
 
 

 
 

OpenAIR@RGU 
 

The Open Access Institutional Repository 
at Robert Gordon University 

 
http://openair.rgu.ac.uk 

 
This is an author produced version of a paper published in  
 

IOP Conference Series: Materials Science and Engineering (ISSN 1757-
8981, eISSN 1757-899X) 

 
This version may not include final proof corrections and does not include 
published layout or pagination. 
 

Citation Details 
 

Citation for the version of the work held in ‘OpenAIR@RGU’: 
 

KAZMINA, O. V., SEMUKHIN, B. S. and NJUGUNA, J., 2012.  
Mechanical performance of foam glass with nanoscale structure 
elements. Available from OpenAIR@RGU. [online]. Available from: 
http://openair.rgu.ac.uk 

 
 

Citation for the publisher’s version: 
 

KAZMINA, O. V., SEMUKHIN, B. S. and NJUGUNA, J., 2012.  
Mechanical performance of foam glass with nanoscale structure 
elements. IOP Conference Series: Materials Science and 
Engineering, 40, PP. 012042 

 
 

 
This work is licensed under a 

 Creative Commons Attribution 3.0 Unported License. 
 

Copyright 
Items in ‘OpenAIR@RGU’, Robert Gordon University Open Access Institutional Repository, 
are protected by copyright and intellectual property law. If you believe that any material 
held in ‘OpenAIR@RGU’ infringes copyright, please contact openair-help@rgu.ac.uk with 
details. The item will be removed from the repository while the claim is investigated. 

http://openair.rgu.ac.uk/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
mailto:openair%1ehelp@rgu.ac.uk


This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

IP Address: 193.63.235.247

This content was downloaded on 05/12/2014 at 15:19

Please note that terms and conditions apply.

Mechanical performance of foam glass with nanoscale structure elements

View the table of contents for this issue, or go to the journal homepage for more

2012 IOP Conf. Ser.: Mater. Sci. Eng. 40 012042

(http://iopscience.iop.org/1757-899X/40/1/012042)

Home Search Collections Journals About Contact us My IOPscience

iopscience.iop.org/page/terms
http://iopscience.iop.org/1757-899X/40/1
http://iopscience.iop.org/1757-899X
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


1

Mechanical performance of foam glass with nanoscale
structure elements

O V Kazmina1, B S Semukhin2 and J Njuguna3

1 National Research Tomsk Polytechnic University, 634028 Tomsk, 30 Lenin Ave.
2 Institute of Strength Physics and Materials of the Siberian Division of the Russian
Academy of Sciences, 634021 Tomsk, 2/4 Academichesky Ave.
3 Cranfield University, Shrivenham, Swindon, SN6 8LA, United Kingdom

Abstract. The paper presents experimental data on studying the strengthening of glass foam
material. Glass foam material is foamed glass of increased strength achieved due to nanoscale
structural elements. Glass foam is obtained through thermal treatment of noncrystalline matrix
containing crystalline material in the silica state. It is shown that strengthening of glass foam
material is achieved by structuring the noncrystalline partition. New technique of strengthening
is proposed due to the formation of nanoscale globules of noncrystalline matrix. Self-
organization of spherical nanoscale globules. New technique for glass foam strengthening. For
the first time the phenomenon of strengthening interpore partition of glass foam was
established. The principle of the process consists in the formation of noncrystalline matrix with
a specific globular structure.

1. Introduction
The phenomenon of materials strengthening has been studied and examined for a long time. Such
classical studies are known as those of A.A. Bochvar, M.L. Bernstein, R. Zimmermann [1, 2]. They
describe the techniques, schemes and classifications of strengthening for various materials. All
strengthening techniques can be divided into two groups. The first group of materials (mostly metal)
with a crystalline structure is well described by the classical dislocational model of strengthening. The
second group of materials (non-metal) with a noncrystalline structure can be described by the non-
dislocational model of strengthening. For example, Ref. [3] proposes the strengthening technique due
to the clusters in the noncrystalline structure. Refs. [4, 5, 6] explain strengthening at inelastic
deformation particularly by non-dislocational mechanisms. In particular, it is grain boundary sliding
and movement of vacancies at boundaries. The work by Kozlov E.V. [7] directly indicates the
observed critical grain size after which the amorphized material is strengthened in a dislocation-free
mode due to the boundaries of nanostructural formations.

It is believed that the main cause of strengthening at dispersion hardening is elastic stress created
by the separation of the second phase [4-6]. In case of noncrystalline bodies (glass) the Griffiths model
is more common. It describes strength properties of glass with the use of energy fracture model.
According to the model, the glass fracture is caused by the strain concentrators at the glass surface. In
glass-ceramic materials where noncrystalline phase may reach up to 90 and 95%, the stress in the
interface of crystalline phases and noncrystalline matrix cannot lead to the strengthening of the
material as a whole. For the glass foam materials examined in this paper neither the first nor second
model is applicable due to the following reasons: no separation of the second crystalline phase in the
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first crystalline phase; no continuous surface of the noncrystalline matrix, and presence of multiscale
random pores.

The paper examines the process of glassceramic foam material strengthening. This material is
manufactured of semiprocessed product – the quenched cullet synthesized at relatively low
temperatures (< 950 оС). It is already at this stage when the quenched cullet contains glass phase in a 
noncrystalline state. It ensures the pyroplastic state of the material at the stage of repeated thermal
treatment (sponging) of the quenched cullet. The quenched cullet is a noncrystalline matrix containing
residual silica particles with the size up to 200 nm.

2. Results and discussion
The foam materials were produced according to the two-stage technology developed by the authors [8,
9]. Such crystal and noncrystalline silica-containing rocks as silica sand, diatomite, flint, silica clay,
and perlite were sampled as a feedstock. The samples of foam material were obtained with the content
of residual crystalline material from 5 to 20 % by volume. It was established that the strength of
experimental samples increased from 1.8 to 3 MPa as the crystalline phase particle size decreased
from 1,000 to 300 nm.

During the formation of submicron crystalline phase in the glass the change in its energy
characteristics is observed [10]. The maximum strengthening effect should be expected if the
microstructure of crystalline phase is significantly different from the equilibrium for this phase. The
paper by academician N.P. Lyakishev shows that material with specific properties should consist of
crystallites or mixture of nanoscale crystals and noncrystalline phase [11]. Therefore, the foam
material synthesized from the quenched cullet is essentially “simulated” by these principles.

For the samples with fixed amount of residual crystalline material (5 % on average) and different
size of particles the experimental dependence was established (Figure1). Assuming that the minimum
critical size of crystalline phase particles is equal to 10 nm [7], the maximum theoretical strength of
the foam material was calculated, which amounted to 5 MPa. In case of the glass foam the
noncrystalline matrix of which contains no crystalline material, this value does not exceed 1.5 MPa
[12].

Figure 1. The strength of the foam material as a
function of the crystalline phase particle size.

Since it proves to be impossible to strengthen the noncrystalline matrix due to the subsequent
reduction of the particle size in the residual crystalline material, there is another option to alter the
material strength. The strength of the partition can be changed due to the modification in the matrix
internal structure. The strength values at compression determined for all experimentally obtained
samples of foam material showed that the increased strength (4.3 MPa) is typical for those ones having
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the noncrystalline matrix of the interpore partition with the observed nanoscale spherical elements
(spheroids). In electron micrographs of high resolution there are spheroids observed in the
noncrystalline phase with the size of 60 to 160 nm. Such spheroids are not found in the interpore
partitions of conventional glass foam and glassceramic foam material samples with the size of residual
silica particles over 200 nm (Figure2). Figure2 distinctively shows a complex hierarchical
arrangement consisting of both separate spheroids and their groups. X-ray dispersion analysis of the
silicon content in the partition noncrystalline matrix shows its non-uniform distribution. The
maximum concentration is observed at the partition boundary, whereas the minimum one – in the
middle (Figure 3). The formation of spheroids leads to the redistribution of silicon in the partition. It
implies that nanospheroids are main silicon-containing structural elements that are accumulated
mostly by the partition boundaries.

Figure 2. Electron micrograph of the spheroids in the foam material
interpore partition.

Thus, the modification of the strengthened glass foam structure is determined not by the structure
and presence of residual crystalline material, as it was expected, but by the change in the
noncrystalline matrix structure. On the one hand, it is inconsistent with the scheme described in the
scientific literature, and on the other hand, such behavior of glass-ceramic material agrees with the
structure where the minimization of energy of the whole material is performed due to the energy
minimization of basic (noncrystalline) component only. In the course of sponging the material by itself
modifies the structure of the noncrystalline matrix. Spheroids are formed, which are referred to as
“globules” in minerals-related literature. For example, Ref. [13] gives experimental evidence on the
existence of globules in silicon oxide and proposes the mechanisms of their formation. The author
believes that the spherical globule has different packing density of SiO4 tetrahedrons in the centre and
on the surface. The globule internal area has more incoherent packing of SiO4 tetrahedrons, as
compared to the nucleus. The general view of a globule is a three-dimensional particle with the
structure similar to that of silica or crystobalite, on the surface of which there are one-dimensional
Si,O-chains – dimmers, trimers, and monomers of silicic acid or sodium silicate. This paper assumes
that globules have an intermediate position between crystalline and noncrystalline state. Other studies
[14, 15] also give numerous experimental evidences on the formation of silicon oxide globules.
According to the data of X-ray diffraction and thermography, the globules internal composition can be
presented as a disordered set of nanocrystals and noncrystalline areas.
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Figure 3. Distribution of silicon content in the interpore partition.

Based upon the IR spectroscopy data presented in Ref. [13] by the example of silica gels and
noncrystalline synthetic alumosilicate, it was shown that the formation of globules in the materials
spectra is accompanied by the appearance of the band 1200 cm-1. This is indicative of the fact that
fragments of SiO4 tetrahedrons appeared on the surface of crystals with the angles between them
being equal 180о. These fragments can consist of two or three linked tetrahedrons that can be referred 
to as chains.

In our case, based upon the IR spectroscopy data of the glassceramic foam materials samples the
appearance of a new band 1,249.6 cm-1 was established, which was not present in the IR spectra of
glass foam. It is evident that these data with regard to micrographs can be indicative of the globular
structure of the interpore partition noncrystalline component. Thus, we were first to discover the
globules of noncrystalline matrix in the glass foam material. We consider that the sharp (abrupt)
increase in the glass foam material strength is assigned specifically to them. Upon that, the
microstructure of the high-strength foam material partition consists of the noncrystalline matrix with
the present particles of residual silica (not more than 5% with the size of about 200 nm) and globules
(100 nm and less in size).

The strength of nanoncrystalline materials is generally assigned to several mechanisms. The
mechanisms of shift and local jumps are presented as basic ones. In the first case part of noncrystalline
cluster (globule) is displaced at the deformation along the other one and dissipates the energy [16]. In
terms of the second mechanism it is proposed to consider possible the abrupt displacement of
individual atoms within a cluster (globule). More recent studies, in addition to these mechanisms,
propose considering the formation of nanostructures in the deformation bands as a strengthening factor
[17-21]. In our experiments the strengthening of foam material is related to two processes: 1)
decreasing of the particle size in residual crystalline material; 2) formation of nanoscale spheroids –
globules in the noncrystalline matrix of glass foam material. In the course of the first process – the
change of the crystal size (Figure1) the strength of 3 MPa is reached, and at the introduction of the
second process a theoretical strength of 5 MPa can be attained. The major energy dissipation at the
deformation is performed by the areas with densely packed globules, with the volume content of which
can amount to 95% in the material.

For the first time a new type of strengthening is observed in the noncrystalline material, that is the
self-organization of nanospherical globules in the body of noncrystalline matrix. The strengthening
model of noncrystalline materials with nanocrystal components proposed in Ref. [11] has been proved
by the research conducted in our paper.
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