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ABSTRACT 

A tubular commercially available alumina support was coated using the dip coating 

technique. The objective is to prepare silica and Pt impregnated membranes. Scanning 

electron microscopy (SEM), energy diffraction X-ray analysis (EDXA), nitrogen adsorption-

desorption at 77 K and gas permeation measurements were employed for membrane 

characterization. The permeation of H2, He and N2 revealed that the membranes are crack-

free. H2/N2 selectivity for the silica membrane obtained the highest value of 2.93 at 0.9 barg 

and 25 
0
C. On the other hand, H2/He selectivity of 1.96 at 1.6 barg and 300 

0
C for the Pt 

membrane was obtained and found to be higher than the theoretical Knudsen selectivity. 

While the silica membrane realised on the thin film coating to enhance the selectivity to 

hydrogen, the Pt impregnated membrane on the other hand enhance hydrogen transport 

through an activated surface diffusion in addition to Knudsen flow.  

Keywords: Tubular alumina support; silica membrane; Pt membrane; hydrogen selectivity 

 

Introduction 

Hydrogen is currently mainly used in the chemical industry for the chemical production of 

methanol and ammonia, and for cleaner transportation fuels [1]. Hydrogen is anticipated to 

replace fossil fuels in the near future, and thus significantly contribute to the atmospheric air 

quality [1]. The increasing demand for cleaner energy has resulted in the global need to adopt 

the projected hydrogen economy as the key possible long-term solution to the growing energy 

crises [2]. In recent years, the use of conventional fossil fuel sources has increased as a 

transitional measure towards hydrogen economy where coal gasification is considered as 

dominating the process in delivering hydrogen due to its enormous reserves which is 

speculated to last for at least 50 decades [3].  

   Literature shows that hydrogen can actually be separated with inorganic membranes [4-8]. 

Inorganic membranes derived from silica, ceramics and metal alloys are candidates for high 

temperature gas separation. Palladium (Pd) [4, 9], platinum (Pt) [9] and their alloys are the 

ideal membranes applied for high purity hydrogen production from mixed gas streams even 
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though these metals are expensive [4, 9, 10]. Pd-based membranes are attractive for 

membrane reactor applications because dense Pd is highly permeable to hydrogen and if 

properly configured can offer better thermal stability and selectivity than polymer and 

microporous membranes [9]. Transport of hydrogen through dense Pd membranes follows the 

solution diffusion mechanism where only hydrogen is transported resulting in high purity 

(99.9999%), but have been limited in commercialization due to issues which include support 

quality, surface poisoning due to carbon species, hydride formation, and irreversible damage 

caused by bulk sulfide formation [9, 11, 12]. 

   Sol-gel method has been proposed by many researchers as the ideal technique for membrane 

preparation [8]. This technique has many merits for preparing pore separation layer on the 

support [8]. Silica membranes are among the candidates for low-cost hydrogen separation and 

purification [2, 3]. In fact, these membranes can accommodate the separations of hydrogen, 

nitrogen, carbon dioxide, helium and oxygen. The main characteristics of inorganic membranes 

are permeance and selectivity or separation factor [13]. Permeance is a measure of the gas flow 

rate per unit area per unit pressure difference. Permeance is a more practical unit than 

permeability because the thickness of the membrane in most cases is not known very 

accurately [13]. Permeance of gas is therefore defined as; 

F = q/A ∆P                                                                                                                        (1) 

where F is the Permeance (mol/m
-2

 s
-1

 Pa
-1

), q is the molar flow (mol/sec), A is the surface area 

of the membrane (m
2
), ∆P is the pressure difference across the membrane (Pa). 

   Permeability of gas is defined as the permeance multiplied by the thickness of the membrane 

and is written as;  

Pe  = L x F                                                                                                                      (2) 

where Pe is the Permeability (mol-m/m
-2

 s
-1

 Pa
-1

) and L the thickness of the membrane (m).    

 The selectivity is defined as the ratio of the pure component permeabilities (Py and Pz) for 

single gases. It can be written as; 

αy,z = Py/Pz                                                (3) 

where Py is the permeability of y component (mol-m/m
-2

 s
-1

 Pa
-1

), and Pz is the permeability of 

z component (mol-m/m
-2

 s
-1

 Pa
-1

). 

   The transport of gases through membranes behaves differently as the pore diameter is 

reduced. Gas transport can be affected by pressure and temperature. A change in temperature 

can also affect the flow regime differently even at the same pore diameter. Hence, it is 

critically important to be able to follow the changes in the transport mechanisms of different 
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gases during pore diameter reduction to help determine the extent to which pores have been 

reduced [13]. 

   The main gas transport mechanisms through porous membranes are influenced by viscous 

flow, Knudsen diffusion, surface flow and solution-diffusion. Viscous flow also known as 

poiseuille flow, it occurs if the mean free path (average distance travelled by a gas molecule 

from one collision to the other) is smaller than the pore diameter. The flow characteristics are 

determined primarily by collisions among the molecules and no separation is obtained between 

the different gaseous components. In gas membrane separation processes, viscous flow 

mechanism is an insignificant transport mode because it is non-selective. Transport of gases 

through Knudsen diffusion occurs if the mean free path is effectively larger than the pore 

diameter. If the collisions among the permeating molecules and the pore wall of the membrane 

are more frequent than intermolecular collisions, the separation is based on molecular weight 

difference. Therefore, Knudsen permeance states that the permeation flux is proportional to the 

inverse square root of the product of the molecular weights and temperature of the gases. 

Knudsen diffusion plays a significant role in gas transport through alumina (Al2O3) membrane 

and it normally occurs on mesoporous membrane [8]. Surface diffusion mechanism occurs if 

the diffusing molecules exhibit strong affinity with the pore walls of the membrane and 

migrates along the pore surface and desorbs on the permeate site of the membrane. In surface 

diffusion, the main driving force is the chemical potential. Solution-diffusion separation relies 

on the physical-chemical interaction of gases and the dense membrane that determine the 

amount of gas which accumulates in the membrane matrix [14].  

   The application of alumina membranes for gas separation has several merits of which they 

are chemically inert, high mechanical strength and are resistant to high temperature up to 2050 

K [8]. A separation layer of < 4 nm pore diameter can successfully be produced with alumina 

membranes, and some studies disclosed that a membrane with pore diameter < 1 nm can 

actually be produced [8]. From an economical point of view, alumina membrane dominates 

with more than 50% of the global market for technical ceramic membrane [8].   

   The objective of this study was to employ an alumina support to prepare silica and platinum 

membranes in order to form a separation layer. The behaviour of permeation of pure gas H2, 

He and N2 on the tubular alumina support, silica membrane and Pt-alumina membrane was 

examined. Their corresponding selectivities at different pressures and temperatures were also 

evaluated and compared with the theoretical Knudsen selectivity.  
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Experimental 

Support 

A commercial tubular alumina support was employed in this study. The support was 

mesoporous (2-50nm) consisting of 7 and 10 mm internal and outer diameter respectively. 

The support possesses a permeable length of 348 mm and a porosity of 45%. The permeation 

area was 0.0062 m
2
. Table 1 shows the detailed description of the membranes. 

Silica Membrane 

Silica membrane was prepared based on the work of [15, 16]. The dip-coating solution was 

prepared by mixing 50 ml of silicon elastomer and nine parts of isopentane contained in a 

glass tube to obtain a clear and colourless solution. A curing agent equivalent to one-tenth of 

the elastomer was added and the resulting solution was mixed at room temperature. The 

solution was then allowed to age for 30 minutes after which the ceramic support was 

immersed for 30 minutes. The membrane was then oven dried at 65 
0
C for 24 hours to form 

an ultra-thin layer on the support. The same procedure was repeated for subsequent coatings. 

Up to three dip-coated membranes were prepared and evaluated for these experiments. 

 

Table 1: Characteristics of ceramic membranes 

 

Membrane 

Operating 

temperature 

(K) 

Pore 

diameter 

(nm) 

Internal 

diameter 

(mm) 

Outer 

diameter 

(mm) 

Porosity 

(%) 

Length 

(mm) 

Area 

(m2) 

Wall 

thickness 

(μm) 

Alumina 

Support 

298-573 4.17 7 10 45 348 0.0062 - 

Silica 

membrane 

298-573 3.94 7 10 - 348 0.0062 - 

Platinum 

membrane 

298-573 3.70 7 10 45 348 0.0062 10.97-12.55  

 

Platinum Membrane 

The Pt-impregnated membrane was prepared using the following procedure. A solution of 

hexachloroplatinic acid (H2PtCl6) was used as platinum precursor. The deposition method 

used was based on the evaporation-crystallisation procedure proposed by Uzio et al. [17]. The 
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tubular alumina support was first dried at 65 
0
C. The tube was then dipped for 2 hours in pure 

water (in our case we used deionised water). Following this the tube was dipped for 10 hours 

in a 10g/l of H2PtCl6 solution. The sample was then dried at ambient temperature to favour 

evaporation from the inner surface and deposition on the top layer. Metallic platinum was 

obtained after thermal treatment of the sample under flowing H2 at 400 
0
C for at least 10 min 

followed by N2 flow for 10 min at 400 
0
C.  

   The experimental set-up consisted of a membrane reactor, gas delivery system for pure 

gases, a permeate and retentate exit, a flow meter and a K-type thermocouples fixed on the 

reactor (Fig. 1). However, prior to permeation experiments the reactor and all connections 

were tested for leaks by means of a soap solution. The permeation tests involved passing the 

gas into the shell-side and directed to permeate through the coated membrane surface at 

different pressures and temperatures. The permeate was connected to the flowmeter to 

measure the flow rates. 

 

Valve 1

Valve 2

Valve 4

Valve 3

Pressure Gauge 3
Pressure Gauge 4

Digital Gas 
Flow Meter

Stainless Steel Membrane Reactor

Membrane

Feed

Retentate Exit

Permeate to the Flow meter 

Main Feed

Pressure Gauge 1

Pressure Gauge 2

H
2

N
2

 

 Fig. 1. Schematic diagram of the experimental setup. 

 

 

Characterization 

Scanning electron microscopy (SEM) micrographs and energy diffraction X-ray analysis 

(EDXA) were performed on a Zeiss EVO LS10 electron microscope. Nitrogen adsorption-

desorption isotherms were measured using automated gas sorption analyzer (Quantachrome 

instrument version 3.0) at liquid nitrogen temperature (77 K). The specific surface areas were 



6 
 

evaluated using the Brunauer-Emmett-Teller (BET) method (Quantachrome instrument 

version 3.0). H2, He and N2 with at least 99.999 (% v/v) purity was used for the permeation 

tests. Permeation tests were conducted at feed pressures between 0.1 up to 1.6 barg and 

temperature ranging from 25 to 300 
0
C. 

 

Results and discussion 

Membrane characterization 

The SEM images and EDXA of the outer surfaces of the alumina support, silica and Pt 

membranes are presented in Figs. 2, 3 and 4. As can be seen, a thin membrane was formed on 

the outer surface of the support after silica modification [Fig. 3]. Both silica and Pt layers on 

the support are clearly visible [Figs. 3 and 4]. From these images, we can observe a good 

bonding of the layers on the alumina support. Also, the membranes were crack-free as 

confirmed by gas permeation tests. From the EDXA point of view, the silica and Pt 

membranes obtained 32.21 and 3.52 wt. % respectively. The Pt membrane thickness ranged 

from 10.97 to 12.55 μm (Fig. 5).  

 

 

 

 

 

 

 

 

 

Fig. 2. SEM-EDXA image of the alumina support outer surface. 
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Fig. 3. SEM-EDXA image of the silica membrane outer surface. 

 

 

 

 

 

 

 

 

 

 

Fig. 4. SEM-EDXA image of the Pt membrane outer surface. 
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Fig. 5. SEM image of the Pt membrane edge surface. 

 

   Figs. 6, 7 and 8 shows the N2 adsorption-desorption isotherms and the pore size distribution 

of the alumina support, silica and Pt membranes respectively. The isotherms on Figs. 6a and 

7a exhibit a type IV adsorption characteristic of mesopores. Both isotherms possess hysteresis 

loops with an extremely narrow step indicating a narrow mesopore size distribution (Figs. 6b 

and 7b) for the alumina support, silica and Pt membranes of 4.17, 3.94 and 3.70 nm 

respectively (Table 2). These pore diameters were calculated by the Barret-Joyner-Halenda 

(BJH) model. The BET surface areas for the support, silica and Pt membranes were 0.364, 

0.484 and 0.426 m
2
/g respectively.  

Table 2. BET surface area, average pore diameter and pore volume measurements of the 

alumina support, silica and Pt membranes. 

 

Membrane 

BET surface area 

(m2/g) 

Pore diameter 

(nm) 

Pore volume 

(cm3/g) 

Alumina Support 0.364 4.17 0.005 

Silica Membrane 0.484 3.94 0.005 

Pt Membrane 0.426 3.70 0.005 
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Fig. 6(a). N2 adsorption/desorption isotherm of the alumina support. 

 

 

Fig. 6(b). Pore-size distribution of the alumina support measured by N2 adsorption. 
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Fig. 7(a). N2 adsorption/desorption isotherm of silica membrane. 

 

   

   

Fig. 7(b). Pore-size distribution of silica membrane measured by N2 adsorption. 
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Fig. 8(a). N2 adsorption/desorption isotherm of calcined Pt membrane. 

 

 

Fig. 8(b). Pore-size distribution of calcined Pt membrane measured by N2 adsorption. 
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Gas permeation 

Fig. 9 shows N2 gas permeation as a function of feed pressure applied across the alumina 

support, silica and Pt membranes. N2 gas permeate increases significantly as the feed pressure 

increases. This increase in N2 permeate is attributed with the contribution of viscous flow 

through the alumina support. For the coated silica and Pt membranes, the N2 permeate is less 

dependent of the feed pressure compared to that of the alumina support. This is an indication 

of a reduction in viscous flow with respect to the N2 permeate on silica and Pt membranes 

which would occur in large pinholes if they were present [18]. These was also supported with 

the pore diameter values obtained (Table 1). The permeate of N2 for the silica and Pt 

membranes were almost independent of feed pressure above 0.7 bar, indicating that the 

permeation of the gas above 0.7 bar is governed by Knudsen diffusion mechanism. This result 

shows that the crack-free membranes obtained was in good agreement with the SEM results.  

   Fig. 10 shows H2/N2 selectivity for the alumina support, silica and Pt membranes in relation 

to feed pressure at ambient temperature. It can be seen that, silica membrane obtained the 

highest factor of 2.93 at 0.9 barg, which is slightly lower than the expected value from the 

theoretical Knudsen diffusion (3.74). In this case, it is therefore possible that surface flow for 

N2 at the top layer is the governing transport [18, 19]. Fig. 11 shows the selectivity of H2/He 

single gas at the temperature between 25 
0
C up to 300 

0
C and 1.6 barg feed pressure on Pt 

membrane. H2 selectivity of 1.96 over He was obtained at 300 
0
C which is 2 fold higher than 

the theoretical knudsen selectivity. 
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Fig. 9. N2 permeation of the alumina support, silica and Pt membranes against feed pressure at 

25 
0
C. 

 

 

Fig. 10. H2/N2 Selectivity of the alumina support, silica and Pt membranes against feed 

pressure at 25 
0
C. 
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Fig. 11. H2/He Selectivity against temperature on Pt membrane at 1.6 barg. 

 

 

Conclusion 

Silica and Pt membranes were prepared using a commercial tubular alumina support via the 

simple but effective dip-coating method. The mean pore diameters of the alumina support, 

silica and Pt membranes were 4.17, 3.94 and 3.70 nm respectively. The membranes were 

crack-free as confirmed by H2, He and N2 gas permeation tests. The silica membrane obtained 

a higher H2/N2 selectivity of 2.93 at 0.9 barg and ambient temperature. On the other hand, a 

H2/He selectivity of 1.96 at 300 
0
C and 1.6 barg for the Pt membrane was also obtained and 

found to be higher than that of the theoretical Knudsen selectivity as a result of activated 

surface diffusion of hydrogen.  

 

Nomenclature 

A surface area of the membrane                        (m
2
) 

F  permeance              (mol/m
-2

 s
-1

 Pa
-1

) 

L  thickness of the membrane         (m) 

Pe  Permeability        (mol-m/m
-2

 s
-1

 Pa
-1

) 

Py  permeability of y component      (mol-m/m
-2

 s
-1

 Pa
-1

) 
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Pz  permeability of z component      (mol-m/m
-2

 s
-1

 Pa
-1

) 

q  molar flow         (mol/sec) 

∆P  pressure difference across the membrane       (Pa) 

Greek Symbols 

αy,z selectivity            - 
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