

AUTHOR:

TITLE:

YEAR:

OpenAIR citation:

OpenAIR takedown statement:

 This work is made freely
available under open
access.

This ǘƘŜǎƛǎ is distributed under a CC ____________ license.

__

Section 6 of the “Repository policy for OpenAIR @ RGU” (available from http://www.rgu.ac.uk/staff-and-current-
students/library/library-policies/repository-policies) provides guidance on the criteria under which RGU will
consider withdrawing material from OpenAIR. If you believe that this item is subject to any of these criteria, or for
any other reason should not be held on OpenAIR, then please contact openair-help@rgu.ac.uk with the details of
the item and the nature of your complaint.

This work was submitted to- and approved by Robert Gordon University in partial fulfilment of the following degree:

THE
ROBERT GORDON

UNIVERSITY

Informed Selection and Use of Training
Examples for Knowledge Refinement

Nirmalie Chandrika Wiratunga

Thesis submitted to

The Robert Gordon University

for the degree of

Doctor of Philosophy

© 2000, Nirmalie Wiratunga

Abstract

Knowledge refinement tools seek to correct faulty rule-based systems by identifying and
repairing faults indicated by training examples that provide evidence of faults. This thesis
proposes mechanisms that improve the effectiveness and efficiency of refinement tools by
the best use and selection of training examples.

The refinement task is sufficiently complex that the space of possible refinements de­
mands a heuristic search. Refinement tools typically use hill-climbing search to identify
suitable repairs but run the risk of getting caught in local optima. A novel contribution of
this thesis is solving the local optima problem by converting the hill-climbing search into a
best-first search that can backtrack to previous refinement states. The thesis explores how
different backtracking heuristics and training example ordering heuristics affect refinement

effectiveness and efficiency.
Refinement tools rely on a representative set of training examples to identify faults

and influence repair choices. In real environments it is often difficult to obtain a large
set of training examples, since each problem-solving task must be labelled with the ex­
pert's solution. Another novel aspect introduced in this thesis is informed selection of
examples for knowledge refinement, where suitable examples are selected from a set of
unlabelled examples, so that only the subset requires to be labelled. Conversely, if a large
set of labelled examples is available, it still makes sense to have mechanisms that can
select a representative set of examples beneficial for the refinement task, thereby avoiding

unnecessary example processing costs.
Finally, an experimental evaluation of example utilisation and selection strategies on

two artificial domains and one real application are presented. Informed backtracking is
able to effectively deal with local optima by moving search to more promising areas,
while informed ordering of training examples reduces search effort by ensuring that more
pressing faults are dealt with early on in the search. Additionally, example selection
methods achieve similar refinement accuracy with significantly fewer examples.

Contents

1 Introduction 1

1.1 The Refinement of Knowledge Based Systems 2

1.2 Weaknesses in Existing Systems 3

1.2.1 Hill Climbing Search and the Problem of Local Optima 3

1.2.2 Passive Selection of Training Examples. 3

1.3 Project Objectives .. 4

1.4 The Refinement Tool. 5

1.5 Evaluation Domains 5

1.5.1 Student Loans 6

1.5.2 Soybean 7

1.5.3 Manned Maneuvering Unit (MMU) 9

1.6 Synopsis 11

2 Literature Survey 12

2.1 Use of Training Examples for Knowledge Refinement 12

2.1.1 Refinement Driven by an Example At a Time . 13

2.1.2 Refinement Driven by Multiple Examples 18

2.1.3 Role of 'fraining Examples for Refinement 20

2.2 Know ledge Refinement as Search 21

2.2.1 Constructive Approach 22

2.2.2 Repair-Based Approach 25

2.2.3 Improving Search Efficiency . 26

2.2.4 Dynamic CSPs 27

2.3 Example Selection for Learning Algorithms 28

III

2.3.1 Uncertainty-Based Classifiers

2.3.2 Committee of Uncertainty-Based Classifiers

2.4 Conclusion

3 Iterative Refinement

3.1 The Iterative KRuSTtool Process

3.2 CSP Search Strategies for Knowledge Refinement

3.2.1 Knowledge Refinement as Constraint Satisfaction.

3.2.2 Informed Backtracking with the KRUSTtool

3.2.3 Implementation Issues

3.3 Adapting the Informed Backtracking Algorithm .

3.3.1 Latent to Active Examples ..

3.3.2 Prioritising Latent Over Active

3.4 Comparison of Backtracking Search for Refinement

3.4.1 Experimental Design .

3.4.2 Results

3.5 Exploiting Conflict Knowledge

3.6 Conclusion

4 Refinement Search Efficiency

4.1 Constrainedness of Refinement Search

4.1.1 Evidence From the Recent Refinement Cycle

4.1.2 Evidence From How the Problem was Solved

4.1.3 Evidence From How the Problem Should be Solved.

4.2 Ordering Heuristics in Practice

4.2.1 Static Ordering . .

4.2.2 Dynamic Ordering

4.2.3 Static and Dynamic Combinations

4.3 Conclusion

5 Informed Selection of Refinement Examples

5.1 The Selective Sampling Process

5.2 Selection Guided by Problem-Solving Behaviour

CONTENTS lV

29

32

36

38

39

42

43

44

47

47

48

49

50

50

52

53

55

58

58

60

61

63

65

65

67

68

69

71

71

75

5.2.1 Similarity Metric ...

5.2.2 Clustering Technique.

5.3 Selecting Examples using Clusters

5.3.1 Interacting Faults

5.3.2 Characteristics of Conflict Pairs.

5.3.3 Informed Selection Heuristics

5.4 Experimental Evaluation. . . .

5.4.1 Student Loans Domain.

5.4.2 Soybean Disease Domain

5.5 Conclusion

6 Informed Selection of Filter Examples

6.1 Filtering Refined KBSs.

6.2 Cluster-Based Filter Example Selection

6.2.1 Simple Selection Heuristics ...

7

6.2.2 Refinement Extremeness Based Selection Heuristic

6.3 Ensemble-Based Selection

6.4 Experiments.......·

6.4.1 Student Loans Domain.

6.4.2 Soybean Disease Domain

6.5 Conclusion

Evaluation

7.1 KRuSTtool Variants

7.2 Student Loans Domain .

7.2.1 Error Rate ...

7.2.2 Refinement Cycles

7.2.3 Labelling Effort. .

7.3 Soybean Disease Domain.

7.3.1 Error Rate

7.3.2 Refinement Cycles

7.3.3 Labelling Effort .

7.4 MMU Domain

CONTENTS v

75

77

78

79

83

84

87

88

89

90

92

92

95

97

98

· 101

· 104

· 105

· 107

· 108

110

· 111

· 113

· 113

· 114

· 115

· 116

· 116

· 117

· 118

· 119

8

7.5

7.4.1 Error Rate

7.4.2 Refinement Cycles

7.4.3 Labelling Effort ..

7.4.4 Computational Overhead

Conclusion

Conclusion

8.1 Refinement Search

8.2 Informed Selection

8.3 Experimental Results.

8.4 Main Contributions.

8.5 Desirable Extensions

8.5.1 Backtracking Search

8.5.2 Refinement Example Ordering

8.5.3 Example Selection Efficiency

8.5.4 Selective Memory Retention .

8.6 Thesis Summary

A Corrupted Student Loans Rule-base in Clips

B Corrupted Soybean Rule-base in Clips

B.1 Soybean Corrupted Rule-base I .

B.2 Soybean Corrupted Rule-base II

C Corrupted MMU Rule-base in Clips

D Interpretation of Results

E Published Papers

CONTENTS VI

· 120

· 122

· 123

· 124

· 125

127

· 128

· 129

· 131

· 131

· 133

· 133

· 134

· 134

· 136

· 137

138

142

· 142

· 151

160

168

170

List of Figures

1.1 General task of a refinement tool.

1.2 A training example from the Student Loans domain.

1.3 A training example from the Soybean Disease domain.

1.4 A training example from the MMU domain.

2.1 The basic operations in KRUST.

2.2 The EITHER architecture. . .

2.3 A General Backtracking CSP Algorithm ..

2.4 Learning with (a) a Negative Bias and (b) a Positive Bias.

2.5 Complementing committee based approach with EM. . . .

2.6 Filtering Noisy Examples Using a Committee of Classifiers.

3.1 The iterative refinement process.

3.2 Knowledge refinement as search.

2

6

8

10

13

18

23

30

35

36

39

41

3.3 Informed backtracking with the KRUSTtool. 46

3.4 Maintaining refinement information. 47

3.5 Changing behaviour of constraint examples. (a) Refinement Path with a

Latent Example. (b) Re-ordering the Latent Example. 48

3.6 Forming training sets that trigger backtracking. 51

3.7 Number of iterations (Basic Algorithms). ... 52

3.8 Error rate of final refined KBS (Basic Algorithms). 53

3.9 Searching without Conflict-Based re-ordering. 54

3.10 Searching with Conflict-Based re-ordering. . . 55

3.11 Number of iterations (Conflict-Based re-ordering). 56

3.12 Error rate of final refined KBS (Conflict-Based re-ordering). 56

VB

LIST OF FIGURES Vlll

4.1 Search space (a) without ordering and (b) with ordering 59

4.2 Problem Graph for training examples, A, Band C. 62

4.3 Algorithm combining static and dynamic ordering. 68

5.1 A single iteration of select-label-refine. 72

5.2 Sampling within the KRUSTtool. ... 73

5.3 Clustering and Selecting Examples for Labelling. 74

5.4 Positive Problem Graphs for Example A and Example B. 76

5.5 Clustering of 37 examples from the Soybean domain. . . . 78

5.6 Four rules taken from a corrupted student loans advisor in Clips. 79

5.7 Non-optimal refinement choice triggers backtracking 80

5.8 Three rules taken from a corrupted student loans advisor in Clips. 81

5.9 Non-optimal refinement choice activates latent example and triggers back-

tracking 82

5.10 Over lapping problem graphs for conflict pairs. 84

5.11 Unused examples for student loans domain. 89

5.12 Unused examples for soybean disease domain. 90

6.1 The KRusTtool filter hierarchy. 93

6.2 The active accuracy filter. ... 94

6.3 Algorithm for the Cluster-Based Approach. 95

6.4 Analysing Changes in Cluster Content 96

6.5 Observable usage before and after generalization. 98

6.6 Observable usage before and after specialisation and generalisation .. 99

6.7 Proposed KBSs Forming an Ensemble. (a) A Refinement Iteration. (b)

Corresponding Ensemble Filter · 102

6.8 The Effects of Filter Example Selection on Error Rate. · 106

6.9 The Effects of Filtering on Backtracking .. · 107

6.10 Number of Iterations for 20 Test Runs. . . · 107

7.1 Relationship between the evaluation strategies. · 111

7.2 Error rate for student loans domain. · 113

7.3 Number of iterations for student loans domain. · 114

LIST OF FIGURES IX

7.4 Unused example percentage for student loans domain.

7.5 Error rate for soybean disease domain

7.6 Number of iterations for soybean disease domain.

7.7 Unused example percentage for soybean disease domain.

8.1 Clusters covered by overlapping canopies.

. 116

. 117

118

119

135

List of Tables

2.1 Contingency Table Demonstrating the Use of Training Examples. 21

3.1 Analogy 1: CSPs and Iterative Refinement.

3.2 Analogy 2: CSPs and Iterative Refinement.

4.1 Constrainedness of training examples using potential refined KBSs.

43

44

61

4.2 Refinements and rule activations from the complete problem graph. . 64

4.3 Number of iterations for static ordering. 66

4.4 Number of iterations for static + dynamic ordering combinations. . 69

4.5 CPU cycles for static + dynamic ordering combinations. 69

6.1 Majority Vote by an Ensemble formed with Proposed Refined KBSs. . 103

7.1 Error rate for MMU. 121

7.2 Number of iterations for MMU. . 122

7.3

7.4

Unused example percentage for MMU. . 123

Comparing computational costs with refinement example selection heuris-

tics CLUSTERREP, K-CLUSTER and CLUSTERMIXED 125

x

Acknowledgments

I am very grateful for the assistance received from many people. Particularly, thanks go

to my supervisor Prof. Susan Craw, who has been a tremendous strength and inspiration

throughout my research student life at The Robert Gordon University. I have enjoyed

the in-depth discussions we have had over most of the research issues reported in this

thesis and (even) enjoyed the challenging questions directed my way. Special thanks to

Robin Boswell who has patiently answered all my queries and debugged parts of his core

algorithm enabling me to carryon with my experiments. I am grateful to all my colleagues

at SCMS, particularly those in C31, with whom I have enjoyed sharing the office. I also

wish to thank Alex Wilson for advice on suitable statistical tests, and Dr. Ines Arana for

offering to read through my thesis.

I am very grateful to my mother and father, Philo and Brian Wiratunga, who were

always supportive of my educational pursuits and put up with the long periods of separa­

tion. All this would not be possible if not for the two of them. A heartfelt thank you to

my best friend Rosemary Kemp who provided loads of moral support, helped with proof

reading and ensured that I did not end up as an all work and no play person. Finally, I

hope that you will enjoy reading the research work reported in this thesis as much as I

have enjoyed doing it.

Nirmalie Wiratunga

Xl

Chapter 1

Introduction

Decision support systems such as medical diagnosis, advisory systems, and design systems

typically require extensive knowledge of the subject at hand. Systems that aim to capture

and model the underlying knowledge from an expert in the particular application area

(domain) are referred to as Knowledge Based Systems (KBSs). The KBS development life

cycle consists of knowledge elicitation, knowledge representation, debugging and mainte­

nance. Successful completion of this cycle is heavily reliant on the interaction between

the developer and the expert. Therefore, tools that can help automate some or most of

the tasks involved during this cycle are certain to reduce the expert's and developer's

effort. Refinement tools focus on the debugging and maintenance stages, and they seek

to automate these two stages by identifying and correcting mismatches between the world

modeled by the KBS and the real world. Episodes of expert problem solving represent the

real world and are maintained as training examples. Crucial to the successful operation

of the refinement tool is the availability of a set of training examples representative of the

expertise captured by the KBS.

The purpose of this chapter is to introduce knowledge refinement, project motivations

and an overview of future chapters. The task of knowledge refinement and a general

formalism is outlined in Section 1.1. Weaknesses in existing refinement tools in Sec­

tion 1.2 forms project motivations and objectives in Section 1.3. Section 1.4 introduces

the KRusTWorks project, since the research reported in this thesis was carried out as

part of that project. The structure of training examples with respect to three application

domains and a synopsis of the thesis follows in Sections 1.5 and 1.6.

1

1.1. The Refinement of Knowledge Based Systems 2

1.1 The Refinement of Knowledge Based Systems

[IOJ
=/=1 :=::P

Refinement Tool

Problem

Training Examples

>
Refined

KBS

Figure 1.1: General task of a refinement tool.

The task ofrefinement tools can be viewed as learning to adapt knowledge (Figure 1.1).

The input to the refinement tool is the buggy KBS and a set of training examples each

comprising the expert's solution given a problem. The output is the refined KBS. Here,

we are particularly interested in the refinement of rule-based systems, and formalise the

task of KBS refinement (knowledge refinement) as follows. Given a KBS, that does not

completely reproduce an expert's problem solving behaviour for a set of training examples,

the task of the refinement tool is to:

1. discover faulty problem solving behaviour of the KBS , by identifying mismatches

between the expert's solution and the KBS's solution for a given problem;

2. propose one or more potential refinements to rules in the KBS modifying its problem

solving behaviour such that the expert's solution can be achieved;

3. implement the refinements as refined KBSs; and

4. select the best refined KBS if many are proposed, with the aim of improving the

KBS's empirical performance on the training examples.

Steps 2 and 3 involve the refinement algorithm. The emphasis of Steps 1 and 4 is on

the use and selection of training examples. Accordingly, training examples provide fault

evidence in Step 1, and provide a test-bed for evaluating refined KBSs in Step 4.

1.2. Weaknesses in Existing Systems 3

1.2 Weaknesses in Existing Systems

The development of refinement algorithms have progressed considerably in recent years,

from tools developed for refining KBSs written for a specific shell (Wogulis & pazzani

1993, Ourston & Mooney 1994) to those that are applicable more generally (Craw &

Boswell 1999). However, existing systems have mainly concentrated on improving the

refinement algorithm and are limited to elementary example handling procedures. These

procedures do not exploit training examples as a means to guide the refinement pro­

cess. Furthermore, informed example selection methods for knowledge refinement is non­

existent, and therefore needs to be discovered and automated.

1.2.1 Hill Climbing Search and the Problem of Local Optima

Typically refinement tools adopt an incremental approach where each application of the

refinement algorithm attempts to fix one or more, but typically not all of the training exam­

ples that provide fault evidence. The refinement task is sufficiently complex that the space

of possible refinements demands a heuristic search. EITHER (Ourston & Mooney 1994)

and FORTE (Richards & Mooney 1995) try to fix the outstanding fault that is indicated

by the largest number of examples, and selects the refinement with the fewest changes

to rules which are farthest from the outcome. Craw's (1996) approach to refinement also

applies hill-climbing search where the refined KBS that fixes the largest number of ex­

amples is selected, but generates many refined KBSs designed to fix a single incorrectly

solved training example at a time. The result is that refinement tools are dogged by the

standard hill-climbing problem of getting caught in local maxima, where the performance

of the KBS must be reduced before an overall improvement can be gained. However, most

refinement tools do not explicitly handle this problem, instead they employ induction or

non-generic fixes that circumvent the situation.

1.2.2 Passive Selection of Training Examples

Refinement tools have achieved the initial goal of reducing expert and developer effort

by adopting abductive, deductive and inductive techniques that automate the knowledge

debugging and maintenance stages in the KBS development cycle (Mooney 1997). The

success of these techniques depends on the availability of a representative set of training

1.3. Project Objectives 4

examples. Typically, access to such a set is only possible through considerable interaction

with the expert. Presently, all refinement tools adopt a passive approach to training ex­

ample selection. This means that refinement tools do not actively select training examples

that are desirable from a refinement point of view, instead they expect a training set that

covers the KBS's expertise to be available. Clearly, this is not a realistic expectation,

where a busy expert cannot be expected to provide solutions to hundreds of random prob­

lem situations with the hope of covering the gamut of expertise. Even if a comprehensive

training set is available refinement tools must still be able to deal with skewed training

example distributions, because refinement tools aim to improve the empirical performance

of the KBS when employing training examples as a test-bed during refinement selection.

1.3 Project Objectives

The weaknesses of refinement tools just identified provides new directions and opportuni­

ties for further research within the knowledge refinement context. The objectives of this

research are two fold:

• Refinement search, to improve the effectiveness of incremental refinement by solving

the local maxima problem. The approach adopted with respect to this problem is

to modify the sequence of incremental refinements by retreating to previous states

of refinement. Additionally, a more pro-active approach to incremental refinement

suggests an investigation into refinement sequence pre-planning, with the aim of

improving the efficiency of incremental refinement.

• Example selection, to enable refinement tools to actively select training examples

given the refinement purpose of providing fault evidence or forming a test-bed upon

which proposed refinements can be competitively evaluated.

Interestingly the strategies to achieve these objectives necessitated cross-fertilisation be­

tween knowledge refinement, search methods from the constraint satisfaction paradigm

and selective sampling techniques from the machine learning community.

1.4. The Refinement Tool 5

1.4 The Refinement Tool

The research reported in this thesis was carried out as part of the larger KRusTWorks

project!, which aims to develop a generic knowledge refinement framework. Given a

specific rule-base shell, this framework is used to generate a refinement tool, a KRUSTtool,

by re-using core refinement modules. These modules are applied to generic knowledge

structures which model the problem solving behaviour of the rule-base. The structures

are formed by translators that work on the specific rules and the associated traces (Craw

& Boswell 1999). The currently developed framework is able to deal with faulty KBSs

implemented in shells incorporating reasoning strategies that can be forward-chaining,

backward-chaining or both. We will work with a KRusTtool, in particular the Clips

KRUSTtool. However, developed methods with regards to the utilisation and selection of

training examples need not be specific to just this KRusTtool and should be applicable in

a wider context.

1.5 Evaluation Domains

The evaluation is based on two artificial domains and one real domain. Ideally, with each

test domain we would have access to a buggy KBS and a sufficiently large data set for

training and testing purposes. Unfortunately, access to an industrial expert system during

its debugging stage is hard to achieve. Instead we can obtain a KBS assumed to be correct,

and create a faulty KBS by adding controlled corruptions to a copy of the original. The

advantage of this approach is that in situations where training examples are not readily

available, or are not sufficiently representative of the KBS's expertise, the original KBS

can be exploited to generate new examples. We ensure that corruptions to the KBS are

refinable by the KRUSTtool, because here we are interested in improving example selection

and utilisation methods, in contrast to improving refinement operator diversity. Therefore,

the types of corruptions are restricted to four KRusTtool refinement operators:

Delete Rule : triggered by an extra rule corruption;

Remove Condition : triggered by an extra condition in a rule or an extra disjunction

in a rule condition;

lThe KRUSTWorks project is supported by EPSRC grant GR/L38387 awarded to Susan Craw.

1.5. Evaluation Domains 6

Change Comparison Value: triggered by a rule condition with an incorrect compari-

son value; and

Change Comparison Operator : triggered by a rule condition with an incorrect math­

ematical comparison operator.

Essentially, introducing corruptions that the refinement tool is unable to fix will not help

ascertain anything about example selection and utilisation. What we need is pro-active

corruptions designed to provoke fault evidence.

Typically, training examples must be converted in to a programming environment

specific format, where the environment is the one in which the KBS was developed. The

problem part of the training example is maintained as a set of observables represented as

facts and is employed to initialise the KBS with the problem task. The solution part is

represented in a format enabling easy comparison with the KBS's solution.

1.5.1 Student Loans

The Student Loans Advisor has been widely used to evaluate various knowledge refinement

systems (Murphy & Pazzani 1994, Pazzani & Brunk 1991). The purpose of the advisor is

to determine whether a student given his/her circumstances should or should not repay a

US educational loan. The data set and the KBS in Prolog can be obtained from the UCI

repository (Blake, Keogh & Merz 1998). The data set consists of 1000 labelled examples.

We use a Clips version of the student loans KBS containing 20 rules. For experimentation

purposes the KBS was corrupted by introducing 5 corruptions (see Appendix A): an

extra rule, a changed comparison operator and an extra condition in 3 rules.

Observables: (male student44)
(absence student44 9)
(enrolled student44 uci 1)
(unemployed student44 no)
(disabled student44 no)
(enlisted student44 no)

Expert Solution (label): Cno_payment_due student44 yes)

Figure 1.2: A training example from the Student Loans domain.

Figure 1.2 shows a typical training example from this problem domain, comprising the

1.5. Evaluation Domains 7

observables and the expert's solution (also referred to as the example's label). This training

example is a positive instance of the class no_payment_due, and corresponds to student,

student44. In contrast a negative instance of class no_payment_due, would consist of a

label such as (no_payment_due studentX no). A domain comprising of just positive or

negative instances of a single concept is referred to as a binary classed domain. Of the

1000 examples 643 are positive and the rest are negative.

A set of 100 training examples and a disjoint set of 100 testing examples are randomly

selected from the 1000 data set for experimentation. The Clips KRUSTtool is run with

increasing subsets of the 100 training examples and the refined KBS is evaluated on the

independent test examples, with final results typically averaged over ten runs. The ma­

jority of experiments reported in the thesis using the student loans adviser is designed in

this manner unless otherwise stated.

1.5.2 Soybean

The Soybean disease diagnosis system has been widely used to evaluate various machine

learning algorithms and refinement systems (Carbonara & Sleeman 1999, Schlimmer 1988,

Michalski & Chilausky 1980). Given several symptoms of disease in soybean plants this

system is able to classify them into one of 19 possible diseases. Unlike the binary class

Student Loans domain, here we have a multi class domain. A large data set consisting

of 307 examples, and a small data set consisting of 47 examples was obtained from the

UCI repository (Blake et al. 1998). A data set of 337 labelled examples for experimen­

tation was formed by merging the large and small soybean data sets and selecting those

examples classified in 15 of the 19 classes. While each of the 15 classes on average had

20 representative examples the remaining 4 classes seemed unjustified because they were

represented by just 17 examples in total.

The original Soybean KBS has certainty-factors associating probabilistic weights to

certain disease symptoms (Michalski & Chilausky 1980). As the KRUSTtool presently does

not have certainty-factor related refinement operators this original Soybean KBS was not

suited for our task. Carbonara & Sleeman (1999) dealt with this problem by translating

the rules into a non-probabilistic form by deleting any symptoms from the theory that

had a weight less than 0.8. The translated KBS has only a 12.3% accuracy on the labelled

examples and is ideal for evaluation of a refinement tool's refinement operator capabilities.

1.5. Evaluation Domains 8

However, for evaluation of example use and selection techniques it makes sense to work

with a training set that has a more balanced number of true and false examples. Therefore,

a new Clips soybean KBS with 46 rules was created by incorporating rule chaining into

the rule set generated by c4. 5rules (Quinlan 1993). Two corrupted versions of this KBS

are used, with the aim of achieving two different levels of corruption:

• corrupted in 7 places, by adding and modifying antecedents in rules covering 4 of

the 15 classes (see Appendix B.1); and

• corrupted in 13 places, by adding and modifying antecedents in rules covering 8 of

the 15 classes (see Appendix B.2)

These two KBSs tend to have a flat structure when compared to the more straggling

Student Loans KBS. The reason for this is that the initial Soybean KBS was generated

using c4. 5rules and therefore, inherits the flat structure characteristic of induced rules.

Observables: (fruit_pods plantl norm)
(fruit_spots plantl absent)
(fruiting_bodies plantl present)
(leafspotsJlalo plantl absent)
(leaves plantl abnorm)
(plant~rovth plantl abnorm)
(plant_stand plantl norm)
(seed plantl norm)
(roots plantl norm)
(stem plantl abnorm)
(mycelium plantl absent)

Expert Solution (label): (diagnosis plantl diaporthe-stem-canker)

Figure 1.3: A training example from the Soybean Disease domain.

Figure 1.3 shows a typical training example from the Soybean problem domain, com­

prising the observables and the expert's solution. Here, a training example is described

using 35 observables and is clearly more realistic than a training example from the Student

Loans domain. A set of 100 training examples and a disjoint set of 100 testing examples

are randomly selected from the 337 data set. The Clips KRUSTtool is run with increasing

subsets of the 100 training examples and evaluated on the 100 testing examples, with final

results typically averaged over ten test runs.

1.5. Evaluation Domains 9

1.5.3 Manned Maneuvering Unit (MMU)

The MMU fault diagnosis system is a real application consisting of 104 rules with each

rule on average comprising 8 antecedents. The system is written in Clips and was used

in (Boswell & Craw 2000) to evaluate the KRUSTtool's refinement operators. NASA's MMU

is a one-man, nitrogen-propelled backpack that attaches on to an astronaut's spacesuit.

This jet pack enables the astronaut to fly untethered in or around the orbiter. Given infor­

mation about the MMU'S operator controls and measurements the MMU system provides

automatic fault diagnosis, and generates recovery procedures for the MMU. A data set of

100 labelled examples were formed by augmenting the 6 examples supplied with the MMU

system, with 94 manually generated examples. Manual generation aimed at covering the

problem space uniformly and involved determining the range of possible values for observ­

abIes by examining the existing examples and the rule-base. The original KBS was then

used to determine the correct diagnosis for the 94 examples. Essentially the original KBS

acted as the expert or oracle providing labels for the 94 examples.

The expert reasoning modeled by the MMU KBS is complex and difficult to monitor

when compared to the Student Loans or the Soybean KBSs. The primary contributory

factor to this complexity, is the non-monotonic behaviour of the MMU KBS, whereby facts

asserted by rules are retracted in subsequent rule activations. Additionally, the presence

of negated conditions, antecedents comprising both disjunctions and conjunctions, and

different rule priorities are further contributory factors.

The original KBS had two corruptions: a generalised disjunction in one rule and an

extra negated condition in another rule. For experimentation purposes a copy of the

original faulty KBS was further corrupted by introducing 12 corruptions to 12 rules (see

Appendix C): a generalised disjunction in 2 rules, an extra condition in 8 rules, and

an extra negated condition in 2 rules. Note that the corruptions were random and not

controlled, because it is difficult to anticipate the inherent behaviour of the MMU KBS.

Refining a faulty MMU KBS requires significant processing power and refinement time.

Therefore, for development purposes Student Loans and Soybean domains have the added

advantage of being economical, simpler and easier to monitor. However, the MMU problem

domain being a real one, makes it an ideal candidate for testing of implemented methods

in Chapter 7.

Observables:

1.5. Evaluation Domains 10

(side a on)
(side bon)
(aah off)
(gyro off)
(fuel-used-a 0)
(fuel-used-b 0)
(xfeed-a closed)
(xfeed-b closed)
(tank-pres sure-was a 500)
(task-pressure-was b 500)
(tank-pressure-current a 500)
(tank-pressure-current b 500)

Expert Solution (label): (conclusion cea failure side-a)

Figure 1.4: A training example from the MMU domain.

Figure 1.4 shows a typical training example comprising the observables and the ex­

pert's solution. The number of observables describing each example is not fixed, but on

average an example is described by 40 observables. The incremental experimental design

using 100 training and 100 testing examples is not suitable, because the MMU data set

is comparatively smaller than the sets used for Student Loans and Soybean. Therefore,

for this domain we adopt the 5x2 cross-validation (5x2cv) experimental design method

proposed in (Dietterich 1998). This involves 10 test runs obtained as follows:

Repeat 5 times

Randomly partition the data set into 2 equal-sized sets 81 and 82

train on 81 and test on 82

train on 82 and test on 81

The 5x2cv design is well suited here, because partitioning the 100 data set gives us a suf­

ficiently large training and testing set of size 50. Furthermore, 5x2cv comes recommended

as it has good type I error, i.e. low probability of incorrectly detecting a difference when

no difference exists.

1.6. Synopsis 11

1.6 Synopsis

The first part of the thesis concerns the project background. Chapter 1 has provided a

general overview of knowledge refinement, objectives and problem domains. The literature

survey in Chapter 2 is organised under three sections: knowledge refinement; constraint

satisfaction search strategies; and selective sampling.

The second part of the thesis deals with refinement search. Incremental refinement

with the KRusTtool is described in Chapter 3. Here, the local optima problem of hill­

climbing search is highlighted and strategies to deal with this problem are incorporated

with the KRUSTtool. Evaluation of search strategies on the student loans domain indicate

that solving the local optima problem improves the KRUSTtool's effectiveness but efficiency

can be undermined. Therefore, in Chapter 4 we investigate how KRusTtool's efficiency

might be improved, and for this purpose training example ordering strategies that effect

the sequence of incremental refinements is presented.

The third part of the thesis concentrates on informed selection of training examples.

In Chapter 5 a clustering framework which aids the KRUSTtool to actively select training

examples for providing fault evidence is described. The emphasis of Chapter 6 is active

selection of training examples for refinement filtering. One of the selection techniques

builds on the clustering framework in Chapter 5 while the others exploit the diversity

amongst generated refined KBSs when voting for or against selecting examples for refine­

ment filtering. We use student loans and soybean domains to evaluate several selection

strategies.

The rest of the thesis consists of evaluations, conclusions and future directions. Chap­

ter 7 reports on experiments carried out on all three problem domains, comparing several

KRUSTtool variants formed by combining refinement search and example selection meth­

ods. Finally, Chapter 8 presents project conclusions and suggestions for future research.

Chapter 2

Literature Survey

The survey on refinement systems places particular emphasis on the use of training exam­

ples. The refinement process is driven by training examples and involves a search for the

best refinement through the space of possible refinements. This highlights the need for

effective search strategies that are to some extent lacking in current refinement systems.

For this purpose, a significant part of this chapter is also dedicated to the study of effi­

cient search algorithms employed by a different class of AI problems. Another issue that

is not sufficiently addressed by refinement systems, is example selection mechanisms. This

necessitated an investigation of example sampling strategies that are currently employed

by the machine learning community. Therefore, this literature survey consists of three

distinct sections:

• the use of training examples for knowledge refinement (Section 2.1);

• search strategies that might be beneficial when searching the space of possible re­

finements (Section 2.2); and

• training example selection techniques that are employed by machine learning algo­

rithms (Section 2.3).

2.1 Use of Training Exam pIes for Know ledge Refinement

Training examples can be processed a single example at a time, where the refinement

system reacts to fault evidence by a single training example. Alternatively, multiple train-

12

2.1. Use of Training Examples for Knowledge Refinement 13

ing examples might be processed as a batch, where the refinement system implements

refinements once fault evidence provided by all training examples is analysed.

2.1.1 Refinement Driven by an Example At a Time

The KRUST (Craw 1996) knowledge refinement system iteratively refines a faulty KBS by

processing a single example at a time and can be applied to KBSs from both classifica­

tion (Craw & Hutton 1995) and design domains (Boswell, Craw & Rowe 1997). Figure 2.1

illustrates the knowledge refinement tasks undertaken by KRUST. The input to KRUST

consists of the faulty KBS and a set of training examples, el, ... , en. At each iteration of

the refinement algorithm, a single training example referred to as the refinement example,

is presented to KRUST. If the refinement example is correctly solved then refinement is

not required, otherwise the fault evidence is employed to identify the cause of the faulty

problem solving behaviour, generate several potential refinements and implement them as

refined KBSs. The generation of multiple refined KBSs is a unique feature of KRUST, and

at the filtering stage less promising refined KBSs get discarded.

Identify

Faults

Generate and

Implement

Refined KBSs

Training
Chestnuts Examples ' __ "".,,-_rl' '~-"'T""'-"""

1·········· .. ······ .. ···_·_····· .. ······· .. ········ .. ·····1 j······································· .. ···· .. ··l
! Filter i i Select Best !
i Refined KBSs I i Refined KBS !
t J t ... 1

Figure 2.1: The basic operations in KRUST.

Several filters are employed by KRUST in order to select the best refined KBS. KRUST

prefers refined KBSs with highest accuracy on previously solved examples. Problems

can arise when proposed refined KBSs have the effect of undoing previous refinements,

2.1. Use of Training Examples for Knowledge Refinement 14

thereby causing inconsistencies with previously solved refinement examples. KRUST deals

with these inconsistencies by adding a new rule that explicitly fixes the fault exposed

by the current refinement example. Although such a strategy ensures that the current

refinement example is solved without undoing previous refinements, the outcome is a

specialised refinement that overfits the example. However, if refined KBSs consistent

with previously solved examples are found, the accuracy filter selects the refined KBS

with highest accuracy on the remaining training examples. KRUST can also incorporate

a chestnut filter, which ranks refined KBSs by accuracy on a selected subset of special

examples called chestnuts. An expert identifies these chestnuts as compulsory problem

solving tasks that the selected refined KBS must solve correctly. Such a filter can only

be employed if chestnuts are provided by an expert prior to the refinement process. The

outcome of the filtering stage is the best refined KBS which is the output KBS in this

iteration, and the input KBS in the subsequent iteration. Generally the filters enforce a

greedy hill-climbing search that runs the risk of getting caught in local optima.

The operation of KRUST suggests the role of training examples for refinement to be

two-fold:

• to drive the refinement process by providing fault evidence; and

• to provide a test bed on which refined KBSs can be competitively evaluated in order

to select the best refined KBS during refinement filtering.

As with learning algorithms it is important that training examples employed by refinement

systems are selected with its usage in mind (Blum & Langley 1997). For instance, since

refinement is triggered only in the presence of incorrectly solved training examples, it

makes sense to ensure that such examples are included in the training set. Similarly, for

filtering purposes, it makes sense to select examples that are affected by the implemented

refinements. Experiments reported in (Palmer & Craw 1997, Palmer & Craw 1996), show

that refined KBSs with improved accuracy were obtained when training examples are

carefully selected to have at least one example that provides fault evidence, compared

to random selection. They also introduce the notion of selecting awkward examples for

filtering purposes, to ensure that refined KBSs are evaluated on examples relevant to the

refined KBSs being evaluated. In Figure 2.1, adding the awkward cases filter will result in

an extra filter level after the chestnut filter but before the selection of the refined KBS with

2.1. Use of Training Examples for Knowledge Refinement 15

highest accuracy. Essentially, such a filter aims to identify examples that are affected by

the refinement by selecting examples that meet certain criteria. These criteria are derived

according to the effect of the proposed refinement on rule activations and on the system

solution.

• Results changed criteria, select examples that as a result of refinement are now solved

differently.

• Paths diverge criteria, select examples that in addition to results changed criteria,

are now incorrectly solved as a result of over-specialisation.

• Maximally false criteria, select examples that in addition to results changed criteria,

are now incorrectly solved as a result of over-generalisation.

Identifying examples that fall into these criteria involve examining changes in system

solution, detailed analysis of changes in rule activations and fact assertions. For KBSs

with large numbers of rules, fact assertions and retractions a detailed analysis with each

example is impractical.

The COAST (Rajamoney 1990) refinement system processes a single training example

at a time and incorporates a filtering mechanism that aims to maintain consistency with

previously solved examples. COAST refines KBSs that model knowledge about physical

process theories. The refinement process is triggered when the predicted behaviour of

a physical process scenario, is different from the observed behaviour as captured by a

training example. Once refined theories are proposed, the best is selected by means of

several filters. The filtering mechanism, exemplar-based theory rejection ensures that:

• refinements are accepted only when they are consistent with observed behaviours of

previously solved examples; and

• the best refinement is selected by evaluation on a selected subset of relevant examples

that are affected by the refinement.

The selected refinement is incorporated into the KBS. Close parallels can be drawn between

the motivations behind KRUST'S awkward example filter, and COAST'S filter mechanism

based on examples affected by the implemented refinement. Unlike KRUST, COAST must

generate refinements that are consistent with previously solved examples. However, it is

2.1. Use of Training Examples for Knowledge Refinement 16

not clear from the literature whether COAST is always able to generate consistent refine­

ments, and if not, what remedial procedures might be required. An interesting feature of

COAST is the manner by which training examples are indexed according to sub-parts of

the theory that they exercise. This enables quick identification of affected examples by

changes to parts of the theory during filtering.

The explanation based approach employed by ODYSSEUS (Wilkins 1988, Wilkins 1990)

extends incomplete domain theories developed using the MINERVA expert system shell.

ODYSSEUS observes an expert operating in a diagnosis problem domain, and monitors the

explanation generated by the system for the expert's actions. Each action is analysed

individually, analogous to processing a single example at a time. Unlike training examples

used by most other refinement systems, here each training example constitutes a single

feature value instead of a set of feature value pairs. The resulting training example is

far more fine-grained than the typical training example employed by other refinement

systems. Furthermore, as many training examples form a single diagnostic session of an

expert, the order of examples is important as it captures the implicit information about

the current reasoning and possible diagnosis. Refinement is triggered when ODYSSEUS

is unable to explain an expert's action. Once a refinement is generated it needs to be

validated. For this purpose ODYSSEUS has associated with each type of refinement a

validation procedure, called a confirmation decision procedure (CDP). For instance in a

medical domain if a refinement suggests the addition of a new clarifying question to the

patient, the associated CDP will check that the clarifying question is linked to many disease

hypotheses and can effectively eliminate a high percentage of these hypotheses. Similarly

if a refinement involves the addition of a rule, the associated CDP will check whether

the rule meets the goodness measures, such as simplicity, redundancy etc. It is clear

that ODYSSEUS'S approach to refinement filtering exploits the underlying domain theory

and structural information of the proposed refinement. This is in contrast to selecting

refinements based on accuracy on training examples.

The FOCL (Pazzani & Kibler 1990) system learns relational concepts from an existing

rule base using explanation based learning and inductive learning. KR-FoCL (pazzani

& Brunk 1991), is a refinement system that complements the explanation based learning

component of FOCL. Learning experiences are recorded by FOCL and contain information

about rules that were used for learning, any conditions or rules that needed to be induced,

2.1. Use oETraining Examples Eor Knowledge Refinement 17

together with details of correctly and incorrectly solved examples. KR-FoCL uses these

experiences to identify potential faults in the rule base by applying several refinement

heuristics. Like KRUST, refinement generation in KR-FoCL is triggered by a single exam­

ple. However, unlike the explicit fault evidence that triggers KRUST'S refinement process,

with KR-FoCL, fault evidence is established by reasoning from FOCL'S learning experi­

ence. Consequently, several refinements are proposed, and user-interaction is exploited to

select the best one. Therefore, like ODYSSEUS, training examples are used only to detect

faults and not for filtering purposes.

CLIPS-R is a refinement system that is built explicitly with the refinement of Clips

KBSs in mind (Murphy & Pazzani 1994). Interestingly, CLIPS-R executes all examples

on the rule-base to establish the sequence in which examples are to drive the refinement

process. Essentially, CLIPS-R forces a sequence on refinements by dealing with examples

that seem to indicate the most pressing faults in the rule base first. For this purpose a tree

structure is constructed where each node represents a rule activation and tree traversal

captures the sequence of rule activations leading to a leaf node. The leaf nodes contain

groups of examples with similar rule activations. It is possible that an example can be in

one or more leaf nodes depending on rule activations. Additionally, each node records the

proportion of examples incorrectly solved with respect to the rule activation represented

by that node. This means that the root will have the highest error-rate, while leaf nodes

will typically have lower error-rates as examples get dispersed to various branches with tree

traversal. CLIPs-R selects the examples at the leaf node with highest error-rate to drive

the refinement process. Enforcing an order on training examples in this manner will affect

the sequence in which refinements get implemented. However, ordering based on error

rate alone can be adversely affected when example distribution is skewed. Nevertheless,

the idea of processing examples in a predetermined sequence is an interesting concept

that we have not seen with other refinement systems discussed so far. Note however, that

although CLIPS-R uses all training examples to form the tree, once the relevant leaf node is

identified, it processes a single example at a time. Like KRUST, CLIPs-R generates several

refinements and evaluates them on all training examples, selecting a single refinement

with highest accuracy. Hill climbing in this manner makes CLIPs-R susceptible to getting

caught in local optima just like KRUST.

2.1. Use of Training Examples for Knowledge Refinement 18

2.1.2 Refinement Driven by Multiple Examples

Refinement systems that deal with a batch of training examples, must process fault evi­

dence provided by all training examples in the batch before generating refinements. Deal­

ing with multiple fault evidence entails establishing suitable criteria that helps prioritise

repairs. The approach adopted by EITHER and FORTE, is a greedy algorithm that im­

plements those refinements that fix the highest number of incorrectly solved examples.

Both refinement systems have been developed primarily for problems in the classification

domain.

Faulty KBS and
Training Examples

DEDUCTION
(identify faults and fix

failing negatives)

ABDUCTION
(fix failing positives)

failing positives
that cannot be fixed

failing negatives
that cannot be fixed

INDUCTION

Figure 2.2: The EITHER architecture.

EITHER (Ourston & Mooney 1994, Mooney & Ourston 1991) is a knowledge refinement

system that can fix faulty Prolog KBSs restricted to horn clauses without variables. EI­

THER operates in batch mode, processing a complete set of training examples at once. The

2.1. Use of Training Examples for Knowledge Refinement 19

set of training ('xamples consists of correctly and incorrectly classified examples. Correctly

dassifit'(i ('xalllpit's help focus the refinement while incorrectly classified examples provide

fault ('vidence and drives refinement. EITHER groups the incorrectly classified examples

into two catpgori('s ba.sed on the type of fault evidence they provide:

• failing posit iws, ('xa.mples not. provable in their own class; and

• fa.iling l1('ga.tivl's, pxamples provable in classes other than their own class.

The refim'lJlent algorithm consists of three distinct modules (see Figure 2.2) and enforces

an orcit'r on the incorft'Ctly classified examples that drive the refinement process. Failing

negat ivt'S are d('alt with first, followed by failing positives, and failing examples of either

type that cannot be fixed individually are dealt by the induction module. Additionally,

corft'('tly da..'\sifit'd ('xa.mples guide t.h(' induction process when learning new rules and an­

tp(,pdl'nls. During the deduction and abduction phases, EITHER ensures that proposed

rpfiIH'lIIl'nts a.rt' all consistent with previously correctly solved examples. When cons is­

tpnt rt'fim'nU'nts cannot he proposed, EITHER avoids dealing with uncorrected examples

hy initiating induction. This ensures t.hat the accuracy of the refined KBS is always im­

proved. ttwft'hy avoiding local optima. Unlike KRUST, EITHER does not generate multiple

rcfiIH'nl(~nts, instead it prefers the smallest number of fixes that correct the largest num­

lwr of ('xalllpics. However, in doing so EITHER is restricted to a small proportion of the

refinl'lllcnt st'arch space, and can often overlook promising solutions.

FORTE'S (Ridmnls & Mooney 1991, Richards & Mooney 1995) ability to refine Prolog

KBSs consisting of horn clauses with variables makes it superior to EITHER. FORTE uses

ttl(' wlllplt'tt' training set. to identify potential refinement points in the KBS. A refinement

point is simply a localised area in the rule-base that corresponds to the fault evidence

provilil'd hy OIW or 1I10re training examples. Each of the refinement points are assigned

a scon' n'tipct.ing its repa.ir potent.ia.l, which is basically the potential increase in accu­

r;u'y. TIlt' sroft' is a.'i('('rt.ailwd by determining the number of incorrectly solved training

('xampll's t hat will Ill' rorrt'dly solwd a.s a. result of fixing the identified refinement point.

F'or instance, if a pott'ntial refillemellt. for a given refinement point would result in five

innlrft'(,tly solvl'(l training examples being solved correctly, then the refinement point is

a. ... 'ii~IlI'(1 a SCOft' of tiV('. Notiet, tha.t t.he refinement score does not reflect the number

of ('orft'('tly solvl'(l training examples that lIlay get unsolved as a result of the proposed

2.1. Use of Training Examples for Knowledge Refinement 20

refinement. Once scores are assigned, the refinement points are sorted by highest to low­

est refinement potential. Essentially, this scoring and sorting mechanism helps FORTE to

prioritise refinements, however like the tree structure employed by CLIPS-R, sorting can

be adversely affected when example distribution is skewed.

FORTE generates refinements for each identified refinement point. The generated re­

finements are scored by the actual increase in accuracy on training examples. FORTE stops

generating refinements when the potential of the next refinement point is less than the

actual accuracy increase of the best refinement so far. FORTE'S global view of refinement

generation based on accuracy on all training examples is once again an attempt to avoid

getting caught in local optima, however, this is not guaranteed.

The AUDREyII (Wogulis & Pazzani 1993) refinement system can be applied to KBSs

that deal with binary classification problems. AUDREyII adopts a two-stage process:

• a specialisation stage that deals with false negatives, which are positive examples

incorrectly classified as negative; and

• a generalisation stage that fixes false positives, which are negative examples incor­

rectly classified as positive.

During specialisation, AUDREyII's hill-climbing search selects the refinement that fixes the

most number of false negatives. In the generalisation stage, false positive examples are

randomly selected and processed one at a time. This two-stage approach can be viewed as

a form of example ordering, and is distantly related to EITHER'S deduction module dealing

with failing negatives, followed by the abduction module dealing with failing positives.

2.1.3 Role of Training Examples for Refinement

Table 2.1 attempts to categorise the refinement systems discussed in this Section according

to their use of training examples, thus highlighting the following roles for training examples

within the refinement context:

• driving the refinement process;

• assisting with refinement filtering; and

• enforcing a sequence on refinement implementation.

2.2. Knowledge Refinement as Search 21

The first two roles are obvious and are commonly seen with most refinement systems. The

third is less obvious, where the order in which single or subsets of examples are processed

will influence refinement sequence and so the refinements that get implemented. The rows

in the contingency table specify whether a single example or multiple examples can be

employed with each refinement role. Clearly it does not make sense to employ a single

example for the filtering and sequencing roles.

Driving Refinement
Refinement Filtering Sequencing Refinements

Single
KRUST
COAST

Example ODYSSEUS
KR-FoCL
CLIPs-R

Multiple
EITHER KRUST CLIPS-R (tree structure)
FORTE CLIPS-R FORTE (refinement points)

Examples AUDREyII FORTE EITHER (3 stage approach)
AUDREyII AUDREyII (2 stage approach)

Table 2.1: Contingency Table Demonstrating the Use of Training Examples.

2.2 Know ledge Refinement as Search

The generation and selection of the best refinement is a common goal for all refinement

systems. With KRUST, as each example is processed in a single refinement cycle, the refine­

ment algorithm selects the best refined KBS from a set of generated potential refinements.

Essentially, a search for the best refinement through the space of possible refinements.

This section introduces the Constraint Satisfaction Problem (CSP) which is a different

problem to that of knowledge refinement. Approaches to solve CSPs involve search strate­

gies that interestingly employ various heuristics that deal with search dead-ends. We are

interested in investigating how knowledge refinement systems might benefit from these

heuristics as a means to solve the local optima problem, provided that refinement systems

are able to identify local optima when they occur.

The conventional CSP consists of a set of ordered variables {VI, ... , Vn }, a finite domain

Di for each variable Vi, and a set of constraints {CI , ... , Cm }, restricting the values that

the variables can simultaneously take. A CSP solution is an instantiation of each variable

2.2. Knowledge Refinement as Search 22

with a value from its respective domain, such that none of the constraints are violated

(Tsang 1993). CSP search strategies fall under two broad approaches (Bartak 1999):

• the constructive approach, where solutions are sought by systematically traversing

through the space of partial solutions; and

• the repair based approach of non-systematically exploring the space of complete

solutions.

2.2.1 Constructive Approach

The constructive search strategy attempts to incrementally extend a partial CSP solution

towards a complete solution, by instantiating one variable at a time. However, when a

variable cannot be instantiated by a value from its domain without violating one or more

constraints, the search strategy will fail to extend the partial solution. Essentially the

search has encountered a dead-end, and terminating the search at this point is not an

option, since there are variables yet to be instantiated. The backtracking paradigm is the

most common algorithm for performing constructive search and dealing with dead-ends.

Various backtracking algorithms have been proposed which undo the partial CSP solution,

and resume the constructive process of extending the solution from a previous variable

instantiation (Kondrak & van Beek 1997, Tsang, Borrett & Kwan 1994, Kumar 1992).

Here, we look at three well known backtracking algorithms, that deal with the inability

to instantiate variable Vj having successfully instantiated Vl ... Vj-l.

Chronological Backtracking (BT) (Bitner & Reingold 1975), steps back to the most re­

cently instantiated variable Vj-l, and continues the search by finding a new instantia­

tion for Vj-l consistent with the current partial solution VI ... Vj-2. Upon exhausting

all instantiations in Vj-l'S domain, BT backtracks to the next most recently instan­

tiated variable Vj-2. In this manner BT recursively backtracks to previous variables,

until it has identified a value for a variable, consistent with the values in the current

partial solution.

BackJumping (BJ) (Gaschnig 1979), does not simply step back to the previous variable

Vj-l, instead, it jumps back to the most recent variable Vi whose instantiation is

in conflict with vi's, and continues the search by finding a new instantiation for Vi,

2.2. Knowledge Refinement as Search 23

consistent with the current partial solution VI ... Vi-I' If there are no new consistent

instantiations available for Vi then BJ reverts to backtracking from Vi.

Conflict-directed BackJumping (CBJ) (Prosser 1993), extends the notion of backjumping

by replacing the backtracking after a backjump in BJ with further backjumping if

required.

esp-solve
foreach Vj

initialise(confset(Vj))

advance(vj)

retreat (v j)
if confset (v j) = {} then

cannot be solved
else

Vi is variable in confset(vj)
with highest subscript

confset(vi) := confset(v;) u confset(vj) \ {vd

for N = i + 1 to j
initialise(confset(v N))
initialise D N to original domain values

if Di = {} then retreat(v;)
else advanee(v;)

advanee(Vj)

foreach djk in Dj

remove djk from D j
for each Vi in Vj-I, ... ,VI

consistent := true
for each C in C1 , ••• , Cm

if Vj =djk and Vi violates C then
consistent := false
exit foreach C

if ...,consistent then
update(confset(Vj),Vi)
exit foreach Vi

if consistent then
exit foreach djk

if consistent then
if j < n then advanee(vi+d
else solved

else retreat (v j)

Figure 2.3: A General Backtracking CSP Algorithm.

An algorithm that finds the first possible solution to a CSP is shown in Figure 2.3. This

algorithm is applicable to binary CSPs where a constraint involves at most 2 variables.

Here, each backtracking algorithm applies the generic esp-solve function. Associated with

each variable is a conflict set (confset) of potential backtracking points. The initialisation

and update of the confset is defined as follows:

initialise(conJset(Vj)) = { {} for BT, BJ, CBJ

!
{Vj-I} for BT

update(conJ set(Vj), VI) = conJset (Vj) U {VI, ... , vd for BJ

con/set (Vj) U {Vi} for CBJ

2.2. Knowledge Refinement as Search 24

When advancing search, a value djk' from vi's domain Dj, is selected such that instanti­

ating Vj with value djk will not violate any of the constraints. The process of identifying a

consistent instantiation value for Vj, involves trying each value djk and examining whether

a previously instantiated variable, Vi, violates any of the constraints. If a violation occurs

then the value is discarded and the next value in Dj is tried. The Vi that was involved

in the violation gets added as a potential backtrack point when Vj'S confset is updated.

The update of BT's confset is trivial, as it always contains the previous variable as the

potential backtracking point. BJ updates Vj'S confset with the conflicting Vi, together with

all variables preceding Vi, as potential backtracking points. CBJ is similar to BJ, but only

Vi is maintained as a backtracking point. This enables CBJ to recursively back-jump to

previous conflict points, because unlike with BJ any intermediate variables are not main­

tained. It is in the retreat function that these subtle differences of updating the confset

come into play, enabling the implementation of three distinct backtracking policies within

the generic csp-solve function. Eventually, if Vj cannot be instantiated because all values

from Dj are exhausted, then backtracking is necessary and this responsibility is passed on

to the retreat function.

When search has to retreat, the variable with the highest subscript (or most recently

instantiated) is always selected as the backtrack point. Any inconsistencies experienced

when advancing the search are recorded with the update of the confset. The union of

the confset for Vj (the variable at the dead-end point) with the confset for Vi, ensures

that these experiences are not forgotten even when search has to resume from a previous

stage. However, it is only with CBJ that such explicit knowledge about past experiences

is exploited, as here the updating of confset maintains Vi as the backtracking point. Ac­

cordingly, if Dj is {}, CBJ will be able to reuse any past knowledge about inconsistencies,

hence the potential to backjump further.

The confset variables identified during a search can also be used as an opportunity for

learning, in addition to focusing backjumping. The technique of learning in this manner is

called constraint recording and can also be viewed as explanation based learning (Dechter

& Frost 1999). The idea is to add the contents of the confset (no goods) in the form of new

constraints. This increases search space pruning, whereby the same inconsistencies will

not be rediscovered. Kambhampati's (1998) approach to planning, exploits the ideas of

backjumping and explanation based learning. Although the planning activities and their

2.2. Knowledge Refinement as Search 25

sequences are not fixed, the descriptions of each activity contain static information speci­

fying preconditions and effects of the activity. When inconsistent activities are identified,

their preconditions and effects are noted and formulated into new constraints.

2.2.2 Repair-Based Approach

The repair-based search for a CSP solution guesses an initial solution to the CSP that is

likely to be inconsistent. This solution is then incrementally altered by changing values of

strategically selected variable instantiations (Bart Selman & Cohen 1994). Typically, the

selection strategy adopts a hill-climbing approach that advances to the next best state.

Such a strategy is computationally expensive, as all variables and possible value instantia­

tions must be explored. The min-conflicts heuristic aims to reduce this exploration task by

selecting a random inconsistent variable, and instantiating it with the value that conflicts

least with the rest of the variables (Minton, Johnston, Philips & Laird 1992). However,

the hill-climbing repair based approach suffers from the common local optimum problem,

and must be complemented with randomised techniques, that can get out of and beyond,

the local optimum. The mixed random-walk strategy (Selman & Kautz 1993), introduces

controlled randomness to the search by interspersing a random step with probability p,

and the hill-climbing step with probability 1 - p. During the random step, an inconsistent

variable is randomly picked and its instantiated value is changed. Another approach main­

tains a short-term memory of past actions (a tabu list), and ensures that the same past

actions are not repeated within a specified tenure (Glover & Laguna 2000), thus avoiding

repetitive actions.

The constructive CSP approaches we have considered, are well equipped to handle

dead-ends and can efficiently get beyond local optima. Although repair-based search

must be equipped with randomised techniques to handle local optima, it has been shown

that these search strategies operate more efficiently in large search spaces where solutions

are not evenly distributed (Minton et al. 1992). One contributory factor towards this

improved efficiency, is due to the use of information about the current solution by repair­

based search, not available to constructive search. This is because, repair-based search

deals with a complete yet inconsistent solution, while constructive search deals with an

incomplete yet consistent partial solution.

2.2. Knowledge Refinement as Search 26

2.2.3 Improving Search Efficiency

CSPs employ various heuristics that reduce search effort (Frost & Dechter 1994, Sadeh &

Fox 1990).

• Value ordering heuristics select those values that conflict least with variables that

are yet to be instantiated;

• Variable ordering heuristics deal with most constrained variables first.

Value ordering aims to select a variable instantiation that is most likely to lead to a solution

without the need for backtracking. The repair-based approach to solving CSPs and its

greedy min-conflict heuristic for repair selection (Minton et al. 1992) is an effective heuristic

of this kind. An interesting value ordering heuristic that can be employed to improve

constructive search efficiency with close parallels to Minton et al.'s min-conflict heuristic

is the look-ahead min-conflict value ordering heuristic for constructive search (Frost &

Dechter 1995). Here, values of a variable are ranked in increasing order based on the

number of incompatibilities with potential values of future variables to be instantiated.

For the generic esp-solve function in Figure 2.3, this would mean a simple modification

to advance: sort the possible instantiation values in Dj in ascending order, according

to the number of incompatibilities with all potential values of variables yet to be solved,

{Vj+l,""Vn },

The intuition behind variable ordering heuristics is to deal with the most constrained

variable first, thereby enabling early discovery of dead ends, hence efficient pruning of the

search space. A CSP variable is generally constrained in two ways:

• by the constraints it is involved in; and

• by its domain size.

Most common variable ordering heuristics exploit these two properties separately or in

combination (Dechter & Meiri 1994, Gent, MacIntyre, Prosser, Smith & Walsh 1996,

Gent, MacIntyre & Prosser 1996, Brelaz 1979). Essentially, these heuristics aim to deal

with variables involved in the most number of constraints and/or, with smaller domain

sizes first. Heuristics for static variable ordering exploit relationships among variables

identified from the topology of the constraint graph (Tsang 1993). Here, the aim is to

2.2. Knowledge Refinement as Search 27

deal with tightly constrained variables early, consequently reducing the number of re­

visits to previously instantiated variables. Dynamic variable ordering addresses the fact

that invariably the best variable order is different in different branches of the search tree,

by taking advantage of the information available after each variable instantiation to move

the search to branches that are more likely to contain a solution (Haralick & Elliott 1980).

Various look-ahead strategies select the variable that most constrains the remainder of the

search (Smith & Grant 1998). The motivation behind all such heuristics is to deal with

variables that are most constrained first since leaving them until later can only lead to

increased demands on consistency and late discovery of dead-ends.

2.2.4 Dynamic CSPs

Recent developments in constraint programming have increased pressure to adopt CSP

techniques for scheduling and planning tasks (Bartak 2000). The main difficulty with these

tasks involve changing variables, domains and constraints during search. These difficulties

have warranted the extension of the conventional CSP framework to a Dynamic CSP

(DCSP) framework, in which variables, domains and constraints are not required to be

known fully in advance (Mittal & Falkenhainer 1990, Lamma, Mello, Milano, Cucchiara,

Gavanelli & Piccardi 1999, Kambhampati 1998).

Mittal & Falkenhainer (1990) introduce the idea of active variables and non-active

variables. The solution to a CSP involves instantiating all active variables. However, as a

result of instantiating an active variable, non-active variables can become active depending

on the value being instantiated. This necessitates a new type of constraint called activity

constraint, which constrains a variable to be active or not active, based on other variables

that are active and on their value instantiations. For instance, given a car configuration

task, if the frame of the car is to be a convertible, we need to gather information about the

types of sun roofs, if however the frame is simply a hatch-back, then the variable associated

with sunroof need not be active. Additionally, standard constraints are distinguished

from activity constraints as compatibility constraints, because of the active/non active

variable distinction. However unlike standard constraints, compatibility constraints are

applicable only if all variables that are constrained by it are active. Essentially, the

idea of activity constraints extends standard CSPs to handle a changing set of variables

and reasons about the activity of variables. The idea of activity constraints is adopted

2.3. Example Selection for Learning Algorithms 28

for solving planning tasks in (Kambhampati 1998, Kambhampati 2000, Kambhampati &

Nigenda 2000). Here, as the initial state of a plan is incrementally transformed into the

goal state via intermediate states triggered by the application of plan actions, the effects

of these actions can necessitate the application of other actions. For instance, given an

object, with the goal of shaping and polishing it into a cylinder, then rolling the object

to make it cylindrical, will necessitate the application of the new action of cooling the

object, as polishing cannot take place when the object is heated. Therefore the effects

of plan actions are analogous to activity constraints, but there is no direct analogue to

compatibility constraints.

For constraint problems where the acquisition of all domain values is not convenient,

the idea of interactive constraints is introduced in (Lamma et al. 1999). Interactive con­

straints in addition to standard constraints, can also constrain variables for which all

domain values are not known. A variable gets instantiated with values from its known

domain, if however the domain is completely unknown, then value acquisition is triggered

and guided by any unary constraints. Forward checking involves constraint propagation

to ensure that future variables are consistent with the newly instantiated variable. During

the process of forward checking, with the interactive CSP approach, if domains of any

future variables involved in a constraint are unknown then value acquisition is initiated.

Therefore, interactive constraints extend the role of standard constraints, to cover vari­

ables with domains partially known or even completely unknown, and triggers and guides

value acquisition during forward checking.

2.3 Example Selection for Learning Algorithms

Fundamental to the operation of all refinement systems in Section 2.1 is the availability of

labelled examples. Surprisingly, all refinement systems assume that a representative set of

labelled examples will be available, and do not address the potential problem of refinement

constrained by the availability of labelled examples. Although a batch version of EITHER

has been implemented to deal with the availability constraint it assumes that examples

contained within batches that become available are all labelled (Mooney 1992). In a real

environment unavailability of labelled examples is a relatively common problem, where

labelling many problem-solving tasks with the expert's solution may require significant

2.3. Example Selection for Learning Algorithms 29

interaction with a busy expert.

The problem of unavailability of labelled training examples and sample selection of rel­

evant examples from a set of unlabeled examples, has been addressed by machine learning

algorithms and falls under the paradigm of active learning. There are two main approaches

to active learning:

• membership queries, in which the learner constructs examples and asks an expert to

label them (Angluin 1988, Angluin, Frazier & Pitt 1992); and

• selective sampling, where the learner examines many unlabelled examples, selecting

only the most informative ones to be labelled by an expert.

Here, the focus of interest is in selective sampling, where the underlying assumption is that

a large set of unlabelled training examples are available. Such an assumption is not un­

reasonable, as unlabelled examples can be generated based on meta knowledge (Zlatareva

& Preece 1994, Ayel & Vignollet 1993). Moreover, in some problem domains the observa­

tions are readily available but the labelling is costly, e.g. document classification on the

web.

Selective sampling strategies utilise information from labelled examples to perform se­

lection on the unlabelled examples. Typically, the labelled examples are used to train a

classifier which then predicts the labels of those unlabelled, and selection exploits clas­

sification uncertainty of the classifier, i.e. selects those examples for which the current

best model is most uncertain. More recently, this approach has been extended to include

several classifiers that operate as a committee, and selection exploits classification uncer­

tainty reflected by the committee as a whole, thereby evaluating classification uncertainty

with respect to a subset of models from the entire space of possible models.

2.3.1 Uncertainty-Based Classifiers

Cohn, Atlas & Ladner (1994) apply selective sampling to the task of learning a binary

concept, by using a specific-general (SG) neural network configuration. The specific con­

figuration (S-net), is achieved by preferring a network configuration with highest accuracy

on a data set, formed by arbitrarily adding unlabelled examples and treating them as neg­

ative examples. Essentially, this is training with a negative bias, where the S-net covers

2.3. Example Selection for Learning A lgorithms 30

a few positive examples clustered in a small area of the version space. The most gen­

eral configuration (G-net), is formed by introducing a positive bias resulting in the G-net

covering all positive examples, but in doing so will also include negatives. Figure 2.4 illus-

_ -~oo ° ° ° + 00 _ 0
o ..p 0
/00 + 0

o 0 0 ° 0 _ 0 00

o + ° 0
+ 0 + 0

(a) (b)

Figure 2.4: Learning with (a) a Negative Bias and (b) a Positive Bias .

trates for a binary classification problem, the different generalised and specialised concept

boundaries learned by the G-net and S-net. The dots in Figure 2.4(a), represent nega­

t ively labelled examples arbitrarily added to create a negative bias, and in Figure 2.4(b),

positively labelled examples to create a positive bias. The concept is indicated by the

shaded area. The obj ctive is to exploit the region of uncertainty, by selecting unlabelled

examples for which both network configurations fail to agree upon their labels. The arrows

in Figure 2.4, highlight two examples for which the S-net and G-net are bound to disagree.

An example in the uncertain area once selected, is labelled by the expert, consequently

the network configuration is updated as follows:

• If the S-net had incorrectly estimated the example as negative, then the S-net concept

boundary is generalised to cover these examples; otherwise

• if the G-net had incorrectly estimated an example as positive, then the G-net concept

boundary is specialised, such that it does not cover this example.

The uncertainty-based example selection and labelling process iterates unt il both net­

work configurations converge. An obvious danger in this approach is that with complex

concepts the G-net may cover the entire version space, reducing the efficiency of selective

sampling to that of random sampling. Therefore, an obvious difficulty with this ap­

proach is in identifying the initial concept boundaries specially for domains with multiple

2.3. Example Selection [or Learning Algorithms 31

classes and complex concept boundaries. The inductive learning algorithm DIDO (Scott

& Markovitch 1989) also employs informative example selection at concept boundaries,

and avoids the boundary identification problem by employing the Shannon uncertainty

measure (Shannon & Weaver 1949). This measure tends to associate high scores to classes

with fewer examples, thereby reflecting the need to learn about these classes. However, the

Shannon uncertainty measure can only focus attention of the learner to a particular class,

and example selection itself is the responsibility of the learning algorithm. Therefore, for

selective sampling, this measure can only be applied once labels are estimated.

Selective sampling for the nearest neighbour algorithm applied to a binary domain

is discussed in (Lindenbaum, Markovich & Rusakov 1999). Label estimation of an un­

labelled example is done by means of a linear combination function, that combines the

classes of labelled examples according to correlation between feature vectors. The result

of this correlation is that labelled examples that are also the nearest neighbours, tend

to influence the label estimation of an unlabelled example. The greater influence is re­

flected by higher weights assigned to nearest neighbours. The weights are obtained by

matrix transformation employed when fitting a multiple regression model (Mendenhall &

Sincich 1988). However, one proqlem with using a linear combination function as a label

estimator is that class estimates can result in values outside the binary class range [0,1]'

requiring some form of rounding.

Once class labels have been estimated for all unlabelled examples, the next task is to

select D' examples that would increase the accuracy of the nearest neighbour classifier. A

utility function is employed for this purpose comparing the gain in classification accuracy

over the unlabelled examples U, between the classifier h formed using the labelled examples

D, and the classifier h' formed using DUD'. The D' that increases accuracy is selected for

labelling. The gain in accuracy can be a simple comparison of how many examples in U

were correctly classified by hand h' according to the nearest neighbour principle. However,

Lindenbaum et aI. employs h and h' as probabilistic classifiers. The experimental results

are encouraging, although the test domains have been restricted to binary classification

tasks.

Lewis & Catlett (1994) employ a probabilistic classifier to select examples for the

C4.5 learning algorithm (Quinlan 1993). Once trained on labelled data, the probabilistic

classifier is applied to the unlabelled examples, selecting those about which it is most

2.3. Example Selection for Learning Algorithms 32

uncertain. The motivation here is to use the cheaper probabilistic classifier to select

examples for the relatively expensive C4.5 classifier. Experimental results suggest that

labelling cost was reduced when example selection was carried out by the probabilistic

classifier and by the more expensive C4.5 algorithm. However, there is some penalty on

classifier accuracy when uncertainty sampling is carried out by the probabilistic classifier

for C4.5, instead of C4.5 itself.

2.3.2 Committee of Uncertainty-Based Classifiers

Freund, Seung, Shamir & Tishby (1997), employ a two-member committee drawn from a

sample of labelled examples to select informative examples that can then be labelled by

an expert. An informative example is one for which the committee fails to agree about

its label, because the example has changed the representation of the hypothesis. Gen­

erating a committee member involves selection of parameter values that are required for

class probability estimation. These parameter values are selected according to the under­

lying statistics of the labelled examples. Essentially, a member can be viewed as a set of

parameters that are needed to estimate class labels of unlabelled examples given their fea­

tures. For each unlabelled example, each member in turn estimates its label. Informative

examples are selected according to committee disagreement and labelled by the expert.

The newly labelled examples will now influence the parameter values, therefore, a new

committee is generated according to the underlying statistics. This process can continue

until consecutive agreement between the committee is above a predetermined threshold.

Notice that with an increasing number of labelled examples the variance between param­

eter values picked for committee members decreases, thus leading to committee members

with fewer disagreement.

The basic two member committee approach is extended to k members in (Argamon­

Engelson & Dagan 1999). Here, the committee-based approach is applied to learning

Hidden Markov Models (HMMs) (Merialdo 1991) for part-of-speech tagging of English

sentences. Part-of-speech tagging involves labelling each word in a sentence according to

its role in the sentence, e.g. verb, noun etc. HMMs are trained so that given a sentence

it is able to classify the words into their respective sentence roles. The committee-based

approach is employed to aid the HMMs to learn efficiently achieving improved accuracy

using fewer training examples. Unlike with the two member committee, with k members

2.3. Example Selection for Learning Algorithms 33

a more sophisticated measure of disagreement is necessary. The vote entropy measure,

captures the uniformity in class estimation for an example by the different committee

members. Given the set of classes C, and the number of committee members classifying

e in class c, where cEC, denoted by votes(c, e), the vote entropy is:

vote entropy (e)
1 '"'" votes (c, e) 1 votes (c, e)

log min(k, ICI) fEe k og k

The entropy measure is normalised by a bound on its maximum possible value, log

min(k,ICI), such that the value is between 0 and 1. The higher the value the greater

the disagreement.

An alternative measure of disagreement is suggested by McCallum & Nigam (1998),

using the Kullback-Leibler (KL) divergence to the mean. Here, the measure relies on the

probability attached by each committee member, that an example is in c. Therefore, unlike

the vote entropy, which compares only the committee members top ranked class estimates,

KL divergence can measure the strength of the disagreement based on all class distribu­

tions. Although the vote entropy measure is appealing due to simplicity, experiments

indicate that KL divergence results in improved accuracy when sampling on domains with

sparse examples. The improved performance of KL divergence is explained by its ability

to select examples that were sufficient to learn generalised concepts. Interestingly, this

means that the vote entropy measure tends to select atypical examples, while the KL

divergence avoids atypical examples. Therefore, for applications where the aim is to learn

new concepts it makes sense to avoid atypical examples, as they would lead to skewing of

statistics; whereas, for the task of identifying difficult or noisy examples, it makes sense

to concentrate on atypical examples.

An interesting approach combining a committee with Expectation Maximization (EM),

is employed for the task of text classification in (McCallum & Nigam 1998). A common

difficulty for text classifiers is the need for a large, often prohibitive, number of labelled

training documents to learn accurately. The task of training a text classifier using a

limited number of labelled documents is tackled in (Nigam, McCallum, Thrun & Mitchell

1998, Nigam, McCallum, Thrun & Mitchell 2000), by incorporating information from

unlabelled documents. The labelled documents are used to calculate the initial parameter

2.3. Example Selection for Learning Algorithms 34

values, which consist of:

• the class probability distributions for each word, i.e. the number of word occurrences

for a given class normalised by all word occurrences in that class; and

• the prior probability distributions for classes, which is the ratio of documents in a

given class.

These parameters are then used by a naive Bayes classifier (Domingos & Pazzani 1997) to

estimate the most likely label for the set of unlabelled documents. The labelled documents

and the newly labelled (estimated) documents are then used to form new parameters

values. This process iterates until there are no changes (or minimal changes) to the

parameter values between consecutive iterations. Unlike selective sampling where labels

can be sought from an expert, here the learning relies on the Bayes estimates and on

the convergence of parameter values. Essentially, this process of estimating labels and

incorporating the newly labelled examples in the re-calculation of parameters for the next

iterations, falls under the Expectation Maximization class of algorithms (Dempster, Laird

& Rubin 1977).

Although text classification with EM is able to improve classification accuracy by

supplementing scarce labelled documents with unlabelled documents, selective sampling

has the potential to improve accuracy further, as labels for selected examples can be sought

from the expert (McCallum & Nigam 1998). The committee based approach is extended

to include EM, where each committee member applies EM before estimating the final set

oflabels for the unlabelled examples (see Figure 2.5). A member is generated by randomly

selecting parameter values constrained by the variance. For instance, the variance for the

parameter p(tlc) that estimates the probability of word t given class c, where the total

number of word occurrences for c is n, is specified as:

p(tlc)(1 - p(tlc))
n

Here, the variance decreases as more labelled examples are available for the parameter

estimation. The result is that labelling of selected examples improves the estimation of

parameters for EM, while incorporating EM with each committee member, avoids selecting

examples whose labels can be reliably predicted by EM.

2.3. Example Selection for Learning Algorithms 35

1. Calculate initial parameter values S, and variance cr, for these values
based on labelled documents.

2. For i = 1 to k
(a) Randomly select 8j from the range constrained by S and cr.

(b) Initialise new Sj as Sj

(c) Apply EM with the unlabelled documents and Repeat:
* Let Sj = new 8j

* Estimate labels for unlabelled documents using 8j .

* Calculate new 8 j based on the labelled and
newly labelled documents.

Until Sj = new 8 j

Cd) Use new Sj to estimate labels for all unlabelled documents.

3. Calculate the disagreement between the k members based on the label
estimates in step 2 (d), and request labels where disagreement is high.

Figure 2.5: Complementing committee based approach with EM.

The use of a committee to identify and eliminate noisy examples, instead of selecting

examples, is discussed in (Brodley & Friedl 1996). Here, the goal is to improve the

quality of the training set consisting of all labelled examples but possibly contaminated

with noise. Essentially, the committee acts as a filter that identifies and eliminates noisy

examples from the training set. A committee with k members is generated by performing

a n-fold cross-validation over the training examples (see Figure 2.6). Each member is

a learning algorithm that is trained on the 1, ... , n - 1 parts of the training set. The

resulting classifier estimates the class of each example in the nth part; if the estimate is

correct, the example is tagged as correct otherwise tagged as mislabelled. The tagging by

the committee is analysed to establish whether the example should be eliminated or not.

The consensus heuristic requires complete consensus between members before an example

is retained. The less conservative majority heuristic requires that a majority of members

are able to classify the example correctly before it can be retained. With both heuristics

there is the danger of either being too conservative and retaining noisy examples or of

detecting noisy data at the expense of throwing away useful examples. Therefore, when

training data is scarce it makes sense to employ the majority heuristic, and for situations

where examples are in abundance the more conservative approach is suited.

2.4. Conclusion 36

Q Q G;J
Train on

n-l parts

The Committee

Classifier 1 Classifier 2 Classifier 3

Label, Identify,
and Eliminate Mislabelled

Examples

[]
Figure 2.6: Filtering Noisy Examples Using a Committee of Classifiers.

2.4 Conclusion

Refinement systems employ training examples to drive the refinement process. Addi­

tionally, training examples are useful for refinement filtering and refinement sequencing.

Ideally, a refinement system should employ training examples for all three purposes: driv­

ing, filtering and sequencing. The main weakness with most refinement systems is the

hill-climbing based refinement search approach which invariably results in the local op­

tima problem. Therefore, we need search mechanisms that can help guide refinement by

avoiding local optima, and recovery strategies that help deal with local optima when they

occur.

Search strategies for CSP show that backtracking strategies are commonly employed

to deal with search dead-ends. A CSP search dead-end can be viewed as a local optimum,

because the search for a consistent CSP solution requires getting out of the dead-end,

and moving to a different part of the search space. However, an analogy between CSP

search and refinement search is required before CSP search and ordering strategies can be

incorporated by a refinement system.

The choice of training examples for refinement becomes important when one of the

2.4. Conclusion 37

constraints on the refinement process is a limited number of labelled training examples.

Most selective sampling strategies for machine learning algorithms, exploit the uncertainty

about an example's label as an indicator of its usefulness for learning. Direct applicatiol!

of these strategies to refinement systems is not necessarily the best way forward, because

refinement systems can in addition to the set of unlabelled examples, exploit problem

solving behaviour of the faulty KBS. However, the committee based approach may provide

an opportunity to incorporate problem solving behaviour if the proposed refined KBSs were

to form the committee. Clearly, for knowledge refinement tools we need to incorporate an

example selection approach which could be achieved by adapting existing approaches or

by new approaches that are specially catered for the refinement task.

Chapter 3

Iterative Refinement

An iterative approach to refinement aims to incrementally improve the accuracy of the

refined KBS with each refinement cycle. Occasionally, contrary to such expectations, a

greater gain in accuracy can be achieved in subsequent iterations, by deliberately undoing

incremental effects in preceding iterations. The emphasis of this chapter is on the use

of training examples to guide and direct the KRUSTtool's refinement process through the

space of possible refinements. Essentially, we are interested in improving the efficiency

when searching for refinements, and for this purpose, various search techniques for solving

constraint satisfaction problems are adapted for iterative refinement, with a view to im­

proving accuracy in the final refined KBS. The results reported in this chapter have also

been published in (Wiratunga & Craw 1999a).

A general iterative refiriement framework is presented in Section 3.1. A solution to

the obvious drawbacks in this framework leads to the discussion in Section 3.2 which

presents an analogy between CSPs and iterative refinement as a way to incorporate CSP

search strategies for iterative refinement. Section 3.3 analyses differences between CSPs

and iterative refinement and discusses how CSP search strategies might be adapted for the

KRusTtool and the implications of these adapted search strategies on iterative refinement

is presented in Section 3.4. An initial study of re-ordering techniques which address

refinement search efficiency is presented in Section 3.5, before concluding with Section 3.6.

38

Faults

Generate

Potential

Refmed KBSs

3.1. The Itera.tive KRusTtool Process 39

Constraint

Examples

Buffer ,
Training

Examples

Buffer

I·········;~~~~·;·~~;~:~···i I"· .. ··~:~:~~··~:::····l
! ~.~~,j i.. .. ~~.~.~~~ .. ~.~.l

Figure 3.1: The iterative refinement process.

3.1 The Iterative KRusTtool Process

The KRUSTtool can be employed to carry out iterative refinement as illustrated in Fig­

ure 3.1. The input KBS is the best refined output KBS from the previous iteration, or

the original faulty KBS for the first iteration. The training examples buffer contains the

training examples {el' ... , en}, which are utilised one at a time. Each training example e,

is a task-solution pair ([iI,· . . ,1m] ,goal); where the observables iI, ... ,1m are the facts

that ini tialise the problem-solving task, and its solution goal is the example's label ac­

quired from the expert. For each iteration, the top most example in the training examples

buffer is chosen as the r finement example and drives that refinement cycle.

The refinement example's observables initialise the problem-solving task for the input

KBS , which triggers the KBS 's reasoning process , resulting in the system solution. The

input KBS:

• solv s the refinement example correctly, if the system solution matches the example's

solution; or

• olv s the refinement example incorrectly, if there exists a mismatch between the

syst m's solution and the example's solution.

3.1. The Iterative KRUSTtool Process 40

When the refinement example is correctly solved by the input KBS then refinement is not

required, otherwise the fault evidence is employed to identify faulty elements of the input

KBS. The refinement algorithm then identifies various ways by which the required goal

solution can be attained, in order to solve the refinement example correctly. Consequently,

several potential refinements are generated and implemented as refined KBSs.

Once the input KBS is executed on the refinement example, the example is transferred

into the constraint examples buffer. This buffer maintains all previously solved refinement

examples, now referred to as constraint examples. The constraint examples buffer helps

filter potential refined KBSs, by rejecting those that incorrectly answer any of the con­

straint examples in it. If chestnuts are available we can deal with them first by adding

them into tebuf. Once solved, these chestnuts will be moved into cebuf. Like the rest of

the examples in cebuf the chestnuts will also enforce constraints on future refinement iter­

ations. Filtered refined KBSs that are consistent with cebuf are ranked by their accuracy

on the remaining examples in the training examples buffer, and the refined KBS with the

highest accuracy is the output KBS for this iteration. The iterative refinement process

continues until an output KBS that correctly solves all examples in the training examples

buffer is produced, this KBS is the final output KBS.

The hill-climbing selection of the one best refined KBS for the next iteration occurs at

the end of each cycle. This selection works well provided it is possible to select, from the

set of generated refined KBSs an output KBS with accuracy always greater than that of the

input KBS. However, it is not unusual to have a refinement cycle where the KRUSTtool fails

to generate any refined KBSs, or where the input KBS has greater accuracy than any of the

generated refined KBSs. Such complications are symptoms of the local optimum problem,

common to hill-climbing search algorithms. Once a local optimum is reached, further

advancement does not lead to any improvement in accuracy, and here we refer to this

situation as a refinement dead-end. Terminating search when a dead-end is encountered

is not an option, particularly when there are examples yet to be processed in the training

examples buffer. Fortunately, the KRusTtool's iterative refinement algorithm, generates

and implements several refined KBSs in each refinement cycle, hence, the opportunity to

explore previously abandoned refinement alternatives.

Figure 3.2 illustrates the start of a potential backtracking scenario; the updates to the

constraint examples buffer (cebuf) and the training examples buffer (tebuf) are shown

3.1. The Iterative KRUSTtool Process 41

on the right. Each node denotes the refinement example in a given iteration. An arc

connecting consecutive refinement examples, denotes the best refined output KBS from

iterationi being used as the input KBS in the subsequent iterationHl. All abandoned

refined KBSs in an iteration are indicated by open ended arcs. For instance, in iteration2,

three refined KBSs are generated with e2 as the refinement example. All three refined

KBSs are consistent with examples in cebuf, but K21 with highest accuracy on tebuf, is

selected as best and is the input KBS in iteration3, while K22 and K 23 are abandoned.

Refinement examples e3 and e4 have triggered the generation of several refined KBSs and

again the best is selected. In iteration5, we have a situation where, K41 cannot be refined

by e5, because, although four refinements are generated, all are rejected by the constraint

examples in cebuf. Here, the KRUSTtool has reached a dead-end, indicated by a darkly

shaded node for e5, with four dashed lines corresponding to the four generated refinements.

The refinement path consists of a series of incremental refinements made to the original

faulty KBS; in the diagram this path is ... e2 K2) e3 K3) e4 K4) e5.0 where 0 indicates

the absence of a selected refined KBS. Strictly, it is this path that labels the refined KBSs

in the diagram and so the output KBS labelled K51 is really named K. .. 21314151, which is

the outcome of consecutive refinements K 21 , K 31 , K41 and K 51 .

iterationz -e2 - - - - - - - - -ieb~/ {~~ e; e~ -~s-~6· .. }

cebuf {el}

iteration3 tebuf {e3 e4 es e6 .. }
cebuf {el e2}

iteration;' -. ---- -e4- - - - - ... - - - - - - - - -iebul {e4 (:5 e6 -.:} -.
cebuf {el e2 e3}

iterations -. -- -es -------------------iebuT {(:5 (:6~: J ----
I \ ~ cebuf {el e2 e3 e4}

I "

J{SI K;2 K53 KS4

iteration6 --------. ----------------------------------.

Figure 3.2: Knowledge refinement as search.

3.2. CSP Search Strategies for Knowledge Refinement 42

When the iterative refinement process encounters a dead-end, as in iteration5, the

following alternative strategies might be employed to get out of, and beyond the dead­

end:

• continue with K41 to iteration6 (the next iteration) with e6 as the refinement ex­

ample, ignoring the fact that e5 is not corrected, and is unlikely to be by future

refinements; or

• continue with the refined KBS selected from K51, . .. , K54, with the highest accuracy

on tebuf, ignoring the fact that the selected refined KBS is inconsistent with one or

more previous examples in cebuf; or

• generate a fix that explicitly solves e5 only, even though in practice KBSs with such

refinements may be too specialised.

A much more desirable alternative is to backtrack through the solution space of refined

KBSs, and restart the refinement process with a rejected refined KBS from an earlier node.

For the scenario in Figure 3.2, this would entail undoing the most recent successful refine­

ment (which was in iteration4), and restarting refinement with K42 and e5. Backtracking

in this manner although simple might not necessarily be efficient, as the actual cause of

the dead-end could be further up the refinement path. Therefore, we investigate various

search strategies that enable more guided backtracking. For iterative refinement, this

would mean the ability to restart the refinement process from an earlier point responsible

for the current dead-end.

3.2 CSP Search Strategies for Knowledge Refinement

Incorporating CSP search strategies with the iterative KRUSTtool, will enable efficient

search through the space of incrementally refined KBSs generated by the KRUSTtool.

Consequently, the KRusTtool, when necessary, will be able to revisit refined KBSs that

have previously been abandoned by the refinement algorithm. For this purpose we need

to propose an analogy between CSPs and knowledge refinement problems, so that the

concepts applied in the CSP paradigm can be imitated in the refinement domain.

3.2. CSP Search Strategies for Knowledge Refinement 43

CSP
Variables
Current Variable (Vi)
Instantiated Variables
Uninstantiated Variables
Variable Domain for Vi

Constraints

Iterative KRusTtool
Input/Faulty KBSs
Current Input KBS (Ki)
Output/Refined KBSs
Unrepaired Faults
Proposed Refinements for Ki
Consistency with cebuf

Table 3.1: Analogy 1: CSPs and Iterative Refinement.

3.2.1 Knowledge Refinement as Constraint Satisfaction

Traversing the space of possible solutions efficiently and discovering a suitable solution,

are common goals of both CSP search algorithms and refinement algorithms. One possible

analogy relates CSP variables to input KBSs, instantiated variables to output KBSs and

constraints to maintaining consistency with cebuf (see table 3.1). However, the absence

of relating training examples in some manner to refined KBSs, will cause problems when

backtracking is triggered. For instance, how does one identify which example to execute

the input KBS soon after a back track or a back jump. Furthermore, as there is no prior

knowledge about the number or type of faults in an input KBS, there is no obvious analogy

for uninstantiated variables.

The dynamic nature of the refinement task makes it more complex than the well

defined CSP task, however, a second analogy in Table 3.2 gives prominence to the training

examples, hence, a more static view of refinement search. The training examples, like

the variables, are fixed from the onset of the refinement task. Constraint examples in

cebuf, are solved correctly or have been corrected in the past and so are analogous to

instantiated variables. The best refined KBS is selected from the set of potential refined

KBSs generated by the refinement algorithm in a refinement cycle. Therefore, proposed

refined KBSs are comparable to the variable domain, although refined KBSs become known

only with each refinement cycle, unlike the variable domain which is fixed from the start.

However, the problem of not knowing the domain in advance can be handled by associating

generated refined KBSs with the refinement examples that triggered the refinement cycle,

and reasoning about backtracking using constraint examples rather than KBSs. Finally,

CSP constraints are analogous to maintaining consistency with cebuf. However, unlike

well defined CSP constraints that are known in advance, for knowledge refinement there

are no obvious initial constraints that specify mutually incompatible refinements.

3.2. CSP Search Strategies for Knowledge Refinement 44

CSP
Variables
Current Variable (Vi)
Instantiated Variables
U ninstantiated Variables
Variable Domain for Vi
Constraints

Iterative KRusTtool
Training Examples
Refinement Example (ei)
Constraint Examples in cebuf
Remaining Examples in tebuf
Generated Refined KBSs for ej

Consistency with cebuf

Table 3.2: Analogy 2: CSPs and Iterative Refinement.

With many applications it is not possible to acquire all domain values at the beginning,

as the acquisition process can be computationally expensive (e.g. 3D object recognition),

or the domain values can be unavailable at the beginning (e.g. knowledge refinement).

The Interactive CSP framework proposed by Lamma et al. (1999) attempts to deal with

this problem by introducing the idea of interactive acquisition of domain values on demand

or when made available. However, with this approach it is assumed that all constraints are

specified in advance enabling value acquisition on-demand, guided by constraints. With

knowledge refinement we are unable to adopt this interactive approach, because in addi­

tion to unknown domains, there is also no prior knowledge about mutually incompatible

refinements.

3.2.2 Informed Backtracking with the KRusTtool

Using the second analogy from the previous Section we investigate how backtracking might

be applied to iterative knowledge refinement. An advance (see Figure 2.3) with refinement

search is triggered by executing the input KBS on the next refinement example ei. When

ei is incorrectly solved by input kBS, the KRusTtool generates several potential refined

KBSs, Generatedj. The generated KBSs can be viewed as ei's domain for this iteration.

Of these generated refined KBSs, those that are inconsistent with constraint examples

in cebuf are rejected. The remaining subset of refined KBSs, Filtered i , are sorted in

descending order of accuracy on training examples yet to be processed in tebuf, and the

refined KBS with the highest accuracy is selected.

Notice that a generated refined KBS from a refinement example's domain is inconsis­

tent when it fails to solve a constraint example correctly, interestingly, this is analogous

to a variable instantiation that violates a binary constraint with CSPs. The sorting and

selecting step, corresponds to that part of the informed backtracking algorithm which aims

3.2. CSP Search Strategies for Knowledge Refinement 45

to improve efficiency by sorting of values according to conflicts with available values of

future variables.

The conflict set for ei, confset(ei), must contain the potential backtracking points from

ei, which is exploited when ever a dead-end is encountered. For this purpose the confset of

every refinement example needs to be updated, and takes place immediately after Filteredi

is identified. Once Filteredi is known, we will also know which constraint examples caused

the removal of each generated KBS. These inconsistent constraint examples are noted by

adding them into confset(ed according to the update policy in Section 2.2.1. Obviously,

when Generatedi is identical to Filteredi, confset(ei) will be empty.

The search algorithm encounters a dead-end when a refinement example ei and the in­

put KBS fail to create any refined KBSs (i.e. the generated KBSs Generatedi is empty), or

those generated are rejected by the constraint examples (Le. Filteredi is empty). The up­

dated confset(ei), will contain the potential backtracking points from ei. We now consider

two different scenarios and how dead-ends are dealt with in each .

• If Filteredi = n then we know which constraint examples caused the removal of each

generated KBS, and the retreat function in Section 2.2.1 will be called with the rel­

evant backtracking point according to the various informed backtracking algorithms

(Le. BT, BJ and CBJ) .

• If however, Generatedi = n then conflicting constraint examples cannot be identified

since there are no KBSs to test, therefore, there are no obvious backtracking points!

With this extreme situation a back track is forced by updating confset(ed with ei-l

as the backtracking point, before the retreat function is called.

Let us revisit the backtracking refinement scenario from Figure 3.2, repeated in Fig­

ure 3.3. Refinement must backtrack because Filtered5 = n, although Generated 5 =

{K51 ,K52,K53,K54}. Thus for each KBS in Generated5, at least one of the constraint

examples in cebuf must be wrongly answered; suppose K 51 , KS2 wrongly solve e2, and

K53, K54 wrongly solve e3. For BT, e5's confset is the previous refinement example {ed,

and refinement proceeds by backtracking to e4 on the refinement path and choosing the

next branch, in this case K42 with es. For BJ and CBJ, e5 's confset contains the failed

constraint examples {e2, e3}. So refinement continues from the most recent on the path,

e3, selecting the next available refined KBS K 32 , with e4 as the next refinement example.

iteration2

iteration3

iteration4

3.2. CSP Search Strategies for Knowledge Refinement 46

- e- - -- _. - -- - - . - - - - - - - - - - - - - _.
2 tebuf {e2 e3 e4 es .. }

cebuf {ell

tebuf {e3 e4 es .. }
cebuf tel e2}

-e4- - - - - - - - - - - - . - - - - ieilu/ { e~ es -. ."}" ---.
cebuf {el e2 e3}

Figure 3.3: Informed backtracking with the KRuSTtool.

The refinement example e5 is moved back into tebuf as a future refinement example. If no

more KBSs are available from e3 then BJ backtracks to the e2 node and CBJ backjumps

according to the union of e3's and e5's conflict sets. Now, consider the situation where

Generatedi = {}, here we have no refined KBSs to analyse inconsistencies with cebuf. An

update of e5's conflict set is forced by adding e4 as a backtracking point. Consequently,

refinement proceeds with backtracking to e4 choosing to continue refinement with K42

with e5 as the next refinement example.

It is difficult to see how the conflict set contents might be exploited for explanation­

based learning with refinement search. Learning might have been possible if there had been

additional information that specified the cause and effects of various refinement operators.

Work done on knowledge acquisition scripts by Tallis & Gil (1999), provides useful insight

in this direction, as scripts not only specify a sequence of refinement steps but also the

effects of these steps. However, initial results indicate that the complex interaction between

faults in a KBS makes it difficult to enumerate all possible preconditions and effects

without making the scripts too specialised or too generalised. Furthermore, if all effects

can be identified for a given sequence of refinement steps, it is likely that backtracking

will not be required.

3.3. Adapting the Informed Backtracking Algorithm 47

3.2.3 Implementation Issues

A certain amount of book keeping during refinement search is essential to enable back­

tracking to earlier points and restarting refinement with previously abandoned refined

KBSs. The data structure that maintains these details are shown in Figure 3.4. This is

a typical two-way linked list, with each element in the list linked to the preceding and

succeeding elements. Each element itself contains information about the refinement exam­

ple, the output refined KBS, and the set of refined KBSs maintained as a priority queue,

are sorted by accuracy on cebuf and then on tebuf. Any constraint examples that are

inconsistent with the refined KBSs are sorted by recency and maintained in the confset.

Presently, the complete rule sets of refined KBSs are maintained in each list element as

output KBS {K2d output KBS {K3d output KBS {K4d
... _--------_.--------- "." ... -------._--------

refined KBSs {K22 K23 K24 } refined KBSs {K321 refined KBSs {K42 K43 }

Figure 3.4: Maintaining refinement information.

opposed to maintaining just the refinement changes. The disadvantage of the latter is

that it requires merging of refinements and undoing refinements whenever backtracking is

triggered, thereby increasing processing time. However, for large KBSs with over 150 or

more rules it might be sensible to maintain just the refinement changes, particularly, if

storage resources become insufficient.

3.3 Adapting the Informed Backtracking Algorithm

With the analogy in Table 3.2 we are able to employ CSP search techniques for refinement

search. However, there are two problems not seen with CSPs that must be dealt with in

knowledge refinement:

• the behaviour of constraint examples can change - from being correctly solved and

not requiring refinement, to providing new fault evidence in response to a future

refinement choice; and

3.3. Adapting the Informed Backtracking Algorithm 48

• constraint examples that did not trigger refinement because they were already cor­

rectly answered by the input KBS, might appear in conflict sets as potential back­

track points.

To deal with these problems that are unique to refinement search, we look at how the

informed backtracking algorithm might be further adapted for refinement search.

3.3.1 Latent to Active Examples

Figure 3.5(a) illustrates, complications that may arise from the changing behaviour of

constraint examples. In iteration3 the input KBS K 21 , already answers e3 correctly and

r--------~---------,

iteration2

iteraTio1l3

iteratio1l4

, I

I
tebuf (e2 e3 e4 es ..)1
cebuf{el) I

I

tebuf (e3 e4 es ..) I
cebuf (el e2) I

.. - ---.- .. -- --- -- - - - ------- -· · 1
e4 Tebuf (e4 es ..) I

cebuf (el e2 e3) I
K42 I

I

.---- - ----. --------------------------------·1
iteratiolls es tebuf [es ")

/ '\'...... cebuf leI e2 e3 e4) I
/ I I

KSI K~2 K~3 K5'4 I L __________________ ~

(a)

r--------~---------,

I iteratioll2
I
I

I 'iie-raiio~;4- - - - - - - -
I
I
I
I iterations
I
I
I
I

tebuf I e2 e4 es e3 ..) I
cebuf led

K23

tebuf I e4 es e3 ..)
cebuf leI e4)

tebuf (es e3 ..)
cebuf (el e4 es)

I ': - - - : -..... . .. - - - - . - -. - ... - .. I
I l1eratlO1l6 e3 tebuf [e) ..) I
I K K cebuf{ele4 eS e)) I
L ____ ~: __ ~ ___ _____ __ .J

(b)

Figure 3.5: Changing behaviour of constraint examples. (a) Refinement Path with a
Latent Example. (b) Re-ordering the Latent Example.

so the output from this iteration is the same input KBS, K 21 ; this has been highlighted

with gr y shading. It does not affect the search when it is advancing, but backtracking to

this point will cause problems. Let us assume that in Figure 3.5, backtracking is triggered

because Filtereds = {}. Suppose we are using BJ and confset(es) is {e2' e3 }, so we

backjump to e3, the most recently instantiated conflicting point. But the input KBS

K21 already correctly answers e3 and so alternative refined KBSs are not available. We

could simply backtrack further, but the KRUSTtool has just discovered a relationship:

the changes to correct es have interacted with the way that e3 was previously solved.

3.3. Adapting the Informed Backtracking Algorithm 49

Thus, if we backtrack above e3 then it is possible that the same interaction will occur

again. Instead, we can take this opportunity to advance refinement by exploiting the new

relationship that has just been discovered.

Constraint examples that did not contribute fault evidence, like e3 are called latent

examples while the other refinement examples are active. The activation oflatent examples

is often due to a fault being exposed as a result of fixing one or more other faults. However

the activation may also be due to a previous fix that had incorrectly introduced a new

fault. Given the interacting relationship between the latent example e3 and the active

refinement example e5, we choose to solve their conflict at this point by re-instating e3

at the top of tebuf and advancing the search with refined KBS with highest accuracy on

tebuf, K 51 , with e3 as the next refinement example. Figure 3.5(b) illustrates the effect of

reinstating e3 on the refinement path. Actually, it is as if iteration3 was postponed to

iteration6' In the event where the intervening active conflict examples (here e4) become

inconsistent with e3 or e5 in subsequent iterations, backtracking offers the opportunity to

revisit these later.

The distinction between latent and active examples is reminiscent of the application

of DCSP techniques to the configuration task, where active variables and compatibility

constraints correspond to standard CSP variables and constraints, but additional activity

constraints identify active variable assignment values that will require the assignment of

values to non-active variables (Mittal & Falkenhainer 1990). In knowledge refinement, the

effect of active examples may introduce a contribution from latent (non-active) examples,

and so can be seen as an activity constraint.

3.3.2 Prioritising Latent Over Active

The presence of latent examples in a refinement path has no impact initially as they are

already answered correctly, and do not provide fault evidence. When latent examples

crop up in subsequent confsets, not only do they provide fault evidence, but they also

have the added interacting relationship with the current refinement example. Therefore,

the backjumping algorithms are amended to take further account of latent examples when

they appear in confsets as potential backtracking points. If in Figure 3.5(a), confset(e5) is

{e3, e4}, then backjumping will resume with e4 and the fault evidence now presented by the

latent example e3 will be lost. Instead, we priorities latent examples that appear in conflict

3.4. Comparison of Backtracking Search for Refinement 50

sets, and rather than backtracking to the most recent conflicting example, we reinstate all

conflicting latent examples into the tebuf. This would mean that search proceeds with e3

and K 51 , the refined KBS in Generated5 with the highest accuracy, despite e4 being in

the confset. If the intervening active conflict example e4, still remains a problem, again

backtracking offers the opportunity to investigate there later.

3.4 Comparison of Backtracking Search for Refinement

BT suffers from thrashing; rediscovering the same inconsistencies and same partial suc­

cesses during search. Backjumping schemes reduce BT's unfortunate tendency to redis­

cover the same dead-ends by retreating search to the actual cause of the inconsistency.

We would expect the same situation within knowledge refinement; where backtracking one

refinement cycle at a time (BT) is likely to lead to many iterations, so the motivation for

introducing BJ and CBJ is to reduce refinement cycles. The experiments apply the Clips

KRUSTtool to a corrupted version of the student loans KBS (see Appendix A).

3.4.1 Experimental Design

The training examples had to be carefully selected to ensure that backtracking was ex­

ercised, since it is only triggered when conflicting repairs are attempted with interacting

faults. A controlled formation of training sets was necessary, as a purely random formation

of training sets might not contain examples that expose interacting faults.

The faulty KBS was executed on training sets with varying example sequences, paying

attention to the KRUSTtool's refinement path, particularly when backtracking is triggered.

When a backtrack or a backjump is triggered with CBJ at node ej, the confset contents,

conjset(ej) are noted. These contents are then used to identify example pairs that have

the potential to trigger backtracking whenever included together as part of the training

set. Let us assume that conjset(ej) = {eg , eh, ed, then the following conflict pairs are

noted {(eg ej), (eh ej)' (ei ej)}. Notice that although backtracking happens from one

example to another, the cause for backtracking need not always be restricted to a pair of

examples. Instead, it could be due to a sequence of incremental refinements associated

with 2 or more examples on the refinement path; for instance {(eg eh ej), (ei ej), (eh ei

ej) etc.}. However, it is difficult to meticulously identify all such potential combinations,

3.4. Comparison of Backtracking Search for Refinement 51

instead we opt for the more straightforward formation of conflict pairs.

~mrnDD~~mB
ru ElD m q ~ Q P ~

8 examples, ~ _ ~ I
(9 conflict pairs)

15 training
examples

22 ' normal'
examples

Corrupted
Student Loans

KRUSTtool

Figure 3.6: Forming training sets that trigger backtracking.

From a selected dataset of 30 examples, 9 conflicting pairs were identified. Actually,

the 9 conflict pairs were formed from 8 carefully chosen examples. Therefore, of the

8 examples some are part of 1 or more conflict pairs. Finding conflicting examples was

relatively asy given the density of corruption of the KBS. The rest of the 22 examples from

the dataset although considered normal, cannot be ruled out as containing other conflict

pairs. Training sets of a given conflict level N, were created from the selected dataset of

30 examples, by randomly choosing N conflict pairs from the identified 9 conflict pairs,

removing duplicate examples when they occurred, and randomly selecting from the normal

examples, until the training set contained 15 examples.

Figure 3.6 illustrates the formation of a training set, with a conflict level of 3. Each

of the 9 pairs of shaded boxes (one stacked on top of the other) denotes a conflict pair.

There ar 8 types of shading representative of the 8 examples that form the 9 conflict

pairs. Once the 3 conflict pairs are randomly selected, any duplicates are removed, hence

the single haded box amidst th other 2 selected pairs. A training set of 15 examples are

formed by randomly selecting a further 10 examples from the normal set . The unselected

examples from the dataset form the evaluation set. The training set is KRUSTtool's tebuf

and the faulty KBS is refined based on fault evidence generated by examples in tebuf.

Refinement continues until all examples in tebuf are correctly solved.

3.4. Comparison of Backtracking Search for Refinement 52

The KRUSTtool incorporating the BT, BJ and CBJ algorithms were applied to each

training set and the corrupted input KBS. For each conflict level N, the test was repeated

10 times, noting for each test run the total number of refinement cycles and the error-rate

of the final output KBS on the evaluation set. The graphs show results averaged over 10

runs for each conflict level. Significance results are based on a 95% confidence level, and

apply the Kruskal Wallis non-parametric test (see Appendix D).

3.4.2 Results

Figure 3.7 shows the number of iterations for each of the algorithms, as the number of

conflict pairs in the training set increases. The results were surprising. BT was expected

to have the most iterations, BJ to have fewer, and CBJ to have the fewest, reflecting

the increased targeting of the search. Instead, we see that BJ has utilised a significantly

greater number of iterations (p=O.OOI). The increased iterations with conflict pairs 3, 5

and 9 is explained by the random selection of conflict pairs during training set formation.

Essentially, when several conflict pairs are selected without any overlap there will be fewer

normal examples needed to form the training set. Such a training set will naturally be

more demanding on the refinement process. With CSPs, BT is guaranteed to have at least

as many iterations as BJ or CBJ. However, in the more dynamic space of refined KBSs

this is not the case; backjumping searched a different part of the space that involved more

iterations.

3S
-O--BT

30 -o-CBJ
'" c:
0 -o-BJ

~ 2S

.... 20 0
0
Z

15

10

0 2 3 4 5 6 7 8 9
Conflict Pairs

Figure 3.7: Number of iterations (Basic Algorithms).

So has there been any gain from BJ's additional searching? Figure 3.8 shows the error

rates of the final KBS produced by the 3 algorithms on the complete set of 30 examples;

3.5. Exploiting Conflict Knowledge 53

the error-rate of the original corrupted KBS is the horizontal dashed line on all error-rate

graphs. BJ, the most greedy in refinement cycles, has indeed gained the lowest error

rate (p=O.005). This behaviour is explained by noticing that, although BJ and CBJ are

guaranteed to find all binary CSP solutions, this is not the case with refinement, since

refinements in different cycles can interact: an earlier refinement can provide part of a

later refinement or conflict with the later refinement. Therefore the refinements that are

proposed depend on the input KBS, and thus the refinement path.

0.18

0.15
-<r-BT

--£r-CBJ

~ 0.12 --<>-BJ

'" IX
0.09 is

- - - Orig.KB

t:
UJ 0.06

0.03

0

0 2 3 4 5 6 7 8 9
Conflict Pairs

Figure 3.8: Error rate of final refined KBS (Basic Algorithms).

3.5 Exploiting Conflict Knowledge

Figure 3.8 shows another interesting trend: the error rate of the refined KBS decreases as

the number of conflict pairs in the training set increases. This confirms the experimental

results in (Palmer & Craw 1996), that the more demanding the examples in the training

set the higher the accuracy achieved by refinement. It also suggested that we explore re­

ordering the training examples to exploit conflict pairs as soon as it is recognised during

iterative refinement. The Minimal Bandwidth Ordering heuristic for static ordering of

variables, attempts to reduce the backtracking distance for CSP algorithms, by placing

mutually constraining variables close together in the search (Tsang 1993). The previous

Section recognised that the refinement example, ej, and its conflicting examples, conf­

set(ej) are mutually constraining, since refinements for ej had affected the correctness of

previous latent examples. We use this idea of mutually constraining examples, to associate

each refinement example and its deepest conflicting constraint example in the sequence

3.5. Exploiting Conflict Knowledge 54

of training examples, in an attempt to reduce the number of iterations of the informed

backjumping algorithms, without compromising the error-rate of the final output KBS.

le~el2 __________________________ _

le~eh __________ _

e5

1 final
51 K52 K53 K41 output

Figure 3.9: Searching without Conflict-Based re-ordering.

Figure 3.9 illustrates a hypothetical backjumping situation. The refinement search

space contains three main refinement paths, of which two have been discarded: e2 K2\

e3 K3\ e4 K4\ e5.0 and e2 K2~ e3 K3\ e4 K4\ e5.0. Suppose in each situation confset(e5)=

{e2} and so backjumping to e2 produces the search as illustrated. But this also means

that e2 and e5 are mutually constraining since the repairs to e5 has affected the solution

to e2. The Minimal-BJ (MBJ) and Minimal-CBJ (MCBJ) algorithms contain a further

amendment to the informed backjumping algorithms, so that backjumping to a node ei

that conflicts with the current refinement example ej, causes the algorithm to try to fix this

pair of mutually constraining examples next. It re-sorts tebuf so that ej is re-used with the

next refined KBS from ei. Thus, the pair of conflicting examples identified in backjumping

become adjacent on the new branch of the refinement path. Figure 3.10 illustrates the

outcome of re-ordering tebuf examples so that e5 is used as the next refinement example

after backjumping to e2, and indicates the potential saving in iterations over Figure 3.9.

Although this re-ordering is not guaranteed to reduce iterations, the relationship between

an example and its confset gives some justification for re-ordering the otherwise random

order of the training examples. It is possible that successive re-ordering of nodes in this

manner may at times lead to the original sequence. Even so, this will not result in cycling

because BJ and CBJ will resort to backtracking once all branches of a node are explored.

leveJL _______ _

level~ ___ _

levels ____ --

K4
final output

3.6. Conclusion 55

Figure 3.10: Searching with Conflict-Based re-ordering.

The earlier experiments were repeated with MBJ and MCBJ algorithms. Figure 3.11

superimposes the bar chart for MBJ iterations on the line graphs for the basic algorithms;

the results for MCBJ are similar to CBJ's so are not shown on the graph. Our goal of

reducing the number of iterations in BJ has been achieved in general, and MBJ's iterations

are closer to BT and CBJ. There were 3 test runs where BJ performed fewer iterations than

MBJ, and a closer examination of one indicated that re-ordering resulted in an increased

search space when two examples ei and ej are affected by the same repair, where the

fault exposed by ej cannot be correctly refined before the fault exposed by ei is refined.

Dependencies of this nature suggest the existence of refinement interdependencies between

training examples, and we explore heuristics that might help identify such relationships

in Chapter 5.

Figure 3.12 confirms that the refined KBS error rates with MBJ, and CMBJ, are

unaffected by the dynamic re-ordering. So MBJ has achieved fewer iterations without

increasing the error-rate of the final KBS.

3.6 Conclusion

We have transformed the natural hill-climbing of the KRUSTtool refinement algorithm

into a best first search with the potential to revisit previously discarded refined KBSs. It

is the KRusTtool's ability to generate many potential refined KBSs in response to fault

<II
c:
0
.~

r:
~
.....
0
0
z

35

30

25

20

15

10

0.18

0.15

0 2 3 4 5 6
Conflict Pairs

7 8

3.6. Conclusion 56

9

c:::::J MBl

-o-BT

-a- CBl

~Bl

Figure 3.11: Number of iterations (Conflict-Based re-ordering).

il·::

:~t

iii:

,.

Ii :.::::

;t ~l~ll ~~~j :1f
~::::: :::~:

o 2 3 4 5
Conflict Pairs

6 7 8 9

j.:.:.:.:.:.:.:.:.:.:.:.: .•. :.IMCBl

c::::=::::J M Bl

--O---BT

-o-CBl

~-Bl

- - - Orig. KB

Figure 3.12: Error rate of final refined KBS (Conflict-Based re-ordering).

evidence, that enables CSP search strategies to be applied with the central refinement

algorithm. Adapting CSP search techniques within the knowledge refinement framework

was possibl because, th se techniques are sufficiently general and a wide range of tried

and tested algorithms are available.

Th authors of other refinement algorithms (Ourston & Mooney 1994, Richards &

Mooney 1995) have argued that the choice of repairs available to their refinement tool

is sufficiently flexible that hill-climbing problems occur rarely, and so make no explicit

attempt to deal with it. Our testbed has shown that it is relatively easy to find mutually

conflicting training examples for sufficiently corrupted KBSs. Therefore, it is important

that refinement tools that deal with examples one at a time must be equipped to handle

conflicting repairs because it is difficult to deal with mutually constraining examples in a

single refinem nt it ration.

The refin ment search that is focused by backtracking, highlights the variety of refine-

3.6. Conclusion 57

ment paths and re-ordering mechanisms open to refinement tools, and has drawn atten­

tion to relationships between training examples that direct the refinement process towards

staged goals in the identification and repair of KBS faults. Similar ideas to this are being

employed by Tallis & Gil (1999), in the design, development and organising of knowledge

acquisition scripts. Like the KRUSTtool's refinement paths, a script describes repairs that

need to be implemented on a KBS, together with follow up strategies to ensure that the

KBS is consistent and complete. Unlike refinement paths, the scripts outline a series of

steps that lead to a desired consistent and complete KBS state. Each step in the series is

tried and tested, and assumed to be the correct refinement decision, therefore, backtrack­

ing steps are not needed. Essentially, scripts can be viewed as refinement paths without

the error-recovery (deadend-backtracking) experience.

Finally, the experiments reported in this chapter show that the informed backtracking

algorithm is able to effectively deal with conflict pairs leading to high quality refinements,

and that training sets with increased conflict pairs produce refined KBSs with lower error­

rates. Introducing backjumping to reduce the excessive search effort typical of BT, reveals

an interesting refinement phenomenon. The more informed backjumping may actually

increase the search. However, it was discovered that the extra iterations are used prof­

itably and provides refined KBSs with lower error-rates. Amendments to the backjumping

algorithms to reduce the iterations, whilst maintaining the high accuracy, concentrate on

re-ordering training examples once backtracking is initiated, by recognising the information

gain offered by both latent and active examples in the confset. These initial experiences

with re-ordering, provides the impetus for the next Chapter, where we will investigate

elaborate re-ordering techniques that exploit knowledge about refinement generation.

Chapter 4

Refinement Search Efficiency

BJ was introduced as a way to reduce the search effort of BT. Contrary to expectation we

found that BJ often increases the number of refinement cycles but that these extra cycles

were used profitably. In this Chapter, we are interested in improving search efficiency

of the BJ KRUSTtool, by reducing the number of refinement cycles whilst maintaining

the improved accuracy as reported in Section 3.4. For this purpose the proposed analogy

between CSPs and iterative knowledge refinement is taken a step further with the aim of

incorporating CSP ordering strategies for improving search efficiency within the iterative

refinement framework. The results reported in this chapter have also been published

in (Wiratunga & Craw 1999b).

Section 4.1 discusses constrainedness with respect to iterative refinement and intro­

duces three heuristics that can be employed to reduce refinement search effort. Experi­

ments comparing various ordering heuristics on the Student loans domain are presented

in Section 4.2 followed by Chapter conclusions in 4.3.

4.1 Constrainedness of Refinement Search

Value ordering in CSPs is analogous to ordering of refined KBSs; which is already done

by the KRusTtool by means of the accuracy ranking. In fact KRusTtool's informed back­

tracking algorithm is closely related to the repair-based approach to solving CSPs and its

greedy min-conflict heuristic for repair selection (Minton et al. 1992); and the refined KBS

ordering itself is similar to the look-ahead value ordering min-conflicts heuristic that ranks

the values of a variable in increasing order based on the number of incompatibilities with

58

4.1. Constrainedness of Refinement Search 59

values of future variables to be instantiated (Frost & Dechter 1995). Here, we concentrate

on how variable ordering can be applied to iterative knowledge refinement.

Although, the notion of constrained ness of variables for CSPs is straightforward, how

does constrainedness translate to training examples for iterative knowledge refinement?

CSP variables involved in the most or tightest constraints correspond to training examples

where refinements generated by the KRUSTtool puts the highest consistency demands

on previously solved training examples. For instance, we can think of the number of

constraints example e is involved in, as the number of previously solved examples that

get unsolved when attempting to solve e. We investigate how these mutually constraining

examples might be identified and the effect of dealing with them first in the next Chapter.

solution solution

(a) (b)

Figure 4.1: Search space (a) without ordering and (b) with ordering

CSP variables with smaller domains correspond to refinement examples that resulted

in the generation of fewer refined KBSs in a refinement cycle. In this chapter we enforce

example ordering according to the number of generated refined KBSs. This means that

the KRusTtool will deal with refinement examples that are likely to provide fault evidence

resulting in the generation of fewer refined KBSs first. Accordingly, constrainedness of a

refinement example can be defined as the number of potential refined KBSs that are gener­

ated by the KRusTtool in response to fault evidence. The fewer potential refined KBSs the

fewer refinement paths, and the more constrained the refinement example. Therefore, it is

in KRusTtool's best interest to deal with most constrained examples first, as early failure

helps prune the search space, thereby reducing overall search effort. In CSP literature this

strategy is referred to as the "fail-first principle" (FFP) (Haralick & Elliott 1980).

4.1. Constrainedness of Refinement Search 60

Figure 4.1 illustrates the motivation behind the FFP. Here, refinement examples X

and Yare both constrained by previously solved refinement examples and are likely to

trigger backtracking. Obviously, the difference in the number of generated refined KBSs

with each of the refinement examples (6 with Y, and 3 with X), means that the order in

which these refinement examples are dealt with can have a marked difference on the search

effort. In Figure 4.1(b), by first attempting X, the example with fewer refined KBSs, the

KRUSTtool is more likely to encounter dead-ends early on. Essentially, if we know how

many potential refined KBSs might get generated with each example, we are able to enforce

some order on the training examples. Certainly, going as far as refinement generation to

measure constrainedness of training examples can be computationally expensive. Instead

we establish heuristics that estimate constrainedness for each training example and use

these estimates to enforce an order on the training examples.

4.1.1 Evidence From the Recent Refinement Cycle

Simple constrainedness information comes from the newly completed refinement cycle;

where the final step executed all the refined KBSs generated in that cycle on the remaining

training examples in tebuf. Although this was done to calculate the error-rate of each of

these refined KBSs, it also determines an estimate of how faulty each training example

is; i.e. how many of these refined KBSs solved the training example incorrectly. With

increased numbers of refined KBSs failing to correctly solve an example, the greater the

evidence that the example is constrained. Remember that all these refined KBSs are

related since they were all derived from the same input KBS, therefore, this justifies

employing them to select the next most constrained refinement example. The underlying

intuition is that an example from tebuf for which the generated refined KBSs find difficult

to solve will have the greatest consistency demands and be restricted to fewer number of

refined KBSs being generated in the subsequent refinement cycle.

Let us assume that M refined KBSs Kil' Ki2, ... ,KiM were generated with ei as the

refinement example and that tebuf now contains training examples ei+1, ei+2, ... ,en . Ta­

ble 4.1 demonstrates how fault evidence from the most recent refinement cycle can be

employed to select the next refinement example from tebuf, with M = 3 and n = 4.

The table entry for ej and Kik has value 1 if Kik incorrectly solves ej, and 0 otherwise.

Therefore, the error-rate of Kik on tebuf, errKik' is the column total divided by n. The

4.1. Constrainedness of Refinement Search 61

row total faultj is the level of faultiness of ej as judged by Kil' K i2 , ... , KiM. The re­

fined KBS with the lowest error-rate, min(errKik)' is selected as the best refined KBS.

For ordering purposes, we use the faultiness measure, where the training example with

the highest level of faultiness, max(faultj) , is selected as the next refinement example.

In Table 4.1 Ku with lowest error rate is selected as the best refined KBS, while e2 with

maximum faultiness is selected as the next refinement example.

Generated Refined KBSs

Kll K12 K13 faultiness

e2 1 1 1 3
e3 0 1 0 1
e4 0 1 1 2
e5 0 1 1 2

error-rate 0.25 1 0.75

Table 4.1: Constrainedness of training examples using potential refined KBSs.

This heuristic is reminiscent of the best known CSP dynamic ordering heuristic, dy­

namic search rearrangement (DSR), which selects the next variable having the mini­

mal number of values that are consistent with the current partial solution (Dechter &

Meiri 1994). Heuristically, the choice of such a variable minimizes the remaining search.

With knowledge refinement we use fault evidence about the most recent potential re­

fined KBSs as the basis for selecting the most constrained training example for the next

iteration.

4.1.2 Evidence From How the Problem was Solved

A more direct estimate of how many refined KBSs will be generated for a particular

training example is the number of places where the problem solving behaviour for that

training example can be changed. The KRuSTtool algorithm creates a data structure

containing precisely this information. The problem graph captures the problem-solving

for the refinement example and allows the KRUSTtool to reason about the fault that is

being demonstrated (Craw & Boswell 1999). Essentially, the problem graph records the

sequence of rule activations leading to the system solution, and additionally shows all

possible rule activation routes that could lead to the required goal solution. Problem

graphs can become quite complex with long chains and complicated branching.

4.1. Constrainedness of Refinement Search 62

In figure 4.2 we use a fictitious rule base, sufficient to illustrate three simple problem

graphs and their function. With training example A=([JAl, ... ,!A4],goalA), the KBS

currently reasons from the observables by applying leaf rules R7 and R4, which together

allow a middle rule RI3 to fire, and finally the end rule Rll concludes SA, a faulty system

solution. The darkened area of the problem graph is the positive problem graph and

corresponds to the problem solving that has been undertaken by the faulty KBS. Therefore

it contains the solution subgraph for the training example but also contains other partial

proofs; e.g. f Al allows R7 to fire, but this only partially satisfies R12. The positive problem

graphs for the other two training examples are similar but notice neither provides a system

solution since each partial solution sub graph terminates with an intermediate result.

r------------,r------------,
I Example A I I Example B ? goa B
I II
I II
I II J

II
II
II
II
II

Rll ii~ n~M~J>i
,

L ____________ J

Ir------------,
II Example C~oalC I
II
II

~l\ ii R, .,

J,~1 r!: ii r' Rf 11':
@IIM-tno-t @ @I

L ____________ JL ____________ J

Figure 4.2: Problem Graph for training examples, A, Band C.

Repairs correspond to preventing faulty rule chains from being activated and so the

4.1. Constrainedness of Refinement Search 63

number of rule activations in the positive problem graph is a simple measure to predict

the number of potential refined KBSs, and hence how constrained the refinement cycle for

that training example will be. Essentially, with fewer number of rule activations the more

constrained the refinement cycle, because there are fewer refinement points. According to

the problem graphs in Figure 4.2 training examples A, Band C have activation counts 4,

2 and 2 respectively, indicating that Band C are the most (and equally) constrained and

so will be selected before A. All ties are broken randomly.

A different yet interesting implication of ordering according to rule activation measures

is that typically, fewer rule activations suggests a faulty KBS that is too specialised.

Training examples with fewer activations are most likely to be false negatives and will be

dealt with first. This is analogous to the ordering strategy adopted by AUDREyII (see

Section 2.1.2), where false negatives are processed before false positives. The difference

is that with a faulty KBS that is too generalised, counting rule activations provides us

additional information about constrainedness, while AUDREyII would simply deal with

false positives in no particular order.

4.1.3 Evidence From How the Problem Should be Solved

The problem graph captures more about the problem-solving than simply recording what

happened. It also contains the negative problem graph which models all possible rule

non-activation routes that would lead to the goal. These are the rule activations that did

not happen, and if they did would have resulted in the required goal, i.e. the expert's

solution. Therefore, in Figure 4.2 the expert's solution for training example A (goalA)

has not been proved because, RlO, Rs and R12 are only partially satisfied, and are unable

to activate. The arrows leading from f A3 and f A4 have not been darkened to indicate

that the conditions in RlO and Rs do not match observables f A3 and f A4, and must be

weakened (generalised) before they are satisfied. In contrast conditions in R4, R13 or Ru

must be strengthened in order to stop the incorrect system solution, SA being asserted.

Similar explanations hold for training examples Band C, but now in addition some rule

conditions (e.g. the first condition of R3 for training example B), cannot be weakened to

match any observable or rule conclusion and so are not linked to any rule or observable

but instead these "non-observables" are labelled no-J.

The negative problem graph provides additional information on how constrained the

4.1. Constrainedness of Refinement Search 64

refinement cycle will be. Counting all the rule activations from the positive parts and the

non-activations from the negative parts of the problem graph provides a second measure of

constrainedness. This measure promises to be more informative since it adds the locations

of possible repairs in the negative problem graph to those from the positive part.

In practice it makes sense to distinguish between rules in the negative problem graph

whose conditions could be weakened to match observables from those that could never be

matched. For this purpose the heuristic is fine tuned so that it ignores any negative rule

activation whose conditions are all linked to (or derived from) "non-observables" (no-f's

in the diagram); e.g. rules R7 and R2 will be omitted from C's count. Without this modi­

fication the heuristic can estimate a training example like C to be less constrained than it

actually is. Such an amendment requires the assumption that training examples are noise

free, however this seems acceptable given our need simply to estimate constrainedness.

Training Refinements Rule Activations
Example Strengthen Weaken None Count All Improved

R4 RiO R7 6 7 7
A R13 Rs

Ru R12
Rl Rs 4 6 6

B R3 R4
RiO
R6
Rg R3 3 7 5

C Rl4 Rl6
R1S R7

R2

Table 4.2: Refinements and rule activations from the complete problem graph.

Table 4.2 lists all the refinement points for the three training examples A, Band C, at

the left. The count of rule activations in the complete problem graph, with and without

the non-observables correction, appears at the right. Therefore, example C with the lowest

improved rule activation count is selected over A and B. Notice that although the improved

heuristic is a good predictor of the number of refinements here, more complex problem

graphs may need a more sophisticated measure that takes into consideration the overlap

between the positive and negative graphs as this may suggest an area void of refinement

points.

4.2. Ordering Heuristics in Practice 65

4.2 Ordering Heuristics in Practice

We can now evaluate the BJ KRUSTtool by applying static and/or dynamic ordering of the

training examples using the heuristics described in Section 4.1. Static ordering involves

an initial ordering of training examples, while dynamic ordering ensures that the order of

training examples for a given refinement cycle is influenced by the most recent refinement

cycle. The problem graph heuristics define a static ordering of the training examples

before the iterative refinement cycles are started. They can also be used for dynamic

ordering where the measures are recalculated on the best refined output KBS from a

refinement cycle and applied to re-order the remaining training examples in tebuf. The

fault based heuristic (Section 4.1.1) can only be applied as a dynamic ordering since it

exploits information from all generated refined KBSs from the previous refinement cycle.

We expect ordering to reduce the search effort thereby reducing the number of refinement

iterations. Although the emphasis of the evaluation is to compare the number of iterations,

it is important to establish the effect of ordering on the error-rate. Additionally, it is

necessary that any substantial increase in cpu usage be justified by reduced search effort.

The testbed for the experiments in this Chapter use the corrupted Student loans KBS

(Appendix A). We re-use the 20 training/test splits corresponding to conflict levels 5

and 9 from Figure 3.7, since the BJ KRusTtool was shown to have the greatest number

of iterations with these sets. Moreover, as the assessment of BJ efficiency with various

orderings of training examples require that backtracking is triggered, it makes sense to

re-use these training sets containing conflict pairs which were formed with backtracking

in mind.

4.2.1 Static Ordering

Static ordering provides a sequence of training examples prior to the iterative refinement

cycles. We compare two orderings using the problem graph heuristics with a random

ordering .

• N OORDER: move all correctly solved training examples into cebuf then randomly

order tebuf .

• PGRAPH+: move all correctly solved training examples into cebuf, then sort the

4.2. Ordering Heuristics in Practice 66

remaining training examples in decreasing order of the number of rule activations in

the positive problem graph only .

• PGRAPH±: as PGRAPH+ but use the number of rule activations in the com­

plete problem graph (positive and negative) including the modification for "non­

observables" .

Static ordering Mean Median 95% Confidence
NOORDER 9.05 8.0 ±1.420
PGRAPH+ 7.65 7.0 ±0.717
PGRAPH± 7.65 7.5 ±0.410

Table 4.3: Number of iterations for static ordering.

Error-rate for the final refined KBS was not impaired with PGRAPH+ and PGRAPH±,

and they both reduced the error-rate compared to N OORDER in 4 test runs. More per­

tinent to this evaluation is the number of iterations for these three algorithms listed in

Table 4.3. PGRAPH+ required significantly fewer iterations compared to NOORDER (p­

value = 0.028); 10 test runs had fewer iterations and only 2 test runs had more iterations

and this was at most 2 iterations longer. The reason for these extra iterations in 2 test runs

is explained by the dynamic nature of iterative refinement, where the estimated domain

(refined KBSs) of refinement examples can change with incremental refinement. However,

such problems can only be tackled by re-ordering after each refinement cycle as a single

static ordering right at the start is not sufficient.

PGRAPH± improved on PGRAPH+ by reducing the number of iterations in 4 test

runs, however despite the added information acquired from the negative problem graph this

reduction is not statistically significant. Any improvements in PGRAPH± over PGRAPH+

is due to the added information causing fewer ties, which essentially means fewer randomly

resolved tie-breaks. This surprisingly (only) marginal improvement of PGRAPH± over

PGRAPH+ is explained by observing that refinement generation explores both the positive

and negative problem graphs and that refinements can include changes to both parts of

the reasoning. Therefore a more complex combination of rule activation counts may be

required so that it takes account of those activations that contribute towards the required

goal and are also part of the positive problem graph, by not counting them as individual

activations.

4.2. Ordering Heuristics in Practice 67

The reason for the reduced number of iterations with NOORDER when compared to

the values reported in Figure 3.7 for the same test runs is explained by the moving of all

correctly solved examples into cebuf right at the start. Overall, the test results clearly

indicate that the order in which training examples are processed by the KRUSTtool af­

fects the number of backjumps and iterations. It also confirms that the number of rule

activations is an indicator of the level of constrainedness of a training example.

4.2.2 Dynamic Ordering

The original backjumping KRUSTtool already employs two forms of dynamic ordering.

• Reinstating constraint examples that did not require refinement at the time, these

are latent examples that did not provide any fault evidence as refinement examples,

but are now incorrectly solved by the current KBS and so are moved back into tebuf

(see Section 3.3).

• Re-ordering of examples with MBJ and MCBJ algorithms, where two mutually con­

strained examples are dealt with in consecutive refinement cycles (see Section 3.5).

Both these reordering strategies are applicable only when backjumping occurs. We now

extend training example ordering by applying each of the three heuristics from Section 4.1

to also reorder before every refinement cycle. This form of general reordering is employed

first, to ensure that reordering enforced by backjumping is not undone.

Figure 4.3 outlines the basic algorithm combining static and dynamic ordering for

the BJ KRUSTtool algorithm. Any of the three static orderings NOORDER, PGRAPH+,

PGRAPH± from Section 4.2.1 can be used in step 2 and will only influence the selection

of the first refinement example. Dynamic ordering occurs in step 3c, where any of the

following can be applied:

• FAULTBASED: re-order tebuf in decreasing order according to evidence from KBSs

from the recent refinement cycle (Section 4.1.1), after moving all correctly solved

training examples from tebuf into cebufj or

• DYNPGRAPH+: apply PGRAPH+'s heuristic (now in every cycle)j or

• DYNPGRAPH±: apply PGRAPH±'S heuristic (now in every cycle).

4.2. Ordering Heuristics in Practice 68

1. Current best refined KBS is the input faulty KBS.

2. Apply static ordering on tebuf.

3. Loop until tebuf is empty:

(a) Execute the top most example in tebuf on the input KBS.

(b) Generate and implement refined KBSs.

(c) Apply dynamic ordering on tebuf.

(d) If the set of filtered refined KBSs is not empty then choose

the current best refined KBS as the output KBS.

(e) If the set of filtered refined KBSs is empty:
I. If there are latent examples then these are pushed

into tebuf, after all correctly solved training examples
are moved into cebuf.

ii Otherwise, employ BI to identify the inconsistent
example and its next best refined KBS to backtrack to,
and all constrain examples on the way are moved back
into tebuf.

Figure 4.3: Algorithm combining static and dynamic ordering.

4.2.3 Static and Dynamic Combinations

The experiments in this section investigate seven (of the nine possible) static-dynamic

combinations; the same problem graph and faultiness heuristics are used in the static and

dynamic orderings. Once again the error-rate of the final KBS was unaffected. Compar­

ing the results in Table 4.4 with the static ordering results in Table 4.3, we see that all

combinations have reduced the number of iterations by at least two iterations. All heuris­

tics employing the complete problem graph resulted in lower average number of iterations

but FAULTBASED results are very close. However the differences among all the static +
dynamic combinations are not substantial; PGRAPH± + DYNPGRAPH± has the fewest

iterations but this is not significant (p = 0.932 > 0.05). These results show that using

static combined with dynamic ordering gives significant gain over using static ordering

only but that none of the combinations is better than any other.

We have succeeded in reducing the number of iterations but at what computational

cost? Table 4.5 shows the number of cpu cycles for the heuristic combinations; the entries

for static ordering have only been included for reference. FAULTBASED has been very

effective for dynamic ordering since the overhead of applying it with any static ordering

is not significant. The orderings based on problem graphs have not been so effective; any

gain in reducing the iterations has been overwhelmed by the expense of each iteration.

4.3. Conclusion 69

Static + Dynamic Mean Median 95% Confidence
NOORDER + FAULTBASED 5.15 5 ±0.532
NOORDER + DVNPGRAPH+ 5.40 5 ±0.765
NOORDER + DVNPGRAPH± 5.15 5 ±0.613
PGRAPH+ + FAULTBASED 5.60 5 ±0.864
PGRAPH+ + DVNPGRAPH+ 5.80 5 ±0.893
PGRAPH± + FAULTBASED 5.10 5 ±0.524
PGRAPH± + DVNPGRAPH± 5.05 5 ±0.557

Table 4.4: Number of iterations for static + dynamic ordering combinations.

Static

NOORDER PGRAPH+ PGRAPH±
None 286480 453030 384910
FAULTBASED 246060 454590 398670
DVNPGRAPH+ 477760 564810
DVNPGRAPH± 581020 798910

Table 4.5: CPU cycles for static + dynamic ordering combinations.

4.3 Conclusion

The refinement search space is extremely dynamic with sequences of refinement examples

altering the refined KBSs being considered. As with CSP variable ordering, the goal is to

reduce search effort by enforcing an order on training examples. Unlike CSPs, where an

instantiation for one variable can only restrict the domains of others, in iterative knowl­

edge refinement the repair for one training example may also lead to a totally different

set of proposed refinements for later training examples. However, the dynamic ordering

of training examples re-orders examples such that changes in the number of refined KBSs

is taken into consideration before selecting the next refinement example. Overall, exper­

imental results show that both static and dynamic ordering heuristics are able to reduce

search effort without reducing accuracy.

The problem graph related heuristics for static ordering had significantly reduced

search effort when compared to N OORDER. Surprisingly, the additional information from

using the complete problem graph instead of just the positive problem graph, did not

yield any significant benefits. This suggests the need for a more informed measure that

considers the overlap between the positive and negative problem graphs for the PGRAPH±

heuristic.

Dynamic ordering was able to significantly reduce the search effort compared to static

4.3. Conclusion 70

ordering. However, an important issue with dynamic ordering is the additional compu­

tational effort introduced by the reordering at each refinement cycle. FAULTBASED very

effectively guides the search without substantial computation and for one combination

actually lowered the total effort when compared to all static ordering results. In contrast

the problem graph heuristics are computationally more expensive. This suggests that an

initial random ordering coupled with a FAULTBASED dynamic ordering provides the best

balance between improved efficiency and computation costs.

Chapters 3 and 4 have concentrated on improving refinement effectiveness and effi­

ciency by informed use of training examples. A separate but important issue for knowledge

refinement is informed selection of training examples. Here the aim is to reduce labelling

and processing costs by selecting few yet informative examples for refinement. This forms

the focus for Chapters 5 and 6, where selection mechanisms that are suited for knowledge

refinement are presented and evaluated. However, it is important to note that research

work on knowledge refinement exploiting CSP search techniques does not conclude here,

as it has much growth potential and needs to be extended further.

Chapter 5

Informed Selection of Refinement

Examples

Fundamental to a KRUSTtool's successful refinement operation is the availability oflabelled

examples (for its buffers). Availability is often constrained by limited expert interaction

and in this chapter we investigate how a KRusTtool might benefit from active selection

techniques that enable the selection of refinement examples from an available set of unla­

belled examples. The goal is to select few yet good examples, and by this we mean selecting

few examples whilst ensuring that they are representative of the faults in the KBS. The

results reported in this chapter have also been published in (Wiratunga & Craw 2000).

Section 5.1 describes how sampling can be incorporated within the iterative refinement

framework. The selection strategy in Section 5.2 employs clustering of examples where

similarity between unlabelled examples is according to the problem-solving behaviour of

the KBS. Section 5.3 identifies several strategies for selecting a suitable number of exam­

ples from these clusters. Experimental results from evaluating the selection strategies on

two problem domains which have different problem-solving characteristics is presented in

Section 5.4, followed by chapter conclusions in Section 5.5.

5.1 The Selective Sampling Process

The choice of training examples for refinement becomes important, when one of the con­

straints on the refinement process is a limited number of labelled training examples. This is

71

5.1. The Selective Sampling Process 72

Selected Examples

Unlabelled Examples

Expert KRUSTtool
Labelled Training Examples

Figure 5.1: A single iteration of select-label-refine.

a relatively common problem in a real environment, where labelling many problem-solving

tasks with the expert's solution, may require significant interaction with a busy expert.

Unlabelled training examples are often generated by using domain knowledge already em­

bodied in the KBS, or meta-knowledge (Zlatareva & Preece 1994, Ayel & Vignollet 1993).

Therefore, unlike the labelling task, generating unlabelled examples does not typically

require the expert . Here we assume the availability of a sufficiently large set of unlabelled

examples. The goal is to perform an informed selection from this set which the expert

must label, thereby reducing the demand on the expert. The sampling process consists of

3 stages:

• informed selection of examples;

• labelling of these selected examples by the expert; and

• refinement of the faulty KBS using the batch of newly labelled examples.

This three-stage process of select- label-refine is illustrated in Figure 5.1, where a single

sampling iteration provides a small batch of labelled examples that can be used by the

KRUSTtool. Once the KRusTtool has incrementally refined the KBS to correctly solve

these labelled examples, the next iteration of select-label-refine can be triggered. Fig­

ure 5.2 illustrates how sampling can be incorporated within the iterative refinement pro­

cess. The unlabelled example buffer (uebuf) contains all unlabelled examples and at the

start of the refinement process will contain the set of unlabelled examples el, ... , eN . On

performing an informed selection on uebuf, n examples are selected and moved out of

5.1. The Selective Sampling Process 73

uebuf for labelling. Once labelled these examples are transferred into tebuf and the refine­

ment process is initiated. Thereafter, whenever tebuf becomes empty example selection

is triggered, consequently further examples are selected, labelled and moved out of uebuf

into tebuf. The number of examples that get selected from uebuf need not be fixed and

so can vary from iteration to iteration. In practice the sampling process can be repeated

until:

• no further faults are exposed in the input KBS , hence no improvement in accuracy

an be achieved; or

• a limit on the number of examples an expert is willing to label is reached; or

• uebuf is empty.

Implement
Refinements

r'···'F;i';~';··R~'fi~~d'·'···! r '· · · ' ·s~i~~;'B·~~;'···"']
i KBS i i Refined KBS i
-. " , " ~ :

Figure 5.2: Sampling within the KRUSTtool.

So what criteria should the KRusTtool use to decide which n examples to choose from

the uebuf? Selection criteria with roots in statistical estimation techniques are increasingly

being employed with encouraging experimental results for classifiers (Cohn, Ghahramani

& Jordan 1996). However , the use of examples for training classifiers differs from their

use for iterative refinement. In refinement:

• examples are used to expose faults in an existing KBS, and so are employed to

refin incomplete concepts and not learn from scratch (Langley, Drastal, Rao &

Greiner 1994); and

5.1. The Selective Sampling Process 74

• examples are used for refining KBSs that model, not only classification tasks but

also design tasks (Boswell et al. 1997) and even planning tasks (Tallis & Gil 1999,

Gil 1995).

Direct application of currently available selection methods for learning classifiers to re­

finement tools, is therefore not straightforward. Moreover, unlike for learning algorithms,

the input faulty KBS is an important source of information that can be exploited when

selecting examples for iterative refinement. We know that the relevance of training exam­

ples for refinement, changes as refinement progresses. As the problem-solving behaviour

of the faulty KBS is incrementally improved, examples that exposed faults before are less

likely to expose new faults in future iterations. Meanwhile examples that did not expose

faults before, may do so in future iterations. Therefore we need selection mechanisms that

target examples for refining the faulty KBS, given its current problem-solving behaviour.

I. Let selected3xamples = { }

2. Let examples_to_cluster = cebuf u tebuf u uebuf

3. While selected_examples = { }
(a) Let clusters = DoClustering (examples_to_c1uster)

(b) Let selected3xamples = InformedSelection (clusters)

(c) If selected_examples are already labelled then
* Let examples_to_cluster =

examples_to_c1uster \ selected_examples
* selected_examples = { }

Figure 5.3: Clustering and Selecting Examples for Labelling.

Figure 5.3 outlines the approach that is adopted for refinement example selection.

The available examples (Le. cebuf U tebuf U uebuf) are partitioned into clusters. Here an

unsupervised learning approach is required since we are dealing with unlabelled examples.

With increased selection iterations the selected examples in step 3(b) can in some instances

be themselves labelled, therefore in such circumstances further iterations will need to be

triggered until one or more unlabelled examples are selected. This can be avoided by

restricting examples_to_cluster to just unlabelled examples (in uebuf). However, doing

so will increase the number of singletons, thereby reducing selection decisions that can

be made on the basis of intra-cluster example relationships. For knowledge refinement

5.2. Selection Guided by Problem-Solving Behaviour 75

purposes the clustering and subsequent example selection from clusters must exploit the

relationship between examples with respect to how they are solved by the current KBS,

instead of existing sampling techniques that exploit the statistical distribution of examples.

5.2 Selection Guided by Problem-Solving Behaviour

Clustering involves the formation of distinct example clusters, by grouping similar exam­

ples according to a pre-determined similarity distance metric (Rasumssen 1992, Hanson

1990, Kodratoff 1988). There are two main clustering approaches:

• non-hierarchical clustering, where heuristics are used to group examples into one of

several pre-determined clusters; and

• hierarchical clustering, where similar examples or clusters are recursively fused to­

gether, forming several nested clusters.

Non-hierarchical clustering requires initial knowledge about the number of classes, or

alternatively, knowledge about the classes in the problem domain (Michalski & Stepp

1990, Fisher 1985, Michalski & Stepp 1983). Usually, with knowledge refinement there

is no prior knowledge about the number of faulty areas in the KBS, far less the types

of faults that need to be addressed. Therefore we employ hierarchical clustering. where

a similarity metric needs to be defined before a clustering technique can progressively

develop the clusters.

5.2.1 Similarity Metric

The KRUSTtool records the problem-solving that is undertaken by a KBS for an example in

the positive problem graph (see Section 4.1.2). This graph records the rule activations and

the order in which these activations occur. Therefore we can use the similarity between

the positive problem graphs of examples, to determine which examples trigger similar

problem solving behaviour in the faulty KBS. The task of establishing similarity in this

manner, means that we need only be interested in rule activations for examples, regardless

of whether or not the system solution is correct. More importantly, examples need not be

labelled for this task.

5.2. Selection Guided by Problem-Solving Behaviour 76

Given a KBS containing rules R 1 , ••• , R m , we define a binary valued rule vector cor­

responding to an example e, as r = (rl' ... ,rm) where ri = 1 if Ri appears in the problem

graph for e, and fi = 0 otherwise. Thus, in Figure 5.4, the rule vector for the positive

problem graph of Example A is (0, 0, 0, 1, 0, 0, 1, 1, 1, 0), and for Example B is (0, 1, 1,

1, 1, 0, 0, 0, 0, 0), where m=lO. Presently, we are only interested in the activation of a

given rule regardless of the number of times it activated or when it activated.

,-----------,
I Example B cr sysB
I
I

: J

L ___________ .J L ___________ .J

Figure 5.4: Positive Problem Graphs for Example A and Example B.

The similarity measure needs to capture refinement similarity between two unlabelled

training examples el, e2. As refinement similarity depends on the similarity in problem

solving behaviour, the similarity between el, e2, can be established by comparing their

rule vectors rl, r2. For this purpose the Euclidean distance metric may be used, but it

can lead to two rule vectors being regarded as highly similar, despite them having no

common rule activations. Association coefficients (Willett 1988, van Rijsbergen 1980)

avoid this by focusing on the common rule activations, and normalizing by the number

of rule activations in both rule vectors, thereby ignoring rules that are not activated. We

employ the Dice coefficient, a commonly used similarity measure of this type:

Accordingly, the similarity between examples A and B in Figure 5.4 is 0.25.

5.2. Selection Guided by Problem-Solving Behaviour 77

5.2.2 Clustering Technique

We use an agglomerative hierarchical clustering technique, where those training examples

with the greatest similarity are united in small clusters. These clusters are then iteratively

fused, until inter-cluster dissimilarity achieves a predetermined threshold. There are three

commonly used approaches to cluster fusion (Hanson 1990).

Nearest neighbour method: where those two clusters that have the minimum distance

between their most similar cluster members are fused. This form of cluster fusion

tends to over-generalise and create fusion where there should not be any.

Farthest neighbour method: where those two clusters that have the minimum distance

between their most dissimilar cluster members are fused. Typically, this form of

cluster fusion leads to small, tightly bound clusters.

Centroid Method: where clusters are fused based on the average pairwise distance. This

form of fusion can be seen as an intermediate of the two previous methods.

The farthest neighbour approach is chosen because it is most sensitive to dissimilarities be­

tween examples, and forms cohesive clusters that are better able to represent the different

problem solving areas of the current KBS. Important to hierarchical clustering is the clus­

ter fusion stopping threshold, referred to as the cluster threshold. It is this threshold that

terminates the recursive fusion during clustering. A high cluster threshold leads to over

generalisation, and to over specialisation when set too low. Extreme situations occur when

the recursive cluster fusion process terminates once the complete set of training examples

are contained within a single cluster, or when the number of clusters equals the number

of training examples. Therefore, selecting a suitable threshold must be approached with

caution.

Consider the clustering of 37 examples according to rule activations with the Soybean

KBS in Appendix B.1 (see Figure 5.5). The small squares contain the calculated distance

between two clusters while the rectangles denote the 12 clusters formed with the cluster

threshold set at 0.26, i.e., fusion takes place only if inter-cluster dissimilarity is below 0.26.

In the left most corner, training examples plant751, plant29 and plant21, have identical

rule activations so they have a dissimilarity score of O. These examples are fused together

with example plant94 as the dissimilarity between the farthest neighbours is less than

5.3. Selecting Examples using Clusters 78

0.26. The dissimilarity scores that stop further fusion is highlighted in bold font. For

instance the cluster in the right most corner containing plant491 is not fused with the

cluster containing plant745, plant697 and plant700, because the dissimilarity score of

0.29 is greater than the cluster threshold.

1.0

Figure 5.5: Clustering of 37 examples from the Soybean domain.

5.3 Selecting Examples using Clusters

Clusters allow a more informed selection choice than a random selection of examples.

Each cluster represents the problem-solving behaviour pertaining to some part of the

faulty KBS, because examples with similar rule activations are clustered together. If we

happen to know which area of the KBS is faulty, the task of example selection is reduced

to picking the cluster related to that area. However, in most cases the KRUSTtool has no

prior knowledge about what parts of the KBS might be faulty, therefore, we need a more

general selection technique that targets all potentially faulty parts of the KBS.

Since each cluster contains examples which are solved in a similar way by the KBS, it

might appear reasonable to assume that refining a fault exposed by a single example from

a cluster would correct the rest of the cluster. One selection method CLUSTERREP exploits

this assumption by randomly selecting a single unlabelled example from each cluster, with

5.3. Selecting Examples using Clusters 79

the aim of selecting a subset of examples representative of the problem solving behaviour of

the faulty KBS. Therefore, according to CLUSTERREP, 12 examples will be selected from

the clustering scenario in Figure 5.5, where a single example is randomly selected from

each of the 12 clusters. Certainly, training examples that activate several rules in common

appear in the same cluster and typically are also similar in their observables. However, in

some situations examples from a single cluster may not have similar observables, and so

may contain a pair of examples where:

• a possible refinement for one example results in another fault for which there is no

obvious refinement; or

• a possible refinement for one example introduces a fault into the solution of the

other.

Faults of this nature are termed interacting faults and the involved pair of examples is a

conflict pair that triggers backtracking. In Chapter 3, we found that conflict pairs improve

refinement accuracy and guides refinement search to the best incremental refinements.

Therefore, if conflict pairs do get clustered together we need informed selection heuristics

that are able to identify and select these pairs.

5.3.1 Interacting Faults

(defrule Rl
(filed_for_bankruptcy ?Student) (enlisted ?Student)
=> (assert (financial_deferment ?Student)))

(defrule R2
(disabled ?Student) (filed_for_bankruptcy)
=> (assert (disable_deferment ?Student)))

(defrule R)
(financial_deferment ?Student)
=> (assert (eligible_for_deferment ?Student)))

(defrule R4
(disable_deferment ?Student)
=> (assert (eligible_for_deferment ?Student)))

Figure 5.6: Four rules taken from a corrupted student loans advisor in Clips.

5.3. Selecting Examples using Clusters 80

We use four Clips rules taken from a corrupted version of a student loans adviser to

demonstrate interacting faults and their effect on refinement generation. Of these rules,

two have been corrupted by adding extra conditions, highlighted in bold (see Figure 5.6).

Here, Rl translates to "if a student has filed for bankruptcy and is enlisted in a military

organisation then grant the student a financial deferment", and R2 translates to "if a

student is disabled and has filed for bankruptcy then grant the student a disability de­

ferment". Assume that the KRusTtool is attempting to fix these rules based on fault

evidence provided by training examples el and e2 in that order.

el ([(filed.-for_bankruptcy ida), (enrolled uci 4)], (eligible..for_deferment ida))

e2 ([(disabled idb), (enrolled uci 5)], (eligible.-for_deferment idb))

Example el concerns a student at uci that has filed for bankruptcy and according to the

expert should be eligible for deferment. However, when reasoning with the faulty rules

the system solution will not match that of the expert's, as the corruption to R2 prevents

it from activating. Therefore, the KRuSTtool will attempt to refine the faulty rules by

either general ising Rl or R2, by deleting condition (enlisted ?Student), or (disabled

?Student), respectively.

newKBS
formed by
generalising R2

@
?

need to backtrack to e}

newKBS'

formed by
generalising R}

newKBS"
formed by
generalising R2

Figure 5.7: Non-optimal refinement choice triggers backtracking.

Let us assume that the KRusTtool chooses to refine by incorrectly generalising R2

(instead of Rr), and implements this as newKBS (Figure 5.7). On proceeding to the

next refinement cycle with newK B S as the input KBS, the KRuSTtool is presented with

fault evidence from training example e2i a disabled student enrolled at uci and eligible for

5.3. Selecting Examples using Clusters 81

deferment. A direct consequence of generalising R2 is that the KRusTtool is now left with

no obvious refinement that can fix the fault exposed by example e2. Consequently, it is

forced to re-think its previous refinement choice of generalising R2 instead of R1, and so

faces the prospect of re-starting refinement from a previous state. Notice that if R2 and

Rl were corrupted, but had no common condition that matched observables from either

el or e2 (for instance like filed..for_bankruptcy) then the faults exposed by el and e2 in

Figure 5.6 would not be interacting.

(defrule Rs
(longest_absence ?abs_units)
(enrolled ?en_units)
(test « ?abs_units 5»
(test (>= ?en_units 5»
=> (assert (no-payment_due»)

(defrule R6
(enrolled ?en_units)
(test (> Pen_units 15))
=> (assert (no-payment_due»)

(defrule R7
(not (no-payment_due» => (assert (payment_due»)

Figure 5.8: Three rules taken from a corrupted student loans advisor in Clips.

We use three different rules in Figure 5.8 to demonstrate how a selected refinement

has the effect of introducing a new fault that interacts with an existing fault. Here rule Rt3

which translates to "if a student is enrolled and the number of units enrolled is greater than

15 then payment is not due" has been corrupted by introducing an incorrect comparison

value of 15. Assume that the KRuSTtool is attempting to fix these rules based on fault

evidence provided by training example e3 and e4 in that order.

e3 = ([(longest_absence ide ucla 5), (enrolled ucla 5)], (payment_due))

e4 = ([(longest_absence ide!. ucla 5), (enrolled ucla 12)], (no_payment_due))

Example e3 concerns a student at ucla enrolled in 5 courses and absent for 5 days.

Since (no_payment_due) will not be asserted (because R5 and ~ cannot activate) R7

will be activated concluding payment_due. This assertion matches the expert's solution

5.3. Selecting Examples using Clusters 82

therefore refinement is not needed. In Chapter 3 examples (like e3) that did not trigger

refinement were referred to as latent examples. The next refinement example is e4, but now

the system solution will incorrectly conclude payment_due, because R6 is too specialised

and will not activate. Refinement will be triggered and the KRusTtool will attempt to

refine the rules by either generalising R5 or R6, by changing the comparison operator to

~; or by changing the comparison value to 11. Assume that it incorrectly selects the

newKBS
formed by
generalising Rs

e3
newKBS"
formed by

newKBS'
formed by
generalising R6

specialising Rs ?

need to backtrack to e4
as specialising Rs causes
an inconsistency with e4

Figure 5.9: Non-optimal refinement choice activates latent example and triggers back­
tracking.

refinement to R5, which would then activate the latent example e3 (see Figure 5.9). On

activation, example e3 will drive the next refinement cycle. In that cycle the KRUSTtool

will need to specialise R5, because it is now too generalised and incorrectly concludes

no_payment_due for example e3. However, specialising Rs will undo e4's refinement of

generalising R5 , consequently, backtracking is triggered resuming the refinement process

from e4 with newK BS' generalising R6 . Notice, that although we had started with a

single corruption to R6 , selecting a non-optimal refinement introduced a second fault that

interacted with this initial corruption, resulting in backtracking.

The presence of interacting faults affects the refinement process, because selecting a

refined KBS in a previous iteration can cause refinement conflicts in a subsequent iteration.

These conflicts can only be detected subject to the availability of fault evidence provided

by a pair of examples, a conflict pair (such as el and e2, or e3 and e4, above). If a cluster

5.3. Selecting Examples using Clusters 83

contains conflict pairs like these, we would want to select further examples from this

cluster. In these situations CLUSTERREP is not sufficient as it randomly selects a single

example from each cluster, thereby ignoring all other examples in that cluster, including

conflict pairs. A mechanism is needed to identify conflict pairs when they occur in the

same cluster so that we ensure that examples exposing interacting faults are chosen. This

necessitates an investigation of the problem-solving behaviour of labelled conflict pairs

that occur in the same cluster. The aim of such an investigation is to establish criteria

that would enable the identification and selection of conflict pairs from a cluster when

they are still unlabelled.

5.3.2 Characteristics of Conflict Pairs

An analysis of labelled conflict pairs revealed that they tend to have overlapping positive

problem graphs, yet the best refinement choices for the pair are distinguished from each

other. Essentially their proofs may utilise similar parts of the KBS but their best refine­

ment exercises separate parts. Figure 5.10 shows the problem-solving for a hypothetical

conflict pair, C=([Cl,"" C61lgoalc) and D=([D1, ••• , D61IgoalD}' The darkened arrows

and bold rule names highlight the positive problem graphs for examples C and D; i.e. the

rules that are activated by the observables for each example. Each example has resulted

in the activation of the same end rule R3, but the solutions (sysc and SYSD) might occur

with different variable bindings. Typically conflict pairs tend to have a substantial area of

the positive problem graph in common. Consequently, they tend to be placed in the same

cluster, and easily mistaken as representing the same fault.

Figure 5.10 also shows all rules that might have concluded each target goal if they had

been activated; i.e. the negative problem graph. With example C, Rs is only partially

satisfied by Rl'S conclusion. The arrow from C4 is fainter to indicate that the condition

in Rs is not met by this observable without the condition being generalised somehow.

The other possible route via R4 requires both of its conditions to be generalised before

being satisfied by Cs and C6' Possible refinements attempt to specialise rules in the

positive problem graph and generalise those from the negative problem graph l . However,

specialising R2 to disallow the proof of sysc for example C may cause problems when

1 For a description of KRusTtoo!'s specialisation and generalisation refinement operators see (Boswell
& Craw 1999).

5.3. Selecting Examples using Clusters 84

r-----------------,
ExampJeC 9

S T
1 R,

/R, A'

r-----------------, ® ExampJeD y

R4 RI

A C
4

Figure 5.10: Over lapping problem graphs for conflict pairs.

general ising R7 to allow the proof of goalD' for example D, and vice versa with Rl and

Rs. Essentially, even though conflict pairs are clustered together, a refinement for one

example will not necessarily repair the otherj i.e. their negative problem graphs are fairly

disjoint.

5.3.3 Informed Selection Heuristics

When examples are unlabelled we do not know the goals and cannot build the negative

problem graphs as in Figure 5.10. Instead we identify potential conflict pairs by formu­

lating an indirect estimate of how overlapping the two negative problem graphs might be.

For this purpose we:

• compute the dissimilarity of examples based on their observables since the non­

activations in the negative problem graph depend on these observablesj and

• use this dissimilarity to compute the intra cluster dissimilarity score for each cluster

which can then be exploited by informed selection heuristics.

Observable-Based Dissimilarity of Examples

The dissimilarity between two examples, ea=([fJ, ... ,f:] , ?), and eb=(Ul,· .. ,fr] , ?),

is computed by comparing each of their corresponding observables, where the number of

5.3. Selecting Examples using Clusters 85

observables m and n are not necessarily equal.

dissimilarity (ea , eb)
VL.rz;1 L.']=1 ~2(f~, It)

2*(m+n)
(5.1)

The maximum possible dissimilarity distance between examples ea and eb is m + n, so the

actual distance can be normalised by dividing by m + n. However, since the observable

distances are counted twice, the actual distance is normalised by 2 * (m + n).

The difficulty with calculating ~ is that each observable can be represented as either

an object-attribute-value (OAV) or as an ordered-term (OT). For instance the observable

related to a student x, enrolled in 5 units can be represented as, (enrolled, x, 5), which

is an ~AY. Applying functions value, object and attribute to this OAV, returns 5, x and

enrolled, respectively. Now, consider the OT representation of an observable related to

a student x, in school s, and absent for 10 units: (longest_absence, x, s, 10). As before

function attribute will return longest_absence, however, unlike OAVs, OTs can have

one or more values such as sand 10, additionally, it mayor may not contain an object,

such as x. Here, we assume that 3 consecutive calls to function term when applied to

(longest_absence, x, s, 10), returns x, s followed by 10, and function length returns 3.

Essentially, length returns the number of calls that should be made to term, in order to

access each of the values in the ~T. For an OAV length is always 1, and a single call to

term is sufficient to access the OAV value.

We need additional meta-knowledge specifying which terms should and should not be

considered in an OT, and which OAVs should contribute towards dissimilarity. For in­

stance with OT (longest_absence, x, s, 10), the object x will be a student identification

number and should typically not contribute towards a dissimilarity score, while sand 10

should. To this end we maintain meta-knowledge in the form of a binary vector where a 1

indicates that the term in the corresponding position should contribute towards dissimi­

larity, and 0 otherwise. For instance vector(longest_absence, x, s, 10) = (0 11), specifies

that sand 10 should contribute towards dissimilarity while x should not. Similarly for

the OAV (enrolled, x, 5) a vector of (01) specifies that only 5 should contribute towards

dissimilari ty.

We can now use functions attribute, length, term and meta-knowledge vector to define

5.3. Selecting Examples using Clusters 86

the dissimilarity between two observables, L)..

if attribute(x) # attribute(y)
L).(x,y) = (5.2)

if attribute(x)=attribute(y)

The matching of attributes in 8 is important to ensure that dissimilarity is calculated

between observable pairs with matching attributes because it does not make sense to do

so for non-matching observables.

length(x)

8(x, y) L vectorl(x) * 8}(terml(x), terml(Y)) (5.3)
1=1

o if x=y

8T \x, y) = Ilx - yll if x and yare numeric (5.4)

1 otherwise

In 8T , II II indicates that the difference is normalised by the maximum and minimum

value difference.

Intra Cluster Dissimilarity

In order to calculate the intra cluster dissimilarity (leD) for a cluster C={ el,"" en} we

first calculate the Dissimilarity score for each example in C. Dissimilarity of example

ei is simply the sum of all pair-wise dissimilarities between ei and the remaining examples

in C.

Dissimilarity (ei' C) = L dissimilarity (ei' ej)
ejEC

5.4. Experimental Evaluation 87

The ICD score for cluster G containing lei examples, is the average Dissimilarity of all

its examples.

ICD(G) =
2:eiEC 2:ejEC dissimilarity (ei' ej)

IGI

There is some argument for ignoring the influence of observables that have already re­

sulted in activations when calculating dissimilarity between examples, however, as the

contribution towards dissimilarity from observables associated with activations, compared

to those associated with (non) activations is negligible, we have opted for the simpler

dissimilarity score using all observables.

When a cluster has a high ICD score there is reason to believe that such a cluster

may contain conflict pairs, and we want to select it first for refinement. The intuition

behind this is that examples clustered together based on similarity of the KBS's problem

solving behaviour would normally also be similar in their observables. If observables are

dissimilar then it is likely that problem solving behaviour of the KBS for that cluster

is faulty and additionally contains conflict pairs which necessitate the selection of more

than one example to fix the associated faults. We propose the CLUSTERDISIM family

of selection heuristics that pick varying numbers of examples from the cluster with the

highest ICD score as follows:

• *CLUSTER selects all examples;

• K-CLUSTER selects the K examples with highest Dissimilarity; and

• >CLUSTER selects examples with Dissimilarity scores above a pre-determined thresh-

old.

5.4 Experimental Evaluation

We use the student loans KBS with 5 corruptions (see Appendix A) and the Soybean

KBS with 7 corruptions (see Appendix B.1). These corruptions are controlled such that

interacting faults occur only with the Student loans KBS. This means that with the

Soybean KBS examples from different classes always have distinct problem graphs. The

types of corruptions that can be introduced are constrained by the available refinement

5.4. Experimental Evaluation 88

operators as discussed in Chapter 1. CLusTERREP and the CLUSTERDISIM family of

selection heuristics are compared against RANDOM, where refinement examples are selected

randomly. The experiments test whether selective sampling produces refined KBSs with

comparable accuracy but using fewer labelled examples than RANDOM.

For each domain, a set of 100 training examples and a further 100 evaluation examples

are randomly selected from the data set. The KRUSTtool is run with increasing subsets

of the 100 training examples. Although all examples in the data set are labelled for

experimentation purposes, these labels are ignored until examples are selected from uebuf

into tebuf for the refinement task. Therefore, the labelling step in the select-label-refine

iterative process is implicit, and the stop criterion is that the refined KBS has 100%

accuracy on the training examples after the refinement step. In practice this criterion

is not available, as only selected training examples will be labelled, therefore, in a real

environment the criteria will be the availability of the expert, or a predetermined level of

accuracy on the training examples. The impact of informed selection on:

• efficiency is determined by the percentage of unused (unselected) examples in uebufj

and

• effectiveness is determined by the accuracy of the final KBS on the evaluation set.

The graphs show results averaged over 10 runs for each training set size. Significance

results are based on a 95% confidence level and apply the Kruskal Wallis non-parametric

test (see Appendix D). The cluster fusion threshold and the Dissimilarity threshold for

>CLUSTER with each test domain was ascertained a priori by experimenting with varying

thresholds, on a separate subset of examples.

5.4.1 Student Loans Domain

There was no significant difference between the informed selection methods and RANDOM

in the accuracy of the final output KBS on the evaluation set. This suggests that all

methods have similar effectiveness. Figure 5.11 shows the graph for unused percentage

of examples for each of the methods. We see that CLUSTERDISIM methods have signifi­

cantly higher unused percentages compared to CLUSTERREP and RANDOM (p=0.005). 3-

CLUSTER overall has fared best, and on average is three times more efficient than RANDOM

5.4. Experimental Evaluation 89

-x- 3-CLUSTER
-](->CLUSTER

80 T • • CLUSTER
---<>- CLUSTERREp

70 ----RANDOM

60

';f? 50 ~ ~=-----~-~-~====~=====~ ~
~ 40 u

~ 30
~

20 - - - -"'"---~- - - --

10
0

10 20 30 40 50 60 70 80 90 100

Training Set Size

Figure 5.11: Unused examples for student loans domain.

or CLUSTERREP. 3-CLUSTER and >CLUSTER have significantly higher unused percent­

ages compared to *CLUSTER, suggesting that the subset of most dissimilar examples from

the cluster effectively targets the faults highlighted by all the examples in the cluster. All

CLUSTERDISIM methods use significantly fewer training examples compared to CLUSTER­

REP and RANDOM. CLUSTERREP's poor performance is due to the added complication

of interacting faults, and shows that selecting a single cluster representatives alone is not

sufficient in these situations. The increase in unused percentage with training set size 10,

seen with all methods, is explained by small training sets being insufficient to expose all

faults in the KBS. As a result 100% accuracy on the training set is achieved easily, while

the accuracy on the evaluation set will be significantly worse when compared to refined

KBSs produced from larger training sets.

5.4.2 Soybean Disease Domain

Again there was no significant difference in accuracy and a significant difference in unused

percentages (p=0.005). From the efficiency view, in this domain, CLUSTERREP, uses

significantly fewer examples than *CLUSTER and RANDOM (see Figure 5.12). The success

of CLUSTERREP and the failure of *CLUSTER is explained by the absence of interacting

faults in this rule base. This confirms that in the absence of interacting faults we can rely

on selecting a single example per cluster, as each cluster represents a distinct aspect of the

faulty KBS's problem solving behaviour. A further observations is that the performance

5.5. Conclusion 90

of CLUSTERREP improves with increased training set sizes, indicating that it was able to

target few, yet good, examples. Closer examination of test runs with set sizes 70, 80, 90

and 100, revealed that the number of clusters tends to be constant while the size of clusters

increases with the increasing number of examples, therefore CLUSTERREP selects the same

number of examples regardless of the size of the training set. On average CLusTERREP

is three-times more efficient than RANDOM or *CLUSTER. *CLUSTER'S bad performance

with larger training set sizes clearly shows that the absence of an appropriate selection

mechanism can result in ultimately using all the unlabelled examples. The results for

3-CLUSTER and >CLUSTER methods which are derivatives of *CLUSTER, have not been

plotted as they performed poorly.

100

~
80

'3 60 g
40 ~

20

0
10 20 30 40 50 60

Training Set Size

~ CLUSTERREp
____ ·CLUSTER
----RANDOM

......... -------
70 80 90 100

Figure 5.12: Unused examples for soybean disease domain.

5.5 Conclusion

Experimental results show that selective sampling can significantly reduce the number of

examples utilised, without any penalty on the final accuracy. The refinement process was

able to target particular faults that improved the accuracy of the refined KBS in a way

that was effective in general. Not only did this reduce the number of refinement cycles

required to achieve a particular level of competence, but it also reduced the demand on the

expert's time. The selection was done based on features of the problem-solving behaviour

alone and so the expert was consulted about only the selected examples. Once labelled,

the selected examples were presented to the KRUSTtool.

The rule vector representation of the positive problem graph provided a simple sim-

5.5. Conclusion 91

ilarity measure that created clusters of examples that had been solved by the KBS in a

similar way. This clustering was helpful in determining examples that might indicate the

same refinement. A potential problem with representing examples as rule vectors is the

high computational cost that might be incurred with large and complex KBSs, because

each example must be executed on the KBS before the rule vector can be formed. The

faulty KBSs employed in this chapter are relatively small, therefore for complex KBSs

it will be important that the rule vector representation be translated into some form of

feature vector representation. For instance each rule can be viewed as a correlation be­

tween a subset of observables. The goal is to identify these observable subsets where a

single observable can be in none, one or more subsets. Thereafter, clustering can be based

on similarity between several subsets of correlated observables. Essentially similarity in a

single observable subset, corresponds to similarity in a single rule activation.

Selective sampling is important for knowledge refinement whether or not labelled train­

ing examples are plentiful. If labels are hard to obtain then it is certainly useful to identify

relevant problem-solving tasks that should be labelled by the expert and then used as train­

ing examples for refinement. Conversely if there are many labelled training examples then,

given that the refinement process is quite computationally expensive, it is convenient to

target those examples whose refinements also fix other wrongly solved examples without

further refinement, thereby reducing the number of refinement cycles. Selective sampling

addresses both these issues by identifying the examples most likely to solve others that

indicate the same general fault. Given the encouraging results with respect to active se­

lection of refinement examples in this chapter, we look at active selection of examples for

the filtering task in the next Chapter.

Chapter 6

Informed Selection of Filter

Examples

In each refinement cycle, the refined KBS with best quality is selected from the set of

proposed refined KBSs. Quality of a refined KBS is measured by ascertaining its accuracy

on a set of examples, referred to as filter examples. This quality testing process is heavily

dependent on the availability and selection of examples suited for the filtering role. In this

chapter we investigate techniques that aim to actively select few yet good filter examples

from the set of labelled and unlabelled examples for the KRusTtool's filtering task.

KRuSTtool's existing filtering process and drawbacks are discussed in Section 6.1. A

cluster-based approach to example selection exploiting changes in problem solving be­

haviour is introduced in Section 6.2, followed by an ensemble-based approach in Sec­

tion 6.3. Experimental results on two domains are analysed in Section 6.4, and Chapter

conclusions appear in Section 6.5.

6.1 Filtering Refined KBSs

The KRusTtool's refinement algorithm employs several KBS filters to select the best refined

KBS from the set of proposed refined KBSs (Craw 1996, Palmer & Craw 1996). These

filters form several levels and at each level zero or more refined KBSs will successfully pass

through. Essentially the successful candidates from one filter level become the input at

the next subsequent filter level. In this manner the filters attempt to weed out bad refined

92

6.1. Filtering Renned KBSs 93

KBSs from the set of proposed refined KBSs. The eventual aim is to identify the best

refined KBS.

F igure 6.1 illustrates thr e filter levels. The initial Consistency Filter ensures that

consistency is maintained with previously solved refinement examples in cebuf, while the

Accuracy Filter makes judgments about the quality of proposed refinements based on

accuracy on a subset of training examples. Refined KBSs with highest accuracy on this

subset pass on to the next level. Any ties are broken randomly. Notice, backtracking will

be trigg red when all refined KBSs fail to pass the consistency filter.

Proposed Refinements

• • • ·

Best Output KBS

Contents of I
cebuf .-J

Contents of I
tebuf ..J

Figur 6.1: The KRUSTtool filter hierarchy.

Ensuring consistency with previous refinement examples is straightforward, as we aI­

r ady know which training examples have previously triggered refinement and have been

solved correctly (these are constraint examples in cebuf) . The difficulty with the Accuracy

Filter is in identifying a relevant subset of examples upon which the judgment can be

based. Presently, the subset is simply all labelled training examples yet to be processed

in tebuf. Obvious disadvantages in such a scheme include:

• high processing costs when tebuf is large;

• insuffici nt evidence for judgm nt when tebuf is small; and

• duplication bias, wh re a large number of similar examples may incorrectly suggest

high (or low) accuracy.

Even if the number of training examples in tebuf is not too extreme, using all training

exampl s i not sensible as proposed refinements may have affected only a subset of these

6.1. Filtering Refined KBSs 94

examples. eedless to say, using un-affected examples for judgment purposes will not

contribute additional information towards ascertaining whether a proposed refinement is

good or not, but instead will increase processing costs. Moreover, confining the role of

filtering to just labelled examples may mean that other relevant examples in uebuf will

not be abl to influence filtering.

I Contents of L uebuf

Proposed Refinements

...

•
= •

Best Output KBS

Figure 6.2: The active accuracy filter.

Contents :Jf
cebuf

Contents of I
tebuf .-J

Th functionality of the passive accuracy filter needs to be extended to one that is

able to actively select relevant examples that are testing of the proposed refined KBSs.

An accuracy filter with active selection capability will be referred to as the active accuracy

filter. Figure 6.2 illustrates such a filter utilising examples from both tebuf and uebuf. It

is hoped that incorporating active selection of filter examples in this manner will facilitate:

• the selection of few yet good examples, reducing needless processing and minimising

labelling cost;

• efficiency gains by improv d guidance through the space of possible refinements,

th r by avoiding refinement dead-ends and reducing the need for backtracking; and

• accuracy gains by moving refinement search to parts of the search space containing

more promising r fined KBSs.

To achiev th e goals, the active accuracy filter needs to select examples that are affected

by the propos d refinement. Affected examples are those examples that as a result of

r finement get solv d differently; for instance an example previously correctly solved is

now incorr ctly solv d Or vice versa. However, things are mOre complicated than that, as

6.2. Cluster-Based Filter Example Selection 95

some of the effects are to be expected while others are not. This means that the active

accuracy filter must not only identify affected examples, but select only those examples

that should not have been affected the way they have. Additionally, example selection

by the active accuracy filter must not be based on techniques that simply compare the

system and expert solutions, because active selection of filter examples must also extend

to the set of examples in uebuf (where labelling has not yet occurred). We will now look

at two different active selection approaches: cluster-based; and ensemble-based.

6.2 Cluster-Based Filter Example Selection

In Chapter 5 we saw that clustering examples according to the current KBS's problem

solving behaviour, enabled the selection of a representative set of refinement examples that

cover the range of faults in that KBS. Here, we employ the same clustering mechanism and

extend it as a means to assess changes in problem solving behaviour, before and after the

proposed refinement. Changes in problem solving behaviour are captured by analysing

changes in cluster membership. Essentially, examples that get clustered differently are

more likely to have been affected by the refinement.

I. Cluster examples based on problem solving behaviour of the input KBS.

2. For each refined KBS that passed the consistency filter:
(a) Repeat step I, but this time based on problem

solving behaviour of the refined KBS.
(b) Compare example clusters formed with the input KBS to

those formed with the refined KBS in step 2(a), analysing
changes to cluster membership.

(c) Identify those examples with changed cluster membership,
noting them as affected examples.

3. Select filter examples from those noted as affected.

Figure 6.3: Algorithm for the Cluster-Based Approach.

The algorithm in Figure 6.3, outlines the steps involved in the cluster-based approach.

In step 1, examples in tebuf and uebuf are clustered with respect to the input KBS's

problem solving behaviour. The example clusters thus formed are compared with example

clusters formed according to problem solving behaviour of each refined KBS in step 2. The

6.2. Cluster-Based Filter Example Selection 96

goal of this comparison is to identify affected examples by analysing changes in cluster

membership. Instead of selecting examples simply on the basis of changes in rule activa­

tions, changes in cluster membership provides a more general view of groups of examples

that are affected in similar ways. In step 3, filter examples are selected based on selection

heuristics, that select from example subsets that are noted as affected.

input KBS, K

'"

Figure 6.4: Analysing Changes in Cluster Content.

Figure 6.4 illustrates a fictitious scenario where 35 examples are clustered based on

problem solving behaviour of an input KBS, K. The clustering has resulted in five example

clusters, of which cluster a (bold), contains refinement example e (striped) together with

four other cluster members. We refer to the 5 example clusters formed based on problem

solving behaviour of K , as K's clusters. Let us assume that three refined KBSs, K 1,

K2 and K3, generated in response to fault evidence provided bye, have already passed

the consistency filter. Affected examples are identified by comparing cluster content of

K's clust rs with each of the refined KBS's clusters. However, a refinement can cause

6.2. Cluster-Based Filter Example Selection 97

significant changes in cluster content thus making the comparison difficult. Therefore, a

more tractable method localises the comparison to changes relative to the original cluster

in which the refinement example was a member in K's clusters, here cluster a.

In Figure 6.4 we see that according to K1's clusters, e is no longer clustered together

with it's former cluster members as in a, instead it forms a new cluster, x, with four

other examples. Out of e's four cluster members in a, three have separated to form a new

cluster, y, with five other examples, while the other has moved out and formed a new

cluster, z, with three other examples. Examples from a that move into the same cluster

(like the three in y) may also suggest that these were affected in a similar manner by the

implemented refinement.

Clusters of interest are those containing examples from the input KBS's cluster con­

taining the refinement example. In Figure 6.4 these clusters are highlighted. Therefore,

the affected examples with Kl will be all examples in clusters x, y and z. However, the

total number of affected examples identified in this manner can be high. For instance with

Kl, 45% of examples are contained in clusters x, y and z, and assumed to be affected

by the refinement implemented in K l . It is therefore, economical if we could cut-down

this figure by employing selection heuristics that can help select a representative subset

of filter examples from the already identified affected examples. Generally, analysing the

difference between clusters before and after refinement helps identify examples that were

affected by the refinement but more importantly it identifies examples that were affected

in a similar manner.

6.2.1 Simple Selection Heuristics

Given a set of M proposed KBSs {K l , ... , KM}, we can identify M affected example

sets {El, ... ,EM}. Heuristic KFILTER randomly selects k examples from each Ei, resulting

in M * k filter examples. Any resulting duplicates are removed. A further possibility is

to select the M * k most frequently seen examples in {El, ... , EM}, and we refer to this

filter example selection heuristic as, FQFILTER. The advantage of both these heuristics is

simplicity.

6.2. Cluster-Based Filter Example Selection 98

6.2.2 Refinement Extremeness Based Selection Heuristic

Selecting the best refined KBS also means that filter examples must be able to filter

out refined KBSs that are too extreme, i.e. over-generalised or over-specialised. For this

purpose a more targeted example selection approach is necessary, where examples although

affected must only be selected as filter examples if normally they should not have been

affected.

A KBS when generalised, typically results in new fact assertions because generalisation

tries to enable rule activations which prior to refinement would not have activated. Often

this amounts to weakening leaf rule conditions so that they are satisfied by the observables.

Specialisation has the opposite effect to generalisation, where previously derived facts

are absent after refinement. Here, instead of weakening a leaf rule's conditions they are

strengthened so that observables will not satisfy one or more of the rule's conditions. With

both refinement operations given an input KBS, K, and a set of proposed KBSs K i , we

wish to identify for each proposed refined KBS, Ki:

• observables that are being used differently maintaining their attributes in a list

affected attributes, Ki; and

• select from Ki'S affected example set, €i, examples that are atypical (dissimilar) with

respect to observables having matching attributes in Ki.

..

L

inputKBS, K

cr

- - - --- -- -., ~ -- - - - - - - - - - - - - - - - - .,
I I

I
I I

I
I

I
I I
I I

I
I

I I

proposed KBS, Kl

R4

CDCDC£ 0CD I I
------.1 L- ________________ ~

Figure 6.5: Observable usage before and after generalization.

6.2. Cluster-Based Filter Example Selection 99

The two positive problem graphs in Figure 6.5 illustrate the problem solving behaviour

of input KBS K and a corresponding refined KBS K l , when separately executed on re­

finement example e=([h, ... ,Is], goale). The ovals represent observables, derived facts

and the final system solution. Assume that e is a member of Kl's affected example set, 101,

where Kl is a refinement generalisation that fixes a fault in input KBS, K. Differences be­

tween K's reasoning and Kl 's reasoning can be captured by examining the corresponding

positive problem graphs. The differences provide information about how rule activations

triggered by observables [h, ... ,i5], differ between the two alternative KBS's reasoning

processes. It helps us identify which observables contribute to new rule activations as a

result of generalisation.

With K, we see that the single rule activation R4 has activated because its conditions

are satisfied by observable iJ, concluding FR4. For the generalised K 1, RlO activates with

h, R3 with hand R6 more indirectly with h. Therefore, Kl's affected attribute set ~1,

will be {attribute(Jt} , attribute(iJ)}· Here function attribute is the same as defined in

Section 5.3.3. Once all examples in <01 for proposed Kl have been analysed in this manner,

~1 is complete.
-- --- -~ - - -- - - .., - - - - - - - -- ~

input KBS, K y I I
\ I

I
I

proposed KBS, Kl

R7 I I

I I

-- - -- -- -- - - - - .J

Figure 6.6: Observable usage before and after specialisation and generalisation.

Consider a different refinement scenario with both specialisation and generalisation

illustrated in figure 6.6. Here, the proposed refined KBS K 1, fixes a fault exposed in input

KBS K, by refinement example, e= ([h, ... , 15] , goale). With K, the activation of the end

6.2. Cluster-Based Filter Example Selection 100

rule R7 has incorrectly concluded with system solution, Fm. This is fixed in K1 by:

• disabling rules that lead to the conclusion of FR7 ; and

• enabling rules that should instead lead to the target goal, goale .

Consequently, we can identify several changes in observable usage with K1 not seen with

K: h indirectly contributes to the activation of R5 and so R1; and 14 indirectly contributes

to the activation of R1; and 14 as a result of specialisation does not contribute to the acti­

vation of R7. Accordingly, K1 's affected attribute list 1'\;1 = {attribute(fd, attribute(f4)}.

Notice that in Figure 6.5, direct analysis at the observable level was sufficient to

identify changes in observable usage. However with the scenario in Figure 6.6, the effects

of refinement on the reasoning process are concentrated further up the problem graph,

and at first may seem not to imply any changes at lower levels. In such circumstances an

analysis of changes at higher levels becomes important. Currently, the search for changes

starts at the observable level and if changes are found the search stops there, otherwise,

the next level of derived facts are analysed and so on.

Selecting Atypical Examples

An Atypical score for example ei=([/l,'" ,1m] , ?), in E={ e1, . .. ,en}, related to a proposed

refined KBS with 1'\;, is calculated by summing all pair-wise dissimilarities between example

ei and the remaining examples in the proposed refined KBS's affected example set, E.

Atypical(ei' €) = L dissimilarity (ei' ej)
eiiej

(6.1)

Here, dissimilarity between examples are calculated according to equation 5.1. However,

we modify equation 5.3 as follows.

length(x)

8(x, y) = w(attribute(x)) * L vectorl(x) * 8}(terml(x), terml(Y)) (6.2)
1=1

w(x) = {
o if x ~ I'\;

1 if x E I'\;

(6.3)

6.3. Ensemble-Based Selection 101

Here, function w ensures that dissimilarity between examples is calculated only accord­

ing to observables that are identified to be affected. Therefore, w returns 0 if a given

observable's attribute is not in set K" and returns 1 otherwise.

With refinements that are too extreme, it is most likely that examples with high

atypical scores will be incorrectly solved by the refined KBS. Such examples have extreme

values for observables that get used differently by the refined KBS as a result of the

implemented refinement. Selection heuristic *FILTER, selects from each proposed refined

KBS's affected example set (E), k examples with highest Atypical scores as filter examples.

6.3 Ensemble-Based Selection

Although cluster-based filter example selection is able to identify affected examples, it

is likely to be computationally very demanding. This is particularly true with increased

numbers of examples and refined KBSs. The ensemble-based approach does not need

to cluster examples. The refined KBSs that pass the consistency filter are used to form

the ensemble, where system solutions of ensemble members are combined into a vote

for or against selecting an example for filtering. Typically, we want to select examples

where a majority of members are in disagreement. The underlying intuition behind this

is that refined KBSs are unable to solve an example consistently when the example is

particularly hard to solve and is testing of the refined KBSs. The credibility of such an

approach depends on the goodness of the ensemble. Dietterich (2000), suggests that a

good ensemble is one where members have an error rate of better than random guessing,

and disagreement between members are uncorrelated. For filtering purposes, although the

ensemble is formed by refined KBSs originating from a single input KBS, differences in

system solutions is due to differences between implemented refinements alone.

Figure 6.7(a), illustrates a single refinement iteration. The corresponding ensemble

formed using the refined KBSs from that iteration is in Figure 6.7(b). Here, the ensemble

consists of M refined KBSs. Each member of the ensemble provides a system solution for

each example in tebuf {e3, ... , en}, and all unlabelled examples {en + 1, ... , eN}. Since

example selection is based on the degree of disagreement between ensemble members, we

consider two alternative approaches to ascertaining disagreement: a heuristic approach;

and a disagreement score suggested by Argamon-Engelson & Dagan (1999).

~--- .. --.

ireration2 rebuf {e3 e4" en}
cebuf {el e2}

uebuf {en+1 .. eN}

,

: ... -- -- '. - - - - - - - - - - ... - - ... - - - - ... - - - - - - ... - - - ... - - - - - .
(a)

6.3. Ensemble-Based Selection 102

Ensemble

@@ ... @ Q ... (9

(b)

Figure 6.7: Proposed KBSs Forming an Ensemble. (a) A Refinement Iteration. (b)
Carr sponding Ensemble Filter.

Disagreement Heuristic

The system solutions for each example are compared noting the:

majority vote : the most frequent system solution together with the number of refined

KBSs that are in agreement; and

minority vote : the least frequent system solution together with the number of refined

KBSs in agreement .

With selection heuristic VOTEFILTER, the k examples with lowest minority vote are se­

lected and any ties are resolved by favouring examples with lower majority votes.

Consider the scenario for a classification task in Table 6.1, where the KRusTtool in

re ponse to a refinement example's fault evidence, generates several refined KBSs, of which

four refined KBSs, {](1,](2,](3,](4} have successfully passed the consistency filter. These

refined KBSs form the ensemble that actively selects from examples {e1' e2, e3, e4, e5}

based on minority and majority agreement voting. The system solution by an ensemble

memb r (column), for an example (row), is entered in the relevant row column intersection.

For instance K 1's system solution, Gl, for el, indicates that Kl classifies el in class

0 1, while](1, classifies e3 in class G1 and in class 02. The majority of the ensemble

m robers classify e in class G1, hence proposing 0 1 with 4 majority votes. As there are

no disagreements betw en the nsemble members the minority columns are empty. With

example e2, the majority column is empty as there is no agreement between the ensemble

6.3. Ensemble-Based Selection 103

members. However, each member has proposed a different class, and the minority propose

column contains all 4 proposed classes (C1,C2,C3,C4), with a single vote for each. Similar

explanations hold for the rest of the examples in the table, but notice that with es the

minority columns are left empty as they are the same as the majority columns. The

VOTEFILTER heuristic prefers selecting examples with fewer minority votes, and any ties

are resolved by favouring those with fewer majority votes, therefore with k=3, e2, e4 and

e3 will be selected as filter examples.

Exs. K1 K2 K3 K4 Majority Minority
Propose Votes Propose Votes

e1 C1 C1 C1 C1 C1 4 - -
e2 C1 C2 C3 C4 - 0 C1 ,C2,C3,C4 1
e3 C1,C2 C1,c4 C1,C4 C1 ,C2 Cl 4 C2,C4 2
e4 C1 ,C2 C3 C2,C3 C2,C4 C2 3 C1 ,C4 1
es C1 C2 C1 C2 C1,C2 2 - -

Table 6.1: Majority Vote by an Ensemble formed with Proposed Refined KBSs.

Establishing a majority or minority vote is difficult when one or more members of the

ensemble fail to classify an example into any class. This could easily happen when proposed

refined KBSs are too specialised. In such situations we could choose to ignore votes by

refined KBSs that fail to classify examples. However, this may influence the selection of

examples that are not necessarily ideal for filtering purposes. Instead, we allow the votes

of these members on the basis of derived facts (in the absence of end facts).

Disagreement Score

A disagreement score D(e), for example e, using an ensemble with M members, that

classifies the example into one or more classes in C, is calculated by the entropy of the

distribution of classes voted for by the ensemble members (Argamon-Engelson & Dagan

1999) (discussed in Section 2.3.2). Given the number of ensemble members classifying e

in class c, where cEC, denoted by votes(c, e), the normalised vote entropy is:

D(e) = - 1 L votes(c, e) Lo votes(c, e)
Log min(M, ICI) c M 9 M

cE

6.4. Experiments 104

Again when refined KBSs fail to classify an example into a class, derived facts are con­

sidered instead. Therefore, the cardinality of C can change from example to example,

depending on how specialised the ensemble members are, and depending on the derived

facts that they conclude. Notice that the number of members is not fixed and will change

from one refinement iteration to another.

The vote entropy has value 1 when all ensemble members are in disagreement, and value

o when all are in agreement, taking on intermediate values when in partial agreement.

With selection technique NTROPYFILTER, k examples with highest normalised entropy

vote are selected.

6.4 Experiments

Evaluation is based on results from the Student loans test domain with a faulty KBS

containing 5 corruptions (Appendix A), and the Soybean test domain with a faulty KBS

containing 13 corruptions (Appendix B.2). These corruptions have been introduced ac­

cording to the available refinement operators as discussed in Chapter 1. The Soybean

KBS with 13 corruptions was preferred over that of just 7 corruptions (Appendix B.1),

because increased corruptions are more likely to trigger backtracking. With the student

loans domain we use the same experimental design of 100 evaluation and 100 training

examples, and the KRusTtool applied to increased subsets of the 100 training examples.

However, with the Soybean domain the high computational costs due to the cluster-based

method makes it impractical to have many repeated test runs with increased subsets of

the 100 training examples. Instead, with this domain results are based on 20 test runs

with 100 training and 100 evaluation examples.

The informed filter example selection heuristics KFILTER, FQFILTER, *FILTER and the

ensemble-based techniques are compared against:

• NoFILTER where filter examples are examples yet to be processed in tebuf, and

examples in uebuf are never selected for filtering; and

• RNDFILTER where k filter examples are randomly selected from {tebuf U uebuf}.

The experiments investigate whether the active accuracy filter employing informed selec­

tion heuristics is able to reduce backtracking by effective refined KBS filtering that guides

6.4. Experiments 105

the KRusTtool through the space of possible refinements. The number of times backtrack­

ing is triggered is a good estimate of the number of refinement dead-ends encountered.

Therefore, the fewer dead-ends encountered, the better the filtering heuristic at guiding re­

finement search. Additionally, fewer dead-ends mean fewer re-visits to previous refinement

states, hence reduced iterations.

The experiments also evaluate the effect of the active accuracy filter on the error-rate

of the final output KBS. It is hoped that improved guidance will move the search to parts

of the refinement space resulting in higher accuracy. To ensure that any improvements are

not influenced by active selection of refinement examples, the contents of tebuf are selected

manually at the start of each test run. Essentially, all examples that the faulty KBS fails

to solve correctly at the start of the refinement process are moved into tebuf. Manual

selection of tebuf right at the start ensures that all filter example selection heuristics will

have equal refinement opportunity. Additionally, this ensures that experimental results

reflect the effect of filter example selection on the refinement process, decoupled from

benefits from refinement example selection (in Chapter 5).

Of further interest to knowledge refinement is how useful actively selected filter exam­

ples might be for driving refinement. For this purpose a subtle difference in example buffer

handling is introduced. With the Student loans domain, any selected filter examples not

in tebuf once used for filtering, are moved into tebuf or cebuf accordingly. This means

that filter examples will also have the opportunity to drive refinement. With the Soybean

domain, actively selected filter examples are only used for filtering purposes.

6.4.1 Student Loans Domain

Figure 6.8 shows the error rate of the final refined KBS for the 5 active accuracy filter

approaches. Clearly, active selection of filter examples is important; even random selection

is able to significantly reduce error-rate compared to the passive NoFILTER (p=O.OOl).

So, can a more informed selection improve on RNDFILTER'S performance? Heuristics

*FILTER, KFILTER and FQFILTER have significantly lower error-rates than RNDFILTER

(p=O.006). The results from the ensemble-based techniques have not been plotted as they

did not improve on RNDFILTER. The reason for poor performance in this domain is that

disagreement amongst ensemble members is high for most examples, therefore, ties are

broken randomly, reducing the performance of ensemble-based techniques to random.

0.2·

0.18! ~ 0.16 .. ______ ~
0.14

.g 0.12 ::'V
:! 0.1, :.;
... /,' '$~

~ 0.08! >' .
0.06 [
0.04

0.0: j
10 20 30 40 so 60

Training Set Size

6.4. Experiments 106

[.-701 fqFILTER tsZS2l ·FILTER

C'TJ kFILTER --. - nOFILTER

--0- mdFILTER

70 80 90 100

Figure 6.8: The Effects of Filter Example Selection on Error Rate.

The *FILTER heuristic undertakes the most targeted selection procedure, therefore it

was surprising that there was no significant difference in error-rate between it, the KFILTER

and the FQFILTER. Close examination of test runs showed that the initial manual selection

of refinement examples was proving beneficial for refinement, resulting in an insignificant

difference in error-rates. Therefore, a further set of experiments consisting of 20 test runs

was carried out. This time the number of manually selected refinement examples at the

start was halved. Of the 20 runs, the first ten involved a training and evaluation set

size of 50 and the second ten a set size of 100. The results from these 20 runs indicate

that *FILTER had significantly lower error-rates (p=0.03) compared to both KFILTER and

FQFILTER. However, there was no significant difference between KFILTER and FQFILTER.

Essentially, this suggests that atypical examples selected by *FILTER are not only well

suited for filtering, but are also suited for driving refinement.

Figure 6.9 plots the number of times backtracking was triggered on encountering re­

finement dead-ends. Due to the ungainly performance of the ensemble-based approach on

error-rate, VOTEFILTER and NTROPyFILTER are not included here. Number of backtracks

triggered is significantly less with the informed selection heuristics compared to NoFILTER

and RNDFILTER (p = 0.001). The purposeful selection of filter examples based on changes

in cluster content has managed to guide the KRUSTtool through the refinement search

space, reducing the need to revisit previously solved training examples. However, there

was no significant difference between KFILTER, FQFILTER and *FILTER.

2.5 r
,

o
Z 0.5 '

o ..
10

6.4. Experiments 107

.- noFILTER

+ fqFILTER

kFlLTER

20 30

--0- rndFILTER

)1(- -FILTER

._-----+---+-----+---

40 50 60 70 80

Training Set Size

Figure 6.9: The Effects of Filtering on Backtracking.

90 100

6.4.2 Soybean Disease Domain

With experiments carried out in this domain, any actively selected filter examples once

utilised for filtering, are never moved into tebuf or cebuf, therefore, filter examples do not

get the opportunity to trigger refinement. The informed selection heuristics VOTEFILTER,

NTROPyFILTER, *FILTER and KFILTER, were compared with RNDFILTER and NoFILTER.

FQFILTER is not used here because it did not perform any better or worse than KFILTER

with the student loans domain. All selection heuristics had significantly lower error-rates

when compared to NoFILTER (p=O.007). However, the difference between VOTEFILTER,

NTROPyFILTER, *FILTER, KFILTER and RNDFILTER is not significant.

1000

Gj ntropyFILTER D voteFILTER ~ *FILTER ~ kFlLTER ~ mdFILTER

~

t
i
t
i
~
{

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Test Runs

Figure 6.10: Number of Iterations for 20 Test Runs.

6.5. Conclusion 108

The number of backtracks triggered was significantly reduced by the informed selec­

tion heuristics when compared to RNDFILTER and NoFILTER (p=O.009). With increased

backtracking, re-visits to previous refinement states is increased. This can have drastic ef­

fects on the number of iterations. The graph in Figure 6.10 plots the number of iterations

for the 20 test runs in logarithmic scale. For instance, with the twentieth test run, the

number of times backtracking is triggered with YOTEFILTER, NTROPyFILTER, *FILTER,

KFILTER and RNDFILTER is 0, 0, 1, 28 and 69, while the corresponding number of itera­

tions is 8, 8, 10, 43 and 208. Close examination of individual test runs reveals that the

number of refined KBSs that pass the consistency filter can sometimes be in excess of 30.

This means for RNDFILTER in the worst case, the best refined KBS will be selected only

after re-visiting the example 29 times. What is interesting in this domain is that there

was no significant difference in the number of backtracks triggered between *FILTER and

the ensemble-based techniques. Unlike the student loans domain here, ensemble-based

techniques fared well, because differences between generated ensemble members were not

localised to common problem solving areas. Consequently, the ensemble consisted of a

sufficient mix of members agreeing and disagreeing about solutions for affected examples.

This is always more encouraging than all members agreeing or disagreeing about affected

examples. Interestingly, VOTEFILTER and NTROPyFILTER have very similar results. The

average processing requirements for the cluster-based *FILTER and KFILTER are on aver­

age 45% greater than the requirements for VOTEFILTER and NTROPyFILTER. Therefore,

it is reasonable to suggest that the ensemble-based selection approaches are more suited

to this domain.

6.5 Conclusion

The accuracy filter ranks the proposed KBSs by accuracy on all labelled examples yet to

be processed. The proposed active accuracy filter extends this idea by ranking proposed

KBSs based on accuracy on relevant filter examples that are actively selected from both

the labelled and unlabelled example sets. Active selection of filter examples aims to select

those examples that are affected by the proposed refinements.

Experimental results show that even a purely random heuristic actively selecting from

both the labelled and unlabelled sets is able to improve effectiveness and efficiency, com-

6.5. Conclusion 109

pared to a passive accuracy filter using just the labelled examples in tebuf. The more

informed active selection approaches attempt to select few yet relevant filter examples,

thereby balancing the need for, quality (relevant) filter examples with the quantity of un­

labelled filter examples that need to be labelled. The cluster-based heuristics were able

to provide refined KBSs with reduced error-rates, requiring fewer re-visits to previous re­

finement states. However, the high computational costs associated with clustering is an

obvious drawback. The ensemble based approaches are not computationally demanding

and on some domains achieved similar results to cluster-based heuristics.

Chapter 7

Evaluation

The experimental evaluation reported in this chapter investigates the combined effect of

example selection and refinement search strategies on the KRUSTtool. We analyse and

compare improvements in refinement effectiveness and efficiency. Experimental results

from all three test domains introduced in Chapter 1 will be presented and evaluated by

the:

• error rate on the final output KBS;

• number of refinement cycles; and

• percentage of examples in uebuf at the end of the test run.

Reduced error-rate is an indicator of improved effectiveness, while fewer refinement cycles

suggest improved efficiency. Examples in uebuf need not be labelled, but once selected

must be labelled before they are useful for refinement. Therefore, examples remaining in

uebuf are a good indicator of example labelling costs. The fewer remaining examples, the

greater the demand on the expert.

Five KRUSTtool variants combining backtracking, example ordering, refinement and

filter example selection methods are introduced in Section 7.1. Evaluation of experimental

results on Student Loans, Soybean and MMU are presented in Sections 7.2, 7.3 and 7.4,

followed by chapter conclusions in Section 7.5.

110

7.1. KRusTtool Variants 111

BJKRUSllool KRUSlloo1*

BJKRUSlloo1*

BJKRUSlloo1**

Figure 7.1: Relationship between the evaluation strategies.

7.1 KRusTtool Variants

We compare five different combinations of example selection methods, with and without

backtracking refinement search (see Figure 7.1).

KRusTtool: without backtracking or informed selection of refinement and filter examples.

Dead-ends are handled by introducing a new rule that explicitly solves the refinement

example only. Refinement examples are randomly selected from uebuf, labelled and

moved into tebuf. Filter examples are all remaining examples in tebuf.

KRUSTtool*: as KRusTtool but with informed selection of refinement examples only.

BJKRuSTtool: as KRUSTtool but with backtracking search enabled by means of the BJ

algorithm. Dead-ends will be handled by re-visiting previously abandoned refined

KBSs. Static and dynamic ordering are also enabled to improve backtracking effi­

ciency.

BJKRusTtool*: as BJKRuSTtool but with informed selection of refinement examples

enabled.

BJKRusTtool**: as BJKRusTtool*, with the addition of informed selection of filter ex­

amples.

7.1. KRusTtool Variants 112

The BJ prefix indicates that backtracking search employing the BJ algorithm is enabled

together with static and dynamic ordering. Suffix * indicates informed selection of refine­

ment examples, while suffix ** indicates informed selection of both refinement and filter

examples. The KRusTtool variants have been carefully designed with the aim of ascer­

taining the contribution of different example selection and utilisation strategies presented

in this thesis to knowledge refinement. The experiments undertaken in this chapter will

attempt to establish the following four hypothesis.

Hypothesis 1 : Accuracy of the final output KBS is significantly improved when back­

tracking search is enabled.

Hypothesis 2 : Number of refinement cycles is significantly reduced by resolving difficult

examples in close proximity.

Hypothesis 3 : Labelling costs are significantly reduced with active selection of refine­

ment examples without adversely affecting refinement accuracy.

Hypothesis 4 : The number of refinement dead-ends encountered during refinement

search is significantly reduced with active selection of filter examples.

With BJKRUSTtool, BJKRusTtool* and BJKRUSTtool**, we would expect to see improved

effectiveness, because dead-ends can be handled by re-starting incremental refinement

from previous refinement states. Therefore improved accuracy with BJKRuSTtool, BJ­

KRUSTtool* and BJKRusTtool** compared to KRusTtool and KRUSTtool* will establish

Hypothesis 1. Hypothesis 2 relates to BJKRusTtool*'s and KRusTtool*'s ability to select

difficult examples which when solved in close proximity will reduce back-jump distance

resulting in fewer refinement cycles. Hypothesis 3 concerns informed selection of refine­

ment examples as a means to reduce labelling cost by selecting few yet good examples

without adversely affecting refinement accuracy. Both BJKRuSTtool* and KRuSTtool*

have this facility enabled, and should at least be similar in effectiveness to their random

refinement example selection counterparts BJKRuSTtool and KRUSTtool. Hypothesis 4

concerns informed selection of filter examples as a means to reduce the need to backtrack

by improved direction of refinement search. Therefore with BJKRusTtool**, we expect

comparable effectiveness to BJKRusTtool*, but achieved with fewer refinement cycles.

7.2. Student Loans Domain 113

7.2 Student Loans Domain

Evaluation results with the Student Loans domain (Appendix A) in previous chapters,

show that heuristic K-CLUSTER for selection of refinement examples, and heuristic *FILTER

for selection of filter exampl s was best . Accordingly, BJKRUSTtool*, BJKRUSTtool** and

KRusTtool*, employ K-CLUSTER for informed selection of refinement examples, and BJ­

KRusTtool** employs *FILTER for informed selection of filter examples.

7.2.1 Error Rate

c:::J BJKRuSTIOOL" ~ BJKRusrrOOL' ISSIS BJKRUSTIOOL c:m KRuSlTOOL' ~ KRuSlTOOL

0. 12

0.1

0.08

~
] 0.06

0.04

0.02

0

10 20 30 40 so 60 70 80 90 100

Tcst Sct

Figure 7.2: Error rate for student loans domain.

Figure 7.2 shows the averaged error rates. Statistical tests show a significant decrease in

rror-rate betwe n backtracking variants over non-backtracking variants (p = 0.002) , hence

proving Hypothesis 1. Overall, BJKRusTtool** has the lowest error-rates, but there was no

significant difference between it and the other two backtracking variants. KRusTtool* and

KRUSTtool resulted in significantly higher error rates, with greatest differences observed

with test sets 80, 90 and 100. Close examination of these test sets with the backtracking

variants, shows that on average backtracking was triggered in 14 of the 30 test runs.

In one of these 14 test runs, 6 back-jumps were required to achieve an error-rate of O.

Therefore, it is not surpri ing that the non-backtracking variants performed poorly. The

poor p rformance of KRusTtool* with these same test sets compared to KRusTtool can

be explained by KRusTtool*'s inability to resolve, intelligently selected conflict pairs.

7.2. Student Loans Domain 114

7.2.2 Refinement Cycles

Figure 7.3 shows average number of iterations. KRusTtool has worked the least with

significantly fewer refinement iterations (p = 0.005) , but with highest error-rates. In­

creased number of iterations is observed with all backtracking variants. This is explained

by refinement search resuming the refinement process from previous refinement states

when dead-ends are encountered. BJKRuSTtool has resulted in the highest number of

iterations. However, the reduced number of iterations with BJKRUSTtool** compared

to BJKRusTtool show that filter example selection had successfully improved refinement

efficiency as postulated in Hypothesis 4. It is interesting to see that active selection of

refinement examples also has a decreasing effect on the number of iterations. This is

explained by heuristic K-CLUSTER'S tendency to pick conflict pairs from clusters. Se­

lected pairs get solved in relatively close proximity, requiring smaller back-jumps, thereby

reducing the number of iterations. This result is consistent with hypothesis 2.

c:::J BJKRUSTIOOL" ~ BJKRuSTIOOL' ~ BJKRuSTIOOL I::::l KRUSTIOOL' -- KRuSTIOOL
100

§
] 10

10 20 30 40 so 60 70 80 90 100
Test Set

Figure 7.3: Number of iterations for student loans domain.

The significant increase in iterations with KRusTtool* compared to KRusTtool was

unexpected. Given that the error rate of these two variants are comparable, the extra

refinement effort with KRusTtool* is clearly wasted. Close examination of 10 test runs

for KRUSTtool*, shows that the number of iterations would exceed 200. Actually, these

runs had to be terminated once 200 was reached. Although KRusTtool* is able to select

conflict pairs, it is unable to deal with dead-ends because refinement search is disabled.

Consequently, KRUSTtool* must make the correct refinement choice at each refinement

7.2. Student Loans Domain 115

cycle, if it is to avoid dead-end situations requiring backtracking. With the 10 test runs, the

choice of refined KBSs was guided only by accuracy on refinement examples. This accuracy

ranking was insufficient for selecting the best refined KBS, because the number of actively

selected refinement examples is far fewer when compared to the number selected randomly

by KRUSTtool. Therefore, the selected non-optimal refined KBS, undid previously solved

refinement examples that then went onto trigger further refinement cycles. Consequently,

the same refinement examples were involved in an endless cycle of triggering refinement

to no avail. Active selection of filter examples according to hypothesis 4, may offer a

solution to this problem, because it aims to improve the accuracy ranking by actively

selecting examples from uebuf. We tested this by evaluating KRusTtool* on the same 10

test runs, but this time with informed selection of filter examples enabled. As expected,

the number of iterations were significantly reduced to 10 on average. It seems that for

iterative refinement systems that lack backtracking search, incorporating active selection

of filter examples might well be the solution to overcome this deficit.

7.2.3 Labelling Effort

KRUSTtool variants employing active selection of refinement examples (suffix *) have re­

sulted in significantly higher unused percentages compared to variants without informed

selection (p = 0.001). For instance BJKRusTtool* has improved on BJKRUSTtool, and

KRUSTtool* has improved on KRUSTtool (see Figure 7.4). These results clearly establish

Hypothesis 3 where informed selection of few yet good refinement examples for labelling,

reduces the demand on the expert without reducing refinement accuracy. Although BJ­

KRusTtool**'s unused percentage is significantly lower than BJKRusTtool* (p = 0.001), it

is significantly higher than BJKRUSTtool and the rest (p = 0.001). The difference between

BJKRUSTtool** and BJKRUSTtool* is to be expected due to filter example selection in

BJKRusTtool**. Clearly there is a trade-off between reducing the number of iterations

by employing active selection of filter examples, and reducing labelling effort by selecting

fewer examples. Fortunately, the added cost of filter example selection and labelling pays

off with improved refinement search guidance with fewer dead-ends. This suggests that, if

reducing refinement effort is a priority over labelling costs then it makes sense to include

active selection of filter examples and vice versa otherwise.

7.3. Soybean Disease Domain 116

BJKRUSTIOOL" ~ BJKRUSTIOOL' ISIS9 BJKRUSTIOOL I:Z3 KRUSTIOOL' -- KRUSTIOOL

60

so

tJ< 40

Il
§ 30
CI

;:J

20

10

0

10 20 30 40 so 60 70 80 90 100

Test Set

Figure 7.4: Unused example percentage for student loans domain.

7.3 Soybean Disease Domain

We apply the KRusTtool variants to refine the Soybean KBS with 13 corruptions as

discussed in Chapter 1 (Appendix B.2). Evaluation experiences with this domain in

Chapters 5 and 6, show that best results were obtained with heuristic CLUSTERREP

for refinement example selection and heuristic VOTEFILTER for filter example selection.

Here, KRUSTtool*, BJKRusTtool* and BJKRusTtool**, apply CLUSTERREP for refine­

ment example selection. Additionally BJKRUSTtool** will employ VOTEFILTER based

filter example selection.

7.3.1 Error Rate

The average error-rates are shown in Figure 7.5. Both BJKRusTtool* and BJKRusTtool**

have significantly low r error rates compared to the rest (p = 0.001). This is not surprising,

since a non-backtracking variant would resolve a dead-end by introducing a new rule that

xplicitly solves the uncorrected example only. However, with BJKRUSTtool's ability to

backtrack, it is surprising that its error-rate results are similar to that of KRUSTtool and

KRUSTtool*. The number of dead-ends encountered with BJKRUSTtool**, BJKRUSTtool*

and BJKRuSTtool, provid s some insight in to BJKRUSTtool's poor performance. With

BJKRuSTtool* and BJKRusTtool** d ad-ends were encountered twice on average for each

of the 100 test runs . In contrast, dead-ends were never encountered with BJKRUSTtool,

therefor backtracking was never actually needed. However, with BJKRUSTtool the num-

7.3. Soybean Disease Domain 117

ber of sampling iterations triggered when tebuf is empty, is significantly higher compared

with BJKRUSTtool* and BJKRUSTtool**. Remember, if useful refinement examples are

select d, solving them should be sufficient to achieve 100% accuracy on any remaining

exampl s in uebuf (i.e. the stopping criteria for iterative refinement with experiments

here) . With BJKRusTtool, refinement examples are randomly selected. This means that

0.1 c::=J BJKRUSTIOOL" t'Z12l BJKRUSTIOOL' ~ BJKRUSTIOOL c:::::l KRUSTIOOL' - KRUSTTOOL

0.09-l-~-1;:;: 1---- ---------------------

0.08

0.07

u 0.06

~
5 0.05
t:
~ 0.04

O.oJ

0.02

0.01

o
10 20 30 40 50 60 70 80 90 100

Test Set

Figure 7.5: Error rate for soybean disease domain.

several sampling iterations are needed before 100% accuracy on any remaining examples

in uebuf is achieved. Consequently, the number of examples selected and moved into

tebuf is increased. The effect of this increase on the accuracy ranking had guided BJ­

KRusTtool's refinement path to a different part of the refinement search space from that

of BJKRUSTtool* and BJKRusTtool**. Unfortunately for BJKRUSTtool, that part of the

search space had low accuracy on test sets even though it had 100% accuracy on training

sets. The behaviour of backtracking variants in this domain is also consistent with Hy­

poth sis 1, in that providing th opportunity to undo previous non-optimal refinements

and moving refinement sear h to productive areas of the search space results in improved

refin m nt accuracy.

7.3,2 Refinement Cycles

KRUSTtool* and KRUSTtool have significantly fewer iterations, but they also have high

rror-rates. The overall tr nd seems to be increase in iterations leading to lower error­

rates (see Figure 7.6). For instance BJKRUSTtool* has achieved significantly lower error

7.3. Soybean Disease Domain 118

c:J BJKRUSTTOOL" ~ BJKRUSTTOOL' ~ B JKRUSTTOOL c:::::l KRUSTTOOL' --- KRUSITOOL
1000

100 --... - .. - .. - ... -.-..•..• ---.-.......... - ~~ -----~ --.---.-----.----.--------------..... --.. --.. ---...... .

10 i--===:::::::====::;=~==~=~

10 20 30 40 SO 60 70 80 90 100

Test Set

Figure 7.6: Number of iterations for soybean disease domain.

rates (see Figure 7.5) but at the expense of increased searching. However , consistent

with Hypothesis 4, active selection of filter examples with BJKRusTtool**, has managed

to significant ly reduce the number of iterations seen with BJKRusTtool* (p = 0.001) .

T his reduction was best demonstrated with several test runs from training sets 40 and

50. For instance, in one such test run, BJKRusTtool* consumed 195 iterations, while

BJKRUSTtool** completed the refinement process in less than 10 itera tions. Successful

fi ltering is important, particularly when many potential refined KBSs are generated. Se­

lection of the best refined KBS the first time round avoids needless backtracking, thereby

decreasing th number of iterations. These results confirm that informed selection of fil ter

examples helps with selecting the best refined KBS by improving the accuracy ranking.

7.3.3 Labelling Effort

BJKRuSTtool* has the highest unused percentages compared with the rest as postulated

in Hypothesis 3 (see Figure 7.7) . Although the difference between BJKRUSTtool* and

BJKRusTtool** is significant , both BJKRUSTtool* and BJKRUSTtool** have significantly

higher unused percentages than BJKRUSTtool, KRusTtool* and KRUSTtool. The inclusion

of informed selection with and without backtracking, resulted in higher unused percentages

compared to random sampling. For instance, KRUSTtool and KRUSTtool* have similar

error-rates , but KRUSTtool* has achieved this with 20% fewer examples (on average)

than KRUSTtool. Although BJKRUSTtool has 0 unused% with test sets 40 and 60, the

7.4. MMU Domain 119

error-rates for these test sets are unexpectedly high. Once again, this is explained by the

accuracy ranking with just randomly selected refinement examples moving the search for

refinements to a different part of the search space, that unfortunately had poor accuracy

on the test sets.

c::::J B1KRUSTfOOL" r<Z2I B1KRUSTfOOL' &S;SSl B1KRUSTfOOL c:::J KRUSTfOOL' --- KRumooL

401------------~~------------~--_.m_---~1-----~---~m_--

20 +··-·--··---··_···-····mr-···m---

10 ------.-

0+---.............
10 20 30 40 so 60 70 80 90 100

Test Set

Figure 7.7: Unused example percentage for soybean disease domain.

7.4 MMU Domain

The MMU domain introduced in Chapter 1 is a real application. The original version of

the MMU KBS had 2 corruptions and was used by Boswell & Craw (2000) to evaluate

the effectiveness of the refinement algorithm. Here, we are interested in the effective­

ness of example selection and refinement search methods, and their impact on knowledge

refinement. For this purpose, differences between methods must be established using a

sufficiently corrupt KBS. The MMU KBS referred to in this thesis consists of 10 addi­

tional corruptions introduced according to the available refinement operators as discussed

in Chapter 1 (see Appendix C). We use 10 test runs formed according to 5x2 fold cross

validation (see Section 1.5.3). Such an experimental design is able to make the most of

the relatively small training set size (of 100).

A single refinement cycle with the MMU KBS can take anything from 20-45 minutes,

compared with less than 5 minutes with the other 2 test domains. Therefore, any reduction

in refinement iterations will have a great impact here. We found that for refinement exam­

ple selection, a hybrid approach combining heuristics CLUSTERREP and *CLUSTER proved

7.4. MMU Domain 120

best. Essentially, CLUSTERREP is enforced whenever intra-cluster feature dissimilarity is

below a predetermined threshold and *CLUSTER is called upon otherwise. We refer to

this hybrid heuristic approach as CLUSTERMIXED. Accordingly, BJKRusTtool** and BJ­

KRusTtool*, employ heuristic CLUSTERMIXED and KRusTtool* employs CLUSTERREP

based refinement example selection.

We found heuristic VOTEFILTER to be significantly more efficient than heuristic *FILTER

for filter example selection. *FILTER generally tends to be high on computational costs,

and with the MMU domain this overhead is extreme. The demand on CPU resources

arises from the need to identify changes in cluster membership. For this purpose, each

unlabelled example must be executed on the input KBS, and all potential refined KBSs,

to enable cluster formation. On execution of an example, the positive problem graph is

constructed and the rule vector is obtained from this graph. KBSs with non-monotonic

behaviour have an added computational cost associated with the graph construction pro­

cess. This is explained by the extra backward search required to update rule activations

that are retracted later in the reasoning process. Constructing a positive problem graph

for a single example with the MMU KBS, takes more than 5 minutes compared to less

than 20 seconds with the other 2 domains. Assuming a training set of 50 examples and

8 refined KBSs to select from, the VOTEFILTER heuristic would take at least 33.3 hours

before it can begin to form example clusters, according to rule vector similarity. This delay

might be reduced by forming rule vectors directly from rule traces, thereby avoiding graph

construction. Of course this is not an option that scales well once rule vector similarity

is extended to account for rule depths and multiple rule activations. Additionally, cluster

formation for each refined KBS is also time consuming, because we now must deal with

rule vectors of length 104 (compared to 20 with the student loans KBS and 44 with the

soybean KBS). Therefore, a further section that compares computational overhead has

been introduced with the MMU test domain, because this problem was most evident here.

7.4.1 Error Rate

Table 7.1 compares the five KRusTtool variants on error rate. Generally similar effects

were observed with nine of the 10 test runs. Only the second run was able to differentiate

between the KRusTtool variants. Here, KRusTtool and KRUSTtool* fail to answer 5 of

the 50 test examples correctly. Typically, this is explained by the lack of backtracking

7.4. MMU Domain 121

search with KRusTtool and KRusTtool* when dealing with search dead-ends. However,

examination of BJKRUSTtool's refinement path, showed that backtracking was never ac­

tually needed and so was not triggered. Therefore, the differences in error rate can only be

explained by the differences in refinement example selection methods. CLUSTERMIXED is

employed by BJKRUSTtool** and BJKRusTtool* with both achieving 100% accuracy on

the test set. In contrast BJKRusTtool and KRusTtool select examples randomly, while

KRUSTtool* selects according to heuristic CLUSTERREP. Actually, BJKRUSTtool** and

BJKRusTtool* had similar refinement paths, but they both differed from the rest of the

variants. Here, refinement example selection according to heuristic CLUSTERMIXED, had

directed refinement search towards a path that resulted in refined KBSs with improved

accuracy. The findings here expand Hypothesis 1, in that refinement accuracy can not

only be improved by backtracking but also by strategic selection of refinement examples.

Test
Run BJKRusTtool** BJKRUSTtool* BJKRUSTtool KRusTtool* KRusTtool

1 0.02 0.02 0.02 0.02 0.02

2 0.00 0.00 0.10 0.10 0.10

3 0.00 0.00 0.00 0.00 0.00

4 0.02 0.02 0.02 0.02 0.02

5 0.12 0.12 0.12 0.12 0.12

6 0.00 0.00 0.00 0.00 0.00

7 0.00 0.00 0.00 0.00 0.00

8 0.02 0.02 0.02 0.02 0.02

9 0.10 0.10 0.10 0.10 0.10

10 0.00 0.00 0.00 0.00 0.00

Avg 0.03 0.03 0.04 0.04 0.04

Table 7.1: Error rate for MMU.

Statistically the differences amongst variants with the 10 test runs are not significant.

There are two contributory factors to this problem:

• the absence of a sufficiently comprehensive set of examples for experimentation pur­

poses; and

• the difficulty of introducing controlled corruptions, which would have better enabled

performance differentiation between the KRusTtool variants.

Both problems are directly attributed to the lack of domain expertise with the complex

domain of MMU, whereby manual generation of a set of examples to cover the expertise

7.4. MMU Domain 122

of the KBS is difficult when the underlying reasoning is not obvious, and non-monotonic

behaviour of the KBS makes it difficult to introduce meaningful corruptions.

7.4.2 Refinement Cycles

The results in Table 7.2 correspond to the number of refinement iterations with the five

KRUSTtool variants. BJKRusTtool* has significantly fewer iterations compared to BJ­

KRusTtool, KRUSTtool* and KRusTtool (p=O.OI9), and therefore is consistent with Hy­

pothesis 2. For instance, with test runs 2 and 10 KRusTtool has 7 iterations with both test

runs, compared to 4 and 3 iterations with BJKRUSTtook Here, BJKRUSTtool* would

have 1.5 to 2 hours time saving with these 2 test runs. However, the difference between

BJKRUSTtool* and BJKRUSTtool** is not significant. This may suggest that informed

selection of refinement examples alone is adequate to direct refinement search, without

any need for informed filter example selection, thereby refuting Hypothesis 4. However,

remember that with both Student loans and Soybean test domains, BJKRusTtool** was

able to reduce the number of refinement cycles when compared to BJKRusTtool*. There­

fore, it is safer to deduce that it is the absence of suitable filter examples in the training set

that resulted in an insignificant difference between BJKRusTtool* and BJKRusTtool**,

rather than the non-optimal performance of the filter example selection heuristic itself.

Test
Run BJKRUSTtool** BJKRUSTtoo~ BJKRUSTtool KRUSTtoo~ KRUSTtool

1 5 4 4 6 5

2 4 4 5 5 7
3 4 4 5 5 5

4 4 4 5 4 6
5 3 4 3 3 4

6 4 4 4 6 6

7 3 4 5 5 5

8 4 4 4 5 4
9 3 3 3 3 5

10 3 3 5 5 7
Avg 3.7 3.8 4.3 4.7 5.4

Table 7.2: Number of iterations for MMU.

7.4. MMU Domain 123

7.4.3 Labelling Effort

Table 7.3 shows the unused example percentage results for each of the KRUSTtool variants.

Informed selection of refinement examples should enable BJKRUSTtool* and KRUSTtool*

to have the highest unused percentage results. Since active filter example selection is

enabled with BJKRUSTtool**, we would expect unused percentage results that are not

as high as BJKRUSTtool* and KRUSTtool*, but still significantly higher than KRUSTtool

and BJKRUSTtool. Statistical results confirm these expectations postulated in Hypoth­

esis 3, where BJKRUSTtool* and KRUSTtool* have significantly higher unused percent­

ages compared to BJKRUSTtool and KRUSTtool (p = 0.001), and also compared to BJ­

KRUSTtool** (p = 0.001). These results are most obvious with the second test run.

Here, BJKRUSTtool* has used 46% of the examples in uebuf, while BJKRusTtool has

used all examples, and KRusTtool has used 49 of the 50 examples. With some test runs,

KRUSTtool* has slightly higher unused percentages over BJKRUSTtool*. This is explained

by the different heuristics that are employed for refinement example selection. CLUSTER­

REP employed by KRuSTtool*, tends to select fewer examples from clusters compared to

the hybrid heuristic CLUSTERMIXED employed by BJKRUSTtool*. BJKRUSTtool** has

used up more examples than BJKRUSTtool*, but this is explained by the additional se­

lection of filter examples. In the real world where expert interaction is often limited and

labelling costs are high, informed selection of training examples, be it for refinement or

filtering purposes, will be a valuable asset.

Test
Run BJKRUSTtool** BJKRUSTtoo~ BJKRusTtool KRUSTtool* KRUSTtool

1 36 52 32 52 32

2 32 46 0 44 2

3 44 38 60 54 32

4 46 52 40 54 40

5 38 48 20 42 20

6 44 52 40 50 40

7 40 48 40 52 40

8 36 48 40 48 40

9 46 48 20 54 20

10 34 48 20 54 24

Avg 39.6 48 31.2 50.4 29

Table 7.3: Unused example percentage for MMU.

7.4. MMU Domain 124

7.4.4 Computational Overhead

Computational costs increase with KBS complexity and non-monotonic reasoning adds to

this complexity. With real applications, complex KBSs are to be expected and savings

in computational costs will be an advantage. Analysis of example selection and refine­

ment search methods, clearly show that example clustering is most demanding on CPU

resources. There are two ways in which the clustering process can be improved to reduce

this overhead:

• improving the efficiency of the clustering algorithm; and

• reducing the number of times examples need be clustered.

Some of the issues related to improving algorithm efficiency will be discussed under future

work in Chapter 8. Here, we concentrate on reducing the number of clustering episodes.

With informed selection of refinement examples, we would either select a random example

from each cluster, or select k examples from the cluster with highest intra-feature dis­

similarity. Such an approach can be wasteful because information that can be derived by

both heuristics about example clusters is not being exploited. With CLUSTERMIXED we

have combined the two heuristics and hope to achieve improved selection efficiency. More

importantly we expect that such a hybrid selection approach will also increase the number

of useful examples that can be selected from a single clustering episode.

Table 7.4 compares the number of sampling iterations, CPU cycles and unused exam­

ple percentages for three versions of BJKRuSTtool*. The results for BJKRUSTtool* with

heuristic CLUSTERREP is on the left, with K-CLUSTER in the center, and CLUSTERMIXED

at the right. It is clear that with increased number of sampling iterations the number of

CPU cycles will also increase dramatically. Remember that each sampling iteration in­

volves a single clustering episode, therefore reducing the number of times examples need

to be clustered will reduce computational costs. CLUSTERMIXED has significantly fewer

sampling iterations compared with the rest (p = 0.01). The contradictory results with test

runs 3 and 9, where CLUSTERMIXED has one extra sampling iteration over CLusTERREP

can only be explained by CLUSTERREP's random selection of an example from each clus­

ter. Essentially, the randomly selected cluster representatives happened to be better with

these test runs. The unused example percentage tends to be slightly higher with some

7.5. Conclusion 125

BJKRusTtool*
CLUSTERREP K-CLUSTER CLUSTERMrXED

Sampl. CPU Unused Sampl. CPU Unused Sampl. CPU Unused

Iter. cycles % Iter. cycles % Iter. cycles %
2 5005160 52 2 6180340 70 1 4613560 52

2 6996610 44 3 8483480 24 1 4631800 46
1 3790960 54 5 6621190 2 2 4006730 38
2 6309190 54 3 6641990 16 1 4948020 52
2 4157000 42 2 3808990 50 1 3040700 48
2 5960690 50 3 8266330 26 1 4518140 52
2 5472400 52 4 8537800 22 1 4571100 48
1 4550840 48 3 5569040 28 1 4551930 48
1 2409600 54 2 3871160 12 2 2597100 48
1 3640080 54 4 8366440 10 1 3168630 48
8 4829253 50.4 3.1 6634676 26 1.2 4064771 48

Table 7.4: Comparing computational costs with refinement example selection heuristics
CLUSTERREP, K-CLUSTER and CLusTERMrxED

test runs for CLusTERREP. However, if reducing computational costs is also a priority,

then CLusTERMrxED presents itself as a balanced choice. Results with K-CLUSTER are

somewhat erratic. For instance, the number of sampling iterations ranges from 2 to 5, and

unused percentages from 70 to 2. This clearly suggests that a hybrid approach is better

suited to this domain, whereby CLUSTERREP's general selection approach is complimented

with K-CLUSTER'S localised selection approach.

7.5 Conclusion

A consistent observation is that improved accuracy is achieved when backtracking is en­

abled, thus establishing Hypothesis 1. Of course this is in addition to the availability

of refinement examples that can expose faults in the KBS. However, improved accuracy

with backtracking is achieved at the expense of increased refinement iterations. Endless

looping is a more severe problem that occurs, particularly when backtracking is not en­

abled. There is evidence to suggest that filter example selection can help avoid looping by

directing refinement search to more promising parts of the search space as postulated in

Hypothesis 4.

The experimental results suggests that improvement in accuracy can be achieved with

a small but representative set of refinement and filter examples. This is explained by

7.5. Conclusion 126

the influence of selected examples on the accuracy ranking. Essentially, in the absence of

a representative set of filter examples, the accuracy ranking can adversely influence re­

fined KBS selection, such that incremental refinement is moved to areas of the refinement

search space that have a detrimental effect in general. This is consistent with Hypothesis

4, which proposed informed selection of filter examples as a mechanism to improve refine­

ment efficiency in general. A more obvious advantage of informed example selection is

the reduction in labelling costs demonstrated with all three test domains, hence proving

Hypothesis 3.

Computational cost is an unavoidable issue when dealing with real world applications.

The hybrid approach to refinement example selection addresses this problem with encour­

aging results. Additionally, the choice of VOTEFILTER over *FILTER for filter example

selection with the MMU domain highlights the need to mix and match heuristics to suit

the application domain.

We have recommended different example selection heuristics for the three test domains

in this chapter. The diversity of available example selection heuristics necessitates some

guidance regarding the selection of appropriate heuristics. Although there are no obvi­

ous answers for a real setting it is possible to recommend a hybrid selection heuristic

such as CLUSTERMIXED for refinement example selection because such a heuristic will

address KBSs both, with and without interacting faults. For filter example selection the

VOTEFILTER selection approach is advised when the execution of KBSs involves high com­

putational costs while the *FILTER selection approach is suitable for KBSs with interacting

faults and low execution costs.

Chapter 8

Conclusion

The research work reported in this thesis was undertaken as part of the KRUSTWorks

project. A KRusTtool is a KBS specific refinement tool, assembled from the KRusTWorks

generic refinement toolkit. The KRUSTtool's approach to knowledge refinement is iterative,

where the refinement algorithm attempts to fix one or more, but typically not all, of the

wrongly-solved examples in the training set. It is also incremental because the output

KBS selected from a set of potential refined KBSs, becomes the input KBS in the next

iteration. This iterative incremental approach to knowledge refinement can be viewed as

a search task; a search for the best refined KBS through the space of possible refinements.

Accordingly, the proposed solutions in this thesis are two-fold, considering:

• training example utilisation strategies to improve refinement search, by incorporating

backtracking to previous refinement states and enforcing an order on the sequence

of repairs; and

• informed selection of training examples to drive and guide refinement search, with

particular emphasis on reducing the demand on expert labelling costs.

The search and selection strategies proposed are novel, and exploit techniques from unsu­

pervised learning; ensemble based learning; and constraint satisfaction search. They have

been built into the generic KRusTWorks framework. However, the strategies are suffi­

ciently general that they are applicable to any iterative refinement tool that adopts an

incremental approach to refinement and is able to capture the problem solving behaviour

of the KBS.

127

B.1. Refinement Search 128

Section 8.1 examines issues related with refinement search. Example selection strate­

gies according to the refinement and filtering role of examples are discussed in Section 8.2.

General conclusions from experimentation with refinement search and example selection

strategies are presented in Section 8.3. The contributions of this thesis are outlined in

Section 8.4, followed by desirable extensions in Section 8.5, and a summary in Section 8.6.

8.1 Refinement Search

The refinement task is sufficiently complex that the space of possible repairs demands a

heuristic search, typically hill-climbing. EITHER (Ourston & Mooney 1994) and FORTE

(Richards & Mooney 1995), try to repair the outstanding fault that is indicated by the

largest number of examples, and choose the repair with the fewest changes, to rules which

are nearest the observables. A KRUSTtool's refinement algorithm also applies hill-climbing

search. Although it generates many refined KBSs designed to fix each incorrect example,

it then chooses the refined KBS with the highest accuracy on training examples (those

yet to be processed) as the input KBS for the next iteration of the algorithm. The

result is that refinement tools are dogged by the standard hill-climbing problem of getting

caught in local optima. The problem can be solved by re-starting refinement search from

a previously abandoned refinement state whenever a local optimum is detected. A local

optimum is reached when all generated refined KBSs are unable to improve refinement

accuracy. Such situations are common, because one or more previously solved examples

can get undone by all generated refined KBSs. The undoing of previously solved examples

with iterative knowledge refinement draws close parallels to the undoing of previously

instantiated variables with constraint satisfaction search.

CSP search reaches a dead-end when a variable cannot be instantiated because of

inconsistencies with previously instantiated variables. The solution involves undoing pre­

viously instantiated variables and re-starting the process from a previous solution state.

With iterative refinement the hill climbing search can be converted into a best first search,

that is willing to commit to previously abandoned paths whenever dead-ends are encoun­

tered by incorporating backtracking CSP search strategies. CSP search strategies vary

in the manner in which the re-starting point is ascertained. Experiments presented in

Chapter 3 show that the combination of iterative refinement with the BJ search strat-

8.2. Informed Selection 129

egy resulted in refined KBSs that had significantly lower error-rates. However, this was

achieved at the expense of increased number of refinement cycles, suggesting a need for

improved efficiency.

The analogy between CSP search and knowledge refinement is taken a step further

by examining various search ordering heuristics that are employed by CSPs, which may

provide some insight as to how the efficiency of iterative knowledge refinement can be im­

proved. Variable and value ordering heuristics (Dechter & Meiri 1994, Gent, MacIntyre,

Prosser, Smith & Walsh 1996), help identify variables that are most constrained so that

these can be dealt with first. Invariably there is a need for estimation of variable con­

strainedness, and for identifying the sources from which this constrained ness information

is to be derived.

For knowledge refinement, the problem solving behaviour of the rule-base and fault

evidence from training examples yet to be processed, were good information sources

for estimating training example constrainedness. Various static (Tsang 1993) and dy­

namic (Haralick & Elliott 1980) ordering schemes were implemented using heuristics that

exploit this constrained ness information. Experimental results in Chapter 4 indicate that

the decision to employ static or dynamic ordering schemes must be made keeping in mind

the trade-off between cpu-usage and refinement cycles. The accuracy of the final KBS was

however, not significantly affected in any way.

8.2 Informed Selection

Refinement examples are those training examples with which the refinement cycle is trig­

gered. These examples are labelled based on the expert's solutions for a given range of

problem tasks. If expert interaction is limited, it is important that we select few yet good

training examples for labelling. In contrast, if there are many labelled examples available

for refinement then, given that the refinement process is quite computationally expen­

sive, it is convenient to select those examples whose repairs also fix other wrongly solved

examples without further refinement, thereby reducing the number of refinement cycles.

Agglomerative clustering techniques were employed to identify a subset of good training

examples for knowledge refinement. The training examples are clustered based on the

area of the rule-base being exercised. For instance, all examples triggering similar rules

B.2. Informed Selection 130

are more likely to be clustered together, i.e. the similarity metric captures the problem

solving behaviour of the rule-base, with respect to the training examples. Various selection

heuristics are then employed to select one or more examples from each of these clusters.

Refinement filtering is the final stage in a refinement cycle, where the best refined

KBS is selected from a subset of potential refined KBSs as the output KBS for the next

iteration. It is an important stage, because good selection criteria will reduce the need

to backtrack to previous refinement states. This means reduced refinement iterations and

considerable savings on computational costs. The accuracy ranking phase of filtering was

the primary area of interest, since it involves ranking based on accuracy on a selected

subset of training examples, referred to as filter examples. This ranking can be adversely

affected when it is based on:

• a non-representative set of examples, particularly consisting of examples unaffected

by the potential refined KBSs; or

• a large set of examples consuming considerable computation resources.

Filter example selection methods proposed in this thesis, aim to identify examples affected

by potential refined KBSs. The accuracy ranking itself is then based on a representative

subset of examples, selected from those that are identified as affected. An ensemble based

approach selects examples that are solved most differently by the ensemble. This involves

a measure of disagreement between the ensemble members, reflecting consensus about

how the example was solved. Conveniently, the ensemble constitutes the set of potential

refined KBSs from which the best is to be selected. A different approach exploits and

extends the clustering framework for selection of filter examples in addition to refinement

examples. Here, the strategy involves several clustering episodes, where each potential

refined KBS will have a corresponding example clustering. Affected examples can then be

identified by analysing changes to cluster membership between clusters formed for each

potential refined KBS and the input KBS. The changes can be difficult to track and this is

tackled by considering only those changes that affect the cluster from which the refinement

example was selected. Although a cluster based selection of filter examples proved very

effective, the high computational costs makes it impractical for real applications.

8.3. Experimental Results 131

8.3 Experimental Results

Evaluation has been a continuous process throughout this project. This is clearly reflected

by experimental results presented at the end of most chapters. However, a thorough evalu­

ation on two artificial and one real domain was undertaken with the objective of analysing

the affects of different example selection methods, refinement ordering methods and re­

finement search methods, separately and with respect to each other. For this purpose the

experiments were designed to investigate the isolated and combined effects of refinement

search and example selection strategies on the KRUSTtool. Five KRUSTtool variants com­

bining backtracking with example ordering, active refinement and filter example selection

methods were analysed.

The results suggest that backtracking variants have significantly improved accuracy

over the non-backtracking ones. When active selection of refinement examples is enabled,

the KRUSTtool generates refined KBSs with similar accuracy using fewer examples. How­

ever, it was interesting to observe that a hybrid selection method was necessary to achieve

similar results with the real application domain. Filter example selection when enabled,

effectively guides the KRUSTtool through the refinement space, thereby reducing the need

to backtrack to previous refinement states. Overall informed selection of examples, sug­

gests that improved accuracy can be achieved with fewer labelled examples. In the real

world this would mean effective use of a busy expert's time.

8.4 Main Contributions

The work reported in this thesis falls under research pertaining to knowledge refinement,

particularly example selection and utilisation for iterative knowledge refinement of rule­

based systems. Therefore, the primary contributions are to knowledge refinement research

and these are:

• resolution of the problem of refinement dead-ends by the conversion of the hill­

climbing best first search into one that is able to backtrack to previous refinement

stages, thereby improving refinement accuracy;

• improved refinement search efficiency by incorporating heuristics that enforce exam­

ple ordering so that related examples are dealt close together;

8.4. Main Contributions 132

• an example clustering framework employing a rule-vector based similarity metric,

enabling cluster formation reflective of the underlying problem solving behaviour of

the KBS;

• heuristics that aim to select few yet good examples from these clusters, thereby

reducing labelling costs;

• extension of the clustering framework as a mechanism to identify filter examples by

monitoring changes in cluster membership;

• an ensemble-based approach to filter example selection, where potential refined KBSs

form the ensemble, and filter examples are those examples that cause the greatest

disagreement amongst the ensemble members; and

• a comprehensive evaluation of all refinement search and example selection methods

on three test domains.

Knowledge refinement is incremental learning where the learning must adapt existing

knowledge in the KBS with the aid of training examples. Essentially, knowledge refinement

falls under the broader context of machine learning. Invariably work in this thesis also

contributes to machine learning in general, as a novel approach to active selection of

examples for iterative knowledge refinement using unsupervised learning. The use of rule

vector based similarity for this purpose is an interesting idea that can be exploited with

active selection of examples for machine learning algorithms. One possibility is to perform

several induction episodes with different features assigned as the concept to be learned

(because at sampling we do not have example labels). The rule vectors for examples can

then be formed on the basis of all induced rule sets.

Incorporating CSP search strategies within the knowledge refinement framework has

been an interesting and challenging experience. Like most experiences there are useful

lessons to be learned and here it is the need for a variety of dynamic CSP strategies. It is

apparent that CSP solving methods must increasingly be adapted to cope with complex

applications involving both dynamic variables and dynamic values. Undoubtedly this will

broaden the horizon for CSP methods in the real world.

8.5. Desirable Extensions 133

8.5 Desirable Extensions

The thesis opens new possibilities for selective sampling applied to machine learning algo­

rithms and for further improvements and extensions to example selection and refinement

search methods for iterative knowledge refinement.

8.5.1 Backtracking Search

Presently, refinement search can fail when extensive backtracking regresses refinement to

the root (start of the refinement path). Typically, such a situation arises when refinement

conflicts resolved by inducing a new antecedent, a new value, or a new rule, was not

successful. Successful operation of induction operators depends not only on the availability

of examples, but also on the ability to select a representative subset of training examples

for induction. Often the examples that trigger backtracking and are in conflict with

previously solved refinement examples, provide a good source of examples for induction.

In the unfortunate event of regressing to the start of the refinement path, all refinement

examples involved in backtracking could be exploited for induction purposes in the next

refinement search attempt.

Often when backtracking employing the BJ algorithm, a new refinement path is ini­

tiated from a previous state by skipping over several refinement states. Typically the

skipped over states do not contribute to the refinement conflict that triggered backtrack­

ing. Consequently, exploring the refinement path leads to re-discovery, of these skipped

over states. With CSP search strategies the sticky values heuristic is employed to avoid

re-discovery by remembering the current value of a variable while skipping over it during a

back-jump (Frost & Dechter 1994, Kambhampati 2000). The underlying intuition is that

skipping over a variable means that its instantiated value did not contribute to the conflict

that triggered a back-jump. Therefore, on re-visiting this variable, the remembered value

is restored. A further variation enforces value ordering with the remembered value at the

front and any before it appended to the end. What might be of interest to knowledge

refinement is that remembering potential repairs and consolidating these may help reduce

computational costs, particularly with real applications. However, the task complexity of

incremental refinement compared to variable instantiation with CSP, suggests a need for

far more complex mechanisms that enable merging of remembered refinements with differ-

8.5. Desirable Extensions 134

ent input KBSs, when refinement examples are re-visited. Nevertheless, it is an interesting

opportunity for reducing computational costs.

8.5.2 Refinement Example Ordering

The ordering of refinement examples can directly control the sequence of refinements. Ide­

ally, refinement examples that expose interacting faults in the KBS need to be resolved in

close proximity during the early stages of refinement search. Identifying these examples

amounts to identifying examples that enforce the greatest constraint on the choice of pos­

sible refinements. The ordering heuristics presented in chapter 4 obtain information about

refinement constrainedness in two ways: from the problem graph; and fault evidence from

training examples yet to be processed. With both forms, ties between examples with simi­

lar constrainedness are broken randomly. However, it is easy to see how a hybrid heuristic

might be employed where the problem graph heuristics can be augmented with the fault

evidence based heuristics to resolve ties (or vice versa). Such an approach would be simi­

lar to the Brelaz heuristic (Brelaz 1979), which combines variable and value ordering for

CSPs.

8.5.3 Example Selection Efficiency

Experimental results in Chapter 7 show that highest demands on CPU resources are

associated with problem graph creation and pair-wise distance calculations during cluster

formation. An improved clustering algorithm using a two-stage approach is employed by

McCallum, Nigam & Ungar (2000) with encouraging results when applied to a 1916 sized

dataset. The two-stage approach involves:

1. an initial cheap partition of examples into overlapping subsets; followed by

2. an expensive clustering step that needs only to calculate pair-wise distances between

examples in overlap regions.

The cheap partitions are referred to as canopies. Essentially a canopy contains a subset of

examples that according to the cheap similarity measure is within a pre determined dis­

tance threshold. Of course this requires some understanding of the underlying properties

of the examples that are to be clustered before suitable thresholds can be set in place.

8.5. Desirable Extensions 135

However, the advantage of this approach is evident if the initial cheap distance measure

is able to form canopies such that there exists a canopy for every cluster . Here, the more

expensive distance measure need only be applied to the overlap areas forming distinct

clusters from overlapping canopies.

Figure 8.1 shows five clusters and the canopies that cover them. Examples belonging

to the same cluster are coloured in the same shade of grey. Each canopy is initiated from

a randomly selected example (or seed). Here starting with canopy A, further canopies can

be formed from examples placed outside A's dotted line (or inner threshold). Expensive

distance measurements will only be made between examples sharing a canopy. Essentially,

the distance between examples not sharing a canopy can be set to infinity.

Figure 8.1: Clusters covered by overlapping canopies.

A cheap distance metric for example clustering with knowledge refinement might be

rule vector formation according to a subset of rule activations. This subset might be

formed by considering only rule activations with n-depth from the bottom (with data

driven reasoning) or the top (with goal driven reasoning) of the problem graph. Such an

approach would improve computational efficiency by:

• reducing the number of complete positive problem graphs that need be created; and

• reducing pair wise similarity calculation costs due to smaller rule vectors.

8.5. Desirable Extensions 136

Canopies formed using the smaller rule vectors can then be refined by applying hierarchical

clustering with complete rule vectors and expensive pair-wise distances, calculated for only

those examples that fall under two or more canopies.

8.5.4 Selective Memory Retention

Incremental learning involves continuous iterations of learning a concept according to a set

of available training examples at a given time, and the possible adaptation of this concept

to cover newer training examples as they are made available. Incremental learners in a

real world situation must typically evolve according to changes in the real world. The

reasons for this can be:

• changes to concepts that are being learned, referred to as concept drift (Schlimmer

& Fisher 1986); or

• the unavailability of training examples at the start causing previously learned con­

cept boundaries to be specialised or generalised when examples become available.

Successful operation of incremental learners require the ability to forget past examples that

have either become redundant or completely unrelated in the present. For this purpose

Maloof & Michalski (1999) look at forgetting mechanisms that would efficiently manage

the learners memory, improving learning flexibility. The obvious approach is to introduce

an ageing mechanism, while a more subtle approach is to forget examples that no longer

enforce concept boundaries (Maloof & Michalski 1995).

Iterative knowledge refinement can benefit from a forgetting mechanism, particularly

when operating in environments where concept drift is the norm. This would entail an

ageing mechanism over cebuf with the effect of reduced back-jumps to previously solved

examples that are undone but are now redundant because of concept drift. A more direct

benefit of a forgetting mechanism is that it may help reduce computational costs, because

fewer examples means fewer pair-wise similarity calculations for clustering. Of course this

would hold only if the cost of implementing a forgetting mechanism is sufficiently lower

than the cost of clustering without these mechanisms in place.

8.6. Thesis Summary 137

8.6 Thesis Summary

This thesis has explored training example selection and utilization methods, with the aim

of improving the efficiency and effectiveness of knowledge refinement. Iterative incremen­

tal knowledge refinement is a search for the best refined KBS through the space of possible

refinements. Refinement search leading to non-optimal parts of the refinement space can

result in refinement dead-ends which should ideally be dealt with backtracking search. In

the absence of backtracking search, informed filtering mechanisms when in place, ensure

refinement search is directed to parts of the search space with improved refinement accu­

racy. If example clustering is used as the basis for informed selection of examples, it then

makes sense to employ a similarity metric that reflects the underlying task of the exam­

ples. Finally, improved refinement accuracy can be achieved with few yet good refinement

examples. The challenge however, is to identify the best mix of refinement search and ex­

ample selection strategies that improve effectiveness and efficiency for a given application

domain.

Appendix A

Corrupted Student Loans

Rule-base in Clips

0 ___ _

,

CLIPS Student Loans Adviser KBS

Corruptions to Rules R6, El. Rl6. Rl7 and Rl9

(defrule R1

(continuously_enrolled ?Student)

=>

(assert (no_payment_due ?Student)))

(defrule R2

(eligible_for_deferment ?Student)

(assert (no_payment_due ?Student)))

(defrule R3

(declare (salience -20))

(not (no_payment_due ?Student))

=>

(assert (payment_due ?Student)))

(defrule R4

(absence ?Student ?days)

(test (> 6 ?days))

138

Corrupted Student Loans Rule-base in Clips 139

=>

(assert (never_left_school ?Student»)

(defru1e R5

(enrolled ?Student ?Schoo1 ?Units)

(school ?Schoo1)

=>

(assert (enro11ed_in_n_units ?Student ?Units ?Schoo1»)

(defru1e R6

(never_left_school ?Student)

(enro11ed_in_n_units ?Student ?units ?Schoo1)

(test (>= ?units 5» ;; CORRUPTED: should be > 5

=>

(assert (continuously_enrolled ?Student»)

(defru1e RS

(military_deferment ?Student)

=>

(assert (e1igib1e_for_deferment ?Student»)

(defru1e R9

(peace_corps_deferment ?Student)

.. >

(assert (e1igib1e_for_deferment ?Student»)

(defru1e Rl0

(financial_deferment ?Student)

->

(assert (e1igib1e_for_deferment ?Student»)

(defru1e Rll

(student_deferment ?Student)

(assert (e1igib1e_for_deferment ?Student»)

(defru1e R12

(disability_deferment ?Student)

->

Corrupted Student Loans Rule-base in Clips 140

(assert (eligible_for_deferment ?Student»)

(defrule R14

(enlisted ?Student ?org)

(armed_forces ?org)

=>

(assert (military_deferment ?Student»)

(defrule R15

(enlisted ?5tudent ?org)

(peace_corps ?org)

=>

(assert (peace_corps_deferment ?Student»)

(defrule R16

(filed_for_bankruptcy ?Student yes)

(enlisted ?Student?) ;; CORRUPTED: extra condition

=>

(assert (financial_deferment ?Student»)

(defrule R17

(unemployed ?5tudent yes)

(enrolled_in_n_units ?5tudent 20 ?5chool) •• CORRUPTED: extra condition

=>

(assert (financial_deferment ?5tudent}})

(defrule E1 •• CORRUPTED: extra rule

(enrolled ?Student uci ?units)

=>

(assert (financial_deferment ?Student»)

(defrule RIB

(enrolled_in_n_units ?5tudent ?units ?5chool)

(test (> ?units 11»

=>

(assert (student_deferment ?5tudent»)

(defrule R19

(disabled ?5tudent yes)

Corrupted Student Loans Rule-base in Clips 141

(filed_for_bankruptcy ?Student yes) " CORRUPTED: extra condition

=>

(assert (disability_deferment ?Student»)

Appendix B

Corrupted Soybean Rule-base in

Clips

Two corrupted Soybean KBSs are included below. The first KBS has 7 corruptions and

the second has 13 corruptions.

B.l Soybean Corrupted Rule-base I
0 ___ -

,
CLIPS Soybean Disease Diagnosis KBS

Corruptions to Rules Rl, R2, R16, R7. R14. R20 and E1

{defrule R1

(fruiting_bodies present ?plant) ,. CORRUPTED: extra condition

(plant_stand normal ?plant)

(int_discolor none ?plant)

(seed norm ?plant)

(diaporthe_stem_canker_condition ?plant)

'"'>

{assert (diagnosis diaporthe-stem-canker ?plant»)

{defrule R2

=>

(plant_growth abnorm ?plant) " CORRUPTED extra condition

(int_discolor black ?plant)

142

B.l. Soybean Corrupted Rule-base I 143

(assert (diagnosis charcoal-rot ?plant»)

(defrule R16

(int_discolor black ?plant) •• CORRUPTED extra condition

(leaves norm ?plant)

(int_discolor none ?plant)

(rhizoctonia_root_rot_condition ?plant)

=>

(assert (diagnosis rhizoctonia-root-rot ?plant»)

(defrule R17

(int_discolor black ?plant)

(plant_stand normal ?plant)

(low_temp ?plant)

(stem abnorm ?plant)

(int_discolor none ?plant)

(rhizoctonia_root_rot_condition ?plant)

=>

(assert (diagnosis rhizoctonia-root-rot ?plant»)

(defrule R3

(plant_growth abnorm ?plant)

=>

(assert (rhizoctonia_root_rot_condition ?plant»)

(defrule R18

(int_discolor none ?plant)

(roots rotted ?plant)

(phytophthora_root_rot_condition ?plant)

->

(assert (diagnosis phytophthora-root-rot ?plant»)

(defrule R19

(plant_stand <_normal ?plant)

(area_damaged low_areas ?plant)

(fruiting_bodies absent ?plant)

(phytophthora_root_rot_condition ?plant)

(assert (diagnosis phytophthora-root-rot ?plant»)

B.l. Soybean Corrupted Rule-base I 144

(defrule E1 ff CORRUPTED extra rule

(hail yes ?plant)

(stem_cankers above_sec_nde ?plant)

=>

(assert (hail_canker_relation ?plant»)

(defrule R4

(plant_growth abnorm ?plant)

(leaves abnorm ?plant)

(assert (phytophthora_root_rot_condition ?plant»)

(defrule R5

(leaves abnorm ?plant)

(stem abnorm ?plant)

(lodging yes ?plant)

(int_discolor brown ?plant)

(assert (diagnosis brown-stem-rot ?plant»)

(defrule R50

(leafspot_size dna ?plant)

(int_discolor none ?plant)

(assert (powdery_mildew_condition ?plant»)

(defrule R6

(powdery_mildew_condition ?plant)

(leaves abnorm ?plant)

(stem_cankerondS absent ?plant)

(assert (diagnosis powdery-mildew ?plant»)

(defrule R7

(area_damaged whole_field ?plant) ff CORRUPTED extra condition

(leafspot_size >_1/8 ?plant)

(mold_growth present ?plant)

=>

(assert (diagnosis downy-mildew ?plant»)

(defrule R9

(leafspots_marg w-s_marg ?plant)

(leafspot_size <_1/8 ?plant)

(canker_lesion dna ?plant)

(seed_size norm ?plant)

=>

B.l. Soybean Corrupted Rule-base I 145

(assert (diagnosis bacterial-blight ?plant»)

(defrule R14

(season ?d ?plant)

(test (>= ?d 5» CORRUPTED 5 is incorrect should be 8

(test «= ?d 10»

(leafspot_size >_1/8 ?plant)

(leafspots_halo no_yell ow_halos ?plant)

(leaves abnorm ?plant)

(leafspots_marg w-s_marg ?plant)

(leaf_shread absent ?plant)

=>

(assert (alternarialeaf_spot_condition ?plant»)

(defrule R15

(leafspot_size >_1/8 ?plant)

->

(defrule R20

(leafspot_size >_1/8 ?plant) II CORRUPTED extra condition

(plant_growth norm ?plant)

(fruiting_bodies present ?plant)

(fruit_pods norm ?plant)

=>

(assert (diagnosis brown-spot ?plant»)

(defrule R21

(season 6 ?plant)

(precip >_norm ?plant)

(leafspot_size >_1/8 ?plant)

(mold_growth absent ?plant)

=>

(assert (diagnosis brown-spot ?plant»)

(defrule R22

(season 5 ?plant)

(leafspot_size >_1/8 ?plant)

(leaf_malf absent ?plant)

(mold_growth absent ?plant)

z>

(assert (diagnosis brown-spot ?plant»)

(defrule R23

(season 7 ?plant)

(area_damaged whole_field ?plant)

(leafspot_size >_1/8 ?plant)

(leaf_malf absent ?plant)

(fruit_pods norm ?plant)

z>

{assert (diagnosis brown-spot ?plant»)

{defrule R24

(season 4 ?plant)

(stem norm ?plant)

=>

(assert (diagnosis brown-spot ?plant»)

{defrule R25

(leafspots_marg no_w-s_marg ?plant)

(int_discolor none ?plant)

.. >

B.l. Soybean Corrupted Rule-base I 146

{assert (diagnosis bacterial-pustule ?plant»)

(defrule R26

(leafspot_size <_1/8 ?plant)

(seed_size <_norm ?plant)

(assert (diagnosis bacterial-pustule ?plant»)

(defrule R27

(leafspot_size <_1/8 ?plant)

(canker_lesion tan ?plant)

=>

B.l. Soybean Corrupted Rule-base I 147

(assert (diagnosis purple-seed-stain ?plant»)

(defrule R28

(leaves norm ?plant)

(leafspot_size dna ?plant)

(stem_cankers absent ?plant)

(int_discolor none ?plant)

=>

(assert (diagnosis purple-seed-stain ?plant»)

(defrule R29

(plant_growth norm ?plant)

(stem_cankers above_sec_nde ?plant)

(leafspot_size dna ?plant)

=>

(assert (diagnosis anthracnose ?plant»)

(defrule R30

(plant_growth abnorm ?plant)

(stem abnorm ?plant)

(seed abnorm ?plant)

(assert (diagnosis anthracnose ?plant»)

(defrule R31

(plant_stand <_normal ?plant)

(plant_grovth abnorm ?plant)

(fruiting_bodies present ?plant)

->

(assert (diagnosis anthracnose ?plant»)

(defrule R32

(leafspot_size >_1/8 ?plant)

(leaf_malf present ?plant)

B.l. Soybean Corrupted Rule-base I 148

(mold_growth absent ?plant)

=>

(assert (diagnosis phyllosticta-Ieaf-spot ?plant»)

(defrule R33

(precip <_norm ?plant)

(leafspot_size >_1/8 ?plant)

(int_discolor none ?plant)

=>

(assert (diagnosis phyllosticta-Ieaf-spot ?plant»)

(defrule R34

(season 7 ?plant)

(precip norm ?plant)

(leafspot_size >_1/8 ?plant)

=>

(assert (diagnosis phyllosticta-Ieaf-spot ?plant»)

(defrule R35

(int_discolor none ?plant)

(fruit_pods norm ?plant)

(mold_growth absent ?plant)

(alternarialeaf_spot_condition ?plant)

(assert (diagnosis alternarialeaf-spot ?plant»)

(defrule R36

(stem norm ?plant)

(mold_growth absent ?plant)

(alternarialeaf_spot_condition ?plant)

(assert (diagnosis alternarialeaf-spot ?plant»)

(defrule R37

(hail yes ?plant)

(plant_growth norm ?plant)

(leaf_malf absent ?plant)

(fruiting_bodies absent ?plant)

(fruit_pods norm ?plant)

(mold_growth absent ?plant)

(alternarialeaf_spot_condition ?plant)

B.l. Soybean Corrupted Rule-base I 149

(assert (diagnosis alternarialeaf-spot ?plant»)

(defrule R38

(plant_growth norm ?plant)

(stem abnorm ?plant)

(fruiting_bodies absent ?plant)

(frog_eye_leaf_spot_condition ?plant)

(assert (diagnosis frog-eye-Ieaf-spot ?plant»)

(defrule R39

(fruit_pods diseased ?plant)

.. >

(assert (diagnosis frog-eye-Ieaf-spot ?plant»)

(defrule 140

(season 8 ?plant)

(plant_stand normal ?plant)

(seed_tmt fungicide ?plant)

(leaf_shread absent ?plant)

(fruiting_bodies absent ?plant)

(mold_growth absent ?plant)

(frog_eye_leaf_spot_condition ?plant)

.. >

(assert (diagnosis frog-eye-Ieaf-spot ?plant»)

(defrule R41

(season 8 ?plant)

(hail no ?plant)

(fruiting_bodies absent ?plant)

(seed norm ?plant)

(frog_eye_leaf_spot_condition ?plant)

(assert (diagnosis frog-eye-Ieaf-spot ?plant»)

(defrule R42

(season 7 ?plant)

(precip >_norm ?plant)

(area_damaged scattered ?plant)

(mold_growth absent ?plant)

(frog_eye_leaf_spot_condition ?plant)

=>

B.l. Soybean Corrupted Rule-base I 150

(assert (diagnosis frog-eye-leaf-spot ?plant)))

(defrule R43

(leafspots_halo no_yell ow_halos ?plant)

=>

(assert (leafspots_halo ?plant)))

(defrule R44

(leafspots_halo yellow_halos ?plant)

=>

(assert (leafspots_halo ?plant)))

(defrule R45

(temp norm ?plant) 8> (assert (high_temp ?plant)))

(defrule R46

(temp >_norm ?plant) => (assert (high_temp ?plant)))

(defrule R47

(temp norm ?plant) -> (assert (low_temp ?plant)))

(defrule R48

(temp <_norm ?plant) => (assert (low_temp ?plant)))

(defrule R51

(temp norm ?plant)

(plant_growth abnorm ?plant)

(stem abnorm ?plant)

"'>

(assert (diaporthe_stem_canker_condition ?plant)))

B.2. Soybean Corrupted Rule-base II 151

B.2 Soybean Corrupted Rule-base II

0 __ _

,

CLIPS Soybean Disease Diagnosis KBS

Corruptions to Rules Rl, R2, R16, R7, R14, R20, R2l,

R22, R34, El, E2, E3 and E4

(defrule Rl

(fruiting_bodies present ?plant) " CORRUPTED: extra condition

(plant_stand normal ?plant)

(int_discolor none ?plant)

(seed norm ?plant)

(diaporthe_stem_canker_condition ?plant)

=>

{assert (diagnosis diaporthe-stem-canker ?plant»)

(defrule R2

"'>

(plant_growth abnorm ?plant) " CORRUPTED extra condition

(int_discolor black ?plant)

(assert (diagnosis charcoal-rot ?plant»)

{defrule R16

(int_discolor black ?plant) " CORRUPTED extra condition

(leaves norm ?plant)

(int_discolor none ?plant)

(rhizoctonia_root_rot_condition ?plant)

=>

(assert (diagnosis rhizoctonia-root-rot ?plant»)

{defrule R17

(int_discolor black ?plant)

(plant_stand normal ?plant)

(low_temp ?plant)

(stem abnorm ?plant)

(int_discolor none ?plant)

(rhizoctonia_root_rot_condition ?plant)

=>

B.2. Soybean Corrupted Rule-base II 152

{assert (diagnosis rhizoctonia-root-rot ?plant»)

{defrule R3

(plant_grovth abnorm ?plant)

.. >

{assert (rhizoctonia_root_rot_condition ?plant»)

{defrule El ;; CORRUPTED extra rule

(rhizoctonia_root_rot_condition ?plant)

=>

{assert (diagnosis rhizoctonia-root-rot ?plant»)

{defrule RlB

(int_discolor none ?plant)

(roots rotted ?plant)

(phytophthora_root_rot_condition ?plant)

=>

{assert (diagnosis phytophthora-root-rot ?plant»)

{defrule Rl9

(plant_stand <_normal ?plant)

(area_damaged lov_areas ?plant)

(fruiting_bodies absent ?plant)

(phytophthora_root_rot_condition ?plant)

.. >

{assert (diagnosis phytophthora-root-rot ?plant»)

{defrule R4

(plant_grovth abnorm ?plant)

(leaves abnorm ?plant)

.. >

{assert (phytophthora_root_rot_condition ?plant»)

{defrule RS

(leaves abnorm ?plant)

(stem abnorm ?plant)

(lodging yes ?plant)

(int_discolor brown ?plant)

B.2. SoybeaIl Corrupted Rule-base II 153

(assert (diagnosis brown-stem-rot ?plant»)

(defrule R50

(leafspot_size dna ?plant)

(int_discolor none ?plant)

=>

(assert (powdery_mildew_condition ?plant»)

(defrule RS

(powdery_mildew_condition ?plant)

(leaves abnorm ?plant)

(stem_cankeronds absent ?plant)

=>

(assert (diagnosis powdery-mildew ?plant»)

(defrule R7

(area_damaged whole_field ?plant) ii CORRUPTED extra condition

(leafspot_size >_1/8 ?plant)

(mold_growth present ?plant)

->

(assert (diagnosiS downy-mildev ?plant»)

(defrule R9

(leafspots_marg v-s_marg ?plant)

(leafspot_size <_1/8 ?plant)

(canker_lesion dna ?plant)

(seed_size norm ?plant)

->

(assert (diagnosis bacterial-blight ?plant»)

(defrule R14

(season ?d ?plant)

(test (>- ?d 5» ff CORRUPTED 5 is incorrect should be 8

(test «& ?d 10»

(leafspot_size >_1/8 ?plant)

(leafspots_halo no_yellov_halos ?plant)

(leaves abnorm ?plant)

(leafspots_marg w-s_marg ?plant)

(leaf_shread absent ?plant)

B.2. Soybean Corrupted Rule-base II 154

=>

(assert (alternarialeaf_spot_condition ?plant»)

(defrule E2

(season ?d ?plant)

(test (>= ?d 3»

=>

(assert (alternarialeaf_spot_condition ?plant»)

(defrule R15

(leafspot_size >_1/8 ?plant)

=>

(defrule R20

(leafspot_size >_1/8 ?plant) •• CORRUPTED extra condition

(plant_growth norm ?plant)

(fruiting_bodies present ?plant)

(fruit_pods norm ?plant)

=>

(assert (diagnosis brown-spot ?plant»)

(defrule R2l

(season ?d ?plant)

(test (> ?d 6» •• CORRUPTED incorrect operator should be

(precip >_norm ?plant)

(leafspot_size >_1/8 ?plant)

(mold_growth absent ?plant)

->

(assert (diagnosis brown-spot ?plant»)

(defrule R22

(season 5 ?plant)

(leafspot_size >_1/8 ?plant)

(fruiting_bodies present ?plant)

(leaf_malf absent ?plant)

(mold_growth absent ?plant)

->

CORRUPTED extra condition

(assert (diagnosis brown-spot ?plant»)

(defrule R23

(season 7 ?plant)

(area_damaged whole_field ?plant)

(leafspot_size >_1/8 ?plant)

(leaf_malf absent ?plant)

(fruit_pods norm ?plant)

=>

(assert (diagnosis brown-spot ?plant»)

(defrule R24

(season 4 ?plant)

(stem norm ?plant)

=>

(assert (diagnosis brown-spot ?plant»)

(defrule R25

(leafspots_marg no_w-s_marg ?plant)

(int_discolor none ?plant)

=>

B.2. Soybean Corrupted Rule-base II 155

(assert (diagnosis bacterial-pustule ?plant»)

(defrule R26

(leafspot_size <_1/8 ?plant)

(seed_size <_norm ?plant)

=>

(assert (diagnosis bacterial-pustule ?plant»)

(defrule E3 ;; CORRUPTED extra rule

(leafspot_size <_1/8 ?plant)

=>

(assert (sig-diagnosis bacterial-pustule ?plant»)

(defrule R27

(leafspot_size <_1/8 ?plant)

(canker_lesion tan ?plant)

=>

(assert (diagnosis purple-seed-stain ?plant»)

(defrule R28

(leaves norm ?plant)

(leafspot_size dna ?plant)

(stem_cankers absent ?plant)

(int_discolor none ?plant)

B.2. Soybean Corrupted Rule-base II 156

(assert (diagnosis purple-seed-stain ?plant»)

(defrule R29

(plant_growth norm ?plant)

(stem_cankers above_sec_nde ?plant)

(leafspot_size dna ?plant)

(assert (diagnosis anthracnose ?plant»)

(defrule R30

(plant_growth abnorm ?plant)

(stem abnorm ?plant)

(seed abnorm ?plant)

(assert (diagnosis anthracnose ?plant»)

(defrule R31

(plant_stand <_normal ?plant)

(plant_growth abnorm ?plant)

(fruiting_bodies present ?plant)

(assert (diagnosis anthracnose ?plant»)

(defrule R32

(leafspot_size >_1/8 ?plant)

(leaf_malf present ?plant)

(mold_growth absent ?plant)

(assert (diagnosis phyllosticta-Ieaf-spot ?plant»)

(defrule R33

(precip <_norm ?plant)

(leafspot_size >_1/8 ?plant)

B.2. Soybean Corrupted Rule-base II 157

(int_discolor none ?plant)

.. >

(assert (diagnosis phyllosticta-Ieaf-spot ?plant»)

(defrule R34

(season ?d ?plant)

(test (>= ?d 4» •• CORRUPTED incorrect value should be 7

(test «- ?d 7»

(precip norm ?plant)

(leafspot_size >_1/8 ?plant)

=>

(assert (diagnosis phyllosticta-Ieaf-spot ?plant»)

(defrule R35

(int_discolor none ?plant)

(fruit_pods norm ?plant)

(mold_growth absent ?plant)

(alternarialeaf_spot_condition ?plant)

=>

(assert (diagnosis alternarialeaf-spot ?plant»)

(defrule R36

(stem norm ?plant)

(mold_growth absent ?plant)

(alternarialeaf_spot_condition ?plant)

80>

(assert (diagnosis alternarialeaf-spot ?plant»)

(defrule R37

(hail yes ?plant)

(plant_growth norm ?plant)

(leaf_malf absent ?plant)

(fruiting_bodies absent ?plant)

(fruit_pods norm ?plant)

(mold_growth absent ?plant)

(alternarialeaf_spot_condition ?plant)

->

(assert (diagnosis alternarialeaf-spot ?plant»)

(defrule R38

(plant_growth norm ?plant)

(stem abnorm ?plant)

(fruiting_bodies absent ?plant)

(frog_eye_leaf_spot_condition ?plant)

=>

B.2. Soybean Corrupted Rule-base II 158

(assert (diagnosis frog-eye-leaf-spot ?plant»)

(defrule R39

(fruit_pods diseased ?plant)

->

(assert (diagnosis frog-eye-leaf-spot ?plant»)

(defrule R40

(season ?d ?plant)

(test (>= ?d 7»

(test «- ?d 10» ii CORRUPTED incorrect value should be 8

(plant_stand normal ?plant)

(seed_tmt fungicide ?plant)

(leaf_shread absent ?plant)

(fruiting_bodies absent ?plant)

(mold_growth absent ?plant)

(frog_eye_leaf_spot_condition ?plant)

=>

(assert (diagnosis frog-eye-leaf-spot ?plant»)

(defrule R41

(season 8 ?plant)

(hail no ?plant)

(fruiting_bodies absent ?plant)

(seed norm ?plant)

(frog_eye_leaf_spot_condition ?plant)

.. >

(assert (diagnosis frog-eye-leaf-spot ?plant»)

(defrule R42

(season 7 ?plant)

(precip >_norm ?plant)

(area_damaged scattered ?plant)

(mold_growth absent ?plant)

(frog_eye_leaf_spot_condition ?plant)

=>

B.2. Soybean Corrupted Rule-base II 159

(assert (diagnosis frog-eye-leaf-spot ?plant»)

(defrule R43

(leafspots_halo no_yell ow_halos ?plant)

=>

(assert (leafspots_halo ?plant»)

(defrule R44

(leafspots_halo yellow_halos ?plant)

(assert (leafspots_halo ?plant»)

(defrule R45

(temp norm ?plant) => (assert (high_temp ?plant»)

(defrule R46

(temp >_norm ?plant) => (assert (high_temp ?plant»)

(defrule R47

(temp norm ?plant) -> (assert (low_temp ?plant»)

(defrule M8

(temp <_norm ?plant) => (assert (low_temp ?plant»)

(defrule E4 ii CORRUPTED extra rule

(hail yes ?plant)

(stem_cankers above_sec_nde ?plant)

->

(assert (hail_canker_relation ?plant»)

(defrule R51

(temp norm ?plant)

(plant_growth abnorm ?plant)

(stem abnorm ?plant)

->

Appendix C

Corrupted MMU Rule-base • In Clips

The size of the corrupted MMU rule-base makes it inpractical to be appended in full.

Therefore, only the 12 corrupted individual rules are listed below .

. _---.
The corrupted parts of the

CLIPS Manned Maneuvering Unit KBS (MMU KBS)

;pos x input

{defrule cea-a-test-input-posx-null-null-l

.. >

•• CORRUPTED (side c on) added to disjunction

{or (aah off) (side c on) {and (gyro on)

(gyro movement none none»)

(side a on)

(side bon)

(rhc roll none pitch none yaw none)

(the x pos y none z none)

(or

(vda a f2 off)

(vda a f3 off)

(vda a ?nt-flt-f2t-f3t-f4 on)

{assert (failure cea»

{assert (suspect a»

(printout t "failure -during translational command" crlf)

160

Corrupted MMU Rule-base in Clips 161

(printout t " in the pos x direction" crlf)

(assert (conclusion cea translational pos x»

(defrule cea-b-test-input-posx-null-null-l

=>

;pos z,

(or (aah off) (and (gyro on) (gyro movement none none»)

(side a on)

(side bon)

(the x pos y none z pos)

(rhc roll none pitch none

(the x pos y none z none)

(or

(vda b f1 off)

(vda b f4 off)

(vda b ?nl-fll-f2&-f3l-f4

(assert (failure cea»

(assert (suspect b»

; CORRUPTED extra condition

yaw none)

on)

(printout t "failure -during translational command " crlf)

(printout t "in the pos x direction" crlf)

(assert (conclusion cea translational pos x»

(defrule cea-a-test-input-posz-null-null-ll

(or (aah off) (and (gyro on) (gyro movement none none»)

(side a on)

(side bon)

(the x pos y none z neg) ;CORRUPTED extra condition

(rhc roll none pitch none yaw none)

(the x none y none z pos)

(or

(vda a dl off)

(vda a d2 off)

(assert (failure cea»

Corrupted MMU Rule-base in Clips 162

(assert (suspect a»

(printout t "failure -during translational command " crlf)

(printout t " in the pos z direction" crlf)

(assert (conclusion cea translational pos z»

(defrule cea-b-test-input-posz-null-null-ll

=>

(or (aah off) (and (gyro on) (gyro movement none none»)

(side a on)

(side bon)

(rhc roll none pitch none yaw none)

(the x pos y none z neg) ;CORRUPTED extra condition

(the x none y none z pos)

(or

(vda b dl off)

(vda b d2 off)

(vda b ?nt-dlt-d2 on)

(assert (failure cea»

(assert (suspect b»

(printout t "failure -during translational command " crlf)

(printout t ";; in the pos z direction" crlf)

(assert (conclusion cea translational pos z»

(defrule cea-b-test-input-neg-null-null-12

=>

(or (aah off) (and (gyro on) (gyro movement none none»)

(side a on)

(side bon)

(the x pos y none z pos) CORRUPTED extra condition

(rhc roll none pitch none yaw none)

(the x none y none z neg)

(or

(vda b u3 off)

(vda b u4 off)

(vda b ?nt-u3t-u4 on)

;pos x

(assert (failure cea»

(assert (suspect b»

(printout t crlf II ••

Corrupted MMU Rule-base in Clips 163

failure during translational command " crlf)

(printout t ";; in the neg z direction" crlf)

(assert (conclusion cea translational pos z»

(defrule cea-test-input-pos-null-null-side-a-l

=>

CORRUPTED added (side c on) to disjunction

(or (aah off) (and (side c on) (gyro on)

(gyro

(not (checking thrusters»

(side a on)

(side b off)

(rhc roll none pitch none

(thc x pos y none z none)

(or

(vda a f2 off)

(vda a f3 off)

(vda a ?nt-f2t-f3 on)

(assert (failure cea»

(assert (suspect a»

movement none none»)

yaw none)

(printout t crlf 11 •• cea failure on side a" crlf)

(assert (conclusion cea failure side-a»

;pos pitch

(defrule cea-test-input-null-pos-null-side-a-3

(or (aah off) (and (gyro on) (gyro movement none none»)

(not (checking thrusters»

(side a on)

(side b off)

(side d) ; CORRUPTED extra condition

(rhc roll none pitch pos yaw none)

(thc x none y none z none)

(or

=>

jneg x

(vda a bl off)

(vda a f3 off)

(vda a ?nt-blt-f3 on)

(assert (failure cea»

(assert (suspect a»

(printout t crlf II •• . .

Corrupted MMU Rule-base in Clips 164

cea failure on side a" crlf)

(assert (conclusion cea failure side-a»

(defrule cea-test-input-neg-null-null-side-b-2

->

(or (aah off) (and (gyro on) (gyro movement none none»)

(not (checking thrusters»

(side a off)

(side bon)

(rhc roll none pitch neg yaw pos) jj CORRUPTED extra condition

(rhc roll none pitch none yaw none)

(the x neg y none z none)

(or

(vda b b2 off)

(vda b b3 off)

(vda b ?nt-b2t-b3 on)

(assert (failure cea»

(assert (suspect b»

(printout t crlf It •• .. cea failure on side b" crlf)

(assert (conclusion cea failure side-b»

jneg pitch

(defrule cea-test-input-null-neg-null-side-b-4

(or (aah off) (and (gyro on) (gyro movement none none»)

(not (checking thrusters»

(side a off)

(side bon)

(rhc roll none pitch neg yaw pos) jCORRUPTED extra condition

=>

(rhc roll none pitch neg yaw none)

(thc x none y none z none)

(or

(vda b f1 off)

(vda b b3 off)

(vda b ?nt-f1t-b3 on)

(assert (failure cea»

(assert (suspect b»

Corrupted MMU Rule-base in Clips 165

(printout t crlf II •• , , cea failure on side b" crlf)

(assert (conclusion cea failure side-b»

(defrule no-xfeed-fuel-reading-test-side-a-grt

(declare (salience -10»

(xfeed-a closed)

(xfeed-b closed)

(not (failure ?»

CORRUPTED incorrect negation (not (side bon»

(fuel-used-a ?fuel-a)

(tank-pressure-was a ?p-old)

(tank-pres sure-current a ?p-new)

(test « (- ?p-old ?fuel-a) ?p-new»

?x <- (side a on)

(side bon)

(assert (failure thruster-a»

(printout t crlf

(printout t crlf

II •• , ,

fl •• , ,

pressure in tank a is high,

a thruster has not responded"crlf)

side a failed while executing

thruster commands" crlf)

(assert (conclusion thruster-a high-pressure»

(assert (conclusion cea failure side-a»

(assert (side a off»

(retract ?x)

(assert (checking thrusters»

Corrupted MMU Rule-base in Clips 166

(defrule no-xfeed-fuel-reading-test-side-b-grt-1

(declare (salience -10»

=>

(xfeed-a closed)

(xfeed-b closed)

(side c) CORRUPTED extra condition

(not (failure ?»

(fuel-used-b ?fuel-b)

(tank-pres sure-was b ?p-old)

(tank-pres sure-current b ?p-new)

(test « (- ?p-old ?fuel-b) ?p-new»

(side a on)

?x <- (side bon)

(assert (failure thruster-b»

(printout t crlf

(printout t crlf

commands" crlf)

II ••

II •• . .

pressure in tank b is high.

a thruster has not responded"crlf)

side b failed while executing thruster

(assert (conclusion thruster-b high-pressure»

(assert (conclusion cea failure side-b»

(assert (side b off»

(retract ?x)

(assert (checking thrusters»

(defrule no-xfeed-fuel-reading-test-side-b-grt-2

(declare (salience -10»

->

(xfeed-a closed)

(xfeed-b closed)

(not (failure ?»

(not (side bon» CORRUPTED incorrect negation

(fuel-used-b ?fuel-b)

(tank-pres sure-vas b ?p-old)

(tank-pressure-current b ?p-new)

(test (> (- ?p-old ?fuel-b) ?p-new»

(side a on)

?x <- (side bon)

(assert (failure thruster-b»

Corrupted MMU Rule-base in Clips 167

(printout t crlf "ii pressure in tank b is low, " crlf)

(printout t II •• , , possible uncommanded acceleration

or fuel leak" crlf crlf)

(printout t crlf "ii side b failed while

executing thruster commands" crlf)

(assert (conclusion thruster-b low-pressure»

(assert (conclusion cea failure side-b»

(assert (side b off»

(retract ?x)

(assert (checking thrusters»

Appendix D

Interpretation of Results

We found that most of our evaluation results were not normally distributed. In these

situations non-parametric statistical tests are better suited as they do not require the

assumption of normality, and use the median instead of the average as the basis of com­

parison (Mendenhall & Sincich 1988, Anderson, Sweeney & Williams 1990). Additionally,

non-parametric tests tend to be more robust than their parametric counterparts. Two

commonly used non-parametric tests are:

• the Wilcoxen signed rank test for comparison of two data sets; and

• the Kruskal-Wallis test for comparison of two or more data sets.

With the Wilcoxen signed rank test we have a choice between the matched-pairs test

or the independent random samples test, depending on whether or not the 2 data samples

comprise of matched-pairs. The Wilcoxen statistic is the number of pairwise averages that

are greater than the comparison value plus one half the number equal to the comparison

value. Typically, for the matched-pairs test the comparison value is 0, and the null hy­

pothesis is that the median equals this comparison value and the alternative hypothesis

is that it is greater (or less) than the comparison value. With unmatched-pairs the null

hypothesis is that the median of the first sample is greater (or less) than the second sam­

ples median, and the alternative hypothesis is that they are equal. The Wilcoxen statistic

is interpreted according to the p value, where a p value less than 0.05 indicates that the

probability of rejecting the null hypothesis and being wrong is less than 0.05.

168

Interpretation of Results 169

The Kruskal-Wallis test ranks the data sets to be compared. It consists of the H

statistic that can be interpreted according to the p-value, where a p value less than 0.05

indicates a 95% significant difference between one or more of the data sets that are being

compared. In MINITAB (Minitab-Inc. 1998) the z value can then be used to identify which

of the data sets are ranked significantly above or below the group's median rank. For a

two-tailed test the z value is significant at the 95% confidence level if > 1.96 or < -1.96.

The sign of the z value indicates whether the difference is greater (plus) or less (minus)

than the group's median rank.

Appendix E

Published Papers

• Wiratunga and Craw (1999a). Incorporating Backtracking in Knowledge Refine­

ment, Proceedings of the 5th European Symposium on Verification and Validation of

Knowledge Based Systems and Components (EUROVAV99), Kluwer, Oslo, Norway,

pp 193-205.

• Wiratunga and Craw (1999b). Sequencing Training Examples for Iterative Knowl­

edge Refinement, Proceedings of the 19th SGES International Conference on Knowl­

edge Based Systems and Applied Artificial Intelligence (ES99), Springer, Cambridge,

UK, pp 41-56.

• Wiratunga and Craw (2000). Informed selection of Training Examples for Knowl­

edge Refinement, Proceedings of the 12th International Conference on Knowledge

Engineering and Knowledge Management (EKAW2000), Springer, Juan-les Pins,

France, pp 233-248.

170

Bibliography

Anderson, D. A., Sweeney, D. J. & Williams, T. A. (1990). Statistics for Business and

Economics, West Publishing Company, St. Paul, MN.

Angluin, D. (1988). Queries and concept learning, Machine Learning 2: 319-342.

Angluin, D., Frazier, M. & Pitt, L. (1992). Learning conjunctions of horn clauses, Machine

Learning 9: 147-164.

Argamon-Engelson, S. & Dagan, I. (1999). Committee-based sample selection for proba­

bilistic classifiers, Journal of Artificial Intelligence Research 11: 335-360.

Ayel, M. & Vignollet, L. (1993). SYCOJET and SACCO, two tools for verifying expert

systems, International Journal of Expert Systems 6(3): 357-382.

Bart Selman, H. K. & Cohen, B. (1994). Noise strategies for improving local search,

Proceedings of the Twelfth National Conference on Artificial Intelligence, Seattle,

WA.

Bartak, R. (1999). Constraint programming - what is behind?, In Proceedings of the

1st Workshop on Constraint Programming for Decision and Control (Invited Talk),

Gliwice, Poland.

Bartak, R. (2000). Dynamic constraint models for planning and scheduling problems, Pro­

ceedings of ERCIM Working Group on Constraints/Compulog Net Area on Constraint

Programming. to appear.

Bitner, J. R. & Reingold, E. (1975). Backtrack programming techniques, Communications

of the A CM 18: 651-656.

171

BIBLIOGRAPHY 172

Blake, C., Keogh, E. & Merz, C. (1998). VCI repository of machine learning databases.

http://www.ics.uci.edu/-mlearn/MLRepository.html.

Blum, A. L. & Langley, P. (1997). Selection of relevant features and examples in machine

learning, Artificial Intelligence 1-2: 245-271.

Boswell, R. & Craw, S. (1999). Organising Knowledge Refinement Operators, Valida­

tion and Verification of Knowledge Based Systems, Proceedings of the 5th European

Symposium on the Validation and Verification of Knowledge Based Systems (EU­

ROVAV'99), Kluwer, Oslo, Norway, pp. 149-161.

Boswell, R. & Craw, S. (2000). Experiences with a generic refinement toolkit, EKAW2000,

Springer Verlag. to appear.

Boswell, R., Craw, S. & Rowe, R. (1997). Knowledge refinement for a design system,

in E. Plaza & R. Benjamins (eds), Proceedings of the Tenth European Knowledge

Acquisition Workshop, Springer, Sant Feliu de Guixols, Spain, pp. 49-64.

Brelaz, D. (1979). New methods to colour the vertices of a graph, Communications of the

ACM 22: 251-256.

Brodley, C. E. & Friedl, M. A. (1996). Identifying and eliminating mislabelled training in­

stances, Proceedings of the Thirteenth National Conference on Artificial Intelligence,

Portland, Oregon, pp. 799-805.

Carbonara, L. & Sleeman, D. (1999). Effective and efficient knowledge base refinement,

Machine Learning 37: 143-181.

Cohn, D., Atlas, L. & Ladner, R. (1994). Improving generalization with active learning,

Machine Learning 15: 201-221.

Cohn, D., Ghahramani, Z. & Jordan, M. I. (1996). Active learning with statistical models,

Journal of Artificial Intelligence Research 4: 129-145.

Craw, S. (1996). Refinement complements verification and validation, International Jour­

nal of Human- Computer Studies, Vol. 44, pp. 245-256.

BIBLIOGRAPHY 173

Craw, S. & Boswell, R. (1999). Representing problem-solving for knowledge refinement,

Proceedings of the Sixteenth National Conference on Artificial Intelligence, AAAI

Press, Menlo Park, California, pp. 227-234.

Craw, S. & Hutton, P. (1995). Protein folding: Symbolic refinement competes with neural

networks, in A. Prieditis & S. Russell (eds), Machine Learning: Proceedings of the

Twelfth International Conference, Morgan Kaufmann, Tahoe City, CA, pp. 133-141.

Dechter, R. & Frost, D. (1999). Backtracking algorithms for constraint satisfaction prob­

lems, Technical Report R56, University of California Irvine.

Dechter, R. & Meiri, I. (1994). Experimental evaluation of preprocessing algorithms for

constraint satisfaction problems, Artificial Intelligence 68: 211-341.

Dempster, A. P., Laird, N. M. & Rubin, D. B. (1977). Maximum likelihood from incomplete

data via the em algorithm, Journal of the Royal Statistical Society, Series B 39: 1-38.

Dietterich, T. G. (1998). Approximate statistical tests for comparing supervised classifi­

cation learning algorithms, Neural Computation 10: 1895-1924.

Dietterich, T. G. (2000). Ensemble methods in machine learning, in J. Kittler & F. Roli

(eds), First International Work Shop on Multiple Classifier Systems, Lecture Notes

in Computer Science, Springer Verlag, New York, pp. 1-15.

Domingos, P. & Pazzani, M. (1997). On the optimality of the simple bayesian classifier

under zero-one loss, Machine Learning 29: 103-130.

Fisher, D. (1985). Conceptual clustering, in W. Klosgen & J. Zytkow (eds), Handbook of

Data Mining and Knowledge Discovery, Oxford University Press.

Freund, Y., Seung, H. S., Shamir, E. & Tishby, N. {1997}. Selective sampling using query

by committee algorithm, Machine Learning 28: 133-168.

Frost, D. & Dechter, R. (1994). In search of the best constraint satisfaction search,

Proceedings of the Twelfth National Conference on Artificial Intelligence, pp. 301-

306.

Frost, D. & Dechter, R. (1995). Look-ahead value ordering for constraint satisfaction

problems, Proceedings of the Fourteenth IJCAI Conference, pp. 572-578.

BIBLIOGRAPHY 174

Gaschnig, J. (1979). Performance measurements and analysis of certain search algorithms,

Technical Report CMU-C8-79-124, Carnegie-Mellon University, PA,

Gent, I., Macintyre, E., Prosser, P., Smith, B. & Walsh, T. (1996). An empirical study

of dynamic variable ordering heuristics for the constraint satisfaction problem, in

Principles and Practice of Constraint Programming, Springer-Verlag, pp. 179-193.

Gent, I. P., Macintyre, E. & Prosser, P. (1996). The constraindness of search, Proceedings

of the Thirteenth National Conference on Artificial Intelligence, Portland, Oregon.

Gil, Y. (1995). Learning from the environment by experimentation: The need for few

and informative examples, Proceedings of the AAAI Symposium on Active Learning,

MIT. Cambridge, MA.

Glover, F. & Laguna, M. (2000). Tabu search, in D. Corne, M. Dorigo & F. Glover (eds),

New Methods in Optimisation, McGraw-Hill.

Hanson, S. J. (1990). Conceptual clustering and categorization, in Y. Kodratoff & R. S.

Michalski (eds), Machine Learning Volume III, Morgan Kaufmann, San Mateo, CA,

pp. 235-268.

Haralick, R. & Elliott, G. (1980). Increasing tree-search efficiency for constraint satisfac­

tion problems, Artificial Intelligence 14: 263-313.

Kambhampati, S. (1998). On the relations between intelligent backtracking and failure­

driven explanation based learning in constraint satisfaction and planning, Artificial

Intelligence 105: 161-208. http://enws318.eas.asu.edu/pub/raofjour-ddb.ps.

Kambhampati, S. (2000). Planning graph as a dynamic csp: Exploiting ebl, ddb, and

other csp search techniques in graphplan, Journal of Artificial Intelligence Research

12: 1--34.

Kambhampati, S. & Nigenda, R. S. (2000). Distance-based goal-ordering heuristics for

graphplan, AlP 82000. rakaposhi.eas.asu.edu/SKambhampatiOO. ps.

Kodratoff, Y. (1988). Introduction to Machine Learning, Pitman, London.

Kondrak, C. & van Beek, P. (1997). A theoretical evaluation of selected backtracking

algorithms, Artificial Intelligence 89: 365-387.

BIBLIOGRAPHY 175

Kumar, V. (1992). Algorithms for constraint satisfaction problems: A survey, AI Magazine

13: 32-44.

Lamma, E., Mello, P., Milano, M., Cucchiara, R., Gavanelli, M. & Piccardi, M. (1999).

Constraint propagation and value acquisition: why we should do it interactively,

Proceedings of the Fourteenth /JCAI Conference, Sweden, Stockholm, pp. 468-473.

Langley, P., Drastal, G., Rao, R. B. & Greiner, R. (1994). Theory revision in fault hier­

archies, Proceedings of the Fifth International Workshop on Principles of Diagnosis,

New Paltz, NY.

Lewis, D. D. & Catlett, J. (1994). Heterogeneous uncertainty sampling for supervised

learning, in W. W. Cohen & H. Hirsh (eds), Machine Learning: Proceedings of the

Eleventh International Conference, Morgan Kauffman, San Francisco, CA, pp. 148-

156.

Lindenbaum, M., Markovich, S. & Rusakov, D. (1999). Selective sampling for nearest

neighbor classifiers, Proceedings of the Sixteenth National Conference on Artificial

Intelligence, AAAI Press, Menlo Park, California, pp. 366-371.

Maloof, M. A. & Michalski, R. D. (1995). A method for partial-memory incremen­

tal learning and its application to computer intrusion detection, Proceedings of the

7TH IEEE International Conference on Tools with Artificial Intelligence (ICTA 1'95) ,

IEEE Press, Washington, DC, pp. 392-397.

Maloof, M. A. & Michalski, R. S. (1999). Selecting examples for partial memory learning,

Machine Learning 1: 319-342.

McCallum, A. & Nigam, K. (1998). Employing em in pool-based active learning for

text classification, Proceedings of the Fifteenth International Conference on Machine

Learning, pp. 359-367.

McCallum, A., Nigam, K. & Ungar, L. (2000). Efficient clustering of high-dimensional

data sets with application to reference matching, To appear in Sixth ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining (KDD-2000).

Mendenhall, W. & Sincich, T. (1988). Statistics for the Engineering and Computer Sci­

ences, Collier MacMillan, London.

BIBLIOGRAPHY 176

Merialdo, B. (1991). Tagging text with a probabilistic model, Proceedings of the Interna­

tional Conference on Acoustics, Speech, and Signal Processing.

Michalski, R. S. & Chilausky, R. (1980). Learning by being told and learning from exam­

ples: An experimental comparison of the two methods of knowledge acquisition in the

context of developing an expert system for soybean disease diagnosis, International

Journal of Policy Analysis and Information Systems 4: 125-161.

Michalski, R. S. & Stepp, R. E. (1983). Learning from observation: Conceptual clustering,

in R. S. Michalski, J. G. Carbonell & T. M. Mitchell (eds), Machine Learning: An

Artificial Intelligence Approach, Tioga, Palo Alto, CA, pp. 333-363.

Michalski, R. & Stepp, R. (1990). Clustering, in S. Shapiro (ed.), Encyclopedia of Artificial

Intelligence, Vol. 1, Wiley, pp. 103-110.

Minitab-Inc. (1998). MINITAB User's Guide 2: Data Analysis and Quality Tools, Minitab

Inc, State College, PA.

Minton, S., Johnston, M. D., Philips, A. B. & Laird, P. (1992). Minimising conflicts: A

heuristic repair method for constraint satisfaction and scheduling problems, Artificial

Intelligence 58: 161-205.

Mittal, S. & Falkenhainer, B. (1990). Dynamic constraint satisfaction problems, Proceed­

ings of the Eighth National Conference on Artificial Intelligence, Menlo Park, CA,

pp.25-32.

Mooney, R. J. (1992). Batch versus incremental theory refinement, Proceedings of the

AAAI Spring Symposium on Knowledge Assimilation, Stanford, CA.

Mooney, R. J. (1997). Integrating abduction and induction in machine learning, Appears

in the Working Notes of the IJCAI-97 Workshop on Abduction and Induction in AI,

Nagoya, Japan, pp. 37-42.

Mooney, R. J. & Ourston, D. (1991). Constructive induction in theory refinement, in

L. Birnbaum & G. Collins (eds), Machine Learning: Proceedings of the Eighth Inter­

national Workshop, pp. 178-182.

BIBLIOGRAPHY 177

Murphy, P. M. & Pazzani, M. J. (1994). Revision of production system rule-bases, Machine

Learning: Proceedings of the Eleventh International Conference.

Nigam, K., McCallum, A., Thrun, S. & Mitchell, T. (1998). Learning to classify text from

labeled and unlabeled documents, AAAI98, AAAI Press, Menlo Park, California,

pp. 792-799.

Nigam, K., McCallum, A., Thrun, S. & Mitchell, T. (2000). Text classification from

labeled and unlabeled documents using em, Machine Learning 1. to appear.

Ourston, D. & Mooney, R. (1994). Theory refinement combining analytical and empirical

methods, Artificial Intelligence 66: 273-309.

Palmer, G. J. & Craw, S. (1996). The role oftest cases in automated knowledge refinement,

Research and Development in Expert Systems XIII: Proceedings of Expert Systems 96,

16th Annual Technical Conference of the British Computer Society Specialist Group

011 Expert Systems, SGES Publications, Cambridge, UK, pp. 75-90.

Palmer, G. J. & Craw, S. (1997). The selection of training cases for automated knowledge

refinement, in I. J. Vanthienen & F. van Harmelen (eds), Proceedings of the Fourth

European Symposium on the Validation and Verification of Knowledge Based Systems,

Morgan Kaufmann, Leuven, Belgium, pp. 205-215.

Pazzani, M. J. & Brunk, C. A. (1991). Detecting and correcting errors in rule-based ex­

pert systems: An integration of empirical and explanation-based learning, Knowledge

Acquisition lournal3: 157-173.

Pazzani, M. J. & Kibler, D. {1990}. The utility of knowledge in inductive learning, Tech­

nical Report 90-18, University of California Irvine.

Prosser, P. (1993). Domain filtering can degrade intelligent backtracking search, Proceed­

ings of the Thirteenth IJCAI Conference, Chambery, France, pp. 262-267.

Quinlan, .J. R. {1993}. C4·5: Programs for Machine Learning, Morgan Kaufmann, San

Mateo.

BIBLIOGRAPHY 178

Rajamoney, S. A. (1990). A computational approach to theory revision, in J.Shrayer &

P. Langley (eds), Computational Models of Scientific Discovery and Theory Revision,

Morgan Kaufmann, San Francisco, pp. 225-257.

Rasumssen, E. (1992). Clustering algorithms, in W. B. Frakes & R. Baeza-Yates (eds), In­

formation Retrieval: Data Structures and Algorithms, Prentice Hall, London, pp. 419-

442.

Richards, B. & Mooney, R. (1991). First-order theory revision, in L.A.Birnbaum &

G.C.Collins (eds), Machine Learning: Proceedings of the Eighth International Work­

shop, Morgan Kauffman, San Mateo, CA, pp. 447-451.

Richards, B. & Mooney, R. (1995). Automated refinement of first-order horn-clause domain

theories, Machine Learning 19: 95-131.

Sadeh, N. M. & Fox, M. S. (1990). Variable and value ordering heuristics for the job shop

scheduling constraint satisfaction problem, Proceedings of the Fourth International

Conference on Expert Systems in Production and Operations Management, pp. 134-

144.

Schlimmer, D. F .. J. (1988). Concept simplification and predictive accuracy, Machine

Learning: Proceedings of the Fifth International Conference, Morgan Kaufmann,

pp.22-28.

Schlimmer, J. C. & Fisher, D. (1986). A case study of incremental concept induction,

Proceedings of the Fourth National Conference on Artificial Intelligence, Philadelphia,

PA, pp. 496-501.

Scott, P. D. & Markovitch, S. (1989). Uncertainty based selection of learning experi­

ences, Proceedings of The Sixth International Workshop on Machine Learning, Mor­

gan Kaufmann, Ithaca, New York.

Selman, B. & Kautz, H. (1993). Domain independent extensions to GSAT: Solving large

structured satisfiability problems, Proceedings of the Thirteenth IJCAI Conference,

Chambery, France.

Shannon, C. E. & Weaver, W. (1949). The Mathematical Theory of Communication,

University of Illinois Press.

BIBLIOGRAPHY 179

Smith, B. & Grant, S. (1998). 'frying harder to fail first, Proceedings of the ECAI98

Conference, John Wiley and Sons Ltd., Brighton, UK, pp. 249-253.

Tallis, M. & Gil, Y. (1999). Designing scripts to guide users in modifying knowledge based

systems, Proceedings of the Sixteenth National Conference on Artificial Intelligence,

AAAI Press, Menlo Park, California, pp. 227-234.

Tsang, E. (1993). Foundations of Constraint Satisfaction, Academic Press, San Diego.

Tsang, E., Borrett, J. & Kwan, A. (1994). An attempt to map the performance of a

range of algorithms and heuristic combinations, Technical Report A UCS/TRCSM-

210, University of Essex. ftp.essex.ac.uk/pub/csc/technical-reports/CSM-210.ps.

van Rijsbergen, C. J. (1980). Information Retrieval, Butterworths, London.

Wilkins, D. C. (1988). Knowledge base refinement using apprenticeship learning tech­

niques, Proceedings of the Sixth National Conference on Artificial Intelligence, Min­

nesota, pp. 646-651.

Wilkins, D. C. (1990). Knowledge base refinement as improving an incorrect and incom­

plete domain theory, in Y. Kodratoff & R. S. Michalski (eds), Machine Learning

Volume III, Morgan Kaufmann, San Mateo, CA, pp. 493-513.

Willett, P. (1988). Recent trends in hierarchic document clustering: A critical review,

Information Processing and Management 24: 577-597.

Wiratunga, N. & Craw, S. (1999a). Incorporating backtracking search with knowledge

refinement, in A. Vermesan & F. Coenen (eds), Proceedings of the Sixth European

Symposium on the Validation and Verification of Knowledge Based Systems, Kluwer

Academic Publishers, Oslo, Norway, pp. 193-205.

Wiratunga, N. & Craw, S. (1999b). Sequencing training examples for iterative knowl­

edge refinement, Proceedings of the Nineteenth SGES International Conference on

Knowledge Based Systems and Applied Artificial Intelligence, Springer, Cambridge,

UK, pp. 41-56.

Wiratunga, N. & Craw, S. (2000). Informed selection of training examples for knowledge

refinement, in R. Dieng & O. Corby (eds), Proceedings of the Twelfth International

BIBLIOGRAPHY 180

Conference on Knowledge Engineering and Knowledge Management, Springer, Juan­

les-Pins, France, pp. 233-248.

Wogulis, J. & Pazzani, M. J. (1993). A methodology for evaluating theory revision systems:

Results with audrey ii, Journal of Artificial Intelligence Research.

Zlatareva, N. & Preece, A. (1994). State of the art in automated validation of knowledge­

based systems, Expert Systems with Applications 7: 151-167.

Appears in Proceedings of the 5th European Symposium on Verification and Validation of
Knowledge Based Systems and Components (EUROVAV99), pp 193-205, Copyright © 1999

Kluwer Academic Publishers. All rights reserved.

INCORPORATING BACKTRACKING IN
KNOWLEDGE REFINEMENT

Nirmalie Wiratunga and Susan Craw
School of Computer and Mathematical Sciences

The Robert Gordon University

Aberdeen AB25 lHG, UK

nw!smclllscms.rgu.ac.uk

Abstract Refinement tools seek to correct faulty rule-based systems by identifying
and repairing faults that are indicated by training examples that provide
some evidence of faults. Refinement tools typically use a hill-climbing
search to identify suitable repairs. In this paper, the goal is to incorpo­
rate an effective backtracking mechanism with a refinement algorithm so
that the search for repairs does not get caught by local maxima. How­
ever the repair cycle for each potential fault is expensive, so exhaustive
backtracking is prohibitive for large knowledge bases. This paper inves­
tigates more guided backtracking algorithms developed for constraint
satisfaction problems and adapts them for refinement problems. Ex­
periments with these backtracking algorithms reveal that high accuracy
refined knowledge bases are achievable, often at the expense of extra
iterations, but an informed re-ordering of training examples reduces
the number of iterations without increasing the error-rate. A test-bed
is developed by corrupting a rule base with interacting faults, thereby
allowing pairs of conflicting training examples to be identified. The al­
gorithms are evaluated on training sets containing increasing numbers of
these conflicting examples. One separate observation is that conflicting
examples help to achieve refined knowledge bases with high accuracy.

Keywords: Knowledge Refinement, Informed Backtracking, Example Re-ordering

1. INTRODUCTION
Refinement tools support the knowledge acquisition and development

of knowledge based systems (KBSs) by assisting the debugging of in­
correct systems and the adaptive maintenance of KBSs whose problem-

solving environment changes (Craw, 1996; Boswell et al., 1997). Refine­
ment tools are commonly presented with examples of problem-solving
where the expert's solution is inconsistent with the KBS's, and from
these, the tool identifies potential faults in the KBS and suggests possi­
ble repairs. It also benefits from knowing some correctly solved examples
as well, so that repairs are not too closely fitted to wrongly-solved exam­
ples only, to the detriment of the KBS's more general problem solving.
Therefore the training set for the refinement tool's learning contains a
selection of wrongly and correctly solved examples, each consisting of the
facts that describe the problem-solving task, together with the expert's
solution for this task.

Refinement tools adopt an incremental approach where each applica­
tion of the algorithm attempts to fix one or more, but typically not all,
of the wrongly-solved examples in the training set, and to improve the
accuracy on the training set with a view to improving the accuracy more
generally. The refinement task is sufficiently complex that the space of
possible repairs demands a heuristic search, typically hill-climbing. EI­
THER (Ourston and Mooney, 1994) and FORTE (Richards and Mooney,
1995) try to repair the outstanding fault that is indicated by the largest
number of examples, and choose the repair with the fewest changes to
rules which are nearest the observables. KRUSTTools are KBS specific
refinement tools, assembled from our KRuSTWorks generic refinement
toolkit. The refinement algorithm central to this family also applies a
hill-climbing search. Although it generates many refined KBSs designed
to fix each incorrect example, it then chooses the refined KBS with the
highest accuracy on the training examples as the input KBS for the next
iteration of the algorithm. The result is that refinement tools are dogged
by the standard hill-climbing problem of getting caught in local maxima,
so the accuracy or performance of the KBS must be reduced before an
overall improvement can be gained.

In this paper we explore different ways KRUSTTools may exploit pre­
viously abandoned repairs or refined KBSs to restart the refinement pro­
cess when it gets stuck. First, we illustrate situations when KRUSTTools
fail to generate refined KBSs and indicate how backtracking is applied.
More selective backtracking algorithms, developed to solve constraint
satisfaction problems (CSPs), are presented next, and these are then
adapted to fit the KRusTTool refinement cycle. Experimental results
suggest the need for refinement-specific improvements to the basic back­
jumping algorithms and these changes are presented and evaluated. Fi­
nally we conclude with a few general observations and directions for
future work.

2. REFINEMENT WITH KRUSTTOOLS

A KRUSTTool incrementally refines a KBS by processing the train­
ing examples {el, ... , en} one at a time, Figure 1. The input KBS is
th b st refined KBS from the previous iteration, or the original faulty
KBS for the first iteration. In each iteration the next training example,
call d the refinement example for this iteration, is used to generate re­
fined KBSs. If the expert's solution for the refinement example already
coincides with the input KBS's solution then no refinement is necessary
in this ycle. Otherwise, the refinement example's evidence allocates
blame to pos ible faults in the KBS and generates potential repairs that
are implement d as the refined KBSs proposed during this cycle. Two
data structur s of xamples provide a selection mechanism for the best
refined KBS. The constraint examples buffer contains the previous re­
finem nt examples that have already been corrected, and refin d KBSs
are r j . cted if they wrongly answer any constraint example in this buffer.
The training examples buffer contains the training examples still to be
process d, and the remaining refined KBSs are ranked by their accuracy
on the training xamples buffer; the previous filter guarantees 100% ac­
curacy on the constraint examples buffer. During each cycle, the current
refinem nt example is transferred from the training xampl s buffer into
the constraint exampl s buffer.

Constraint Exam- Training Examples
pies Buffer Buffer

I. .. _ y¥_ .. i \"_~¥ __ .J

: Fiher Refined : 1...-_-+': KBS, : ._-_
: SeleGl Besl :

L ~.~~ :
Filter I1l1d Select Refined KBSs

Figure 1 The KRUSTTool Process.

ur refin ment algorithm is unusual in generating many refined KBSs
in a h iteration and the hill-climbing selection of the one best refined
KBS for th next iteration occurs at the end of each cycle. This of­
£ r the po sibility of backtracking to alternative refined KBSs thereby
a hieving a best-first search. Figure 2 illustrates the start of a poten­
tial backtracking scenario; the updates to the constraint examples buffer

(cebuf) and the training examples buffer (tebuf) are shown on the right.
Refinement example e2 generates 3 refined KBSs and R21 is selected as
best. Refinement examples e3 and e4 generate several refined KBSs and
again the best is selected. But now suppose R41 cannot be refined by
es because although 4 refinements are generated, all are rejected by the
constraint examples; this is shown by a darkly shaded node for es. The
refinement path in the diagram is ... e2.R21 --t e3.R31 --t e4.R41 --t es.0
where 0 indicates the absence of a selected refined KBS. Strictly, it is
this refinement path that labels the nodes in the diagram and so the
node labelled RSI is really named R. .. 213141S1·

level5

tebu! {e2 e3 e4 es ··1
cebuf {etl e2- _. - - - _. _ .. - - - - - - - - _. - _ .. _ .

.....
\
R' R' 22 23 tebuf {e3 e4 es .. 1

cebuf lei e2}
e:J' . - . - - - . - - . - . - . - - - - - - . - - - .. - . - - - .

tebu! le4 es .. }
cebuf lei e2 e31 -e4 _ ... _ .. - _. - - - _. _. - - - - - - - - - _ ... _. --

tebuf les .. }
cebuf lei e2 e3 e41

-es - ... - - - - - -. - - -' - - - - - - - - - - - - - - - - - - - _.

Figure 2 A Backtracking KRuSTTool.

So what should the refinement algorithm do now: continue with e6

and ignore the fact that es is not corrected, and is unlikely to be by
future refinements? A better alternative is to backtrack through the
solution space of refined KBSs and restart the refinement process from
an earlier node. Simple backtracking undoes each step one at a time,
and so refinement is restarted with R42 and e5. In this paper we investi­
gate more guided backtracking that may restart refinement from earlier
points, say R22 with e3· These algorithms originated as search methods
for solving constraint satisfaction problems and are introduced next.

3. HEURISTIC SEARCH SOLVES CSP

Constraint satisfaction problems (CSPs) consist of a set of ordered
variables {VI,' .. , Vn }, a specified domain Di for each variable Vi and a

set of constraints {CI, ... ,Cm }. A CSP solution is an instantiation of
each variable with a value from its respective domain such that none of
the constraints is violated (Tsang, 1993). Various backtracking searches
have been proposed that partially undo the instantiation and resume the
constructive process from a previous variable instantiation.

BackTracking (BT) (Bitner and Reingold, 1975) steps back to the
previous variable Vi-I, and continues the search by finding a new
instantiation for Vi-I consistent with the constraints and Vk, k <
i - 1. BT recursively backtracks to previous variables until it has
tried all values in the domain for each.

BackJumping (BJ) (Gaschnig, 1979) does not step back to the previ­
ous variable Vi-I but instead jumps back to the latest variable Vj

whose instantiation conflicts with any of the instantiations for Vi.

If there are no new instantiations available for Vj then BJ reverts
to backtracking from Vj.

Conflict-directed BackJumping (CBJ) (Prosser, 1993) extends the
notion of backjumping by replacing the backtracking after a back­
jump in BJ with backjumping.

BT is an exhaustive depth first search of the tree of variable instanti­
ations; siblings are different instantiations of a particular variable and a
parent instantiates the preceding variable in the given ordering. BJ ex­
plores a subset of the BT nodes and so our motivation for investigating
backjuIllping is to reduce the number of refinement iterations.

BJ and CBJ are no longer exhaustive. However, for binary CSPs,
where all constraints contain at most 2 variables, BJ and CBJ still find all
solutions (Kondrak and van Beek, 1997); any instantiations they fail to
check for variables between Vi and the backjumped to Vj are guaranteed
to result in the same inconsistency between the instantiation for Vj and
the possible values for Vi. Therefore, for binary CSPs, BJ and CBJ have
proved effective in reducing search.

4. CSP ALGORITHMS AID REFINEMENT
We wish to adapt the CSP algorithms to search the space of incre­

mentally refined KBSs created by KRUSTTools, so that the KRUSTTool,
when necessary, may revisit refined KBSs that have previously been
abandoned by the refinement algorithm. We propose an analogy be­
tween CSPs and refinement problems so that the concepts applied in
the CSP algorithms can be imitated in the refinement domain.

In refinement problems we incrementally refine the KBS to correctly
answer the current and previous refinement examples. So, the most nat­
ural analogy between esps and refinement links variables with training
examples, the current variable with the refinement example, and instan­
tiated variables with correctly solved training examples in the constraint
examples buffer. esp constraints correspond to refined KBSs, and con­
sistency is achieved when the refined KBS correctly answers the con­
straint examples. Finally the domain for a variable corresponds to the
repairs that are proposed by a refinement example.

To complete the analogy we must describe when backtracking is trig­
gered and how backjumps are determined. The KRusTTool algorithm
fails when the refinement example ei and the input KBS R fail to create
any refined KBSs (Le. the generated KBSs GeneratedRi is empty) or
those generated are rejected by the constraint examples (Le. Filtered Ri
is empty). The conflict set for ei, con!set{ei), will contain the potential
backtracking points from ei. If FilteredRi = {} then we know which
constraint examples caused the removal of each generated KBS, and
these form the confset for the eBJ algorithm. BJ's confset is similar
but also contains refinement examples prior to the conflicting ones. If
Generated Ri = {} then backtracking is the only option; no conflicting
constraint examples can be identified since there are no KBSs to test!

Let us revisit Figure 2's scenario. Refinement must backtrack because
FilteredR41 s = {}, although Generated~ls = {RSl' RS2, RS3, RS4}. Thus
for each KBS in GeneratedR41S, some of the constraint examples in ce­
buf must be wrongly answered; suppose R S1 , R52 wrongly solve e2, and
RS3, RS4 wrongly solve e3· For BT, es's conflict set is the previous re­
finement example {e4} and refinement proceeds by backtracking to e4
on the refinement path and choosing the next branch; in this case R42
with es. For BJ and eBJ, es's conflict set contains the failed constraint
examples e2, e3· So refinement continues from e3, the most recent on
the path, selecting the next available refined KBS R32 with e4 as the
refinement example; e5 is moved back into tebuf as a future refinement
example. If no more KBSs are available from e3 then BJ backtracks to
the e2 node and eBJ backjumps according to e3 's and e5 's conflict sets.

4.1 REFINEMENT DIFFERS FROM CSP
We have drawn an analogy between esps and knowledge refinement

that allows us to apply backtracking and backjumping algorithms with
the KRusTTool algorithm. However, there are two obvious differences
between CSPs and refinement: the domain of potential repairs is not
known in advance, instead it is constructed incrementally during refine-

ment g n ration and filtering; and the behaviour of constraint examples
can hang - th Y can become uncorrected and so they provide new
fault vidence. Th first is dealt with by associating refined KBSs with
the r finement exampl s that g nerate them, and reasoning about back­
tra king u ing con traint xamples rather than KBSs.

Figure 3 illu trates a problem that can arise from the second point.
In this nario, R21 air ady answers ea correctly and so the output
from the ea cycl is the input KBS R21; this has been highlight d by
ligh hading. It does not affect the search when it is advancing, but
backtracking or backjumping to this point raises problems. In Figure 3,
ba ktracking tarts b cause Filtered1415 = n. Suppose we are using
BJ and confset(5) is {e2' ea}, so we backjump to ea. But the input KBS
R2l aIr ady orr ctly answers ea and so no refined KBSs are available.
Would simply backtrack further, but the refinement tool has just
di over d a relationship: the changes to correct e5 have interacted with
the way that 3 was previously proved. Thus if we backtrack beyond ea
then it is po ible that the same interaction will occur again.

levelS

rebu! le3 e4 es .. }
cebuf l e l~}

rebuf {e4 es .. }
cebuf lei ~ e31 .e4 ··· .. 000 •• 0.0 •• • 0 0 000. 0 0 0 00000000 0 .

"-
"-
R42

rebuf {es " }
cebuf {el ~ ~ e4} oes 0 0 0 0.0000 0000000.0 •• 0 00000. 0 0 o. 0 0.000 .

GeneraredS={RSI RS2 RS3 RS41
RS4 Filtereds ={}

Figure S The Changing Behaviour of Constraint Examples.

In tad, w not these special examples and treat them differently. W
call a a latent xample since it did not contribute any fault evidence

a r finem nt xample. Th other refinement examples are active.
Giv n the onfli ting relationship between the latent example e3 and its
a tivating r fin ment example e5, we choose to solve their conflict at this

point by re-instating e3 in to tebuf and advancing the search from RSI

with e3 as the next refinement example.

4.2 PRIORITISING LATENT OVER ACTIVE
Latent examples provide no impact on the refinement initially since

it is already answered correctly. But when it appears in the conflict set,
not only does it provide fault evidence, but it has the added conflicting
relationship with the current refinement example. We have amended
the backjumping algorithms to take further account of latent examples
in conflict sets. If in Figure 3, confset(es} is {e3, ed, then backjumping
will resume with e4 and the fault evidence now presented by the latent
example e3 will be lost. Instead, we prioritise latent examples that
appear in conflict sets, and, rather than backjumping to the most recent
conflicting example, we reinstate all conflicting latent examples into the
tebuf. In Figure 3 the search proceeds with e3 and RS1 , the refined KBS
in GeneratedR415 with the highest accuracy, despite e4 being in the
conflict set. If the intervening active conflict examples (here e4) remain
a problem, backjumping offers the opportunity to investigate there later.

4.3 BT AND BJ: A COMPARISON FOR
REFINEMENT

Backtracking one refinement cycle at a time (BT) is likely to lead
to many iterations, so our goal in introducing backjumping (BJ and
CBJ) was to reduce refinement cycles. Our first comparison counts the
number of refinement iterations with BT, BJ and CBJ. Our experiments
apply a Prolog KRusTTool to a corrupted version of the student loans
KBS (Pazzani, 1993). The faulty KBS was created by introducing 5
corruptions to the 20 rules in the original student loans KBS: an extra
rule, a changed comparison operator and an extra condition in 3 rules.

The training examples had to be carefully selected to ensure that
backtracking was exercised, since it is only prompted when conflicting
repairs are attempted with interacting faults. Most training sets do not
require such conflicting repairs, and so we had to ensure our training sets
did indeed contain some conflicts. We identified 9 conflicting pairs in a
carefully chosen set of 8 examples from the complete student dataset,
where repairs for one example in the pair conflicted with repairs for the
other. Finding conflicting examples was relatively easy given the density
of corruption of the KBS. Our selected dataset contained a further 22
"normal", unconflicting examples. Training sets of a given conflict level
N were created from the selected dataset of 30 examples by randomly
choosing N conflict pairs, removing duplicate examples when they oc-

curred, and randomly selecting from the "normal" examples until the
training set contained 15 examples. KRusTTools incorporating the BT,
BJ and CBJ algorithms were applied to each training set and the cor­
rupted KBS. Each test was repeated 10 times and the results averaged.

Figure 4 shows the number of iterations for each of the algorithms as
the number of conflict pairs in the training set increases. The results
were surprising. We had expected BT to have the most iterations, BJ to
have fewer, and CBJ to have the fewest, reflecting the increased targeting
of the search. With binary CSPs, BT is guaranteed to have at least as
many iterations as BJ or CBJ. However, in the more dynamic space of
refined KBSs this is not the case; backjumping searched a different part
of the space that involved more iterations.

So has there been any gain from BJ's additional searching? Figure 5
shows the error rates of the final KBS produced by the 3 algorithms on
the complete set of 30 examples; the error-rate of the original corrupted
KBS is the horizontal dashed line on all error-rate graphs. BJ, the
most greedy in refinement cycles, has indeed gained the lowest error
rate. This behaviour is explained by noticing that, although BJ and
CBJ arc guaranteed to find all binary CSP solutions, this is not the case
with refinement, since repairs in different cycles can interact: an earlier
repair can provide part of a later repair or conflict with the later repair.
Therefore the repairs that are proposed depend on the input KBS and
thus the refinement path.

35
-o-BT

30 --O-CBJ
<1\

S ~BJ

~ Z5

15 zo
0 z

15

10

0 2 3 4 5 6 7 8 9
Conflict Pairs

Figure 4 Number of Iterations (Basic Algorithms).

5. CONFLICT-BASED RE-ORDERING
Figure 5 shows another interesting trend: the error rate of the re­

fined KBS decreases as the number of conflict pairs in the training set
increases. This confirms the experimental results in {Palmer and Craw,

0.18
--O-BT

0.15 ---O--CBJ

u 0.11 ~BJ
;:;;

'" 0.09 Is
- - - Orig. KB

t:
UJ 0.06

00: t
I I I

0 2 345 6 7 g 9
Conflict Pairs

Figure 5 Error Rate of Final Refined KBS (Basic Algorithms).

1996), that the more demanding the examples in the training set the
higher accuracy achieved by refinement. It also suggested that we ex­
plon~ re-ordering the training examples to exploit conflict knowledge as
soon as it is recognised. Minimal Bandwidth Ordering heuristic for static
ordering of variables attempts to reduce the backtracking distance for
CSP algorithms by placing mutually constrained variables close together
in the search (Tsang, 1993). The previous section recognised that the
refinement example and the conflicting examples are mutually constrain­
ing since the repairs for the later one has affected the correctness of the
earlier latent example. We try to use this idea of mutually constraining
examples to associate the refinement example and the deepest conflicting
constraint example in the sequence of training examples in an attempt to
reduce the number of iterations of the backjumping algorithms without
compromising the error-rate of the final refined KBS.

Figure 6 illustrates a hypothetical backjumping situation. The refine­
lIlent search space contains three main refinement paths, of which two
have been discarded: e2·R 21 --t e3·R31 --t e4.R41 -+ e5.0 and e2.R22 --t
e3. R31 --t e4.R41 --t e5.0. Suppose in each case confset(e5}= {e2} and
so backjumping to e2 produces the search as illustrated. But this also
means that e2 and es are mutually constraining since the repairs to e5
has affected the solution to e2·

The Minimal-BJ (MBJ) and Minimal-CBJ (MCBJ) algorithms con­
tain a further amendment to the backjumping algorithms, so that back­
jumping to a node ej that conflicts with the current refinement example
ej causes the algorithm to try to fix this pair of mutually constraining
examples next. It re-sorts tebuf so that ei is re-used immediately with
the next refined KBS from ej. Thus the pair of conflicting examples
identified in backjumping become adjacent on the new branch of the

-e" - - - - _ .
....
" ~2

Figure 6 Searching without Conflict-Based Re-Ordering.

refinement path. Figure 7 illustrates a possible outcome of re-ordering
the tebuf examples so that e5 is used as the next refinement example
after backjumping to e2, and indicates the potential saving in iterations
over Figure 6.

I,v-'.,

R~I I
.. -------.---.---.--- .. ~.~~----

R R ~I ~2-
53 54 JiMl output

Figure 7 Searching with Conflict-Based Re-Ordering.

Although this re-ordering is not guaranteed to reduce iterations, the
relationship between an example and its conflict set gives some justifica­
tion for re-ordering the otherwise random order of the training examples.
It is possible that successive re-ordering of nodes in this manner may at
times lead to the original sequence. Even so, this will not result in cy­
cling because BJ and CBJ will resort to backtracking once all branches
of a node are explored.

W in Iud d th MBJ and MCBJ algorithms in our earlier experi­
m nt . Figur uperimposes the barchart for MBJ iterations on the
lin graph for h b ic algorithms; the results for MCBJ are similar to

BJ are not hown on th graph. Our goal of reducing the number
of i rat ion in BJ ha b n achieved in general and MBJ's iterations are
c1 r to BT and BJ. There w re 3 test runs where BJ performed fewer
it ra i n than M J , and a closer examination of one indicated that re­
ord ring r ult d in an incr ased search space when two examples ei and

aft ct d by th same repair, where the fault evidence provided by
nn t b fix d b fore the fault evidence from ei is fixed. Dependen­

of hi natur ugg t the existence of a new type of constraint, and
w int nd to inv tigat ways to identify these in the future.

c:::::J MBJ

35 -o- BT

-o- CBJ
30 -<>- BJ ;g

0
25 '.:l

~
20 <5

0 z 15

10

0 2 3 4 5 6 7 g 9
onOic{ Pairs

Figure 8 umber of Iterations (Conflict-Based Re-Ordering) .

igur 9 onfirm that the refined KBS error rates with MBJ, and
MBJ ar unaft ted by the dynamic re-ordering. So MBJ has achieved

few r it rations without incr asing the error-rate of the final KBS.

0.18

0.15

*0.12

': 0.09
g
Ul 0.06

~MCBJ

c:::=::::J M BJ

---O-BT

-o-CBJ

~BJ

- - - Ong. KB

0.03

o ~~~~~~~~~~~WL~WL~~L+~~~~

o 2 3 4 5 6 7 g 9
Confl ict Pai rs

Figure 9 Error Rat of Final Refined KBS (Conflict-Based Re-Ordering).

6. CONCLUSIONS
We have transformed the natural hill-climbing of the KRusTTool re­

finement algorithm into a best first search that reconsiders previously
filtered out refined KBSs. It is the KRUSTTool's ability to generate
many potential refined KBSs in response to fault evidence that en­
ables CSP search strategies to be applied with the central refinement
algorithm. The authors of other refinement algorithms (Ourston and
Mooney, 1994; Richards and Mooney, 1995) have argued that the choice
of repairs available to their tool is sufficiently flexible that hill-climbing
problems occur rarely, and so make no attempt to deal with it. However
dealing with mutually conflicting examples in a single refinement itera­
tion is difficult, and otherwise hill-climbing problems arise. Our testbed
has shown that it is relatively easy to find mutually conflicting training
examples for refinement tools if the KBS contains interacting faults.

Moreover, conflicting examples are good at suggesting high quality
refinements, and training sets with more pairs of conflicting examples
produce refined KBSs with lower error-rates. This confirms earlier work
indicating the importance of difficult examples, where improved refine­
ment was achieved by rejecting individual refined KBSs if the training set
did not contain sufficiently difficult examples to test them thoroughly
(Palmer and Craw, 1996). With backjumping, refinement retreats to
earlier refinement cycles and rejects refinement paths that should not
have been explored.

Introducing backjumping to reduce the search in standard chronolog­
ical backtracking reveals an interesting refinement phenomenon. The
more selective backjumping may actually increase the search. However,
we discovered the extra iterations are used profitably and provide a re­
fined KBS with a lower error-rate. Amendments to the backjumping al­
gorithms to reduce the iterations, whilst maintaining the low error-rate,
concentrate on re-ordering the training examples by recognising the in­
formation gain offered by both latent and active examples in the conflict
set, when backjumping is initiated. We are currently investigating the
knowledge available in problem graphs, the data structure that repre­
sents the problem-solving activity for refinement examples. We hope to
use these to identify one-way dependencies between constraint examples
to prevent re-ordering problems such as we found in the previous sec­
tion. They may also identify mutually constraining sets of examples,
whose problem graphs have a large overlap, but which have dissimilar
observable values; these could be scheduled in consecutive refinement
cycles.

This work highlights the variety of refinement paths and re-ordering
mechanisms open to refinement tools and has drawn our attention to
relationships between training examples that may allow us to direct the
refinement process towards staged goals in the identification and repair
of KBS faults.

Acknow ledgments
The KnusTWorks project is supported by EPSRC grant GR/L38387 awarded to

Susan Craw and ORS grant 98131005 awarded to Nirmalie Wiratunga. We also thank

IntelliCorp Ltd for its contribution to this project.

References
Bitner, J. R. and Reingold, E. (1975). Backtrack programming tech­

niques. Communications of the ACM, 18:651-656.
Blake, C., Keogh, E., and Merz, C. (1998). VCI repository of machine

learning databases. www.ics.ud.edu/ "'mlearn/MLRepository.html.
Boswell, R., Craw, S., and Rowe, R. (1997). Knowledge refinement for a

design system. Proceedings of the Tenth European Knowledge Acqui­
sition Workshop, pages 49-64, Sant Feliu de Guixols, Spain. Springer.

Craw, S. (1996). Refinement complements verification and validation. In
Int. Jom-nal of Human-Computer Studies, 44:245-256.

Ga.'lchnig, .J. (1979). Performance measurements and analysis of cer­
tain search algorithms. Technical Report CMV-CS-79-124, Carnegie­
Mellon University, PA.

Kondrak, G. and van Beek, P. (1997). A theoretical evaluation of selected
backtracking algorithms. Artificial Intelligence, 89:365-387.

Omston, D. and Mooney, R. (1994). Theory refinement combining ana­
lytical and empirical methods. Artificial Intelligence, 66:273-309.

Palmer, G. J. and Craw, S. (1996). The role of test cases in automated
knowledge refinement. In Proceedings ESs 96, Annual Conference of
the BCSe on ESs, pages 75-90, Cambridge, VK. SGES Publications.

pazzani, M. J. (1993). Student loan relational domain. In VCI Reposi­
tory of Machine Learning Databases (Blake et al., 1998).

Prosser, P. (1993). Domain filtering can degrade intelligent backtracking
search. In Proceedings of the Thirteenth IJCAI Conference, pages 262-
267, Chambery, France.

Richards, B. and Mooney, R. (1995). Automated refinement of first-order
horn-clause domain theories. Machine Learning, 19:95-131.

Tsang, E. (1993). Foundations of Constraint Satisfaction. Academic
Press, San Diego.

Ap~ars III Pron'edings of the 19th SGES International Conference on Knowledge Based
Systpms and Applied Artificial Intelligence, Copyright © 1999 Springer- Verlag

(www.springer.de). All rights reserved.

Sequencing Training Examples for
Iterative Knowledge Refinement

Nirmalic Wiratunga and Susan Craw
School of Computer and Mathematical Sciences

The Robert Gordon University,

St Andrew Street, Aberdeen AB25 IHG, Scotland, UK

Email: nwlsmc@scms.rgu.ac.uk

Abstract

Refinement tools seek to correct faulty knowledge based systems (KBSs)
by identifying and repairing faults that are indicated by training exam­
ples for which the KBS gives an incorrect solution. Refinement tools typ­
ically use a hill-climbing search to identify suitable repairs. Backtracking
search algorithms, developed for constraint satisfaction problems, have
been incorporated with an iterative knowledge refinement tool, to solve
local maxima problems. This paper investigates how the efficiency of
such a tool can be improved and introduces new and general heuristics
for ordl'ring training examples. Experimental results reveal that these
heuristics applied to static and dynamic ordering of training examples
can significantly improve the efficiency of the iterative refinement tool,
without increasing thl' error-rate of the final refined KBS.

1 Introd uction

Refinement tools support the knowledge acquisition and development of knowl­
edge based syst('ms (KBSs) by assisting the debugging of incorrect systems and
the adaptivf' maintenance of KBSs whose problem-solving environment changes
[3]. Refinement tools are presented with examples that indicate there are one
or more faults in the KBS; these are often examples of problem-solving where
the expert's solution is inconsistent with the KBS's solution. The tool also
benefits from knowing some correctly solved examples as well, so that repairs
are not too closely fitted to wrongly-solved examples only, to the detriment of
the KBS's more general problem solving. Therefore the training set for the
refinement tool's learning contains a selection of wrongly and correctly solved
examples, ('ach consisting of the facts that describe the problem-solving task,
together with the expert's solution.

Refinement tools adopt an incremental approach where each cycle attempts
to fix one or more, but typically not all, of the wrongly-solved examples in

tilE' training set, and to reduce the error-rate on the training set with a view
to reducing the error-rate more generally. The refinement task is sufficiently
complf'x that the space of possible repairs demands a heuristic search, typically
hill-climbing. EITHER [12] and FORTE [14] try to repair the outstanding fault
that. is indicated by the largest number of examples, and choose the repair with
th£' fewe.~t changes to rules which are nearest the observables. KRUSTTools are
KBS specific refinement tools, assembled from our KRUSTWorks generic refine­
ml'nt toolkit and the refinement algorithm central to this family also applies
a hill-climbing search. Although it generates many refined KBSs designed to
fix ('ach incorrect example, it then chooses the refined KBS with the lowest
error-rate on the training examples as the input KBS for the next iteration.
Th(' result is that refinement tools are dogged by the standard hill-climbing
problem of getting caught in local maxima, so the performance of the KBS
must be reduced before an overall improvement can be gained.

In previous work we described how informed backtracking search algo­
rithms from Constraint Satisfaction Problems (CSPs) can be incorporated
within knowledge refinement so that KRUSTTools may exploit previously aban­
don('d r('pairs when the refinement process comes to a halt [18]. In this paper
we inv(>stigatf> how the efficiency of such search algorithms can be improved.
Section 2 illustrates situations when KRUSTTools fail to generate refined KBSs
and indicates how backtracking search is applied. We introduce concepts from
CSPs and outline the search algorithm that proved best for knowledge refine­
ment in Section 3. Heuristics to improve efficiency are discussed in Section 4
and experimental results are presented in Section 5. We conclude with direc­
tions for future work in Section 6.

2 Refinement with a KRUSTTool

A faulty KBS is incrementally refined by a KRUSTTool based on the fault ev­
idence provided by examples el,"" en (Figure 1). This process is iterative
with examples utilized one at a time. The input KBS for each iteration is the
best refined KBS from the previous iteration, or the original faulty KBS in
the first iteration. The training examples buffer contains all examples that are
yl't to be used by the KRUSTTool, and the top most example in this buffer at
('ach it.eration is chosen as the refinement example and drives that refinement
cych'. If the refinement example is correctly solved then refinement is not re­
quirpd, otherwise the fault evidence is employed to allocate blame, generate
refilll'lIlt'nts and implement them as refined KBSs. The refinement example is
then transfered into the constraint examples buffer, containing all previously
solv('d examples. The constraint examples buffer helps filter the potential re­
fined KBSs, by rejecting those that incorrectly answer any of the constraint
examples. The filtered refined KBSs are then ranked by their error-rate on
the training examples buffer. Consequently, the refined KBS with the lowest
error-rate is the best refined KBS for this iteration.

The KRUSTTool algorithm is unusual in generating many refined KBSs in

Refinement
Generation

& Implementation

Constraint Exam­
ples Buffer

y
. ----.-----.---. , ,
: Filler Refined :
: KBSs :
.......

Training Examples
Buffer

T
•••• 0 •• •• • · ._-_ • • , ,
: Select Best :
: KBS : _-...... .

Filter and Select Refined KBSs

Figure 1: The KRUSTTool Process,

each iteration, and the hill-climbing selection of the one best refined KBS for
the next iteration occurs at the end of each cycle. This offers the possibility of
backtracking to alternativ refined KBSs thereby achieving a best-first search.
Figure 2 illustrates the start of a potential backtracking scenario; the updates to
the t raining examples buffer (tebuf) and the constraint examples buffer (cebuf)
are shown on the right. R finement example e2 generates 3 refined KBSs and
R 21 is selected as b st. Refinement examples e3 and e4 generate several refin d
KBSs and again the best is selected. But now suppose R41 cannot be refined
by e5 because although 4 refinements are generated, all are rejected by cebuf;
this is shown by a darkly shaded node for e5·

So what should the r finement algorithm do now: continue with eo and
ignore the fact that e5 is not corrected, and is unlikely to be by future r fin -
ments? A better alternative backtracks through the solution space of refined
KBSs and restarts the refinement process from an earlier node. Simple back­
tracking undoes each step one at a time, and so refinement is restarted with
R 42 and e5. In the next s ction we look at a more informed backtracking that
helps restart refinement from earlier points when appropriate, say R 22 with 3.

3 Informed Backtracking

We borrow an approach developed to direct the backtracking search for solu­
tions to constraint satisfaction problems (CSPs). We outline the CSP method
and then draw an analogy between CSPs and knowledge refinement so that w
can adapt th method for knowl dge refinement.

Levelz

level3

LeveL5

tebuJ {e2 e3 e4 eS .. }
cebuJ {ed

e2- --

.......
R 'R' 21 R22 23 rebuJ {e3 e4 eS .. }

cebuJ {el e2}
~--------------------------------

tebuJ {e4 es .. }
cebuJ {el e2 e3}

-e4 --

rebuJ {es .. }
cebuJ {el e2 e3 e4}

-eS --

Figure 2: A Backtracking KRuSTTool.

3.1 Heuristic Searches Solve CSPs

CSPs consist of a set of ordered variables {VI, • •. , vn }, a specified domain for
each variable Vi and a set of constraints. A constraint is a relation defined on
a subset of variables, specifying all simultaneous value assignments within this
subset that are forbidden by this constraint. A CSP solution is an instantiation
of each variable with a value from its respective domain such that none of the
constraints is violated [17]. CSPs are often solved by constructive algorithms
where each variable is instantiated in turn, so that the constraints are satisfied
for this and the previous variable instantiations.

However, this hill-climbing approach may also fail: the next variable Vi

may not be instantiated without violating the constraints involving Vi and
the previous variables VI, ... , Vi-I. Various backtracking searches have been
proposed that partially undo the instantiation and resume the constructive
process from a previous variable instantiation. We shall re-use chronological
backtracking (BT) [1] and backjumping (BJ) [7]. Unlike BT, BJ does not step
back to the previous variable Vi-l but instead jumps back to the latest variable
Vj whose instantiation conflicts with any of the instantiations for Vi. If there
are no new instantiations available for Vj then BJ reverts to backtracking from
Vj. With binary CSPs, where all constraints contain at most 2 variables BJ
will still find all solutions [10].

3.2 A Backjumping KRUSTTool

In refinement, we incrementally refine the KBS to correctly answer the current
and previous refinement examples. So, the most natural analogy between CSPs
and refinement links variables with training examples, the current variable with
the refinement example, and instantiated variables with correctly solved con­
straint examples in cebuf. CSP constraints correspond to achieving consistency
with the constraint examples. Finally the domain for a variable is the repairs
triggered by fault evidence provided by the refinement example.

The KRUSTTool algorithm must backjump when the refinement example
ei and the input KBS R fail to create any refined KBSs (i.e. the generated
KBSs Generated Ri is empty) or those generated are rejected by the constraint
examples (i.e. the filtered KBSs FilteredRi is empty). If FilteredRi = {} then
we must determine the most recent constraint example that caused the removal
of each generated KBS, and backjump there. If GenemtedRi = {} then BT is
the only option; no conflicting constraint examples can be identified since there
are no KBSs to test!

Let us revisit the scenario in Figure 2. GenemtedR41 S = {RsI , R S2 , RS3, R54}
and so refinement can backjump, but since FilteredR41s = {}, each KBS in
GeneratedR41 5 must have been rejected by at least one constraint example in
cebuf. Suppose R51 , R52 wrongly solve e2, and R53, R54 wrongly solve e3. Then
refinement will continue from e3, because it is the most recent on the path. The
next available refined KBS R32 is selected with e4 as the refinement example.
Finally, es is moved back into tebuf to be a future refinement example. If no
more KBSs were available from e3 then BJ backtracks to node e2.

There are two obvious differences between CSPs and refinement. Firstly, the
domain of potential repairs is not known in advance, instead it is constructed
incrementally during refinement generation and filtering. This is handled by
associating refined KBSs with refinement examples that generate them, and
reasoning about backjumping using constraint examples rather than KBSs.
Secondly, the behaviour of constraint examples can change - they can become
uncorrected and so provide new fault evidence generating further refined KBSs.
The algorithm identifies and reinstates these examples in tebuf.

4 Improving Backjumping for Refinement

Backjumping was introduced as a way to reduce the search of backtracking.
Contrary to expectation we found that BJ often increases the number of iter­
ations but that these extra iterations were used profitably and the BJ KRUST­
Tool on average provided refined KBSs with lower error-rates than the BT
KRUSTTool [18]. Therefore our next concern is to improve efficiency of the BJ
KRUSTTool by reducing the number of refinement cycles without increasing the
error-rate. We investigated techniques that improve CSP search efficiency [15] .

• Value ordering heuristics select those values that conflict least with vari­
ables that are yet to be instantiated;

• Variable ordering heuristics deal with most constrained variables first.

CSP value ordering is analogous to ordering the refined KBSs; KRUSTTools
already does this when the accuracy filter orders the refined KBSs in increasing
order of error-rate on tebuf. In fact the general KRUSTTool approach is closely
related to the repair-based approach to solving CSPs and its greedy min-conflict
heuristic for repair selection [l1J; and the refined KBS ordering itself is similar
to the look-ahead value ordering min-conflicts heuristic that ranks the values
of a variable in increasing order based on the number of incompatibilities with
values of future variables [6J.

For the rest of this paper, we concentrate on how variable ordering can be
applied to a KRUSTTool. A CSP variable is generally constrained in two ways,
firstly by the constraints it is involved in and secondly by its domain size. Most
common variable ordering heuristics exploit these 2 properties [5, 8J. Heuristics
for static ordering exploit relationships among variables identified from the
topology of the constraint graph [17J. Dynamic variable ordering addresses the
fact that invariably the best variable order is different in different branches of
the search tree, by taking advantage of the information available after each
variable instantiation to move the search to branches that are more likely to
contain a solution [9J. Various look-ahead strategies select the variable that
most constrains the remainder of the search [16J. The motivation behind all
such heuristics is to deal with difficult variables first.

We now turn to how this is applied to knowledge refinement. CSP variables
involved in the most or tightest constraints correspond to training examples
whose repairs put the highest consistency demands on other training examples;
current work investigates clustering training examples as a way to address this.
CSP variables with the smallest domain correspond to refinement examples that
generate the smallest set of refined KBSs in a refinement cycle. But, going as
far as refinement generation can be computationally expensive. In this paper
we establish heuristics that predict how constrained the refinement cycle for
each training example will be, and use these to order the training examples.

4.1 Evidence From the Recent Refinement Cycle

Simple constrainedness information comes from the newly completed refine­
ment cycle; where the final step executed all the refined KBSs generated in
that cycle on the remaining training examples in tebuf. Although this was
done to calculate the error-rate of each of these refined KBSs, it also deter­
mines an estimate of how faulty each training example is; i.e. how many of
these refined KBSs got the training example wrong. Remember, all these re­
fined KBSs are related since they were all derived from the previous best refined
KBS.

Table 1 demonstrates how fault evidence from the most recent refinement
cycle can be employed to select the next refinement example from tebuf. Let
us assume that m refined KBSs 141, Ri2 , ... ,14m were generated with ei as
the refinement example and that tebuf now contains training examples ei+l,

eH2, .. . ,en· The table entry for ej and Rik has value 1 if Rik incorrectly
answers e j, and 0 otherwise. Therefore, the error-rate of Rik on tebuf, err R;. ,

is the column total divided by n. The row total !; is the level of faultiness
of ej as judged by Ril, Ri2' ... , Rim· The refined KBS with the lowest error­
rate, min(errR;.), is selected as the best refined KBS. We now use, the training
example with the highest level of faultiness, max(fj), as the next refinement
example. All ties are broken randomly.

Generated Refined KBSs

Ril Ri2 ... Rim faultiness

eHI 1 0 ... 0 fe;+l
eH2 0 1 ... 0 f ei+2

.. .
en 1 1 ... 0 fen

error-rate errRn errR;~ ... errR;m

Table 1: Faultiness of remaining examples.

This heuristic is reminiscent of the best known CSP dynamic ordering
heuristic, dynamic search rearrangement (DSR), which selects the next vari­
able having the minimal number of values that are consistent with the current
partial solution [5]. Of course the difference is that with knowledge refinement
the set of potential refined KBSs is not known in advance and so we use fault
evidence from the most recent potential refined KBSs as the basis for selecting
the most constrained training example for the next iteration.

4.2 Evidence From How the Problem was Solved

A more direct estimate of how many refinements will be generated for a par­
ticular training example is the number of places where the problem solving
behaviour for that training example can be changed. The KRUSTTool algo­
rithm already creates a data structure containing precisely this information.
The problem graph captures the problem-solving for the refinement example
and allows the KRUSTTool to reason about the fault that is being demon­
strated [4]. Essentially, the problem graph records what happened, and also
shoWS all possible rule activation routes to the required goal, of which only one
is actually used. Problem graphs can become quite complex with long chains
and complicated branching. Figure 3 shows some simple problem graphs with
which we illustrate their function. Training example A is a problem described
by a set of observables including TAl - TA4, which the expert solves as goalA.
However the KBS currently reasons from the observables by applying leaf rules
R7 and R4, which together allow a middle rule R13 to fire, and finally the end
rule Rll concludes SA the faulty solution. The darkened area of the problem
graph is the positive problem graph and corresponds to the problem solving that
has been undertaken by the faulty KBS. Therefore it contains the solution sub-

graph for the training example but also contains other partial proofs; e.g. TAl

allows R7 to fire, but this only partially satisfies R12. The positive problem
graphs for the other 2 training examples are similar but notice neither provides
a solution since each partial solution subgraph terminates with an intermediate
result.

r------------'r------------,
1 Example A 1 Example B ~OalB 1
1 1 1
1 1 1
1 goal 1 1 1

1 1 1

R2

Rll

1 1
1

1

1

I i~'·c---@--"
R13 I Rl~9

II
II

: L L L T~ ii t' ! I: 1 @@~~II F F Tel <9 (91
L ____________ H ____________ J

Figure 3: Problem Graph for training examples, A, B and C.

Repairs correspond to preventing faulty rule chains from being activated
and so the number of rule activations in the positive problem graph is a sim­
ple measure to predict the number of potential refined KBSs, and hence how
constrained the refinement cycle for that training example will be. Activation
counts for training examples A, B and C in Figure 3 return 4, 2 and 2 respec­
tively, indicating that Band C are the most (and equally) constrained and so
will be selected over A. AU ties are broken randomly.

4.3 Evidence From How the Problem Should be Solved

The problem graph captures more about the problem-solving than simply
recording what happened. It also contains a negative problem graph that shows
all possible rule activation routes to the required goal. Thus in Figure 3 the

expert's solution for training example A (goalA) has not been proved because,
RIO, R8 and RI2 are only partially satisfied, and are unable to fire. We have
not darkened the arrows leading from T A3 and T A4 to indicate that the con­
ditions in RlO and R8 do not match observables TA3 and TA4 , and must be
weakened before they are satisfied. In contrast conditions in R4, RI3 or RII
must be strengthened in order to stop SA being asserted. Similar explanations
hold for training examples Band C, but now in addition some rule conditions
(e.g. the first condition of R3 for training example B), cannot be weakened to
match any observable or rule conclusion and so are not linked to any rule or
observable but instead these "non-observables" are labelled F.

The negative problem graph provides additional information on how con­
strained the refinement cycle will be. Counting all the rule "activations" in
both the positive and negative parts of the problem graph provides a second
measure of constrainedness. This measure promises to be more informative
since it adds the locations of possible repairs in the negative problem graph to
those from the positive part.

In practice we found it was better to distinguish between rules in the nega­
tive problem graph whose conditions could be weakened to match observables
from those that could never match. We amended the heuristic so that it ig­
nored any negative rule activation whose conditions are all linked to (or derived
from) "non-observables" (F's in the diagram); e.g. rules R7 and R2 will be
omitted from C's count. Without this modification the heuristic can estimate
a training example like C to be less constrained than it actually is. Such an
amendment requires the assumption that training examples are noise free and
that leaf rules are correct, however this seems acceptable given our need simply
to estimate constrainedness.

Table 2 lists all the refinement places for the 3 training examples at the left.
The count of rule activations in the complete problem graph, with and without
the non-observables correction, appears at the right. Therefore, example C
with the lowest improved rule activation count is selected over A and B. We
note that although the improved heuristic is a good predictor of the number of
refinements here, more complex problem graphs may need a more sophisticated
way to combine rule activation counts from the positive and negative parts of
the problem graph.

5 Results

We evaluate backjumping KRUSTTools that apply static and/or dynamic order­
ing of the training examples using the heuristics we have developed in Section 4.
The problem graph heuristics define a static ordering of the training examples
before the iterative refinement cycles are started. They can also be used for
dynamic ordering where the measures are recalculated on the best refined KBS
output from a cycle and applied to re-order the remaining training examples.
The emphasis of the evaluation is to compare the number of iterations, error­
rate and finally the resource usage.

Training Refinements Rule Activations
Example Strengthen Weaken None Count All Improved

R4 RIO R7 6 7 7

A R13 R8
Rll R12

Rl R5 4 6 6
B R3 R4

RIO
R6
R9 R3 3 7 5

C R14 R16
R15 R7

R2

Table 2: Refinements and rule activations from the complete problem graph.

Our testbed is a corrupted student loans KBS, created by introducing 5
faults to the 20 rules in the original KBS [13]: an extra rule, a changed com­
parison operator in 2 rules and an extra condition in 2 other rules. Although
this is not a highly realistic scenario, the faults are sufficiently interacting that
it allows experimentation in carefully controlled conditions.

Since our experiments involve an assessment of the effectiveness of back­
jumping with various orderings of training examples, we had to ensure that
backtracking is triggered. We chose 8 specific "difficult" examples from the
standard student loans dataset that are correctly answered by the uncorrupted
KBS, but whose repairs for the corrupted KBS are particularly conflicting. In
fact there are 9 ways to pair these 8 examples so that the refined KBSs triggered
by one training example tightly interacts with the other's refined KBSs. We
then randomly selected a further 22 "normal" examples to make a 30 example
dataset for our experiments.

For each run we randomly select n conflicting pairs, duplicates are removed
and further examples are randomly selected (from the "normal" examples) until
the training set contained 15 examples. The remaining 15 examples become
the independent test set. The dataset was partitioned this way 20 times, with 8
conflicting pairs in the first 10 runs, and 9 conflicting pairs in the next 10 runs.
The results of each experiment refer to these 20 training/test splits. Significance
results are based on a 95% confidence level and apply the Wilcoxen signed-rank
test (2 data sets) or the Kruskal Wallis test (3 or more data sets), since our
data is not normally distributed.

5.1 Static Ordering

Static ordering provides a sequence of training examples prior to the iterative
refinement cycles. We compare two orderings using the problem graph heuris-

tics l with a random ordering.

• RANDOM: move all correctly solved training examples into cebuf then
randomly order tebuf.

• PG RAPH +: move all correctly solved training examples into cebuf, then
sort the remaining training examples in decreasing order of the number
of rule activations in the positive problem graph only.

• PGRAPH±: as for PGRAPH+ but use the number of rule activations in
the complete problem graph (positive and negative) including the modi­
fication for "non-observables".

Error-rate for the final refined KBS was not impaired by PGRAPH+ and
PGRAPH±, and they both reduced the error compared to RANDOM in 4 test
runs. More pertinent to this evaluation is the number of iterations for these
three algorithms listed in Table 3. PGRAPH+ required significantly (p-value =
0.028) fewer iterations compared to RANDOM; 10 test runs had fewer iterations
and only 2 test runs had more iterations and this was at most 2 iterations longer.
PGRAPH± improved on PGRAPH+ by reducing the number of iterations in 4
test runs, however despite the added information acquired from the negative
problem graph this reduction is not statistically significant. Any improvements
in PGRAPH± over PGRAPH+ is due to the added information causing fewer
ties, which essentially mean fewer randomly resolved tie-breaks. This may be
explained by observing that refinement generation explores both the positive
and negative problem graphs and that refinements can include changes to both
parts of the reasoning. Therefore a more complex combination of the rule
activation counts may be required so that it takes account of those activations
that contribute towards the required goal and are also part of the positive
problem graph, by not counting them as individual activations.

Static ordering Mean Median 95% Confidence
RANDOM 9.05 8.0 ±1.420
PGRAPH+ 7.65 7.0 ±0.717
PGRAPH± 7.65 7.5 ±O.4lO

Table 3: Number of iterations for static ordering.

The test results clearly indicate that the order in which training examples
are processed by the KRUSTTool affects the number of backjumps and itera­
tions. It also confirms that the number of rule activations is an indicator of the
level of constraint of a training example.

IThe other heuristic (Section 4.1) can only be applied as a dynamic ordering since it
exploits information from all the refined KBSs from the previous cycle.

5.2 Dynamic Ordering

The original backjumping KRUSTTool already employs one form of dynamic
ordering by reinstating latent examples; these are constraint examples that
did not require refinement at the time, and so contributed no fault evidence as
refinement examples, but are now incorrectly solved by the current KBS and so
are moved back into tebuf. This reordering is applicable only when backjumping
occurs. We now extend training example ordering by applying each of the three
heuristics from Section 4 to also reorder before every refinement cycle, where
again ties are ranked randomly. This more general reordering is employed first,
to ensure that reordering enforced by backjumping is not undone.

1. Current best refined KBS is the input faulty KBS.

2. Apply static ordering on tebuf.

3. Loop until tebuf is empty:
(a) Execute the refinement cycle with the current best refined

(b)

(c)

(d)

KBS and the top most example in tebuf to generate and filter the
refined KBSs.
Apply dynamic ordering on tebuf.
If the set of filtered refined KBSs is not empty
then choose the current best refined KBS.

If the set of filtered refined KBSs is empty:
i. If there are latent examples then these are pushed into tebuf,

after all correctly solved training examples are moved into cebuf.
ii. Otherwise, employ BJ to identify the conflict example and its

next best refined KBS to backtrack to, and all
constraint examples on the way are moved back into tebuf.

Figure 4: Algorithm combining static and dynamic ordering.

Figure 4 outlines the basic algorithm combining static and dynamic ordering
in a BJ KRUSTTool algorithm. Any of the three static orderings RANDOM,
PGRAPH+, PGRAPH± from Section 5.1 can be used in step 2 and influences
the selection of the first refinement example only. Dynamic ordering occurs in
step 3b, where any of the following can be applied:

• FAULTBASED: re-order tebuf in decreasing order according to evidence
from KBSs from the recent refinement cycle (Section 4.1), after moving
all correctly solved training examples from tebuf into cebuf; or

• DVNPGRAPH+: apply PGRAPH+'S heuristic (now in every cycle); or

• DVNPGRAPH±: apply PGRAPH±'S heuristic (now in every cycle).

5.3 Static and Dynamic Combinations

Our experiments looked at seven (of the nine possible) static-dynamic combi­
nations; we used the same problem graph heuristic in the static and dynamic
orderings. Once again the error-rate of the final KBS was unaffected. Com­
paring the results in Table 4 with the static ordering results in Table 3, we
see that all combinations have reduced the number of iterations by at least
two iterations. All heuristics employing the complete problem graph resulted
in lower average number of iterations but FAULTBASED results are very close.
However the differences among all the static + dynamic combinations are not
significant; PGRAPH± + DVNPGRAPH± has the fewest iterations but this is
not significant (p = 0.932 > 0.05). These results show that using static +
dynamic ordering gives significant gain over using static ordering only but that
none of the combinations is better than any other.

Static + Dynamic Mean Median 95% Confidence

RANDOM + FAULTBASED 5.15 5 ±0.532

RANDOM + DVNPGRAPH+ 5.40 5 ±0.765

RANDOM + DVNPGRAPH± 5.15 5 ±0.613

PGRAPH+ + FAULTBASED 5.60 5 ±0.864

PGRAPH+ + DVNPGRAPH+ 5.80 5 ±0.893

PGRAPH± + FAULTBASED 5.10 5 ±0.524

PGRAPH± + DVNPGRAPH± 5.05 5 ±0.557

Table 4: Number of iterations for static+dynamic ordering combinations.

We have succeeded in reducing the number of iterations but at what com­
putational cost? Table 5 shows the number of cpu cycles for our seven heuristic
combinations; the figures for static ordering only have been included for refer­
ence. FAULTBASED has proved to be very effective for dynamic ordering since
the overhead of applying it with any static ordering is not significant. The
orderings based on problem graphs have not been so effective; any gain in re­
ducing the iterations has been overwhelmed by the expense of each iteration.
We hope that with more complex KBSs, the richness of the information in the
problem graph will result in sufficient quality gains in the refined KBS that the
expensive computation is worthwhile.

Static

RANDOM PGRAPH+ PGRAPH±
None 286480 453030 384910
FAULTBASED 246060 454590 398670
DVNPGRAPH+ 477760 564810
DVNPGRAPH± 581020 798910

Table 5: Cpu cycles for static + dynamic combinations.

The reduction in the number of iterations may actually be worthwhile, even

at the expense of some increase in the total effort. Many iterations to achieve
consistency with a training set may be regarded as many tinkering repairs;
while fewer more fundamental repairs may create a higher quality KBS.

6 Conclusions

The emphasis of this paper is improving the search efficiency of backtrack­
ing KRUSTTools, and in particular BJ KRUSTTools, however this approach is
applicable more generally. Refinement algorithms tend to use a hill-climbing
approach, and so to avoid suboptimal refined KBSs, they should introduce some
form of backtracking, and thus could benefit from backjumping.

BJ KRUSTTools produce final refined KBSs with lower error-rates than BT
KRUSTTools since the repairs for potentially conflicting training examples are
often handled in consecutive cycles, leading to repairs that are better for new
problems. However, despite the fact that backjumping had been introduced
as a more informed search than chronological backtracking, BJ KRUSTTools
result in more iterations. This paper explored methods to reorder training
examples with the goal of improving BJ KRUSTTools by reducing the number
of iterations whilst maintaining the accuracy of the final refined KBS.

Two static orderings were defined from two heuristics based on counting rule
activations. Both maintained the reduced error-rates of backjumping with no
example ordering as reported in [18] but achieved this in fewer iterations. The
information from the negative problem graph allowed PGRAPH± to cause fewer
tie-breaks. Further work could investigate how the heuristics can be extended
to resolve tie-breaks strategically as opposed to randomly as at present. We
also believe that the overlapping rule activations from the positive and negative
problem subgraphs should be exploited to give a more informed heuristic for
PGRAPH± and DVNPGRAPH±.

Three dynamic orderings were defined by these two heuristics and a simpler
fault evidence heuristic. Algorithms combining static and dynamic ordering
further reduced the number of refinement cycles, without increasing the error­
rate of the final refined KBS. An important issue with dynamic ordering is
the additional computational effort introduced by the reordering at each cycle.
FAULTBASED very effectively guided the search without adding much computa­
tion and for one combination actually lowered the total effort, but the problem
graph heuristics were computationally very expensive. However, we are cur­
rently reordering the complete set of remaining training examples from scratch
every cycle. Future work will investigate whether knowledge about the repair
from the previous cycle will allow less frequent calculation of the problem graph
heuristics, or a more target ted application to examples that are most likely to
be highly constrained. The calculation for the previous cycle or knowledge of
the repair may provide a suitable estimate or an incremental update of the
value for this cycle. More experience of the effect of re-ordering may limit
the number of training examples that need to be considered. Current work on
clustering training examples may also focus the reordering effort.

We must bear in mind that our search space is extremely dynamic with se­
quences of refinement examples altering the refined KBSs being considered. As
with CSPs, our goal is to reduce the search effort and still find a good sequence
of repairs rather than simply hill-climb through the repair space without back­
tracking. But unlike CSPs, where an instantiation for one variable can only
restrict the domain of another, in knowledge refinement the repair for one train­
ing example may also lead to a totally different set of proposed refinements for
a later training example.

Acknowledgments

The KRusTWorks project is supported by EPSRC grant GR/L38387 awarded
to Susan Craw. Nirmalie Wiratunga is partially funded by ORS grant 98131005.

References

[1] J. R. Bitner and E. Reingold. Backtrack programming techniques. Com­
munications of the ACM, 18:651-656, 1975.

[2] C. Blake and E. Keogh and C.J. Merz. UCI Repository of Machine Learn­
ing Databases. In University of California, Irvine, Dept. of Information and
Computer Sciences, 1998. www.ics.uci.edu/",mlearn/MLRepository.html.

[3] Robin Boswell, Susan Craw, and Ray Rowe. Knowledge refinement for a
design system. In Enric Plaza and Richard Benjamins, editors, Proceed­
ings of the Tenth European Knowledge Acquisition Workshop, pages 49-64,
Sant Feliu de Guixols, Spain, 1997. Springer.

[4] Susan Craw and Robin Boswell. Representing problem-solving for knowl­
edge refinement. In Proceedings of the Sixteenth National Conference on
Artificial Intelligence, pages 227-234, Menlo Park, California, 1999. AAAI
Press.

[5] Rina Dechter and Itay Meiri. Experimental evaluation of preprocessing
algorithms for constraint satisfaction problems. Artificial Intelligence,
68:211-341, 1994.

[6] Daniel Frost and Rina Dechter. Look-ahead value ordering for constraint
satisfaction problems. In Proceedings of the Fourteenth IJCAI Conference,
pages 572-578, 1995.

[7] J. Gaschnig. Performance measurements and analysis of certain search al­
gorithms. Technical Report CMU-CS-79-124, Carnegie-Mellon University,
PA,1979.

[8] Ian Gent, Ewan MacIntyre, Patrick Prosser, Barbara Smith, and Toby
Walsh. An empirical study of dynamic variable ordering heuristics for the

constraint satisfaction problem. In in Principles and Practice of Constraint
Programming, pages 179-193. Springer-Verlag, 1996.

[9] R.M. Haralick and G.L. Elliott. Increasing tree-search efficiency for con­
straint satisfaction problems. Artificial Intelligence, 14:263-313, 1980.

[10] Grzegorz Kondrak and Peter van Beek. A theoretical evaluation of selected
backtracking algorithms. Artificial Intelligence, 89:365-387, 1997.

[11] Steven Minton, Mark D. Johnston, Andrew B. Philips, and Philip Laird.
Minimizing conflicts: A heuristic repair method for constraint satisfaction
and scheduling problems. Artificial Intelligence, 58:161-205, 1992.

[12] D. Ourston and R. Mooney. Theory refinement combining analytical and
empirical methods. Artificial Intelligence, 66:273-309, 1994.

[13] Michael J. Pazzani. Student loan relational domain. In UCI Repository of
Machine Learning Databases [2], 1993.

[14] B. Richards and R. Mooney. Automated refinement of first-order horn­
clause domain theories. Machine Learning, 19:95-131, 1995.

[15] Norman M. Sadeh and Mark S. Fox. Variable and value ordering heuristics
for the job shop scheduling constraint satisfaction problem. In Proceedings
of the Fourth International Conference on Expert Systems in Production
and Operations Management, pages 134-144, 1990.

[16] Barbara Smith and Stuart Grant. Trying harder to fail first. In Proceed­
ings of the ECAI98 Conference, pages 249-253, Brighton, UK, 1998. John
Wiley and Sons Ltd.

[17] Edward Tsang. Foundations of Constraint Satisfaction. Academic Press,
San Diego, 1993.

[18] Nirmalie Wiratunga and Susan Craw. Incorporating backtracking search
with knowledge refinement. In Anca Vermesan and Frans Coenen, editors,
Proceedings of the Sixth European Symposium on the Validation and Verifi­
cation of Knowledge Based Systems, Oslo, Norway, 1999. Kluwer Academic
Publishers.

Appears in Proceedings of the 12th International Conference on Knowledge
Engineering and Knowledge Management (EKAW2000) Copyright © 2000

Springer- Verlag (www.springer.de). All rights reserved.

Informed Selection of Training Examples for
Knowledge Refinement

Nirmalie Wiratunga and Susan Craw

School of Computer and Mathematical Sciences
The Robert Gordon University

St Andrew Street, Aberdeen AB25 IHG
Scotland, UK.

Email: nwls.craw@scms.rgu.ac.uk

Abstract. Knowledge refinement tools rely on a representative set of
training examples to identify and repair faults in a knowledge based sys­
tem (KBS). In real environments it is often difficult to obtain a large set
of examples since each problem-solving task must be labelled with the
expert's solution. However, it is often somewhat easier to generate unla­
belled tasks that cover the expertise of a KBS. This paper investigates
ways to select a suitable sample from a set of unlabelled problem-solving
tasks, so that only the subset requires to be labelled. The unlabelled
examples are clustered according to the way they are solved by the KBS
and selection is targeted on these clusters. Experiments in two domains
showed that selective sampling reduced the number of training examples
used for refinement, and hence requiring to be labelled. Moreover, this
reduction was possible without affecting the accuracy of the final refined
KBS. A single example selected randomly from each cluster was effec­
tive in one domain, but the other required a more informed selection
that takes account of potentially conflicting repairs.

1 Introduction

Knowledge refinement is incremental learning, where the learning must adapt
existing knowledge in a Knowledge-Based System (KBS). Refinement tools aid
knowledge engineers by assisting with the knowledge debugging and maintenance
phases in the Knowledge-Based Systems development cycle [1-3]. These tools
ensure that the KBS's solution is consistent with that of a domain expert for a
given task. In common with other learning algorithms, the tasks and the expert's
solutions are maintained as training examples. Refinement is triggered when the
system's and expert's solution for a given task are inconsistent. Although training
examples that indicate faults are useful to drive refinement, access to correctly

solved training examples is beneficial, because, they help focus refinement by
ensuring that repairs are not too closely fitted to wrongly-solved examples.

The choicp of training examples for refinement becomes important when one
of the constraints on the refinement process is a limited number of labelled
training examples. This is a relatively common problem in a real environment,
where labdling many problem-solving tasks with the expert's solution may re­
quire significant interaction with a busy expert. Unlabelled training examples
are often generated by using domain knowledge already embodied in the KBS or
meta-knowledge [4]. Therefore, unlike the labelling task, generating unlabelled
examples does not typically require the expert. The goal of the work described
in this paper is to perform an informed selection from a set of unlabelled train­
ing examples which the expert must subsequently label, thereby reducing the
demand on the expert. However, we must ensure that the informed selection of
relevant training examples does not hamper the refinement process by omitting
exanlples that uniquely reveal faults.

The problem of unavailability of labelled training examples and sample se­
lection of relevant examples from a set of unlabeled examples falls under the
paradigm of active learning and more specifically, selective sampling. Much work
has been done in selective sampling mainly related to training classifiers: for
nearest neighbour, using a lookahead approach that selects examples based on
statistical information about the utility of the resulting classifier [5]; for text clas­
sification, using a committee-based approach combined with expectation max­
imization [6]; and for C4.5 using a probabilistic classifier that selects examples
based on class uncertainty [7). Increasingly, estimation and prediction techniques
with roots in statistics are being applied to classifiers with improved accuracy
results [8]. However, the use of examples for training classifiers differs from their
use for rdinenwnt tools:

_ in rpfineUlent, examples are used to expose faults in an existing KBS and so
arc employed to refine incomplete concepts and not learn from scratch; and

_ examples are used for refining KBSs that model, not only classification tasks
but also design tasks [9] and even planning tasks [10].

Direct application of currently available selective sampling methods for learn­
ing classifiers to refinement tools is therefore, not straightforward. We adopt the
common approach of partitioning the available examples into clusters, but ex­
ploit the relationship between the examples and how they are solved by the
faulty KBS, in contrast to existing selection techniques that exploit the statis­
tical distribution of examples. As a result our clusters will contain examples
that triggpr similar problem solving behaviour in the KBS. We then apply var­
ious heuristics that help select examples from clusters. However, the presence
of interacting faults in a KBS complicates sample selection since they require
the selection of more than one example from each cluster. We have developed
heuristics that identify those examples that are most likely to demonstrate inter­
acting faults and wp propose algorithms that apply these heuristics to example
selection. The selected subset of examples is then presented to the expert for

2 fin

xample can be used by the refinement tool to

n with KRUSTtools

d v loped a generic knowledge refinement frame­
h II , this fram work is used to generate a r fine-

I a T R Tt by r -u ing core r finement modules. These modules
g n ri knowl dg structures which model the behaviour of the

tru . ur ar £ rm d by translators that work on the specific
rul iat d trn [1). The urr ntly developed framework is able to
d al wi h f III impl m nt d in shells incorporating reasoning strategies

an b C rward- haining ba kward-chaining or both.

~
~

G Derate
P tentia!

Refin dKBSs

--==C~)

,

(
Constraint

Examples

Buffer ,

Fig. 1. Th I RU Ttool Process.

In common with lIlany refinement tools, KRUSTtools incrementally refine a
KBS bas!'d on fault ('vidence provided by labelled training examples. A labelled
training pxcunpll' (' is a task-solution pair ([ft,·.·, f m] , goal); the bbservables
/. /m ar(' the facts that initialise the problem-solving task, and its solution
goal is the examplp's label acquired from the expert. The KRuSTtool's refine­
ment procpss is it('rative with labelled training examples el, ... , en, utilized one
at a t imp (Figure 1). The input KBS for each iteration is the best refined output
KBS from tIl(' pr('violls iteration, or the original faulty KBS in the first iteration.
Th(' training I'xampll's buffer contains all labelled examples that are yet to be
used by Ilu' KHI'STtool. For each iteration, the top example in this buffer is cho­
sen as til(' rt'filH'lllt'nt ('xample and drives that refinement cycle. If the refinement
exam pI!' is corr('ctly solved by the input KBS then refinement is not required,
otlH'rwis(' thl' fault ('vidence is employed to allocate blame. The refinement al­
gorithm t hl'll idl'ntiti('s various ways by which the required target solution can
be attailH'd and g('llerates several potential refinements and implements them
as r('fined KBSs. Once used, the refinement example is then transferred into the
constraint ('xamplcs buffer, which is simply the buffer that keeps track of ex­
al1lpl£'s previously solved by the KRUSTtool. However, an important task of this
buff('r is to hdp filter refined KBSs, by rejecting those that incorrectly answer
any of till' examples in it. The filtered refined KBSs are then ranked by their
accuracy on thl~ training examples buffer, and the refined KBS with the highest
accuracy is the output KBS for this iteration.

Fundamental to the KRUSTtool's successful refinement operation is the avail­
ability of lal)('lIt'd l'xamplcs for its buffers. Availability is often constrained by
limitpd t'xl)('rt intt'raction and high processing costs. The KRUSTtool should ide­
ally Ill' able to handle such situations by actively selecting training examples
from an availahlp st't of unlabelled examples. Selected examples must be bene­
ficial for improving the effectiveness and efficiency of the refinement tool. The
effectiVt'npss dplH'nds on whether or not the tool has had access to examples
that art' abll' to expose faults; this requires a mechanism that enables selection
of ('xamplt's that trigger a wide range of faulty problem-solving behaviour in the
KBS. Improving pffiriency involves selecting fewer refinement examples, thereby
reducing the nlllllbN of refinement iterations required to achieve refined KBSs
with irnpl'o\'l'd accuracy; P.g. ensuring that only one incorrectly solved example
from a spt of I'xamples exposing each fault is processed.

3 Selective Sampling Process

The relevance of training examples for refinement changes as refinement pro­
gresses. As tht' problem-solving behaviour of the KBS is incrementally improved
exam pIt's that t'xposcd faults before are less likely to expose new faults in future
iterations. while examples that did not before may do so in future iterations.
Therefor£' we nl'Cd Helectioll mechanisms that target examples for refining the
KBS given it.s cllmmt problem-solving behaviour. The use of selective sampling
for the K IHisTtool l'llcompasses an informed selection of examples, the labelling

Sele I d Extunples

Unlabelled Examples

KRUSTtool
Labelled Truining Examples

.2. singl it ration of select-label-refine.

3. Pr haviour

h

r---------~--,

: "" ... pl, A 0f I

R9

r-----------"'1
I ExampleB I

I

I l I

I ~I 1 1
I R 4 I

:G>6G>cb: l- ___ ~ _______ .J

intermediate
I results

~ J i 1
I 5 R4 I

:®®~cb: L ___________ ..J

Fig. 3. Positive Problem Graphs for examples A and B.

3.2 Cluster Formation

To form example clusters we need to define a similarity metric which is t.hen
utilized by a clustering technique that progressively develops the clusters. Sm~e
examples are presented as a vector of observables, an obvious similarity metr~c
compares these vectors. However, in knowledge refinement we are interested m
sampling examples with respect to problem-solving behaviour of the faulty KBS
and so our similarity metric reflects this by making use of the positive problem
graph. Given a KBS containing rules R1 , ••. , RN, we define a binary valued rule
vector corresponding to an example e as r = (rl,"" rN), where Ti :::: 1 if Ri
appears in the problem graph for ej and Ti :::: 0 otherwise. Thus, the rule vector
for the training example A in Figure 3 is (0, 0, 0, 1,0,0, 1, 1, 1,0), where N=lO.
Here the l's correspond to rule activations R4,R7,R8 and R9.

The similarity measure needs to capture refinement similarity between two
unlabelled training examples 81,82. As refinement similarity depends on the
similarity in problem solving behaviour, the similarity between el, e2, can be es­
tablished by comparing their rule vectors rl , r2. For this purpose the Euclidean
distance metric may be used, but it can lead to two rule vectors being regarded
as highly similar despite them having no common rule activations. Association
coefficients [l1J avoid this by focusing on the common rule activations and nor­
malizing by the number of rule activations in both rule vectors, thereby ignoring
r~l~s t~at are not activated. We employ the Dice coefficient, a commonly used
similanty measure of this type:

Re/Sim(el,e2) = Dice(rl,r2) = 2 rl· r2
ri' rl + r2. r2

We then use. an agglomerative hierarchical clustering technique, where train­
ing examples wIth the greatest similarity are united in small clusters and these
clusters are iteratively fused until intra-cluster similarity achieves a predeter­
mined threshold. The decision to fuse clusters is based on the farthest neighbour

principle [121, where those two clusters that have the minimum distance between
their most dissimilar cluster members are fused. Typically, this form of cluster
fusion leads to small, tightly bound clusters, provided that the fusion threshold
is low.

3.3 Selecting Examples using Clusters

Clusters provide information that allows a more informed choice than a random
selection of examples. Each cluster represents the problem-solving behaviour
pertaining to some part of the faulty KBS, because examples with similar rule
activations are clustered together. If we happen to know which area of the KBS
is faulty, the task of example selection is reduced to picking the cluster related to
that area. However, in most cases the KRUSTtool has no prior knowledge about
what parts of the KBS might be faulty, and so we need a more general selection
technique that targets all potentially faulty parts of the KBS.

Since each cluster contains examples which are solved in a similar way by
the KBS, it might appear reasonable to assume that repairing a fault exposed
by a single example from a cluster would correct the rest of the cluster. One
selection method CLUSTERREP exploits this assumption by randomly selecting
one example from each cluster. Certainly, training examples that activate several
rules in common appear in the same cluster and typically are also similar in their
observables. However, in some situations examples from a single cluster may not
have similar observables, and so may contain a pair of examples where a possible
repair for one example introduces a fault into the repaired solution for the other;
or result in no obvious repair. Faults of this nature are termed interacting faults
and the involved pair of examples is termed a conflict pair.

3.4 Faults that Interact

To demonstrate the effects of interacting faults on refinement we use 4 Clips
rules taken from a corrupted version of a student loans adviser. Of these rules,
two have been corrupted by adding extra conditions, highlighted in bold (see
Figure 4). Here, R16 translates to "if a student has filed for bankruptcy and is
enlisted then grant the student a financial deferment", and RIg translates to
"if a student is disabled and has filed for bankruptcy then grant the student
a disability deferment". Assume that the KRUSTtool is attempting to fix these
rules based on fault evidence provided by training example x and y in that order.

x = ([(filed..for_bankruptcy idx), ... J, (eligible..for_deferment idx)}

y = ([(disabled idy), .•• J ' (eligible..for _deferment idy))

Example x concerns a student that has filed for bankruptcy and according to the
expert should be eligible for deferment, but when reasoning with the faulty rules
the system solution will not match that of the expert's. Therefore, the KRusTtool
will attempt to refine the faulty rules by either general ising RI6 or RIg, by
deleting condition (enlist ? Student), or (disabled ? Student), respectively. Let

us assume that the KRUSTtool chooses to refine by incorrectly generalising RI9
(instead of R16) and implements this as a new KBS. On proceeding to the
next refinement cycle (now with new KBS) the KRUSTtool is presented with
fault evidence from training example y, a disabled student who is eligible for
deferment. A direct consequence of generalising RIg is that the KRUSTtool is now
left with no obvious refinement that can fix the fault exposed by y. Consequently,
it is forced to re-think its previous refinement choice of generalising R19 instead
of R16, and so faces the prospect of re-starting refinement from a previous state.
Notice that if RI9 and R16 were corrupted, but had no common condition that
matched observables from either x or y (for instance like filed-for _bankruptcy)
then the faults exposed by x and y in Figure 4 would not be interacting.

(defrule Rl6
(filed_for_bankruptcy ?Student) (enlist ?Student)
=> (assert (financial_deferment ?Student)))

(defrule Rl9
(disabled ?Student) (filed_for_bankruptcy?Student)
=> (assert (disable deferment ?Student)))

(defrule RlO
(financial_deferment ?Student)
=> (assert (eligible_for_deferment ?Student)))

(defrule Rl2
(disable_deferment ?Student)
=> (assert (eligible_for_deferment ?Student)))

Fig. 4. Some rules taken from a corrupted student loans advisor in Clips.

The presence of interacting faults affects the refinement process, because se­
lecting a non-optimal refined KBS in a previous iteration can cause refinement
conflicts in a subsequent iteration. Detecting and resolving these refinement con­
flicts is important, as we have found that this improves refinement accuracy and
guides the search for the best incremental refinements [13]. However, such con­
flicts can only be detected subject to the availability of fault evidence provided
by a pair of examples, a conflict pair (such as x and y above). If a cluster con­
tains conflict pairs like these, we would want to select further examples from
this cluster. In these situations CLUSTERREP is not sufficient as it randomly
selects a single example from each cluster, thereby ignoring all other examples
in that cluster, including conflict pairs. A mechanism is needed to identify con­
flict pairs when they occur in the same cluster so that we ensure that examples
exposing interacting faults are chosen. This necessitates an investigation of the
problem-solving behaviour of labelled conflict pairs that occur in the same clus-

ter. The aim of such an investigation is to establish criteria that would enable the
identification and selection of conflict pairs from a cluster when still unlabelled.

3.5 Characteristics of Conflict Pairs

An analysis of labelled conflict pairs revealed that they tend to have overlapping
positive problem graphs, yet the best repair choices for the pair are distinguished
from each other. Essentially their proofs may exercise similar parts of the KBS
but their best repair exercises separate parts. Figure 5 shows the problem-solving
for such a pair, C=([Cl , ... , C6llgoa1o) and D=([D l , ... , D6llgoalD). The dark­
ened arrows and bold rule names highlight the positive problem graphs for ex­
amples C and Dj i.e. the rules that are activated by the observables for each
example. Each has resulted in the activation of the same end rule R3 , but the
solutions (sySO and SYSD) might occur with different variable bindings. Invari­
ably a pair like this, with a substantial area of the positive problem graph in
common, will be placed in the same cluster, and easily mistaken as representing
the same fault.

~-----------------, r-----------------,

,_~c T ? i! R~~D

Ro

~,
L _________________ ~ L _________________ ~

Fig. 5. Illustrating conflict pairs.

Figure 5 also shows all rules that might have concluded each target goal
if they had been activated; these (non}activations form the negative problem
graph. With example C, R5 is only partially satisfied by Rl'S conclusion. The
arrow from C4 is fainter to indicate that this condition in R5 is not met by the
observable without the condition being generalised somehow. The other possible
route via R4 requires both of its conditions to be generalised before being sat­
isfied by C5 and C6 • Possible repairs attempt to specialise rules in the positive
problem graph and generalise those from the negative problem graphl. However,

1 For a comprehensive list of KRUSTtool's specialisation and generalisation refinement
operators see [14].

specialising R2 to disallow the proof of sYsc for example C may cause problems
when generalising R7 to allow the proof of goalD, for example D, and vice versa
with Rl and R5 . Essentially, even though conflict pairs are clustered together,
a repair for one example will not necessarily repair the other; i.e. their negative
problem graphs are fairly disjoint.

3.6 Informed Selection Heuristics

When examples are unlabelled we do not know the goals and cannot build
the negative problem graphs. Instead we identify potential conflict pairs by
formulating an indirect estimate of how overlapping the two negative prob­
lem graphs might be. For this purpose we compare their observables since the
(non)activations in the negative problem graph depend on them.

We calculate a dissimilarity score for an example ei=([Jt, ... , 1~] , ?), in a
cluster C=el, . .. , en by summing all pair-wise dissimilarities between example
ei and the remaining examples in C.

Dissimilarity(ei' C) = l: dissimilarity (ei, ej)
#i

m

dissimilarity (ei, ej) = l: 82(f~, 1D
k=1

{

0 if x=y

8(x, y) = /lnx - nyll if x, yare numeric facts 2

1 otherwise

The dissimilarity score of a cluster is the average Dissimilarity of its examples.
There is some argument for ignoring the influence of observables that have al­
ready resulted in activations when calculating the dissimilarity score, however,
as the contribution towards dissimilarity from observables associated with ac­
tivations, compared to those associated with (non) activations is negligible, we
have opted for the simpler dissimilarity score using all observables.

When a cluster has a high dissimilarity score there is reason to believe that
such a cluster may contain conflict pairs, and we want to select it first for re­
finement. The intuition behind this is that examples clustered together based on
similarity of the KBS's problem solving behaviour would normally also be similar
in their observables. If observables are dissimilar then it is likely that problem
solving behaviour of the KBS for that cluster is faulty and would require the
selection of more than one example to fix the faults. We propose several sam­
ple selection heuristics that select varying numbers of examples from the cluster
with the highest dissimilarity as follows: *DISSIMILAR selects all examples; K­
DISSIMILAR, selects the K most dissimilar examples; and >DISSIMILAR selects
examples with Dissimilarity scores above a pre-determined threshold.

2 A numeric fact x has a numeric component n",; e.g., age(fred, 40). lin", - n~II is the
absolute difference normalised by the range of values.

4 Experimental Evaluation

Example selection employing CLUSTERREP and the DISSIMILAR family of selec­
tion techniques are compared against RANDOM, where refinement examples are
selected randomly. Our experiments test whether selective sampling produces
refined KBSs with comparable accuracy but using fewer labelled examples than
RANDOM. Furthermore, the performance of these techniques in the presence of
interacting and non-interacting faults is also analysed by controlled corruptions
of the KBS.

The data set and rule-base for the binary class student loans, and the data set
for the multi class soybean was taken from the VCI repository [15). The student
loans data set consisted of 1000 labelled examples. We heavily corrupted the
student loans KBS to encourage conflict pairs; by introducing 5 faults to the
20 rules. The soybean data set of 337 labelled examples was formed by merging
the large and small soybean data sets and selecting those examples classified in
the first 15 classes. A soybean KBS with 44 rules was created by incorporating
rule chaining into the rule set generated by c4. 5rules [16J. This KBS was then
corrupted in 7 places, by adding and modifying antecedents in rules covering
4 of the 15 classes. Unlike the student loans corruptions, these faults did not
interact, therefore examples from different classes have distinct problem graphs.

For each domain, a set of 100 training examples and a further 100 evaluation
examples are randomly selected from the data set. The KRusTtool is run with
increasing subsets of the 100 training examples. Although all examples in the
data set are labelled for experimentation purposes, these labels are ignored until
examples are selected from the training set for the refinement task. Therefore,
the labelling step in the select-label-refine iterative process is implicit, and the
stop criterion is that the refined KBS has 100% accuracy on the training ex­
amples after the refinement step. We note that in practice this criterion is not
available, as only selected training examples will be labelled, but that refine­
ment is a continuous process constrained by expert availability. The impact of
informed selection on efficiency is determined by the percentage of unused (uns­
elected) examples in the training set. The impact on effectiveness is determined
by the accuracy of the final KBS on the evaluation set. The graphs show results
averaged over 10 runs for each training set size. Significance results are based on
a 95% confidence level and apply the Kruskal Wallis [17) non-parametric test as
some results are not normally distributed. The optimum cluster fusion threshold
and the Dissimilarity threshold for >DISSIMILAR, with each test domain was
ascertained by experimenting with varying thresholds, on a separate subset of
examples.

4.1 Student Loans Domain

Experiments indicate that informed selection methods were effective: there was
no significant difference in final refined KBS accuracy on the evaluation set,
between these methods and RANDOM. Figure 6 shows the graph for unused per­
centage of examples for each of the methods. We found a significant difference

between these selection methods for unused percentage (p=0.005). 3-DISSIMILAR
overall has faired best, and on average is three times more efficient than RANDOM
or CLusTERREP. 3-DISSIMILAR and >DISSIMILAR have significantly higher un­
used percentages compared to *DISSIMILAR, suggesting that the subset of most
dissimilar examples from the cluster effectively targets the faults highlighted
by all the examples in the cluster. All DISSIMILAR methods use significantly
fewer training examples compared to CLUSTERREP and RANDOM. CLUSTER­
REP's poor performance is due to the added complication of interacting faults,
and shows that selection of cluster representatives, alone, is not sufficient in these
situations. The increase in unused percentage with training set size 10, seen with
all methods, is explained by small training sets being insufficient to expose all
faults in the KBS. As a result 100% accuracy on the training set is achieved
easily, while the accuracy on the evaluation set will be significantly worse when
compared to refined KBSs produced from larger training sets.

-x- 3-DISSIMILAR
-:1(- >DISSIMILAR

80 I ----+- "DISSIMILAR
--<>-- CLUSTEREP

70 ----RANDOM

60
<f!. 50
'i 40 1/1

r-~;==~-:= ___ ~-~_~====~=====~_~

:I
C 30

:::;)

20
10
0

10 20 30 40 50 60 70 80 90 100

Training Set Size

Fig. 6. Unused examples for student loans domain.

4.2 Soybean Disease Domain

Again there was no significant difference in accuracy between the selective meth­
ods and RANDOM; while there was a significant difference in unused percentages
(p=0.005). From the efficiency view, in this domain, CLusTERREP, uses sig­
nificantly fewer examples than *DISSIMILAR and RANDOM (see Figure 7). The
success of CLUSTERREP and the failure of *DISSIMILAR is explained by the ab­
sence of interacting faults in this rule base. Furthermore, the performance of
CLUSTERREP improves with increased training set sizes, indicating that it was
able to target few, yet good, examples. Closer examination of test runs with set
sizes 70, 80, 90 and 100, revealed that the number of clusters tends to be con­
stant while the size of clusters increases with the increasing number of examples,

therefore, CLUSTERREP selects the same number of examples regardless of the
increase in set size. On average CLUSTERREP is three-times more efficient than
RANDOM or *DISSIMILAR. *DISSIMILAR'S bad performance with larger training
set sizes clearly shows that the absence of an appropriate selection mechanism
can result in ultimately using all the unlabelled examples. We have not plotted
results for 3-DISSIMILAR and >DISSIMILAR methods as they are derivatives of
*DISSIMILAR, which has performed poorly.

~CLUSTEAEP

100 ______ 'DISSIMILAR

----RANDOM
"I!- 80

i 60 In
:J
C

40 ::;)

20
............ ---------

0

10 20 30 40 50 60 70 80 90 100

Training Set Size

Fig. 7. Unused examples for soybean disease domain.

5 Related Work

The batch version of the refinement tool EITHER also applies incremental learn­
ing [18]. It processes batches of examples as they become available, but these
examples are not selected for a purpose. Eventually EITHER uses all the exam­
ples, and in addition all these examples must be labelled. The use of membership
queries and equivalence queries to select examples for learning Horn clauses is
presented in (19]. Querying in this manner enables Horn clause learning in poly­
nomial time. However, there is the assumption that labels of examples are known,
and more importantly the logic based approach does not adapt well to rule-based
systems that have more complex knowledge representation formalisms. Expo
[10] uses selective sampling to filter its proposed plans when the expected out­
come of the plan differs from the actual observations. Interestingly Expo's active
selection OCCurs at plan filtering, analogous to the KRUsTtool's filtering of refined
KBSs, . and not for actively selecting planning tasks that may trigger learning,
hence Improving plan formation. This difference with knowledge refinement is
possibly explained by the high costs associated with experimentation compared
to access to representative planning problems.

Selective sampling employing a neural network for the task of learning a bi­
nary concept is discussed in [20]. An example is selected when the most specific

and most general network configurations fail to agree on the example's label.
With complex concepts the most general network configuration may contain
the entire domain, thereby forcing random sampling. Our clustering has similar
problems: when the cluster threshold is too high, clusters contain single exam­
ples; when set too low one large cluster contains all examples. With each extreme
selective sampling is reduced to RANDOM. Presently, we identify the optimum
threshold by experimentation, however, the ability to automatically learn this
threshold would be beneficial.

Argamon-Engelson and Dagan in [21] use a query by committee approach to
selectively sample training examples for a probabilistic classifier. A committee of
classifiers is randomly drawn based on statistics of the labelled sample. Examples
are selected according to the degree of disagreement in class labels between
the committee members. The committee approach can also be incorporated in
knowledge refinement where the generated refined KBSs can vote on the solution
for remaining training examples and select examples where the committee was
unable to reach consensus. However, a disagreement measure is complicated
when the KBS concludes in intermediate results.

Conceptual clustering involves arranging objects into clusters which would
then represent certain conceptual classes [22]. However, such techniques require
that there is some knowledge about the number of classes or, alternatively, knowl­
edge about the goals of the classification. Usually, with knowledge refinement,
there is no prior knowledge about the number of areas of the KBS that are faulty
much less the types of faults that need to be addressed. However, our example
clustering via rule vectors draws close parallels to classical document clustering
in information retrieval where documents are represented as binary term vectors
[23]. For information retrieval purposes documents with similar term vectors are
grouped together forming a cluster. In document clustering, weights may also
be used to indicate the relative importance of terms. We currently assign equal
importance to all rule activations. However, a conservative view prefers refine­
ments to rules closer to observables and this might be captured by introducing
weights to rule activations.

6 Conclusion

We have presented an initial approach to selective sampling of training examples
in the context of knowledge refinement. Experimental results show that selective
sampling can significantly reduce the number of examples utilised, without any
penalty on final accuracy. The refinement process was able to target particular
faults that improved the accuracy of the refined KBS in a way that was effective
in general. Not only did this reduce the number of refinement cycles required to
achieve a particular level of competence, but it also reduced the demands on the
expert's time. The selection was done based on features of the problem-solving
task alone and so the expert was consulted about only the selected examples.
Once labelled, the selected examples were presented to the refinement tool for
processing.

The rule vector representation of the positive problem graph provided a sim­
ple similarity measure that created clusters of examples that had been solved by
the KBS in a similar way. This clustering was helpful in determining examples
that might indicate the same repair. Future work will analyse the implications of
rule depth and the sequence of rule activations on similarity and investigate how
the similarity measure might be extended to reflect these. Given a clustering,
incremental refinement can be visualised by capturing changes in cluster size
and cluster membership. We are currently exploiting these dynamic changes for
example selection during the refinement filtering stage, where the aim is to iden­
tify examples affected by the proposed refinements. We note that this is possible
due to our clustering using similarity between, rule vectors rather than feature
vectors, as employed by most existing active learning methods.

The difficulty of selecting examples from clusters depends on the level of in­
teraction of the faults in the KBS. Experiments have highlighted the strengths of
DISSIMILAR heuristics in the presence of interacting faults and the less informed
CLUSTERREP selection heuristic in the presence of non interacting faults. We
intend to develop more powerful selection mechanisms that combine these tech­
niques. One possibility would be to choose between selection heuristics CLUSTER­
REP and a DISSIMILAR method after a clustering has been done: if the maximum
intra cluster dissimilarity is large then a DISSIMILAR method is required; if small
then CLUSTERREP is sufficient.

Selective sampling is important for knowledge refinement tools whether or
not labelled training examples are plentiful. If labels are hard to obtain then it is
certainly useful to identify relevant problem-solving tasks that should be labelled
by the expert and then used as training examples for refinement. Conversely if
there are many labelled training examples then, given that the refinement process
is quite computationally expensive, it is convenient to target those examples
whose repairs also fix other wrongly solved examples without further refinement,
thereby reducing the number of refinement cycles. Selective sampling addresses
both these issues by identifying the examples most likely to solve others that
indicate the same general fault.

Acknowledgments

The KRUSTWORKS project is supported by EPSRC grant GR/L38387 awarded
to Susan Craw. Nirmalie Wiratunga is partially funded by ORS grant 98131005.

References

1. Susan Craw and Robin Boswell. Representing problem-solving for knowledge re­
fi.nement. In Proceedings of the Sixteenth National Conference on Artificial Intel­
lzgence, pages 227-234, Menlo Park, California, 1999. AAAI Press.

2. Marcelo Tallis and Yolanda Gil. Designing scripts to guide users in modifying
knowledge based systems. In Proceedings of the Sixteenth National Conference on
Artificial Intelligence, pages 227-234, Menlo Park, California, 1999. AAAI Press.

3. B. Richards and R. Mooney. Automated refinement of first-order horn-clause do­
main theories. Machine Learning, 19:95-131, 1995.

4. N Zlatareva and A Preece. State of the art in automated validation of knowledge­
based systems. Expert Systems with Applications, 7:151-167, 1994.

5. Dmitry Rusakov Michael Lindenbaum, Shaul Markovich. Selective sampling for
nearest neighbor classifiers. In Proceedings of the Sixteenth National Conference on
Artificial Intelligence, pages 366-371, Menlo Park, California, 1999. AAAI Press.

6. Andrew McCallum and Kamal Nigam. Employing em in pool-based active learning
for text classification. In Proceedings of the Fifteenth International Conference on
Machine Learning, pages 359-367, 1998.

7. David D. Lewis and Jason Catlett. Heterogeneous uncertainty sampling for super­
vised learning. In William W. Cohen and Haym Hirsh, editors, Machine Learning:
Proceedings of the Eleventh International Conference, pages 148-156, San fran­
cisco, CA, 1989. Morgan Kauffman.

8. David Cohn, Zoubin Ghahramani, and Michael I. Jordan. Active learning with
statistical models. Journal of Artificial Intelligence Research, 4:129-145, 1996.

9. Robin Boswell, Susan Craw, and Ray Rowe. Knowledge refinement for a design
system. In Proceedings of the Tenth European Knowledge Acquisition Workshop,
pages 49-64, Sant Feliu de Guixols, Spain, 1997. Springer.

10. Yolanda Gil. Learning from the environment by experimentation: The need for
few and informative examples. In Proceedings of the AAAI Symposium on Active
Learning, MIT, Cambridge, MA, 1995.

11. Peter Willett. Recent trends in hierarchic document clustering: A critical review.
Information Processing and Management, 24:577-597, 1988.

12. Stephen J. Hanson. Conceptual clustering and categorization. In Y. Kodratoff and
R. S. Michalski, editors, Machine Learning Volume Ill, pages 235-268. Morgan
Kaufmann, San Mateo, CA, 1990.

13. Nirmalie Wiratunga and Susan Craw. Sequencing training examples for itera­
tive knowledge refinement. In Proceedings of the Nineteenth SGES International
Conference on Knowledge Based Systems and Applied Artificial Intelligence, pages
41-56, Cambridge, UK, 1999. Springer.

14. Robin Boswell and Susan Craw. Organising Knowledge Refinement Operators
In Validation and Verification of Knowledge Based Systems, Proceedings of the
5th European Symposium on the Validation and Verification of Knowledge Based
Systems (EUROVA V'99j, pages 149-161, Oslo, Norway, 1999. Kluwer.

15. C. Blake, E. Keogh, and C.J. Merz. UCI repository of machine learning databases.
http://www.ics.uci.edurmlearn/MLRepository.html, 1998.

16. J. R. Quinlan. C,{5: Programs for Machine Learning. Morgan Kaufmann, San
Mateo, 1993.

17. D. A. Anderson, D. J. Sweeney, and T. A. Williams. Statistics for Business and
Economics. West Publishing Company, St. Paul, MN, 1990.

18. Raymond J. Mooney. Batch versus incremental theory refinement. In Proceedings
of the AAAI Spring Symposium on Knowledge Assimilation, Stanford, CA, 1992.

19. Dana Angluin, Michael Frazier, and Leonard Pitt. Learning conjunctions of horn
clauses. Machine Learning, 9:147-164, 1992.

20. David Cohn, Les Atlas, and Richard Ladner. Improving generalization with active
learning. Machine Learning, 15:201-221, 1994.

21. Shlomo Argamon-Engelson and Ido Dagan. Committee-based sample selection
for probabilistic classifiers. Journal of Artificial Intelligence Research 11:335-360,
1~9. '

22. ItS. :-'Iirhalski and R.E. Stl'Pp. Clustering. In S.C. Shapiro, editor, Encyclopaedia
of A rhjictal Intrlllgwct'. \'OIUlIll' 1, pages 103-110. Wiley, 1990.

23. Edil' Ha.o;lllllssl'n. C1ustl'ring algorithms. In W. B. Frakes and R. Baeza-Yates,
I'<iitor:<. Informa/wn Rrtnt'tJal: Data Structures and Algorithms, pages 419-442.
Prmtirl' Hall. London, 1992.

	OA Logo:
	AUTHOR: WIRATUNGA, N.C.
	TITLE: Informed selection and use of training examples for knowledge refinement.
	YEAR: 2000
	OpenAIR citation: WIRATUNGA, N.C. 2000. Informed selection and use of training examples for knowledge refinement. Robert Gordon University, PhD thesis. Held on OpenAIR [online]. Available from: https://openair.rgu.ac.uk/
	Degree: Doctor of Philosophy, School of Computing
	License: BY-NC 4.0
	License URL: https://creativecommons.org/licenses/by-nc/4.0
	CC Logo:
		2017-06-02T08:13:54+0100
	OpenAIR at RGU

