, 
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consistent with the current partial solution VI ... Vi-I' If there are no new consistent 

instantiations available for Vi then BJ reverts to backtracking from Vi. 

Conflict-directed BackJumping (CBJ) (Prosser 1993), extends the notion of backjumping 

by replacing the backtracking after a backjump in BJ with further backjumping if 

required. 

esp-solve 
foreach Vj 

initialise( confset( Vj)) 

advance(vj) 

retreat (v j) 
if confset ( v j ) = {} then 

cannot be solved 
else 

Vi is variable in confset(vj) 
with highest subscript 

confset(vi) := confset(v;) u confset(vj) \ {vd 

for N = i + 1 to j 
initialise( confset( v N)) 
initialise D N to original domain values 

if Di = {} then retreat(v;) 
else advanee(v;) 

advanee( Vj ) 

foreach djk in Dj 

remove djk from D j 
for each Vi in Vj-I, ... ,VI 

consistent := true 
for each C in C1 , ••• , Cm 

if Vj =djk and Vi violates C then 
consistent := false 
exit foreach C 

if ...,consistent then 
update( confset( Vj ),Vi) 
exit foreach Vi 

if consistent then 
exit foreach djk 

if consistent then 
if j < n then advanee(vi+d 
else solved 

else retreat (v j) 

Figure 2.3: A General Backtracking CSP Algorithm. 

An algorithm that finds the first possible solution to a CSP is shown in Figure 2.3. This 

algorithm is applicable to binary CSPs where a constraint involves at most 2 variables. 

Here, each backtracking algorithm applies the generic esp-solve function. Associated with 

each variable is a conflict set (confset) of potential backtracking points. The initialisation 

and update of the confset is defined as follows: 

initialise(conJset(Vj)) = { {} for BT, BJ, CBJ 

! 
{Vj-I} for BT 

update( conJ set( Vj), VI) = conJset (Vj) U {VI, ... , vd for BJ 

con/set ( Vj) U {Vi} for CBJ 



2.2. Knowledge Refinement as Search 24 

When advancing search, a value djk' from vi's domain Dj, is selected such that instanti­

ating Vj with value djk will not violate any of the constraints. The process of identifying a 

consistent instantiation value for Vj, involves trying each value djk and examining whether 

a previously instantiated variable, Vi, violates any of the constraints. If a violation occurs 

then the value is discarded and the next value in Dj is tried. The Vi that was involved 

in the violation gets added as a potential backtrack point when Vj'S confset is updated. 

The update of BT's confset is trivial, as it always contains the previous variable as the 

potential backtracking point. BJ updates Vj'S confset with the conflicting Vi, together with 

all variables preceding Vi, as potential backtracking points. CBJ is similar to BJ, but only 

Vi is maintained as a backtracking point. This enables CBJ to recursively back-jump to 

previous conflict points, because unlike with BJ any intermediate variables are not main­

tained. It is in the retreat function that these subtle differences of updating the confset 

come into play, enabling the implementation of three distinct backtracking policies within 

the generic csp-solve function. Eventually, if Vj cannot be instantiated because all values 

from Dj are exhausted, then backtracking is necessary and this responsibility is passed on 

to the retreat function. 

When search has to retreat, the variable with the highest subscript (or most recently 

instantiated) is always selected as the backtrack point. Any inconsistencies experienced 

when advancing the search are recorded with the update of the confset. The union of 

the confset for Vj (the variable at the dead-end point) with the confset for Vi, ensures 

that these experiences are not forgotten even when search has to resume from a previous 

stage. However, it is only with CBJ that such explicit knowledge about past experiences 

is exploited, as here the updating of confset maintains Vi as the backtracking point. Ac­

cordingly, if Dj is {}, CBJ will be able to reuse any past knowledge about inconsistencies, 

hence the potential to backjump further. 

The confset variables identified during a search can also be used as an opportunity for 

learning, in addition to focusing backjumping. The technique of learning in this manner is 

called constraint recording and can also be viewed as explanation based learning (Dechter 

& Frost 1999). The idea is to add the contents of the confset (no goods) in the form of new 

constraints. This increases search space pruning, whereby the same inconsistencies will 

not be rediscovered. Kambhampati's (1998) approach to planning, exploits the ideas of 

backjumping and explanation based learning. Although the planning activities and their 
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sequences are not fixed, the descriptions of each activity contain static information speci­

fying preconditions and effects of the activity. When inconsistent activities are identified, 

their preconditions and effects are noted and formulated into new constraints. 

2.2.2 Repair-Based Approach 

The repair-based search for a CSP solution guesses an initial solution to the CSP that is 

likely to be inconsistent. This solution is then incrementally altered by changing values of 

strategically selected variable instantiations (Bart Selman & Cohen 1994). Typically, the 

selection strategy adopts a hill-climbing approach that advances to the next best state. 

Such a strategy is computationally expensive, as all variables and possible value instantia­

tions must be explored. The min-conflicts heuristic aims to reduce this exploration task by 

selecting a random inconsistent variable, and instantiating it with the value that conflicts 

least with the rest of the variables (Minton, Johnston, Philips & Laird 1992). However, 

the hill-climbing repair based approach suffers from the common local optimum problem, 

and must be complemented with randomised techniques, that can get out of and beyond, 

the local optimum. The mixed random-walk strategy (Selman & Kautz 1993), introduces 

controlled randomness to the search by interspersing a random step with probability p, 

and the hill-climbing step with probability 1 - p. During the random step, an inconsistent 

variable is randomly picked and its instantiated value is changed. Another approach main­

tains a short-term memory of past actions (a tabu list), and ensures that the same past 

actions are not repeated within a specified tenure (Glover & Laguna 2000), thus avoiding 

repetitive actions. 

The constructive CSP approaches we have considered, are well equipped to handle 

dead-ends and can efficiently get beyond local optima. Although repair-based search 

must be equipped with randomised techniques to handle local optima, it has been shown 

that these search strategies operate more efficiently in large search spaces where solutions 

are not evenly distributed (Minton et al. 1992). One contributory factor towards this 

improved efficiency, is due to the use of information about the current solution by repair­

based search, not available to constructive search. This is because, repair-based search 

deals with a complete yet inconsistent solution, while constructive search deals with an 

incomplete yet consistent partial solution. 
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2.2.3 Improving Search Efficiency 

CSPs employ various heuristics that reduce search effort (Frost & Dechter 1994, Sadeh & 

Fox 1990). 

• Value ordering heuristics select those values that conflict least with variables that 

are yet to be instantiated; 

• Variable ordering heuristics deal with most constrained variables first. 

Value ordering aims to select a variable instantiation that is most likely to lead to a solution 

without the need for backtracking. The repair-based approach to solving CSPs and its 

greedy min-conflict heuristic for repair selection (Minton et al. 1992) is an effective heuristic 

of this kind. An interesting value ordering heuristic that can be employed to improve 

constructive search efficiency with close parallels to Minton et al.'s min-conflict heuristic 

is the look-ahead min-conflict value ordering heuristic for constructive search (Frost & 

Dechter 1995). Here, values of a variable are ranked in increasing order based on the 

number of incompatibilities with potential values of future variables to be instantiated. 

For the generic esp-solve function in Figure 2.3, this would mean a simple modification 

to advance: sort the possible instantiation values in Dj in ascending order, according 

to the number of incompatibilities with all potential values of variables yet to be solved, 

{Vj+l,""Vn }, 

The intuition behind variable ordering heuristics is to deal with the most constrained 

variable first, thereby enabling early discovery of dead ends, hence efficient pruning of the 

search space. A CSP variable is generally constrained in two ways: 

• by the constraints it is involved in; and 

• by its domain size. 

Most common variable ordering heuristics exploit these two properties separately or in 

combination (Dechter & Meiri 1994, Gent, MacIntyre, Prosser, Smith & Walsh 1996, 

Gent, MacIntyre & Prosser 1996, Brelaz 1979). Essentially, these heuristics aim to deal 

with variables involved in the most number of constraints and/or, with smaller domain 

sizes first. Heuristics for static variable ordering exploit relationships among variables 

identified from the topology of the constraint graph (Tsang 1993). Here, the aim is to 
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deal with tightly constrained variables early, consequently reducing the number of re­

visits to previously instantiated variables. Dynamic variable ordering addresses the fact 

that invariably the best variable order is different in different branches of the search tree, 

by taking advantage of the information available after each variable instantiation to move 

the search to branches that are more likely to contain a solution (Haralick & Elliott 1980). 

Various look-ahead strategies select the variable that most constrains the remainder of the 

search (Smith & Grant 1998). The motivation behind all such heuristics is to deal with 

variables that are most constrained first since leaving them until later can only lead to 

increased demands on consistency and late discovery of dead-ends. 

2.2.4 Dynamic CSPs 

Recent developments in constraint programming have increased pressure to adopt CSP 

techniques for scheduling and planning tasks (Bartak 2000). The main difficulty with these 

tasks involve changing variables, domains and constraints during search. These difficulties 

have warranted the extension of the conventional CSP framework to a Dynamic CSP 

(DCSP) framework, in which variables, domains and constraints are not required to be 

known fully in advance (Mittal & Falkenhainer 1990, Lamma, Mello, Milano, Cucchiara, 

Gavanelli & Piccardi 1999, Kambhampati 1998). 

Mittal & Falkenhainer (1990) introduce the idea of active variables and non-active 

variables. The solution to a CSP involves instantiating all active variables. However, as a 

result of instantiating an active variable, non-active variables can become active depending 

on the value being instantiated. This necessitates a new type of constraint called activity 

constraint, which constrains a variable to be active or not active, based on other variables 

that are active and on their value instantiations. For instance, given a car configuration 

task, if the frame of the car is to be a convertible, we need to gather information about the 

types of sun roofs, if however the frame is simply a hatch-back, then the variable associated 

with sunroof need not be active. Additionally, standard constraints are distinguished 

from activity constraints as compatibility constraints, because of the active/non active 

variable distinction. However unlike standard constraints, compatibility constraints are 

applicable only if all variables that are constrained by it are active. Essentially, the 

idea of activity constraints extends standard CSPs to handle a changing set of variables 

and reasons about the activity of variables. The idea of activity constraints is adopted 
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for solving planning tasks in (Kambhampati 1998, Kambhampati 2000, Kambhampati & 

Nigenda 2000). Here, as the initial state of a plan is incrementally transformed into the 

goal state via intermediate states triggered by the application of plan actions, the effects 

of these actions can necessitate the application of other actions. For instance, given an 

object, with the goal of shaping and polishing it into a cylinder, then rolling the object 

to make it cylindrical, will necessitate the application of the new action of cooling the 

object, as polishing cannot take place when the object is heated. Therefore the effects 

of plan actions are analogous to activity constraints, but there is no direct analogue to 

compatibility constraints. 

For constraint problems where the acquisition of all domain values is not convenient, 

the idea of interactive constraints is introduced in (Lamma et al. 1999). Interactive con­

straints in addition to standard constraints, can also constrain variables for which all 

domain values are not known. A variable gets instantiated with values from its known 

domain, if however the domain is completely unknown, then value acquisition is triggered 

and guided by any unary constraints. Forward checking involves constraint propagation 

to ensure that future variables are consistent with the newly instantiated variable. During 

the process of forward checking, with the interactive CSP approach, if domains of any 

future variables involved in a constraint are unknown then value acquisition is initiated. 

Therefore, interactive constraints extend the role of standard constraints, to cover vari­

ables with domains partially known or even completely unknown, and triggers and guides 

value acquisition during forward checking. 

2.3 Example Selection for Learning Algorithms 

Fundamental to the operation of all refinement systems in Section 2.1 is the availability of 

labelled examples. Surprisingly, all refinement systems assume that a representative set of 

labelled examples will be available, and do not address the potential problem of refinement 

constrained by the availability of labelled examples. Although a batch version of EITHER 

has been implemented to deal with the availability constraint it assumes that examples 

contained within batches that become available are all labelled (Mooney 1992). In a real 

environment unavailability of labelled examples is a relatively common problem, where 

labelling many problem-solving tasks with the expert's solution may require significant 
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interaction with a busy expert. 

The problem of unavailability of labelled training examples and sample selection of rel­

evant examples from a set of unlabeled examples, has been addressed by machine learning 

algorithms and falls under the paradigm of active learning. There are two main approaches 

to active learning: 

• membership queries, in which the learner constructs examples and asks an expert to 

label them (Angluin 1988, Angluin, Frazier & Pitt 1992); and 

• selective sampling, where the learner examines many unlabelled examples, selecting 

only the most informative ones to be labelled by an expert. 

Here, the focus of interest is in selective sampling, where the underlying assumption is that 

a large set of unlabelled training examples are available. Such an assumption is not un­

reasonable, as unlabelled examples can be generated based on meta knowledge (Zlatareva 

& Preece 1994, Ayel & Vignollet 1993). Moreover, in some problem domains the observa­

tions are readily available but the labelling is costly, e.g. document classification on the 

web. 

Selective sampling strategies utilise information from labelled examples to perform se­

lection on the unlabelled examples. Typically, the labelled examples are used to train a 

classifier which then predicts the labels of those unlabelled, and selection exploits clas­

sification uncertainty of the classifier, i.e. selects those examples for which the current 

best model is most uncertain. More recently, this approach has been extended to include 

several classifiers that operate as a committee, and selection exploits classification uncer­

tainty reflected by the committee as a whole, thereby evaluating classification uncertainty 

with respect to a subset of models from the entire space of possible models. 

2.3.1 Uncertainty-Based Classifiers 

Cohn, Atlas & Ladner (1994) apply selective sampling to the task of learning a binary 

concept, by using a specific-general (SG) neural network configuration. The specific con­

figuration (S-net), is achieved by preferring a network configuration with highest accuracy 

on a data set, formed by arbitrarily adding unlabelled examples and treating them as neg­

ative examples. Essentially, this is training with a negative bias, where the S-net covers 
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a few positive examples clustered in a small area of the version space. The most gen­

eral configuration (G-net), is formed by introducing a positive bias resulting in the G-net 

covering all positive examples, but in doing so will also include negatives. Figure 2.4 illus-
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Figure 2.4: Learning with (a) a Negative Bias and (b) a Positive Bias . 

trates for a binary classification problem, the different generalised and specialised concept 

boundaries learned by the G-net and S-net. The dots in Figure 2.4(a), represent nega­

t ively labelled examples arbitrarily added to create a negative bias, and in Figure 2.4(b), 

positively labelled examples to create a positive bias. The concept is indicated by the 

shaded area. The obj ctive is to exploit the region of uncertainty, by selecting unlabelled 

examples for which both network configurations fail to agree upon their labels. The arrows 

in Figure 2.4, highlight two examples for which the S-net and G-net are bound to disagree. 

An example in the uncertain area once selected, is labelled by the expert, consequently 

the network configuration is updated as follows: 

• If the S-net had incorrectly estimated the example as negative, then the S-net concept 

boundary is generalised to cover these examples; otherwise 

• if the G-net had incorrectly estimated an example as positive, then the G-net concept 

boundary is specialised, such that it does not cover this example. 

The uncertainty-based example selection and labelling process iterates unt il both net­

work configurations converge. An obvious danger in this approach is that with complex 

concepts the G-net may cover the entire version space, reducing the efficiency of selective 

sampling to that of random sampling. Therefore, an obvious difficulty with this ap­

proach is in identifying the initial concept boundaries specially for domains with multiple 
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classes and complex concept boundaries. The inductive learning algorithm DIDO (Scott 

& Markovitch 1989) also employs informative example selection at concept boundaries, 

and avoids the boundary identification problem by employing the Shannon uncertainty 

measure (Shannon & Weaver 1949). This measure tends to associate high scores to classes 

with fewer examples, thereby reflecting the need to learn about these classes. However, the 

Shannon uncertainty measure can only focus attention of the learner to a particular class, 

and example selection itself is the responsibility of the learning algorithm. Therefore, for 

selective sampling, this measure can only be applied once labels are estimated. 

Selective sampling for the nearest neighbour algorithm applied to a binary domain 

is discussed in (Lindenbaum, Markovich & Rusakov 1999). Label estimation of an un­

labelled example is done by means of a linear combination function, that combines the 

classes of labelled examples according to correlation between feature vectors. The result 

of this correlation is that labelled examples that are also the nearest neighbours, tend 

to influence the label estimation of an unlabelled example. The greater influence is re­

flected by higher weights assigned to nearest neighbours. The weights are obtained by 

matrix transformation employed when fitting a multiple regression model (Mendenhall & 

Sincich 1988). However, one proqlem with using a linear combination function as a label 

estimator is that class estimates can result in values outside the binary class range [0,1]' 

requiring some form of rounding. 

Once class labels have been estimated for all unlabelled examples, the next task is to 

select D' examples that would increase the accuracy of the nearest neighbour classifier. A 

utility function is employed for this purpose comparing the gain in classification accuracy 

over the unlabelled examples U, between the classifier h formed using the labelled examples 

D, and the classifier h' formed using DUD'. The D' that increases accuracy is selected for 

labelling. The gain in accuracy can be a simple comparison of how many examples in U 

were correctly classified by hand h' according to the nearest neighbour principle. However, 

Lindenbaum et aI. employs h and h' as probabilistic classifiers. The experimental results 

are encouraging, although the test domains have been restricted to binary classification 

tasks. 

Lewis & Catlett (1994) employ a probabilistic classifier to select examples for the 

C4.5 learning algorithm (Quinlan 1993). Once trained on labelled data, the probabilistic 

classifier is applied to the unlabelled examples, selecting those about which it is most 
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uncertain. The motivation here is to use the cheaper probabilistic classifier to select 

examples for the relatively expensive C4.5 classifier. Experimental results suggest that 

labelling cost was reduced when example selection was carried out by the probabilistic 

classifier and by the more expensive C4.5 algorithm. However, there is some penalty on 

classifier accuracy when uncertainty sampling is carried out by the probabilistic classifier 

for C4.5, instead of C4.5 itself. 

2.3.2 Committee of Uncertainty-Based Classifiers 

Freund, Seung, Shamir & Tishby (1997), employ a two-member committee drawn from a 

sample of labelled examples to select informative examples that can then be labelled by 

an expert. An informative example is one for which the committee fails to agree about 

its label, because the example has changed the representation of the hypothesis. Gen­

erating a committee member involves selection of parameter values that are required for 

class probability estimation. These parameter values are selected according to the under­

lying statistics of the labelled examples. Essentially, a member can be viewed as a set of 

parameters that are needed to estimate class labels of unlabelled examples given their fea­

tures. For each unlabelled example, each member in turn estimates its label. Informative 

examples are selected according to committee disagreement and labelled by the expert. 

The newly labelled examples will now influence the parameter values, therefore, a new 

committee is generated according to the underlying statistics. This process can continue 

until consecutive agreement between the committee is above a predetermined threshold. 

Notice that with an increasing number of labelled examples the variance between param­

eter values picked for committee members decreases, thus leading to committee members 

with fewer disagreement. 

The basic two member committee approach is extended to k members in (Argamon­

Engelson & Dagan 1999). Here, the committee-based approach is applied to learning 

Hidden Markov Models (HMMs) (Merialdo 1991) for part-of-speech tagging of English 

sentences. Part-of-speech tagging involves labelling each word in a sentence according to 

its role in the sentence, e.g. verb, noun etc. HMMs are trained so that given a sentence 

it is able to classify the words into their respective sentence roles. The committee-based 

approach is employed to aid the HMMs to learn efficiently achieving improved accuracy 

using fewer training examples. Unlike with the two member committee, with k members 
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a more sophisticated measure of disagreement is necessary. The vote entropy measure, 

captures the uniformity in class estimation for an example by the different committee 

members. Given the set of classes C, and the number of committee members classifying 

e in class c, where cEC, denoted by votes(c, e), the vote entropy is: 

vote entropy (e) 
1 '"'" votes ( c, e) 1 votes (c, e) 

log min(k, ICI) fEe k og k 

The entropy measure is normalised by a bound on its maximum possible value, log 

min(k,ICI), such that the value is between 0 and 1. The higher the value the greater 

the disagreement. 

An alternative measure of disagreement is suggested by McCallum & Nigam (1998), 

using the Kullback-Leibler (KL) divergence to the mean. Here, the measure relies on the 

probability attached by each committee member, that an example is in c. Therefore, unlike 

the vote entropy, which compares only the committee members top ranked class estimates, 

KL divergence can measure the strength of the disagreement based on all class distribu­

tions. Although the vote entropy measure is appealing due to simplicity, experiments 

indicate that KL divergence results in improved accuracy when sampling on domains with 

sparse examples. The improved performance of KL divergence is explained by its ability 

to select examples that were sufficient to learn generalised concepts. Interestingly, this 

means that the vote entropy measure tends to select atypical examples, while the KL 

divergence avoids atypical examples. Therefore, for applications where the aim is to learn 

new concepts it makes sense to avoid atypical examples, as they would lead to skewing of 

statistics; whereas, for the task of identifying difficult or noisy examples, it makes sense 

to concentrate on atypical examples. 

An interesting approach combining a committee with Expectation Maximization (EM), 

is employed for the task of text classification in (McCallum & Nigam 1998). A common 

difficulty for text classifiers is the need for a large, often prohibitive, number of labelled 

training documents to learn accurately. The task of training a text classifier using a 

limited number of labelled documents is tackled in (Nigam, McCallum, Thrun & Mitchell 

1998, Nigam, McCallum, Thrun & Mitchell 2000), by incorporating information from 

unlabelled documents. The labelled documents are used to calculate the initial parameter 
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values, which consist of: 

• the class probability distributions for each word, i.e. the number of word occurrences 

for a given class normalised by all word occurrences in that class; and 

• the prior probability distributions for classes, which is the ratio of documents in a 

given class. 

These parameters are then used by a naive Bayes classifier (Domingos & Pazzani 1997) to 

estimate the most likely label for the set of unlabelled documents. The labelled documents 

and the newly labelled (estimated) documents are then used to form new parameters 

values. This process iterates until there are no changes (or minimal changes) to the 

parameter values between consecutive iterations. Unlike selective sampling where labels 

can be sought from an expert, here the learning relies on the Bayes estimates and on 

the convergence of parameter values. Essentially, this process of estimating labels and 

incorporating the newly labelled examples in the re-calculation of parameters for the next 

iterations, falls under the Expectation Maximization class of algorithms (Dempster, Laird 

& Rubin 1977). 

Although text classification with EM is able to improve classification accuracy by 

supplementing scarce labelled documents with unlabelled documents, selective sampling 

has the potential to improve accuracy further, as labels for selected examples can be sought 

from the expert (McCallum & Nigam 1998). The committee based approach is extended 

to include EM, where each committee member applies EM before estimating the final set 

oflabels for the unlabelled examples (see Figure 2.5). A member is generated by randomly 

selecting parameter values constrained by the variance. For instance, the variance for the 

parameter p(tlc) that estimates the probability of word t given class c, where the total 

number of word occurrences for c is n, is specified as: 

p(tlc)(1 - p(tlc)) 
n 

Here, the variance decreases as more labelled examples are available for the parameter 

estimation. The result is that labelling of selected examples improves the estimation of 

parameters for EM, while incorporating EM with each committee member, avoids selecting 

examples whose labels can be reliably predicted by EM. 
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1. Calculate initial parameter values S, and variance cr, for these values 
based on labelled documents. 

2. For i = 1 to k 
(a) Randomly select 8j from the range constrained by S and cr. 

(b) Initialise new Sj as Sj 

(c) Apply EM with the unlabelled documents and Repeat: 
* Let Sj = new 8j 

* Estimate labels for unlabelled documents using 8j . 

* Calculate new 8 j based on the labelled and 
newly labelled documents. 

Until Sj = new 8 j 

Cd) Use new Sj to estimate labels for all unlabelled documents. 

3. Calculate the disagreement between the k members based on the label 
estimates in step 2 (d), and request labels where disagreement is high. 

Figure 2.5: Complementing committee based approach with EM. 

The use of a committee to identify and eliminate noisy examples, instead of selecting 

examples, is discussed in (Brodley & Friedl 1996). Here, the goal is to improve the 

quality of the training set consisting of all labelled examples but possibly contaminated 

with noise. Essentially, the committee acts as a filter that identifies and eliminates noisy 

examples from the training set. A committee with k members is generated by performing 

a n-fold cross-validation over the training examples (see Figure 2.6). Each member is 

a learning algorithm that is trained on the 1, ... , n - 1 parts of the training set. The 

resulting classifier estimates the class of each example in the nth part; if the estimate is 

correct, the example is tagged as correct otherwise tagged as mislabelled. The tagging by 

the committee is analysed to establish whether the example should be eliminated or not. 

The consensus heuristic requires complete consensus between members before an example 

is retained. The less conservative majority heuristic requires that a majority of members 

are able to classify the example correctly before it can be retained. With both heuristics 

there is the danger of either being too conservative and retaining noisy examples or of 

detecting noisy data at the expense of throwing away useful examples. Therefore, when 

training data is scarce it makes sense to employ the majority heuristic, and for situations 

where examples are in abundance the more conservative approach is suited. 
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Figure 2.6: Filtering Noisy Examples Using a Committee of Classifiers. 

2.4 Conclusion 

Refinement systems employ training examples to drive the refinement process. Addi­

tionally, training examples are useful for refinement filtering and refinement sequencing. 

Ideally, a refinement system should employ training examples for all three purposes: driv­

ing, filtering and sequencing. The main weakness with most refinement systems is the 

hill-climbing based refinement search approach which invariably results in the local op­

tima problem. Therefore, we need search mechanisms that can help guide refinement by 

avoiding local optima, and recovery strategies that help deal with local optima when they 

occur. 

Search strategies for CSP show that backtracking strategies are commonly employed 

to deal with search dead-ends. A CSP search dead-end can be viewed as a local optimum, 

because the search for a consistent CSP solution requires getting out of the dead-end, 

and moving to a different part of the search space. However, an analogy between CSP 

search and refinement search is required before CSP search and ordering strategies can be 

incorporated by a refinement system. 

The choice of training examples for refinement becomes important when one of the 



2.4. Conclusion 37 

constraints on the refinement process is a limited number of labelled training examples. 

Most selective sampling strategies for machine learning algorithms, exploit the uncertainty 

about an example's label as an indicator of its usefulness for learning. Direct applicatiol! 

of these strategies to refinement systems is not necessarily the best way forward, because 

refinement systems can in addition to the set of unlabelled examples, exploit problem 

solving behaviour of the faulty KBS. However, the committee based approach may provide 

an opportunity to incorporate problem solving behaviour if the proposed refined KBSs were 

to form the committee. Clearly, for knowledge refinement tools we need to incorporate an 

example selection approach which could be achieved by adapting existing approaches or 

by new approaches that are specially catered for the refinement task. 



Chapter 3 

Iterative Refinement 

An iterative approach to refinement aims to incrementally improve the accuracy of the 

refined KBS with each refinement cycle. Occasionally, contrary to such expectations, a 

greater gain in accuracy can be achieved in subsequent iterations, by deliberately undoing 

incremental effects in preceding iterations. The emphasis of this chapter is on the use 

of training examples to guide and direct the KRUSTtool's refinement process through the 

space of possible refinements. Essentially, we are interested in improving the efficiency 

when searching for refinements, and for this purpose, various search techniques for solving 

constraint satisfaction problems are adapted for iterative refinement, with a view to im­

proving accuracy in the final refined KBS. The results reported in this chapter have also 

been published in (Wiratunga & Craw 1999a). 

A general iterative refiriement framework is presented in Section 3.1. A solution to 

the obvious drawbacks in this framework leads to the discussion in Section 3.2 which 

presents an analogy between CSPs and iterative refinement as a way to incorporate CSP 

search strategies for iterative refinement. Section 3.3 analyses differences between CSPs 

and iterative refinement and discusses how CSP search strategies might be adapted for the 

KRusTtool and the implications of these adapted search strategies on iterative refinement 

is presented in Section 3.4. An initial study of re-ordering techniques which address 

refinement search efficiency is presented in Section 3.5, before concluding with Section 3.6. 

38 
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Figure 3.1: The iterative refinement process. 

3.1 The Iterative KRusTtool Process 

The KRUSTtool can be employed to carry out iterative refinement as illustrated in Fig­

ure 3.1. The input KBS is the best refined output KBS from the previous iteration, or 

the original faulty KBS for the first iteration. The training examples buffer contains the 

training examples {el' ... , en}, which are utilised one at a time. Each training example e, 

is a task-solution pair ([iI,· . . ,1m] ,goal); where the observables iI, ... ,1m are the facts 

that ini tialise the problem-solving task, and its solution goal is the example's label ac­

quired from the expert. For each iteration, the top most example in the training examples 

buffer is chosen as the r finement example and drives that refinement cycle. 

The refinement example's observables initialise the problem-solving task for the input 

KBS , which triggers the KBS 's reasoning process , resulting in the system solution. The 

input KBS: 

• solv s the refinement example correctly, if the system solution matches the example's 

solution; or 

• olv s the refinement example incorrectly, if there exists a mismatch between the 

syst m's solution and the example's solution. 
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When the refinement example is correctly solved by the input KBS then refinement is not 

required, otherwise the fault evidence is employed to identify faulty elements of the input 

KBS. The refinement algorithm then identifies various ways by which the required goal 

solution can be attained, in order to solve the refinement example correctly. Consequently, 

several potential refinements are generated and implemented as refined KBSs. 

Once the input KBS is executed on the refinement example, the example is transferred 

into the constraint examples buffer. This buffer maintains all previously solved refinement 

examples, now referred to as constraint examples. The constraint examples buffer helps 

filter potential refined KBSs, by rejecting those that incorrectly answer any of the con­

straint examples in it. If chestnuts are available we can deal with them first by adding 

them into tebuf. Once solved, these chestnuts will be moved into cebuf. Like the rest of 

the examples in cebuf the chestnuts will also enforce constraints on future refinement iter­

ations. Filtered refined KBSs that are consistent with cebuf are ranked by their accuracy 

on the remaining examples in the training examples buffer, and the refined KBS with the 

highest accuracy is the output KBS for this iteration. The iterative refinement process 

continues until an output KBS that correctly solves all examples in the training examples 

buffer is produced, this KBS is the final output KBS. 

The hill-climbing selection of the one best refined KBS for the next iteration occurs at 

the end of each cycle. This selection works well provided it is possible to select, from the 

set of generated refined KBSs an output KBS with accuracy always greater than that of the 

input KBS. However, it is not unusual to have a refinement cycle where the KRUSTtool fails 

to generate any refined KBSs, or where the input KBS has greater accuracy than any of the 

generated refined KBSs. Such complications are symptoms of the local optimum problem, 

common to hill-climbing search algorithms. Once a local optimum is reached, further 

advancement does not lead to any improvement in accuracy, and here we refer to this 

situation as a refinement dead-end. Terminating search when a dead-end is encountered 

is not an option, particularly when there are examples yet to be processed in the training 

examples buffer. Fortunately, the KRusTtool's iterative refinement algorithm, generates 

and implements several refined KBSs in each refinement cycle, hence, the opportunity to 

explore previously abandoned refinement alternatives. 

Figure 3.2 illustrates the start of a potential backtracking scenario; the updates to the 

constraint examples buffer (cebuf) and the training examples buffer (tebuf) are shown 
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on the right. Each node denotes the refinement example in a given iteration. An arc 

connecting consecutive refinement examples, denotes the best refined output KBS from 

iterationi being used as the input KBS in the subsequent iterationHl. All abandoned 

refined KBSs in an iteration are indicated by open ended arcs. For instance, in iteration2, 

three refined KBSs are generated with e2 as the refinement example. All three refined 

KBSs are consistent with examples in cebuf, but K21 with highest accuracy on tebuf, is 

selected as best and is the input KBS in iteration3, while K22 and K 23 are abandoned. 

Refinement examples e3 and e4 have triggered the generation of several refined KBSs and 

again the best is selected. In iteration5, we have a situation where, K41 cannot be refined 

by e5, because, although four refinements are generated, all are rejected by the constraint 

examples in cebuf. Here, the KRUSTtool has reached a dead-end, indicated by a darkly 

shaded node for e5, with four dashed lines corresponding to the four generated refinements. 

The refinement path consists of a series of incremental refinements made to the original 

faulty KBS; in the diagram this path is ... e2 K2) e3 K3) e4 K4) e5.0 where 0 indicates 

the absence of a selected refined KBS. Strictly, it is this path that labels the refined KBSs 

in the diagram and so the output KBS labelled K51 is really named K. .. 21314151, which is 

the outcome of consecutive refinements K 21 , K 31 , K41 and K 51 . 

iterationz -e2 - - - - - - - - -ieb~/ {~~ e; e~ -~s-~6· .. } 

cebuf {el} 

iteration3 tebuf {e3 e4 es e6 .. } 
cebuf {el e2} 

iteration;' -. ---- -e4- - - - - ... - - - - - - - - -iebul {e4 (:5 e6 -.:} -. 
cebuf {el e2 e3} 

iterations -. -- -es -------------------iebuT {(:5 (:6~: J ----
I \ ~ ...... ...... cebuf {el e2 e3 e4} 

I " ............ 

J{SI K;2 K53 KS4 

iteration6 --------. ----------------------------------. 

Figure 3.2: Knowledge refinement as search. 
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When the iterative refinement process encounters a dead-end, as in iteration5, the 

following alternative strategies might be employed to get out of, and beyond the dead­

end: 

• continue with K41 to iteration6 (the next iteration) with e6 as the refinement ex­

ample, ignoring the fact that e5 is not corrected, and is unlikely to be by future 

refinements; or 

• continue with the refined KBS selected from K51, . .. , K54, with the highest accuracy 

on tebuf, ignoring the fact that the selected refined KBS is inconsistent with one or 

more previous examples in cebuf; or 

• generate a fix that explicitly solves e5 only, even though in practice KBSs with such 

refinements may be too specialised. 

A much more desirable alternative is to backtrack through the solution space of refined 

KBSs, and restart the refinement process with a rejected refined KBS from an earlier node. 

For the scenario in Figure 3.2, this would entail undoing the most recent successful refine­

ment (which was in iteration4), and restarting refinement with K42 and e5. Backtracking 

in this manner although simple might not necessarily be efficient, as the actual cause of 

the dead-end could be further up the refinement path. Therefore, we investigate various 

search strategies that enable more guided backtracking. For iterative refinement, this 

would mean the ability to restart the refinement process from an earlier point responsible 

for the current dead-end. 

3.2 CSP Search Strategies for Knowledge Refinement 

Incorporating CSP search strategies with the iterative KRUSTtool, will enable efficient 

search through the space of incrementally refined KBSs generated by the KRUSTtool. 

Consequently, the KRusTtool, when necessary, will be able to revisit refined KBSs that 

have previously been abandoned by the refinement algorithm. For this purpose we need 

to propose an analogy between CSPs and knowledge refinement problems, so that the 

concepts applied in the CSP paradigm can be imitated in the refinement domain. 
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CSP 
Variables 
Current Variable (Vi) 
Instantiated Variables 
Uninstantiated Variables 
Variable Domain for Vi 

Constraints 

Iterative KRusTtool 
Input/Faulty KBSs 
Current Input KBS (Ki) 
Output/Refined KBSs 
Unrepaired Faults 
Proposed Refinements for Ki 
Consistency with cebuf 

Table 3.1: Analogy 1: CSPs and Iterative Refinement. 

3.2.1 Knowledge Refinement as Constraint Satisfaction 

Traversing the space of possible solutions efficiently and discovering a suitable solution, 

are common goals of both CSP search algorithms and refinement algorithms. One possible 

analogy relates CSP variables to input KBSs, instantiated variables to output KBSs and 

constraints to maintaining consistency with cebuf (see table 3.1). However, the absence 

of relating training examples in some manner to refined KBSs, will cause problems when 

backtracking is triggered. For instance, how does one identify which example to execute 

the input KBS soon after a back track or a back jump. Furthermore, as there is no prior 

knowledge about the number or type of faults in an input KBS, there is no obvious analogy 

for uninstantiated variables. 

The dynamic nature of the refinement task makes it more complex than the well 

defined CSP task, however, a second analogy in Table 3.2 gives prominence to the training 

examples, hence, a more static view of refinement search. The training examples, like 

the variables, are fixed from the onset of the refinement task. Constraint examples in 

cebuf, are solved correctly or have been corrected in the past and so are analogous to 

instantiated variables. The best refined KBS is selected from the set of potential refined 

KBSs generated by the refinement algorithm in a refinement cycle. Therefore, proposed 

refined KBSs are comparable to the variable domain, although refined KBSs become known 

only with each refinement cycle, unlike the variable domain which is fixed from the start. 

However, the problem of not knowing the domain in advance can be handled by associating 

generated refined KBSs with the refinement examples that triggered the refinement cycle, 

and reasoning about backtracking using constraint examples rather than KBSs. Finally, 

CSP constraints are analogous to maintaining consistency with cebuf. However, unlike 

well defined CSP constraints that are known in advance, for knowledge refinement there 

are no obvious initial constraints that specify mutually incompatible refinements. 
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CSP 
Variables 
Current Variable (Vi) 
Instantiated Variables 
U ninstantiated Variables 
Variable Domain for Vi 
Constraints 

Iterative KRusTtool 
Training Examples 
Refinement Example (ei) 
Constraint Examples in cebuf 
Remaining Examples in tebuf 
Generated Refined KBSs for ej 

Consistency with cebuf 

Table 3.2: Analogy 2: CSPs and Iterative Refinement. 

With many applications it is not possible to acquire all domain values at the beginning, 

as the acquisition process can be computationally expensive (e.g. 3D object recognition), 

or the domain values can be unavailable at the beginning (e.g. knowledge refinement). 

The Interactive CSP framework proposed by Lamma et al. (1999) attempts to deal with 

this problem by introducing the idea of interactive acquisition of domain values on demand 

or when made available. However, with this approach it is assumed that all constraints are 

specified in advance enabling value acquisition on-demand, guided by constraints. With 

knowledge refinement we are unable to adopt this interactive approach, because in addi­

tion to unknown domains, there is also no prior knowledge about mutually incompatible 

refinements. 

3.2.2 Informed Backtracking with the KRusTtool 

Using the second analogy from the previous Section we investigate how backtracking might 

be applied to iterative knowledge refinement. An advance (see Figure 2.3) with refinement 

search is triggered by executing the input KBS on the next refinement example ei. When 

ei is incorrectly solved by input kBS, the KRusTtool generates several potential refined 

KBSs, Generatedj. The generated KBSs can be viewed as ei's domain for this iteration. 

Of these generated refined KBSs, those that are inconsistent with constraint examples 

in cebuf are rejected. The remaining subset of refined KBSs, Filtered i , are sorted in 

descending order of accuracy on training examples yet to be processed in tebuf, and the 

refined KBS with the highest accuracy is selected. 

Notice that a generated refined KBS from a refinement example's domain is inconsis­

tent when it fails to solve a constraint example correctly, interestingly, this is analogous 

to a variable instantiation that violates a binary constraint with CSPs. The sorting and 

selecting step, corresponds to that part of the informed backtracking algorithm which aims 
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to improve efficiency by sorting of values according to conflicts with available values of 

future variables. 

The conflict set for ei, confset(ei), must contain the potential backtracking points from 

ei, which is exploited when ever a dead-end is encountered. For this purpose the confset of 

every refinement example needs to be updated, and takes place immediately after Filteredi 

is identified. Once Filteredi is known, we will also know which constraint examples caused 

the removal of each generated KBS. These inconsistent constraint examples are noted by 

adding them into confset(ed according to the update policy in Section 2.2.1. Obviously, 

when Generatedi is identical to Filteredi, confset(ei) will be empty. 

The search algorithm encounters a dead-end when a refinement example ei and the in­

put KBS fail to create any refined KBSs (i.e. the generated KBSs Generatedi is empty), or 

those generated are rejected by the constraint examples (Le. Filteredi is empty). The up­

dated confset(ei), will contain the potential backtracking points from ei. We now consider 

two different scenarios and how dead-ends are dealt with in each . 

• If Filteredi = n then we know which constraint examples caused the removal of each 

generated KBS, and the retreat function in Section 2.2.1 will be called with the rel­

evant backtracking point according to the various informed backtracking algorithms 

(Le. BT, BJ and CBJ) . 

• If however, Generatedi = n then conflicting constraint examples cannot be identified 

since there are no KBSs to test, therefore, there are no obvious backtracking points! 

With this extreme situation a back track is forced by updating confset(ed with ei-l 

as the backtracking point, before the retreat function is called. 

Let us revisit the backtracking refinement scenario from Figure 3.2, repeated in Fig­

ure 3.3. Refinement must backtrack because Filtered5 = n, although Generated 5 = 

{K51 ,K52,K53,K54}. Thus for each KBS in Generated5, at least one of the constraint 

examples in cebuf must be wrongly answered; suppose K 51 , KS2 wrongly solve e2, and 

K53, K54 wrongly solve e3. For BT, e5's confset is the previous refinement example {ed, 

and refinement proceeds by backtracking to e4 on the refinement path and choosing the 

next branch, in this case K42 with es. For BJ and CBJ, e5 's confset contains the failed 

constraint examples {e2, e3}. So refinement continues from the most recent on the path, 

e3, selecting the next available refined KBS K 32 , with e4 as the next refinement example. 
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Figure 3.3: Informed backtracking with the KRuSTtool. 

The refinement example e5 is moved back into tebuf as a future refinement example. If no 

more KBSs are available from e3 then BJ backtracks to the e2 node and CBJ backjumps 

according to the union of e3's and e5's conflict sets. Now, consider the situation where 

Generatedi = {}, here we have no refined KBSs to analyse inconsistencies with cebuf. An 

update of e5's conflict set is forced by adding e4 as a backtracking point. Consequently, 

refinement proceeds with backtracking to e4 choosing to continue refinement with K42 

with e5 as the next refinement example. 

It is difficult to see how the conflict set contents might be exploited for explanation­

based learning with refinement search. Learning might have been possible if there had been 

additional information that specified the cause and effects of various refinement operators. 

Work done on knowledge acquisition scripts by Tallis & Gil (1999), provides useful insight 

in this direction, as scripts not only specify a sequence of refinement steps but also the 

effects of these steps. However, initial results indicate that the complex interaction between 

faults in a KBS makes it difficult to enumerate all possible preconditions and effects 

without making the scripts too specialised or too generalised. Furthermore, if all effects 

can be identified for a given sequence of refinement steps, it is likely that backtracking 

will not be required. 
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3.2.3 Implementation Issues 

A certain amount of book keeping during refinement search is essential to enable back­

tracking to earlier points and restarting refinement with previously abandoned refined 

KBSs. The data structure that maintains these details are shown in Figure 3.4. This is 

a typical two-way linked list, with each element in the list linked to the preceding and 

succeeding elements. Each element itself contains information about the refinement exam­

ple, the output refined KBS, and the set of refined KBSs maintained as a priority queue, 

are sorted by accuracy on cebuf and then on tebuf. Any constraint examples that are 

inconsistent with the refined KBSs are sorted by recency and maintained in the confset. 

Presently, the complete rule sets of refined KBSs are maintained in each list element as 

output KBS {K2d output KBS {K3d output KBS {K4d 
... _--------_.--------- "." ... -------._--------

refined KBSs {K22 K23 K24 } refined KBSs {K321 refined KBSs {K42 K43 } 

Figure 3.4: Maintaining refinement information. 

opposed to maintaining just the refinement changes. The disadvantage of the latter is 

that it requires merging of refinements and undoing refinements whenever backtracking is 

triggered, thereby increasing processing time. However, for large KBSs with over 150 or 

more rules it might be sensible to maintain just the refinement changes, particularly, if 

storage resources become insufficient. 

3.3 Adapting the Informed Backtracking Algorithm 

With the analogy in Table 3.2 we are able to employ CSP search techniques for refinement 

search. However, there are two problems not seen with CSPs that must be dealt with in 

knowledge refinement: 

• the behaviour of constraint examples can change - from being correctly solved and 

not requiring refinement, to providing new fault evidence in response to a future 

refinement choice; and 
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• constraint examples that did not trigger refinement because they were already cor­

rectly answered by the input KBS, might appear in conflict sets as potential back­

track points. 

To deal with these problems that are unique to refinement search, we look at how the 

informed backtracking algorithm might be further adapted for refinement search. 

3.3.1 Latent to Active Examples 

Figure 3.5(a) illustrates, complications that may arise from the changing behaviour of 

constraint examples. In iteration3 the input KBS K 21 , already answers e3 correctly and 
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Figure 3.5: Changing behaviour of constraint examples. (a) Refinement Path with a 
Latent Example. (b) Re-ordering the Latent Example. 

so the output from this iteration is the same input KBS, K 21 ; this has been highlighted 

with gr y shading. It does not affect the search when it is advancing, but backtracking to 

this point will cause problems. Let us assume that in Figure 3.5, backtracking is triggered 

because Filtereds = {}. Suppose we are using BJ and confset(es ) is {e2' e3 }, so we 

backjump to e3, the most recently instantiated conflicting point. But the input KBS 

K21 already correctly answers e3 and so alternative refined KBSs are not available. We 

could simply backtrack further, but the KRUSTtool has just discovered a relationship: 

the changes to correct es have interacted with the way that e3 was previously solved. 
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Thus, if we backtrack above e3 then it is possible that the same interaction will occur 

again. Instead, we can take this opportunity to advance refinement by exploiting the new 

relationship that has just been discovered. 

Constraint examples that did not contribute fault evidence, like e3 are called latent 

examples while the other refinement examples are active. The activation oflatent examples 

is often due to a fault being exposed as a result of fixing one or more other faults. However 

the activation may also be due to a previous fix that had incorrectly introduced a new 

fault. Given the interacting relationship between the latent example e3 and the active 

refinement example e5, we choose to solve their conflict at this point by re-instating e3 

at the top of tebuf and advancing the search with refined KBS with highest accuracy on 

tebuf, K 51 , with e3 as the next refinement example. Figure 3.5(b) illustrates the effect of 

reinstating e3 on the refinement path. Actually, it is as if iteration3 was postponed to 

iteration6' In the event where the intervening active conflict examples (here e4) become 

inconsistent with e3 or e5 in subsequent iterations, backtracking offers the opportunity to 

revisit these later. 

The distinction between latent and active examples is reminiscent of the application 

of DCSP techniques to the configuration task, where active variables and compatibility 

constraints correspond to standard CSP variables and constraints, but additional activity 

constraints identify active variable assignment values that will require the assignment of 

values to non-active variables (Mittal & Falkenhainer 1990). In knowledge refinement, the 

effect of active examples may introduce a contribution from latent (non-active) examples, 

and so can be seen as an activity constraint. 

3.3.2 Prioritising Latent Over Active 

The presence of latent examples in a refinement path has no impact initially as they are 

already answered correctly, and do not provide fault evidence. When latent examples 

crop up in subsequent confsets, not only do they provide fault evidence, but they also 

have the added interacting relationship with the current refinement example. Therefore, 

the backjumping algorithms are amended to take further account of latent examples when 

they appear in confsets as potential backtracking points. If in Figure 3.5(a), confset(e5) is 

{e3, e4}, then backjumping will resume with e4 and the fault evidence now presented by the 

latent example e3 will be lost. Instead, we priorities latent examples that appear in conflict 
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sets, and rather than backtracking to the most recent conflicting example, we reinstate all 

conflicting latent examples into the tebuf. This would mean that search proceeds with e3 

and K 51 , the refined KBS in Generated5 with the highest accuracy, despite e4 being in 

the confset. If the intervening active conflict example e4, still remains a problem, again 

backtracking offers the opportunity to investigate there later. 

3.4 Comparison of Backtracking Search for Refinement 

BT suffers from thrashing; rediscovering the same inconsistencies and same partial suc­

cesses during search. Backjumping schemes reduce BT's unfortunate tendency to redis­

cover the same dead-ends by retreating search to the actual cause of the inconsistency. 

We would expect the same situation within knowledge refinement; where backtracking one 

refinement cycle at a time (BT) is likely to lead to many iterations, so the motivation for 

introducing BJ and CBJ is to reduce refinement cycles. The experiments apply the Clips 

KRUSTtool to a corrupted version of the student loans KBS (see Appendix A). 

3.4.1 Experimental Design 

The training examples had to be carefully selected to ensure that backtracking was ex­

ercised, since it is only triggered when conflicting repairs are attempted with interacting 

faults. A controlled formation of training sets was necessary, as a purely random formation 

of training sets might not contain examples that expose interacting faults. 

The faulty KBS was executed on training sets with varying example sequences, paying 

attention to the KRUSTtool's refinement path, particularly when backtracking is triggered. 

When a backtrack or a backjump is triggered with CBJ at node ej, the confset contents, 

conjset(ej) are noted. These contents are then used to identify example pairs that have 

the potential to trigger backtracking whenever included together as part of the training 

set. Let us assume that conjset(ej) = {eg , eh, ed, then the following conflict pairs are 

noted {( eg ej), (eh ej)' (ei ej)}. Notice that although backtracking happens from one 

example to another, the cause for backtracking need not always be restricted to a pair of 

examples. Instead, it could be due to a sequence of incremental refinements associated 

with 2 or more examples on the refinement path; for instance {(eg eh ej), (ei ej), (eh ei 

ej) etc.}. However, it is difficult to meticulously identify all such potential combinations, 
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instead we opt for the more straightforward formation of conflict pairs. 

~mrnDD~~mB 
ru ElD m q ~ Q P ~ 

8 examples ...., ~ _ ~ I 
(9 conflict pairs) 

15 training 
examples 

22 ' normal' 
examples 

Corrupted 
Student Loans 

KRUSTtool 

Figure 3.6: Forming training sets that trigger backtracking. 

From a selected dataset of 30 examples, 9 conflicting pairs were identified. Actually, 

the 9 conflict pairs were formed from 8 carefully chosen examples. Therefore, of the 

8 examples some are part of 1 or more conflict pairs. Finding conflicting examples was 

relatively asy given the density of corruption of the KBS. The rest of the 22 examples from 

the dataset although considered normal, cannot be ruled out as containing other conflict 

pairs. Training sets of a given conflict level N, were created from the selected dataset of 

30 examples, by randomly choosing N conflict pairs from the identified 9 conflict pairs, 

removing duplicate examples when they occurred, and randomly selecting from the normal 

examples, until the training set contained 15 examples. 

Figure 3.6 illustrates the formation of a training set, with a conflict level of 3. Each 

of the 9 pairs of shaded boxes (one stacked on top of the other) denotes a conflict pair. 

There ar 8 types of shading representative of the 8 examples that form the 9 conflict 

pairs. Once the 3 conflict pairs are randomly selected, any duplicates are removed, hence 

the single haded box amidst th other 2 selected pairs. A training set of 15 examples are 

formed by randomly selecting a further 10 examples from the normal set . The unselected 

examples from the dataset form the evaluation set. The training set is KRUSTtool's tebuf 

and the faulty KBS is refined based on fault evidence generated by examples in tebuf. 

Refinement continues until all examples in tebuf are correctly solved. 
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The KRUSTtool incorporating the BT, BJ and CBJ algorithms were applied to each 

training set and the corrupted input KBS. For each conflict level N, the test was repeated 

10 times, noting for each test run the total number of refinement cycles and the error-rate 

of the final output KBS on the evaluation set. The graphs show results averaged over 10 

runs for each conflict level. Significance results are based on a 95% confidence level, and 

apply the Kruskal Wallis non-parametric test (see Appendix D). 

3.4.2 Results 

Figure 3.7 shows the number of iterations for each of the algorithms, as the number of 

conflict pairs in the training set increases. The results were surprising. BT was expected 

to have the most iterations, BJ to have fewer, and CBJ to have the fewest, reflecting 

the increased targeting of the search. Instead, we see that BJ has utilised a significantly 

greater number of iterations (p=O.OOI). The increased iterations with conflict pairs 3, 5 

and 9 is explained by the random selection of conflict pairs during training set formation. 

Essentially, when several conflict pairs are selected without any overlap there will be fewer 

normal examples needed to form the training set. Such a training set will naturally be 

more demanding on the refinement process. With CSPs, BT is guaranteed to have at least 

as many iterations as BJ or CBJ. However, in the more dynamic space of refined KBSs 

this is not the case; backjumping searched a different part of the space that involved more 

iterations. 
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Figure 3.7: Number of iterations (Basic Algorithms). 

So has there been any gain from BJ's additional searching? Figure 3.8 shows the error 

rates of the final KBS produced by the 3 algorithms on the complete set of 30 examples; 
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the error-rate of the original corrupted KBS is the horizontal dashed line on all error-rate 

graphs. BJ, the most greedy in refinement cycles, has indeed gained the lowest error 

rate (p=O.005). This behaviour is explained by noticing that, although BJ and CBJ are 

guaranteed to find all binary CSP solutions, this is not the case with refinement, since 

refinements in different cycles can interact: an earlier refinement can provide part of a 

later refinement or conflict with the later refinement. Therefore the refinements that are 

proposed depend on the input KBS, and thus the refinement path. 
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Figure 3.8: Error rate of final refined KBS (Basic Algorithms). 

3.5 Exploiting Conflict Knowledge 

Figure 3.8 shows another interesting trend: the error rate of the refined KBS decreases as 

the number of conflict pairs in the training set increases. This confirms the experimental 

results in (Palmer & Craw 1996), that the more demanding the examples in the training 

set the higher the accuracy achieved by refinement. It also suggested that we explore re­

ordering the training examples to exploit conflict pairs as soon as it is recognised during 

iterative refinement. The Minimal Bandwidth Ordering heuristic for static ordering of 

variables, attempts to reduce the backtracking distance for CSP algorithms, by placing 

mutually constraining variables close together in the search (Tsang 1993). The previous 

Section recognised that the refinement example, ej, and its conflicting examples, conf­

set(ej) are mutually constraining, since refinements for ej had affected the correctness of 

previous latent examples. We use this idea of mutually constraining examples, to associate 

each refinement example and its deepest conflicting constraint example in the sequence 
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of training examples, in an attempt to reduce the number of iterations of the informed 

backjumping algorithms, without compromising the error-rate of the final output KBS. 

le~el2 __________________________ _ 

le~eh __________ _ 

e5 

1 final 
51 K52 K53 K41 output 

Figure 3.9: Searching without Conflict-Based re-ordering. 

Figure 3.9 illustrates a hypothetical backjumping situation. The refinement search 

space contains three main refinement paths, of which two have been discarded: e2 K2\ 

e3 K3\ e4 K4\ e5.0 and e2 K2~ e3 K3\ e4 K4\ e5.0. Suppose in each situation confset(e5)= 

{e2} and so backjumping to e2 produces the search as illustrated. But this also means 

that e2 and e5 are mutually constraining since the repairs to e5 has affected the solution 

to e2. The Minimal-BJ (MBJ) and Minimal-CBJ (MCBJ) algorithms contain a further 

amendment to the informed backjumping algorithms, so that backjumping to a node ei 

that conflicts with the current refinement example ej, causes the algorithm to try to fix this 

pair of mutually constraining examples next. It re-sorts tebuf so that ej is re-used with the 

next refined KBS from ei. Thus, the pair of conflicting examples identified in backjumping 

become adjacent on the new branch of the refinement path. Figure 3.10 illustrates the 

outcome of re-ordering tebuf examples so that e5 is used as the next refinement example 

after backjumping to e2, and indicates the potential saving in iterations over Figure 3.9. 

Although this re-ordering is not guaranteed to reduce iterations, the relationship between 

an example and its confset gives some justification for re-ordering the otherwise random 

order of the training examples. It is possible that successive re-ordering of nodes in this 

manner may at times lead to the original sequence. Even so, this will not result in cycling 

because BJ and CBJ will resort to backtracking once all branches of a node are explored. 
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Figure 3.10: Searching with Conflict-Based re-ordering. 

The earlier experiments were repeated with MBJ and MCBJ algorithms. Figure 3.11 

superimposes the bar chart for MBJ iterations on the line graphs for the basic algorithms; 

the results for MCBJ are similar to CBJ's so are not shown on the graph. Our goal of 

reducing the number of iterations in BJ has been achieved in general, and MBJ's iterations 

are closer to BT and CBJ. There were 3 test runs where BJ performed fewer iterations than 

MBJ, and a closer examination of one indicated that re-ordering resulted in an increased 

search space when two examples ei and ej are affected by the same repair, where the 

fault exposed by ej cannot be correctly refined before the fault exposed by ei is refined. 

Dependencies of this nature suggest the existence of refinement interdependencies between 

training examples, and we explore heuristics that might help identify such relationships 

in Chapter 5. 

Figure 3.12 confirms that the refined KBS error rates with MBJ, and CMBJ, are 

unaffected by the dynamic re-ordering. So MBJ has achieved fewer iterations without 

increasing the error-rate of the final KBS. 

3.6 Conclusion 

We have transformed the natural hill-climbing of the KRUSTtool refinement algorithm 

into a best first search with the potential to revisit previously discarded refined KBSs. It 

is the KRusTtool's ability to generate many potential refined KBSs in response to fault 
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Figure 3.12: Error rate of final refined KBS (Conflict-Based re-ordering). 

evidence, that enables CSP search strategies to be applied with the central refinement 

algorithm. Adapting CSP search techniques within the knowledge refinement framework 

was possibl because, th se techniques are sufficiently general and a wide range of tried 

and tested algorithms are available. 

Th authors of other refinement algorithms (Ourston & Mooney 1994, Richards & 

Mooney 1995) have argued that the choice of repairs available to their refinement tool 

is sufficiently flexible that hill-climbing problems occur rarely, and so make no explicit 

attempt to deal with it. Our testbed has shown that it is relatively easy to find mutually 

conflicting training examples for sufficiently corrupted KBSs. Therefore, it is important 

that refinement tools that deal with examples one at a time must be equipped to handle 

conflicting repairs because it is difficult to deal with mutually constraining examples in a 

single refinem nt it ration. 

The refin ment search that is focused by backtracking, highlights the variety of refine-



3.6. Conclusion 57 

ment paths and re-ordering mechanisms open to refinement tools, and has drawn atten­

tion to relationships between training examples that direct the refinement process towards 

staged goals in the identification and repair of KBS faults. Similar ideas to this are being 

employed by Tallis & Gil (1999), in the design, development and organising of knowledge 

acquisition scripts. Like the KRUSTtool's refinement paths, a script describes repairs that 

need to be implemented on a KBS, together with follow up strategies to ensure that the 

KBS is consistent and complete. Unlike refinement paths, the scripts outline a series of 

steps that lead to a desired consistent and complete KBS state. Each step in the series is 

tried and tested, and assumed to be the correct refinement decision, therefore, backtrack­

ing steps are not needed. Essentially, scripts can be viewed as refinement paths without 

the error-recovery (deadend-backtracking) experience. 

Finally, the experiments reported in this chapter show that the informed backtracking 

algorithm is able to effectively deal with conflict pairs leading to high quality refinements, 

and that training sets with increased conflict pairs produce refined KBSs with lower error­

rates. Introducing backjumping to reduce the excessive search effort typical of BT, reveals 

an interesting refinement phenomenon. The more informed backjumping may actually 

increase the search. However, it was discovered that the extra iterations are used prof­

itably and provides refined KBSs with lower error-rates. Amendments to the backjumping 

algorithms to reduce the iterations, whilst maintaining the high accuracy, concentrate on 

re-ordering training examples once backtracking is initiated, by recognising the information 

gain offered by both latent and active examples in the confset. These initial experiences 

with re-ordering, provides the impetus for the next Chapter, where we will investigate 

elaborate re-ordering techniques that exploit knowledge about refinement generation. 



Chapter 4 

Refinement Search Efficiency 

BJ was introduced as a way to reduce the search effort of BT. Contrary to expectation we 

found that BJ often increases the number of refinement cycles but that these extra cycles 

were used profitably. In this Chapter, we are interested in improving search efficiency 

of the BJ KRUSTtool, by reducing the number of refinement cycles whilst maintaining 

the improved accuracy as reported in Section 3.4. For this purpose the proposed analogy 

between CSPs and iterative knowledge refinement is taken a step further with the aim of 

incorporating CSP ordering strategies for improving search efficiency within the iterative 

refinement framework. The results reported in this chapter have also been published 

in (Wiratunga & Craw 1999b). 

Section 4.1 discusses constrainedness with respect to iterative refinement and intro­

duces three heuristics that can be employed to reduce refinement search effort. Experi­

ments comparing various ordering heuristics on the Student loans domain are presented 

in Section 4.2 followed by Chapter conclusions in 4.3. 

4.1 Constrainedness of Refinement Search 

Value ordering in CSPs is analogous to ordering of refined KBSs; which is already done 

by the KRusTtool by means of the accuracy ranking. In fact KRusTtool's informed back­

tracking algorithm is closely related to the repair-based approach to solving CSPs and its 

greedy min-conflict heuristic for repair selection (Minton et al. 1992); and the refined KBS 

ordering itself is similar to the look-ahead value ordering min-conflicts heuristic that ranks 

the values of a variable in increasing order based on the number of incompatibilities with 

58 
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values of future variables to be instantiated (Frost & Dechter 1995). Here, we concentrate 

on how variable ordering can be applied to iterative knowledge refinement. 

Although, the notion of constrained ness of variables for CSPs is straightforward, how 

does constrainedness translate to training examples for iterative knowledge refinement? 

CSP variables involved in the most or tightest constraints correspond to training examples 

where refinements generated by the KRUSTtool puts the highest consistency demands 

on previously solved training examples. For instance, we can think of the number of 

constraints example e is involved in, as the number of previously solved examples that 

get unsolved when attempting to solve e. We investigate how these mutually constraining 

examples might be identified and the effect of dealing with them first in the next Chapter. 

solution solution 

(a) (b) 

Figure 4.1: Search space (a) without ordering and (b) with ordering 

CSP variables with smaller domains correspond to refinement examples that resulted 

in the generation of fewer refined KBSs in a refinement cycle. In this chapter we enforce 

example ordering according to the number of generated refined KBSs. This means that 

the KRusTtool will deal with refinement examples that are likely to provide fault evidence 

resulting in the generation of fewer refined KBSs first. Accordingly, constrainedness of a 

refinement example can be defined as the number of potential refined KBSs that are gener­

ated by the KRusTtool in response to fault evidence. The fewer potential refined KBSs the 

fewer refinement paths, and the more constrained the refinement example. Therefore, it is 

in KRusTtool's best interest to deal with most constrained examples first, as early failure 

helps prune the search space, thereby reducing overall search effort. In CSP literature this 

strategy is referred to as the "fail-first principle" (FFP) (Haralick & Elliott 1980). 
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Figure 4.1 illustrates the motivation behind the FFP. Here, refinement examples X 

and Yare both constrained by previously solved refinement examples and are likely to 

trigger backtracking. Obviously, the difference in the number of generated refined KBSs 

with each of the refinement examples (6 with Y, and 3 with X), means that the order in 

which these refinement examples are dealt with can have a marked difference on the search 

effort. In Figure 4.1(b), by first attempting X, the example with fewer refined KBSs, the 

KRUSTtool is more likely to encounter dead-ends early on. Essentially, if we know how 

many potential refined KBSs might get generated with each example, we are able to enforce 

some order on the training examples. Certainly, going as far as refinement generation to 

measure constrainedness of training examples can be computationally expensive. Instead 

we establish heuristics that estimate constrainedness for each training example and use 

these estimates to enforce an order on the training examples. 

4.1.1 Evidence From the Recent Refinement Cycle 

Simple constrainedness information comes from the newly completed refinement cycle; 

where the final step executed all the refined KBSs generated in that cycle on the remaining 

training examples in tebuf. Although this was done to calculate the error-rate of each of 

these refined KBSs, it also determines an estimate of how faulty each training example 

is; i.e. how many of these refined KBSs solved the training example incorrectly. With 

increased numbers of refined KBSs failing to correctly solve an example, the greater the 

evidence that the example is constrained. Remember that all these refined KBSs are 

related since they were all derived from the same input KBS, therefore, this justifies 

employing them to select the next most constrained refinement example. The underlying 

intuition is that an example from tebuf for which the generated refined KBSs find difficult 

to solve will have the greatest consistency demands and be restricted to fewer number of 

refined KBSs being generated in the subsequent refinement cycle. 

Let us assume that M refined KBSs Kil' Ki2, ... ,KiM were generated with ei as the 

refinement example and that tebuf now contains training examples ei+1, ei+2, ... ,en . Ta­

ble 4.1 demonstrates how fault evidence from the most recent refinement cycle can be 

employed to select the next refinement example from tebuf, with M = 3 and n = 4. 

The table entry for ej and Kik has value 1 if Kik incorrectly solves ej, and 0 otherwise. 

Therefore, the error-rate of Kik on tebuf, errKik' is the column total divided by n. The 
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row total faultj is the level of faultiness of ej as judged by Kil' K i2 , ... , KiM. The re­

fined KBS with the lowest error-rate, min(errKik)' is selected as the best refined KBS. 

For ordering purposes, we use the faultiness measure, where the training example with 

the highest level of faultiness, max(faultj) , is selected as the next refinement example. 

In Table 4.1 Ku with lowest error rate is selected as the best refined KBS, while e2 with 

maximum faultiness is selected as the next refinement example. 

Generated Refined KBSs 

Kll K12 K13 faultiness 

e2 1 1 1 3 
e3 0 1 0 1 
e4 0 1 1 2 
e5 0 1 1 2 

error-rate 0.25 1 0.75 

Table 4.1: Constrainedness of training examples using potential refined KBSs. 

This heuristic is reminiscent of the best known CSP dynamic ordering heuristic, dy­

namic search rearrangement (DSR), which selects the next variable having the mini­

mal number of values that are consistent with the current partial solution (Dechter & 

Meiri 1994). Heuristically, the choice of such a variable minimizes the remaining search. 

With knowledge refinement we use fault evidence about the most recent potential re­

fined KBSs as the basis for selecting the most constrained training example for the next 

iteration. 

4.1.2 Evidence From How the Problem was Solved 

A more direct estimate of how many refined KBSs will be generated for a particular 

training example is the number of places where the problem solving behaviour for that 

training example can be changed. The KRuSTtool algorithm creates a data structure 

containing precisely this information. The problem graph captures the problem-solving 

for the refinement example and allows the KRUSTtool to reason about the fault that is 

being demonstrated (Craw & Boswell 1999). Essentially, the problem graph records the 

sequence of rule activations leading to the system solution, and additionally shows all 

possible rule activation routes that could lead to the required goal solution. Problem 

graphs can become quite complex with long chains and complicated branching. 
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In figure 4.2 we use a fictitious rule base, sufficient to illustrate three simple problem 

graphs and their function. With training example A=([JAl, ... ,!A4],goalA), the KBS 

currently reasons from the observables by applying leaf rules R7 and R4, which together 

allow a middle rule RI3 to fire, and finally the end rule Rll concludes SA, a faulty system 

solution. The darkened area of the problem graph is the positive problem graph and 

corresponds to the problem solving that has been undertaken by the faulty KBS. Therefore 

it contains the solution subgraph for the training example but also contains other partial 

proofs; e.g. f Al allows R7 to fire, but this only partially satisfies R12. The positive problem 

graphs for the other two training examples are similar but notice neither provides a system 

solution since each partial solution sub graph terminates with an intermediate result. 

r------------,r------------, 
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I II 
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Figure 4.2: Problem Graph for training examples, A, Band C. 

Repairs correspond to preventing faulty rule chains from being activated and so the 
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number of rule activations in the positive problem graph is a simple measure to predict 

the number of potential refined KBSs, and hence how constrained the refinement cycle for 

that training example will be. Essentially, with fewer number of rule activations the more 

constrained the refinement cycle, because there are fewer refinement points. According to 

the problem graphs in Figure 4.2 training examples A, Band C have activation counts 4, 

2 and 2 respectively, indicating that Band C are the most (and equally) constrained and 

so will be selected before A. All ties are broken randomly. 

A different yet interesting implication of ordering according to rule activation measures 

is that typically, fewer rule activations suggests a faulty KBS that is too specialised. 

Training examples with fewer activations are most likely to be false negatives and will be 

dealt with first. This is analogous to the ordering strategy adopted by AUDREyII (see 

Section 2.1.2), where false negatives are processed before false positives. The difference 

is that with a faulty KBS that is too generalised, counting rule activations provides us 

additional information about constrainedness, while AUDREyII would simply deal with 

false positives in no particular order. 

4.1.3 Evidence From How the Problem Should be Solved 

The problem graph captures more about the problem-solving than simply recording what 

happened. It also contains the negative problem graph which models all possible rule 

non-activation routes that would lead to the goal. These are the rule activations that did 

not happen, and if they did would have resulted in the required goal, i.e. the expert's 

solution. Therefore, in Figure 4.2 the expert's solution for training example A (goalA) 

has not been proved because, RlO, Rs and R12 are only partially satisfied, and are unable 

to activate. The arrows leading from f A3 and f A4 have not been darkened to indicate 

that the conditions in RlO and Rs do not match observables f A3 and f A4, and must be 

weakened (generalised) before they are satisfied. In contrast conditions in R4, R13 or Ru 

must be strengthened in order to stop the incorrect system solution, SA being asserted. 

Similar explanations hold for training examples Band C, but now in addition some rule 

conditions (e.g. the first condition of R3 for training example B), cannot be weakened to 

match any observable or rule conclusion and so are not linked to any rule or observable 

but instead these "non-observables" are labelled no-J. 

The negative problem graph provides additional information on how constrained the 
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refinement cycle will be. Counting all the rule activations from the positive parts and the 

non-activations from the negative parts of the problem graph provides a second measure of 

constrainedness. This measure promises to be more informative since it adds the locations 

of possible repairs in the negative problem graph to those from the positive part. 

In practice it makes sense to distinguish between rules in the negative problem graph 

whose conditions could be weakened to match observables from those that could never be 

matched. For this purpose the heuristic is fine tuned so that it ignores any negative rule 

activation whose conditions are all linked to (or derived from) "non-observables" (no-f's 

in the diagram); e.g. rules R7 and R2 will be omitted from C's count. Without this modi­

fication the heuristic can estimate a training example like C to be less constrained than it 

actually is. Such an amendment requires the assumption that training examples are noise 

free, however this seems acceptable given our need simply to estimate constrainedness. 

Training Refinements Rule Activations 
Example Strengthen Weaken None Count All Improved 

R4 RiO R7 6 7 7 
A R13 Rs 

Ru R12 
Rl Rs 4 6 6 

B R3 R4 
RiO 
R6 
Rg R3 3 7 5 

C Rl4 Rl6 
R1S R7 

R2 

Table 4.2: Refinements and rule activations from the complete problem graph. 

Table 4.2 lists all the refinement points for the three training examples A, Band C, at 

the left. The count of rule activations in the complete problem graph, with and without 

the non-observables correction, appears at the right. Therefore, example C with the lowest 

improved rule activation count is selected over A and B. Notice that although the improved 

heuristic is a good predictor of the number of refinements here, more complex problem 

graphs may need a more sophisticated measure that takes into consideration the overlap 

between the positive and negative graphs as this may suggest an area void of refinement 

points. 
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4.2 Ordering Heuristics in Practice 

We can now evaluate the BJ KRUSTtool by applying static and/or dynamic ordering of the 

training examples using the heuristics described in Section 4.1. Static ordering involves 

an initial ordering of training examples, while dynamic ordering ensures that the order of 

training examples for a given refinement cycle is influenced by the most recent refinement 

cycle. The problem graph heuristics define a static ordering of the training examples 

before the iterative refinement cycles are started. They can also be used for dynamic 

ordering where the measures are recalculated on the best refined output KBS from a 

refinement cycle and applied to re-order the remaining training examples in tebuf. The 

fault based heuristic (Section 4.1.1) can only be applied as a dynamic ordering since it 

exploits information from all generated refined KBSs from the previous refinement cycle. 

We expect ordering to reduce the search effort thereby reducing the number of refinement 

iterations. Although the emphasis of the evaluation is to compare the number of iterations, 

it is important to establish the effect of ordering on the error-rate. Additionally, it is 

necessary that any substantial increase in cpu usage be justified by reduced search effort. 

The testbed for the experiments in this Chapter use the corrupted Student loans KBS 

(Appendix A). We re-use the 20 training/test splits corresponding to conflict levels 5 

and 9 from Figure 3.7, since the BJ KRusTtool was shown to have the greatest number 

of iterations with these sets. Moreover, as the assessment of BJ efficiency with various 

orderings of training examples require that backtracking is triggered, it makes sense to 

re-use these training sets containing conflict pairs which were formed with backtracking 

in mind. 

4.2.1 Static Ordering 

Static ordering provides a sequence of training examples prior to the iterative refinement 

cycles. We compare two orderings using the problem graph heuristics with a random 

ordering . 

• N OORDER: move all correctly solved training examples into cebuf then randomly 

order tebuf . 

• PGRAPH+: move all correctly solved training examples into cebuf, then sort the 
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remaining training examples in decreasing order of the number of rule activations in 

the positive problem graph only . 

• PGRAPH±: as PGRAPH+ but use the number of rule activations in the com­

plete problem graph (positive and negative) including the modification for "non­

observables" . 

Static ordering Mean Median 95% Confidence 
NOORDER 9.05 8.0 ±1.420 
PGRAPH+ 7.65 7.0 ±0.717 
PGRAPH± 7.65 7.5 ±0.410 

Table 4.3: Number of iterations for static ordering. 

Error-rate for the final refined KBS was not impaired with PGRAPH+ and PGRAPH±, 

and they both reduced the error-rate compared to N OORDER in 4 test runs. More per­

tinent to this evaluation is the number of iterations for these three algorithms listed in 

Table 4.3. PGRAPH+ required significantly fewer iterations compared to NOORDER (p­

value = 0.028); 10 test runs had fewer iterations and only 2 test runs had more iterations 

and this was at most 2 iterations longer. The reason for these extra iterations in 2 test runs 

is explained by the dynamic nature of iterative refinement, where the estimated domain 

(refined KBSs) of refinement examples can change with incremental refinement. However, 

such problems can only be tackled by re-ordering after each refinement cycle as a single 

static ordering right at the start is not sufficient. 

PGRAPH± improved on PGRAPH+ by reducing the number of iterations in 4 test 

runs, however despite the added information acquired from the negative problem graph this 

reduction is not statistically significant. Any improvements in PGRAPH± over PGRAPH+ 

is due to the added information causing fewer ties, which essentially means fewer randomly 

resolved tie-breaks. This surprisingly (only) marginal improvement of PGRAPH± over 

PGRAPH+ is explained by observing that refinement generation explores both the positive 

and negative problem graphs and that refinements can include changes to both parts of 

the reasoning. Therefore a more complex combination of rule activation counts may be 

required so that it takes account of those activations that contribute towards the required 

goal and are also part of the positive problem graph, by not counting them as individual 

activations. 
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The reason for the reduced number of iterations with NOORDER when compared to 

the values reported in Figure 3.7 for the same test runs is explained by the moving of all 

correctly solved examples into cebuf right at the start. Overall, the test results clearly 

indicate that the order in which training examples are processed by the KRUSTtool af­

fects the number of backjumps and iterations. It also confirms that the number of rule 

activations is an indicator of the level of constrainedness of a training example. 

4.2.2 Dynamic Ordering 

The original backjumping KRUSTtool already employs two forms of dynamic ordering. 

• Reinstating constraint examples that did not require refinement at the time, these 

are latent examples that did not provide any fault evidence as refinement examples, 

but are now incorrectly solved by the current KBS and so are moved back into tebuf 

(see Section 3.3). 

• Re-ordering of examples with MBJ and MCBJ algorithms, where two mutually con­

strained examples are dealt with in consecutive refinement cycles (see Section 3.5). 

Both these reordering strategies are applicable only when backjumping occurs. We now 

extend training example ordering by applying each of the three heuristics from Section 4.1 

to also reorder before every refinement cycle. This form of general reordering is employed 

first, to ensure that reordering enforced by backjumping is not undone. 

Figure 4.3 outlines the basic algorithm combining static and dynamic ordering for 

the BJ KRUSTtool algorithm. Any of the three static orderings NOORDER, PGRAPH+, 

PGRAPH± from Section 4.2.1 can be used in step 2 and will only influence the selection 

of the first refinement example. Dynamic ordering occurs in step 3c, where any of the 

following can be applied: 

• FAULTBASED: re-order tebuf in decreasing order according to evidence from KBSs 

from the recent refinement cycle (Section 4.1.1), after moving all correctly solved 

training examples from tebuf into cebufj or 

• DYNPGRAPH+: apply PGRAPH+'s heuristic (now in every cycle)j or 

• DYNPGRAPH±: apply PGRAPH±'S heuristic (now in every cycle). 
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1. Current best refined KBS is the input faulty KBS. 

2. Apply static ordering on tebuf. 

3. Loop until tebuf is empty: 

(a) Execute the top most example in tebuf on the input KBS. 

(b) Generate and implement refined KBSs. 

(c) Apply dynamic ordering on tebuf. 

(d) If the set of filtered refined KBSs is not empty then choose 

the current best refined KBS as the output KBS. 

(e) If the set of filtered refined KBSs is empty: 
I. If there are latent examples then these are pushed 

into tebuf, after all correctly solved training examples 
are moved into cebuf. 

ii Otherwise, employ BI to identify the inconsistent 
example and its next best refined KBS to backtrack to, 
and all constrain examples on the way are moved back 
into tebuf. 

Figure 4.3: Algorithm combining static and dynamic ordering. 

4.2.3 Static and Dynamic Combinations 

The experiments in this section investigate seven (of the nine possible) static-dynamic 

combinations; the same problem graph and faultiness heuristics are used in the static and 

dynamic orderings. Once again the error-rate of the final KBS was unaffected. Compar­

ing the results in Table 4.4 with the static ordering results in Table 4.3, we see that all 

combinations have reduced the number of iterations by at least two iterations. All heuris­

tics employing the complete problem graph resulted in lower average number of iterations 

but FAULTBASED results are very close. However the differences among all the static + 
dynamic combinations are not substantial; PGRAPH± + DYNPGRAPH± has the fewest 

iterations but this is not significant (p = 0.932 > 0.05). These results show that using 

static combined with dynamic ordering gives significant gain over using static ordering 

only but that none of the combinations is better than any other. 

We have succeeded in reducing the number of iterations but at what computational 

cost? Table 4.5 shows the number of cpu cycles for the heuristic combinations; the entries 

for static ordering have only been included for reference. FAULTBASED has been very 

effective for dynamic ordering since the overhead of applying it with any static ordering 

is not significant. The orderings based on problem graphs have not been so effective; any 

gain in reducing the iterations has been overwhelmed by the expense of each iteration. 
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Static + Dynamic Mean Median 95% Confidence 
NOORDER + FAULTBASED 5.15 5 ±0.532 
NOORDER + DVNPGRAPH+ 5.40 5 ±0.765 
NOORDER + DVNPGRAPH± 5.15 5 ±0.613 
PGRAPH+ + FAULTBASED 5.60 5 ±0.864 
PGRAPH+ + DVNPGRAPH+ 5.80 5 ±0.893 
PGRAPH± + FAULTBASED 5.10 5 ±0.524 
PGRAPH± + DVNPGRAPH± 5.05 5 ±0.557 

Table 4.4: Number of iterations for static + dynamic ordering combinations. 

Static 

NOORDER PGRAPH+ PGRAPH± 
None 286480 453030 384910 
FAULTBASED 246060 454590 398670 
DVNPGRAPH+ 477760 564810 
DVNPGRAPH± 581020 798910 

Table 4.5: CPU cycles for static + dynamic ordering combinations. 

4.3 Conclusion 

The refinement search space is extremely dynamic with sequences of refinement examples 

altering the refined KBSs being considered. As with CSP variable ordering, the goal is to 

reduce search effort by enforcing an order on training examples. Unlike CSPs, where an 

instantiation for one variable can only restrict the domains of others, in iterative knowl­

edge refinement the repair for one training example may also lead to a totally different 

set of proposed refinements for later training examples. However, the dynamic ordering 

of training examples re-orders examples such that changes in the number of refined KBSs 

is taken into consideration before selecting the next refinement example. Overall, exper­

imental results show that both static and dynamic ordering heuristics are able to reduce 

search effort without reducing accuracy. 

The problem graph related heuristics for static ordering had significantly reduced 

search effort when compared to N OORDER. Surprisingly, the additional information from 

using the complete problem graph instead of just the positive problem graph, did not 

yield any significant benefits. This suggests the need for a more informed measure that 

considers the overlap between the positive and negative problem graphs for the PGRAPH± 

heuristic. 

Dynamic ordering was able to significantly reduce the search effort compared to static 
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ordering. However, an important issue with dynamic ordering is the additional compu­

tational effort introduced by the reordering at each refinement cycle. FAULTBASED very 

effectively guides the search without substantial computation and for one combination 

actually lowered the total effort when compared to all static ordering results. In contrast 

the problem graph heuristics are computationally more expensive. This suggests that an 

initial random ordering coupled with a FAULTBASED dynamic ordering provides the best 

balance between improved efficiency and computation costs. 

Chapters 3 and 4 have concentrated on improving refinement effectiveness and effi­

ciency by informed use of training examples. A separate but important issue for knowledge 

refinement is informed selection of training examples. Here the aim is to reduce labelling 

and processing costs by selecting few yet informative examples for refinement. This forms 

the focus for Chapters 5 and 6, where selection mechanisms that are suited for knowledge 

refinement are presented and evaluated. However, it is important to note that research 

work on knowledge refinement exploiting CSP search techniques does not conclude here, 

as it has much growth potential and needs to be extended further. 



Chapter 5 

Informed Selection of Refinement 

Examples 

Fundamental to a KRUSTtool's successful refinement operation is the availability oflabelled 

examples (for its buffers). Availability is often constrained by limited expert interaction 

and in this chapter we investigate how a KRusTtool might benefit from active selection 

techniques that enable the selection of refinement examples from an available set of unla­

belled examples. The goal is to select few yet good examples, and by this we mean selecting 

few examples whilst ensuring that they are representative of the faults in the KBS. The 

results reported in this chapter have also been published in (Wiratunga & Craw 2000). 

Section 5.1 describes how sampling can be incorporated within the iterative refinement 

framework. The selection strategy in Section 5.2 employs clustering of examples where 

similarity between unlabelled examples is according to the problem-solving behaviour of 

the KBS. Section 5.3 identifies several strategies for selecting a suitable number of exam­

ples from these clusters. Experimental results from evaluating the selection strategies on 

two problem domains which have different problem-solving characteristics is presented in 

Section 5.4, followed by chapter conclusions in Section 5.5. 

5.1 The Selective Sampling Process 

The choice of training examples for refinement becomes important, when one of the con­

straints on the refinement process is a limited number of labelled training examples. This is 

71 
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Selected Examples 

Unlabelled Examples 

Expert KRUSTtool 
Labelled Training Examples 

Figure 5.1: A single iteration of select-label-refine. 

a relatively common problem in a real environment, where labelling many problem-solving 

tasks with the expert's solution, may require significant interaction with a busy expert. 

Unlabelled training examples are often generated by using domain knowledge already em­

bodied in the KBS, or meta-knowledge (Zlatareva & Preece 1994, Ayel & Vignollet 1993). 

Therefore, unlike the labelling task, generating unlabelled examples does not typically 

require the expert . Here we assume the availability of a sufficiently large set of unlabelled 

examples. The goal is to perform an informed selection from this set which the expert 

must label, thereby reducing the demand on the expert. The sampling process consists of 

3 stages: 

• informed selection of examples; 

• labelling of these selected examples by the expert; and 

• refinement of the faulty KBS using the batch of newly labelled examples. 

This three-stage process of select- label-refine is illustrated in Figure 5.1, where a single 

sampling iteration provides a small batch of labelled examples that can be used by the 

KRUSTtool. Once the KRusTtool has incrementally refined the KBS to correctly solve 

these labelled examples, the next iteration of select-label-refine can be triggered. Fig­

ure 5.2 illustrates how sampling can be incorporated within the iterative refinement pro­

cess. The unlabelled example buffer (uebuf) contains all unlabelled examples and at the 

start of the refinement process will contain the set of unlabelled examples el, ... , eN . On 

performing an informed selection on uebuf, n examples are selected and moved out of 
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uebuf for labelling. Once labelled these examples are transferred into tebuf and the refine­

ment process is initiated. Thereafter, whenever tebuf becomes empty example selection 

is triggered, consequently further examples are selected, labelled and moved out of uebuf 

into tebuf. The number of examples that get selected from uebuf need not be fixed and 

so can vary from iteration to iteration. In practice the sampling process can be repeated 

until: 

• no further faults are exposed in the input KBS , hence no improvement in accuracy 

an be achieved; or 

• a limit on the number of examples an expert is willing to label is reached; or 

• uebuf is empty. 

Implement 
Refinements 

r'···'F;i';~';··R~'fi~~d'·'···! r '· · · ' ·s~i~~;'B·~~;'···"'] 
i KBS i i Refined KBS i 
-. " ........... , .......... .......... ..... " ~ ...................................... : 

Figure 5.2: Sampling within the KRUSTtool. 

So what criteria should the KRusTtool use to decide which n examples to choose from 

the uebuf? Selection criteria with roots in statistical estimation techniques are increasingly 

being employed with encouraging experimental results for classifiers (Cohn, Ghahramani 

& Jordan 1996). However , the use of examples for training classifiers differs from their 

use for iterative refinement. In refinement: 

• examples are used to expose faults in an existing KBS, and so are employed to 

refin incomplete concepts and not learn from scratch (Langley, Drastal, Rao & 

Greiner 1994); and 
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• examples are used for refining KBSs that model, not only classification tasks but 

also design tasks (Boswell et al. 1997) and even planning tasks (Tallis & Gil 1999, 

Gil 1995). 

Direct application of currently available selection methods for learning classifiers to re­

finement tools, is therefore not straightforward. Moreover, unlike for learning algorithms, 

the input faulty KBS is an important source of information that can be exploited when 

selecting examples for iterative refinement. We know that the relevance of training exam­

ples for refinement, changes as refinement progresses. As the problem-solving behaviour 

of the faulty KBS is incrementally improved, examples that exposed faults before are less 

likely to expose new faults in future iterations. Meanwhile examples that did not expose 

faults before, may do so in future iterations. Therefore we need selection mechanisms that 

target examples for refining the faulty KBS, given its current problem-solving behaviour. 

I. Let selected3xamples = { } 

2. Let examples_to_cluster = cebuf u tebuf u uebuf 

3. While selected_examples = { } 
(a) Let clusters = DoClustering (examples_to_c1uster) 

(b) Let selected3xamples = InformedSelection (clusters) 

(c) If selected_examples are already labelled then 
* Let examples_to_cluster = 

examples_to_c1uster \ selected_examples 
* selected_examples = { } 

Figure 5.3: Clustering and Selecting Examples for Labelling. 

Figure 5.3 outlines the approach that is adopted for refinement example selection. 

The available examples (Le. cebuf U tebuf U uebuf) are partitioned into clusters. Here an 

unsupervised learning approach is required since we are dealing with unlabelled examples. 

With increased selection iterations the selected examples in step 3(b) can in some instances 

be themselves labelled, therefore in such circumstances further iterations will need to be 

triggered until one or more unlabelled examples are selected. This can be avoided by 

restricting examples_to_cluster to just unlabelled examples (in uebuf). However, doing 

so will increase the number of singletons, thereby reducing selection decisions that can 

be made on the basis of intra-cluster example relationships. For knowledge refinement 
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purposes the clustering and subsequent example selection from clusters must exploit the 

relationship between examples with respect to how they are solved by the current KBS, 

instead of existing sampling techniques that exploit the statistical distribution of examples. 

5.2 Selection Guided by Problem-Solving Behaviour 

Clustering involves the formation of distinct example clusters, by grouping similar exam­

ples according to a pre-determined similarity distance metric (Rasumssen 1992, Hanson 

1990, Kodratoff 1988). There are two main clustering approaches: 

• non-hierarchical clustering, where heuristics are used to group examples into one of 

several pre-determined clusters; and 

• hierarchical clustering, where similar examples or clusters are recursively fused to­

gether, forming several nested clusters. 

Non-hierarchical clustering requires initial knowledge about the number of classes, or 

alternatively, knowledge about the classes in the problem domain (Michalski & Stepp 

1990, Fisher 1985, Michalski & Stepp 1983). Usually, with knowledge refinement there 

is no prior knowledge about the number of faulty areas in the KBS, far less the types 

of faults that need to be addressed. Therefore we employ hierarchical clustering. where 

a similarity metric needs to be defined before a clustering technique can progressively 

develop the clusters. 

5.2.1 Similarity Metric 

The KRUSTtool records the problem-solving that is undertaken by a KBS for an example in 

the positive problem graph (see Section 4.1.2). This graph records the rule activations and 

the order in which these activations occur. Therefore we can use the similarity between 

the positive problem graphs of examples, to determine which examples trigger similar 

problem solving behaviour in the faulty KBS. The task of establishing similarity in this 

manner, means that we need only be interested in rule activations for examples, regardless 

of whether or not the system solution is correct. More importantly, examples need not be 

labelled for this task. 
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Given a KBS containing rules R 1 , ••• , R m , we define a binary valued rule vector cor­

responding to an example e, as r = (rl' ... ,rm ) where ri = 1 if Ri appears in the problem 

graph for e, and fi = 0 otherwise. Thus, in Figure 5.4, the rule vector for the positive 

problem graph of Example A is (0, 0, 0, 1, 0, 0, 1, 1, 1, 0), and for Example B is (0, 1, 1, 

1, 1, 0, 0, 0, 0, 0), where m=lO. Presently, we are only interested in the activation of a 

given rule regardless of the number of times it activated or when it activated. 

,-----------, 
I Example B cr sysB 
I 
I 

: J 

L ___________ .J L ___________ .J 

Figure 5.4: Positive Problem Graphs for Example A and Example B. 

The similarity measure needs to capture refinement similarity between two unlabelled 

training examples el, e2. As refinement similarity depends on the similarity in problem 

solving behaviour, the similarity between el, e2, can be established by comparing their 

rule vectors rl, r2. For this purpose the Euclidean distance metric may be used, but it 

can lead to two rule vectors being regarded as highly similar, despite them having no 

common rule activations. Association coefficients (Willett 1988, van Rijsbergen 1980) 

avoid this by focusing on the common rule activations, and normalizing by the number 

of rule activations in both rule vectors, thereby ignoring rules that are not activated. We 

employ the Dice coefficient, a commonly used similarity measure of this type: 

Accordingly, the similarity between examples A and B in Figure 5.4 is 0.25. 
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5.2.2 Clustering Technique 

We use an agglomerative hierarchical clustering technique, where those training examples 

with the greatest similarity are united in small clusters. These clusters are then iteratively 

fused, until inter-cluster dissimilarity achieves a predetermined threshold. There are three 

commonly used approaches to cluster fusion (Hanson 1990). 

Nearest neighbour method: where those two clusters that have the minimum distance 

between their most similar cluster members are fused. This form of cluster fusion 

tends to over-generalise and create fusion where there should not be any. 

Farthest neighbour method: where those two clusters that have the minimum distance 

between their most dissimilar cluster members are fused. Typically, this form of 

cluster fusion leads to small, tightly bound clusters. 

Centroid Method: where clusters are fused based on the average pairwise distance. This 

form of fusion can be seen as an intermediate of the two previous methods. 

The farthest neighbour approach is chosen because it is most sensitive to dissimilarities be­

tween examples, and forms cohesive clusters that are better able to represent the different 

problem solving areas of the current KBS. Important to hierarchical clustering is the clus­

ter fusion stopping threshold, referred to as the cluster threshold. It is this threshold that 

terminates the recursive fusion during clustering. A high cluster threshold leads to over 

generalisation, and to over specialisation when set too low. Extreme situations occur when 

the recursive cluster fusion process terminates once the complete set of training examples 

are contained within a single cluster, or when the number of clusters equals the number 

of training examples. Therefore, selecting a suitable threshold must be approached with 

caution. 

Consider the clustering of 37 examples according to rule activations with the Soybean 

KBS in Appendix B.1 (see Figure 5.5). The small squares contain the calculated distance 

between two clusters while the rectangles denote the 12 clusters formed with the cluster 

threshold set at 0.26, i.e., fusion takes place only if inter-cluster dissimilarity is below 0.26. 

In the left most corner, training examples plant751, plant29 and plant21, have identical 

rule activations so they have a dissimilarity score of O. These examples are fused together 

with example plant94 as the dissimilarity between the farthest neighbours is less than 
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0.26. The dissimilarity scores that stop further fusion is highlighted in bold font. For 

instance the cluster in the right most corner containing plant491 is not fused with the 

cluster containing plant745, plant697 and plant700, because the dissimilarity score of 

0.29 is greater than the cluster threshold. 

1.0 

Figure 5.5: Clustering of 37 examples from the Soybean domain. 

5.3 Selecting Examples using Clusters 

Clusters allow a more informed selection choice than a random selection of examples. 

Each cluster represents the problem-solving behaviour pertaining to some part of the 

faulty KBS, because examples with similar rule activations are clustered together. If we 

happen to know which area of the KBS is faulty, the task of example selection is reduced 

to picking the cluster related to that area. However, in most cases the KRUSTtool has no 

prior knowledge about what parts of the KBS might be faulty, therefore, we need a more 

general selection technique that targets all potentially faulty parts of the KBS. 

Since each cluster contains examples which are solved in a similar way by the KBS, it 

might appear reasonable to assume that refining a fault exposed by a single example from 

a cluster would correct the rest of the cluster. One selection method CLUSTERREP exploits 

this assumption by randomly selecting a single unlabelled example from each cluster, with 
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the aim of selecting a subset of examples representative of the problem solving behaviour of 

the faulty KBS. Therefore, according to CLUSTERREP, 12 examples will be selected from 

the clustering scenario in Figure 5.5, where a single example is randomly selected from 

each of the 12 clusters. Certainly, training examples that activate several rules in common 

appear in the same cluster and typically are also similar in their observables. However, in 

some situations examples from a single cluster may not have similar observables, and so 

may contain a pair of examples where: 

• a possible refinement for one example results in another fault for which there is no 

obvious refinement; or 

• a possible refinement for one example introduces a fault into the solution of the 

other. 

Faults of this nature are termed interacting faults and the involved pair of examples is a 

conflict pair that triggers backtracking. In Chapter 3, we found that conflict pairs improve 

refinement accuracy and guides refinement search to the best incremental refinements. 

Therefore, if conflict pairs do get clustered together we need informed selection heuristics 

that are able to identify and select these pairs. 

5.3.1 Interacting Faults 

(defrule Rl 
(filed_for_bankruptcy ?Student) (enlisted ?Student) 
=> (assert (financial_deferment ?Student))) 

(defrule R2 
(disabled ?Student) (filed_for_bankruptcy) 
=> (assert (disable_deferment ?Student))) 

(defrule R) 
(financial_deferment ?Student) 
=> (assert (eligible_for_deferment ?Student))) 

(defrule R4 
(disable_deferment ?Student) 
=> (assert (eligible_for_deferment ?Student))) 

Figure 5.6: Four rules taken from a corrupted student loans advisor in Clips. 
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We use four Clips rules taken from a corrupted version of a student loans adviser to 

demonstrate interacting faults and their effect on refinement generation. Of these rules, 

two have been corrupted by adding extra conditions, highlighted in bold (see Figure 5.6). 

Here, Rl translates to "if a student has filed for bankruptcy and is enlisted in a military 

organisation then grant the student a financial deferment", and R2 translates to "if a 

student is disabled and has filed for bankruptcy then grant the student a disability de­

ferment". Assume that the KRusTtool is attempting to fix these rules based on fault 

evidence provided by training examples el and e2 in that order. 

el ([(filed.-for_bankruptcy ida), (enrolled uci 4)], (eligible..for_deferment ida)) 

e2 ([(disabled idb), (enrolled uci 5)], (eligible.-for_deferment idb)) 

Example el concerns a student at uci that has filed for bankruptcy and according to the 

expert should be eligible for deferment. However, when reasoning with the faulty rules 

the system solution will not match that of the expert's, as the corruption to R2 prevents 

it from activating. Therefore, the KRuSTtool will attempt to refine the faulty rules by 

either general ising Rl or R2, by deleting condition (enlisted ?Student), or (disabled 

?Student), respectively. 

newKBS 
formed by 
generalising R2 

@ 
? 

need to backtrack to e} 

newKBS' 

formed by 
generalising R} 

newKBS" 
formed by 
generalising R2 

Figure 5.7: Non-optimal refinement choice triggers backtracking. 

Let us assume that the KRusTtool chooses to refine by incorrectly generalising R2 

(instead of Rr), and implements this as newKBS (Figure 5.7). On proceeding to the 

next refinement cycle with newK B S as the input KBS, the KRuSTtool is presented with 

fault evidence from training example e2i a disabled student enrolled at uci and eligible for 
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deferment. A direct consequence of generalising R2 is that the KRusTtool is now left with 

no obvious refinement that can fix the fault exposed by example e2. Consequently, it is 

forced to re-think its previous refinement choice of generalising R2 instead of R1, and so 

faces the prospect of re-starting refinement from a previous state. Notice that if R2 and 

Rl were corrupted, but had no common condition that matched observables from either 

el or e2 (for instance like filed..for_bankruptcy) then the faults exposed by el and e2 in 

Figure 5.6 would not be interacting. 

(defrule Rs 
(longest_absence ?abs_units) 
(enrolled ?en_units) 
(test « ?abs_units 5» 
(test (>= ?en_units 5» 
=> (assert (no-payment_due») 

(defrule R6 
(enrolled ?en_units) 
(test (> Pen_units 15)) 
=> (assert (no-payment_due») 

(defrule R7 
(not (no-payment_due» => (assert (payment_due») 

Figure 5.8: Three rules taken from a corrupted student loans advisor in Clips. 

We use three different rules in Figure 5.8 to demonstrate how a selected refinement 

has the effect of introducing a new fault that interacts with an existing fault. Here rule Rt3 

which translates to "if a student is enrolled and the number of units enrolled is greater than 

15 then payment is not due" has been corrupted by introducing an incorrect comparison 

value of 15. Assume that the KRuSTtool is attempting to fix these rules based on fault 

evidence provided by training example e3 and e4 in that order. 

e3 = ([(longest_absence ide ucla 5), (enrolled ucla 5)], (payment_due)) 

e4 = ([(longest_absence ide!. ucla 5), (enrolled ucla 12)], (no_payment_due)) 

Example e3 concerns a student at ucla enrolled in 5 courses and absent for 5 days. 

Since (no_payment_due) will not be asserted (because R5 and ~ cannot activate) R7 

will be activated concluding payment_due. This assertion matches the expert's solution 
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therefore refinement is not needed. In Chapter 3 examples (like e3) that did not trigger 

refinement were referred to as latent examples. The next refinement example is e4, but now 

the system solution will incorrectly conclude payment_due, because R6 is too specialised 

and will not activate. Refinement will be triggered and the KRusTtool will attempt to 

refine the rules by either generalising R5 or R6, by changing the comparison operator to 

~; or by changing the comparison value to 11. Assume that it incorrectly selects the 

newKBS 
formed by 
generalising Rs 

e3 
newKBS" 
formed by 

newKBS' 
formed by 
generalising R6 

specialising Rs ? 

need to backtrack to e4 
as specialising Rs causes 
an inconsistency with e4 

Figure 5.9: Non-optimal refinement choice activates latent example and triggers back­
tracking. 

refinement to R5, which would then activate the latent example e3 (see Figure 5.9). On 

activation, example e3 will drive the next refinement cycle. In that cycle the KRUSTtool 

will need to specialise R5, because it is now too generalised and incorrectly concludes 

no_payment_due for example e3. However, specialising Rs will undo e4's refinement of 

generalising R5 , consequently, backtracking is triggered resuming the refinement process 

from e4 with newK BS' generalising R6 . Notice, that although we had started with a 

single corruption to R6 , selecting a non-optimal refinement introduced a second fault that 

interacted with this initial corruption, resulting in backtracking. 

The presence of interacting faults affects the refinement process, because selecting a 

refined KBS in a previous iteration can cause refinement conflicts in a subsequent iteration. 

These conflicts can only be detected subject to the availability of fault evidence provided 

by a pair of examples, a conflict pair (such as el and e2, or e3 and e4, above). If a cluster 
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contains conflict pairs like these, we would want to select further examples from this 

cluster. In these situations CLUSTERREP is not sufficient as it randomly selects a single 

example from each cluster, thereby ignoring all other examples in that cluster, including 

conflict pairs. A mechanism is needed to identify conflict pairs when they occur in the 

same cluster so that we ensure that examples exposing interacting faults are chosen. This 

necessitates an investigation of the problem-solving behaviour of labelled conflict pairs 

that occur in the same cluster. The aim of such an investigation is to establish criteria 

that would enable the identification and selection of conflict pairs from a cluster when 

they are still unlabelled. 

5.3.2 Characteristics of Conflict Pairs 

An analysis of labelled conflict pairs revealed that they tend to have overlapping positive 

problem graphs, yet the best refinement choices for the pair are distinguished from each 

other. Essentially their proofs may utilise similar parts of the KBS but their best refine­

ment exercises separate parts. Figure 5.10 shows the problem-solving for a hypothetical 

conflict pair, C=([Cl,"" C61lgoalc) and D=([D1, ••• , D61IgoalD}' The darkened arrows 

and bold rule names highlight the positive problem graphs for examples C and D; i.e. the 

rules that are activated by the observables for each example. Each example has resulted 

in the activation of the same end rule R3, but the solutions (sysc and SYSD) might occur 

with different variable bindings. Typically conflict pairs tend to have a substantial area of 

the positive problem graph in common. Consequently, they tend to be placed in the same 

cluster, and easily mistaken as representing the same fault. 

Figure 5.10 also shows all rules that might have concluded each target goal if they had 

been activated; i.e. the negative problem graph. With example C, Rs is only partially 

satisfied by Rl'S conclusion. The arrow from C4 is fainter to indicate that the condition 

in Rs is not met by this observable without the condition being generalised somehow. 

The other possible route via R4 requires both of its conditions to be generalised before 

being satisfied by Cs and C6' Possible refinements attempt to specialise rules in the 

positive problem graph and generalise those from the negative problem graph l . However, 

specialising R2 to disallow the proof of sysc for example C may cause problems when 

1 For a description of KRusTtoo!'s specialisation and generalisation refinement operators see (Boswell 
& Craw 1999). 
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Figure 5.10: Over lapping problem graphs for conflict pairs. 

general ising R7 to allow the proof of goalD' for example D, and vice versa with Rl and 

Rs. Essentially, even though conflict pairs are clustered together, a refinement for one 

example will not necessarily repair the otherj i.e. their negative problem graphs are fairly 

disjoint. 

5.3.3 Informed Selection Heuristics 

When examples are unlabelled we do not know the goals and cannot build the negative 

problem graphs as in Figure 5.10. Instead we identify potential conflict pairs by formu­

lating an indirect estimate of how overlapping the two negative problem graphs might be. 

For this purpose we: 

• compute the dissimilarity of examples based on their observables since the non­

activations in the negative problem graph depend on these observablesj and 

• use this dissimilarity to compute the intra cluster dissimilarity score for each cluster 

which can then be exploited by informed selection heuristics. 

Observable-Based Dissimilarity of Examples 

The dissimilarity between two examples, ea=( [fJ, ... ,f:] , ?), and eb=( Ul,· .. ,fr] , ?), 

is computed by comparing each of their corresponding observables, where the number of 
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observables m and n are not necessarily equal. 

dissimilarity (ea , eb) 
VL.rz;1 L.']=1 ~2(f~, It) 

2*(m+n) 
(5.1) 

The maximum possible dissimilarity distance between examples ea and eb is m + n, so the 

actual distance can be normalised by dividing by m + n. However, since the observable 

distances are counted twice, the actual distance is normalised by 2 * (m + n). 

The difficulty with calculating ~ is that each observable can be represented as either 

an object-attribute-value (OAV) or as an ordered-term (OT). For instance the observable 

related to a student x, enrolled in 5 units can be represented as, (enrolled, x, 5), which 

is an ~AY. Applying functions value, object and attribute to this OAV, returns 5, x and 

enrolled, respectively. Now, consider the OT representation of an observable related to 

a student x, in school s, and absent for 10 units: (longest_absence, x, s, 10). As before 

function attribute will return longest_absence, however, unlike OAVs, OTs can have 

one or more values such as sand 10, additionally, it mayor may not contain an object, 

such as x. Here, we assume that 3 consecutive calls to function term when applied to 

(longest_absence, x, s, 10), returns x, s followed by 10, and function length returns 3. 

Essentially, length returns the number of calls that should be made to term, in order to 

access each of the values in the ~T. For an OAV length is always 1, and a single call to 

term is sufficient to access the OAV value. 

We need additional meta-knowledge specifying which terms should and should not be 

considered in an OT, and which OAVs should contribute towards dissimilarity. For in­

stance with OT (longest_absence, x, s, 10), the object x will be a student identification 

number and should typically not contribute towards a dissimilarity score, while sand 10 

should. To this end we maintain meta-knowledge in the form of a binary vector where a 1 

indicates that the term in the corresponding position should contribute towards dissimi­

larity, and 0 otherwise. For instance vector(longest_absence, x, s, 10) = (0 11), specifies 

that sand 10 should contribute towards dissimilarity while x should not. Similarly for 

the OAV (enrolled, x, 5) a vector of (01) specifies that only 5 should contribute towards 

dissimilari ty. 

We can now use functions attribute, length, term and meta-knowledge vector to define 
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the dissimilarity between two observables, L).. 

if attribute(x) # attribute(y) 
L).(x,y) = (5.2) 

if attribute(x )=attribute(y) 

The matching of attributes in 8 is important to ensure that dissimilarity is calculated 

between observable pairs with matching attributes because it does not make sense to do 

so for non-matching observables. 

length(x) 

8(x, y) L vectorl(x) * 8}(terml(x), terml(Y)) (5.3) 
1=1 

o if x=y 

8T \x, y) = Ilx - yll if x and yare numeric (5.4) 

1 otherwise 

In 8T , II II indicates that the difference is normalised by the maximum and minimum 

value difference. 

Intra Cluster Dissimilarity 

In order to calculate the intra cluster dissimilarity (leD) for a cluster C={ el,"" en} we 

first calculate the Dissimilarity score for each example in C. Dissimilarity of example 

ei is simply the sum of all pair-wise dissimilarities between ei and the remaining examples 

in C. 

Dissimilarity (ei' C) = L dissimilarity (ei' ej) 
ejEC 



5.4. Experimental Evaluation 87 

The ICD score for cluster G containing lei examples, is the average Dissimilarity of all 

its examples. 

ICD(G) = 
2:eiEC 2:ejEC dissimilarity (ei' ej) 

IGI 

There is some argument for ignoring the influence of observables that have already re­

sulted in activations when calculating dissimilarity between examples, however, as the 

contribution towards dissimilarity from observables associated with activations, compared 

to those associated with (non) activations is negligible, we have opted for the simpler 

dissimilarity score using all observables. 

When a cluster has a high ICD score there is reason to believe that such a cluster 

may contain conflict pairs, and we want to select it first for refinement. The intuition 

behind this is that examples clustered together based on similarity of the KBS's problem 

solving behaviour would normally also be similar in their observables. If observables are 

dissimilar then it is likely that problem solving behaviour of the KBS for that cluster 

is faulty and additionally contains conflict pairs which necessitate the selection of more 

than one example to fix the associated faults. We propose the CLUSTERDISIM family 

of selection heuristics that pick varying numbers of examples from the cluster with the 

highest ICD score as follows: 

• *CLUSTER selects all examples; 

• K-CLUSTER selects the K examples with highest Dissimilarity; and 

• >CLUSTER selects examples with Dissimilarity scores above a pre-determined thresh-

old. 

5.4 Experimental Evaluation 

We use the student loans KBS with 5 corruptions (see Appendix A) and the Soybean 

KBS with 7 corruptions (see Appendix B.1). These corruptions are controlled such that 

interacting faults occur only with the Student loans KBS. This means that with the 

Soybean KBS examples from different classes always have distinct problem graphs. The 

types of corruptions that can be introduced are constrained by the available refinement 
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operators as discussed in Chapter 1. CLusTERREP and the CLUSTERDISIM family of 

selection heuristics are compared against RANDOM, where refinement examples are selected 

randomly. The experiments test whether selective sampling produces refined KBSs with 

comparable accuracy but using fewer labelled examples than RANDOM. 

For each domain, a set of 100 training examples and a further 100 evaluation examples 

are randomly selected from the data set. The KRUSTtool is run with increasing subsets 

of the 100 training examples. Although all examples in the data set are labelled for 

experimentation purposes, these labels are ignored until examples are selected from uebuf 

into tebuf for the refinement task. Therefore, the labelling step in the select-label-refine 

iterative process is implicit, and the stop criterion is that the refined KBS has 100% 

accuracy on the training examples after the refinement step. In practice this criterion 

is not available, as only selected training examples will be labelled, therefore, in a real 

environment the criteria will be the availability of the expert, or a predetermined level of 

accuracy on the training examples. The impact of informed selection on: 

• efficiency is determined by the percentage of unused (unselected) examples in uebufj 

and 

• effectiveness is determined by the accuracy of the final KBS on the evaluation set. 

The graphs show results averaged over 10 runs for each training set size. Significance 

results are based on a 95% confidence level and apply the Kruskal Wallis non-parametric 

test (see Appendix D). The cluster fusion threshold and the Dissimilarity threshold for 

>CLUSTER with each test domain was ascertained a priori by experimenting with varying 

thresholds, on a separate subset of examples. 

5.4.1 Student Loans Domain 

There was no significant difference between the informed selection methods and RANDOM 

in the accuracy of the final output KBS on the evaluation set. This suggests that all 

methods have similar effectiveness. Figure 5.11 shows the graph for unused percentage 

of examples for each of the methods. We see that CLUSTERDISIM methods have signifi­

cantly higher unused percentages compared to CLUSTERREP and RANDOM (p=0.005). 3-

CLUSTER overall has fared best, and on average is three times more efficient than RANDOM 
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Figure 5.11: Unused examples for student loans domain. 

or CLUSTERREP. 3-CLUSTER and >CLUSTER have significantly higher unused percent­

ages compared to *CLUSTER, suggesting that the subset of most dissimilar examples from 

the cluster effectively targets the faults highlighted by all the examples in the cluster. All 

CLUSTERDISIM methods use significantly fewer training examples compared to CLUSTER­

REP and RANDOM. CLUSTERREP's poor performance is due to the added complication 

of interacting faults, and shows that selecting a single cluster representatives alone is not 

sufficient in these situations. The increase in unused percentage with training set size 10, 

seen with all methods, is explained by small training sets being insufficient to expose all 

faults in the KBS. As a result 100% accuracy on the training set is achieved easily, while 

the accuracy on the evaluation set will be significantly worse when compared to refined 

KBSs produced from larger training sets. 

5.4.2 Soybean Disease Domain 

Again there was no significant difference in accuracy and a significant difference in unused 

percentages (p=0.005). From the efficiency view, in this domain, CLUSTERREP, uses 

significantly fewer examples than *CLUSTER and RANDOM (see Figure 5.12). The success 

of CLUSTERREP and the failure of *CLUSTER is explained by the absence of interacting 

faults in this rule base. This confirms that in the absence of interacting faults we can rely 

on selecting a single example per cluster, as each cluster represents a distinct aspect of the 

faulty KBS's problem solving behaviour. A further observations is that the performance 
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of CLUSTERREP improves with increased training set sizes, indicating that it was able to 

target few, yet good, examples. Closer examination of test runs with set sizes 70, 80, 90 

and 100, revealed that the number of clusters tends to be constant while the size of clusters 

increases with the increasing number of examples, therefore CLUSTERREP selects the same 

number of examples regardless of the size of the training set. On average CLusTERREP 

is three-times more efficient than RANDOM or *CLUSTER. *CLUSTER'S bad performance 

with larger training set sizes clearly shows that the absence of an appropriate selection 

mechanism can result in ultimately using all the unlabelled examples. The results for 

3-CLUSTER and >CLUSTER methods which are derivatives of *CLUSTER, have not been 

plotted as they performed poorly. 
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Figure 5.12: Unused examples for soybean disease domain. 

5.5 Conclusion 

Experimental results show that selective sampling can significantly reduce the number of 

examples utilised, without any penalty on the final accuracy. The refinement process was 

able to target particular faults that improved the accuracy of the refined KBS in a way 

that was effective in general. Not only did this reduce the number of refinement cycles 

required to achieve a particular level of competence, but it also reduced the demand on the 

expert's time. The selection was done based on features of the problem-solving behaviour 

alone and so the expert was consulted about only the selected examples. Once labelled, 

the selected examples were presented to the KRUSTtool. 

The rule vector representation of the positive problem graph provided a simple sim-
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ilarity measure that created clusters of examples that had been solved by the KBS in a 

similar way. This clustering was helpful in determining examples that might indicate the 

same refinement. A potential problem with representing examples as rule vectors is the 

high computational cost that might be incurred with large and complex KBSs, because 

each example must be executed on the KBS before the rule vector can be formed. The 

faulty KBSs employed in this chapter are relatively small, therefore for complex KBSs 

it will be important that the rule vector representation be translated into some form of 

feature vector representation. For instance each rule can be viewed as a correlation be­

tween a subset of observables. The goal is to identify these observable subsets where a 

single observable can be in none, one or more subsets. Thereafter, clustering can be based 

on similarity between several subsets of correlated observables. Essentially similarity in a 

single observable subset, corresponds to similarity in a single rule activation. 

Selective sampling is important for knowledge refinement whether or not labelled train­

ing examples are plentiful. If labels are hard to obtain then it is certainly useful to identify 

relevant problem-solving tasks that should be labelled by the expert and then used as train­

ing examples for refinement. Conversely if there are many labelled training examples then, 

given that the refinement process is quite computationally expensive, it is convenient to 

target those examples whose refinements also fix other wrongly solved examples without 

further refinement, thereby reducing the number of refinement cycles. Selective sampling 

addresses both these issues by identifying the examples most likely to solve others that 

indicate the same general fault. Given the encouraging results with respect to active se­

lection of refinement examples in this chapter, we look at active selection of examples for 

the filtering task in the next Chapter. 



Chapter 6 

Informed Selection of Filter 

Examples 

In each refinement cycle, the refined KBS with best quality is selected from the set of 

proposed refined KBSs. Quality of a refined KBS is measured by ascertaining its accuracy 

on a set of examples, referred to as filter examples. This quality testing process is heavily 

dependent on the availability and selection of examples suited for the filtering role. In this 

chapter we investigate techniques that aim to actively select few yet good filter examples 

from the set of labelled and unlabelled examples for the KRusTtool's filtering task. 

KRuSTtool's existing filtering process and drawbacks are discussed in Section 6.1. A 

cluster-based approach to example selection exploiting changes in problem solving be­

haviour is introduced in Section 6.2, followed by an ensemble-based approach in Sec­

tion 6.3. Experimental results on two domains are analysed in Section 6.4, and Chapter 

conclusions appear in Section 6.5. 

6.1 Filtering Refined KBSs 

The KRusTtool's refinement algorithm employs several KBS filters to select the best refined 

KBS from the set of proposed refined KBSs (Craw 1996, Palmer & Craw 1996). These 

filters form several levels and at each level zero or more refined KBSs will successfully pass 

through. Essentially the successful candidates from one filter level become the input at 

the next subsequent filter level. In this manner the filters attempt to weed out bad refined 

92 
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KBSs from the set of proposed refined KBSs. The eventual aim is to identify the best 

refined KBS. 

F igure 6.1 illustrates thr e filter levels. The initial Consistency Filter ensures that 

consistency is maintained with previously solved refinement examples in cebuf, while the 

Accuracy Filter makes judgments about the quality of proposed refinements based on 

accuracy on a subset of training examples. Refined KBSs with highest accuracy on this 

subset pass on to the next level. Any ties are broken randomly. Notice, backtracking will 

be trigg red when all refined KBSs fail to pass the consistency filter. 

Proposed Refinements 

• • • · 

Best Output KBS 

Contents of I 
cebuf .-J 

Contents of I 
tebuf ..J 

Figur 6.1: The KRUSTtool filter hierarchy. 

Ensuring consistency with previous refinement examples is straightforward, as we aI­

r ady know which training examples have previously triggered refinement and have been 

solved correctly (these are constraint examples in cebuf) . The difficulty with the Accuracy 

Filter is in identifying a relevant subset of examples upon which the judgment can be 

based. Presently, the subset is simply all labelled training examples yet to be processed 

in tebuf. Obvious disadvantages in such a scheme include: 

• high processing costs when tebuf is large; 

• insuffici nt evidence for judgm nt when tebuf is small; and 

• duplication bias, wh re a large number of similar examples may incorrectly suggest 

high (or low) accuracy. 

Even if the number of training examples in tebuf is not too extreme, using all training 

exampl s i not sensible as proposed refinements may have affected only a subset of these 
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examples. eedless to say, using un-affected examples for judgment purposes will not 

contribute additional information towards ascertaining whether a proposed refinement is 

good or not, but instead will increase processing costs. Moreover, confining the role of 

filtering to just labelled examples may mean that other relevant examples in uebuf will 

not be abl to influence filtering. 

I Contents of L uebuf 

Proposed Refinements 

... 

• 
= • 

Best Output KBS 

Figure 6.2: The active accuracy filter. 

Contents :Jf 
cebuf 

Contents of I 
tebuf .-J 

Th functionality of the passive accuracy filter needs to be extended to one that is 

able to actively select relevant examples that are testing of the proposed refined KBSs. 

An accuracy filter with active selection capability will be referred to as the active accuracy 

filter. Figure 6.2 illustrates such a filter utilising examples from both tebuf and uebuf. It 

is hoped that incorporating active selection of filter examples in this manner will facilitate: 

• the selection of few yet good examples, reducing needless processing and minimising 

labelling cost; 

• efficiency gains by improv d guidance through the space of possible refinements, 

th r by avoiding refinement dead-ends and reducing the need for backtracking; and 

• accuracy gains by moving refinement search to parts of the search space containing 

more promising r fined KBSs. 

To achiev th e goals, the active accuracy filter needs to select examples that are affected 

by the propos d refinement. Affected examples are those examples that as a result of 

r finement get solv d differently; for instance an example previously correctly solved is 

now incorr ctly solv d Or vice versa. However, things are mOre complicated than that, as 
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some of the effects are to be expected while others are not. This means that the active 

accuracy filter must not only identify affected examples, but select only those examples 

that should not have been affected the way they have. Additionally, example selection 

by the active accuracy filter must not be based on techniques that simply compare the 

system and expert solutions, because active selection of filter examples must also extend 

to the set of examples in uebuf (where labelling has not yet occurred). We will now look 

at two different active selection approaches: cluster-based; and ensemble-based. 

6.2 Cluster-Based Filter Example Selection 

In Chapter 5 we saw that clustering examples according to the current KBS's problem 

solving behaviour, enabled the selection of a representative set of refinement examples that 

cover the range of faults in that KBS. Here, we employ the same clustering mechanism and 

extend it as a means to assess changes in problem solving behaviour, before and after the 

proposed refinement. Changes in problem solving behaviour are captured by analysing 

changes in cluster membership. Essentially, examples that get clustered differently are 

more likely to have been affected by the refinement. 

I. Cluster examples based on problem solving behaviour of the input KBS. 

2. For each refined KBS that passed the consistency filter: 
(a) Repeat step I, but this time based on problem 

solving behaviour of the refined KBS. 
(b) Compare example clusters formed with the input KBS to 

those formed with the refined KBS in step 2(a), analysing 
changes to cluster membership. 

(c) Identify those examples with changed cluster membership, 
noting them as affected examples. 

3. Select filter examples from those noted as affected. 

Figure 6.3: Algorithm for the Cluster-Based Approach. 

The algorithm in Figure 6.3, outlines the steps involved in the cluster-based approach. 

In step 1, examples in tebuf and uebuf are clustered with respect to the input KBS's 

problem solving behaviour. The example clusters thus formed are compared with example 

clusters formed according to problem solving behaviour of each refined KBS in step 2. The 
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goal of this comparison is to identify affected examples by analysing changes in cluster 

membership. Instead of selecting examples simply on the basis of changes in rule activa­

tions, changes in cluster membership provides a more general view of groups of examples 

that are affected in similar ways. In step 3, filter examples are selected based on selection 

heuristics, that select from example subsets that are noted as affected. 

input KBS, K 
--------

'" 

Figure 6.4: Analysing Changes in Cluster Content. 

Figure 6.4 illustrates a fictitious scenario where 35 examples are clustered based on 

problem solving behaviour of an input KBS, K. The clustering has resulted in five example 

clusters, of which cluster a (bold), contains refinement example e (striped) together with 

four other cluster members. We refer to the 5 example clusters formed based on problem 

solving behaviour of K , as K's clusters. Let us assume that three refined KBSs, K 1, 

K2 and K3, generated in response to fault evidence provided bye, have already passed 

the consistency filter. Affected examples are identified by comparing cluster content of 

K's clust rs with each of the refined KBS's clusters. However, a refinement can cause 
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significant changes in cluster content thus making the comparison difficult. Therefore, a 

more tractable method localises the comparison to changes relative to the original cluster 

in which the refinement example was a member in K's clusters, here cluster a. 

In Figure 6.4 we see that according to K1's clusters, e is no longer clustered together 

with it's former cluster members as in a, instead it forms a new cluster, x, with four 

other examples. Out of e's four cluster members in a, three have separated to form a new 

cluster, y, with five other examples, while the other has moved out and formed a new 

cluster, z, with three other examples. Examples from a that move into the same cluster 

(like the three in y) may also suggest that these were affected in a similar manner by the 

implemented refinement. 

Clusters of interest are those containing examples from the input KBS's cluster con­

taining the refinement example. In Figure 6.4 these clusters are highlighted. Therefore, 

the affected examples with Kl will be all examples in clusters x, y and z. However, the 

total number of affected examples identified in this manner can be high. For instance with 

Kl, 45% of examples are contained in clusters x, y and z, and assumed to be affected 

by the refinement implemented in K l . It is therefore, economical if we could cut-down 

this figure by employing selection heuristics that can help select a representative subset 

of filter examples from the already identified affected examples. Generally, analysing the 

difference between clusters before and after refinement helps identify examples that were 

affected by the refinement but more importantly it identifies examples that were affected 

in a similar manner. 

6.2.1 Simple Selection Heuristics 

Given a set of M proposed KBSs {K l , ... , KM}, we can identify M affected example 

sets {El, ... ,EM}. Heuristic KFILTER randomly selects k examples from each Ei, resulting 

in M * k filter examples. Any resulting duplicates are removed. A further possibility is 

to select the M * k most frequently seen examples in {El, ... , EM}, and we refer to this 

filter example selection heuristic as, FQFILTER. The advantage of both these heuristics is 

simplicity. 
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6.2.2 Refinement Extremeness Based Selection Heuristic 

Selecting the best refined KBS also means that filter examples must be able to filter 

out refined KBSs that are too extreme, i.e. over-generalised or over-specialised. For this 

purpose a more targeted example selection approach is necessary, where examples although 

affected must only be selected as filter examples if normally they should not have been 

affected. 

A KBS when generalised, typically results in new fact assertions because generalisation 

tries to enable rule activations which prior to refinement would not have activated. Often 

this amounts to weakening leaf rule conditions so that they are satisfied by the observables. 

Specialisation has the opposite effect to generalisation, where previously derived facts 

are absent after refinement. Here, instead of weakening a leaf rule's conditions they are 

strengthened so that observables will not satisfy one or more of the rule's conditions. With 

both refinement operations given an input KBS, K, and a set of proposed KBSs K i , we 

wish to identify for each proposed refined KBS, Ki: 

• observables that are being used differently maintaining their attributes in a list 

affected attributes, Ki; and 

• select from Ki'S affected example set, €i, examples that are atypical (dissimilar) with 

respect to observables having matching attributes in Ki. 

.. 

L 

inputKBS, K 

cr 

- - - --- -- -., ~ -- - - - - - - - - - - - - - - - - ., 
I I 

I 
I I 

I 
I 

I 
I I 
I I 
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I I 

proposed KBS, Kl 

R4 

CDCDC£ 0CD I I 
------.1 L- ________________ ~ 

Figure 6.5: Observable usage before and after generalization. 
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The two positive problem graphs in Figure 6.5 illustrate the problem solving behaviour 

of input KBS K and a corresponding refined KBS K l , when separately executed on re­

finement example e=([h, ... ,Is], goale ). The ovals represent observables, derived facts 

and the final system solution. Assume that e is a member of Kl's affected example set, 101, 

where Kl is a refinement generalisation that fixes a fault in input KBS, K. Differences be­

tween K's reasoning and Kl 's reasoning can be captured by examining the corresponding 

positive problem graphs. The differences provide information about how rule activations 

triggered by observables [h, ... ,i5], differ between the two alternative KBS's reasoning 

processes. It helps us identify which observables contribute to new rule activations as a 

result of generalisation. 

With K, we see that the single rule activation R4 has activated because its conditions 

are satisfied by observable iJ, concluding FR4. For the generalised K 1, RlO activates with 

h, R3 with hand R6 more indirectly with h. Therefore, Kl's affected attribute set ~1, 

will be {attribute(Jt} , attribute(iJ)}· Here function attribute is the same as defined in 

Section 5.3.3. Once all examples in <01 for proposed Kl have been analysed in this manner, 

~1 is complete. 
-- --- -~ - - -- - - .., - - - - - - - -- ~ 

input KBS, K y I I 
\ I 

I 
I 

proposed KBS, Kl 

R7 I I 

I I 

-- - -- -- -- - - - - .J 

Figure 6.6: Observable usage before and after specialisation and generalisation. 

Consider a different refinement scenario with both specialisation and generalisation 

illustrated in figure 6.6. Here, the proposed refined KBS K 1, fixes a fault exposed in input 

KBS K, by refinement example, e= ([h, ... , 15] , goale ). With K, the activation of the end 
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rule R7 has incorrectly concluded with system solution, Fm. This is fixed in K1 by: 

• disabling rules that lead to the conclusion of FR7 ; and 

• enabling rules that should instead lead to the target goal, goale . 

Consequently, we can identify several changes in observable usage with K1 not seen with 

K: h indirectly contributes to the activation of R5 and so R1; and 14 indirectly contributes 

to the activation of R1; and 14 as a result of specialisation does not contribute to the acti­

vation of R7. Accordingly, K1 's affected attribute list 1'\;1 = {attribute(fd, attribute(f4)}. 

Notice that in Figure 6.5, direct analysis at the observable level was sufficient to 

identify changes in observable usage. However with the scenario in Figure 6.6, the effects 

of refinement on the reasoning process are concentrated further up the problem graph, 

and at first may seem not to imply any changes at lower levels. In such circumstances an 

analysis of changes at higher levels becomes important. Currently, the search for changes 

starts at the observable level and if changes are found the search stops there, otherwise, 

the next level of derived facts are analysed and so on. 

Selecting Atypical Examples 

An Atypical score for example ei=([/l,'" ,1m] , ?), in E={ e1, . .. ,en}, related to a proposed 

refined KBS with 1'\;, is calculated by summing all pair-wise dissimilarities between example 

ei and the remaining examples in the proposed refined KBS's affected example set, E. 

Atypical(ei' €) = L dissimilarity (ei' ej) 
eiiej 

(6.1) 

Here, dissimilarity between examples are calculated according to equation 5.1. However, 

we modify equation 5.3 as follows. 

length(x) 

8(x, y) = w(attribute(x)) * L vectorl(x) * 8}(terml(x), terml(Y)) (6.2) 
1=1 

w(x) = { 
o if x ~ I'\; 

1 if x E I'\; 

(6.3) 
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Here, function w ensures that dissimilarity between examples is calculated only accord­

ing to observables that are identified to be affected. Therefore, w returns 0 if a given 

observable's attribute is not in set K" and returns 1 otherwise. 

With refinements that are too extreme, it is most likely that examples with high 

atypical scores will be incorrectly solved by the refined KBS. Such examples have extreme 

values for observables that get used differently by the refined KBS as a result of the 

implemented refinement. Selection heuristic *FILTER, selects from each proposed refined 

KBS's affected example set (E), k examples with highest Atypical scores as filter examples. 

6.3 Ensemble-Based Selection 

Although cluster-based filter example selection is able to identify affected examples, it 

is likely to be computationally very demanding. This is particularly true with increased 

numbers of examples and refined KBSs. The ensemble-based approach does not need 

to cluster examples. The refined KBSs that pass the consistency filter are used to form 

the ensemble, where system solutions of ensemble members are combined into a vote 

for or against selecting an example for filtering. Typically, we want to select examples 

where a majority of members are in disagreement. The underlying intuition behind this 

is that refined KBSs are unable to solve an example consistently when the example is 

particularly hard to solve and is testing of the refined KBSs. The credibility of such an 

approach depends on the goodness of the ensemble. Dietterich (2000), suggests that a 

good ensemble is one where members have an error rate of better than random guessing, 

and disagreement between members are uncorrelated. For filtering purposes, although the 

ensemble is formed by refined KBSs originating from a single input KBS, differences in 

system solutions is due to differences between implemented refinements alone. 

Figure 6.7(a), illustrates a single refinement iteration. The corresponding ensemble 

formed using the refined KBSs from that iteration is in Figure 6.7(b). Here, the ensemble 

consists of M refined KBSs. Each member of the ensemble provides a system solution for 

each example in tebuf {e3, ... , en}, and all unlabelled examples {en + 1, ... , eN}. Since 

example selection is based on the degree of disagreement between ensemble members, we 

consider two alternative approaches to ascertaining disagreement: a heuristic approach; 

and a disagreement score suggested by Argamon-Engelson & Dagan (1999). 
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Ensemble 

@@ ... @ Q ... (9 

(b) 

Figure 6.7: Proposed KBSs Forming an Ensemble. (a) A Refinement Iteration. (b) 
Carr sponding Ensemble Filter. 

Disagreement Heuristic 

The system solutions for each example are compared noting the: 

majority vote : the most frequent system solution together with the number of refined 

KBSs that are in agreement; and 

minority vote : the least frequent system solution together with the number of refined 

KBSs in agreement . 

With selection heuristic VOTEFILTER, the k examples with lowest minority vote are se­

lected and any ties are resolved by favouring examples with lower majority votes. 

Consider the scenario for a classification task in Table 6.1, where the KRusTtool in 

re ponse to a refinement example's fault evidence, generates several refined KBSs, of which 

four refined KBSs, {](1, ](2, ](3, ](4} have successfully passed the consistency filter. These 

refined KBSs form the ensemble that actively selects from examples {e1' e2, e3, e4, e5} 

based on minority and majority agreement voting. The system solution by an ensemble 

memb r (column), for an example (row), is entered in the relevant row column intersection. 

For instance K 1's system solution, Gl, for el, indicates that Kl classifies el in class 

0 1, while ](1, classifies e3 in class G1 and in class 02. The majority of the ensemble 

m robers classify e in class G1, hence proposing 0 1 with 4 majority votes. As there are 

no disagreements betw en the nsemble members the minority columns are empty. With 

example e2, the majority column is empty as there is no agreement between the ensemble 
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members. However, each member has proposed a different class, and the minority propose 

column contains all 4 proposed classes (C1,C2,C3,C4), with a single vote for each. Similar 

explanations hold for the rest of the examples in the table, but notice that with es the 

minority columns are left empty as they are the same as the majority columns. The 

VOTEFILTER heuristic prefers selecting examples with fewer minority votes, and any ties 

are resolved by favouring those with fewer majority votes, therefore with k=3, e2, e4 and 

e3 will be selected as filter examples. 

Exs. K1 K2 K3 K4 Majority Minority 
Propose Votes Propose Votes 

e1 C1 C1 C1 C1 C1 4 - -
e2 C1 C2 C3 C4 - 0 C1 ,C2,C3,C4 1 
e3 C1,C2 C1,c4 C1,C4 C1 ,C2 Cl 4 C2,C4 2 
e4 C1 ,C2 C3 C2,C3 C2,C4 C2 3 C1 ,C4 1 
es C1 C2 C1 C2 C1,C2 2 - -

Table 6.1: Majority Vote by an Ensemble formed with Proposed Refined KBSs. 

Establishing a majority or minority vote is difficult when one or more members of the 

ensemble fail to classify an example into any class. This could easily happen when proposed 

refined KBSs are too specialised. In such situations we could choose to ignore votes by 

refined KBSs that fail to classify examples. However, this may influence the selection of 

examples that are not necessarily ideal for filtering purposes. Instead, we allow the votes 

of these members on the basis of derived facts (in the absence of end facts). 

Disagreement Score 

A disagreement score D(e), for example e, using an ensemble with M members, that 

classifies the example into one or more classes in C, is calculated by the entropy of the 

distribution of classes voted for by the ensemble members (Argamon-Engelson & Dagan 

1999) (discussed in Section 2.3.2). Given the number of ensemble members classifying e 

in class c, where cEC, denoted by votes(c, e), the normalised vote entropy is: 

D(e) = - 1 L votes(c, e) Lo votes(c, e) 
Log min(M, ICI) c M 9 M 

cE 
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Again when refined KBSs fail to classify an example into a class, derived facts are con­

sidered instead. Therefore, the cardinality of C can change from example to example, 

depending on how specialised the ensemble members are, and depending on the derived 

facts that they conclude. Notice that the number of members is not fixed and will change 

from one refinement iteration to another. 

The vote entropy has value 1 when all ensemble members are in disagreement, and value 

o when all are in agreement, taking on intermediate values when in partial agreement. 

With selection technique NTROPYFILTER, k examples with highest normalised entropy 

vote are selected. 

6.4 Experiments 

Evaluation is based on results from the Student loans test domain with a faulty KBS 

containing 5 corruptions (Appendix A), and the Soybean test domain with a faulty KBS 

containing 13 corruptions (Appendix B.2). These corruptions have been introduced ac­

cording to the available refinement operators as discussed in Chapter 1. The Soybean 

KBS with 13 corruptions was preferred over that of just 7 corruptions (Appendix B.1), 

because increased corruptions are more likely to trigger backtracking. With the student 

loans domain we use the same experimental design of 100 evaluation and 100 training 

examples, and the KRusTtool applied to increased subsets of the 100 training examples. 

However, with the Soybean domain the high computational costs due to the cluster-based 

method makes it impractical to have many repeated test runs with increased subsets of 

the 100 training examples. Instead, with this domain results are based on 20 test runs 

with 100 training and 100 evaluation examples. 

The informed filter example selection heuristics KFILTER, FQFILTER, *FILTER and the 

ensemble-based techniques are compared against: 

• NoFILTER where filter examples are examples yet to be processed in tebuf, and 

examples in uebuf are never selected for filtering; and 

• RNDFILTER where k filter examples are randomly selected from {tebuf U uebuf}. 

The experiments investigate whether the active accuracy filter employing informed selec­

tion heuristics is able to reduce backtracking by effective refined KBS filtering that guides 
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the KRusTtool through the space of possible refinements. The number of times backtrack­

ing is triggered is a good estimate of the number of refinement dead-ends encountered. 

Therefore, the fewer dead-ends encountered, the better the filtering heuristic at guiding re­

finement search. Additionally, fewer dead-ends mean fewer re-visits to previous refinement 

states, hence reduced iterations. 

The experiments also evaluate the effect of the active accuracy filter on the error-rate 

of the final output KBS. It is hoped that improved guidance will move the search to parts 

of the refinement space resulting in higher accuracy. To ensure that any improvements are 

not influenced by active selection of refinement examples, the contents of tebuf are selected 

manually at the start of each test run. Essentially, all examples that the faulty KBS fails 

to solve correctly at the start of the refinement process are moved into tebuf. Manual 

selection of tebuf right at the start ensures that all filter example selection heuristics will 

have equal refinement opportunity. Additionally, this ensures that experimental results 

reflect the effect of filter example selection on the refinement process, decoupled from 

benefits from refinement example selection (in Chapter 5). 

Of further interest to knowledge refinement is how useful actively selected filter exam­

ples might be for driving refinement. For this purpose a subtle difference in example buffer 

handling is introduced. With the Student loans domain, any selected filter examples not 

in tebuf once used for filtering, are moved into tebuf or cebuf accordingly. This means 

that filter examples will also have the opportunity to drive refinement. With the Soybean 

domain, actively selected filter examples are only used for filtering purposes. 

6.4.1 Student Loans Domain 

Figure 6.8 shows the error rate of the final refined KBS for the 5 active accuracy filter 

approaches. Clearly, active selection of filter examples is important; even random selection 

is able to significantly reduce error-rate compared to the passive NoFILTER (p=O.OOl). 

So, can a more informed selection improve on RNDFILTER'S performance? Heuristics 

*FILTER, KFILTER and FQFILTER have significantly lower error-rates than RNDFILTER 

(p=O.006). The results from the ensemble-based techniques have not been plotted as they 

did not improve on RNDFILTER. The reason for poor performance in this domain is that 

disagreement amongst ensemble members is high for most examples, therefore, ties are 

broken randomly, reducing the performance of ensemble-based techniques to random. 



0.2· 

0.18! ~ 0.16 .. ______ ~ 
0.14 

.g 0.12 ::'V 
:! 0.1, :.; 
... /,' '$~ 

~ 0.08! >' . 
0.06 [ 
0.04 

0.0: j 
10 20 30 40 so 60 

Training Set Size 

6.4. Experiments 106 

[.-701 fqFILTER tsZS2l ·FILTER 

C'TJ kFILTER --. - nOFILTER 

--0- mdFILTER 

70 80 90 100 

Figure 6.8: The Effects of Filter Example Selection on Error Rate. 

The *FILTER heuristic undertakes the most targeted selection procedure, therefore it 

was surprising that there was no significant difference in error-rate between it, the KFILTER 

and the FQFILTER. Close examination of test runs showed that the initial manual selection 

of refinement examples was proving beneficial for refinement, resulting in an insignificant 

difference in error-rates. Therefore, a further set of experiments consisting of 20 test runs 

was carried out. This time the number of manually selected refinement examples at the 

start was halved. Of the 20 runs, the first ten involved a training and evaluation set 

size of 50 and the second ten a set size of 100. The results from these 20 runs indicate 

that *FILTER had significantly lower error-rates (p=0.03) compared to both KFILTER and 

FQFILTER. However, there was no significant difference between KFILTER and FQFILTER. 

Essentially, this suggests that atypical examples selected by *FILTER are not only well 

suited for filtering, but are also suited for driving refinement. 

Figure 6.9 plots the number of times backtracking was triggered on encountering re­

finement dead-ends. Due to the ungainly performance of the ensemble-based approach on 

error-rate, VOTEFILTER and NTROPyFILTER are not included here. Number of backtracks 

triggered is significantly less with the informed selection heuristics compared to NoFILTER 

and RNDFILTER (p = 0.001). The purposeful selection of filter examples based on changes 

in cluster content has managed to guide the KRUSTtool through the refinement search 

space, reducing the need to revisit previously solved training examples. However, there 

was no significant difference between KFILTER, FQFILTER and *FILTER. 
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Figure 6.9: The Effects of Filtering on Backtracking. 
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6.4.2 Soybean Disease Domain 

With experiments carried out in this domain, any actively selected filter examples once 

utilised for filtering, are never moved into tebuf or cebuf, therefore, filter examples do not 

get the opportunity to trigger refinement. The informed selection heuristics VOTEFILTER, 

NTROPyFILTER, *FILTER and KFILTER, were compared with RNDFILTER and NoFILTER. 

FQFILTER is not used here because it did not perform any better or worse than KFILTER 

with the student loans domain. All selection heuristics had significantly lower error-rates 

when compared to NoFILTER (p=O.007). However, the difference between VOTEFILTER, 

NTROPyFILTER, *FILTER, KFILTER and RNDFILTER is not significant. 
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Figure 6.10: Number of Iterations for 20 Test Runs. 
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The number of backtracks triggered was significantly reduced by the informed selec­

tion heuristics when compared to RNDFILTER and NoFILTER (p=O.009). With increased 

backtracking, re-visits to previous refinement states is increased. This can have drastic ef­

fects on the number of iterations. The graph in Figure 6.10 plots the number of iterations 

for the 20 test runs in logarithmic scale. For instance, with the twentieth test run, the 

number of times backtracking is triggered with YOTEFILTER, NTROPyFILTER, *FILTER, 

KFILTER and RNDFILTER is 0, 0, 1, 28 and 69, while the corresponding number of itera­

tions is 8, 8, 10, 43 and 208. Close examination of individual test runs reveals that the 

number of refined KBSs that pass the consistency filter can sometimes be in excess of 30. 

This means for RNDFILTER in the worst case, the best refined KBS will be selected only 

after re-visiting the example 29 times. What is interesting in this domain is that there 

was no significant difference in the number of backtracks triggered between *FILTER and 

the ensemble-based techniques. Unlike the student loans domain here, ensemble-based 

techniques fared well, because differences between generated ensemble members were not 

localised to common problem solving areas. Consequently, the ensemble consisted of a 

sufficient mix of members agreeing and disagreeing about solutions for affected examples. 

This is always more encouraging than all members agreeing or disagreeing about affected 

examples. Interestingly, VOTEFILTER and NTROPyFILTER have very similar results. The 

average processing requirements for the cluster-based *FILTER and KFILTER are on aver­

age 45% greater than the requirements for VOTEFILTER and NTROPyFILTER. Therefore, 

it is reasonable to suggest that the ensemble-based selection approaches are more suited 

to this domain. 

6.5 Conclusion 

The accuracy filter ranks the proposed KBSs by accuracy on all labelled examples yet to 

be processed. The proposed active accuracy filter extends this idea by ranking proposed 

KBSs based on accuracy on relevant filter examples that are actively selected from both 

the labelled and unlabelled example sets. Active selection of filter examples aims to select 

those examples that are affected by the proposed refinements. 

Experimental results show that even a purely random heuristic actively selecting from 

both the labelled and unlabelled sets is able to improve effectiveness and efficiency, com-
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pared to a passive accuracy filter using just the labelled examples in tebuf. The more 

informed active selection approaches attempt to select few yet relevant filter examples, 

thereby balancing the need for, quality (relevant) filter examples with the quantity of un­

labelled filter examples that need to be labelled. The cluster-based heuristics were able 

to provide refined KBSs with reduced error-rates, requiring fewer re-visits to previous re­

finement states. However, the high computational costs associated with clustering is an 

obvious drawback. The ensemble based approaches are not computationally demanding 

and on some domains achieved similar results to cluster-based heuristics. 



Chapter 7 

Evaluation 

The experimental evaluation reported in this chapter investigates the combined effect of 

example selection and refinement search strategies on the KRUSTtool. We analyse and 

compare improvements in refinement effectiveness and efficiency. Experimental results 

from all three test domains introduced in Chapter 1 will be presented and evaluated by 

the: 

• error rate on the final output KBS; 

• number of refinement cycles; and 

• percentage of examples in uebuf at the end of the test run. 

Reduced error-rate is an indicator of improved effectiveness, while fewer refinement cycles 

suggest improved efficiency. Examples in uebuf need not be labelled, but once selected 

must be labelled before they are useful for refinement. Therefore, examples remaining in 

uebuf are a good indicator of example labelling costs. The fewer remaining examples, the 

greater the demand on the expert. 

Five KRUSTtool variants combining backtracking, example ordering, refinement and 

filter example selection methods are introduced in Section 7.1. Evaluation of experimental 

results on Student Loans, Soybean and MMU are presented in Sections 7.2, 7.3 and 7.4, 

followed by chapter conclusions in Section 7.5. 

110 
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Figure 7.1: Relationship between the evaluation strategies. 

7.1 KRusTtool Variants 

We compare five different combinations of example selection methods, with and without 

backtracking refinement search (see Figure 7.1). 

KRusTtool: without backtracking or informed selection of refinement and filter examples. 

Dead-ends are handled by introducing a new rule that explicitly solves the refinement 

example only. Refinement examples are randomly selected from uebuf, labelled and 

moved into tebuf. Filter examples are all remaining examples in tebuf. 

KRUSTtool*: as KRusTtool but with informed selection of refinement examples only. 

BJKRuSTtool: as KRUSTtool but with backtracking search enabled by means of the BJ 

algorithm. Dead-ends will be handled by re-visiting previously abandoned refined 

KBSs. Static and dynamic ordering are also enabled to improve backtracking effi­

ciency. 

BJKRusTtool*: as BJKRuSTtool but with informed selection of refinement examples 

enabled. 

BJKRusTtool**: as BJKRusTtool*, with the addition of informed selection of filter ex­

amples. 
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The BJ prefix indicates that backtracking search employing the BJ algorithm is enabled 

together with static and dynamic ordering. Suffix * indicates informed selection of refine­

ment examples, while suffix ** indicates informed selection of both refinement and filter 

examples. The KRusTtool variants have been carefully designed with the aim of ascer­

taining the contribution of different example selection and utilisation strategies presented 

in this thesis to knowledge refinement. The experiments undertaken in this chapter will 

attempt to establish the following four hypothesis. 

Hypothesis 1 : Accuracy of the final output KBS is significantly improved when back­

tracking search is enabled. 

Hypothesis 2 : Number of refinement cycles is significantly reduced by resolving difficult 

examples in close proximity. 

Hypothesis 3 : Labelling costs are significantly reduced with active selection of refine­

ment examples without adversely affecting refinement accuracy. 

Hypothesis 4 : The number of refinement dead-ends encountered during refinement 

search is significantly reduced with active selection of filter examples. 

With BJKRUSTtool, BJKRusTtool* and BJKRUSTtool**, we would expect to see improved 

effectiveness, because dead-ends can be handled by re-starting incremental refinement 

from previous refinement states. Therefore improved accuracy with BJKRuSTtool, BJ­

KRUSTtool* and BJKRusTtool** compared to KRusTtool and KRUSTtool* will establish 

Hypothesis 1. Hypothesis 2 relates to BJKRusTtool*'s and KRusTtool*'s ability to select 

difficult examples which when solved in close proximity will reduce back-jump distance 

resulting in fewer refinement cycles. Hypothesis 3 concerns informed selection of refine­

ment examples as a means to reduce labelling cost by selecting few yet good examples 

without adversely affecting refinement accuracy. Both BJKRuSTtool* and KRuSTtool* 

have this facility enabled, and should at least be similar in effectiveness to their random 

refinement example selection counterparts BJKRuSTtool and KRUSTtool. Hypothesis 4 

concerns informed selection of filter examples as a means to reduce the need to backtrack 

by improved direction of refinement search. Therefore with BJKRusTtool**, we expect 

comparable effectiveness to BJKRusTtool*, but achieved with fewer refinement cycles. 
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7.2 Student Loans Domain 

Evaluation results with the Student Loans domain (Appendix A) in previous chapters, 

show that heuristic K-CLUSTER for selection of refinement examples, and heuristic *FILTER 

for selection of filter exampl s was best . Accordingly, BJKRUSTtool*, BJKRUSTtool** and 

KRusTtool*, employ K-CLUSTER for informed selection of refinement examples, and BJ­

KRusTtool** employs *FILTER for informed selection of filter examples. 

7.2.1 Error Rate 
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Figure 7.2: Error rate for student loans domain. 

Figure 7.2 shows the averaged error rates. Statistical tests show a significant decrease in 

rror-rate betwe n backtracking variants over non-backtracking variants (p = 0.002) , hence 

proving Hypothesis 1. Overall, BJKRusTtool** has the lowest error-rates, but there was no 

significant difference between it and the other two backtracking variants. KRusTtool* and 

KRUSTtool resulted in significantly higher error rates, with greatest differences observed 

with test sets 80, 90 and 100. Close examination of these test sets with the backtracking 

variants, shows that on average backtracking was triggered in 14 of the 30 test runs. 

In one of these 14 test runs, 6 back-jumps were required to achieve an error-rate of O. 

Therefore, it is not surpri ing that the non-backtracking variants performed poorly. The 

poor p rformance of KRusTtool* with these same test sets compared to KRusTtool can 

be explained by KRusTtool*'s inability to resolve, intelligently selected conflict pairs. 
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7.2.2 Refinement Cycles 

Figure 7.3 shows average number of iterations. KRusTtool has worked the least with 

significantly fewer refinement iterations (p = 0.005) , but with highest error-rates. In­

creased number of iterations is observed with all backtracking variants. This is explained 

by refinement search resuming the refinement process from previous refinement states 

when dead-ends are encountered. BJKRuSTtool has resulted in the highest number of 

iterations. However, the reduced number of iterations with BJKRUSTtool** compared 

to BJKRusTtool show that filter example selection had successfully improved refinement 

efficiency as postulated in Hypothesis 4. It is interesting to see that active selection of 

refinement examples also has a decreasing effect on the number of iterations. This is 

explained by heuristic K-CLUSTER'S tendency to pick conflict pairs from clusters. Se­

lected pairs get solved in relatively close proximity, requiring smaller back-jumps, thereby 

reducing the number of iterations. This result is consistent with hypothesis 2. 
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Figure 7.3: Number of iterations for student loans domain. 

The significant increase in iterations with KRusTtool* compared to KRusTtool was 

unexpected. Given that the error rate of these two variants are comparable, the extra 

refinement effort with KRusTtool* is clearly wasted. Close examination of 10 test runs 

for KRUSTtool*, shows that the number of iterations would exceed 200. Actually, these 

runs had to be terminated once 200 was reached. Although KRusTtool* is able to select 

conflict pairs, it is unable to deal with dead-ends because refinement search is disabled. 

Consequently, KRUSTtool* must make the correct refinement choice at each refinement 
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cycle, if it is to avoid dead-end situations requiring backtracking. With the 10 test runs, the 

choice of refined KBSs was guided only by accuracy on refinement examples. This accuracy 

ranking was insufficient for selecting the best refined KBS, because the number of actively 

selected refinement examples is far fewer when compared to the number selected randomly 

by KRUSTtool. Therefore, the selected non-optimal refined KBS, undid previously solved 

refinement examples that then went onto trigger further refinement cycles. Consequently, 

the same refinement examples were involved in an endless cycle of triggering refinement 

to no avail. Active selection of filter examples according to hypothesis 4, may offer a 

solution to this problem, because it aims to improve the accuracy ranking by actively 

selecting examples from uebuf. We tested this by evaluating KRusTtool* on the same 10 

test runs, but this time with informed selection of filter examples enabled. As expected, 

the number of iterations were significantly reduced to 10 on average. It seems that for 

iterative refinement systems that lack backtracking search, incorporating active selection 

of filter examples might well be the solution to overcome this deficit. 

7.2.3 Labelling Effort 

KRUSTtool variants employing active selection of refinement examples (suffix *) have re­

sulted in significantly higher unused percentages compared to variants without informed 

selection (p = 0.001). For instance BJKRusTtool* has improved on BJKRUSTtool, and 

KRUSTtool* has improved on KRUSTtool (see Figure 7.4). These results clearly establish 

Hypothesis 3 where informed selection of few yet good refinement examples for labelling, 

reduces the demand on the expert without reducing refinement accuracy. Although BJ­

KRusTtool**'s unused percentage is significantly lower than BJKRusTtool* (p = 0.001), it 

is significantly higher than BJKRUSTtool and the rest (p = 0.001). The difference between 

BJKRUSTtool** and BJKRUSTtool* is to be expected due to filter example selection in 

BJKRusTtool**. Clearly there is a trade-off between reducing the number of iterations 

by employing active selection of filter examples, and reducing labelling effort by selecting 

fewer examples. Fortunately, the added cost of filter example selection and labelling pays 

off with improved refinement search guidance with fewer dead-ends. This suggests that, if 

reducing refinement effort is a priority over labelling costs then it makes sense to include 

active selection of filter examples and vice versa otherwise. 
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Figure 7.4: Unused example percentage for student loans domain. 

7.3 Soybean Disease Domain 

We apply the KRusTtool variants to refine the Soybean KBS with 13 corruptions as 

discussed in Chapter 1 (Appendix B.2). Evaluation experiences with this domain in 

Chapters 5 and 6, show that best results were obtained with heuristic CLUSTERREP 

for refinement example selection and heuristic VOTEFILTER for filter example selection. 

Here, KRUSTtool*, BJKRusTtool* and BJKRusTtool**, apply CLUSTERREP for refine­

ment example selection. Additionally BJKRUSTtool** will employ VOTEFILTER based 

filter example selection. 

7.3.1 Error Rate 

The average error-rates are shown in Figure 7.5. Both BJKRusTtool* and BJKRusTtool** 

have significantly low r error rates compared to the rest (p = 0.001). This is not surprising, 

since a non-backtracking variant would resolve a dead-end by introducing a new rule that 

xplicitly solves the uncorrected example only. However, with BJKRUSTtool's ability to 

backtrack, it is surprising that its error-rate results are similar to that of KRUSTtool and 

KRUSTtool*. The number of dead-ends encountered with BJKRUSTtool**, BJKRUSTtool* 

and BJKRuSTtool, provid s some insight in to BJKRUSTtool's poor performance. With 

BJKRuSTtool* and BJKRusTtool** d ad-ends were encountered twice on average for each 

of the 100 test runs . In contrast, dead-ends were never encountered with BJKRUSTtool, 

therefor backtracking was never actually needed. However, with BJKRUSTtool the num-
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ber of sampling iterations triggered when tebuf is empty, is significantly higher compared 

with BJKRUSTtool* and BJKRUSTtool**. Remember, if useful refinement examples are 

select d, solving them should be sufficient to achieve 100% accuracy on any remaining 

exampl s in uebuf (i.e. the stopping criteria for iterative refinement with experiments 

here) . With BJKRusTtool, refinement examples are randomly selected. This means that 
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Figure 7.5: Error rate for soybean disease domain. 

several sampling iterations are needed before 100% accuracy on any remaining examples 

in uebuf is achieved. Consequently, the number of examples selected and moved into 

tebuf is increased. The effect of this increase on the accuracy ranking had guided BJ­

KRusTtool's refinement path to a different part of the refinement search space from that 

of BJKRUSTtool* and BJKRusTtool**. Unfortunately for BJKRUSTtool, that part of the 

search space had low accuracy on test sets even though it had 100% accuracy on training 

sets. The behaviour of backtracking variants in this domain is also consistent with Hy­

poth sis 1, in that providing th opportunity to undo previous non-optimal refinements 

and moving refinement sear h to productive areas of the search space results in improved 

refin m nt accuracy. 

7.3,2 Refinement Cycles 

KRUSTtool* and KRUSTtool have significantly fewer iterations, but they also have high 

rror-rates. The overall tr nd seems to be increase in iterations leading to lower error­

rates (see Figure 7.6). For instance BJKRUSTtool* has achieved significantly lower error 
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Figure 7.6: Number of iterations for soybean disease domain. 

rates (see Figure 7.5) but at the expense of increased searching. However , consistent 

with Hypothesis 4, active selection of filter examples with BJKRusTtool**, has managed 

to significant ly reduce the number of iterations seen with BJKRusTtool* (p = 0.001) . 

T his reduction was best demonstrated with several test runs from training sets 40 and 

50. For instance, in one such test run, BJKRusTtool* consumed 195 iterations, while 

BJKRUSTtool** completed the refinement process in less than 10 itera tions. Successful 

fi ltering is important, particularly when many potential refined KBSs are generated. Se­

lection of the best refined KBS the first time round avoids needless backtracking, thereby 

decreasing th number of iterations. These results confirm that informed selection of fil ter 

examples helps with selecting the best refined KBS by improving the accuracy ranking. 

7.3.3 Labelling Effort 

BJKRuSTtool* has the highest unused percentages compared with the rest as postulated 

in Hypothesis 3 (see Figure 7.7) . Although the difference between BJKRUSTtool* and 

BJKRusTtool** is significant , both BJKRUSTtool* and BJKRUSTtool** have significantly 

higher unused percentages than BJKRUSTtool, KRusTtool* and KRUSTtool. The inclusion 

of informed selection with and without backtracking, resulted in higher unused percentages 

compared to random sampling. For instance, KRUSTtool and KRUSTtool* have similar 

error-rates , but KRUSTtool* has achieved this with 20% fewer examples (on average) 

than KRUSTtool. Although BJKRUSTtool has 0 unused% with test sets 40 and 60, the 
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error-rates for these test sets are unexpectedly high. Once again, this is explained by the 

accuracy ranking with just randomly selected refinement examples moving the search for 

refinements to a different part of the search space, that unfortunately had poor accuracy 

on the test sets. 
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Figure 7.7: Unused example percentage for soybean disease domain. 

7.4 MMU Domain 

The MMU domain introduced in Chapter 1 is a real application. The original version of 

the MMU KBS had 2 corruptions and was used by Boswell & Craw (2000) to evaluate 

the effectiveness of the refinement algorithm. Here, we are interested in the effective­

ness of example selection and refinement search methods, and their impact on knowledge 

refinement. For this purpose, differences between methods must be established using a 

sufficiently corrupt KBS. The MMU KBS referred to in this thesis consists of 10 addi­

tional corruptions introduced according to the available refinement operators as discussed 

in Chapter 1 (see Appendix C). We use 10 test runs formed according to 5x2 fold cross 

validation (see Section 1.5.3). Such an experimental design is able to make the most of 

the relatively small training set size (of 100). 

A single refinement cycle with the MMU KBS can take anything from 20-45 minutes, 

compared with less than 5 minutes with the other 2 test domains. Therefore, any reduction 

in refinement iterations will have a great impact here. We found that for refinement exam­

ple selection, a hybrid approach combining heuristics CLUSTERREP and *CLUSTER proved 
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best. Essentially, CLUSTERREP is enforced whenever intra-cluster feature dissimilarity is 

below a predetermined threshold and *CLUSTER is called upon otherwise. We refer to 

this hybrid heuristic approach as CLUSTERMIXED. Accordingly, BJKRusTtool** and BJ­

KRusTtool*, employ heuristic CLUSTERMIXED and KRusTtool* employs CLUSTERREP 

based refinement example selection. 

We found heuristic VOTEFILTER to be significantly more efficient than heuristic *FILTER 

for filter example selection. *FILTER generally tends to be high on computational costs, 

and with the MMU domain this overhead is extreme. The demand on CPU resources 

arises from the need to identify changes in cluster membership. For this purpose, each 

unlabelled example must be executed on the input KBS, and all potential refined KBSs, 

to enable cluster formation. On execution of an example, the positive problem graph is 

constructed and the rule vector is obtained from this graph. KBSs with non-monotonic 

behaviour have an added computational cost associated with the graph construction pro­

cess. This is explained by the extra backward search required to update rule activations 

that are retracted later in the reasoning process. Constructing a positive problem graph 

for a single example with the MMU KBS, takes more than 5 minutes compared to less 

than 20 seconds with the other 2 domains. Assuming a training set of 50 examples and 

8 refined KBSs to select from, the VOTEFILTER heuristic would take at least 33.3 hours 

before it can begin to form example clusters, according to rule vector similarity. This delay 

might be reduced by forming rule vectors directly from rule traces, thereby avoiding graph 

construction. Of course this is not an option that scales well once rule vector similarity 

is extended to account for rule depths and multiple rule activations. Additionally, cluster 

formation for each refined KBS is also time consuming, because we now must deal with 

rule vectors of length 104 (compared to 20 with the student loans KBS and 44 with the 

soybean KBS). Therefore, a further section that compares computational overhead has 

been introduced with the MMU test domain, because this problem was most evident here. 

7.4.1 Error Rate 

Table 7.1 compares the five KRusTtool variants on error rate. Generally similar effects 

were observed with nine of the 10 test runs. Only the second run was able to differentiate 

between the KRusTtool variants. Here, KRusTtool and KRUSTtool* fail to answer 5 of 

the 50 test examples correctly. Typically, this is explained by the lack of backtracking 
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search with KRusTtool and KRusTtool* when dealing with search dead-ends. However, 

examination of BJKRUSTtool's refinement path, showed that backtracking was never ac­

tually needed and so was not triggered. Therefore, the differences in error rate can only be 

explained by the differences in refinement example selection methods. CLUSTERMIXED is 

employed by BJKRUSTtool** and BJKRusTtool* with both achieving 100% accuracy on 

the test set. In contrast BJKRusTtool and KRusTtool select examples randomly, while 

KRUSTtool* selects according to heuristic CLUSTERREP. Actually, BJKRUSTtool** and 

BJKRusTtool* had similar refinement paths, but they both differed from the rest of the 

variants. Here, refinement example selection according to heuristic CLUSTERMIXED, had 

directed refinement search towards a path that resulted in refined KBSs with improved 

accuracy. The findings here expand Hypothesis 1, in that refinement accuracy can not 

only be improved by backtracking but also by strategic selection of refinement examples. 

Test 
Run BJKRusTtool** BJKRUSTtool* BJKRUSTtool KRusTtool* KRusTtool 

1 0.02 0.02 0.02 0.02 0.02 

2 0.00 0.00 0.10 0.10 0.10 

3 0.00 0.00 0.00 0.00 0.00 

4 0.02 0.02 0.02 0.02 0.02 

5 0.12 0.12 0.12 0.12 0.12 

6 0.00 0.00 0.00 0.00 0.00 

7 0.00 0.00 0.00 0.00 0.00 

8 0.02 0.02 0.02 0.02 0.02 

9 0.10 0.10 0.10 0.10 0.10 

10 0.00 0.00 0.00 0.00 0.00 

Avg 0.03 0.03 0.04 0.04 0.04 

Table 7.1: Error rate for MMU. 

Statistically the differences amongst variants with the 10 test runs are not significant. 

There are two contributory factors to this problem: 

• the absence of a sufficiently comprehensive set of examples for experimentation pur­

poses; and 

• the difficulty of introducing controlled corruptions, which would have better enabled 

performance differentiation between the KRusTtool variants. 

Both problems are directly attributed to the lack of domain expertise with the complex 

domain of MMU, whereby manual generation of a set of examples to cover the expertise 
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of the KBS is difficult when the underlying reasoning is not obvious, and non-monotonic 

behaviour of the KBS makes it difficult to introduce meaningful corruptions. 

7.4.2 Refinement Cycles 

The results in Table 7.2 correspond to the number of refinement iterations with the five 

KRUSTtool variants. BJKRusTtool* has significantly fewer iterations compared to BJ­

KRusTtool, KRUSTtool* and KRusTtool (p=O.OI9), and therefore is consistent with Hy­

pothesis 2. For instance, with test runs 2 and 10 KRusTtool has 7 iterations with both test 

runs, compared to 4 and 3 iterations with BJKRUSTtook Here, BJKRUSTtool* would 

have 1.5 to 2 hours time saving with these 2 test runs. However, the difference between 

BJKRUSTtool* and BJKRUSTtool** is not significant. This may suggest that informed 

selection of refinement examples alone is adequate to direct refinement search, without 

any need for informed filter example selection, thereby refuting Hypothesis 4. However, 

remember that with both Student loans and Soybean test domains, BJKRusTtool** was 

able to reduce the number of refinement cycles when compared to BJKRusTtool*. There­

fore, it is safer to deduce that it is the absence of suitable filter examples in the training set 

that resulted in an insignificant difference between BJKRusTtool* and BJKRusTtool**, 

rather than the non-optimal performance of the filter example selection heuristic itself. 

Test 
Run BJKRUSTtool** BJKRUSTtoo~ BJKRUSTtool KRUSTtoo~ KRUSTtool 

1 5 4 4 6 5 

2 4 4 5 5 7 
3 4 4 5 5 5 

4 4 4 5 4 6 
5 3 4 3 3 4 

6 4 4 4 6 6 

7 3 4 5 5 5 

8 4 4 4 5 4 
9 3 3 3 3 5 

10 3 3 5 5 7 
Avg 3.7 3.8 4.3 4.7 5.4 

Table 7.2: Number of iterations for MMU. 
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7.4.3 Labelling Effort 

Table 7.3 shows the unused example percentage results for each of the KRUSTtool variants. 

Informed selection of refinement examples should enable BJKRUSTtool* and KRUSTtool* 

to have the highest unused percentage results. Since active filter example selection is 

enabled with BJKRUSTtool**, we would expect unused percentage results that are not 

as high as BJKRUSTtool* and KRUSTtool*, but still significantly higher than KRUSTtool 

and BJKRUSTtool. Statistical results confirm these expectations postulated in Hypoth­

esis 3, where BJKRUSTtool* and KRUSTtool* have significantly higher unused percent­

ages compared to BJKRUSTtool and KRUSTtool (p = 0.001), and also compared to BJ­

KRUSTtool** (p = 0.001). These results are most obvious with the second test run. 

Here, BJKRUSTtool* has used 46% of the examples in uebuf, while BJKRusTtool has 

used all examples, and KRusTtool has used 49 of the 50 examples. With some test runs, 

KRUSTtool* has slightly higher unused percentages over BJKRUSTtool*. This is explained 

by the different heuristics that are employed for refinement example selection. CLUSTER­

REP employed by KRuSTtool*, tends to select fewer examples from clusters compared to 

the hybrid heuristic CLUSTERMIXED employed by BJKRUSTtool*. BJKRUSTtool** has 

used up more examples than BJKRUSTtool*, but this is explained by the additional se­

lection of filter examples. In the real world where expert interaction is often limited and 

labelling costs are high, informed selection of training examples, be it for refinement or 

filtering purposes, will be a valuable asset. 

Test 
Run BJKRUSTtool** BJKRUSTtoo~ BJKRusTtool KRUSTtool* KRUSTtool 

1 36 52 32 52 32 

2 32 46 0 44 2 

3 44 38 60 54 32 

4 46 52 40 54 40 

5 38 48 20 42 20 

6 44 52 40 50 40 

7 40 48 40 52 40 

8 36 48 40 48 40 

9 46 48 20 54 20 

10 34 48 20 54 24 

Avg 39.6 48 31.2 50.4 29 

Table 7.3: Unused example percentage for MMU. 
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7.4.4 Computational Overhead 

Computational costs increase with KBS complexity and non-monotonic reasoning adds to 

this complexity. With real applications, complex KBSs are to be expected and savings 

in computational costs will be an advantage. Analysis of example selection and refine­

ment search methods, clearly show that example clustering is most demanding on CPU 

resources. There are two ways in which the clustering process can be improved to reduce 

this overhead: 

• improving the efficiency of the clustering algorithm; and 

• reducing the number of times examples need be clustered. 

Some of the issues related to improving algorithm efficiency will be discussed under future 

work in Chapter 8. Here, we concentrate on reducing the number of clustering episodes. 

With informed selection of refinement examples, we would either select a random example 

from each cluster, or select k examples from the cluster with highest intra-feature dis­

similarity. Such an approach can be wasteful because information that can be derived by 

both heuristics about example clusters is not being exploited. With CLUSTERMIXED we 

have combined the two heuristics and hope to achieve improved selection efficiency. More 

importantly we expect that such a hybrid selection approach will also increase the number 

of useful examples that can be selected from a single clustering episode. 

Table 7.4 compares the number of sampling iterations, CPU cycles and unused exam­

ple percentages for three versions of BJKRuSTtool*. The results for BJKRUSTtool* with 

heuristic CLUSTERREP is on the left, with K-CLUSTER in the center, and CLUSTERMIXED 

at the right. It is clear that with increased number of sampling iterations the number of 

CPU cycles will also increase dramatically. Remember that each sampling iteration in­

volves a single clustering episode, therefore reducing the number of times examples need 

to be clustered will reduce computational costs. CLUSTERMIXED has significantly fewer 

sampling iterations compared with the rest (p = 0.01). The contradictory results with test 

runs 3 and 9, where CLUSTERMIXED has one extra sampling iteration over CLusTERREP 

can only be explained by CLUSTERREP's random selection of an example from each clus­

ter. Essentially, the randomly selected cluster representatives happened to be better with 

these test runs. The unused example percentage tends to be slightly higher with some 
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BJKRusTtool* 
CLUSTERREP K-CLUSTER CLUSTERMrXED 

Sampl. CPU Unused Sampl. CPU Unused Sampl. CPU Unused 

Iter. cycles % Iter. cycles % Iter. cycles % 
2 5005160 52 2 6180340 70 1 4613560 52 

2 6996610 44 3 8483480 24 1 4631800 46 
1 3790960 54 5 6621190 2 2 4006730 38 
2 6309190 54 3 6641990 16 1 4948020 52 
2 4157000 42 2 3808990 50 1 3040700 48 
2 5960690 50 3 8266330 26 1 4518140 52 
2 5472400 52 4 8537800 22 1 4571100 48 
1 4550840 48 3 5569040 28 1 4551930 48 
1 2409600 54 2 3871160 12 2 2597100 48 
1 3640080 54 4 8366440 10 1 3168630 48 
8 4829253 50.4 3.1 6634676 26 1.2 4064771 48 

Table 7.4: Comparing computational costs with refinement example selection heuristics 
CLUSTERREP, K-CLUSTER and CLusTERMrxED 

test runs for CLusTERREP. However, if reducing computational costs is also a priority, 

then CLusTERMrxED presents itself as a balanced choice. Results with K-CLUSTER are 

somewhat erratic. For instance, the number of sampling iterations ranges from 2 to 5, and 

unused percentages from 70 to 2. This clearly suggests that a hybrid approach is better 

suited to this domain, whereby CLUSTERREP's general selection approach is complimented 

with K-CLUSTER'S localised selection approach. 

7.5 Conclusion 

A consistent observation is that improved accuracy is achieved when backtracking is en­

abled, thus establishing Hypothesis 1. Of course this is in addition to the availability 

of refinement examples that can expose faults in the KBS. However, improved accuracy 

with backtracking is achieved at the expense of increased refinement iterations. Endless 

looping is a more severe problem that occurs, particularly when backtracking is not en­

abled. There is evidence to suggest that filter example selection can help avoid looping by 

directing refinement search to more promising parts of the search space as postulated in 

Hypothesis 4. 

The experimental results suggests that improvement in accuracy can be achieved with 

a small but representative set of refinement and filter examples. This is explained by 
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the influence of selected examples on the accuracy ranking. Essentially, in the absence of 

a representative set of filter examples, the accuracy ranking can adversely influence re­

fined KBS selection, such that incremental refinement is moved to areas of the refinement 

search space that have a detrimental effect in general. This is consistent with Hypothesis 

4, which proposed informed selection of filter examples as a mechanism to improve refine­

ment efficiency in general. A more obvious advantage of informed example selection is 

the reduction in labelling costs demonstrated with all three test domains, hence proving 

Hypothesis 3. 

Computational cost is an unavoidable issue when dealing with real world applications. 

The hybrid approach to refinement example selection addresses this problem with encour­

aging results. Additionally, the choice of VOTEFILTER over *FILTER for filter example 

selection with the MMU domain highlights the need to mix and match heuristics to suit 

the application domain. 

We have recommended different example selection heuristics for the three test domains 

in this chapter. The diversity of available example selection heuristics necessitates some 

guidance regarding the selection of appropriate heuristics. Although there are no obvi­

ous answers for a real setting it is possible to recommend a hybrid selection heuristic 

such as CLUSTERMIXED for refinement example selection because such a heuristic will 

address KBSs both, with and without interacting faults. For filter example selection the 

VOTEFILTER selection approach is advised when the execution of KBSs involves high com­

putational costs while the *FILTER selection approach is suitable for KBSs with interacting 

faults and low execution costs. 



Chapter 8 

Conclusion 

The research work reported in this thesis was undertaken as part of the KRUSTWorks 

project. A KRusTtool is a KBS specific refinement tool, assembled from the KRusTWorks 

generic refinement toolkit. The KRUSTtool's approach to knowledge refinement is iterative, 

where the refinement algorithm attempts to fix one or more, but typically not all, of the 

wrongly-solved examples in the training set. It is also incremental because the output 

KBS selected from a set of potential refined KBSs, becomes the input KBS in the next 

iteration. This iterative incremental approach to knowledge refinement can be viewed as 

a search task; a search for the best refined KBS through the space of possible refinements. 

Accordingly, the proposed solutions in this thesis are two-fold, considering: 

• training example utilisation strategies to improve refinement search, by incorporating 

backtracking to previous refinement states and enforcing an order on the sequence 

of repairs; and 

• informed selection of training examples to drive and guide refinement search, with 

particular emphasis on reducing the demand on expert labelling costs. 

The search and selection strategies proposed are novel, and exploit techniques from unsu­

pervised learning; ensemble based learning; and constraint satisfaction search. They have 

been built into the generic KRusTWorks framework. However, the strategies are suffi­

ciently general that they are applicable to any iterative refinement tool that adopts an 

incremental approach to refinement and is able to capture the problem solving behaviour 

of the KBS. 
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Section 8.1 examines issues related with refinement search. Example selection strate­

gies according to the refinement and filtering role of examples are discussed in Section 8.2. 

General conclusions from experimentation with refinement search and example selection 

strategies are presented in Section 8.3. The contributions of this thesis are outlined in 

Section 8.4, followed by desirable extensions in Section 8.5, and a summary in Section 8.6. 

8.1 Refinement Search 

The refinement task is sufficiently complex that the space of possible repairs demands a 

heuristic search, typically hill-climbing. EITHER (Ourston & Mooney 1994) and FORTE 

(Richards & Mooney 1995), try to repair the outstanding fault that is indicated by the 

largest number of examples, and choose the repair with the fewest changes, to rules which 

are nearest the observables. A KRUSTtool's refinement algorithm also applies hill-climbing 

search. Although it generates many refined KBSs designed to fix each incorrect example, 

it then chooses the refined KBS with the highest accuracy on training examples (those 

yet to be processed) as the input KBS for the next iteration of the algorithm. The 

result is that refinement tools are dogged by the standard hill-climbing problem of getting 

caught in local optima. The problem can be solved by re-starting refinement search from 

a previously abandoned refinement state whenever a local optimum is detected. A local 

optimum is reached when all generated refined KBSs are unable to improve refinement 

accuracy. Such situations are common, because one or more previously solved examples 

can get undone by all generated refined KBSs. The undoing of previously solved examples 

with iterative knowledge refinement draws close parallels to the undoing of previously 

instantiated variables with constraint satisfaction search. 

CSP search reaches a dead-end when a variable cannot be instantiated because of 

inconsistencies with previously instantiated variables. The solution involves undoing pre­

viously instantiated variables and re-starting the process from a previous solution state. 

With iterative refinement the hill climbing search can be converted into a best first search, 

that is willing to commit to previously abandoned paths whenever dead-ends are encoun­

tered by incorporating backtracking CSP search strategies. CSP search strategies vary 

in the manner in which the re-starting point is ascertained. Experiments presented in 

Chapter 3 show that the combination of iterative refinement with the BJ search strat-
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egy resulted in refined KBSs that had significantly lower error-rates. However, this was 

achieved at the expense of increased number of refinement cycles, suggesting a need for 

improved efficiency. 

The analogy between CSP search and knowledge refinement is taken a step further 

by examining various search ordering heuristics that are employed by CSPs, which may 

provide some insight as to how the efficiency of iterative knowledge refinement can be im­

proved. Variable and value ordering heuristics (Dechter & Meiri 1994, Gent, MacIntyre, 

Prosser, Smith & Walsh 1996), help identify variables that are most constrained so that 

these can be dealt with first. Invariably there is a need for estimation of variable con­

strainedness, and for identifying the sources from which this constrained ness information 

is to be derived. 

For knowledge refinement, the problem solving behaviour of the rule-base and fault 

evidence from training examples yet to be processed, were good information sources 

for estimating training example constrainedness. Various static (Tsang 1993) and dy­

namic (Haralick & Elliott 1980) ordering schemes were implemented using heuristics that 

exploit this constrained ness information. Experimental results in Chapter 4 indicate that 

the decision to employ static or dynamic ordering schemes must be made keeping in mind 

the trade-off between cpu-usage and refinement cycles. The accuracy of the final KBS was 

however, not significantly affected in any way. 

8.2 Informed Selection 

Refinement examples are those training examples with which the refinement cycle is trig­

gered. These examples are labelled based on the expert's solutions for a given range of 

problem tasks. If expert interaction is limited, it is important that we select few yet good 

training examples for labelling. In contrast, if there are many labelled examples available 

for refinement then, given that the refinement process is quite computationally expen­

sive, it is convenient to select those examples whose repairs also fix other wrongly solved 

examples without further refinement, thereby reducing the number of refinement cycles. 

Agglomerative clustering techniques were employed to identify a subset of good training 

examples for knowledge refinement. The training examples are clustered based on the 

area of the rule-base being exercised. For instance, all examples triggering similar rules 
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are more likely to be clustered together, i.e. the similarity metric captures the problem 

solving behaviour of the rule-base, with respect to the training examples. Various selection 

heuristics are then employed to select one or more examples from each of these clusters. 

Refinement filtering is the final stage in a refinement cycle, where the best refined 

KBS is selected from a subset of potential refined KBSs as the output KBS for the next 

iteration. It is an important stage, because good selection criteria will reduce the need 

to backtrack to previous refinement states. This means reduced refinement iterations and 

considerable savings on computational costs. The accuracy ranking phase of filtering was 

the primary area of interest, since it involves ranking based on accuracy on a selected 

subset of training examples, referred to as filter examples. This ranking can be adversely 

affected when it is based on: 

• a non-representative set of examples, particularly consisting of examples unaffected 

by the potential refined KBSs; or 

• a large set of examples consuming considerable computation resources. 

Filter example selection methods proposed in this thesis, aim to identify examples affected 

by potential refined KBSs. The accuracy ranking itself is then based on a representative 

subset of examples, selected from those that are identified as affected. An ensemble based 

approach selects examples that are solved most differently by the ensemble. This involves 

a measure of disagreement between the ensemble members, reflecting consensus about 

how the example was solved. Conveniently, the ensemble constitutes the set of potential 

refined KBSs from which the best is to be selected. A different approach exploits and 

extends the clustering framework for selection of filter examples in addition to refinement 

examples. Here, the strategy involves several clustering episodes, where each potential 

refined KBS will have a corresponding example clustering. Affected examples can then be 

identified by analysing changes to cluster membership between clusters formed for each 

potential refined KBS and the input KBS. The changes can be difficult to track and this is 

tackled by considering only those changes that affect the cluster from which the refinement 

example was selected. Although a cluster based selection of filter examples proved very 

effective, the high computational costs makes it impractical for real applications. 
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8.3 Experimental Results 

Evaluation has been a continuous process throughout this project. This is clearly reflected 

by experimental results presented at the end of most chapters. However, a thorough evalu­

ation on two artificial and one real domain was undertaken with the objective of analysing 

the affects of different example selection methods, refinement ordering methods and re­

finement search methods, separately and with respect to each other. For this purpose the 

experiments were designed to investigate the isolated and combined effects of refinement 

search and example selection strategies on the KRUSTtool. Five KRUSTtool variants com­

bining backtracking with example ordering, active refinement and filter example selection 

methods were analysed. 

The results suggest that backtracking variants have significantly improved accuracy 

over the non-backtracking ones. When active selection of refinement examples is enabled, 

the KRUSTtool generates refined KBSs with similar accuracy using fewer examples. How­

ever, it was interesting to observe that a hybrid selection method was necessary to achieve 

similar results with the real application domain. Filter example selection when enabled, 

effectively guides the KRUSTtool through the refinement space, thereby reducing the need 

to backtrack to previous refinement states. Overall informed selection of examples, sug­

gests that improved accuracy can be achieved with fewer labelled examples. In the real 

world this would mean effective use of a busy expert's time. 

8.4 Main Contributions 

The work reported in this thesis falls under research pertaining to knowledge refinement, 

particularly example selection and utilisation for iterative knowledge refinement of rule­

based systems. Therefore, the primary contributions are to knowledge refinement research 

and these are: 

• resolution of the problem of refinement dead-ends by the conversion of the hill­

climbing best first search into one that is able to backtrack to previous refinement 

stages, thereby improving refinement accuracy; 

• improved refinement search efficiency by incorporating heuristics that enforce exam­

ple ordering so that related examples are dealt close together; 
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• an example clustering framework employing a rule-vector based similarity metric, 

enabling cluster formation reflective of the underlying problem solving behaviour of 

the KBS; 

• heuristics that aim to select few yet good examples from these clusters, thereby 

reducing labelling costs; 

• extension of the clustering framework as a mechanism to identify filter examples by 

monitoring changes in cluster membership; 

• an ensemble-based approach to filter example selection, where potential refined KBSs 

form the ensemble, and filter examples are those examples that cause the greatest 

disagreement amongst the ensemble members; and 

• a comprehensive evaluation of all refinement search and example selection methods 

on three test domains. 

Knowledge refinement is incremental learning where the learning must adapt existing 

knowledge in the KBS with the aid of training examples. Essentially, knowledge refinement 

falls under the broader context of machine learning. Invariably work in this thesis also 

contributes to machine learning in general, as a novel approach to active selection of 

examples for iterative knowledge refinement using unsupervised learning. The use of rule 

vector based similarity for this purpose is an interesting idea that can be exploited with 

active selection of examples for machine learning algorithms. One possibility is to perform 

several induction episodes with different features assigned as the concept to be learned 

(because at sampling we do not have example labels). The rule vectors for examples can 

then be formed on the basis of all induced rule sets. 

Incorporating CSP search strategies within the knowledge refinement framework has 

been an interesting and challenging experience. Like most experiences there are useful 

lessons to be learned and here it is the need for a variety of dynamic CSP strategies. It is 

apparent that CSP solving methods must increasingly be adapted to cope with complex 

applications involving both dynamic variables and dynamic values. Undoubtedly this will 

broaden the horizon for CSP methods in the real world. 
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8.5 Desirable Extensions 

The thesis opens new possibilities for selective sampling applied to machine learning algo­

rithms and for further improvements and extensions to example selection and refinement 

search methods for iterative knowledge refinement. 

8.5.1 Backtracking Search 

Presently, refinement search can fail when extensive backtracking regresses refinement to 

the root (start of the refinement path). Typically, such a situation arises when refinement 

conflicts resolved by inducing a new antecedent, a new value, or a new rule, was not 

successful. Successful operation of induction operators depends not only on the availability 

of examples, but also on the ability to select a representative subset of training examples 

for induction. Often the examples that trigger backtracking and are in conflict with 

previously solved refinement examples, provide a good source of examples for induction. 

In the unfortunate event of regressing to the start of the refinement path, all refinement 

examples involved in backtracking could be exploited for induction purposes in the next 

refinement search attempt. 

Often when backtracking employing the BJ algorithm, a new refinement path is ini­

tiated from a previous state by skipping over several refinement states. Typically the 

skipped over states do not contribute to the refinement conflict that triggered backtrack­

ing. Consequently, exploring the refinement path leads to re-discovery, of these skipped 

over states. With CSP search strategies the sticky values heuristic is employed to avoid 

re-discovery by remembering the current value of a variable while skipping over it during a 

back-jump (Frost & Dechter 1994, Kambhampati 2000). The underlying intuition is that 

skipping over a variable means that its instantiated value did not contribute to the conflict 

that triggered a back-jump. Therefore, on re-visiting this variable, the remembered value 

is restored. A further variation enforces value ordering with the remembered value at the 

front and any before it appended to the end. What might be of interest to knowledge 

refinement is that remembering potential repairs and consolidating these may help reduce 

computational costs, particularly with real applications. However, the task complexity of 

incremental refinement compared to variable instantiation with CSP, suggests a need for 

far more complex mechanisms that enable merging of remembered refinements with differ-
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ent input KBSs, when refinement examples are re-visited. Nevertheless, it is an interesting 

opportunity for reducing computational costs. 

8.5.2 Refinement Example Ordering 

The ordering of refinement examples can directly control the sequence of refinements. Ide­

ally, refinement examples that expose interacting faults in the KBS need to be resolved in 

close proximity during the early stages of refinement search. Identifying these examples 

amounts to identifying examples that enforce the greatest constraint on the choice of pos­

sible refinements. The ordering heuristics presented in chapter 4 obtain information about 

refinement constrainedness in two ways: from the problem graph; and fault evidence from 

training examples yet to be processed. With both forms, ties between examples with simi­

lar constrainedness are broken randomly. However, it is easy to see how a hybrid heuristic 

might be employed where the problem graph heuristics can be augmented with the fault 

evidence based heuristics to resolve ties (or vice versa). Such an approach would be simi­

lar to the Brelaz heuristic (Brelaz 1979), which combines variable and value ordering for 

CSPs. 

8.5.3 Example Selection Efficiency 

Experimental results in Chapter 7 show that highest demands on CPU resources are 

associated with problem graph creation and pair-wise distance calculations during cluster 

formation. An improved clustering algorithm using a two-stage approach is employed by 

McCallum, Nigam & Ungar (2000) with encouraging results when applied to a 1916 sized 

dataset. The two-stage approach involves: 

1. an initial cheap partition of examples into overlapping subsets; followed by 

2. an expensive clustering step that needs only to calculate pair-wise distances between 

examples in overlap regions. 

The cheap partitions are referred to as canopies. Essentially a canopy contains a subset of 

examples that according to the cheap similarity measure is within a pre determined dis­

tance threshold. Of course this requires some understanding of the underlying properties 

of the examples that are to be clustered before suitable thresholds can be set in place. 
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However, the advantage of this approach is evident if the initial cheap distance measure 

is able to form canopies such that there exists a canopy for every cluster . Here, the more 

expensive distance measure need only be applied to the overlap areas forming distinct 

clusters from overlapping canopies. 

Figure 8.1 shows five clusters and the canopies that cover them. Examples belonging 

to the same cluster are coloured in the same shade of grey. Each canopy is initiated from 

a randomly selected example (or seed). Here starting with canopy A, further canopies can 

be formed from examples placed outside A's dotted line (or inner threshold). Expensive 

distance measurements will only be made between examples sharing a canopy. Essentially, 

the distance between examples not sharing a canopy can be set to infinity. 

Figure 8.1: Clusters covered by overlapping canopies. 

A cheap distance metric for example clustering with knowledge refinement might be 

rule vector formation according to a subset of rule activations. This subset might be 

formed by considering only rule activations with n-depth from the bottom (with data 

driven reasoning) or the top (with goal driven reasoning) of the problem graph. Such an 

approach would improve computational efficiency by: 

• reducing the number of complete positive problem graphs that need be created; and 

• reducing pair wise similarity calculation costs due to smaller rule vectors. 
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Canopies formed using the smaller rule vectors can then be refined by applying hierarchical 

clustering with complete rule vectors and expensive pair-wise distances, calculated for only 

those examples that fall under two or more canopies. 

8.5.4 Selective Memory Retention 

Incremental learning involves continuous iterations of learning a concept according to a set 

of available training examples at a given time, and the possible adaptation of this concept 

to cover newer training examples as they are made available. Incremental learners in a 

real world situation must typically evolve according to changes in the real world. The 

reasons for this can be: 

• changes to concepts that are being learned, referred to as concept drift (Schlimmer 

& Fisher 1986); or 

• the unavailability of training examples at the start causing previously learned con­

cept boundaries to be specialised or generalised when examples become available. 

Successful operation of incremental learners require the ability to forget past examples that 

have either become redundant or completely unrelated in the present. For this purpose 

Maloof & Michalski (1999) look at forgetting mechanisms that would efficiently manage 

the learners memory, improving learning flexibility. The obvious approach is to introduce 

an ageing mechanism, while a more subtle approach is to forget examples that no longer 

enforce concept boundaries (Maloof & Michalski 1995). 

Iterative knowledge refinement can benefit from a forgetting mechanism, particularly 

when operating in environments where concept drift is the norm. This would entail an 

ageing mechanism over cebuf with the effect of reduced back-jumps to previously solved 

examples that are undone but are now redundant because of concept drift. A more direct 

benefit of a forgetting mechanism is that it may help reduce computational costs, because 

fewer examples means fewer pair-wise similarity calculations for clustering. Of course this 

would hold only if the cost of implementing a forgetting mechanism is sufficiently lower 

than the cost of clustering without these mechanisms in place. 
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8.6 Thesis Summary 

This thesis has explored training example selection and utilization methods, with the aim 

of improving the efficiency and effectiveness of knowledge refinement. Iterative incremen­

tal knowledge refinement is a search for the best refined KBS through the space of possible 

refinements. Refinement search leading to non-optimal parts of the refinement space can 

result in refinement dead-ends which should ideally be dealt with backtracking search. In 

the absence of backtracking search, informed filtering mechanisms when in place, ensure 

refinement search is directed to parts of the search space with improved refinement accu­

racy. If example clustering is used as the basis for informed selection of examples, it then 

makes sense to employ a similarity metric that reflects the underlying task of the exam­

ples. Finally, improved refinement accuracy can be achieved with few yet good refinement 

examples. The challenge however, is to identify the best mix of refinement search and ex­

ample selection strategies that improve effectiveness and efficiency for a given application 

domain. 



Appendix A 

Corrupted Student Loans 

Rule-base in Clips 

0 _______________________________________________ _ 

, 

CLIPS Student Loans Adviser KBS 

Corruptions to Rules R6, El. Rl6. Rl7 and Rl9 

-----------------------------------------------

(defrule R1 

(continuously_enrolled ?Student) 

=> 

(assert (no_payment_due ?Student))) 

(defrule R2 

(eligible_for_deferment ?Student) 

(assert (no_payment_due ?Student))) 

(defrule R3 

(declare (salience -20)) 

(not (no_payment_due ?Student)) 

=> 

(assert (payment_due ?Student))) 

(defrule R4 

(absence ?Student ?days) 

(test (> 6 ?days)) 
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=> 

(assert (never_left_school ?Student») 

(defru1e R5 

(enrolled ?Student ?Schoo1 ?Units) 

(school ?Schoo1) 

=> 

(assert (enro11ed_in_n_units ?Student ?Units ?Schoo1») 

(defru1e R6 

(never_left_school ?Student) 

(enro11ed_in_n_units ?Student ?units ?Schoo1) 

(test (>= ?units 5» ;; CORRUPTED: should be > 5 

=> 

(assert (continuously_enrolled ?Student») 

(defru1e RS 

(military_deferment ?Student) 

=> 

(assert (e1igib1e_for_deferment ?Student») 

(defru1e R9 

(peace_corps_deferment ?Student) 

.. > 

(assert (e1igib1e_for_deferment ?Student») 

(defru1e Rl0 

(financial_deferment ?Student) 

-> 

(assert (e1igib1e_for_deferment ?Student») 

(defru1e Rll 

(student_deferment ?Student) 

(assert (e1igib1e_for_deferment ?Student») 

(defru1e R12 

(disability_deferment ?Student) 

-> 
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(assert (eligible_for_deferment ?Student») 

(defrule R14 

(enlisted ?Student ?org) 

(armed_forces ?org) 

=> 

(assert (military_deferment ?Student») 

(defrule R15 

(enlisted ?5tudent ?org) 

(peace_corps ?org) 

=> 

(assert (peace_corps_deferment ?Student») 

(defrule R16 

(filed_for_bankruptcy ?Student yes) 

(enlisted ?Student?) ;; CORRUPTED: extra condition 

=> 

(assert (financial_deferment ?Student») 

(defrule R17 

(unemployed ?5tudent yes) 

(enrolled_in_n_units ?5tudent 20 ?5chool) •• CORRUPTED: extra condition 

=> 

(assert (financial_deferment ?5tudent}}) 

(defrule E1 •• CORRUPTED: extra rule 

(enrolled ?Student uci ?units) 

=> 

(assert (financial_deferment ?Student») 

(defrule RIB 

(enrolled_in_n_units ?5tudent ?units ?5chool) 

(test (> ?units 11» 

=> 

(assert (student_deferment ?5tudent») 

(defrule R19 

(disabled ?5tudent yes) 
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(filed_for_bankruptcy ?Student yes) " CORRUPTED: extra condition 

=> 

(assert (disability_deferment ?Student») 



Appendix B 

Corrupted Soybean Rule-base in 

Clips 

Two corrupted Soybean KBSs are included below. The first KBS has 7 corruptions and 

the second has 13 corruptions. 

B.l Soybean Corrupted Rule-base I 
0 _____________________________________________________ -

, 
CLIPS Soybean Disease Diagnosis KBS 

Corruptions to Rules Rl, R2, R16, R7. R14. R20 and E1 

-----------------------------------------------------

{defrule R1 

(fruiting_bodies present ?plant) ,. CORRUPTED: extra condition 

(plant_stand normal ?plant) 

(int_discolor none ?plant) 

(seed norm ?plant) 

(diaporthe_stem_canker_condition ?plant) 

'"'> 

{assert (diagnosis diaporthe-stem-canker ?plant») 

{defrule R2 

=> 

(plant_growth abnorm ?plant) " CORRUPTED extra condition 

(int_discolor black ?plant) 

142 
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(assert (diagnosis charcoal-rot ?plant») 

(defrule R16 

(int_discolor black ?plant) •• CORRUPTED extra condition 

(leaves norm ?plant) 

(int_discolor none ?plant) 

(rhizoctonia_root_rot_condition ?plant) 

=> 

(assert (diagnosis rhizoctonia-root-rot ?plant») 

(defrule R17 

(int_discolor black ?plant) 

(plant_stand normal ?plant) 

(low_temp ?plant) 

(stem abnorm ?plant) 

(int_discolor none ?plant) 

(rhizoctonia_root_rot_condition ?plant) 

=> 

(assert (diagnosis rhizoctonia-root-rot ?plant») 

(defrule R3 

(plant_growth abnorm ?plant) 

=> 

(assert (rhizoctonia_root_rot_condition ?plant») 

(defrule R18 

(int_discolor none ?plant) 

(roots rotted ?plant) 

(phytophthora_root_rot_condition ?plant) 

-> 

(assert (diagnosis phytophthora-root-rot ?plant») 

(defrule R19 

(plant_stand <_normal ?plant) 

(area_damaged low_areas ?plant) 

(fruiting_bodies absent ?plant) 

(phytophthora_root_rot_condition ?plant) 

(assert (diagnosis phytophthora-root-rot ?plant») 



B.l. Soybean Corrupted Rule-base I 144 

(defrule E1 ff CORRUPTED extra rule 

(hail yes ?plant) 

(stem_cankers above_sec_nde ?plant) 

=> 

(assert (hail_canker_relation ?plant») 

(defrule R4 

(plant_growth abnorm ?plant) 

(leaves abnorm ?plant) 

(assert (phytophthora_root_rot_condition ?plant») 

(defrule R5 

(leaves abnorm ?plant) 

(stem abnorm ?plant) 

(lodging yes ?plant) 

(int_discolor brown ?plant) 

(assert (diagnosis brown-stem-rot ?plant») 

(defrule R50 

(leafspot_size dna ?plant) 

(int_discolor none ?plant) 

(assert (powdery_mildew_condition ?plant») 

(defrule R6 

(powdery_mildew_condition ?plant) 

(leaves abnorm ?plant) 

(stem_cankerondS absent ?plant) 

(assert (diagnosis powdery-mildew ?plant») 

(defrule R7 

(area_damaged whole_field ?plant) ff CORRUPTED extra condition 

(leafspot_size >_1/8 ?plant) 

(mold_growth present ?plant) 



=> 

(assert (diagnosis downy-mildew ?plant») 

(defrule R9 

(leafspots_marg w-s_marg ?plant) 

(leafspot_size <_1/8 ?plant) 

(canker_lesion dna ?plant) 

(seed_size norm ?plant) 

=> 
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(assert (diagnosis bacterial-blight ?plant») 

(defrule R14 

(season ?d ?plant) 

(test (>= ?d 5» CORRUPTED 5 is incorrect should be 8 

(test «= ?d 10» 

(leafspot_size >_1/8 ?plant) 

(leafspots_halo no_yell ow_halos ?plant) 

(leaves abnorm ?plant) 

(leafspots_marg w-s_marg ?plant) 

(leaf_shread absent ?plant) 

=> 

(assert (alternarialeaf_spot_condition ?plant») 

(defrule R15 

(leafspot_size >_1/8 ?plant) 

-> 

(defrule R20 

(leafspot_size >_1/8 ?plant) II CORRUPTED extra condition 

(plant_growth norm ?plant) 

(fruiting_bodies present ?plant) 

(fruit_pods norm ?plant) 

=> 

(assert (diagnosis brown-spot ?plant») 

(defrule R21 

(season 6 ?plant) 

(precip >_norm ?plant) 



(leafspot_size >_1/8 ?plant) 

(mold_growth absent ?plant) 

=> 

(assert (diagnosis brown-spot ?plant») 

(defrule R22 

(season 5 ?plant) 

(leafspot_size >_1/8 ?plant) 

(leaf_malf absent ?plant) 

(mold_growth absent ?plant) 

z> 

(assert (diagnosis brown-spot ?plant») 

(defrule R23 

(season 7 ?plant) 

(area_damaged whole_field ?plant) 

(leafspot_size >_1/8 ?plant) 

(leaf_malf absent ?plant) 

(fruit_pods norm ?plant) 

z> 

{assert (diagnosis brown-spot ?plant») 

{defrule R24 

(season 4 ?plant) 

(stem norm ?plant) 

=> 

(assert (diagnosis brown-spot ?plant») 

{defrule R25 

(leafspots_marg no_w-s_marg ?plant) 

(int_discolor none ?plant) 

.. > 
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{assert (diagnosis bacterial-pustule ?plant») 

(defrule R26 

(leafspot_size <_1/8 ?plant) 

(seed_size <_norm ?plant) 

(assert (diagnosis bacterial-pustule ?plant») 



(defrule R27 

(leafspot_size <_1/8 ?plant) 

(canker_lesion tan ?plant) 

=> 
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(assert (diagnosis purple-seed-stain ?plant») 

(defrule R28 

(leaves norm ?plant) 

(leafspot_size dna ?plant) 

(stem_cankers absent ?plant) 

(int_discolor none ?plant) 

=> 

(assert (diagnosis purple-seed-stain ?plant») 

(defrule R29 

(plant_growth norm ?plant) 

(stem_cankers above_sec_nde ?plant) 

(leafspot_size dna ?plant) 

=> 

(assert (diagnosis anthracnose ?plant») 

(defrule R30 

(plant_growth abnorm ?plant) 

(stem abnorm ?plant) 

(seed abnorm ?plant) 

(assert (diagnosis anthracnose ?plant») 

(defrule R31 

(plant_stand <_normal ?plant) 

(plant_grovth abnorm ?plant) 

(fruiting_bodies present ?plant) 

-> 

(assert (diagnosis anthracnose ?plant») 

(defrule R32 

(leafspot_size >_1/8 ?plant) 

(leaf_malf present ?plant) 
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(mold_growth absent ?plant) 

=> 

(assert (diagnosis phyllosticta-Ieaf-spot ?plant») 

(defrule R33 

(precip <_norm ?plant) 

(leafspot_size >_1/8 ?plant) 

(int_discolor none ?plant) 

=> 

(assert (diagnosis phyllosticta-Ieaf-spot ?plant») 

(defrule R34 

(season 7 ?plant) 

(precip norm ?plant) 

(leafspot_size >_1/8 ?plant) 

=> 

(assert (diagnosis phyllosticta-Ieaf-spot ?plant») 

(defrule R35 

(int_discolor none ?plant) 

(fruit_pods norm ?plant) 

(mold_growth absent ?plant) 

(alternarialeaf_spot_condition ?plant) 

(assert (diagnosis alternarialeaf-spot ?plant») 

(defrule R36 

(stem norm ?plant) 

(mold_growth absent ?plant) 

(alternarialeaf_spot_condition ?plant) 

(assert (diagnosis alternarialeaf-spot ?plant») 

(defrule R37 

(hail yes ?plant) 

(plant_growth norm ?plant) 

(leaf_malf absent ?plant) 

(fruiting_bodies absent ?plant) 

(fruit_pods norm ?plant) 



(mold_growth absent ?plant) 

(alternarialeaf_spot_condition ?plant) 
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(assert (diagnosis alternarialeaf-spot ?plant») 

(defrule R38 

(plant_growth norm ?plant) 

(stem abnorm ?plant) 

(fruiting_bodies absent ?plant) 

(frog_eye_leaf_spot_condition ?plant) 

(assert (diagnosis frog-eye-Ieaf-spot ?plant») 

(defrule R39 

(fruit_pods diseased ?plant) 

.. > 

(assert (diagnosis frog-eye-Ieaf-spot ?plant») 

(defrule 140 

(season 8 ?plant) 

(plant_stand normal ?plant) 

(seed_tmt fungicide ?plant) 

(leaf_shread absent ?plant) 

(fruiting_bodies absent ?plant) 

(mold_growth absent ?plant) 

(frog_eye_leaf_spot_condition ?plant) 

.. > 

(assert (diagnosis frog-eye-Ieaf-spot ?plant») 

(defrule R41 

(season 8 ?plant) 

(hail no ?plant) 

(fruiting_bodies absent ?plant) 

(seed norm ?plant) 

(frog_eye_leaf_spot_condition ?plant) 

(assert (diagnosis frog-eye-Ieaf-spot ?plant») 

(defrule R42 



(season 7 ?plant) 

(precip >_norm ?plant) 

(area_damaged scattered ?plant) 

(mold_growth absent ?plant) 

(frog_eye_leaf_spot_condition ?plant) 

=> 
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(assert (diagnosis frog-eye-leaf-spot ?plant))) 

(defrule R43 

(leafspots_halo no_yell ow_halos ?plant) 

=> 

(assert (leafspots_halo ?plant))) 

(defrule R44 

(leafspots_halo yellow_halos ?plant) 

=> 

(assert (leafspots_halo ?plant))) 

(defrule R45 

(temp norm ?plant) 8> (assert (high_temp ?plant))) 

(defrule R46 

(temp >_norm ?plant) => (assert (high_temp ?plant))) 

(defrule R47 

(temp norm ?plant) -> (assert (low_temp ?plant))) 

(defrule R48 

(temp <_norm ?plant) => (assert (low_temp ?plant))) 

(defrule R51 

(temp norm ?plant) 

(plant_growth abnorm ?plant) 

(stem abnorm ?plant) 

"'> 

(assert (diaporthe_stem_canker_condition ?plant))) 
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B.2 Soybean Corrupted Rule-base II 

0 ____________________________________________________ _ 

, 

CLIPS Soybean Disease Diagnosis KBS 

Corruptions to Rules Rl, R2, R16, R7, R14, R20, R2l, 

R22, R34, El, E2, E3 and E4 

(defrule Rl 

(fruiting_bodies present ?plant) " CORRUPTED: extra condition 

(plant_stand normal ?plant) 

(int_discolor none ?plant) 

(seed norm ?plant) 

(diaporthe_stem_canker_condition ?plant) 

=> 

{assert (diagnosis diaporthe-stem-canker ?plant») 

(defrule R2 

"'> 

(plant_growth abnorm ?plant) " CORRUPTED extra condition 

(int_discolor black ?plant) 

(assert (diagnosis charcoal-rot ?plant») 

{defrule R16 

(int_discolor black ?plant) " CORRUPTED extra condition 

(leaves norm ?plant) 

(int_discolor none ?plant) 

(rhizoctonia_root_rot_condition ?plant) 

=> 

(assert (diagnosis rhizoctonia-root-rot ?plant») 

{defrule R17 

(int_discolor black ?plant) 

(plant_stand normal ?plant) 

(low_temp ?plant) 

(stem abnorm ?plant) 

(int_discolor none ?plant) 

(rhizoctonia_root_rot_condition ?plant) 

=> 
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{assert (diagnosis rhizoctonia-root-rot ?plant») 

{defrule R3 

(plant_grovth abnorm ?plant) 

.. > 

{assert (rhizoctonia_root_rot_condition ?plant») 

{defrule El ;; CORRUPTED extra rule 

(rhizoctonia_root_rot_condition ?plant) 

=> 

{assert (diagnosis rhizoctonia-root-rot ?plant») 

{defrule RlB 

(int_discolor none ?plant) 

(roots rotted ?plant) 

(phytophthora_root_rot_condition ?plant) 

=> 

{assert (diagnosis phytophthora-root-rot ?plant») 

{defrule Rl9 

(plant_stand <_normal ?plant) 

(area_damaged lov_areas ?plant) 

(fruiting_bodies absent ?plant) 

(phytophthora_root_rot_condition ?plant) 

.. > 

{assert (diagnosis phytophthora-root-rot ?plant») 

{defrule R4 

(plant_grovth abnorm ?plant) 

(leaves abnorm ?plant) 

.. > 

{assert (phytophthora_root_rot_condition ?plant») 

{defrule RS 

(leaves abnorm ?plant) 

(stem abnorm ?plant) 

(lodging yes ?plant) 

(int_discolor brown ?plant) 
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(assert (diagnosis brown-stem-rot ?plant») 

(defrule R50 

(leafspot_size dna ?plant) 

(int_discolor none ?plant) 

=> 

(assert (powdery_mildew_condition ?plant») 

(defrule RS 

(powdery_mildew_condition ?plant) 

(leaves abnorm ?plant) 

(stem_cankeronds absent ?plant) 

=> 

(assert (diagnosis powdery-mildew ?plant») 

(defrule R7 

(area_damaged whole_field ?plant) ii CORRUPTED extra condition 

(leafspot_size >_1/8 ?plant) 

(mold_growth present ?plant) 

-> 

(assert (diagnosiS downy-mildev ?plant») 

(defrule R9 

(leafspots_marg v-s_marg ?plant) 

(leafspot_size <_1/8 ?plant) 

(canker_lesion dna ?plant) 

(seed_size norm ?plant) 

-> 

(assert (diagnosis bacterial-blight ?plant») 

(defrule R14 

(season ?d ?plant) 

(test (>- ?d 5» ff CORRUPTED 5 is incorrect should be 8 

(test «& ?d 10» 

(leafspot_size >_1/8 ?plant) 

(leafspots_halo no_yellov_halos ?plant) 

(leaves abnorm ?plant) 

(leafspots_marg w-s_marg ?plant) 

(leaf_shread absent ?plant) 
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=> 

(assert (alternarialeaf_spot_condition ?plant») 

(defrule E2 

(season ?d ?plant) 

(test (>= ?d 3» 

=> 

(assert (alternarialeaf_spot_condition ?plant») 

(defrule R15 

(leafspot_size >_1/8 ?plant) 

=> 

(defrule R20 

(leafspot_size >_1/8 ?plant) •• CORRUPTED extra condition 

(plant_growth norm ?plant) 

(fruiting_bodies present ?plant) 

(fruit_pods norm ?plant) 

=> 

(assert (diagnosis brown-spot ?plant») 

(defrule R2l 

(season ?d ?plant) 

(test (> ?d 6» •• CORRUPTED incorrect operator should be 

(precip >_norm ?plant) 

(leafspot_size >_1/8 ?plant) 

(mold_growth absent ?plant) 

-> 

(assert (diagnosis brown-spot ?plant») 

(defrule R22 

(season 5 ?plant) 

(leafspot_size >_1/8 ?plant) 

(fruiting_bodies present ?plant) 

(leaf_malf absent ?plant) 

(mold_growth absent ?plant) 

-> 

CORRUPTED extra condition 

(assert (diagnosis brown-spot ?plant») 



(defrule R23 

(season 7 ?plant) 

(area_damaged whole_field ?plant) 

(leafspot_size >_1/8 ?plant) 

(leaf_malf absent ?plant) 

(fruit_pods norm ?plant) 

=> 

(assert (diagnosis brown-spot ?plant») 

(defrule R24 

(season 4 ?plant) 

(stem norm ?plant) 

=> 

(assert (diagnosis brown-spot ?plant») 

(defrule R25 

(leafspots_marg no_w-s_marg ?plant) 

(int_discolor none ?plant) 

=> 
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(assert (diagnosis bacterial-pustule ?plant») 

(defrule R26 

(leafspot_size <_1/8 ?plant) 

(seed_size <_norm ?plant) 

=> 

(assert (diagnosis bacterial-pustule ?plant») 

(defrule E3 ;; CORRUPTED extra rule 

(leafspot_size <_1/8 ?plant) 

=> 

(assert (sig-diagnosis bacterial-pustule ?plant») 

(defrule R27 

(leafspot_size <_1/8 ?plant) 

(canker_lesion tan ?plant) 

=> 

(assert (diagnosis purple-seed-stain ?plant») 



(defrule R28 

(leaves norm ?plant) 

(leafspot_size dna ?plant) 

(stem_cankers absent ?plant) 

(int_discolor none ?plant) 
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(assert (diagnosis purple-seed-stain ?plant») 

(defrule R29 

(plant_growth norm ?plant) 

(stem_cankers above_sec_nde ?plant) 

(leafspot_size dna ?plant) 

(assert (diagnosis anthracnose ?plant») 

(defrule R30 

(plant_growth abnorm ?plant) 

(stem abnorm ?plant) 

(seed abnorm ?plant) 

(assert (diagnosis anthracnose ?plant») 

(defrule R31 

(plant_stand <_normal ?plant) 

(plant_growth abnorm ?plant) 

(fruiting_bodies present ?plant) 

(assert (diagnosis anthracnose ?plant») 

(defrule R32 

(leafspot_size >_1/8 ?plant) 

(leaf_malf present ?plant) 

(mold_growth absent ?plant) 

(assert (diagnosis phyllosticta-Ieaf-spot ?plant») 

(defrule R33 

(precip <_norm ?plant) 

(leafspot_size >_1/8 ?plant) 
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(int_discolor none ?plant) 

.. > 

(assert (diagnosis phyllosticta-Ieaf-spot ?plant») 

(defrule R34 

(season ?d ?plant) 

(test (>= ?d 4» •• CORRUPTED incorrect value should be 7 

(test «- ?d 7» 

(precip norm ?plant) 

(leafspot_size >_1/8 ?plant) 

=> 

(assert (diagnosis phyllosticta-Ieaf-spot ?plant») 

(defrule R35 

(int_discolor none ?plant) 

(fruit_pods norm ?plant) 

(mold_growth absent ?plant) 

(alternarialeaf_spot_condition ?plant) 

=> 

(assert (diagnosis alternarialeaf-spot ?plant») 

(defrule R36 

(stem norm ?plant) 

(mold_growth absent ?plant) 

(alternarialeaf_spot_condition ?plant) 

80> 

(assert (diagnosis alternarialeaf-spot ?plant») 

(defrule R37 

(hail yes ?plant) 

(plant_growth norm ?plant) 

(leaf_malf absent ?plant) 

(fruiting_bodies absent ?plant) 

(fruit_pods norm ?plant) 

(mold_growth absent ?plant) 

(alternarialeaf_spot_condition ?plant) 

-> 

(assert (diagnosis alternarialeaf-spot ?plant») 



(defrule R38 

(plant_growth norm ?plant) 

(stem abnorm ?plant) 

(fruiting_bodies absent ?plant) 

(frog_eye_leaf_spot_condition ?plant) 

=> 
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(assert (diagnosis frog-eye-leaf-spot ?plant») 

(defrule R39 

(fruit_pods diseased ?plant) 

-> 

(assert (diagnosis frog-eye-leaf-spot ?plant») 

(defrule R40 

(season ?d ?plant) 

(test (>= ?d 7» 

(test «- ?d 10» ii CORRUPTED incorrect value should be 8 

(plant_stand normal ?plant) 

(seed_tmt fungicide ?plant) 

(leaf_shread absent ?plant) 

(fruiting_bodies absent ?plant) 

(mold_growth absent ?plant) 

(frog_eye_leaf_spot_condition ?plant) 

=> 

(assert (diagnosis frog-eye-leaf-spot ?plant») 

(defrule R41 

(season 8 ?plant) 

(hail no ?plant) 

(fruiting_bodies absent ?plant) 

(seed norm ?plant) 

(frog_eye_leaf_spot_condition ?plant) 

.. > 

(assert (diagnosis frog-eye-leaf-spot ?plant») 

(defrule R42 

(season 7 ?plant) 

(precip >_norm ?plant) 

(area_damaged scattered ?plant) 



(mold_growth absent ?plant) 

(frog_eye_leaf_spot_condition ?plant) 

=> 
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(assert (diagnosis frog-eye-leaf-spot ?plant») 

(defrule R43 

(leafspots_halo no_yell ow_halos ?plant) 

=> 

(assert (leafspots_halo ?plant») 

(defrule R44 

(leafspots_halo yellow_halos ?plant) 

(assert (leafspots_halo ?plant») 

(defrule R45 

(temp norm ?plant) => (assert (high_temp ?plant») 

(defrule R46 

(temp >_norm ?plant) => (assert (high_temp ?plant») 

(defrule R47 

(temp norm ?plant) -> (assert (low_temp ?plant») 

(defrule M8 

(temp <_norm ?plant) => (assert (low_temp ?plant») 

(defrule E4 ii CORRUPTED extra rule 

(hail yes ?plant) 

(stem_cankers above_sec_nde ?plant) 

-> 

(assert (hail_canker_relation ?plant») 

(defrule R51 

(temp norm ?plant) 

(plant_growth abnorm ?plant) 

(stem abnorm ?plant) 

-> 



Appendix C 

Corrupted MMU Rule-base • In Clips 

The size of the corrupted MMU rule-base makes it inpractical to be appended in full. 

Therefore, only the 12 corrupted individual rules are listed below . 

. _-----------------------------------------------. 
The corrupted parts of the 

CLIPS Manned Maneuvering Unit KBS (MMU KBS) 

-----------------------------------------------

;pos x input 

{defrule cea-a-test-input-posx-null-null-l 

.. > 

•• CORRUPTED (side c on) added to disjunction 

{or (aah off) (side c on) {and (gyro on) 

(gyro movement none none») 

(side a on) 

(side bon) 

(rhc roll none pitch none yaw none) 

(the x pos y none z none) 

(or 

(vda a f2 off) 

(vda a f3 off) 

(vda a ?nt-flt-f2t-f3t-f4 on) 

{assert (failure cea» 

{assert (suspect a» 

(printout t "failure -during translational command" crlf) 

160 
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(printout t " in the pos x direction" crlf) 

(assert (conclusion cea translational pos x» 

(defrule cea-b-test-input-posx-null-null-l 

=> 

;pos z, 

(or (aah off) (and (gyro on) (gyro movement none none») 

(side a on) 

(side bon) 

(the x pos y none z pos) 

(rhc roll none pitch none 

(the x pos y none z none) 

(or 

(vda b f1 off) 

(vda b f4 off) 

(vda b ?nl-fll-f2&-f3l-f4 

(assert (failure cea» 

(assert (suspect b» 

; CORRUPTED extra condition 

yaw none) 

on) 

(printout t "failure -during translational command " crlf) 

(printout t "in the pos x direction" crlf) 

(assert (conclusion cea translational pos x» 

(defrule cea-a-test-input-posz-null-null-ll 

(or (aah off) (and (gyro on) (gyro movement none none») 

(side a on) 

(side bon) 

(the x pos y none z neg) ;CORRUPTED extra condition 

(rhc roll none pitch none yaw none) 

(the x none y none z pos) 

(or 

(vda a dl off) 

(vda a d2 off) 

(assert (failure cea» 
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(assert (suspect a» 

(printout t "failure -during translational command " crlf) 

(printout t " in the pos z direction" crlf) 

(assert (conclusion cea translational pos z» 

(defrule cea-b-test-input-posz-null-null-ll 

=> 

(or (aah off) (and (gyro on) (gyro movement none none») 

(side a on) 

(side bon) 

(rhc roll none pitch none yaw none) 

(the x pos y none z neg) ;CORRUPTED extra condition 

(the x none y none z pos) 

(or 

(vda b dl off) 

(vda b d2 off) 

(vda b ?nt-dlt-d2 on) 

(assert (failure cea» 

(assert (suspect b» 

(printout t "failure -during translational command " crlf) 

(printout t ";; in the pos z direction" crlf) 

(assert (conclusion cea translational pos z» 

(defrule cea-b-test-input-neg-null-null-12 

=> 

(or (aah off) (and (gyro on) (gyro movement none none») 

(side a on) 

(side bon) 

(the x pos y none z pos) CORRUPTED extra condition 

(rhc roll none pitch none yaw none) 

(the x none y none z neg) 

(or 

(vda b u3 off) 

(vda b u4 off) 

(vda b ?nt-u3t-u4 on) 



;pos x 

(assert (failure cea» 

(assert (suspect b» 

(printout t crlf II •• 
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failure during translational command " crlf ) 

(printout t ";; in the neg z direction" crlf) 

(assert (conclusion cea translational pos z» 

(defrule cea-test-input-pos-null-null-side-a-l 

=> 

CORRUPTED added (side c on) to disjunction 

(or (aah off) (and (side c on) (gyro on) 

(gyro 

(not (checking thrusters» 

(side a on) 

(side b off) 

(rhc roll none pitch none 

(thc x pos y none z none) 

(or 

(vda a f2 off) 

(vda a f3 off) 

(vda a ?nt-f2t-f3 on) 

(assert (failure cea» 

(assert (suspect a» 

movement none none») 

yaw none) 

(printout t crlf 11 •• cea failure on side a" crlf) 

(assert (conclusion cea failure side-a» 

;pos pitch 

(defrule cea-test-input-null-pos-null-side-a-3 

(or (aah off) (and (gyro on) (gyro movement none none») 

(not (checking thrusters» 

(side a on) 

(side b off) 

(side d) ; CORRUPTED extra condition 

(rhc roll none pitch pos yaw none) 

(thc x none y none z none) 

(or 



=> 

jneg x 

(vda a bl off) 

(vda a f3 off) 

(vda a ?nt-blt-f3 on) 

(assert (failure cea» 

(assert (suspect a» 

(printout t crlf II •• . . 
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cea failure on side a" crlf ) 

(assert (conclusion cea failure side-a» 

(defrule cea-test-input-neg-null-null-side-b-2 

-> 

(or (aah off) (and (gyro on) (gyro movement none none») 

(not (checking thrusters» 

(side a off) 

(side bon) 

(rhc roll none pitch neg yaw pos) jj CORRUPTED extra condition 

(rhc roll none pitch none yaw none) 

(the x neg y none z none) 

(or 

(vda b b2 off) 

(vda b b3 off) 

(vda b ?nt-b2t-b3 on) 

(assert (failure cea» 

(assert (suspect b» 

(printout t crlf It •• .. cea failure on side b" crlf ) 

(assert (conclusion cea failure side-b» 

jneg pitch 

(defrule cea-test-input-null-neg-null-side-b-4 

(or (aah off) (and (gyro on) (gyro movement none none») 

(not (checking thrusters» 

(side a off) 

(side bon) 

(rhc roll none pitch neg yaw pos) jCORRUPTED extra condition 



=> 

(rhc roll none pitch neg yaw none) 

(thc x none y none z none) 

(or 

(vda b f1 off) 

(vda b b3 off) 

(vda b ?nt-f1t-b3 on) 

(assert (failure cea» 

(assert (suspect b» 
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(printout t crlf II •• , , cea failure on side b" crlf ) 

(assert (conclusion cea failure side-b» 

(defrule no-xfeed-fuel-reading-test-side-a-grt 

(declare (salience -10» 

(xfeed-a closed) 

(xfeed-b closed) 

(not (failure ?» 

CORRUPTED incorrect negation (not (side bon» 

(fuel-used-a ?fuel-a) 

(tank-pressure-was a ?p-old) 

(tank-pres sure-current a ?p-new) 

(test « (- ?p-old ?fuel-a) ?p-new» 

?x <- (side a on) 

(side bon) 

(assert (failure thruster-a» 

(printout t crlf 

(printout t crlf 

II •• , , 

fl •• , , 

pressure in tank a is high, 

a thruster has not responded"crlf) 

side a failed while executing 

thruster commands" crlf) 

(assert (conclusion thruster-a high-pressure» 

(assert (conclusion cea failure side-a» 

(assert (side a off» 

(retract ?x) 

(assert (checking thrusters» 
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(defrule no-xfeed-fuel-reading-test-side-b-grt-1 

(declare (salience -10» 

=> 

(xfeed-a closed) 

(xfeed-b closed) 

(side c) CORRUPTED extra condition 

(not (failure ?» 

(fuel-used-b ?fuel-b) 

(tank-pres sure-was b ?p-old) 

(tank-pres sure-current b ?p-new) 

(test « (- ?p-old ?fuel-b) ?p-new» 

(side a on) 

?x <- (side bon) 

(assert (failure thruster-b» 

(printout t crlf 

(printout t crlf 

commands" crlf) 

II •• 

II •• . . 

pressure in tank b is high. 

a thruster has not responded"crlf) 

side b failed while executing thruster 

(assert (conclusion thruster-b high-pressure» 

(assert (conclusion cea failure side-b» 

(assert (side b off» 

(retract ?x) 

(assert (checking thrusters» 

(defrule no-xfeed-fuel-reading-test-side-b-grt-2 

(declare (salience -10» 

-> 

(xfeed-a closed) 

(xfeed-b closed) 

(not (failure ?» 

(not (side bon» CORRUPTED incorrect negation 

(fuel-used-b ?fuel-b) 

(tank-pres sure-vas b ?p-old) 

(tank-pressure-current b ?p-new) 

(test (> (- ?p-old ?fuel-b) ?p-new» 

(side a on) 

?x <- (side bon) 

(assert (failure thruster-b» 
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(printout t crlf "ii pressure in tank b is low, " crlf) 

(printout t II •• , , possible uncommanded acceleration 

or fuel leak" crlf crlf) 

(printout t crlf "ii side b failed while 

executing thruster commands" crlf) 

(assert (conclusion thruster-b low-pressure» 

(assert (conclusion cea failure side-b» 

(assert (side b off» 

(retract ?x) 

(assert (checking thrusters» 



Appendix D 

Interpretation of Results 

We found that most of our evaluation results were not normally distributed. In these 

situations non-parametric statistical tests are better suited as they do not require the 

assumption of normality, and use the median instead of the average as the basis of com­

parison (Mendenhall & Sincich 1988, Anderson, Sweeney & Williams 1990). Additionally, 

non-parametric tests tend to be more robust than their parametric counterparts. Two 

commonly used non-parametric tests are: 

• the Wilcoxen signed rank test for comparison of two data sets; and 

• the Kruskal-Wallis test for comparison of two or more data sets. 

With the Wilcoxen signed rank test we have a choice between the matched-pairs test 

or the independent random samples test, depending on whether or not the 2 data samples 

comprise of matched-pairs. The Wilcoxen statistic is the number of pairwise averages that 

are greater than the comparison value plus one half the number equal to the comparison 

value. Typically, for the matched-pairs test the comparison value is 0, and the null hy­

pothesis is that the median equals this comparison value and the alternative hypothesis 

is that it is greater (or less) than the comparison value. With unmatched-pairs the null 

hypothesis is that the median of the first sample is greater (or less) than the second sam­

ples median, and the alternative hypothesis is that they are equal. The Wilcoxen statistic 

is interpreted according to the p value, where a p value less than 0.05 indicates that the 

probability of rejecting the null hypothesis and being wrong is less than 0.05. 
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The Kruskal-Wallis test ranks the data sets to be compared. It consists of the H 

statistic that can be interpreted according to the p-value, where a p value less than 0.05 

indicates a 95% significant difference between one or more of the data sets that are being 

compared. In MINITAB (Minitab-Inc. 1998) the z value can then be used to identify which 

of the data sets are ranked significantly above or below the group's median rank. For a 

two-tailed test the z value is significant at the 95% confidence level if > 1.96 or < -1.96. 

The sign of the z value indicates whether the difference is greater (plus) or less (minus) 

than the group's median rank. 



Appendix E 

Published Papers 

• Wiratunga and Craw (1999a). Incorporating Backtracking in Knowledge Refine­

ment, Proceedings of the 5th European Symposium on Verification and Validation of 

Knowledge Based Systems and Components (EUROVAV99), Kluwer, Oslo, Norway, 

pp 193-205. 

• Wiratunga and Craw (1999b). Sequencing Training Examples for Iterative Knowl­

edge Refinement, Proceedings of the 19th SGES International Conference on Knowl­

edge Based Systems and Applied Artificial Intelligence (ES99), Springer, Cambridge, 

UK, pp 41-56. 

• Wiratunga and Craw (2000). Informed selection of Training Examples for Knowl­

edge Refinement, Proceedings of the 12th International Conference on Knowledge 

Engineering and Knowledge Management (EKAW2000), Springer, Juan-les Pins, 

France, pp 233-248. 
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Abstract Refinement tools seek to correct faulty rule-based systems by identifying 
and repairing faults that are indicated by training examples that provide 
some evidence of faults. Refinement tools typically use a hill-climbing 
search to identify suitable repairs. In this paper, the goal is to incorpo­
rate an effective backtracking mechanism with a refinement algorithm so 
that the search for repairs does not get caught by local maxima. How­
ever the repair cycle for each potential fault is expensive, so exhaustive 
backtracking is prohibitive for large knowledge bases. This paper inves­
tigates more guided backtracking algorithms developed for constraint 
satisfaction problems and adapts them for refinement problems. Ex­
periments with these backtracking algorithms reveal that high accuracy 
refined knowledge bases are achievable, often at the expense of extra 
iterations, but an informed re-ordering of training examples reduces 
the number of iterations without increasing the error-rate. A test-bed 
is developed by corrupting a rule base with interacting faults, thereby 
allowing pairs of conflicting training examples to be identified. The al­
gorithms are evaluated on training sets containing increasing numbers of 
these conflicting examples. One separate observation is that conflicting 
examples help to achieve refined knowledge bases with high accuracy. 

Keywords: Knowledge Refinement, Informed Backtracking, Example Re-ordering 

1. INTRODUCTION 
Refinement tools support the knowledge acquisition and development 

of knowledge based systems (KBSs) by assisting the debugging of in­
correct systems and the adaptive maintenance of KBSs whose problem-



solving environment changes (Craw, 1996; Boswell et al., 1997). Refine­
ment tools are commonly presented with examples of problem-solving 
where the expert's solution is inconsistent with the KBS's, and from 
these, the tool identifies potential faults in the KBS and suggests possi­
ble repairs. It also benefits from knowing some correctly solved examples 
as well, so that repairs are not too closely fitted to wrongly-solved exam­
ples only, to the detriment of the KBS's more general problem solving. 
Therefore the training set for the refinement tool's learning contains a 
selection of wrongly and correctly solved examples, each consisting of the 
facts that describe the problem-solving task, together with the expert's 
solution for this task. 

Refinement tools adopt an incremental approach where each applica­
tion of the algorithm attempts to fix one or more, but typically not all, 
of the wrongly-solved examples in the training set, and to improve the 
accuracy on the training set with a view to improving the accuracy more 
generally. The refinement task is sufficiently complex that the space of 
possible repairs demands a heuristic search, typically hill-climbing. EI­
THER (Ourston and Mooney, 1994) and FORTE (Richards and Mooney, 
1995) try to repair the outstanding fault that is indicated by the largest 
number of examples, and choose the repair with the fewest changes to 
rules which are nearest the observables. KRUSTTools are KBS specific 
refinement tools, assembled from our KRuSTWorks generic refinement 
toolkit. The refinement algorithm central to this family also applies a 
hill-climbing search. Although it generates many refined KBSs designed 
to fix each incorrect example, it then chooses the refined KBS with the 
highest accuracy on the training examples as the input KBS for the next 
iteration of the algorithm. The result is that refinement tools are dogged 
by the standard hill-climbing problem of getting caught in local maxima, 
so the accuracy or performance of the KBS must be reduced before an 
overall improvement can be gained. 

In this paper we explore different ways KRUSTTools may exploit pre­
viously abandoned repairs or refined KBSs to restart the refinement pro­
cess when it gets stuck. First, we illustrate situations when KRUSTTools 
fail to generate refined KBSs and indicate how backtracking is applied. 
More selective backtracking algorithms, developed to solve constraint 
satisfaction problems (CSPs), are presented next, and these are then 
adapted to fit the KRusTTool refinement cycle. Experimental results 
suggest the need for refinement-specific improvements to the basic back­
jumping algorithms and these changes are presented and evaluated. Fi­
nally we conclude with a few general observations and directions for 
future work. 



2. REFINEMENT WITH KRUSTTOOLS 

A KRUSTTool incrementally refines a KBS by processing the train­
ing examples {el, ... , en} one at a time, Figure 1. The input KBS is 
th b st refined KBS from the previous iteration, or the original faulty 
KBS for the first iteration. In each iteration the next training example, 
call d the refinement example for this iteration, is used to generate re­
fined KBSs. If the expert's solution for the refinement example already 
coincides with the input KBS's solution then no refinement is necessary 
in this ycle. Otherwise, the refinement example's evidence allocates 
blame to pos ible faults in the KBS and generates potential repairs that 
are implement d as the refined KBSs proposed during this cycle. Two 
data structur s of xamples provide a selection mechanism for the best 
refined KBS. The constraint examples buffer contains the previous re­
finem nt examples that have already been corrected, and refin d KBSs 
are r j . cted if they wrongly answer any constraint example in this buffer. 
The training examples buffer contains the training examples still to be 
process d, and the remaining refined KBSs are ranked by their accuracy 
on the training xamples buffer; the previous filter guarantees 100% ac­
curacy on the constraint examples buffer. During each cycle, the current 
refinem nt example is transferred from the training xampl s buffer into 
the constraint exampl s buffer. 

Constraint Exam- Training Examples 
pies Buffer Buffer 

I. .. _ y¥_ .. i \"_~¥ __ .J 

: Fiher Refined : 1...-_-+': KBS, : ._-_ ........... . 
: SeleGl Besl : 

L .... ~.~~ ..... : 
Filter I1l1d Select Refined KBSs 

Figure 1 The KRUSTTool Process. 

ur refin ment algorithm is unusual in generating many refined KBSs 
in a h iteration and the hill-climbing selection of the one best refined 
KBS for th next iteration occurs at the end of each cycle. This of­
£ r the po sibility of backtracking to alternative refined KBSs thereby 
a hieving a best-first search. Figure 2 illustrates the start of a poten­
tial backtracking scenario; the updates to the constraint examples buffer 



(cebuf) and the training examples buffer (tebuf) are shown on the right. 
Refinement example e2 generates 3 refined KBSs and R21 is selected as 
best. Refinement examples e3 and e4 generate several refined KBSs and 
again the best is selected. But now suppose R41 cannot be refined by 
es because although 4 refinements are generated, all are rejected by the 
constraint examples; this is shown by a darkly shaded node for es. The 
refinement path in the diagram is ... e2.R21 --t e3.R31 --t e4.R41 --t es.0 
where 0 indicates the absence of a selected refined KBS. Strictly, it is 
this refinement path that labels the nodes in the diagram and so the 
node labelled RSI is really named R. .. 213141S1· 
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tebu! {e2 e3 e4 es ··1 
cebuf {etl e2- _. - - - _. _ .. - - - - - - - - _. - _ .. _ . 
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R' R' 22 23 tebuf {e3 e4 es .. 1 

cebuf lei e2} 
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Figure 2 A Backtracking KRuSTTool. 

So what should the refinement algorithm do now: continue with e6 

and ignore the fact that es is not corrected, and is unlikely to be by 
future refinements? A better alternative is to backtrack through the 
solution space of refined KBSs and restart the refinement process from 
an earlier node. Simple backtracking undoes each step one at a time, 
and so refinement is restarted with R42 and e5. In this paper we investi­
gate more guided backtracking that may restart refinement from earlier 
points, say R22 with e3· These algorithms originated as search methods 
for solving constraint satisfaction problems and are introduced next. 

3. HEURISTIC SEARCH SOLVES CSP 

Constraint satisfaction problems (CSPs) consist of a set of ordered 
variables {VI,' .. , Vn }, a specified domain Di for each variable Vi and a 



set of constraints {CI, ... ,Cm }. A CSP solution is an instantiation of 
each variable with a value from its respective domain such that none of 
the constraints is violated (Tsang, 1993). Various backtracking searches 
have been proposed that partially undo the instantiation and resume the 
constructive process from a previous variable instantiation. 

BackTracking (BT) (Bitner and Reingold, 1975) steps back to the 
previous variable Vi-I, and continues the search by finding a new 
instantiation for Vi-I consistent with the constraints and Vk, k < 
i - 1. BT recursively backtracks to previous variables until it has 
tried all values in the domain for each. 

BackJumping (BJ) (Gaschnig, 1979) does not step back to the previ­
ous variable Vi-I but instead jumps back to the latest variable Vj 

whose instantiation conflicts with any of the instantiations for Vi. 

If there are no new instantiations available for Vj then BJ reverts 
to backtracking from Vj. 

Conflict-directed BackJumping (CBJ) (Prosser, 1993) extends the 
notion of backjumping by replacing the backtracking after a back­
jump in BJ with backjumping. 

BT is an exhaustive depth first search of the tree of variable instanti­
ations; siblings are different instantiations of a particular variable and a 
parent instantiates the preceding variable in the given ordering. BJ ex­
plores a subset of the BT nodes and so our motivation for investigating 
backjuIllping is to reduce the number of refinement iterations. 

BJ and CBJ are no longer exhaustive. However, for binary CSPs, 
where all constraints contain at most 2 variables, BJ and CBJ still find all 
solutions (Kondrak and van Beek, 1997); any instantiations they fail to 
check for variables between Vi and the backjumped to Vj are guaranteed 
to result in the same inconsistency between the instantiation for Vj and 
the possible values for Vi. Therefore, for binary CSPs, BJ and CBJ have 
proved effective in reducing search. 

4. CSP ALGORITHMS AID REFINEMENT 
We wish to adapt the CSP algorithms to search the space of incre­

mentally refined KBSs created by KRUSTTools, so that the KRUSTTool, 
when necessary, may revisit refined KBSs that have previously been 
abandoned by the refinement algorithm. We propose an analogy be­
tween CSPs and refinement problems so that the concepts applied in 
the CSP algorithms can be imitated in the refinement domain. 



In refinement problems we incrementally refine the KBS to correctly 
answer the current and previous refinement examples. So, the most nat­
ural analogy between esps and refinement links variables with training 
examples, the current variable with the refinement example, and instan­
tiated variables with correctly solved training examples in the constraint 
examples buffer. esp constraints correspond to refined KBSs, and con­
sistency is achieved when the refined KBS correctly answers the con­
straint examples. Finally the domain for a variable corresponds to the 
repairs that are proposed by a refinement example. 

To complete the analogy we must describe when backtracking is trig­
gered and how backjumps are determined. The KRusTTool algorithm 
fails when the refinement example ei and the input KBS R fail to create 
any refined KBSs (Le. the generated KBSs GeneratedRi is empty) or 
those generated are rejected by the constraint examples (Le. Filtered Ri 
is empty). The conflict set for ei, con!set{ei), will contain the potential 
backtracking points from ei. If FilteredRi = {} then we know which 
constraint examples caused the removal of each generated KBS, and 
these form the confset for the eBJ algorithm. BJ's confset is similar 
but also contains refinement examples prior to the conflicting ones. If 
Generated Ri = {} then backtracking is the only option; no conflicting 
constraint examples can be identified since there are no KBSs to test! 

Let us revisit Figure 2's scenario. Refinement must backtrack because 
FilteredR41 s = {}, although Generated~ls = {RSl' RS2, RS3, RS4}. Thus 
for each KBS in GeneratedR41S, some of the constraint examples in ce­
buf must be wrongly answered; suppose R S1 , R52 wrongly solve e2, and 
RS3, RS4 wrongly solve e3· For BT, es's conflict set is the previous re­
finement example {e4} and refinement proceeds by backtracking to e4 
on the refinement path and choosing the next branch; in this case R42 
with es. For BJ and eBJ, es's conflict set contains the failed constraint 
examples e2, e3· So refinement continues from e3, the most recent on 
the path, selecting the next available refined KBS R32 with e4 as the 
refinement example; e5 is moved back into tebuf as a future refinement 
example. If no more KBSs are available from e3 then BJ backtracks to 
the e2 node and eBJ backjumps according to e3 's and e5 's conflict sets. 

4.1 REFINEMENT DIFFERS FROM CSP 
We have drawn an analogy between esps and knowledge refinement 

that allows us to apply backtracking and backjumping algorithms with 
the KRusTTool algorithm. However, there are two obvious differences 
between CSPs and refinement: the domain of potential repairs is not 
known in advance, instead it is constructed incrementally during refine-



ment g n ration and filtering; and the behaviour of constraint examples 
can hang - th Y can become uncorrected and so they provide new 
fault vidence. Th first is dealt with by associating refined KBSs with 
the r finement exampl s that g nerate them, and reasoning about back­
tra king u ing con traint xamples rather than KBSs. 

Figure 3 illu trates a problem that can arise from the second point. 
In this nario, R21 air ady answers ea correctly and so the output 
from the ea cycl is the input KBS R21; this has been highlight d by 
ligh hading. It does not affect the search when it is advancing, but 
backtracking or backjumping to this point raises problems. In Figure 3, 
ba ktracking tarts b cause Filtered1415 = n. Suppose we are using 
BJ and confset( 5) is {e2' ea}, so we backjump to ea. But the input KBS 
R2l aIr ady orr ctly answers ea and so no refined KBSs are available. 
Would simply backtrack further, but the refinement tool has just 
di over d a relationship: the changes to correct e5 have interacted with 
the way that 3 was previously proved. Thus if we backtrack beyond ea 
then it is po ible that the same interaction will occur again. 
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Figure S The Changing Behaviour of Constraint Examples. 

In tad, w not these special examples and treat them differently. W 
call a a latent xample since it did not contribute any fault evidence 

a r finem nt xample. Th other refinement examples are active. 
Giv n the onfli ting relationship between the latent example e3 and its 
a tivating r fin ment example e5, we choose to solve their conflict at this 



point by re-instating e3 in to tebuf and advancing the search from RSI 

with e3 as the next refinement example. 

4.2 PRIORITISING LATENT OVER ACTIVE 
Latent examples provide no impact on the refinement initially since 

it is already answered correctly. But when it appears in the conflict set, 
not only does it provide fault evidence, but it has the added conflicting 
relationship with the current refinement example. We have amended 
the backjumping algorithms to take further account of latent examples 
in conflict sets. If in Figure 3, confset(es} is {e3, ed, then backjumping 
will resume with e4 and the fault evidence now presented by the latent 
example e3 will be lost. Instead, we prioritise latent examples that 
appear in conflict sets, and, rather than backjumping to the most recent 
conflicting example, we reinstate all conflicting latent examples into the 
tebuf. In Figure 3 the search proceeds with e3 and RS1 , the refined KBS 
in GeneratedR415 with the highest accuracy, despite e4 being in the 
conflict set. If the intervening active conflict examples (here e4) remain 
a problem, backjumping offers the opportunity to investigate there later. 

4.3 BT AND BJ: A COMPARISON FOR 
REFINEMENT 

Backtracking one refinement cycle at a time (BT) is likely to lead 
to many iterations, so our goal in introducing backjumping (BJ and 
CBJ) was to reduce refinement cycles. Our first comparison counts the 
number of refinement iterations with BT, BJ and CBJ. Our experiments 
apply a Prolog KRusTTool to a corrupted version of the student loans 
KBS (Pazzani, 1993). The faulty KBS was created by introducing 5 
corruptions to the 20 rules in the original student loans KBS: an extra 
rule, a changed comparison operator and an extra condition in 3 rules. 

The training examples had to be carefully selected to ensure that 
backtracking was exercised, since it is only prompted when conflicting 
repairs are attempted with interacting faults. Most training sets do not 
require such conflicting repairs, and so we had to ensure our training sets 
did indeed contain some conflicts. We identified 9 conflicting pairs in a 
carefully chosen set of 8 examples from the complete student dataset, 
where repairs for one example in the pair conflicted with repairs for the 
other. Finding conflicting examples was relatively easy given the density 
of corruption of the KBS. Our selected dataset contained a further 22 
"normal", unconflicting examples. Training sets of a given conflict level 
N were created from the selected dataset of 30 examples by randomly 
choosing N conflict pairs, removing duplicate examples when they oc-



curred, and randomly selecting from the "normal" examples until the 
training set contained 15 examples. KRusTTools incorporating the BT, 
BJ and CBJ algorithms were applied to each training set and the cor­
rupted KBS. Each test was repeated 10 times and the results averaged. 

Figure 4 shows the number of iterations for each of the algorithms as 
the number of conflict pairs in the training set increases. The results 
were surprising. We had expected BT to have the most iterations, BJ to 
have fewer, and CBJ to have the fewest, reflecting the increased targeting 
of the search. With binary CSPs, BT is guaranteed to have at least as 
many iterations as BJ or CBJ. However, in the more dynamic space of 
refined KBSs this is not the case; backjumping searched a different part 
of the space that involved more iterations. 

So has there been any gain from BJ's additional searching? Figure 5 
shows the error rates of the final KBS produced by the 3 algorithms on 
the complete set of 30 examples; the error-rate of the original corrupted 
KBS is the horizontal dashed line on all error-rate graphs. BJ, the 
most greedy in refinement cycles, has indeed gained the lowest error 
rate. This behaviour is explained by noticing that, although BJ and 
CBJ arc guaranteed to find all binary CSP solutions, this is not the case 
with refinement, since repairs in different cycles can interact: an earlier 
repair can provide part of a later repair or conflict with the later repair. 
Therefore the repairs that are proposed depend on the input KBS and 
thus the refinement path. 
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Figure 4 Number of Iterations (Basic Algorithms). 

5. CONFLICT-BASED RE-ORDERING 
Figure 5 shows another interesting trend: the error rate of the re­

fined KBS decreases as the number of conflict pairs in the training set 
increases. This confirms the experimental results in {Palmer and Craw, 



0.18 
--O-BT 

0.15 ---O--CBJ 

u 0.11 ~BJ 
;:;; 

'" 0.09 Is 
- - - Orig. KB 

t: 
UJ 0.06 

00: t 
I I I 

0 2 345 6 7 g 9 
Conflict Pairs 

Figure 5 Error Rate of Final Refined KBS (Basic Algorithms). 

1996), that the more demanding the examples in the training set the 
higher accuracy achieved by refinement. It also suggested that we ex­
plon~ re-ordering the training examples to exploit conflict knowledge as 
soon as it is recognised. Minimal Bandwidth Ordering heuristic for static 
ordering of variables attempts to reduce the backtracking distance for 
CSP algorithms by placing mutually constrained variables close together 
in the search (Tsang, 1993). The previous section recognised that the 
refinement example and the conflicting examples are mutually constrain­
ing since the repairs for the later one has affected the correctness of the 
earlier latent example. We try to use this idea of mutually constraining 
examples to associate the refinement example and the deepest conflicting 
constraint example in the sequence of training examples in an attempt to 
reduce the number of iterations of the backjumping algorithms without 
compromising the error-rate of the final refined KBS. 

Figure 6 illustrates a hypothetical backjumping situation. The refine­
lIlent search space contains three main refinement paths, of which two 
have been discarded: e2·R 21 --t e3·R31 --t e4.R41 -+ e5.0 and e2.R22 --t 
e3. R31 --t e4.R41 --t e5.0. Suppose in each case confset(e5}= {e2} and 
so backjumping to e2 produces the search as illustrated. But this also 
means that e2 and es are mutually constraining since the repairs to e5 
has affected the solution to e2· 

The Minimal-BJ (MBJ) and Minimal-CBJ (MCBJ) algorithms con­
tain a further amendment to the backjumping algorithms, so that back­
jumping to a node ej that conflicts with the current refinement example 
ej causes the algorithm to try to fix this pair of mutually constraining 
examples next. It re-sorts tebuf so that ei is re-used immediately with 
the next refined KBS from ej. Thus the pair of conflicting examples 
identified in backjumping become adjacent on the new branch of the 
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Figure 6 Searching without Conflict-Based Re-Ordering. 

refinement path. Figure 7 illustrates a possible outcome of re-ordering 
the tebuf examples so that e5 is used as the next refinement example 
after backjumping to e2, and indicates the potential saving in iterations 
over Figure 6. 
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Figure 7 Searching with Conflict-Based Re-Ordering. 

Although this re-ordering is not guaranteed to reduce iterations, the 
relationship between an example and its conflict set gives some justifica­
tion for re-ordering the otherwise random order of the training examples. 
It is possible that successive re-ordering of nodes in this manner may at 
times lead to the original sequence. Even so, this will not result in cy­
cling because BJ and CBJ will resort to backtracking once all branches 
of a node are explored. 



W in Iud d th MBJ and MCBJ algorithms in our earlier experi­
m nt . Figur uperimposes the barchart for MBJ iterations on the 
lin graph for h b ic algorithms; the results for MCBJ are similar to 

BJ are not hown on th graph. Our goal of reducing the number 
of i rat ion in BJ ha b n achieved in general and MBJ's iterations are 
c1 r to BT and BJ. There w re 3 test runs where BJ performed fewer 
it ra i n than M J , and a closer examination of one indicated that re­
ord ring r ult d in an incr ased search space when two examples ei and 

aft ct d by th same repair, where the fault evidence provided by 
nn t b fix d b fore the fault evidence from ei is fixed. Dependen­

of hi natur ugg t the existence of a new type of constraint, and 
w int nd to inv tigat ways to identify these in the future. 
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igur 9 onfirm that the refined KBS error rates with MBJ, and 
MBJ ar unaft ted by the dynamic re-ordering. So MBJ has achieved 

few r it rations without incr asing the error-rate of the final KBS. 
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6. CONCLUSIONS 
We have transformed the natural hill-climbing of the KRusTTool re­

finement algorithm into a best first search that reconsiders previously 
filtered out refined KBSs. It is the KRUSTTool's ability to generate 
many potential refined KBSs in response to fault evidence that en­
ables CSP search strategies to be applied with the central refinement 
algorithm. The authors of other refinement algorithms (Ourston and 
Mooney, 1994; Richards and Mooney, 1995) have argued that the choice 
of repairs available to their tool is sufficiently flexible that hill-climbing 
problems occur rarely, and so make no attempt to deal with it. However 
dealing with mutually conflicting examples in a single refinement itera­
tion is difficult, and otherwise hill-climbing problems arise. Our testbed 
has shown that it is relatively easy to find mutually conflicting training 
examples for refinement tools if the KBS contains interacting faults. 

Moreover, conflicting examples are good at suggesting high quality 
refinements, and training sets with more pairs of conflicting examples 
produce refined KBSs with lower error-rates. This confirms earlier work 
indicating the importance of difficult examples, where improved refine­
ment was achieved by rejecting individual refined KBSs if the training set 
did not contain sufficiently difficult examples to test them thoroughly 
(Palmer and Craw, 1996). With backjumping, refinement retreats to 
earlier refinement cycles and rejects refinement paths that should not 
have been explored. 

Introducing backjumping to reduce the search in standard chronolog­
ical backtracking reveals an interesting refinement phenomenon. The 
more selective backjumping may actually increase the search. However, 
we discovered the extra iterations are used profitably and provide a re­
fined KBS with a lower error-rate. Amendments to the backjumping al­
gorithms to reduce the iterations, whilst maintaining the low error-rate, 
concentrate on re-ordering the training examples by recognising the in­
formation gain offered by both latent and active examples in the conflict 
set, when backjumping is initiated. We are currently investigating the 
knowledge available in problem graphs, the data structure that repre­
sents the problem-solving activity for refinement examples. We hope to 
use these to identify one-way dependencies between constraint examples 
to prevent re-ordering problems such as we found in the previous sec­
tion. They may also identify mutually constraining sets of examples, 
whose problem graphs have a large overlap, but which have dissimilar 
observable values; these could be scheduled in consecutive refinement 
cycles. 



This work highlights the variety of refinement paths and re-ordering 
mechanisms open to refinement tools and has drawn our attention to 
relationships between training examples that may allow us to direct the 
refinement process towards staged goals in the identification and repair 
of KBS faults. 
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Abstract 

Refinement tools seek to correct faulty knowledge based systems (KBSs) 
by identifying and repairing faults that are indicated by training exam­
ples for which the KBS gives an incorrect solution. Refinement tools typ­
ically use a hill-climbing search to identify suitable repairs. Backtracking 
search algorithms, developed for constraint satisfaction problems, have 
been incorporated with an iterative knowledge refinement tool, to solve 
local maxima problems. This paper investigates how the efficiency of 
such a tool can be improved and introduces new and general heuristics 
for ordl'ring training examples. Experimental results reveal that these 
heuristics applied to static and dynamic ordering of training examples 
can significantly improve the efficiency of the iterative refinement tool, 
without increasing thl' error-rate of the final refined KBS. 

1 Introd uction 

Refinement tools support the knowledge acquisition and development of knowl­
edge based syst('ms (KBSs) by assisting the debugging of incorrect systems and 
the adaptivf' maintenance of KBSs whose problem-solving environment changes 
[3]. Refinement tools are presented with examples that indicate there are one 
or more faults in the KBS; these are often examples of problem-solving where 
the expert's solution is inconsistent with the KBS's solution. The tool also 
benefits from knowing some correctly solved examples as well, so that repairs 
are not too closely fitted to wrongly-solved examples only, to the detriment of 
the KBS's more general problem solving. Therefore the training set for the 
refinement tool's learning contains a selection of wrongly and correctly solved 
examples, ('ach consisting of the facts that describe the problem-solving task, 
together with the expert's solution. 

Refinement tools adopt an incremental approach where each cycle attempts 
to fix one or more, but typically not all, of the wrongly-solved examples in 



tilE' training set, and to reduce the error-rate on the training set with a view 
to reducing the error-rate more generally. The refinement task is sufficiently 
complf'x that the space of possible repairs demands a heuristic search, typically 
hill-climbing. EITHER [12] and FORTE [14] try to repair the outstanding fault 
that. is indicated by the largest number of examples, and choose the repair with 
th£' fewe.~t changes to rules which are nearest the observables. KRUSTTools are 
KBS specific refinement tools, assembled from our KRUSTWorks generic refine­
ml'nt toolkit and the refinement algorithm central to this family also applies 
a hill-climbing search. Although it generates many refined KBSs designed to 
fix ('ach incorrect example, it then chooses the refined KBS with the lowest 
error-rate on the training examples as the input KBS for the next iteration. 
Th(' result is that refinement tools are dogged by the standard hill-climbing 
problem of getting caught in local maxima, so the performance of the KBS 
must be reduced before an overall improvement can be gained. 

In previous work we described how informed backtracking search algo­
rithms from Constraint Satisfaction Problems (CSPs) can be incorporated 
within knowledge refinement so that KRUSTTools may exploit previously aban­
don('d r('pairs when the refinement process comes to a halt [18]. In this paper 
we inv(>stigatf> how the efficiency of such search algorithms can be improved. 
Section 2 illustrates situations when KRUSTTools fail to generate refined KBSs 
and indicates how backtracking search is applied. We introduce concepts from 
CSPs and outline the search algorithm that proved best for knowledge refine­
ment in Section 3. Heuristics to improve efficiency are discussed in Section 4 
and experimental results are presented in Section 5. We conclude with direc­
tions for future work in Section 6. 

2 Refinement with a KRUSTTool 

A faulty KBS is incrementally refined by a KRUSTTool based on the fault ev­
idence provided by examples el,"" en (Figure 1). This process is iterative 
with examples utilized one at a time. The input KBS for each iteration is the 
best refined KBS from the previous iteration, or the original faulty KBS in 
the first iteration. The training examples buffer contains all examples that are 
yl't to be used by the KRUSTTool, and the top most example in this buffer at 
('ach it.eration is chosen as the refinement example and drives that refinement 
cych'. If the refinement example is correctly solved then refinement is not re­
quirpd, otherwise the fault evidence is employed to allocate blame, generate 
refilll'lIlt'nts and implement them as refined KBSs. The refinement example is 
then transfered into the constraint examples buffer, containing all previously 
solv('d examples. The constraint examples buffer helps filter the potential re­
fined KBSs, by rejecting those that incorrectly answer any of the constraint 
examples. The filtered refined KBSs are then ranked by their error-rate on 
the training examples buffer. Consequently, the refined KBS with the lowest 
error-rate is the best refined KBS for this iteration. 

The KRUSTTool algorithm is unusual in generating many refined KBSs in 
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Figure 1: The KRUSTTool Process, 

each iteration, and the hill-climbing selection of the one best refined KBS for 
the next iteration occurs at the end of each cycle. This offers the possibility of 
backtracking to alternativ refined KBSs thereby achieving a best-first search. 
Figure 2 illustrates the start of a potential backtracking scenario; the updates to 
the t raining examples buffer (tebuf) and the constraint examples buffer (cebuf) 
are shown on the right. R finement example e2 generates 3 refined KBSs and 
R 21 is selected as b st. Refinement examples e3 and e4 generate several refin d 
KBSs and again the best is selected. But now suppose R41 cannot be refined 
by e5 because although 4 refinements are generated, all are rejected by cebuf; 
this is shown by a darkly shaded node for e5· 

So what should the r finement algorithm do now: continue with eo and 
ignore the fact that e5 is not corrected, and is unlikely to be by future r fin -
ments? A better alternative backtracks through the solution space of refined 
KBSs and restarts the refinement process from an earlier node. Simple back­
tracking undoes each step one at a time, and so refinement is restarted with 
R 42 and e5. In the next s ction we look at a more informed backtracking that 
helps restart refinement from earlier points when appropriate, say R 22 with 3. 

3 Informed Backtracking 

We borrow an approach developed to direct the backtracking search for solu­
tions to constraint satisfaction problems (CSPs). We outline the CSP method 
and then draw an analogy between CSPs and knowledge refinement so that w 
can adapt th method for knowl dge refinement. 
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Figure 2: A Backtracking KRuSTTool. 

3.1 Heuristic Searches Solve CSPs 

CSPs consist of a set of ordered variables {VI, • •. , vn }, a specified domain for 
each variable Vi and a set of constraints. A constraint is a relation defined on 
a subset of variables, specifying all simultaneous value assignments within this 
subset that are forbidden by this constraint. A CSP solution is an instantiation 
of each variable with a value from its respective domain such that none of the 
constraints is violated [17]. CSPs are often solved by constructive algorithms 
where each variable is instantiated in turn, so that the constraints are satisfied 
for this and the previous variable instantiations. 

However, this hill-climbing approach may also fail: the next variable Vi 

may not be instantiated without violating the constraints involving Vi and 
the previous variables VI, ... , Vi-I. Various backtracking searches have been 
proposed that partially undo the instantiation and resume the constructive 
process from a previous variable instantiation. We shall re-use chronological 
backtracking (BT) [1] and backjumping (BJ) [7]. Unlike BT, BJ does not step 
back to the previous variable Vi-l but instead jumps back to the latest variable 
Vj whose instantiation conflicts with any of the instantiations for Vi. If there 
are no new instantiations available for Vj then BJ reverts to backtracking from 
Vj. With binary CSPs, where all constraints contain at most 2 variables BJ 
will still find all solutions [10]. 



3.2 A Backjumping KRUSTTool 

In refinement, we incrementally refine the KBS to correctly answer the current 
and previous refinement examples. So, the most natural analogy between CSPs 
and refinement links variables with training examples, the current variable with 
the refinement example, and instantiated variables with correctly solved con­
straint examples in cebuf. CSP constraints correspond to achieving consistency 
with the constraint examples. Finally the domain for a variable is the repairs 
triggered by fault evidence provided by the refinement example. 

The KRUSTTool algorithm must backjump when the refinement example 
ei and the input KBS R fail to create any refined KBSs (i.e. the generated 
KBSs Generated Ri is empty) or those generated are rejected by the constraint 
examples (i.e. the filtered KBSs FilteredRi is empty). If FilteredRi = {} then 
we must determine the most recent constraint example that caused the removal 
of each generated KBS, and backjump there. If GenemtedRi = {} then BT is 
the only option; no conflicting constraint examples can be identified since there 
are no KBSs to test! 

Let us revisit the scenario in Figure 2. GenemtedR41 S = {RsI , R S2 , RS3, R54} 
and so refinement can backjump, but since FilteredR41s = {}, each KBS in 
GeneratedR41 5 must have been rejected by at least one constraint example in 
cebuf. Suppose R51 , R52 wrongly solve e2, and R53, R54 wrongly solve e3. Then 
refinement will continue from e3, because it is the most recent on the path. The 
next available refined KBS R32 is selected with e4 as the refinement example. 
Finally, es is moved back into tebuf to be a future refinement example. If no 
more KBSs were available from e3 then BJ backtracks to node e2. 

There are two obvious differences between CSPs and refinement. Firstly, the 
domain of potential repairs is not known in advance, instead it is constructed 
incrementally during refinement generation and filtering. This is handled by 
associating refined KBSs with refinement examples that generate them, and 
reasoning about backjumping using constraint examples rather than KBSs. 
Secondly, the behaviour of constraint examples can change - they can become 
uncorrected and so provide new fault evidence generating further refined KBSs. 
The algorithm identifies and reinstates these examples in tebuf. 

4 Improving Backjumping for Refinement 

Backjumping was introduced as a way to reduce the search of backtracking. 
Contrary to expectation we found that BJ often increases the number of iter­
ations but that these extra iterations were used profitably and the BJ KRUST­
Tool on average provided refined KBSs with lower error-rates than the BT 
KRUSTTool [18]. Therefore our next concern is to improve efficiency of the BJ 
KRUSTTool by reducing the number of refinement cycles without increasing the 
error-rate. We investigated techniques that improve CSP search efficiency [15] . 

• Value ordering heuristics select those values that conflict least with vari­
ables that are yet to be instantiated; 



• Variable ordering heuristics deal with most constrained variables first. 

CSP value ordering is analogous to ordering the refined KBSs; KRUSTTools 
already does this when the accuracy filter orders the refined KBSs in increasing 
order of error-rate on tebuf. In fact the general KRUSTTool approach is closely 
related to the repair-based approach to solving CSPs and its greedy min-conflict 
heuristic for repair selection [l1J; and the refined KBS ordering itself is similar 
to the look-ahead value ordering min-conflicts heuristic that ranks the values 
of a variable in increasing order based on the number of incompatibilities with 
values of future variables [6J. 

For the rest of this paper, we concentrate on how variable ordering can be 
applied to a KRUSTTool. A CSP variable is generally constrained in two ways, 
firstly by the constraints it is involved in and secondly by its domain size. Most 
common variable ordering heuristics exploit these 2 properties [5, 8J. Heuristics 
for static ordering exploit relationships among variables identified from the 
topology of the constraint graph [17J. Dynamic variable ordering addresses the 
fact that invariably the best variable order is different in different branches of 
the search tree, by taking advantage of the information available after each 
variable instantiation to move the search to branches that are more likely to 
contain a solution [9J. Various look-ahead strategies select the variable that 
most constrains the remainder of the search [16J. The motivation behind all 
such heuristics is to deal with difficult variables first. 

We now turn to how this is applied to knowledge refinement. CSP variables 
involved in the most or tightest constraints correspond to training examples 
whose repairs put the highest consistency demands on other training examples; 
current work investigates clustering training examples as a way to address this. 
CSP variables with the smallest domain correspond to refinement examples that 
generate the smallest set of refined KBSs in a refinement cycle. But, going as 
far as refinement generation can be computationally expensive. In this paper 
we establish heuristics that predict how constrained the refinement cycle for 
each training example will be, and use these to order the training examples. 

4.1 Evidence From the Recent Refinement Cycle 

Simple constrainedness information comes from the newly completed refine­
ment cycle; where the final step executed all the refined KBSs generated in 
that cycle on the remaining training examples in tebuf. Although this was 
done to calculate the error-rate of each of these refined KBSs, it also deter­
mines an estimate of how faulty each training example is; i.e. how many of 
these refined KBSs got the training example wrong. Remember, all these re­
fined KBSs are related since they were all derived from the previous best refined 
KBS. 

Table 1 demonstrates how fault evidence from the most recent refinement 
cycle can be employed to select the next refinement example from tebuf. Let 
us assume that m refined KBSs 141, Ri2 , ... ,14m were generated with ei as 
the refinement example and that tebuf now contains training examples ei+l, 



eH2, .. . ,en· The table entry for ej and Rik has value 1 if Rik incorrectly 
answers e j, and 0 otherwise. Therefore, the error-rate of Rik on tebuf, err R;. , 

is the column total divided by n. The row total !; is the level of faultiness 
of ej as judged by Ril, Ri2' ... , Rim· The refined KBS with the lowest error­
rate, min(errR;.), is selected as the best refined KBS. We now use, the training 
example with the highest level of faultiness, max(fj), as the next refinement 
example. All ties are broken randomly. 

Generated Refined KBSs 

Ril Ri2 ... Rim faultiness 

eHI 1 0 ... 0 fe;+l 
eH2 0 1 ... 0 f ei+2 

.. . 
en 1 1 ... 0 fen 

error-rate errRn errR;~ ... errR;m 

Table 1: Faultiness of remaining examples. 

This heuristic is reminiscent of the best known CSP dynamic ordering 
heuristic, dynamic search rearrangement (DSR), which selects the next vari­
able having the minimal number of values that are consistent with the current 
partial solution [5]. Of course the difference is that with knowledge refinement 
the set of potential refined KBSs is not known in advance and so we use fault 
evidence from the most recent potential refined KBSs as the basis for selecting 
the most constrained training example for the next iteration. 

4.2 Evidence From How the Problem was Solved 

A more direct estimate of how many refinements will be generated for a par­
ticular training example is the number of places where the problem solving 
behaviour for that training example can be changed. The KRUSTTool algo­
rithm already creates a data structure containing precisely this information. 
The problem graph captures the problem-solving for the refinement example 
and allows the KRUSTTool to reason about the fault that is being demon­
strated [4]. Essentially, the problem graph records what happened, and also 
shoWS all possible rule activation routes to the required goal, of which only one 
is actually used. Problem graphs can become quite complex with long chains 
and complicated branching. Figure 3 shows some simple problem graphs with 
which we illustrate their function. Training example A is a problem described 
by a set of observables including TAl - TA4, which the expert solves as goalA. 
However the KBS currently reasons from the observables by applying leaf rules 
R7 and R4, which together allow a middle rule R13 to fire, and finally the end 
rule Rll concludes SA the faulty solution. The darkened area of the problem 
graph is the positive problem graph and corresponds to the problem solving that 
has been undertaken by the faulty KBS. Therefore it contains the solution sub-



graph for the training example but also contains other partial proofs; e.g. TAl 

allows R7 to fire, but this only partially satisfies R12. The positive problem 
graphs for the other 2 training examples are similar but notice neither provides 
a solution since each partial solution subgraph terminates with an intermediate 
result. 

r------------'r------------, 
1 Example A 1 Example B ~OalB 1 
1 1 1 
1 1 1 
1 goal 1 1 1 

1 1 1 

R2 

Rll 

1 1 
1 

1 

1 

I i~'·c---@--" 
R13 I Rl~9 

II 
II 

: L L L T~ ii t' ! I: 1 @@~~II F F Tel <9 (91 
L ____________ H ____________ J 

Figure 3: Problem Graph for training examples, A, B and C. 

Repairs correspond to preventing faulty rule chains from being activated 
and so the number of rule activations in the positive problem graph is a sim­
ple measure to predict the number of potential refined KBSs, and hence how 
constrained the refinement cycle for that training example will be. Activation 
counts for training examples A, B and C in Figure 3 return 4, 2 and 2 respec­
tively, indicating that Band C are the most (and equally) constrained and so 
will be selected over A. AU ties are broken randomly. 

4.3 Evidence From How the Problem Should be Solved 

The problem graph captures more about the problem-solving than simply 
recording what happened. It also contains a negative problem graph that shows 
all possible rule activation routes to the required goal. Thus in Figure 3 the 



expert's solution for training example A (goalA) has not been proved because, 
RIO, R8 and RI2 are only partially satisfied, and are unable to fire. We have 
not darkened the arrows leading from T A3 and T A4 to indicate that the con­
ditions in RlO and R8 do not match observables TA3 and TA4 , and must be 
weakened before they are satisfied. In contrast conditions in R4, RI3 or RII 
must be strengthened in order to stop SA being asserted. Similar explanations 
hold for training examples Band C, but now in addition some rule conditions 
(e.g. the first condition of R3 for training example B), cannot be weakened to 
match any observable or rule conclusion and so are not linked to any rule or 
observable but instead these "non-observables" are labelled F. 

The negative problem graph provides additional information on how con­
strained the refinement cycle will be. Counting all the rule "activations" in 
both the positive and negative parts of the problem graph provides a second 
measure of constrainedness. This measure promises to be more informative 
since it adds the locations of possible repairs in the negative problem graph to 
those from the positive part. 

In practice we found it was better to distinguish between rules in the nega­
tive problem graph whose conditions could be weakened to match observables 
from those that could never match. We amended the heuristic so that it ig­
nored any negative rule activation whose conditions are all linked to (or derived 
from) "non-observables" (F's in the diagram); e.g. rules R7 and R2 will be 
omitted from C's count. Without this modification the heuristic can estimate 
a training example like C to be less constrained than it actually is. Such an 
amendment requires the assumption that training examples are noise free and 
that leaf rules are correct, however this seems acceptable given our need simply 
to estimate constrainedness. 

Table 2 lists all the refinement places for the 3 training examples at the left. 
The count of rule activations in the complete problem graph, with and without 
the non-observables correction, appears at the right. Therefore, example C 
with the lowest improved rule activation count is selected over A and B. We 
note that although the improved heuristic is a good predictor of the number of 
refinements here, more complex problem graphs may need a more sophisticated 
way to combine rule activation counts from the positive and negative parts of 
the problem graph. 

5 Results 

We evaluate backjumping KRUSTTools that apply static and/or dynamic order­
ing of the training examples using the heuristics we have developed in Section 4. 
The problem graph heuristics define a static ordering of the training examples 
before the iterative refinement cycles are started. They can also be used for 
dynamic ordering where the measures are recalculated on the best refined KBS 
output from a cycle and applied to re-order the remaining training examples. 
The emphasis of the evaluation is to compare the number of iterations, error­
rate and finally the resource usage. 



Training Refinements Rule Activations 
Example Strengthen Weaken None Count All Improved 

R4 RIO R7 6 7 7 

A R13 R8 
Rll R12 

Rl R5 4 6 6 
B R3 R4 

RIO 
R6 
R9 R3 3 7 5 

C R14 R16 
R15 R7 

R2 

Table 2: Refinements and rule activations from the complete problem graph. 

Our testbed is a corrupted student loans KBS, created by introducing 5 
faults to the 20 rules in the original KBS [13]: an extra rule, a changed com­
parison operator in 2 rules and an extra condition in 2 other rules. Although 
this is not a highly realistic scenario, the faults are sufficiently interacting that 
it allows experimentation in carefully controlled conditions. 

Since our experiments involve an assessment of the effectiveness of back­
jumping with various orderings of training examples, we had to ensure that 
backtracking is triggered. We chose 8 specific "difficult" examples from the 
standard student loans dataset that are correctly answered by the uncorrupted 
KBS, but whose repairs for the corrupted KBS are particularly conflicting. In 
fact there are 9 ways to pair these 8 examples so that the refined KBSs triggered 
by one training example tightly interacts with the other's refined KBSs. We 
then randomly selected a further 22 "normal" examples to make a 30 example 
dataset for our experiments. 

For each run we randomly select n conflicting pairs, duplicates are removed 
and further examples are randomly selected (from the "normal" examples) until 
the training set contained 15 examples. The remaining 15 examples become 
the independent test set. The dataset was partitioned this way 20 times, with 8 
conflicting pairs in the first 10 runs, and 9 conflicting pairs in the next 10 runs. 
The results of each experiment refer to these 20 training/test splits. Significance 
results are based on a 95% confidence level and apply the Wilcoxen signed-rank 
test (2 data sets) or the Kruskal Wallis test (3 or more data sets), since our 
data is not normally distributed. 

5.1 Static Ordering 

Static ordering provides a sequence of training examples prior to the iterative 
refinement cycles. We compare two orderings using the problem graph heuris-



tics l with a random ordering. 

• RANDOM: move all correctly solved training examples into cebuf then 
randomly order tebuf. 

• PG RAPH +: move all correctly solved training examples into cebuf, then 
sort the remaining training examples in decreasing order of the number 
of rule activations in the positive problem graph only. 

• PGRAPH±: as for PGRAPH+ but use the number of rule activations in 
the complete problem graph (positive and negative) including the modi­
fication for "non-observables". 

Error-rate for the final refined KBS was not impaired by PGRAPH+ and 
PGRAPH±, and they both reduced the error compared to RANDOM in 4 test 
runs. More pertinent to this evaluation is the number of iterations for these 
three algorithms listed in Table 3. PGRAPH+ required significantly (p-value = 
0.028) fewer iterations compared to RANDOM; 10 test runs had fewer iterations 
and only 2 test runs had more iterations and this was at most 2 iterations longer. 
PGRAPH± improved on PGRAPH+ by reducing the number of iterations in 4 
test runs, however despite the added information acquired from the negative 
problem graph this reduction is not statistically significant. Any improvements 
in PGRAPH± over PGRAPH+ is due to the added information causing fewer 
ties, which essentially mean fewer randomly resolved tie-breaks. This may be 
explained by observing that refinement generation explores both the positive 
and negative problem graphs and that refinements can include changes to both 
parts of the reasoning. Therefore a more complex combination of the rule 
activation counts may be required so that it takes account of those activations 
that contribute towards the required goal and are also part of the positive 
problem graph, by not counting them as individual activations. 

Static ordering Mean Median 95% Confidence 
RANDOM 9.05 8.0 ±1.420 
PGRAPH+ 7.65 7.0 ±0.717 
PGRAPH± 7.65 7.5 ±O.4lO 

Table 3: Number of iterations for static ordering. 

The test results clearly indicate that the order in which training examples 
are processed by the KRUSTTool affects the number of backjumps and itera­
tions. It also confirms that the number of rule activations is an indicator of the 
level of constraint of a training example. 

IThe other heuristic (Section 4.1) can only be applied as a dynamic ordering since it 
exploits information from all the refined KBSs from the previous cycle. 



5.2 Dynamic Ordering 

The original backjumping KRUSTTool already employs one form of dynamic 
ordering by reinstating latent examples; these are constraint examples that 
did not require refinement at the time, and so contributed no fault evidence as 
refinement examples, but are now incorrectly solved by the current KBS and so 
are moved back into tebuf. This reordering is applicable only when backjumping 
occurs. We now extend training example ordering by applying each of the three 
heuristics from Section 4 to also reorder before every refinement cycle, where 
again ties are ranked randomly. This more general reordering is employed first, 
to ensure that reordering enforced by backjumping is not undone. 

1. Current best refined KBS is the input faulty KBS. 

2. Apply static ordering on tebuf. 

3. Loop until tebuf is empty: 
(a) Execute the refinement cycle with the current best refined 

(b) 

(c) 

(d) 

KBS and the top most example in tebuf to generate and filter the 
refined KBSs. 
Apply dynamic ordering on tebuf. 
If the set of filtered refined KBSs is not empty 
then choose the current best refined KBS. 

If the set of filtered refined KBSs is empty: 
i. If there are latent examples then these are pushed into tebuf, 

after all correctly solved training examples are moved into cebuf. 
ii. Otherwise, employ BJ to identify the conflict example and its 

next best refined KBS to backtrack to, and all 
constraint examples on the way are moved back into tebuf. 

Figure 4: Algorithm combining static and dynamic ordering. 

Figure 4 outlines the basic algorithm combining static and dynamic ordering 
in a BJ KRUSTTool algorithm. Any of the three static orderings RANDOM, 
PGRAPH+, PGRAPH± from Section 5.1 can be used in step 2 and influences 
the selection of the first refinement example only. Dynamic ordering occurs in 
step 3b, where any of the following can be applied: 

• FAULTBASED: re-order tebuf in decreasing order according to evidence 
from KBSs from the recent refinement cycle (Section 4.1), after moving 
all correctly solved training examples from tebuf into cebuf; or 

• DVNPGRAPH+: apply PGRAPH+'S heuristic (now in every cycle); or 

• DVNPGRAPH±: apply PGRAPH±'S heuristic (now in every cycle). 



5.3 Static and Dynamic Combinations 

Our experiments looked at seven (of the nine possible) static-dynamic combi­
nations; we used the same problem graph heuristic in the static and dynamic 
orderings. Once again the error-rate of the final KBS was unaffected. Com­
paring the results in Table 4 with the static ordering results in Table 3, we 
see that all combinations have reduced the number of iterations by at least 
two iterations. All heuristics employing the complete problem graph resulted 
in lower average number of iterations but FAULTBASED results are very close. 
However the differences among all the static + dynamic combinations are not 
significant; PGRAPH± + DVNPGRAPH± has the fewest iterations but this is 
not significant (p = 0.932 > 0.05). These results show that using static + 
dynamic ordering gives significant gain over using static ordering only but that 
none of the combinations is better than any other. 

Static + Dynamic Mean Median 95% Confidence 

RANDOM + FAULTBASED 5.15 5 ±0.532 

RANDOM + DVNPGRAPH+ 5.40 5 ±0.765 

RANDOM + DVNPGRAPH± 5.15 5 ±0.613 

PGRAPH+ + FAULTBASED 5.60 5 ±0.864 

PGRAPH+ + DVNPGRAPH+ 5.80 5 ±0.893 

PGRAPH± + FAULTBASED 5.10 5 ±0.524 

PGRAPH± + DVNPGRAPH± 5.05 5 ±0.557 

Table 4: Number of iterations for static+dynamic ordering combinations. 

We have succeeded in reducing the number of iterations but at what com­
putational cost? Table 5 shows the number of cpu cycles for our seven heuristic 
combinations; the figures for static ordering only have been included for refer­
ence. FAULTBASED has proved to be very effective for dynamic ordering since 
the overhead of applying it with any static ordering is not significant. The 
orderings based on problem graphs have not been so effective; any gain in re­
ducing the iterations has been overwhelmed by the expense of each iteration. 
We hope that with more complex KBSs, the richness of the information in the 
problem graph will result in sufficient quality gains in the refined KBS that the 
expensive computation is worthwhile. 

Static 

RANDOM PGRAPH+ PGRAPH± 
None 286480 453030 384910 
FAULTBASED 246060 454590 398670 
DVNPGRAPH+ 477760 564810 
DVNPGRAPH± 581020 798910 

Table 5: Cpu cycles for static + dynamic combinations. 

The reduction in the number of iterations may actually be worthwhile, even 



at the expense of some increase in the total effort. Many iterations to achieve 
consistency with a training set may be regarded as many tinkering repairs; 
while fewer more fundamental repairs may create a higher quality KBS. 

6 Conclusions 

The emphasis of this paper is improving the search efficiency of backtrack­
ing KRUSTTools, and in particular BJ KRUSTTools, however this approach is 
applicable more generally. Refinement algorithms tend to use a hill-climbing 
approach, and so to avoid suboptimal refined KBSs, they should introduce some 
form of backtracking, and thus could benefit from backjumping. 

BJ KRUSTTools produce final refined KBSs with lower error-rates than BT 
KRUSTTools since the repairs for potentially conflicting training examples are 
often handled in consecutive cycles, leading to repairs that are better for new 
problems. However, despite the fact that backjumping had been introduced 
as a more informed search than chronological backtracking, BJ KRUSTTools 
result in more iterations. This paper explored methods to reorder training 
examples with the goal of improving BJ KRUSTTools by reducing the number 
of iterations whilst maintaining the accuracy of the final refined KBS. 

Two static orderings were defined from two heuristics based on counting rule 
activations. Both maintained the reduced error-rates of backjumping with no 
example ordering as reported in [18] but achieved this in fewer iterations. The 
information from the negative problem graph allowed PGRAPH± to cause fewer 
tie-breaks. Further work could investigate how the heuristics can be extended 
to resolve tie-breaks strategically as opposed to randomly as at present. We 
also believe that the overlapping rule activations from the positive and negative 
problem subgraphs should be exploited to give a more informed heuristic for 
PGRAPH± and DVNPGRAPH±. 

Three dynamic orderings were defined by these two heuristics and a simpler 
fault evidence heuristic. Algorithms combining static and dynamic ordering 
further reduced the number of refinement cycles, without increasing the error­
rate of the final refined KBS. An important issue with dynamic ordering is 
the additional computational effort introduced by the reordering at each cycle. 
FAULTBASED very effectively guided the search without adding much computa­
tion and for one combination actually lowered the total effort, but the problem 
graph heuristics were computationally very expensive. However, we are cur­
rently reordering the complete set of remaining training examples from scratch 
every cycle. Future work will investigate whether knowledge about the repair 
from the previous cycle will allow less frequent calculation of the problem graph 
heuristics, or a more target ted application to examples that are most likely to 
be highly constrained. The calculation for the previous cycle or knowledge of 
the repair may provide a suitable estimate or an incremental update of the 
value for this cycle. More experience of the effect of re-ordering may limit 
the number of training examples that need to be considered. Current work on 
clustering training examples may also focus the reordering effort. 



We must bear in mind that our search space is extremely dynamic with se­
quences of refinement examples altering the refined KBSs being considered. As 
with CSPs, our goal is to reduce the search effort and still find a good sequence 
of repairs rather than simply hill-climb through the repair space without back­
tracking. But unlike CSPs, where an instantiation for one variable can only 
restrict the domain of another, in knowledge refinement the repair for one train­
ing example may also lead to a totally different set of proposed refinements for 
a later training example. 
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Abstract. Knowledge refinement tools rely on a representative set of 
training examples to identify and repair faults in a knowledge based sys­
tem (KBS). In real environments it is often difficult to obtain a large set 
of examples since each problem-solving task must be labelled with the 
expert's solution. However, it is often somewhat easier to generate unla­
belled tasks that cover the expertise of a KBS. This paper investigates 
ways to select a suitable sample from a set of unlabelled problem-solving 
tasks, so that only the subset requires to be labelled. The unlabelled 
examples are clustered according to the way they are solved by the KBS 
and selection is targeted on these clusters. Experiments in two domains 
showed that selective sampling reduced the number of training examples 
used for refinement, and hence requiring to be labelled. Moreover, this 
reduction was possible without affecting the accuracy of the final refined 
KBS. A single example selected randomly from each cluster was effec­
tive in one domain, but the other required a more informed selection 
that takes account of potentially conflicting repairs. 

1 Introduction 

Knowledge refinement is incremental learning, where the learning must adapt 
existing knowledge in a Knowledge-Based System (KBS). Refinement tools aid 
knowledge engineers by assisting with the knowledge debugging and maintenance 
phases in the Knowledge-Based Systems development cycle [1-3]. These tools 
ensure that the KBS's solution is consistent with that of a domain expert for a 
given task. In common with other learning algorithms, the tasks and the expert's 
solutions are maintained as training examples. Refinement is triggered when the 
system's and expert's solution for a given task are inconsistent. Although training 
examples that indicate faults are useful to drive refinement, access to correctly 



solved training examples is beneficial, because, they help focus refinement by 
ensuring that repairs are not too closely fitted to wrongly-solved examples. 

The choicp of training examples for refinement becomes important when one 
of the constraints on the refinement process is a limited number of labelled 
training examples. This is a relatively common problem in a real environment, 
where labdling many problem-solving tasks with the expert's solution may re­
quire significant interaction with a busy expert. Unlabelled training examples 
are often generated by using domain knowledge already embodied in the KBS or 
meta-knowledge [4]. Therefore, unlike the labelling task, generating unlabelled 
examples does not typically require the expert. The goal of the work described 
in this paper is to perform an informed selection from a set of unlabelled train­
ing examples which the expert must subsequently label, thereby reducing the 
demand on the expert. However, we must ensure that the informed selection of 
relevant training examples does not hamper the refinement process by omitting 
exanlples that uniquely reveal faults. 

The problem of unavailability of labelled training examples and sample se­
lection of relevant examples from a set of unlabeled examples falls under the 
paradigm of active learning and more specifically, selective sampling. Much work 
has been done in selective sampling mainly related to training classifiers: for 
nearest neighbour, using a lookahead approach that selects examples based on 
statistical information about the utility of the resulting classifier [5]; for text clas­
sification, using a committee-based approach combined with expectation max­
imization [6]; and for C4.5 using a probabilistic classifier that selects examples 
based on class uncertainty [7). Increasingly, estimation and prediction techniques 
with roots in statistics are being applied to classifiers with improved accuracy 
results [8]. However, the use of examples for training classifiers differs from their 
use for rdinenwnt tools: 

_ in rpfineUlent, examples are used to expose faults in an existing KBS and so 
arc employed to refine incomplete concepts and not learn from scratch; and 

_ examples are used for refining KBSs that model, not only classification tasks 
but also design tasks [9] and even planning tasks [10]. 

Direct application of currently available selective sampling methods for learn­
ing classifiers to refinement tools is therefore, not straightforward. We adopt the 
common approach of partitioning the available examples into clusters, but ex­
ploit the relationship between the examples and how they are solved by the 
faulty KBS, in contrast to existing selection techniques that exploit the statis­
tical distribution of examples. As a result our clusters will contain examples 
that triggpr similar problem solving behaviour in the KBS. We then apply var­
ious heuristics that help select examples from clusters. However, the presence 
of interacting faults in a KBS complicates sample selection since they require 
the selection of more than one example from each cluster. We have developed 
heuristics that identify those examples that are most likely to demonstrate inter­
acting faults and wp propose algorithms that apply these heuristics to example 
selection. The selected subset of examples is then presented to the expert for 
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In common with lIlany refinement tools, KRUSTtools incrementally refine a 
KBS bas!'d on fault ('vidence provided by labelled training examples. A labelled 
training pxcunpll' (' is a task-solution pair ([ft,·.·, f m] , goal); the bbservables 
/. .... . /m ar(' the facts that initialise the problem-solving task, and its solution 
goal is the examplp's label acquired from the expert. The KRuSTtool's refine­
ment procpss is it('rative with labelled training examples el, ... , en, utilized one 
at a t imp (Figure 1). The input KBS for each iteration is the best refined output 
KBS from tIl(' pr('violls iteration, or the original faulty KBS in the first iteration. 
Th(' training I'xampll's buffer contains all labelled examples that are yet to be 
used by Ilu' KHI'STtool. For each iteration, the top example in this buffer is cho­
sen as til(' rt'filH'lllt'nt ('xample and drives that refinement cycle. If the refinement 
exam pI!' is corr('ctly solved by the input KBS then refinement is not required, 
otlH'rwis(' thl' fault ('vidence is employed to allocate blame. The refinement al­
gorithm t hl'll idl'ntiti('s various ways by which the required target solution can 
be attailH'd and g('llerates several potential refinements and implements them 
as r('fined KBSs. Once used, the refinement example is then transferred into the 
constraint ('xamplcs buffer, which is simply the buffer that keeps track of ex­
al1lpl£'s previously solved by the KRUSTtool. However, an important task of this 
buff('r is to hdp filter refined KBSs, by rejecting those that incorrectly answer 
any of till' examples in it. The filtered refined KBSs are then ranked by their 
accuracy on thl~ training examples buffer, and the refined KBS with the highest 
accuracy is the output KBS for this iteration. 

Fundamental to the KRUSTtool's successful refinement operation is the avail­
ability of lal)('lIt'd l'xamplcs for its buffers. Availability is often constrained by 
limitpd t'xl)('rt intt'raction and high processing costs. The KRUSTtool should ide­
ally Ill' able to handle such situations by actively selecting training examples 
from an availahlp st't of unlabelled examples. Selected examples must be bene­
ficial for improving the effectiveness and efficiency of the refinement tool. The 
effectiVt'npss dplH'nds on whether or not the tool has had access to examples 
that art' abll' to expose faults; this requires a mechanism that enables selection 
of ('xamplt's that trigger a wide range of faulty problem-solving behaviour in the 
KBS. Improving pffiriency involves selecting fewer refinement examples, thereby 
reducing the nlllllbN of refinement iterations required to achieve refined KBSs 
with irnpl'o\'l'd accuracy; P.g. ensuring that only one incorrectly solved example 
from a spt of I'xamples exposing each fault is processed. 

3 Selective Sampling Process 

The relevance of training examples for refinement changes as refinement pro­
gresses. As tht' problem-solving behaviour of the KBS is incrementally improved 
exam pIt's that t'xposcd faults before are less likely to expose new faults in future 
iterations. while examples that did not before may do so in future iterations. 
Therefor£' we nl'Cd Helectioll mechanisms that target examples for refining the 
KBS given it.s cllmmt problem-solving behaviour. The use of selective sampling 
for the K IHisTtool l'llcompasses an informed selection of examples, the labelling 
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3.2 Cluster Formation 

To form example clusters we need to define a similarity metric which is t.hen 
utilized by a clustering technique that progressively develops the clusters. Sm~e 
examples are presented as a vector of observables, an obvious similarity metr~c 
compares these vectors. However, in knowledge refinement we are interested m 
sampling examples with respect to problem-solving behaviour of the faulty KBS 
and so our similarity metric reflects this by making use of the positive problem 
graph. Given a KBS containing rules R1 , ••. , RN, we define a binary valued rule 
vector corresponding to an example e as r = (rl,"" rN), where Ti :::: 1 if Ri 
appears in the problem graph for ej and Ti :::: 0 otherwise. Thus, the rule vector 
for the training example A in Figure 3 is (0, 0, 0, 1,0,0, 1, 1, 1,0), where N=lO. 
Here the l's correspond to rule activations R4,R7,R8 and R9. 

The similarity measure needs to capture refinement similarity between two 
unlabelled training examples 81,82. As refinement similarity depends on the 
similarity in problem solving behaviour, the similarity between el, e2, can be es­
tablished by comparing their rule vectors rl , r2. For this purpose the Euclidean 
distance metric may be used, but it can lead to two rule vectors being regarded 
as highly similar despite them having no common rule activations. Association 
coefficients [l1J avoid this by focusing on the common rule activations and nor­
malizing by the number of rule activations in both rule vectors, thereby ignoring 
r~l~s t~at are not activated. We employ the Dice coefficient, a commonly used 
similanty measure of this type: 

Re/Sim(el,e2) = Dice(rl,r2) = 2 rl· r2 
ri' rl + r2. r2 

We then use. an agglomerative hierarchical clustering technique, where train­
ing examples wIth the greatest similarity are united in small clusters and these 
clusters are iteratively fused until intra-cluster similarity achieves a predeter­
mined threshold. The decision to fuse clusters is based on the farthest neighbour 



principle [121, where those two clusters that have the minimum distance between 
their most dissimilar cluster members are fused. Typically, this form of cluster 
fusion leads to small, tightly bound clusters, provided that the fusion threshold 
is low. 

3.3 Selecting Examples using Clusters 

Clusters provide information that allows a more informed choice than a random 
selection of examples. Each cluster represents the problem-solving behaviour 
pertaining to some part of the faulty KBS, because examples with similar rule 
activations are clustered together. If we happen to know which area of the KBS 
is faulty, the task of example selection is reduced to picking the cluster related to 
that area. However, in most cases the KRUSTtool has no prior knowledge about 
what parts of the KBS might be faulty, and so we need a more general selection 
technique that targets all potentially faulty parts of the KBS. 

Since each cluster contains examples which are solved in a similar way by 
the KBS, it might appear reasonable to assume that repairing a fault exposed 
by a single example from a cluster would correct the rest of the cluster. One 
selection method CLUSTERREP exploits this assumption by randomly selecting 
one example from each cluster. Certainly, training examples that activate several 
rules in common appear in the same cluster and typically are also similar in their 
observables. However, in some situations examples from a single cluster may not 
have similar observables, and so may contain a pair of examples where a possible 
repair for one example introduces a fault into the repaired solution for the other; 
or result in no obvious repair. Faults of this nature are termed interacting faults 
and the involved pair of examples is termed a conflict pair. 

3.4 Faults that Interact 

To demonstrate the effects of interacting faults on refinement we use 4 Clips 
rules taken from a corrupted version of a student loans adviser. Of these rules, 
two have been corrupted by adding extra conditions, highlighted in bold (see 
Figure 4). Here, R16 translates to "if a student has filed for bankruptcy and is 
enlisted then grant the student a financial deferment", and RIg translates to 
"if a student is disabled and has filed for bankruptcy then grant the student 
a disability deferment". Assume that the KRUSTtool is attempting to fix these 
rules based on fault evidence provided by training example x and y in that order. 

x = ([(filed..for_bankruptcy idx), ... J, (eligible..for_deferment idx)} 

y = ( [ (disabled idy), .•• J ' (eligible..for _deferment idy)) 

Example x concerns a student that has filed for bankruptcy and according to the 
expert should be eligible for deferment, but when reasoning with the faulty rules 
the system solution will not match that of the expert's. Therefore, the KRusTtool 
will attempt to refine the faulty rules by either general ising RI6 or RIg, by 
deleting condition (enlist ? Student), or (disabled ? Student), respectively. Let 



us assume that the KRUSTtool chooses to refine by incorrectly generalising RI9 
(instead of R16) and implements this as a new KBS. On proceeding to the 
next refinement cycle (now with new KBS) the KRUSTtool is presented with 
fault evidence from training example y, a disabled student who is eligible for 
deferment. A direct consequence of generalising RIg is that the KRUSTtool is now 
left with no obvious refinement that can fix the fault exposed by y. Consequently, 
it is forced to re-think its previous refinement choice of generalising R19 instead 
of R16, and so faces the prospect of re-starting refinement from a previous state. 
Notice that if RI9 and R16 were corrupted, but had no common condition that 
matched observables from either x or y (for instance like filed-for _bankruptcy) 
then the faults exposed by x and y in Figure 4 would not be interacting. 

(defrule Rl6 
(filed_for_bankruptcy ?Student) (enlist ?Student) 
=> (assert (financial_deferment ?Student))) 

(defrule Rl9 
(disabled ?Student) (filed_for_bankruptcy?Student) 
=> (assert (disable deferment ?Student))) 

(defrule RlO 
(financial_deferment ?Student) 
=> (assert (eligible_for_deferment ?Student))) 

(defrule Rl2 
(disable_deferment ?Student) 
=> (assert (eligible_for_deferment ?Student))) 

Fig. 4. Some rules taken from a corrupted student loans advisor in Clips. 

The presence of interacting faults affects the refinement process, because se­
lecting a non-optimal refined KBS in a previous iteration can cause refinement 
conflicts in a subsequent iteration. Detecting and resolving these refinement con­
flicts is important, as we have found that this improves refinement accuracy and 
guides the search for the best incremental refinements [13]. However, such con­
flicts can only be detected subject to the availability of fault evidence provided 
by a pair of examples, a conflict pair (such as x and y above). If a cluster con­
tains conflict pairs like these, we would want to select further examples from 
this cluster. In these situations CLUSTERREP is not sufficient as it randomly 
selects a single example from each cluster, thereby ignoring all other examples 
in that cluster, including conflict pairs. A mechanism is needed to identify con­
flict pairs when they occur in the same cluster so that we ensure that examples 
exposing interacting faults are chosen. This necessitates an investigation of the 
problem-solving behaviour of labelled conflict pairs that occur in the same clus-



ter. The aim of such an investigation is to establish criteria that would enable the 
identification and selection of conflict pairs from a cluster when still unlabelled. 

3.5 Characteristics of Conflict Pairs 

An analysis of labelled conflict pairs revealed that they tend to have overlapping 
positive problem graphs, yet the best repair choices for the pair are distinguished 
from each other. Essentially their proofs may exercise similar parts of the KBS 
but their best repair exercises separate parts. Figure 5 shows the problem-solving 
for such a pair, C=([Cl , ... , C6llgoa1o) and D=([D l , ... , D6llgoalD). The dark­
ened arrows and bold rule names highlight the positive problem graphs for ex­
amples C and Dj i.e. the rules that are activated by the observables for each 
example. Each has resulted in the activation of the same end rule R3 , but the 
solutions (sySO and SYSD) might occur with different variable bindings. Invari­
ably a pair like this, with a substantial area of the positive problem graph in 
common, will be placed in the same cluster, and easily mistaken as representing 
the same fault. 

~-----------------, r-----------------, 

,_~c T ? i! R~~D 

Ro 

~, 
L _________________ ~ L _________________ ~ 

Fig. 5. Illustrating conflict pairs. 

Figure 5 also shows all rules that might have concluded each target goal 
if they had been activated; these (non}activations form the negative problem 
graph. With example C, R5 is only partially satisfied by Rl'S conclusion. The 
arrow from C4 is fainter to indicate that this condition in R5 is not met by the 
observable without the condition being generalised somehow. The other possible 
route via R4 requires both of its conditions to be generalised before being sat­
isfied by C5 and C6 • Possible repairs attempt to specialise rules in the positive 
problem graph and generalise those from the negative problem graphl. However, 

1 For a comprehensive list of KRUSTtool's specialisation and generalisation refinement 
operators see [14]. 



specialising R2 to disallow the proof of sYsc for example C may cause problems 
when generalising R7 to allow the proof of goalD, for example D, and vice versa 
with Rl and R5 . Essentially, even though conflict pairs are clustered together, 
a repair for one example will not necessarily repair the other; i.e. their negative 
problem graphs are fairly disjoint. 

3.6 Informed Selection Heuristics 

When examples are unlabelled we do not know the goals and cannot build 
the negative problem graphs. Instead we identify potential conflict pairs by 
formulating an indirect estimate of how overlapping the two negative prob­
lem graphs might be. For this purpose we compare their observables since the 
(non)activations in the negative problem graph depend on them. 

We calculate a dissimilarity score for an example ei=( [Jt, ... , 1~] , ?), in a 
cluster C=el, . .. , en by summing all pair-wise dissimilarities between example 
ei and the remaining examples in C. 

Dissimilarity(ei' C) = l: dissimilarity (ei, ej) 
#i 

m 

dissimilarity (ei, ej) = l: 82(f~, 1D 
k=1 

{ 

0 if x=y 

8(x, y) = /lnx - nyll if x, yare numeric facts 2 

1 otherwise 

The dissimilarity score of a cluster is the average Dissimilarity of its examples. 
There is some argument for ignoring the influence of observables that have al­
ready resulted in activations when calculating the dissimilarity score, however, 
as the contribution towards dissimilarity from observables associated with ac­
tivations, compared to those associated with (non) activations is negligible, we 
have opted for the simpler dissimilarity score using all observables. 

When a cluster has a high dissimilarity score there is reason to believe that 
such a cluster may contain conflict pairs, and we want to select it first for re­
finement. The intuition behind this is that examples clustered together based on 
similarity of the KBS's problem solving behaviour would normally also be similar 
in their observables. If observables are dissimilar then it is likely that problem 
solving behaviour of the KBS for that cluster is faulty and would require the 
selection of more than one example to fix the faults. We propose several sam­
ple selection heuristics that select varying numbers of examples from the cluster 
with the highest dissimilarity as follows: *DISSIMILAR selects all examples; K­
DISSIMILAR, selects the K most dissimilar examples; and >DISSIMILAR selects 
examples with Dissimilarity scores above a pre-determined threshold. 

2 A numeric fact x has a numeric component n",; e.g., age(fred, 40). lin", - n~II is the 
absolute difference normalised by the range of values. 



4 Experimental Evaluation 

Example selection employing CLUSTERREP and the DISSIMILAR family of selec­
tion techniques are compared against RANDOM, where refinement examples are 
selected randomly. Our experiments test whether selective sampling produces 
refined KBSs with comparable accuracy but using fewer labelled examples than 
RANDOM. Furthermore, the performance of these techniques in the presence of 
interacting and non-interacting faults is also analysed by controlled corruptions 
of the KBS. 

The data set and rule-base for the binary class student loans, and the data set 
for the multi class soybean was taken from the VCI repository [15). The student 
loans data set consisted of 1000 labelled examples. We heavily corrupted the 
student loans KBS to encourage conflict pairs; by introducing 5 faults to the 
20 rules. The soybean data set of 337 labelled examples was formed by merging 
the large and small soybean data sets and selecting those examples classified in 
the first 15 classes. A soybean KBS with 44 rules was created by incorporating 
rule chaining into the rule set generated by c4. 5rules [16J. This KBS was then 
corrupted in 7 places, by adding and modifying antecedents in rules covering 
4 of the 15 classes. Unlike the student loans corruptions, these faults did not 
interact, therefore examples from different classes have distinct problem graphs. 

For each domain, a set of 100 training examples and a further 100 evaluation 
examples are randomly selected from the data set. The KRusTtool is run with 
increasing subsets of the 100 training examples. Although all examples in the 
data set are labelled for experimentation purposes, these labels are ignored until 
examples are selected from the training set for the refinement task. Therefore, 
the labelling step in the select-label-refine iterative process is implicit, and the 
stop criterion is that the refined KBS has 100% accuracy on the training ex­
amples after the refinement step. We note that in practice this criterion is not 
available, as only selected training examples will be labelled, but that refine­
ment is a continuous process constrained by expert availability. The impact of 
informed selection on efficiency is determined by the percentage of unused (uns­
elected) examples in the training set. The impact on effectiveness is determined 
by the accuracy of the final KBS on the evaluation set. The graphs show results 
averaged over 10 runs for each training set size. Significance results are based on 
a 95% confidence level and apply the Kruskal Wallis [17) non-parametric test as 
some results are not normally distributed. The optimum cluster fusion threshold 
and the Dissimilarity threshold for >DISSIMILAR, with each test domain was 
ascertained by experimenting with varying thresholds, on a separate subset of 
examples. 

4.1 Student Loans Domain 

Experiments indicate that informed selection methods were effective: there was 
no significant difference in final refined KBS accuracy on the evaluation set, 
between these methods and RANDOM. Figure 6 shows the graph for unused per­
centage of examples for each of the methods. We found a significant difference 



between these selection methods for unused percentage (p=0.005). 3-DISSIMILAR 
overall has faired best, and on average is three times more efficient than RANDOM 
or CLusTERREP. 3-DISSIMILAR and >DISSIMILAR have significantly higher un­
used percentages compared to *DISSIMILAR, suggesting that the subset of most 
dissimilar examples from the cluster effectively targets the faults highlighted 
by all the examples in the cluster. All DISSIMILAR methods use significantly 
fewer training examples compared to CLUSTERREP and RANDOM. CLUSTER­
REP's poor performance is due to the added complication of interacting faults, 
and shows that selection of cluster representatives, alone, is not sufficient in these 
situations. The increase in unused percentage with training set size 10, seen with 
all methods, is explained by small training sets being insufficient to expose all 
faults in the KBS. As a result 100% accuracy on the training set is achieved 
easily, while the accuracy on the evaluation set will be significantly worse when 
compared to refined KBSs produced from larger training sets. 
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Fig. 6. Unused examples for student loans domain. 

4.2 Soybean Disease Domain 

Again there was no significant difference in accuracy between the selective meth­
ods and RANDOM; while there was a significant difference in unused percentages 
(p=0.005). From the efficiency view, in this domain, CLusTERREP, uses sig­
nificantly fewer examples than *DISSIMILAR and RANDOM (see Figure 7). The 
success of CLUSTERREP and the failure of *DISSIMILAR is explained by the ab­
sence of interacting faults in this rule base. Furthermore, the performance of 
CLUSTERREP improves with increased training set sizes, indicating that it was 
able to target few, yet good, examples. Closer examination of test runs with set 
sizes 70, 80, 90 and 100, revealed that the number of clusters tends to be con­
stant while the size of clusters increases with the increasing number of examples, 



therefore, CLUSTERREP selects the same number of examples regardless of the 
increase in set size. On average CLUSTERREP is three-times more efficient than 
RANDOM or *DISSIMILAR. *DISSIMILAR'S bad performance with larger training 
set sizes clearly shows that the absence of an appropriate selection mechanism 
can result in ultimately using all the unlabelled examples. We have not plotted 
results for 3-DISSIMILAR and >DISSIMILAR methods as they are derivatives of 
*DISSIMILAR, which has performed poorly. 
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Fig. 7. Unused examples for soybean disease domain. 

5 Related Work 

The batch version of the refinement tool EITHER also applies incremental learn­
ing [18]. It processes batches of examples as they become available, but these 
examples are not selected for a purpose. Eventually EITHER uses all the exam­
ples, and in addition all these examples must be labelled. The use of membership 
queries and equivalence queries to select examples for learning Horn clauses is 
presented in (19]. Querying in this manner enables Horn clause learning in poly­
nomial time. However, there is the assumption that labels of examples are known, 
and more importantly the logic based approach does not adapt well to rule-based 
systems that have more complex knowledge representation formalisms. Expo 
[10] uses selective sampling to filter its proposed plans when the expected out­
come of the plan differs from the actual observations. Interestingly Expo's active 
selection OCCurs at plan filtering, analogous to the KRUsTtool's filtering of refined 
KBSs, . and not for actively selecting planning tasks that may trigger learning, 
hence Improving plan formation. This difference with knowledge refinement is 
possibly explained by the high costs associated with experimentation compared 
to access to representative planning problems. 

Selective sampling employing a neural network for the task of learning a bi­
nary concept is discussed in [20]. An example is selected when the most specific 



and most general network configurations fail to agree on the example's label. 
With complex concepts the most general network configuration may contain 
the entire domain, thereby forcing random sampling. Our clustering has similar 
problems: when the cluster threshold is too high, clusters contain single exam­
ples; when set too low one large cluster contains all examples. With each extreme 
selective sampling is reduced to RANDOM. Presently, we identify the optimum 
threshold by experimentation, however, the ability to automatically learn this 
threshold would be beneficial. 

Argamon-Engelson and Dagan in [21] use a query by committee approach to 
selectively sample training examples for a probabilistic classifier. A committee of 
classifiers is randomly drawn based on statistics of the labelled sample. Examples 
are selected according to the degree of disagreement in class labels between 
the committee members. The committee approach can also be incorporated in 
knowledge refinement where the generated refined KBSs can vote on the solution 
for remaining training examples and select examples where the committee was 
unable to reach consensus. However, a disagreement measure is complicated 
when the KBS concludes in intermediate results. 

Conceptual clustering involves arranging objects into clusters which would 
then represent certain conceptual classes [22]. However, such techniques require 
that there is some knowledge about the number of classes or, alternatively, knowl­
edge about the goals of the classification. Usually, with knowledge refinement, 
there is no prior knowledge about the number of areas of the KBS that are faulty 
much less the types of faults that need to be addressed. However, our example 
clustering via rule vectors draws close parallels to classical document clustering 
in information retrieval where documents are represented as binary term vectors 
[23]. For information retrieval purposes documents with similar term vectors are 
grouped together forming a cluster. In document clustering, weights may also 
be used to indicate the relative importance of terms. We currently assign equal 
importance to all rule activations. However, a conservative view prefers refine­
ments to rules closer to observables and this might be captured by introducing 
weights to rule activations. 

6 Conclusion 

We have presented an initial approach to selective sampling of training examples 
in the context of knowledge refinement. Experimental results show that selective 
sampling can significantly reduce the number of examples utilised, without any 
penalty on final accuracy. The refinement process was able to target particular 
faults that improved the accuracy of the refined KBS in a way that was effective 
in general. Not only did this reduce the number of refinement cycles required to 
achieve a particular level of competence, but it also reduced the demands on the 
expert's time. The selection was done based on features of the problem-solving 
task alone and so the expert was consulted about only the selected examples. 
Once labelled, the selected examples were presented to the refinement tool for 
processing. 



The rule vector representation of the positive problem graph provided a sim­
ple similarity measure that created clusters of examples that had been solved by 
the KBS in a similar way. This clustering was helpful in determining examples 
that might indicate the same repair. Future work will analyse the implications of 
rule depth and the sequence of rule activations on similarity and investigate how 
the similarity measure might be extended to reflect these. Given a clustering, 
incremental refinement can be visualised by capturing changes in cluster size 
and cluster membership. We are currently exploiting these dynamic changes for 
example selection during the refinement filtering stage, where the aim is to iden­
tify examples affected by the proposed refinements. We note that this is possible 
due to our clustering using similarity between, rule vectors rather than feature 
vectors, as employed by most existing active learning methods. 

The difficulty of selecting examples from clusters depends on the level of in­
teraction of the faults in the KBS. Experiments have highlighted the strengths of 
DISSIMILAR heuristics in the presence of interacting faults and the less informed 
CLUSTERREP selection heuristic in the presence of non interacting faults. We 
intend to develop more powerful selection mechanisms that combine these tech­
niques. One possibility would be to choose between selection heuristics CLUSTER­
REP and a DISSIMILAR method after a clustering has been done: if the maximum 
intra cluster dissimilarity is large then a DISSIMILAR method is required; if small 
then CLUSTERREP is sufficient. 

Selective sampling is important for knowledge refinement tools whether or 
not labelled training examples are plentiful. If labels are hard to obtain then it is 
certainly useful to identify relevant problem-solving tasks that should be labelled 
by the expert and then used as training examples for refinement. Conversely if 
there are many labelled training examples then, given that the refinement process 
is quite computationally expensive, it is convenient to target those examples 
whose repairs also fix other wrongly solved examples without further refinement, 
thereby reducing the number of refinement cycles. Selective sampling addresses 
both these issues by identifying the examples most likely to solve others that 
indicate the same general fault. 
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