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Abstract 

A Computational Model of Visual Attention 

 

Jayachandra Chilukamari 

 

Submitted to Robert Gordon University in partial fulfilment of the requirements 

for the degree of Doctor of Philosophy 

 

Visual attention is a process by which the Human Visual System (HVS) selects 

most important information from a scene. Visual attention models are computational or 

mathematical models developed to predict this information.  The performance of the 

state-of-the-art visual attention models is limited in terms of prediction accuracy and 

computational complexity. In spite of significant amount of active research in this area, 

modelling visual attention is still an open research challenge. This thesis proposes a 

novel computational model of visual attention that achieves higher prediction accuracy 

with low computational complexity. 

A new bottom-up visual attention model based on in-focus regions is proposed. 

To develop the model, an image dataset is created by capturing images with in-focus 

and out-of-focus regions. The Discrete Cosine Transform (DCT) spectrum of these 

images is investigated qualitatively and quantitatively to discover the key frequency 

coefficients that correspond to the in-focus regions. The model detects these key 

coefficients by formulating a novel relation between the in-focus and out-of-focus 

regions in the frequency domain. These frequency coefficients are used to detect the 

salient in-focus regions. The simulation results show that this attention model achieves 

good prediction accuracy with low complexity.    

The prediction accuracy of the proposed in-focus visual attention model is 

further improved by incorporating sensitivity of the HVS towards the image centre and 

the human faces. Moreover, the computational complexity is further reduced by using 

Integer Cosine Transform (ICT). The model is parameter tuned using the hill climbing 

approach to optimise the accuracy. The performance has been analysed qualitatively 

and quantitatively using two large image datasets with eye tracking fixation ground 

truth. The results show that the model achieves higher prediction accuracy with a lower 

computational complexity compared to the state-of-the-art visual attention models. 
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The proposed model is useful in predicting human fixations in computationally 

constrained environments. Mainly it is useful in applications such as perceptual video 

coding, image quality assessment, object recognition and image segmentation.  

 

Index Terms- visual saliency, saliency detection, in-focus, DCT, frequency 

saliency, fixation prediction, attention, visual attention models, saliency model, face 

saliency.   
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1                                Introduction 

1.1 Problem Statement 

uman vision provides a wealth of information to the brain from the outside 

world. It has the ability to create a coherent global visual experience from 

noisy, sparse and ambiguous environments. It perceives thousands of objects, 

identifies hundreds of faces and appreciates beauty all around. Computer vision is a 

science which aims to understand the visual world that human vision perceives through 

processing, extracting and analysing information present in images. Computer vision is 

used in wide variety of applications such as object recognition, image segmentation, 

image/video editing and enhancement and perceptual video coding.  

In the past decade, there has been a significant amount of research in the field 

of computer vision systems. These systems often deal with high resolution images 

which result in increased computational complexity and thus make it difficult for them to 

operate in real time. The performance of these systems can be enhanced by 

processing the relevant information present in the images and ignoring the irrelevant 

information. By selecting the relevant information in an image the amount of 

information that needs to be processed can be greatly reduced.   

The relevant information in an image is typically detected by using a visual 

attention/saliency model which computationally models the important features present 

in images. They generally model bottom-up and top-down features for detecting salient 

regions. Bottom-up features are distinct and grab the viewer’s attention towards them. 

Intensity, colour and orientation are the main bottom-up features modelled in the 

literature [1]. In addition to these bottom-up features, there are also top-down features 

that drive visual attention. These features are mainly user driven and are influenced by 

cognitive factors such as motivation, knowledge, desires, expectation and goals of the 

user [1]. Some of the key top-down features include scene context [2], [3] and task 

demands [4], [5].  

The performance of the visual attention model greatly affects the computer 

vision system’s operation. A highly accurate visual attention model will enable a 

computer vision system to achieve its desired results. Further, a low complexity visual 

attention model will enable the computer vision system to operate in real time with 

greater ease. Therefore, it is important to develop visual attention models that have the 

ability to detect salient regions with high prediction accuracy and have low 

computational complexity. 

H 
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In the literature, the state-of-the-art computational models of attention have 

mostly focussed on modelling bottom-up features for detecting salient regions [6], [7], 

[8], [9], [10], [11]. They have modelled bottom-up features more than top-down features 

because of ease and simplicity of deriving these features from the images [1]. 

Furthermore, these models have used approaches with high complexity to model the 

salient image features [6]. Some of the models have used a greater number of feature 

channels with an aim of improving prediction accuracy [12]. Although these models 

managed to achieve better accuracy, both the higher number of features and complex 

approaches resulted in an increase of computational complexity of these attention 

models. Moreover, some of the low complexity attention models proposed in the 

literature have shown performance drop in prediction accuracy [8], [13]. Existing visual 

attention models have either achieved better prediction accuracy with high complexity 

or low prediction accuracy with faster operation at detecting salient regions in the 

images. This has limited the practical application of these models [11]. Therefore, 

visual attention models that have been developed to date lack the ability to achieve 

good prediction accuracy with low computational complexity.  

Visual attention models with better accuracy and low complexity are especially 

required in applications such as perceptual video coding, image/video quality 

assessment, object recognition and image segmentation, where there is large amount 

of irrelevant information in images which needs to be filtered more efficiently with low 

computational complexity. Therefore, there is a need for a novel computational model 

of visual attention with better prediction accuracy and low complexity. 

1.2 Research Aim 

The aim of this work is to develop a novel computational model of visual 

attention to predict salient regions in the images. The research mainly addresses the 

prediction accuracy and computational complexity issues of the existing visual attention 

models. The developed model can be effectively used to improve the performance of 

computer vision systems.  

1.3 Research Objectives 

The research aim is achieved through a preliminary study and key objectives. 

During the initial study the state-of-the-art visual attention models available in the 

literature have been critically analysed by identifying their advantages, disadvantages 

and interesting aspects. The performance of these attention models has been analysed 

qualitatively and quantitatively with the image datasets available in the literature. Later 
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the state-of-the–art is advanced through some of the key objectives of this research 

project. A complete list of these objectives is given below. 

  

1. Study the state-of-the-art visual attention models available in the 

literature to gain theoretical knowledge. Further, critically analyse them 

and empirically evaluate their performance. 

 

2. Develop a novel bottom-up visual attention model. The attention model 

should detect salient regions in the images accurately with low 

computational complexity. 

 

3. Further develop the bottom-up visual attention model (developed in the 

second objective). Manage the computational complexity and improve 

the prediction accuracy by modelling high level features present in the 

images.   

The objectives of this project are fulfilled by developing novel approaches for 

computational modelling of bottom-up and top-down visual attention. Their strengths 

and limitations are also discussed based on empirical evaluation. 

1.4 Main Contributions and Publications 

During the project, a novel computational model of attention which has good 

prediction accuracy with low computational complexity is proposed. The main 

contributions of this work to the advancement of visual saliency area is summarised 

below.   

 The development of a DCT based visual attention model for predicting salient 

regions in images. The model considers in-focus regions in the images as 

visually interesting and captivating. To develop the model, an image dataset is 

created which has different types of images with in-focus and out-of-focus 

regions. This dataset is mainly used for hypothesis generation for detecting in-

focus regions in the images. The visual attention model developed detects the 

in-focus regions using the characteristics of DCT coefficients. This work was 

published in a conference paper [14].  

 

 The computational complexity of the DCT based focus detection model is 

improved and combined with a location based top down feature known as 

image centre sensitivity to improve the overall prediction accuracy of the model. 
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This work was published in a conference paper [15] and also achieved the best 

paper award. 

  

 The development of high prediction accuracy attention model by combining the 

low complexity attention model with a human face saliency map. The model is 

parameter tuned using a hill climbing approach to optimise its performance. 

Further, a dispersion measure (standard deviation) is calculated to estimate the 

model’s performance across each image. This method is used in conjunction 

with the chosen quantitative analysis metrics to determine the consistency of 

the attention model across different image statistics within the image datasets. 

This work is submitted for publication in a journal. 

 

 Investigation of the effectiveness of the objective video quality metrics such as 

Full Reference (FR), Reduced Reference (RR) and No Reference (NR) in 

detecting perceptual quality variation induced by pre-processing filters. 

Although this contribution is slightly outside the main research theme, this 

investigation has helped in analysing the ability of the existing video quality 

metrics. This work was published in a conference paper [16]. 

1.5 Organisation of the Thesis 

The organisation of the thesis is as follows: 

 

 Chapter 2 - This chapter provides an overview of human and machine visual 

attention. It provides the background knowledge related to how the visual 

information is captured and processed by the human brain. The fundamental 

concepts and terms used in the computational modelling of visual attention are 

introduced. Some of the early visual attention models have been explained. The 

main applications of computational attention models are also discussed. 

  

 Chapter 3 -This chapter presents the different types of computational attention 

systems existing in the literature. Further, it gives a critical review of the most 

closely related saliency models to the proposed visual saliency model.  

 

 Chapter 4 - The experimental methods used for the research project are 

explained in this chapter. The development and testing platform and image 

datasets used for the development of the attention models have been 

explained. The qualitative and quantitative assessment techniques used for 
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evaluating models accuracy and the methods used to measure the 

computational complexity are introduced. The benchmark models of visual 

attention chosen for the current work are outlined. 

The main contributions of this research project are described in chapters 

5, 6 and 7. A novel computational model of visual attention for predicting salient 

regions in the images is proposed in the chapter 5 and chapter 6. In the chapter 

7 a study is carried out to identify suitable objective video quality metrics for the 

development of perceptual quality algorithms. 

 

 Chapter 5 - Describes a new visual attention model for detecting salient regions 

in the images. It is assumed that the viewers are highly attracted towards the in-

focus regions in images. Therefore, in-focus regions are detected using the 

characteristics of DCT coefficients. This is the main attention model developed 

for detecting salient regions and further developments include improving this 

model and integrating it with other developed algorithms. 

 

 Chapter 6 - The attention model in chapter 5 is further developed by 

incrementally innovating it by improving some of the core components of the 

model. Further, new algorithms are developed to detect the image centre and to 

generate human face maps. These are integrated with the main focus detection 

attention model and optimised to improve the overall model’s performance in 

terms of prediction accuracy and computation complexity. 

 

 Chapter 7 – The effectiveness of the existing Full Reference (FR), Reduced 

Reference (RR) and No Reference (NR) video quality metrics in detecting the 

quality variations in pre-processed and coded videos is studied in this chapter. 

Although this chapter is not directly related to the main research theme, the 

study identifies objective video quality metrics that can be used during the 

development of perceptual quality algorithms. 

 

 Chapter 8 - This chapter summarises the main developments and experimental 

results related to the objectives of this research work. The conclusion of the 

thesis is provided and the possible future directions are indicated.  

 

 Appendix A – Contains a list of publications related to this research work. 
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 Appendix B – Contains the details of software implementation of the proposed 

visual attention model. The software prototype is developed in C++ 

programming language using OpenCV and FFmpeg libraries. It can detect 

salient regions within the images, fed live from an external HD camera and 

H.264 encoded videos. 
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2                                 Visual Attention 

2.1 Introduction 

 rich stream of visual data (108-109 bits) enters the human eye every second 

[17], [18]. This process of acquiring visual information from the environment 

is continuous and processing this data in real time is an extremely difficult task for the 

human brain. To compensate for the inability of handling this enormous amount of 

information, the human brain classifies the information into two categories. The first 

one is the relevant visual information that is selected for further processing by the 

human brain. The latter is the irrelevant information that can be filtered out.  This 

process of selection and prioritisation of the visual information is known as selective 

visual attention [19]. Therefore, human visual attention can be defined as the process 

of selectively reducing the incoming visual information to match the capacity of the 

human brain. 

Machine visual attention is basically the ability of the computers to see and 

perceive objects in a similar way to the humans.  A machine vision system or a 

computational attention model recovers important information from a scene from its two 

dimensional projections [20]. Images are usually two dimensional projections of the 

three dimensional world.  A machine vision system creates a model of the real world 

from these images. Therefore, a machine visual attention is a technology that aims to 

imitate human visual attention. This chapter deals with the fundamentals of human and 

machine visual attention. Moreover, it provides some of the important findings that 

permitted better understanding of human attention. The study of human visual attention 

gives the required knowledge to develop a novel computational model of human 

attention which is described in chapter 5 and 6.  

Section 2.2 of this chapter gives an overview of human visual attention. Later 

the structure of Human Visual System (HVS) is illustrated. It explains how the 

information is received and processed by human brain. The important areas of the 

human brain that play a vital role in visual perception are discussed. The eye 

movements and the factors that drive attention mechanism are detailed. In section 2.3 

psychophysical theories on visual attention are presented. Section 2.4 of this chapter 

provides the background related to machine visual attention. It depicts the basic 

architecture of a computational model of human attention. Further, it briefly explains 

some of the important applications of these models in the area of computer vision and 

image/video compression. 

A 
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2.2 Overview of Human Visual Attention  

As explained earlier, in reality a very small amount of information is processed 

by HVS. In order to demonstrate this phenomenon, the authors of [21] performed an 

experiment known as change blindness. In this experiment, changes are introduced 

in the image or visual stimulus by transforming their enduring coherent structure. In 

spite of these changes the viewer has failed to notice the difference as the human eye 

is insensitive to these areas. This experiment has shown that the visual system 

processes only limited visual information at any point of time. In another experiment by 

the authors of [3], one person approaches a pedestrian and asks about directions. 

During the conversation two people with a door in their hands passes in between the 

experimenter and the pedestrian. At the time of interruption the first experimenter is 

replaced by a second experimenter. Even though the second experimenter wears 

different clothing the pedestrian does not notice the difference. During these 

experiments about 50% of the subjects have failed to detect the change of person. This 

indicates that human visual attention is highly selective in nature.  

During normal vision it is impossible to perceive two objects co-instantaneously 

in the same sensory act [22]. Although the tendency of the HVS is to retain a very rich 

representation of the visual world, in reality at each moment only a very small region 

under human attention is analysed [1]. During the period of attention the human eyes 

gets fixated over the region of interest and simultaneously many other regions of the 

scene are ignored. One important theory which explains how human eyes shift from 

one Region Of Interest (ROI) to another is the moving-spotlight theory [23]. The human 

visual attention is considered as a spotlight in a dark room. The spotlight illuminates the 

intended targets and moves on to the next region of interest in a serial fashion.  

Visual attention is an interdisciplinary field of study that is closely related to 

psychology (a scientific study of mental functions and behaviour) and neurobiology (a 

branch of biology that deals with the study of the nervous system). These are the 

disciplines whose research is effectively focussed in this area. Psychologists develop 

psychophysical theories and models by an extensive investigation of human behaviour 

on special tasks in order to understand the internal processes of the brain [1]. These 

theories or models explain the relationship between the stimulus and the perceptual 

sensation in a quantitative way [24]. They study the subject’s experience by 

systematically varying the stimulus properties [25]. Neurobiologists use techniques to 

visualize the areas of the brain which are active under certain conditions [1]. Functional 

Magnetic Resonance Imaging (FMRI) is one technology which is used to take a direct 

view of the brain. The findings from the psychology and biology can be utilised by the 
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researchers in the field of computer vision to develop new software, technical systems 

and standards. Therefore, this interdisciplinary research around visual attention has 

helped both human and machine vision communities. 

2.2.1 The Human Visual System (HVS) 

The HVS refers to the human eye and the brain working together in liaison to 

process visual information. The HVS performs many image processing tasks vastly 

superior to present day super-fast computers. To imitate the mechanisms of HVS 

computationally, a thorough understanding of the HVS is needed. The study of HVS 

helps to understand how the human eye manages to selectively attend relevant 

information in the visual scene. 

The human eyes are the sensory organs that act as the input to the HVS. They 

capture the light and project it on to the retina. The visual information is then 

transmitted to optic chiasm through the fibres of the optic nerve. From there, there are 

two pathways which lead to two different brain hemispheres. These are collicular 

pathway leading to Superior Colliculus (SC) and the retino-geniculate pathway that 

leads to Lateral Geniculate Nucleus (LGN) as shown in Figure 2.1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     Figure 2.1:  Structure of Human Visual System (HVS) (source [26])  
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The retino-geniculate pathway transmits 90% of the information whereas the 

collicular pathway is responsible for only 10% of the captured visual information [1]. 

The information from the LGN is transferred to the visual cortex. The superior collicus 

(SC) receives visual inputs from the retinal and primary visual cortex. The collicular 

pathway transmits very limited visual information. However, it plays a vital role in 

controlling visual attention and eye movements [27] .  

The visual cortex is mainly responsible for processing visual information. It is a 

hierarchical arrangement with the primary visual cortex known as visual area one (V1) 

at the beginning of the hierarchy. Around 50% of the area of V1 processes information 

obtained from the fovea [28] . The other visual areas are namely visual area two (V2), 

three (V3), four (V4), and five (V5). The area V1 receives information from the LGN and 

is transmitted to two primary pathways, known as the dorsal and ventral stream. The 

dorsal stream as the name indicates it lies dorsally (upper side or back of an organ) 

and is associated with motion, depth perception and passes information to the motion 

sensitive parts of the visual cortex [29]. The ventral stream located at the ventral (lower 

side of an organ) part of the body is associated with perception of shapes and object 

recognition passes through V4 [29]. Each of these visual areas is sensitive to different 

types of visual information. All the areas and their corresponding associated functions 

are shown in the Table 2.1. 

 

Visual Areas Function 

V1,V2 [29] 
Line orientation, spatial frequency and    

colour 

V3 [29], [30] Global motion 

V4 [29] Shape and texture discrimination 

V5 [29], [31] Perception of motion 

 

2.2.2 Eye movements 

Humans continuously move their eyes to track the visual stimuli. The different 

types of eye movements are briefly explained below. 

 

Fixation: This is achieved when the human gaze is stationary around a single 

location [32]. 

Table 2.1:  Visual areas and functional specification 
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Saccade: These are fast, rapid movements of eyes [33]. The main function of 

these saccades is to change the fixation point from one location to another. They direct 

the high resolution fovea on to the region of interest for high acuity (ability of the 

observer to perceive high contrast spatial information) analysis. The amplitude of these 

movements ranges from small to large, such as reading a newspaper to gazing around 

the room. These saccades are either voluntary or involuntary. During a saccade, the 

high velocity of the retinal image leads to blurring of everything that falls in the field of 

vision. Therefore, the vision is usually suppressed and the information is acquired only 

during the fixation.  

 

Microsaccade: These are small involuntary movements which occur when 

eyes fixate on a location [32], [34]. They typically occur during prolonged fixation. 

These are usually unnoticed and cannot be produced by an observer at will. 

 

Vergence: During vergence eye movements, the fovea of both eyes is drawn to 

a single location. The eyes actually rotate in opposite directions (the right eye to left 

and the left to right) to converge on to the object or region of interest [32], [34]. 

 

Smooth pursuit: These are voluntary slow and smooth movements of the 

human eyes that help to keep the moving stimulus on the fovea [34].  

 

Scanpath: A scanpath is sequence of eye movements which involve fixations, 

smooth pursuits and saccades [35]. 

 

2.2.3 Overt and Covert Attention 

Generally there are two types of attention mechanisms, namely overt and 

covert attention. These attention types are explained below. 

 

Overt attention:  During overt attention the body, head and eyes are oriented 

to foveate (perceive with higher detail) a stimulus. This is an involuntary attention 

mechanism which involves eye movements.  

 

Covert attention: Covert attention does not involve eye movements. During 

covert attention there is neither the movement of head nor the movement of eyes.  

Attention is voluntarily achieved using the peripheral part of the human eye. These 

fixations are not observable and are generally made using the corner of one’s eye. For 
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example, when a football player continuously fixates his eyes on the football his covert 

attention may shift to a goal post. The eyes continue to remain focused on the previous 

object attended, yet attention is shifted. Another example is when a person drives on 

the road he overtly keeps his eyes on the road and simultaneously monitors the road 

signs and traffic lights using covert attention. 

Overt attention shifts occur when eyes move overtly from one location to 

another location. Before the overt attention comes into play covert attention shifts to the 

locations that are going to be attended because of the thought process and hence 

covert attention drives the overt attention. Therefore, covert attention is much faster 

when compared to overt attention. 

In the literature overt attention is more extensively studied than covert attention 

as it can be easily measured using eye trackers [36]. Although Posner [37] proposed 

few methods to compute covert attention, the behavioural mechanisms and its 

functions are still unknown. So far there is no proper system available for measuring 

covert attention [36]. 

2.2.4 Factors Influencing Visual Attention 

As early as 1967, Yarbus studied the relationship between the saccades and 

visual attention [32]. These saccadic eye movements have been extensively studied in 

the literature [38]. The covert attention initially scans the field of view to determine an 

interesting location [36]. The most interesting ones among the examined targets are 

retained and the HVS sets up a saccade to that target using overt attention. The loss of 

visual acuity is compensated by a succession of rapid eye movements (saccades) [39]. 

While examining the targets there are two major factors that influence the human eye 

in selecting the targets. These are bottom-up and top-down factors [40]. These factors 

that drive human attention are briefly explained below.  

2.2.4.1 Bottom-up Factors 

Bottom-up attention is a fast, memory independent process driven by the 

properties of the visual stimuli. It is mostly unconscious, often reactive and comes into 

play during free viewing conditions. The HVS is involuntarily attracted to these regions. 

There will be many regions of interest which actually leap out of the scene to grab the 

viewer’s attention. This attention mechanism is also referred as exogenous, automatic, 

reflexive or peripherally cued [41].  

Visual search and pop out effect: In 11th century Ibn Al-Haytham found that 

“some of the particular properties of which the forms of visible objects are composed 

appear at the moment when sight glances at the object, while others appear only after 
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scrutiny and contemplation” [42]. This phenomenon is known as the pop-out effect. 

The targets during the visual search leap out to grab the viewer’s attention. 

Visual search can be classified as a bounded or unbounded search. In a 

bounded search the target to be searched is known in advance whereas it is unknown 

in an unbounded search. The search process in both of these classifications can be 

either efficient or inefficient. The efficiency is usually measured as a function of reaction 

time. It is the time a viewer needs to detect the target among the distracters.  The lower 

the time, the better is the efficiency.  

A bounded visual search example is shown in Figure 2.2 (a). The pop-out effect 

occurs in this example as the distracters are homogeneous in nature (The black 

vertical line pops out among all the white vertical lines). Therefore, the visual search in 

this example is significantly efficient because of a lower reaction time.  

In the real world scenario searches for stimuli are not defined by a single 

property.  They are usually defined by conjunction of two or more properties. Therefore, 

this type of visual search is known as conjunctive visual search.  A conjunctive visual 

search example is shown in Figure 2.2 (b). The visual search in this example is less 

efficient when compared to the previous example (Figure 2.2 (a)).  In the Figure 2.2 (b), 

it can be seen that the target is black vertical line and it is searched among the 

distracters that are both black horizontal and white vertical lines. This is in contrast to 

the pop out effect where the distracters are completely homogeneous (white vertical 

lines). As the target is defined by more properties the viewer needs more time in 

detecting the black vertical line among the distracters.  Therefore, in this scenario the 

search process is less efficient when compared to the pop-out effect.  

  

 

 

 

 

 

 

 

 

 

 

Figure 2.2: Visual search. (a) The black vertical line pops among the distracters (white 

vertical lines) by a unique visual property. (b) The black vertical line differs from the 

distracters (black horizontal and white vertical lines) by a conjunction of properties 

(source [43]) 

(a). Pop-out  search (b). Conjunction search 
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The pop-out search and conjunctive visual search are two different scenarios of 

bottom-up processing. In psychological experiments it is shown that, during a bounded 

bottom-up visual search, the search time is mostly linear and not exponential [1].  

2.2.4.2 Top-down Factors 

Top down attention is a slow, memory dependent process driven by cognitive 

factors such as knowledge, expectations and goals of the user [44]. This is also called  

voluntary [45], endogenous [37] or centrally cued attention [1]. For example, whenever 

a person is driving and wants to find a petrol station then only petrol stations on the 

way are going to attract his attention.  An important feature of top down attention is 

given the same scene; the attended regions change depending upon the observer’s 

tasks. Yarbus [32] in one of his famous experiments recorded fixations and saccade 

patterns of observers while viewing objects and scenes. One of the examples of his 

work is shown in Figure 2.3.  

     Figure 2.3:  The effect of task on human scan path (source [32]) 
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Initially an image is shown to the viewers. Then the viewers were asked different 

questions to study the impact of task on human attention. For each different type of 

task the scan paths were recorded and analysed. He showed that saccade patterns 

varied for different types of questions viewers were asked prior to viewing. Generally 

there are many different kinds of top down influences such as prior knowledge about 

the target [1], expectations [46], emotions [46], desires [46]  and motivations [1]. Wells 

and Matthews [47] studied attention and emotions from a psychological perspective. 

Based on the interplay of attention and emotions in the human brain, Fragopanagos 

and Taylor [48] developed a neurobiological model of attention. 

As discussed in an earlier section, the visual attention effect is observed in all 

the different areas of visual cortex. There is significant evidence which has shown that 

top-down signals are generated outside the visual cortex and are transmitted via 

feedback connections to visual cortex [49].    

The neurophysiological studies have indicated that there are two independent 

but interacting brain areas associated with these two kinds of attention mechanisms 

[50]. However, very little is known regarding the interaction between these two kinds of 

mechanisms [1]. 

2.2.4.3 Bottom-up vs. Top-down Attention  

When someone is fully engrossed in reading a newspaper, and if someone 

walks beside him, the attention is immediately shifted to the walking person. Similarly, 

when an emergency bell rings in a shopping mall the attention is immediately shifted in 

spite of the individual top-down influences. According to Theeuwes [51] bottom-up 

influences are not voluntarily suppressible. In his experiments, he gave the participants 

a task of searching a diamond shape in two different displays as shown in Figure 2.4. 

Although the participants knew colour had no significance in the search task, the red 

colour circle slowed down the visual search of the participants by about 65ms (885 vs. 

950 ms) [51]. This clearly indicates that colour pop-out captures the visual attention 

independent of the top-down influences such as task.  

The authors of [52] critiqued Theewes assertion and clarified that this 

automaticity does not apply to all stimuli impinging upon the retina, but only those that 

fall inside an attention window. All objects within the window compete among 

themselves and the most important target receives the attention. Objects outside the 

window, however, do not necessarily compete for selection and hence can be ignored. 

Another stipulation of Theewes’ theory is the attention window is dynamic over the 

visual field. When an observer initiates a very difficult search task, the attention window 

is very small encompassing only two to three objects at a time. Therefore, though a 
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distracter is present in the display, it would not receive a noticeable degree of attention 

because   

1) It would not impinge on the retina when it is outside the window,  

2) It would fall inside the window only for a fraction of trials, because in some 

cases the visual search may be terminated before this small window is 

moved onto the distracter,  

3) Even if it falls inside the window it may not cause interference as the 

window is small consisting of only one object. When there is only one object 

inside the window, there is no possibility of competition for the distracter to 

win. 

 

  

 

 

 

 

 

 

2.3 Psychophysical Models of Attention 

In psychology, many psychophysical theories and models of attention are 

proposed. These theories are built on psychological concepts. The aim of these models 

is to better understand and explain visual attention in humans [19]. In this section some 

essential background related to psychophysical models is provided. Later two main 

theories that greatly influenced computational visual attention models are briefly 

explained. 

2.3.1 Features 

Features are the fundamental attributes that are used to recognise the attended 

regions in a visual scene [53]. Imagine, for example, a situation where a person is 

being searched for in a crowd. The visual search here can be done in two ways. Firstly, 

each and every person can be visually scanned to determine the person. However, this 

is too costly procedure as it introduces a significant delay.  In the second instance, if 

we possess some prior knowledge (e.g., you might know that the person is wearing a 

green sweater) about the person, then these attributes can guide our attention. These 

Figure 2.4:  Attention capture (source [1]) 
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attributes that play an important role in improving the detection performance in real 

world scenarios are known as features. Some of the basic features that make stimulus 

“pop-out” from its surroundings are colour, orientation and motion etc. [43].  

2.3.2 Feature Integration Theory (FIT) 

 The FIT of Triesman [54]  has been one of the influential theories in the field of 

visual attention. The theory was introduced in 1980 and it claims that “features are 

registered early, automatically, and in parallel across the visual field, while objects are 

identified separately and only at a later stage, which requires focussed attention”. The 

features from the visual scene such as colour, orientation, spatial frequency, brightness 

and motion are represented in individual topographical feature maps. These individual 

feature maps are combined into a master map.  This master feature map is then 

scanned serially using focussed attention to provide the data for higher perception 

tasks. 

Triesman mentions that targets differentiated from the distracters with more 

unique features are easier to search. If the target has no unique features but it still 

differs from the distracters, then it results in a longer search process. Triesman theory 

states that the attended regions are searched by either focussed attention or through 

top-down processing. In any case, it is impossible to predict which has contributed to 

what we see. Focussed attention is directed serially to all the locations. For example, in 

proofreading a document and instrument monitoring, focussed attention is needed.  

The other way in which the attended regions are identified is by top-down 

processing. If the features of the target are known in advance, the search time is 

reduced. In highly redundant and familiar environments in which humans operate, top–

down processing is usually much faster. However, when the environment is less 

predictable then humans are less efficient. For example, searching for the face of one’s 

own child in a school photograph is a very inefficient visual search, in spite of complete 

knowledge about the target.  

2.3.3 Guided Search Model 

 The Guided Search Model [55] was developed by Wolfe as an answer to the 

criticism of FIT. Over a period of time because of huge competition between Triesman 

and Wolfe’s work, it resulted in many improved versions of the models. 

The model shares some of the concepts of FIT: however, it is more 

comprehensive for computer implementations. It considers both bottom-up and top-

down influences in predicting the results of visual search experiments. The authors 

have chosen colour and orientation as the basic bottom-up features in their 
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implementation. Unlike FIT, the model generates maps for each feature dimension 

(colour, orientation,...) rather than for each feature type (red, green,...). A master map 

of location has been used in FIT. Unlike FIT, an activation map is generated by 

summing up all of the feature dimensions in the Guided Search Model. As the model 

also considers top-down information, for each bottom-up feature map, there is a 

corresponding top-down map that is used to distinguish the target from the distracters. 

Mimicking the convention of numbered software upgrades, Wolfe has contributed many 

versions of his model. 

2.3.4 Units of Attention 

The units of attention refer to the regions that are fixated by the human eye in a 

scene. Whether a human eye attends to locations, to features, or to objects is a 

question of debate.  The majority of the studies from psychophysics and neurobiology 

is about space based attention (location based attention) [56], [57]. There is also strong 

evidence for both feature [58], [59] and object based attention [60], [61]. Today the 

research community believes that these are not mutually exclusive and humans attend 

to any of these candidate units [62], [63]. Humans have the ability to attend multiple 

regions, usually between four to five regions of interest. This has been verified by many 

psychological [64], [65]  and neurobiological experiments [66]. Some of the recent 

models have used hybrid approaches in which the visual sensitivity information related 

to space, object and location is fused for predicting the human visual attention [12].   

2.4 Machine Visual Attention 

 In a real time scenario, a computer vision system deals with many pixels in 

images. Pixels are the smallest addressable units of an image. Each image is 

composed of several thousand pixels and dealing with all of them in reality results in 

increased computational complexity. This additional complexity makes the computer 

vision systems extremely difficult to operate in real time. To address this issue, 

computer vision scientists have developed many attention models [67], [68], [69], [70]. 

These are saliency or mathematical models which predict the attended information in 

the images in free viewing conditions. The need for computational models and better 

understanding of the HVS led to many attention models over the past two decades. 

Most of the early models were built around the psychophysical models [71]. As already 

discussed, one of the most influential theories for computational models is Feature 

Integration Theory (FIT).  
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2.4.1 Koch and Ullman  

A number of psychophysical theories suggested a two stage attention theory for 

human perception [72]. The first stage is the pre-attentive mode where the features are 

processed in parallel over the visual field. In the next stage known as the attentive 

mode, a specialised processing mechanism known as Focus of Attention (FOA), 

moves serially to the conspicuous locations in the visual field. Based on this concept, in  

1985, Koch and Ullman [72] developed a neurally plausible model.  

The model considers only data driven stimuli (bottom-up features) for 

developing the model. The main idea of Triesman theory is the computation of attention 

as a master feature map. The master feature map is developed using individual 

features such as colour and orientation. Koch and Ullman, in their computational 

approach defined the master feature map as a saliency map derived from various 

elementary feature maps. Therefore, the term saliency map introduced by Koch and 

Ullman corresponds to Triesman’s master feature map. It extracts bottom-up features 

such as colour and orientation and combines them into a two dimensional grey scale 

saliency map. A sample input image and its corresponding visual saliency map is 

shown in the Figure 2.5. This map indicates the importance or conspicuity of every  

 

 

 

 

 

 

 

 

 

  

  

 

 

pixel in the image. According to the authors, this saliency map is either within the LGN 

or striate cortex (V1). However, there is no significant evidence supporting the claim 

that only a unique saliency map exists in the brain that guides visual attention.  

In the first stage, elementary features are computed in parallel across the visual 

field and are represented in a set of topographical maps. These maps are then 

combined into a saliency map. In the second stage, a Winner-Take-All (WTA) which is 

analogous to a maximum finding operator scans the saliency map, to select the most 

Figure 2.5: Saliency map generation. (a) Input image. (b) Visual 

saliency map 

(a) Input image (b) Visual saliency map 
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active unit or conspicuous location. The WTA sets all the active units in the saliency 

map to zero except the one that corresponds to the most active or conspicuous unit. 

This selected region is considered as the most salient part of the image (winner). The 

attention is shifted to this location. The inhibition-of-return mechanism is activated in 

the saliency map. This makes the current winner to be inhibited and the attention 

moves towards the next winner in the saliency map. This inhibition-of-return 

mechanism prevents the FOA returning to the previous winner. WTA shows how the 

selection of the maximum is implemented using a neural network. This is biologically 

motivated and explains how the mechanism is realised in the human brain. Finally, the 

properties of the selected location using WTA are routed to the central representation. 

The central representation at any instant contains only the properties of the single 

location in the visual scene [73]. An illustration of the model is shown in the Figure 2.6. 

The parallel (pre-attentive mode) and serial (attentive mode) visual search 

which is described at the beginning of the section can be explained with this model. For  

 

 

 

 

 

 

 

 

 

 

 

 

 

example, imagine a scenario where in a target object has to be detected among an 

array of objects. The model detects the target object’s features in its corresponding 

feature and saliency map. Now, if there are no other distracters in the vicinity of the 

salient object, then WTA will immediately detects this by inhibiting all other regions in 

the saliency map. In other words, the target immediately pops out of the scene with 

homogeneous distracters. The majority of the models have followed the basic idea of 

Koch and Ullman [28, 71]. They only vary in the types of features, the different 

   Figure 2.6:  A schematic diagram of Koch and Ullman model. (source [72]) 

        Central representation 

Winner-Take-All 

   Saliency map 
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normalisation strategies used to combine the individual feature maps and the weights 

given to each map. 

After Koch and Ullman, Milanese [74] used a new term known as conspicuity 

maps for generating the saliency map. In this theory, feature dimensions are 

subdivided into feature types. For example, if the feature dimension is colour, then the 

feature types are red, green, blue and yellow. The feature types are represented in 

feature maps and are then summed up to obtain feature dependent maps known as 

conspicuity maps. These conspicuity maps are finally fused into a saliency map.   

2.4.2 Neuromorphic Vision Toolkit (NVT) 

 Pioneering work has been done by the authors of [6] in modelling visual 

saliency.  Very good source code and the documentation are provided by the authors. 

This led to the model serving as the basis for many research groups working in the 

visual saliency area. In their work, the authors presented a comprehensive 

implementation and verification of Koch Ullman’s and Milanese’s theory. The ideas of 

feature maps, saliency maps, WTA and inhibition-of-return are obtained from Koch-

Ullman model. Similarly, the ideas of using linear filters for computation of features, 

using centre surround difference and the conspicuity maps are adopted from 

Milanese’s work. The main contribution of his work is the realisation of the theoretical 

concepts, implementation of their work and its application for synthetic patterns and 

natural scene images.  

NVT is a bottom-up visual saliency model built on three features. These are 

intensity, colour and orientation.  The process of obtaining the saliency map consists of 

five major steps. The first is the construction of an image pyramid by linear filtering at 8 

different scales. The second is the computation of colour, intensity and orientation 

channels from the image pyramid and generating their respective Gaussian pyramid. 

The third is the generation of feature maps. The fourth is the computation of 

conspicuity maps. The fifth is the normalisation and summation of the conspicuity maps 

to obtain the final saliency map. The model is very good at predicting human gaze and 

it served as the benchmark model for many early visual saliency models. Some of the 

major drawbacks of this model are significant complexity which limits its practical 

application and low resolution saliency maps. 

2.4.3 Normalisation and Feature Map Combination 

The general structure of bottom-up attention system is shown in the Figure 2.7.  
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From the previous sections, it is evident that individual feature maps are combined to 

obtain the saliency map. 

Before summing up the feature maps, these maps are normalised to the same 

dynamic range. Therefore, the two important operations that are usually done before 

the output saliency map is obtained are normalisation and summation. These two 

operations are briefly explained below. 

 

Normalisation: This is the procedure to transform the grey scale image with 

intensity values in the range (Min, Max), into a new image with intensity values in the 

range (newMin, newMax). Normalisation can be both linear and non-linear. In the 

literature different normalisation schemes are proposed for normalising the feature 

maps. A straightforward approach is to normalise all the maps to a fixed range [6]. 

However, in this approach as the magnitude of the maps is lost, it results in a problem 

if one particular feature is relatively more important. One approach to solve this 

problem is to determine a maximum M of all the maps and then normalise each of the 

maps to the range [0...M] [73]. An alternative method is proposed in the work by [75]. In 

this method the maps are scaled with respect to the long term estimate of its maximum. 

 

Summation: A very important aspect of the saliency model is the summing up 

of the feature maps. So far it is not clear how this operation is achieved in the brain. In 

[76] a uniqueness weight is applied to each map before adding the maps. The 

weighting function determines the uniqueness of features. For example, if there is only 

one conspicuous bright location in one feature, then a higher weight is given to this 

Figure 2.7:  General structure bottom-up visual saliency model 
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when compared to other maps. If the bright location is surrounded by several other 

bright location or regions then a lower weight is applied. To achieve this, the authors 

determine the number of local maxima (m) in each feature map and then divide each 

pixel with square root of m. Some other different types of solutions are also proposed in 

the works of Itti et.al [6], Itti and Koch [77] (a review of feature map combination is 

provided in this paper) and Harel et.al [7]. Another two interesting normalisation 

strategies are content-based global amplification normalization and Iterative non-linear 

normalization which are proposed in [78].  

2.5 Applications of Saliency Models 

The major goal of psychophysical models is to better understand and interpret 

human visual perception. However, computational models of saliency improve 

technical systems. The applications of saliency models are in the areas of computer 

vision and graphics, robotics and others [36]. The target application of the proposed 

saliency model falls in image/video compression and computer vision area where 

predicting the human fixations is very important. Consequently only applications 

pertinent to these areas are briefly explained.  

2.5.1 Perceptual Video Coding 

During the process of video coding, the redundancies present in the video data 

are removed while preserving the video quality to achieve video compression. The 

existing video coding standards such as H.263 [79], H.264 [80] and its latest successor 

HEVC [81] achieve video compression by eliminating spatial (similarities between 

adjacent pixels), temporal (similarities between adjacent frames in the video) and 

entropy redundancy (similarities between coded symbols in the videos). They do not 

consider the perception of HVS towards different regions when allocating the 

resources. This is called as visual or perceptual redundancy. The information obtained 

from the saliency map of an attention model can be used to reduce the perceptual 

redundancy present in image/video.  

In the saliency map approach, a visual attention model is used to output a 

saliency map which represents the importance of regions in a video frame.  Based on 

the distinctive features, the saliency map highlights the regions that are relatively more 

important when compared to others. This relatively less important information is 

visually redundant and irrelevant to the HVS during interpretation of the image. The bit 

allocation is done based on the information from the saliency map. The salient regions 

are allocated more number of bits whereas for the non-salient regions less number of 

bits are allocated and thereby successfully eliminating the perceptual redundancy.  
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The HVS is less sensitive to colour information than luminance information. 

Therefore, during video coding, the colour information is represented with lower 

resolution than luminance information to achieve better compression and is one of the 

good examples of eliminating perceptual redundancy. Moreover, during quantisation 

which is one of the main steps of video compression, the continuous range of values is 

converted to a finite range of discrete values. Lossy compression is achieved by 

quantisation. It typically involves dividing the transform coefficient value using a 

quantisation step and rounding it to the nearest integer. During this process, the 

frequencies of the video data which are of variable interest to the HVS are eliminated.  

The authors of [82] perform image compression using a visual attention system. 

A colour image compression method adaptively determines the number of bits to be 

allocated for coding image regions according to their saliency. Regions with high 

saliency have a higher reconstruction quality than less salient regions. Itti [6] uses his 

attention system to perform video compression by blurring every frame, increasingly 

with distance from salient locations. Taking advantage of the multiresolution 

representation of the wavelet, Guo et.al [10] also proposed a foveation approach to 

improve coding efficiency in video compression. 

The two main problems that limited the use of saliency for perceptual video 

coding are saliency accuracy and complexity [83]. As an ideal saliency map should 

provide extensive information regarding human perception, achieving this in real time 

needs a significant amount of computational resources. Further, the mechanisms 

underlying human attention for predicting the human gaze accurately are not yet fully 

discovered. Therefore, a novel computational model of attention is proposed in this 

thesis that has better accuracy with lower computational complexity when compared to 

the state-of-the-art visual attention models.   

2.5.2 Image/Video Quality Assessment  

The image/video quality assessment is usually done either using subjective or 

objective video quality assessment techniques. As video quality is a subjective notion, 

subjective video quality assessment is generally the best way to assess the video 

quality. However, due to several limitations such as involvement of human subjects and 

time complexity, subjective assessment is impractical for most of the applications. In 

order to address the issues related to subjective testing procedures, several objective 

video quality assessment techniques were developed. 

During objective video quality assessment a mathematical model is utilised to 

predict the quality of the pictures in a similar way to the humans. Most of the state-of-

the-art video quality metrics do not take saliency into account for assessing the 
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perceived video quality. Some of the works which contributed image/video quality 

assessment metric based on saliency map are discussed here. The authors of [70] 

proposed an efficient approach based on the phase spectrum of the Fourier Transform 

(FT). The indexes of Mulit-Scale Structural Similarity (MSSIM) and Visual Information 

Fidelity (VIF) are modified by treating the saliency map as a weighting function. The 

results show that the saliency based strategy improved the original image quality 

assessment. In the work by [6] based on the assumption that an artefact is more 

annoying when it falls in a salient region, the visual attention information is employed 

for image quality prediction. The attention model in [84] uses colour, motion, location, 

foreground/background, people and context for obtaining the importance maps. The 

visible errors are then weighted according to the perceptual importance of regions 

shown in the saliency maps. Their work showed a high correlation with subjective data 

when compared to widely used Peak Signal to Noise Ratio (PSNR). Similarly in [85] a 

perceptual importance map is used for assessing the quality of compressed (Joint 

Photographic Experts Group) JPEG 2000 images.  

In this thesis, the effectiveness of the state-of-the-art objective video quality 

metrics such as Full Reference (FR), Reduced Reference (RR) and No Reference (NR) 

in detecting perceptual quality variations induced by pre-processing filters have been 

investigated. This investigation has shown that existing video quality metrics are not 

good at detecting the quality variations. Therefore, it is indicated that a new 

image/video quality metric based on saliency map approach is needed for effectively 

detecting the quality variations. 

2.5.3 Object Recognition 

 The aim of an object recognition system is to find objects of the real world from 

captured images. Humans perform this task effortlessly and instantaneously. In 

humans, attending the objects and recognising them is an associated task. Object 

recognition can be considered as the most relevant application of a saliency model. 

The main reason being the two stage approach of a pre-processing attention system 

and classifying recogniser is analogous to the way in which human recognise the 

objects in their surroundings. The authors of [86] proposed an integrated vision system 

to detect persons in natural scenes. Their system has two processing stages of which 

the first stage is a visual saliency front-end and the second stage is the object 

recognition back-end. They have used HMAX model which is inspired from the 

neurobiology of inferotemporal cortex. Although it is biologically plausible it is not 

robust with natural images. To improve the performance they have used a support 

vector machine algorithm which is highly reliable way of recognising the pedestrians in 
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images. Walther et.al [87] proposed a similar technique which combines an attentional 

system with an object recogniser based on SIFT features. They have shown that the 

performance of object recognition results improve with the help of visual attention 

model. Salah et.al [88] uses a saliency based attention system with a neural network 

which sends observations to Markov models to do handwritten digit recognition and 

face recognition tasks.  

In the above discussed approaches, both the visual attention part and the 

object recognition are separate entities. However, these are strongly intertwined 

processes in human perception. Some of the authors have proposed approaches 

which both processes share resources. The authors of [87] suggested a unifying 

framework where the HMAX object recogniser is modified to suppress or enhance the 

regions during spatial attention. Furthermore, the visual attention and object recognition 

are brought together by using saliency model with object detectors. Some of these 

models [89], [12] include Viola Jones face detection [90], Felzenshwalb person detector 

[91], car and other object detectors. As more powerful object recognition systems are 

developed in the future, the usage of saliency model as attentional front end will be a 

promising direction in terms of time saving.  

2.5.4 Image Segmentation 

 During image segmentation the image is partitioned into segments that are 

more meaningful and easier to analyse. In this process the selection of the seed points 

is an important step. Seed points are the image pixels that represent a particular 

characteristic or property such as intensity, colour, texture etc. Saliency models are 

generally used to select or detect these seed points based on some important features. 

The other pixels in the image which share similar properties with that of these seed 

points are used to segment the image. The authors of [92] presented a colour image 

segmentation method based on seeded region growing technique and visual saliency 

model.  The candidates for the seeds are initially selected using the saliency model and 

then the authors have used the seeded region growing technique to segment 

conspicuous parts of the image based on a colour homogeneity criterion to discriminate 

the regions to be segmented from the surrounding regions. Ma and Zhang [93] 

proposed local contrast based method for detecting salient regions in images. Their 

model operates on colour quantised CIELuv image which is divided into pixel blocks. 

The saliency is obtained by summing up of the pixel differences with their respective 

surrounding pixels within a small neighbourhood. The authors then use a fuzzy growing 

method that segments salient regions from the visual saliency map. The saliency maps 

from Itti’s model [6] have been used by other researchers for unsupervised object 
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segmentation. Ko and Nam [94] proposed object of interest segmentation algorithm 

based on visual saliency and semantic region clustering. The authors initially segment 

an image into regions and they are then merged as a semantic object. During the 

process an attention window is created based on the saliency map. A support vector 

machine is trained on the window to select the salient regions. These regions are 

clustered together to form an object of interest. The authors of [95] create saliency 

maps at different scales and combine them using pixel-wise addition to obtain the final 

saliency map. The input image is over segmented and the corresponding saliency 

value per segmented region is calculated by averaging the saliency values from the 

final saliency map. A threshold based method is used in which segments with an 

average saliency greater than threshold T are retained while the rest of the segments 

are discarded. The output contains the segments that constitute the salient object. In 

the work by [96] the authors proposed Conditional Random Field (CRF) model for 

segmenting objects in images and videos based on the information in the saliency 

map. 

2.6 Summary  

In this chapter, the background knowledge related to the visual attention was 

provided. The different types of eye movements were explained, the bottom-up and 

top-down factors that drive attention were discussed. The chapter has shown that 

many different disciplines have been involved in attention research. The 

psychophysical models which were the basic foundation of today’s modern saliency 

models are detailed. The basic structure of the saliency model that serves as the basis 

for understanding many saliency models is presented. Lastly, some of the important 

applications of saliency models in computer vision were briefly explained. 
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3       Literature Review of Visual Attention Models  

3.1 Introduction 

etter understanding of the HVS and the improved processing power of 

computers has led to the invention of a wide variety of visual saliency 

models in the last two decades. In the previous chapter, some of the early visual 

attention models have been explained. Their aim was to better understand and explain 

the underlying principles of human visual attention. Although these models were 

implemented computationally they had a psychological perspective. However, there 

may be an overlap of objectives between computational and psychological models. 

Some of the psychological models are also used to interpret the psychophysical data in 

computer applications.  

In this chapter the literature review related to computational attention systems is 

provided. The purpose of these attention systems is to improve the computer vision 

systems. Moreover, the algorithms of some of the state-of-the-art visual saliency 

models in terms of predicting human gaze are discussed. The underlying mechanism 

of each of these models is clearly described. Later the strengths and the potential 

problems related to each of these models are discussed. Further, the interesting 

aspects of each of the models in terms of future implications in attention research are 

also outlined. These interesting things are generally novel aspects which give rise to 

later inventions.  

Section 3.2 discusses the different types of computational attention systems. 

The different types of features used in the literature to develop the bottom-up and top-

down saliency models are outlined. Section 3.3 discusses some popular saliency 

models and the most closely related approaches to the proposed visual saliency 

model. Section 3.4 provides a conclusion to the chapter. 

3.2 Computational Attention Models 

In the literature, computational attention models are classified as filter based and 

connectionist models [1]. The filter based models are further divided as bottom-up and 

top-down visual attention models. The characteristics of these different types of 

attention models are discussed in the following sub-sections. 

 

B 
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3.2.1 Connectionist Models 

Connectionist models are based on neural networks. These models are 

biologically plausible and they have units corresponding to neurons in the human brain.  

However, very little is still known regarding the processes in the human brain. Some of 

the connectionist models are dynamic routing circuit [97], Multiple Object Recognition 

and Attentional Selection (MORSEL) [98], Selective Attention Model (SLAM) [99] and 

Selective Attention for Identification Model (SAIM) [99]. Further, many of the 

psychophysical models proposed in the literature also fall into this category. 

Connectionist models are discussed very briefly here as they are beyond the scope of 

this thesis. Major emphasis is given to filter based models as the proposed 

computational model in this thesis is a filter based model. However, some of the recent 

advancements in saliency research which are based on deep learning (e.g. [100], 

[101], [102], [103], [104] ) are discussed at the end of the chapter. 

3.2.2 Filter Based Models 

 Filters models generally use the linear filtering operations to compute the 

features of an image. Some of the examples of filter based visual saliency models are 

presented in [74], [6], [105]. The filter based models can be further classified as 

bottom-up and top-down visual attention models. 

3.2.2.1 Bottom-up Visual Saliency Models 

In the case of images, similar to the psychological patterns there will be regions 

of interest that pop-out when the background is homogeneous in nature. An example of 

this is a football on the ground; here the ground (which is green in colour) is 

homogeneous whereas the football is something which pops out from the ground being 

extremely different as shown in the Figure 3.1.  

 

                  

 

 

 

 

 

 

 

Figure 3.1: Bottom-up region demonstration (Football on the ground) (source [106]) 
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These regions which pop out from the homogeneous background are known as 

bottom-up regions that attract human attention.  

The three basic bottom-up features used to detect the bottom-up regions as 

proposed by psychological and biological work are intensity, colour and orientation [6, 

105, 107]. The other simple bottom-up features are curvature [74], spatial resolution 

[108], corners [109], regions with good edges, optical flow [110] and flicker [111]. In 

addition, some of the complex bottom-up features that were modelled are entropy 

[112], eccentricity [113], Shannon self-information measure [114], ellipses [115] and 

symmetry [113]. All these are bottom-up features related to images.  

Each feature has its own associated computational complexity depending upon 

how a feature is computed and implemented. By increasing the number of bottom-up 

features the regions that pop out from the visual scene can be accurately detected. 

However, too many bottom-up features may introduce a significant amount of 

processing overhead [1]. Hence, there should always be a compromise between the 

number of features and the expected processing speed. Usually three to four feature 

channels will be an ideal choice to achieve a trade-off between accuracy and 

processing speed [1]. 

3.2.2.2 Top-down Visual Saliency Models 

Top-down saliency is generally user driven. Research has found three major 

sources of top-down attention. In the first instance the models address visual search in 

determining how the attention is drawn towards the targets. Another type of information 

that is used to determine the top-down regions are scene context. These models 

investigate the role of scene context or gist in deriving the saliency.  There are also 

scenarios in which it is extremely difficult to predict the human gaze as there could be a 

complex task (task demands) that govern eye fixations that play a role in visual 

attention.  

Scene context: Humans highly depend on scene context for facilitating object 

detection in natural scenes [2], [3]. For example in a scene, searching for cars on the 

street, the search process is confined to the street and the sky region is ignored. As 

humans have many experiences in similar environments from the past related to a 

street scene (context), whenever this kind of scene is encountered, the search process 

begins from the street ignoring the sky region. Other examples include a computer on a 

desk, a plate on the table. The other type of context that can be used to determine the 

salient regions in the scene is gist. When an observer briefly looks at an image (80 ms 

or less), he or she is able to report the essential characteristics of the visual scene. 
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This rough interpretation known as gist or scene essence does not contain individual 

object details but can provide sufficient information for coarse scene discrimination. 

Gist is a semantic category which consists of scenes such as an office scene or forest. 

Gist guides the eye movements and it is calculated from the feature channels. Gist 

representations have useful applications in computer vision such as searching for 

objects of interest [3], [116] and scene completion [117]. 

Task demands: An introduction to task demands was given in the previous chapter, in 

which one of the famous examples of Yarbus related to task demands was explained. 

The authors of [1] found a strong relationship between visual cognition and eye 

movements when dealing with complex tasks. In visually guided tasks, the majority of 

the human eye fixations are towards task relevant regions [118]. The top down 

influences are studied in natural scenes during tasks such as walking, playing cricket, 

sandwich making and driving [119], [5], [120], [4]. Eye movements during activities 

such as answering a phone call, during driving and adjusting the radio have also been 

studied in [121].   

There are also some other learning based approaches to determine the top 

down information. This includes detection of the object, detection of face, etc and the 

other high level features such as hand, text and gesture detection. This thesis explores 

these learning based approaches in chapter 6. In order to imitate human visual 

behaviour both bottom-up and top-down saliency has to be fused to obtain the focus of 

attention [1]. Bottom-up mechanisms have been thoroughly studied compared to top-

down mechanisms. The fundamental reason is that bottom-up features are easier to 

control and model than cognitive features [71]. 

The advantage of connectionist models lies in its ability to show different 

behaviour for each neuron. However, in a real time scenario this is computationally 

expensive and so a group of units exhibit similar behaviour [1]. In contrast to the 

connectionist models, in the case of filter based models each pixel in the map is given 

equal importance. Moreover, these models are well suited to real world image 

applications and profit from approved techniques in computer vision. Therefore, these 

models are given more emphasis and are discussed in detail in the following sections. 

3.3 Related Work 

This section reviews some representative saliency models available in the 

literature followed by discussions on frequency domain approaches as the proposed 

saliency model in this thesis is a frequency based model. The performance of these 
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models in terms of prediction accuracy and complexity is compared with the proposed 

visual saliency model in the later chapters.  

3.3.1 Visual Saliency Detection 

The authors of [7] proposed a bottom-up visual saliency model known as Graph 

Based Visual Saliency (GBVS) in the year 2006. It highlights the regions that are more 

informative in an image according to specified criterion. The authors achieved this in a 

three step process: Extraction of feature maps, forming activation maps, normalization 

and summation process. During the process of extracting feature maps, three 

important features, namely intensity, colour and orientation are extracted at multiple 

scales. The activation maps are generated for all the feature maps of the given input 

image. The authors wanted the pixels or nodes that are highly dissimilar to the 

surrounding nodes to be given a higher value or to be shown as highly important in the 

corresponding activation map 

A fully connected graph of dissimilar regions is built across all nodes within 

each feature map. The resulting graphs are treated as Markov chains by normalising 

the weights of the outbound edges of each node to 1. This equilibrium distribution is 

treated as an activation map. To normalise an activation map   
2

: nA ℝ they 

propose another Markovian algorithm. They construct another graph and for each node 

),( ji  and node ),( qp  to which it is to be connected, and the edge weights are 

defined. After defining the edge weights, the edge weights are normalised to unity and 

then the resulting graph is treated as another Markov chain. The Markov chain 

computes the equilibrium distribution over the nodes and mass will flow preferentially to 

nodes with high activation. The resulting map is a normalised activation map. Finally 

these normalised activation maps are fused using additive summation to obtain the 

final saliency map. GBVS achieved high prediction accuracy in detecting human 

fixations and it is also widely cited in the literature. However, according to a recent 

review paper [36] in visual saliency, the major drawback of graph based models is 

computational complexity. 

The authors of [70] proposed SUN model in 2009. It derives saliency based on 

both bottom-up features and prior knowledge about the target. The prior knowledge 

about the scene is the top down information regarding the visual environment. Both of 

these pieces of information are combined probabilistically according to Bayes’ rule. The 

authors considered local or self-information of the target as the bottom-up saliency in 

their model. This local information is distinct or different to the background information 

and is rarely seen in the image. Therefore, this rare information indicates the target. 
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Let Z denote a pixel in an image, L represents the location of the pixel (pixel 

coordinates) and F be the features corresponding to the pixel. C indicates whether or 

not the pixel or the point belongs to the target class. If C=1 the pixel belongs to the 

target to which the human eye is interested or else it is a pixel or point of no interest to 

the HVS. The probability of all the locations in an image can be estimated by using a 

log scale. Therefore, the saliency is referred as 
zSlog  

 

 )1(log)1(log)(loglog zzzz lLCpCfFpfFpS       (3-1) 

 

The first term in the equation (3-1) represents self-information of the target. The 

negative sign indicates that an increase in the self-information results in the decrease 

of the feature probability. It also means that rare features are more informative and is 

referred to as the bottom-up component. The second term denotes features related to 

the targets that are consistent with human knowledge. It means that if the observers 

are already familiar or possess some prior knowledge about the target that is being 

searched, then the log likelihood increases only if the expected target is in the image 

and decreases if an unexpected target is present. Therefore, this term is the top-down 

component of the model. The third term is prior knowledge regarding where the target 

is likely to be present in an image. It is the knowledge regarding the location of the 

target and is independent of the visual features. The interesting aspect of these models 

is the use of Bayesian framework for detecting salient regions. The key advantage of 

the Bayesian models is their ability to learn from the given data. However, similar to 

GBVS model computational complexity is the main drawback of these models. 

Goferman et al. [9] introduced Context Aware Saliency (CAS) in 2012. The CAS 

model detects not only the objects but also the context or the background which is just 

immediate to the object that describe the purpose of the object being there. They 

detect salient regions based on four principles of human attention. The model 

considers low level factors such as colour and contrast. Frequently occurring features 

are suppressed while maintaining the features that deviate from the norm. Visual forms 

possess one or more centres of gravity about which the forms are organised. Finally 

the top down factors such as human faces are considered to attract human attention. 

According to the first two principles, a pixel will be salient if it is distinct from the 

surrounding pixels. The authors, instead of considering isolated pixels, considered 

surrounding patches of scale r at each pixel in the image to determine the pixel 

saliency. Therefore, a pixel i  is considered to be salient only if the patch ip  centred at 

pixel i  is distinct with respect to all other patches. The Euclidean distance between two 
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vectorized patches ip , jp  in CIE baL   colour space is defined as ),( jicolour ppd . 

The pixel i  is salient only if ),( jicolour ppd  is very high j . The third principle is 

achieved by considering the positional distance between the patches. The dissimilarity 

measure between the two patches ip  and jp  as a function of  ),( jicolour ppd  and 

),( jicolour ppd  is defined as 
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The value of c  is assumed to be 3. Therefore, the single scale saliency at a 

scale r is defined as 
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They also use four different scales and the saliency 
iS  is obtained by taking the 

mean of the saliency at different scales. 
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To determine this immediate context all the salient regions are initially extracted 

from the saliency map by defining a threshold of iS > 0.8. All the regions above this 

threshold are considered to be salient regions. The pixels outside the attended regions 

are weighed according to the Euclidean distance to the closest attended pixel. Let 

)(id foci be the Euclidean distance between pixel i  and the closest focus of attention 

pixel. Then the saliency of pixel is defined as 

 

 ))(1( idSS fociii   (3-5) 

 

Finally the saliency map is improved by detecting human faces in the images.  

The ability to detect context around the salient pixels in the image is the major 

advantage of this work. However, low prediction accuracy and significant complexity 
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when compared to the other state-of-the-art models is the disadvantage of this saliency 

model.  

Vikram et al. [122] proposed Random Centre surround Saliency (RCSS) in 2012.  

In this method the input image is initially Gaussian filtered to remove noise and abrupt 

onsets. The filtered image is then transformed into 
***1976 baLCIE  [123] colour space. 

The authors use this colour space as this has many similarities to human psycho visual 

colour space. Random sub-windows are generated over each individual 
*L ,

*a , 
*b  

channels. The co-ordinates of the random windows are generated using discrete 

uniform probability function, as it helps in placing windows without any bias towards 

specific region of an image or size of the window. According to the authors this is a 

very important step as the salient regions can occur at arbitrary scales and positions of 

the image. The saliency at a point or pixel in the individual channel is defined as the 

sum of absolute differences of pixel intensity values to mean intensity values of random 

sub windows. The final saliency map is obtained as the pixel wise Euclidean norm of all 

the saliency maps generated across all the channels. The normalised saliency map is 

median filtered because of its ability to preserve edges while eliminating noise from the 

map. The contrast of the map is then increased by histogram equalisation. This is done 

as HVS enhances the perceptual contrast of the salient stimulus in the visual scene. 

RCSS does not have any parameters that need to be tuned. In spite of the model 

achieving good prediction accuracy there is significant amount of processing overhead 

in computing the saliency maps of the images.  

3.3.2 Frequency Based Models  

Xiodi and Liqing [8] developed Spectral Residual (SR) model based on 

frequency domain characteristics. For an input image )(xI  the amplitude )( fA  and 

phase spectrum )( fP  are calculated as  

 

    xIFRfA )(  (3-6) 

 

    xIFfP )(  (3-7) 

                                                                                 

Where F denotes the Fourier transform. Then the image is down sampled and 

the log-spectrum )( fL  is computed. )( fL  is then multiplied with an N X N averaging 

filter )( fhn  to obtain the averaged spectrum.  
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 ))(log()( fAfL   (3-8) 

 

 )()()( fLfhfA n   (3-9) 

 

The spectral residual (SR) )( fR  is obtained by subtracting the result from the 

log spectrum itself. 

 

 )()()( fAfLfR   (3-10) 

                                                                                         

Finally the spectral residual obtained is smoothed using a Gaussian filter for 

better visual effect. The entire process, as described by the authors, can be realised in 

a short (approximately six lines) MATLAB code. However, the implementation does 

involve complex functions such as Fourier and inverse Fourier transforms embedded in 

MATLAB. The main advantage of this model is the speed at which it derives the 

saliency of an image. Moreover, SR is a very simple model to explain and is easy to 

implement. 

The authors of [124] came up with another model known as Phase Spectrum of 

Fourier Transform (PFT) in 2008 after careful analysis of spectral Residual (SR). They 

found that the amplitude spectrum is not fully successful in obtaining an accurate 

saliency map. A better saliency map can be obtained by using the phase spectrum of 

the Fourier transform. For a given input image ),( yxI  initially the Fourier transform 

and the phase is computed. 

 

 )),((),( yxIFyxf   (3-11) 

 

                   

 )),((),( yxfPyxp   (3-12) 

                                                                                            

Later the saliency map ),( yxsM is obtained using the equation (3-13) 

 

   2
),(.1),(),( yxpieFyxgyxsM   (3-13) 

 

Where ),( yxg  is a 2D Gaussian filter with sigma=8. PFT is much faster when 

compared to SR. It saves one third of the computational complexity compared to SR 

and is better in terms of accuracy. The authors further extended this model to the 
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Phase Spectrum of Quaternion Fourier transform (PQFT) [10] to obtain a spatio-

temporal saliency map. Initially the image is represented as a quaternion image using 

four features. Later the PQFT is computed to generate the spatio-temporal saliency 

map. The authors obtain four features of the image, namely two colour channels, one 

intensity channel and one motion channel.  These features are processed in parallel 

fashion and thus save processing time. By setting the motion channel to zero, the 

PQFT model can also be used to work with static images. Unlike PFT and SR it is 

independent of the parameters and prior knowledge. However, there are also some 

limitations to the PQFT model. Although the model is robust to white coloured noise, if 

the noise is similar to the salient region in the image, the models fails to detect it. In a 

conjunctional search (refer to section 2.2.4.1), humans are extremely good at detecting 

the salient regions. The PQFT model and many other models failed to perform well at 

conjunctional search patterns. 

Achantha et al. [125] proposed frequency tuned salient region detection using 

low level features such as colour and luminance. Initially the image from RGB colour 

space is converted to CIE colour space [123]. The saliency map S corresponding to an 

image I  of width W and height H is defined as  

 

 ),(),( yxIIyxS hc   (3-14) 

                                                                              

I  is the arithmetic mean pixel value of the image. hcI  is the Gaussian blurred 

version of the original image. The blurred version eliminated fine texture details, noise 

and coding artefacts. Some saliency maps have badly defined object boundaries [6] 

that limit their usage in certain applications. This happens due to the downsizing the 

image to a greater extent before computing the saliency map. When an image is 

downsized the spatial frequency content that is present in the original image is lost. For 

example, Itti’s model outputs saliency maps that are 1/256th of the original image 

resolution. Similarly the SR model outputs saliency maps of 64x64 pixel size. In 

contrast to Itti’s model and SR, the algorithm proposed by Achantha outputs saliency 

maps that are of same size as the input image.  

In 2009 a spectral whitening model was proposed by Bian and Zhang [126]. 

The authors came up with this model as a refinement of the early spectral based 

models such as SR, PFT and PQFT. The model is based on the idea that the visual 

system attends to rare informative features while ignoring irrelevant or redundant non 

informative features.  The given input image I  is initially resized. The ratio of image 
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width to height is retained while the maximum length of the image is set to 64px. Next 

the windowed Fourier transform of the resized image is calculated. 

 

  )),((),( yxIwFvuf   (3-15) 

                                 

 ),(/),(),( vufvufvun   (3-16) 

 

F denotes the Fourier transform and W  is the windowing function. The 

normalised (flattened or whitened) spectral response ),( vun  is converted to spatial 

domain using an inverse Fourier transform. The result obtained is squared to 

emphasise the salient regions and is then convolved with a Gaussian low pass filter to 

generate the final saliency map as shown below. 

 

  
2

1 ,(),(),( vunFvugyxS   (3-17) 

                                                                    

The interesting aspect of the SR is generating the saliency in the spectral 

domain. This novel and interesting aspect gave rise to many spectral domain 

approaches such as PFT, PQFT and spectral whitening method.  

A novel visual saliency model was proposed by Lin et al. [13] based on three 

simple priors (features). The authors have developed a model that has the ability to 

obtain better prediction accuracy simultaneously with low complexity so that it is 

suitable for real time applications. This is an important model for the benchmark in this 

project as it is the only model which has considered both accuracy and complexity as 

criteria for developing the model. The three simple priors or components of the saliency 

model proposed by the authors are frequency, colour and location prior. They use 

baCIEL   colour space for deriving these features. There are some studies which 

have shown that warm colours such as red and yellow are more pronouncing to HVS 

when compared to cold colours such as green and blue. The authors derive colour 

saliency based on this concept. They model location prior using a Gaussian map. 

Finally, the frequency, colour and location prior saliency maps are fused to obtain the 

final saliency map. 

Xiodi et al. [11] in 2012 proposed image signature which highlights the sparse 

salient regions. The image signature is defined as 
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 Imagesignature ))((()( xDCTsignx   (3-18) 

        

The reconstructed image )(x  is generated by applying inverse discrete cosine 

transform as shown      

 

 ))((( xDCTsignIDCTx   (3-19) 

 

The saliency map m  is then obtained by smoothing the squared reconstructed 

image. 

 

 )( xxgm   (3-20) 

 

Where   indicates Hadamard product operator, * is the convolution operator 

and g is the Gaussian kernel. It is an extremely fast model.  

Imamoglu et.al [127] proposed Wavelet Based Saliency Detection (WBSD) in 

2013. According to the authors the models using FT may encounter difficulties and lead 

to unsatisfactory results when there are non-stationary or periodic signals. For 

example, the high level down sampling using FT resulted in spatial information loss in 

both SR and PQFT models. Moreover, the global irregularities of the visual scene are 

more emphasised when compared to the local irregularities. This is due to the analysis 

of frequency components using FT in a global context. In the literature it is shown that 

multi-scale wavelet transform does better local frequency analysis as the input signal is 

examined carefully at different bandwidths. The authors use wavelet transform in their 

work because it has the ability to provide multi-scale spatial and frequency analysis 

simultaneously. Furthermore, it is very easy to account for both global and local 

features in the wavelet domain. The authors obtain global and local saliency maps in 

CIE  Lab colour space and fuse them to obtain final saliency map. The interesting 

aspect of WBSD is the computation of saliency map as a combination of both global 

and local saliency maps. However, the complexity of the model is very high as it uses 

several scales to derive the feature maps. The complexity issue limits its practical 

application.  

The primary benefit of these spectral based models lies in their simplicity of 

generating the saliency maps. They are extremely fast at predicting human attention. 

Moreover, they can be very easily implemented within few lines of MATLAB code. 

However, the biological plausibility of these models is still not clear. Models which 
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replicate some of the known properties of physiology or biological vision are generally 

considered as biologically plausible.  

In the last five years two sub-fields of research have emerged in visual saliency 

area. These are salient object detection and object proposal generation models. As 

already discussed the fixation prediction models pop out visually salient regions 

corresponding to human eye movement. This is the major challenge which has been 

tackled in this work. Whereas, the salient object detection models detect the most 

attention grabbing objects and segments them. The intensity of the pixel in the output 

saliency map represents its probability of belonging to the salient object. The object 

proposal generation models detect image regions that may contain objects from any 

object category [128]. They differ from traditional object detectors which are class 

specific dealing with only one object class (e.g. cars). These object proposal models in 

contrast define generic objectness measure over all the classes. They quantify how 

likely an image window consists of an entire object. These objects may belong to any 

class e.g. car, swan etc.  These models instead of dealing with pixels that belong to the 

objects, deal with windows containing objects. A complete review of the recent salient 

object detection models and object proposal generation models can be found in [129]. 

3.4 Machine Learning Approaches for Saliency Detection 

Machine learning approaches have been successfully used to detect salient 

fixations in the images. Judd et.al [12] proposed a supervised learning model of 

saliency based on bottom-up and top-down features. They use low, mid and high level 

features to define the salient locations and use linear support vector machine to train 

their saliency model.  

Ensemble methods were also used to detect salient regions. The authors of 

[130] combine low level features such as intensity, colour, orientation, saliency maps of 

previous best model and the top down features such as faces, human, cars etc in 

deriving the saliency. They learned from these features using learning algorithms like 

regression, SVM and Adaboost. The authors found that the boosting model out-

performs several state-of-the-art visual saliency models. They also show that their 

model is able to detect most salient object in a scene without region segmentation. In 

[131], the authors consider visual saliency computation as a regression problem. They 

proposed DRFI model which uses a random forest regressor that maps feature vector 

of each region to a saliency score. They use this model for salient object detection. 

According to the review paper in [129], which compared the performance of 29 salient 

object detection model has found that DRFI model gives best performance for 

detecting salient objects. Li et.al [132] proposed a salient object detection model by 
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combining existing segmentation techniques and fixation based saliency. They initially 

generate set of object candidates and then use a fixation algorithm to rank these 

regions based on their saliency. The authors use a random forest with 30 trees for the 

datasets and use a random regression forest to quantify the saliency of an object 

mask. In the work of [133], several instances of bio-inspired hierarchical model family 

are selected and combined using hyper parameter optimisation. The final model is an 

ensemble of individual models. A simple linear classifier trained on this mixture out-

performs the state-of-the-art.  

In the last three years due to the overwhelming performance of deep learning in 

other vision tasks such as image classification and object detection, some of the deep 

learning algorithms were used to develop the saliency models. Deep learning methods 

such as deep convolution neural networks (CNN), boltzmann machine, deep belief 

networks and auto encoders have been used to study their performance in predicting 

fixations and salient object detection. The authors of [134] proposed an unsupervised 

three layer deep learning network to learn from mid and high-level features that attract 

attention. It learns mid and high level features such as junctions, textures, parallelism 

and faces, text respectively. Finally they also contribute a unified feature integration 

framework that integrates low, mid and high level features in a biologically plausible 

way. The authors of [100] proposed a salient object detection model based on  

multiscale deep CNN features. They use both low level i.e., visual contrast combined 

with high-level semantically meaningful features in extracting salient objects. They 

perform feature extraction using a CNN trained on ImageNet dataset. To compute the 

contrast, they extract multiscale CNN features for every region using three nested and 

increasing larger rectangular windows which encloses the current region, immediate 

region and the entire image. The penultimate fully connected layer of their neural 

network becomes a high-level feature vector for saliency detection. Wang et.al [104] 

computes saliency based on local features and global search. They use two deep 

CNN’s, the first one uses supervised learning scheme to capture local contrast, texture 

and shape information. The second deep CNN is trained to predict the saliency of 

object region based on global features such as global contrast and geometric 

information. The saliency is finally obtained as weighted sum of individual saliency 

maps. The authors of [103] consider saliency as a high-level task in their work and they 

model it based on local and global context.  A deep CNN with multiple contexts is 

designed for salient object detection. The global context is used to detect saliency in 

the entire image, while the local context is used for meticulous areas. The global and 

local context are integrated into a multi-context deep learning framework and finally 

optimised for detecting objects. The authors have also evaluated contemporary deep 
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structures such as AlexNet, Clarifai, OverFeat and GoogleNet on image datasets. Nian 

et.al [67] proposed multiresolution CNN (Mr-CNN) for learning both bottom-up and top-

down features from raw image data for predicting fixations. Mr-CNN is trained on 

fixated and non-fixated locations over multiple resolutions using raw image pixels as 

the input and eye fixation attributes as labels. Bottom-up information is obtained by 

combining information at multiple layers while the top-down features are learned using 

the higher layers. The bottom-up and top-down information is integrated in the final 

logistic regression layer to predict fixations. A deep CNN architecture using mid-level 

features based on low-level k-means filters has been proposed in [135]. This model 

generates multi-scale and multi-level saliency maps and fuses them to obtain final 

saliency map. 

Xia et.al [136] proposed a deep autoencoder based centre surround inference 

saliency model to estimate bottom-up saliency. They explore an adaptive centre 

surround comparison scheme by taking global competition into non local centre 

surround reconstruction framework scheme. Their deep network is trained using global 

data to detect the central patch from the neighbouring patches. The saliency is 

estimated by taking the residual of reconstructed and original central patches. In the 

research work of [102], a two stage deep learning network has been proposed which 

learns from raw input pixels in an unsupervised manner. In the first stage, an 

unsupervised stacked denoising autoencoder (SDAE) is developed to learn robust 

representative features to capture patterns of image patches. The second learning 

stage jointly learns optimal mechanisms to detect the feature contrast and integrates 

them for predicting human eye fixations. The authors of [101] proposed a super pixel 

wise CNN approach known as SuperCNN. It learns hierarchical contrast features from 

two superpixel sequences instead of raw pixels. SuperCNN recovers contextual 

information from these sequences and the saliency is detected by using multiscale 

network architecture.  

3.5 Conclusion 

This chapter initially explained the need for and importance of computational 

attention systems. The different types of attention systems (filter and the connectionist 

approaches) were briefly described. The bottom-up and the top-down approaches for 

modelling the visual attention models were explained in detail. The different types of 

features utilised in the literature to model the bottom-up and top-down attention models 

were discussed. Later some of the important saliency models in the literature and the 

most closely related attention models to the proposed saliency model in this thesis are 

critically analysed by discussing their strengths, weaknesses and their interesting 
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aspects. Moreover, the recent advancements and machine learning approaches 

including deep learning methods used by research community are discussed.   

In the following chapters the methodology used to validate the saliency model is 

described. The quantitative and qualitative techniques used to analyse the saliency 

maps will be explained. Moreover, the characteristics of the benchmark datasets used 

for analysing the models performance will be discussed. 
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4                       Experimental Methodology 

4.1 Introduction 

he performance of the proposed visual saliency model is validated by 

comparing its performance in terms of prediction accuracy and 

computational complexity with the state-of-the-art saliency models. Image datasets are 

used in this work to evaluate the performance. Qualitative and quantitative approaches 

are used to analyse the model’s performance against the chosen image datasets.  

Section 4.2 provides the information about the development environment and 

the testing platform used in the research work. In section 4.3 a brief overview of the 

different types of image datasets used by research community is given. The strengths 

and weaknesses of each of the dataset are discussed. Moreover, the characteristics of 

the datasets that are employed in this work are explained in detail. The process of 

obtaining a human attention map from the eye tracking information is given in section 

4.4. In section 4.5, the empirical validation of the saliency model is explained. It 

involves the qualitative and quantitative assessment of the model’s performance. The 

different types of quantitative metrics chosen for quantifying the model’s performance 

are elucidated. In section 4.6, the approach followed for measuring computational 

complexity of the saliency models is given. The important factors considered during the 

measurement are briefly outlined. Further, the criteria employed for the state-of-the-art 

model comparison is also provided. Section 4.6 discusses the benchmark models of 

saliency. The important factors that are considered for the selection of models in the 

benchmark comparison are given. Moreover, the different approaches undertaken for 

obtaining these models are also discussed. Section 4.8 summarises the chapter. 

4.2 Software Testing and Implementation 

The programming software and the testing platform used in this work are 

provided in this section. 

4.2.1 Development Environment  

The software environment chosen for the development of models is MATLAB 

(version R2013b).  It is used for the development and testing of the models. A software 

tool enabling faster coding and easy bug handling is required as it speeds up the 

development process. MATLAB offers reduced coding time with flexible error 

management. The MATLAB computer vision toolbox is used during the development of 

T 
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the attention models. It includes many in built computer vision functions related to 

object detection and tracking, camera calibration and video processing. These can be 

easily utilised and there is no need to reinvent existing functionality. Furthermore 

concise code, excellent plotting tools and good Integrated Development Environment 

(IDE) favours the usage of MATLAB for developing the algorithms. Therefore, the proof 

of concept is developed in MATLAB in this project. Later as MATLAB is very slow at 

execution time the models which have been developed are implemented in Microsoft 

Visual C++ programming language. Further, OpenCV, FFmpeg libraries and QT project 

are used during the implementation. These are libraries of functions aimed at real time 

operation. C++ offers processing speed which is much faster compared to MATLAB. 

Therefore, in a performance critical scenario, or for the development of any prototype 

or product, it is better to implement in C++. This enables the algorithms to work in real 

time. Please refer to the Appendix-B of this thesis for complete details regarding the 

implementation process. 

4.2.2 Testing Platform 

A computer with following specifications is used for developing and testing of 

the attention models.   

 

Operating System              :  Microsoft Windows 7 Ultimate. 

Processor                           : Intel core I7-2600K CPU @3.40 GHz 

Installed Memory (RAM)    : 16.00 GB 

System type                        : 64-bit Operating System. 

Display screen                    : Intel(R) HD graphics  

Display mode                      : 1920x1080 (32 bit) (59 Hz) 

 

As indicated in section 4.2.1 the MATLAB has been chosen for the 

development of attention models. One of its major problems is slower execution time. 

During the testing phase of saliency model, the performance of the developed models 

is evaluated across large image datasets. Moreover, simultaneously several 

applications need to run in parallel. Therefore, this demands more RAM and a faster 

processor. The above given specification for the computer was chosen keeping in view 

of all this. 
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4.3 Image Datasets 

An image dataset is basically a collection of images and human ground truth 

(eye tracking maps). The human ground truth is the information obtained from the eye 

tracker related to where a human eye is interested in the images. In the current project 

datasets that obtained ground truth using eye tracking devices are used as the goal is 

to predict human fixations. The effectiveness of visual saliency models is computed on 

different image datasets. In the literature several datasets are proposed. Each of them 

varies in terms of the number of images in the dataset, the resolution of the images 

used, the number of subjects used to collect the eye-tracking data, the viewing time per 

image, the subject’s distance from the screen and the stimulus variety [137].  Some of 

the popular eye tracking datasets are Bruce and Tsotsos [138], Kootstra Shomacker 

[139], Le Meur [140], Judd et.al  [12] and DUT-OMRON [141]. The Bruce and Tsotsos 

dataset has 120 images. The image content is mostly indoor and city scenes. This 

dataset was published during the early stages of the research area and is most widely 

cited in the literature. However, its weaknesses are the smaller number of images and 

stimulus variety. The Kootstra and Shomacker dataset has a wide variety of images; 

however, it has only 100 images. The Le Meur dataset has 27 images with the highest 

number of eye tracking subjects. The state-of-the-art related to datasets has also 

changed significantly in the last few years. The Judd et.al dataset was published in the 

year 2009. According to a review paper [46] published in January 2013, it has indicated 

that Judd et.al. is the largest dataset with respect to eye tracking fixations. However, in 

late 2013 another dataset DUT-OMRON was published and it has even more images 

than Judd et.al and a better variety of images with both bottom-up and top-down image 

content. Therefore, these two public datasets are selected for the development of 

visual saliency model. Moreover, apart from these two public datasets another small 

self-dataset is also proposed. The details of these datasets are given below. 

 

Judd et.al : The dataset consists of 1003 images that are collected from Flickr 

creative commons and Label Me dataset. The eye tracking data is collected from 

fifteen users under free viewing conditions. In free viewing conditions the viewers are 

not given any instructions before viewing the images. Instead, they are simply asked to 

watch the images. These are the situations in which humans observe the world without 

any specific goal [71]. This process negates the top-down influences that exist in 

viewers’ minds. The majority of the images in the dataset are 768x1024 or 1024x768 

pixels in size and a few other images have different dimensions. Sample images from 

the dataset are shown in the Figure 4.1. Both male and female viewers between the 



48 
 

age of 18 and 35 viewed the images. Among the fifteen users two were researchers 

who belong to the project and others were non experts. A 19 inch computer screen of  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

resolution 1280x1024 was used to show the images. The viewers sat at a distance of 2 

feet using a chin rest to stabilize the head. Each image is shown at a full resolution for 

a period of 3 sec with an interval of 1 second. The table mounted ETL 400 ISKAN eye-

tracker is used to record the scan path of the viewers. The first fixation from all the 

scanpaths of the viewers was discarded to avoid the centre bias problem. The authors 

obtain raw eye tracking maps from the eye tracker. Later, in order to obtain a 

continuous human saliency map they use a Gaussian filter to convolve the fixated 

locations. 

 

DUT-OMRON Image dataset : Chuan et.al [141] introduced the DUT-OMRON 

dataset. According to the authors, in recent years the experimental results on the 

existing datasets have reached a very high level. They are hardly of any use for the 

advancement of current research in visual attention models. The reason behind this is 

that the images in the existing datasets are much simpler when compared to the real 

life images. As a result, the authors have proposed a dataset consisting of 5168 

images. Sample images from the dataset are shown in Figure 4.2. These images are of 

Figure 4.1:  Sample images from Judd’s dataset 
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high quality and manually selected from more than 140,000 images. The dimensions of 

the images are resized to 400*x or x*400. The value of x is less than 400 pixels. These 

images consist of one or more salient regions with relatively complex background. For 

collecting the ground truth from the eye tracker the authors used 5 participants. They 

have used a Tobbii X1 Light Eye tracker to record eye fixations. Each image was 

displayed for a period of 2 seconds with no interval between successive images. All of 

the viewers have normal or corrected to normal vision. Similar to Judd et.al the fixation 

maps are obtained by convolving the raw eye tracking using a Gaussian filter. Further, 

the first fixation which has the highest probability to be at the centre of image is also 

removed. It is the only dataset that has eye fixations from an eye tracker, bounding box 

and pixel-wise ground truth. When compared to other datasets the images are more 

difficult and challenging and thus provide space for improvement of visual saliency 

models. In this research project Judd et.al dataset is used in the training phase. DUT-

OMRON is used during the testing phase of the saliency model development. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Self-dataset: This is a self-dataset proposed during the research work. Its main 

objective is for generating the hypothesis and testing purpose. This dataset consists of 

50 images. The images are collected from the internet, and some of the images are 

         Figure 4.2:  Sample images from DUT-OMRON dataset 
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captured using high resolution Digital Single-lens Reflex (DSLR) camera. The images 

that are shot include images that are captured by alternating the focus regions, images 

with multiple in-focus regions and very high resolution images. Sample images from the 

dataset are shown in Figure 4.3. The ground truth (in-focus regions) related to these 

images is selected manually. Three people participated in the collection of the ground 

truth. The main purpose of this dataset is to develop an in-focus region detection 

algorithm.  

In the literature, the majority of the saliency models have used only one dataset 

to validate their saliency models. Due to this the models are mostly tuned towards the 

dataset and are not independent of the characteristics of the dataset. Therefore, to 

make the model less dependent of the dataset characteristics, three datasets have 

been used in the project. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.4 Human Attention Map 

A human attention map is a smooth, distributed and continuous representation 

of eye tracking information. All the datasets come with eye tracking data in the form of 

binary MATLAB format files. It is also referred to as raw eye tracking data. The pixel 

co-ordinates are extracted from these files to develop raw eye-tracking maps. The 

fixation map algorithms utilise these eye-tracking maps as the input to generate the 

Figure 4.3:  Sample images from self-dataset 
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output human attention map. The saliency maps from different models are compared 

with these human attention maps to calculate their performance.  

A sample output of the eye tracker when viewing an image for 4 seconds is 

shown in the Figure 4.4. From the figure it can be seen that the eye tracker captures 

the pixel co-ordinates of the attended units, the start time, end time and the overall 

duration of the fixation. Further, it also provides the average and the overall duration of 

the fixations.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

Fixation parameters: 

Maximum gap between gazepoints (seconds): 0.500 

Minimum fixation time (seconds): 0.200 

Minimum fixation diameter (pixels): 50 

 

Number of fixations: 7 

 

Fixation Listing: (fixation number, x position, y position, begin time, end 

time, duration) 

 

1. 636, 458, 0.030, 0.250, 0.220 

2. 648, 370, 0.280, 0.881, 0.601 

3. 648, 330, 0.881, 1.282, 0.401 

4. 457, 530, 1.412, 1.712, 0.300 

5. 983, 441, 1.983, 2.454, 0.471 

6. 640, 362, 2.834, 3.165, 0.331 

7. 641, 460, 3.205, 3.966, 0.761 

Average fixation duration (seconds): 0.441 

Total fixation duration (seconds): 3.085 

 

      Figure 4.4:  An example of eye-tracker data for one human subject 
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Based on this information a raw grey scale eye-tracking map can be created by 

marking the fixated locations on the images as ones and the unattended pixels as 

zeros. A raw eye tracking map (binary image) is a union of all fixations by all the 

observers across the image. A natural scene image with a single human subject’s eye 

tracked fixations and scan path overlaid is shown in Figure 4.5. In the right image of the 

figure the fixated regions are numbered according to their order. The dots between the 

fixated regions show the scan path.  

 

 

 

 

 

 

 

 

 

 

 

  

The fixation map algorithms take the raw eye tracking information as input to 

generate the output fixation or human attention map. The human attention map is also 

referred to as fixation density map. In the literature several strategies are used to 

obtain human attention maps. In the work of [142], the authors use fixation duration as  

parameter for generating the fixation maps. Kootstra and Shoemacker [143] 

transformed eye tracking information into fixation-distance maps. In their approach, the 

inverse distance transform of the fixation data is calculated. The distance transform 

approach computes the distance to all pixels from a fixation. It gives the probability that 

a fixation will be at a certain location of the image based on the eye tracking data. 

Recently Judd et.al [12] convolved the fixated locations using a Gaussian filter to obtain 

the human ground truth. A similar approach is followed by the authors of [141] to 

generate the human fixation maps. There is much variability among the methods used 

by the researchers to obtain these fixation maps. In the research community there is 

still no unique consensus regarding the fixation map algorithm to be used for 

generating fixation maps.   

In this project, datasets from different authors are used to evaluate the 

performance of the attention models. The raw eye tracking information from all the 

   Figure 4.5:  A natural scene image (left) and fixations overlaid (right) of         

one viewer 
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chosen datasets is extracted and a common fixation map generating strategy is used to 

generate the fixation maps. Similar to the authors of [12]  the fixations of raw eye 

tracking map are convolved to obtain the human attention maps. Using a common 

fixation map generating scheme is an important step when testing a model 

performance across several datasets. For the same dataset and a saliency model, the 

fixation maps obtained with different strategies will show a variation in the results 

produced. A sample image and its corresponding fixation map from Judd et.al dataset 

is shown in Figure 4.6. The left image in the figure shows fixations collected from 15 

viewers. The right image is the fixation map obtained using Gaussian convolution. 

 

 

 

 

 

 

 

 

 

 

 

4.5 Empirical Validation of Visual Saliency Model 

During the process of validation of a visual saliency model the saliency map 

produced by the visual saliency model is compared with the human attention or fixation 

density map derived from the eye tracking information. Empirical evidence which 

involves direct observation of model’s performance is analysed through quantitative 

and qualitative techniques. These two types of techniques are explained below. 

4.5.1 Qualitative Analysis 

 The qualitative analysis is based on the subjective appreciation of the 

correlation between human attention map and computational attention map. During this 

process the viewer analyses both the human and computational attention map through 

visual comparison. It gives an approximate idea about the map correlations.  In this 

process the image, the human map of attention and the computational attention map 

are put side by side to observe the correlations. Apart from visually measuring the 

correlation the qualitative analysis also helps in generating or improving the hypothesis 

for developing novel saliency models. During the visual comparison new information 

Figure 4.6:  Image with fixations overlaid from 15 users (left) and 

fixation map (right) 
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emerges that helps in revising the research direction. Moreover, by observing different 

human scan path patterns and their corresponding saliency maps, the limitations of the 

saliency model in terms of predicting the human gaze can be easily identified. A 

sample qualitative analysis for four images with four computational attention models is 

shown in Figure 4.7. In the figure the first row contains the images chosen for 

predicting the salient locations. The second row is the Human Ground Truth (HGT) 

fixation maps. The remaining rows are the saliency maps under qualitative test from 

different models. A saliency map is a grey map and falls in the dynamic range [0, 255]. 

A higher grey value is treated as highly salient. Visually a higher grey value pixel 

appears with higher intensity. Therefore, pixels with higher intensity on the fixation map 

indicate that they are more salient when compared to the rest of the pixels that 

correspond to the image. It can be seen from the figure that PQFT has least amount of 

correlation to the HGT maps as it mostly detects edges and maps are mostly sparse. 

The SUN model although it is more smooth and contagious detects background and 

few salient locations in the image.  
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    Figure 4.7:  An example for Qualitative analysis 
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The maps from NVT highlight the majority of the saliency locations. The locations are 

mostly localised, continuous and smooth similar to the fixation map. However, the only 

drawback is the false detections (non-salient background regions) being detected as 

visually salient similar to the true detections (salient regions). In the case of GBVS 

model the authors tried to limit the false detections by ignoring the periphery of the 

image and gave higher weights as they approach towards to the centre of the image. 

By doing this the false detections are reduced and thereby higher correlation with 

ground truth human maps is achieved. 

Qualitative analysis provides more depth and detail regarding the saliency 

maps that are studied and is helpful for hypothesis generation. However, there are also 

some limitations for this approach. It is complex and time consuming if this entire 

process needs to be implemented across a dataset of few hundreds of images. As only 

few images under test are generally studied it is not possible to generalise results to 

that of the entire dataset. The decisions made through qualitative analysis are heavily 

dependent on the skills of the researcher and hence can be biased towards his or her 

tendencies. 

4.5.2 Quantitative Analysis 

The objective comparison of the computational attention map and the human 

attention map involves the usage of mathematical metrics which determines how far an 

attention map correlates with the human attention map. A block diagram for 

quantitative analysis of the visual saliency map is shown in Figure 4.8. A quantitative 

analysis metric generally takes two inputs, namely the human fixation map or raw eye 

tracking map and the saliency map of an image generated by the attention model 

under test. The metric outputs a numerical value as measure of comparison between 

the two inputs. 

 

 

 

 

 

  

  

 

 

To make a fair comparison, to provide diverse picture of the overall model’s 

performance and to make the conclusions less dependent of the choice of the metric 

Numerical measure 
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model under test 

Figure 4.8:  A Block diagram of the quantitative analysis of the visual saliency     

map 

 



56 
 

three metrics are used in this project. The metrics used in the work are Correlation 

coefficient (CC), Normalised Scanpath Saliency (NSS) and Area Under Curve (AUC). 

These metrics are explained below. 

Linear Correlation Coefficient (CC)-  CC is a statistical measure of the linear 

relationship between two variables. The authors of [46], [144] used it to evaluate the 

performance of their saliency models. Let G  represent Ground truth fixation map, S

represents saliency map from an attention model. Then the correlation between these 

two maps is defined as 
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Where  yx,  represents image pixel coordinates,   and 
2  are the mean and 

variance of the values in the corresponding fixation and saliency maps. For the given 

two input maps the metric outputs a single scalar value which has an upper bound of 1. 

The value of CC lies in the [-1, 1] interval. When the value is close to +1/-1 there is a 

perfect linear relationship between the Ground truth fixation map and computation 

attention map. A value of 1 indicates that both the maps are similar. A value of 0 

indicates that both the maps are totally different. A value of -1 indicates that both the 

maps are anti-correlated, i.e. a salient feature in one of the maps is completely non 

salient in the other map. 

 

Normalised Scanpath Saliency (NSS):  The authors of [46], [145] and [146] 

used NSS for validating their saliency models. In this approach, initially the 

computational attention map is linearly normalised to have zero mean and unit 

standard deviation. Next the normalised values at each point in the saliency map  S  

that correspond to the fixated locations in the human attention map  i

H

i

H yx ,  are 

extracted. Finally, the NSS is calculated by taking the average or mean of all the 

extracted values. 
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Where, N is the total number of fixations for each image. An NSS value greater 

than or equal to one indicates that there are significantly higher saliency values at the 

human fixated locations in the saliency map. The higher the value, the better is the 

performance of the saliency model in predicting human fixations. An NSS value of zero 

indicates that the model performs no better than the random model and it mostly 

predicts the salient locations by chance. A value less than zero indicates that the model 

is predicting non-salient locations as salient. 

 

Area Under Curve (AUC): AUC is the acronym for Area Under receiver 

operating characteristic Curve (AUC). This metric is widely used in the research 

community for validating the saliency models [138], [36], [147].  The metric is explained 

in two parts. Initially the process of drawing the ROC curve is explained and then the 

AUC is discussed. 

In the process of evaluation both human attention map and saliency map are 

needed as inputs to draw an ROC. First all the pixels attended in the human map are 

considered as fixated pixels and the unattended pixels as non-fixated pixels. Next the 

saliency map from the saliency model is normalised between the range [0, 255]. Then 

the saliency map is treated as a binary classifier and the threshold is varied on all the 

probable thresholds ranging in [0,1,....254, 255]. On each threshold the saliency maps 

are binarised into foreground and background and the number of True Postives (TP), 

True Negatives (TN), False Positives (FP) and False Negatives (FN) are calculated.  

 

True Positive (TP) (foreground and fixated): A point or location is fixated in the 

eye tracking fixation map. The saliency model also predicts the same point or location 

as salient in the saliency map. 

 

False Positive (FP) (foreground and non-fixated): A negative response is falsely 

predicted as Positive. A point or location is not fixated in the eye tracking map.  The 

fixated point is not salient but the model in its saliency map detects it as salient. 

 

False Negative (FN) (background and fixated): The pixel in the image is actually 

attended by the human viewer; however, the saliency model considers it as a non-

salient pixel. 

 

True Negative (TN) (background and non-fixated): The pixel in the image is not 

fixated in the human ground truth map. The saliency model also predicts that the pixel 

is not salient in the visual saliency map. 
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Consequently at each threshold the True Positive Rate (TPR) and False 

Positive Rate (FPR) is calculated as: 
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
  (4-3a) 
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
  (4-3b) 

 

The ROC is a two-dimensional curve with the Y-axis showing TPR and X-axis 

FPR. These pairs (TPR, FPR) are plotted at all thresholds. Therefore, by plotting true 

positive rate vs. false positive rate an ROC curve is achieved. It is also referred to as 

the average sensitivity (True positives) over the entire range of possible specificities 

(False positives) or the average specificity (False positives) over the entire range of 

possible sensitivities (True positives). A sample receiver operating curve is shown in 

Figure 4.9. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The area underneath the ROC curve gives the AUC of the saliency model as 

shown in the figure. When the ROC curve moves towards the top left, the AUC 

increases and it decreases when the curve moves towards bottom right. The AUC on a 

dataset of images can be usually calculated in two different ways.  

AUC 

INCREMENT 

AUC 

DECREMENT 

Figure 4.9:  An example of Receiver Operating Characteristic (ROC) curve 
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1) The AUC is calculated for each image of the dataset. Then the mean of all 

AUC scores is considered as AUC of the saliency model on the dataset. 

2) At each threshold the TP’s, FP’s, FN’s and TN’s of all the images in the 

dataset are summed up and a unique ROC curve is drawn. The area under 

this final ROC curve gives the AUC score for the entire dataset. In simple 

terms it is taking average of all ROC curves. Both of these ways are used in 

the literature. However in recent works, the first approach is preferred. 

 

In this project, the Area Under Receiver operating Characteristic (AUC) curve is 

used as the global indicator of the model’s performance by considering all images of 

the dataset. A perfect prediction of the salient locations gives a score of 1 for AUC. A 

score of 0.5 indicates a chance level. A good saliency model AUC should lie between 

0.5 and 1 and close to 1 for better performance. AUC is chosen as it quantifies the 

ROC and helps in finely comparing the models’ performance when models with 

overlapping ROC curves or visually indiscriminative ROC curves are present in the final 

ROC graph with many models. For some models the relative difference in the 

performance is very small.  Therefore, providing the numerical AUC values will help in 

identifying minor performance variations and also enable other researchers to 

effectively compare new saliency models against the model proposed in this work.  

In this project metrics such as CC, NSS and AUC are used in evaluating the 

saliency model’s performance due to their wide usage in the research community. 

Moreover, still there is no unique consensus among the researchers regarding the 

validating metrics [148], [130] to be used during the performance evaluation. There are 

many advantages of quantitative analysis over visual comparison of saliency maps. A 

metric can be used to study the model’s performance over a dataset of several 

hundreds of images. Therefore, it helps in generalisation of results and allows for 

broader study with greater objectivity and accuracy of results. As it is a numerical 

output, it helps in identifying the fine differences in the model’s performance. Some of 

the disadvantages include less elaborate human perception because of numerical 

descriptions. 

The image datasets in the section 4.3, the fixation map strategy explained in the 

section 4.4, qualitative and quantitative methods described in this section are used to 

develop a novel visual attention model in the next chapter. Initially a self-dataset of 

images is used to generate the hypothesis. Later to validate and compare the 

prediction accuracy of the model, qualitative and quantitative analysis of saliency 

models is done across the chosen image datasets. Using blended qualitative and 



60 
 

quantitative approaches is generally referred as methodological triangulation. This 

process helps in verifying (confirming/rejecting and reinforcing) results from qualitative 

data using quantitative data or vice versa. In the next section, the procedure followed 

for measuring and comparing computational complexity of saliency models is 

explained. 

4.6 Computational Complexity 

In the following sub sections different kinds of methods and the important 

factors that are taken into account during the measurement of computational 

complexity are explained.  

4.6.1 Methods for Measuring Complexity 

Software profiling: The majority of the visual saliency models are developed in 

MATLAB. Therefore, the time complexity of all the models in literature along with the 

proposed work in the next few chapters is measured in MATLAB. During the 

development and testing phase of the model complexity, the MATLAB in-built profiler is 

utilised to identify the functions that are spending more time within the model. The 

profiler summary report with a graphical interface gives various details related to 

number of calls, total time and self-time of the functions of the model under test. This 

helps in identifying the time consuming functions or models that needs to be improved 

in efficiency. 

 

MATLAB Commands: MATLAB has provided three in-built functions for 

measuring program time complexity. These are cputime, timeit and tic/toc functions.  

 

Cputime: Returns the total CPU time used by MATLAB application since it was 

started. It does not take any first time costs into account. 

 

tic/toc: tic starts a stopwatch timer to measure performance. Tic records the 

internal time of the execution of tic command and the elapsed time is displayed using 

the toc command. As it starts a timer, it is beneficial to use this for measuring time of 

portions of code within a function. As it is a timer, it does not take first time cost into 

account.  

 

Timeit: It measures the total time required to run the function. It calls the 

function several times and then computes the median. The first time costs are taken 

into account during the computation of time. Therefore, the timeit function is used in 



61 
 

this research project to calculate the complexity of the model. When needed even 

tic/toc functions are also used for calculating the time of the portions of code within the 

functions. Precautions such as shutting down of background programs that will have an 

influence on complexity measurement are also considered. 

4.6.2 Factors Considered During Complexity Measurement 

Unoptimised versions: The majority of the saliency models are implemented 

in MATLAB. However, some of the models are also implemented in optimised MATLAB 

code (MEX code versions) and the C programming language. To ensure a fair 

comparison of time complexity unoptimised MATLAB implementations (without MEX 

code) are used for all the chosen models in the benchmark. 

  

Resolution and Number: Image resolution is one of the important parameters 

which affects the computational complexity of the saliency model. In general a higher 

resolution usually requires higher time for computing saliency. In our comparison the 

average time required to compute a saliency map is calculated over 100 images with 

resolution 1024x768.  

 

Content independency: The complexity measurement can also be influenced 

by the type of the image content such as contrast and detail. To make the complexity 

measurement content independent the complexity of the model is calculated across 

100 images chosen from two different datasets. 

 

Common conditions: A common environment and testing platform is used for 

measuring complexity of all the models. The details regarding these are provided as a 

separate section at the beginning of this chapter. 

 

Criteria for Comparison: In a time constrained scenario, a saliency model 

should be fast enough to meet the real time performance requirements. In the 

literature, the majority of the saliency models targeted at achieving a very high 

performance in predicting human fixations. This is generally referred to as the 

prediction accuracy of the saliency model. There are other models whose main aim 

was to achieve real time performance. In this work, both complexity and accuracy are 

chosen as the criteria for the development and comparison with the state-of-the-art. 
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4.7 Benchmark Visual Saliency Models 

The model which will be proposed in the next few chapters is compared with 10 

state-of-the-art visual saliency models. In this area as the state-of-the-art is changing 

very rapidly, care has been taken to ensure that very recent visual attention models are 

included in the benchmark. All of these models are explained in detail in chapter 3. The 

majority of the models used for the benchmark were proposed in the last five years. 

The complete selection of models for comparison is based on wide citation, popularity, 

recency and model characteristics. The model characteristics include biologically 

plausible models, frequency based approaches, spatial, models that consider bottom-

up and top-down elements in detecting saliency. These models are collected in 

different ways. Some of the saliency models are shared online. A few of the models 

were collected by contacting the creators. The authors sent us the source code for us 

to compile or the executables.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

However, some of the authors preferred to run their model on the images and sent us 

the results. One model was implemented directly by reading the author's published 

paper. All of these models are listed here chronologically as shown in Table 4.1. The 

Neuromorphic Vision Toolkit (NVT) popularly known as Itti’s model was introduced in 

1998. This is a widely cited model based on bottom-up characteristics with biological 

plausibility. Graph Based Visual Saliency (GBVS) proposed in 2006 is a bottom-up 

attention model similar to NVT. This model is highly popular, widely cited in the 

literature and very good at predicting human fixations. Spectral Residual (SR) 

Year Models 

1998 NVT [6] 

2006 GBVS [7] 

2007 SR [8] 

2008 SUN [70] 

2010 PQFT [10] 

2010 CAS [9] 

2012 SS [11] 

2012 RCSS [122] 

2013 SDSP [13] 

2013 WBSD [127] 

  Table 4.1:  Chronological listing of visual saliency models 
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proposed in 2007 is a spectral based approach for predicting human fixations. This is a 

very fast model and is based on bottom-up characteristics. Saliency Using Natural 

Statistics (SUN) (2008) is model based on both bottom-up and top-down 

characteristics. It is a popular and widely cited saliency model. Phase Quaternion 

Fourier Transform (PQFT) proposed in 2010 is a popular, widely cited and one of the 

recent bottom-up visual saliency models. The model is also fast at predicting fixations. 

Context Aware Saliency (CAS) proposed in 2010 is a very popular and widely cited 

model. It incorporates top-down features for detecting salient regions. Signature 

saliency (SS) a very recent model proposed in 2012. It retrieves the salient regions in 

the frequency domain. Random Centre Sorround Saliency (RCSS) is another recent 

model proposed in 2012. It is chosen for the benchmark comparison as the authors 

achieved high prediction accuracy on two large datasets. Saliency Detection using 

Simple Priors (SDSP) has considered both prediction accuracy and complexity as the 

main constraints in the development of the model. It is proposed in 2013 and is an 

important choice for the benchmark as the model in the current research work also 

considers both accuracy and complexity. Wavelet Based Saliency Detection (WBSD) 

(2013) is a frequency based approach based on bottom-up features. All of these 

models will be used as the benchmark for proposing a novel saliency model in this 

research project. 

4.8 Conclusion 

This chapter presented the experimental methods used in the research project. 

Based on the objectives and requirements of the project a suitable development 

environment and testing platform is chosen. The performance of the state-of-the-art 

models is used as the benchmark for the development of the models. Publicly available 

image datasets in which the human eye analysis studied using eye trackers are 

selected for the project. A self-dataset is also created for developing novel attention 

model. All these datasets are used to evaluate the performance of the models. The 

models performance is evaluated with respect to both prediction accuracy and 

computational complexity. To empirically validate the model qualitative and quantitative 

approaches have been utilised. The qualitative analysis includes visual comparison 

and the quantitative analysis includes the usage of mathematical metrics like CC, NSS 

and AUC. For assessing and comparing the time complexity, MATLAB’s in-built profiler 

and in-built functions are utilised. 
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5 A DCT Based In-Focus Bottom-up Visual Attention 
Model  

5.1 Introduction 

his chapter presents a novel low complexity visual attention model for 

predicting regions of interest in images. The model detects visually salient 

regions based on camera focus. The salient frequencies present in the in-focus areas 

are detected using the characteristics of Discrete Cosine Transform (DCT) coefficients. 

The saliency map is developed using a mathematical model developed by observing 

the amplitudes of 8x8 image block DCT coefficients. The DCT based focus maps are 

convolved and contrast stretched to obtain the salient regions of an image. The 

performance of the developed model is evaluated against popular visual attention 

models. The results indicate that the model achieves better prediction accuracy in 

saliency detection at significantly lower computational complexity compared to some of 

the benchmark attention models.  

In section 5.2 the hypothesis behind the proposed visual saliency model is 

explained. The directly related work to the visual saliency model based on DCT and 

image focus detection is discussed in the section 5.3. Section 5.4 describes the 

fundamentals of DCT. The different types of frequencies in the DCT transformed image 

and its relation with the visual content (image detail) is explained. It also provides the 

important properties of DCT that are relevant to the current development. The 

development of the attention model is provided in two phases in section 5.5. The 

experimental results related to prediction accuracy and complexity of the model is 

given in section 5.6. Finally, the important aspects of the attention model, the 

advantages and disadvantages of the developed model are discussed in section 5.7. 

5.2 Hypothesis 

One of the primary ways to lead the viewer’s attention to a specific region of an 

image is to bring the region in to focus.  Photographers adjust the camera’s focus into 

the regions of interest rather than the background when capturing images. An “in-

focus” region in an image contains contents which are of interest to the human eye 

than an “out-of-focus or blurred” region [149]. Objects which are in focus are sharper 

and appealing to the viewer and these regions are bottom-up in nature. Therefore, in-

focus region selected by the photographer is a good candidate for saliency detection. 

Typically, the camera is focussed into different regions in images so that the human 

visual system (HVS) follows these regions to understand the information content. 

T 
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These in-focus regions may constitute either bottom-up or top-down features of an 

image.  For example, the most common top down features are the human faces, 

animals and cars. The other top down features are hands and eyes of the people.  

Whereas, the bottom-up features are specific objects which pop out from the image to 

grab the attention of the viewer. Usually they pop out because of their own attributes 

such as intensity, colour, orientation etc. (Please refer to section 3.2.2.1).  

In the literature bottom up features are investigated more when compared to top 

down features. The main reason behind this is that the bottom-up features are easier to 

control when compared with cognitive factors such as expectation and knowledge. 

There are significant differences between individual human subjects and hence they 

have their own strategies of directing their gaze from one point to another and this 

gives rise to extreme difficulty in modelling the top down features [150]. If the very 

nature of the HVS has to be imitated, then both bottom up and top down saliency 

characteristics have to be fused together in order to obtain the region of interest. A 

saliency model with a mixture of several top down and bottom up features will result in 

a complex and time consuming attention model. 

In most cases, a photographer focuses on regions that convey information and 

these regions may have either bottom-up or top-down features. The advantage of 

detecting these in-focus regions is that it reduces the complexity to detect both top-

down and bottom-up regions separately to some extent. 

5.3 Directly Related Work 

The visual attention models in the literature that are based on detecting salient 

regions using image focus and DCT domain are briefly discussed in the following 

sections. 

5.3.1 Focus 

Ki Tae et al. [151] used the sharpness of the regions in the image as a measure 

to differentiate in-focus and out-of-focus regions. The DCT is performed on each of the 

Y, Cb and Cr channels of an image and later, by calculating Bayes entropy of the DCT 

coefficients, three focus maps are generated. A saliency map is then generated by 

combining these three focus maps. The intensity of focus in the images is inversely 

related to the degree of the blurriness in an image. Based on this concept, most of the 

existing algorithms compute blurriness as a way to detect the in-focus regions of an 

image. The authors of [152] calculate the spatially varying amount of blur by estimating 

the blur kernel at the image edges. They propagate this defocus measure over the 

entire image using non homogeneous optimisation. However, their idea is limited to 
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regions with smooth interiors. Zhuo and Sim [153] used an image matting to compute 

the blurriness. However, their blur estimation cannot tell whether the blur edge is 

caused by defocus or blur texture which includes soft shadows and blur texture. 

Moreover, the canny edge detection and joint bilateral filtering increased the 

computational complexity of their method.  More recently the authors of [154] detect 

salient regions by measuring blurriness using scale space analysis. In their work for 

each edge pixel Difference of Gaussian (DOG) responses are calculated at different 

scales. Later on the degree of blur is estimated and pixel level focus is approximated. 

Although as the authors claimed, their approach has a solid mathematical proof, it 

resulted in an increased complexity because of several DOG operations.  

5.3.2 DCT based Attention Models 

 In the research by Yiwei and De [155] the properties of DCT coefficients are 

used to obtain the bottom-up features of visual attention. The bottom-up intensity and 

colour features are obtained from the DC coefficients in the luminance and 

chrominance images respectively. The first (DCT (1, 0)) and the second AC coefficients 

(DCT (0,1)) in zig-zag scanning order from the DCT transformed block are used to 

obtain the orientation feature.  Later the saliency map is generated by combining the 

feature maps. The authors of [156] used quaternion DCT signatures and face detection 

to detect the salient regions of an image. They have transferred scalar and real DCT 

signatures to quaternion images. Since faces are the prominent top-down feature, they 

are detected by using a face detection algorithm and later combined with the generated 

saliency map to improve the overall saliency accuracy. The authors of [157] calculated 

the saliency of videos by computing luminance, colour, texture and motion features 

from DCT coefficients and motion vectors in the video stream. They generated a static 

saliency map from luminance, colour and texture features and dynamic saliency map 

from motion feature. These two saliency maps are later fused to get the final saliency 

map.  

The properties of the DCT and its effective utilisation in the works discussed 

above have motivated us to use DCT in the development of current attention model. 

The DCT and its properties that are relevant to the current development of the model 

are briefly explained in the next section. 

5.4 Discrete Cosine Transform (DCT)  

The DCT transforms an N x N square matrix of pixel values to an N x N square 

matrix of frequency coefficients. The two dimensional DCT applied on an image is 

defined as  
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),( vuC  represents the frequency coefficients of DCT transformed block and 

),( yxf represents the pixel values of the input image data respectively. Generally in 

most of the cases N is 8.  A bigger block results in a better image compression 

however, it takes more computation time in performing DCT calculations. As a tradeoff, 

during DCT implementations the image is broken down into manageable 8x8 blocks. 

It is clear from equation (5.1) that when u and v equals zero then 
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C . Therefore, the first coefficient is the average of all the 

image data. It is referred to as the DC coefficient and all other coefficients are AC 

coefficients.  

In the DCT domain the entries are organised according to the sensitivity of 

HVS. Low frequency coefficients are placed in the top left corner of the 8x8 matrix. 

Similarly high frequency coefficients are arranged in the bottom right corner of the 

matrix. The DC component corresponds to the average of all the input image data. The 

DC component in a Y-channel extracted from YCbCr colour space is related to the 

brightness of the image. The low frequency components of Y-channel represent 

general luminance whereas high frequency components represent contours and drastic 
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changes of luminance [158]. Large high frequency coefficients indicate that the 

information is changing rapidly on a very short distance scale. For example, in an 

image of newspaper, the text keeps changing rapidly and when transformed, such 

detail is retained in the large value of high frequency coefficients. Whereas, large low 

frequency coefficients indicate large scale features of a picture are more important. 

Objects that are homogeneous and occupy most of the image area tend to be retained 

in large magnitude low frequency coefficients.  

The properties of DCT that are relevant to the current development of the visual 

saliency model are briefly explained below.  

5.4.1 Data De-correlation 

In an image there exists a high level of redundancy between the neighbouring 

pixels. This is referred to as the data correlation. The DCT transforms spatially 

correlated image data to uncorrelated frequency coefficients. These transformed 

coefficients can be dealt independently of one another during the development of the 

attention model. 

5.4.2 Energy Compaction 

Energy compaction is the ability to transform the data into a few large valued 

coefficients. Due to this there will be fewer coefficients in the DCT domain that are 

sensitive to the HVS. The other coefficients can be discarded as they are least 

important.  

5.5 Development of Focus Detection Algorithm 

The focus detection algorithm is developed in two phases. In the first phase, an 

initial hypothesis for detecting in-focus regions in the images is constructed. The 

hypothesis is then manually verified across a range of test images. In the second 

phase an algorithm is developed to realise this hypothesis. 

5.5.1 Hypothesis  

The in-focus regions in the images are sharp and are of interest to the HVS. It is 

assumed that in-focus regions will contain some frequency coefficients that hold large 

values when compared to out-of-focus regions.  

5.5.2 Development Phase I                                

In chapter 4 section 4.3 a self-dataset has been described. The dataset 

consists of images with in-focus regions. Some pictures are randomly selected from the 

dataset to test the hypothesis. The luminance component of YCbCr image is extracted. 
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The Y-channel is mainly selected because of the higher sensitivity of HVS to image 

brightness when compared to colour information. The image is partitioned into a 

number of 8x8 distinct square blocks of pixels. To avoid the intense computation of 

taking DCT over the entire image, the image is divided into 8x8 blocks and the DCT is 

applied to those blocks.   

 

                    

 

 

 

 

 

 

 

 

 

 

 

 

The frequency coefficients in the 8x8 DCT transformed blocks corresponding to 

the in-focus and out-of-focus are visually analysed. This analysis revealed that there 

are frequency coefficients in the in-focus DCT blocks whose amplitude is very high 

when compared to out-of-focus frequency coefficients. These frequency coefficients 

from all the 8x8 blocks of the image are extracted, summed (by taking their absolutes) 

and displayed as a focus map. A sample Y-picture and its focus map is shown in the 

Figure 5.1. In Figure 5.1 (a) the enclosed region marked by an outline is in focus. It can 

be seen in Figure 5.1(b) that a sparse focus map is generated by taking the sum of the 

frequency coefficients which has very high magnitude, which indicates the in-focus 

region in the Y-picture. 

Later this is verified across many images by manually locating the frequency 

coefficients that have higher amplitude than out-of-focus coefficients. To apply this to 

several images an algorithm which can automatically locate the frequency coefficients 

is needed. Therefore, this development is further carried out in phase II. 

        (a) Sheep Y-picture                                     (b) Sheep - Focus map 

Figure 5.1:  Sheep (a) Y-picture (b) Focus map 
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5.5.3 Development Phase II 

The main objective of phase II is to develop an algorithm which can 

automatically locate frequency coefficients that correspond to in-focus regions. To 

achieve this during the second phase the in-focus region of the image is considered as 

the foreground region and the out of focus as background region. The foreground 

superblock FS8×8, background superblock BS8×8 and full image superblock IS8×8 are 

calculated as follows: 
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Where, i (0,1,..,7), j (0,1,..,7). cf , cb  and cI  denote foreground, 

background and image (all) DCT blocks respectively. M is the number of foreground 

8x8 DCT blocks and N is the number of background blocks. The (M+N) accounts for 

the total number of 8x8 blocks of an image. To obtain the foreground superblock, 

initially the in-focus region is manually selected and then the foreground superblock is 

calculated by taking the mean of the absolute of 8x8 DCT blocks that correspond to the 

selected in-focus region. Similarly the background superblock is calculated. Finally the 

image superblock is calculated by taking the sum of foreground and background 

superblock and dividing it by the total number of 8x8 blocks in the image.  These DCT 

coefficients in all the three superblocks are selected using a zigzag scanning method 

so that the low frequency components precede the high frequency components. These 

DCT coefficients when scanned in a zig-zag manner are subsequently converted into a 

one dimensional vector. To determine the relationship between in-focus and out-of-

focus region the frequency coefficients that are zigzag scanned from all the 

superblocks are plotted against each other on a graph. The DCT frequency coefficient 

amplitude patterns of all the three images are shown in the Figure 5.2, Figure 5.3 and 

Figure 5.4. In Figure 5.2 the sheep’s head is highly in-focus relative to the background 

which is out-of-focus. This difference can also be seen in the Figure 5.2 (c) where at 
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         (C) Sheep - Zigzag scanned DCT coefficients        
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   (a) Sheep-RGB picture                                (b) Sheep-Y picture                                     

 

each frequency coefficient on x-axis the difference between the amplitude of an in-

focus and out-of-focus frequency coefficient tends to be significant. This difference is 

more significant at the peaks (peak is indicated by star on the ImageDCT waveform of 

Figure 5.2 (c), 5.3 (c) and 5.4 (c)) of the in-focus and out-of-focus amplitude waveform). 

Moreover the peaks of in-focus, out-of-focus and entire image almost coincide with 

each other. However, this difference tends to decrease towards the very high  

 

 

  

 

 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 
     Figure 5.2:  Sheep (a) RGB picture (b) Y-picture (c) Zig-zag scanned DCT coefficients 
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      (C) Cricket ball Zig-Zag scanned DCT coefficients  

     (a) Cricket ball- RGB picture                       (b) Cricket ball-Y picture                             
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Figure 5.3:  Cricket ball (a) RGB picture (b) Y-picture (c) Zig-zag 

scanned DCT coefficients 
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frequency range (51-63). In the very low frequency range very minimal variations are 

observed. In Figure 5.3 (a) the cricket ball and the grass in the bottom right corner of 

the image is highly in-focus and rest of the image is relatively blurred or out-of-focus. 

Similar to the Figure 5.2 (c) very minimal variations are observed in the very low 

(a) Face-RGB picture                                (b)  Face-Y picture                   
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(c) Face-Zigzag scanned DCT coefficients        

 

Figure 5.4:  Face (a) RGB picture (b) Y-picture (c) Zig-zag scanned 

DCT coefficients 
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frequency range. However, in this image the difference falls off from the 45th frequency 

coefficient on the x-axis. Further as the difference falls off drastically, there are no peak 

frequencies observed. In the Figure 5.3 (a) the face and area around the shirt region is 

highly in-focus when compared to the background which consists of books. This image 

(similar to the images in Figure 5.2 (a) and Figure 5.3 (a)) exhibits too many frequency 

variations (many peaks) in range of 5-50. After the 50th coefficient there is a difference; 

however, there are no variations at all. 

 

These graphs in the Figure 5.2 (c), 5.3 (c) and 5.4 (c) reveal that 

 

i) The peaks of spatial frequency amplitude waveform of in-focus, out-of-focus 

and the entire superblock almost coincide. 

ii) The maximum magnitude difference occurs at these peaks. 

iii) This difference tends to be significant within a band of frequencies which 

excludes both very low and high frequency DCT coefficients. 

iv) The peak magnitude frequencies in the in-focus regions are absent in the out-

of-focus regions. Therefore, these peak frequencies can be used to calculate 

the in-focus regions in an image. 

 

Noise is very high frequency information which occurs during image capture. At 

very low frequency including the DC coefficient, gradual changes are observed in both 

in-focus and out-of-focus regions. Therefore, a band pass filter can be used to 

eliminate these frequencies by inhibiting some of the very high and low frequency 

irrelevant DCT coefficients. The band pass filter selects zig-zag scanned frequencies 

between 5 and 60 ignoring the beginning 1-4 (very low frequency coefficients) and the 

last 51-64 (very high frequency coefficients).  These frequencies are chosen based on 

the experimental results shown in the Figure 5.2 (c), 5.3 (c) and 5.4 (c). Later all the 

frequency positions that correspond to the peaks indicated by stars within the band of 

frequencies of the image superblock coefficients are identified and stored. A peak 

frequency consists of points that are lower by a value of x (peak threshold) on either of 

the sides. Empirically, by testing across different images and values, the peak 

threshold is determined as 0.1. Therefore, we need a difference of at least 0.1 between 

a peak and its surrounding for it to be declared as a peak frequency. These peak 

frequencies are plotted as red colour stars on the graphs.  

Later the sum of corresponding absolute DCT coefficients of identified 

frequency positions in all of the 8x8 blocks of the image is calculated and stored. As 

discussed already a sparse focus map is obtained by this stage. These sparse focus 
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maps are shown in Figure 5.5 (a), Figure 5.5 (b) and Figure 5.5 (c). This sparse focus 

map is convolved using a Gaussian kernel (size nn ) and contrast stretched by 

multiplying each pixel in the focus map with a factor k . The smoothing filter is used to 

generate connected regions from the sparse salient frequency plots. The contrast is 

stretched to improve the overall intensity of the focus map. The final focus maps are 

shown in Figure 5.6 (a), Figure 5.6 (b) and Figure 5.6 (c). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

          (b)  Cricket ball- sparse focus map 

(a) Sheep- sparse focus map 
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           (c)  Face-sparse focus map 

Figure 5.5:  Sparse focus map (a) Sheep (b) Cricket 

ball (c) Person face 

(a) Sheep Saliency map 

 (b)  Cricket ball Saliency map 
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5.5.4 The Complete Attention Model 

The complete model based on in-focus regions is summarised below 

 

1. Extract the Y component of YUV image. 

2. Divide the luminance image into 8x8 blocks. 

3. Perform DCT on all 8x8 blocks of the image. 

4. Calculate image superblock according to equation (5-5). 

5. The image superblock frequency coefficients are selected using the zig-zag 

scan method and then the image superblock coefficients magnitude is plotted 

against the zig-zag scanned frequencies. 

6. The Peaks of the above plotted graph are computed and the corresponding 

frequency positions are identified and stored. 

7. Display the focus map by summing all the identified frequency position 

frequencies in all the 8x8 blocks. 

8. Convolve and contrast stretch the map obtained. 

9. Display the visual saliency map. 

5.6 Experimental Results 

The proposed visual saliency model is evaluated using the proposed self-

dataset and Judd’s public dataset which contains 1003 images. For more details 

     (c)  Face Saliency map 

             Figure 5.6:  Saliency map (a) Sheep (b) Cricket ball (c) Face 
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regarding these datasets refer to chapter 4 section 4. The quantitative and qualitative 

analysis with the chosen datasets is given in this section. 

5.6.1 Qualitative Analysis of the Focus Map               

In this section the performance of the focus detection algorithm is evaluated 

across the images in the proposed self-dataset. It can be seen in Figure 5.7 (a) that the 

person’s face is in-focus and there exists many salient frequencies around the eyes, 

hair, around the shirt area and the edges. The algorithm detects the in-focus face 

region which can be seen in the Figure 5.7(b) focus map. The focus map highlights the 

salient frequency information. 

 

 

 

 

 

 

 

 

 

 

 

 

The same image in Figure 5.8 (a) is captured by making the face out of focus. 

In Figure 5.8 (b) the person’s face is out-of-focus and the salient frequency content 

exists in the background area. The algorithm detects this in-focus background region 

which can be clearly seen in the (Figure 5.8 (b)) focus map. 

 

 

 

 

 

 

 

 

                                     

 

 

                        Figure 5.7:  Face (a) In-focus (b) Focus map 

(a)  Face- (Face in-focus)                               (b)  Face - Focus map              

  (a) Face-(Face out-of-focus)                      (b) Face-visual saliency map 

             Figure 5.8:  Face (a) Out-of-focus (b) Visual saliency map 
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This shows the effectiveness of the algorithm in differentiating in and out-of-focus areas 

in the image. In the Figure 5.9 the pair of images is captured by alternating the focus 

regions between foreground object and the background region. The first image focuses 

on the video camera. The second image focuses on the background (books and shelf).  

The focus map can distinguish between in-focus and out-of-focus regions in these two 

images.    

Similarly, in the Figure 5.10 the first image focuses on the camera lens and the 

person standing is out of focus. In the second image the focus is shifted on to the 

standing person by making the lens out-of-focus (blurred). The focus maps can 

distinguish this focus shift in both the images. In the last pair of images the first image 

focuses on the plant and the poster on the wall is out-of-focus. In the second image the 

poster on the wall is in-focus and the plant is out-of-focus. In all the images in Figure 

5.10 the algorithm is able to detect the focus shift.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.9: Images captured by making video camera in and 

out-of-focus 
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The first image (top left) in the Figure 5.11 shows sparsely spaced multiple 

objects. In order to test the performance of the algorithm it is made sure during the 

image capture that only the enclosed regions marked by an outline are in focus. 

Similarly, the second image shows closely spaced multiple objects that are in focus. In 

both cases the algorithm correctly detects the objects that are in focus. In these images 

the algorithm is tested with multiple regions that are in focus. Moreover, it can be seen 

that the algorithm is also robust in terms of distance between in-focus regions.  

In the Figure 5.12 the top left image focuses on the middle object leaving out 

the extreme end objects as out-of-focus. In contrast, the bottom left image focuses on  

 

 

Figure 5.10:  Images captured by alternating focus regions 
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extreme end objects leaving the middle object out-of-focus. The proposed algorithm 

correctly maps the objects that are in focus in these cases as well. Therefore, the 

algorithm has good detection ability irrespective of the distance between the in-focus 

regions and also the number of in-focus regions. 

 In the Figure 5.13, the image contains highly textured background (sand) which 

has high spatial frequencies throughout. However, the camera is clearly focused 

         Figure 5.11:  Images captured with multiple focus regions 

Figure 5.12:  Images captured with single and multiple 

focus regions 
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around the foot imprint. The entire background with hill, sky and the bottom left corner 

in the image is out of focus. The proposed model clearly distinguishes the dominant 

frequencies within the in-focus region from the noisy frequencies contained in the 

background as evidenced by the focus map. In the next image (bottom-left) the person 

riding the cycle and the adjacent surrounding area is highly in focus and the 

background is out of focus. The algorithm is able to detect the in-focus regions 

irrespective of complex backgrounds. 

 

 

  

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

In the Figure 5.14 the star mark in the first image (top left) to the upper right of 

the picture is highly in-focus and the background sand is marginally in focus. The 

corresponding focus map reflects this by showing a clear variation in the intensity. 

Similarly, in the second image the canoe sailing in the water is in-focus and the 

adjacent surrounding water to the left and right are in-focus. The image tends to 

become out-of-focus towards the periphery. In the focus map it can be clearly seen that 

the canoe and the surrounding water is shown with higher grey scale intensity values 

and the intensity falls off towards the periphery of the image. 

 

 

 

 

Figure 5.13:  Focus regions with complex 

image background. 
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5.6.2 Quantitative Analysis 

A quantitative evaluation of the proposed model is carried out against popular 

Judd’s dataset of 1003 images. The performance of the model is compared with three 

popular visual saliency models. Moreover, three quantitative metrics, namely, 

Correlation Coefficient (CC), Normalised Scanpath Saliency (NSS) and Area Under 

Receiver operating Curve (AUC) (please refer to section 4.5.2 for more details 

regarding these metrics) are used to evaluate the performance.  The higher the score 

achieved with respect to these metrics, the better is the prediction accuracy of the 

saliency model. The performance evaluation of the state-of-the-art saliency models is 

shown in Table 5.1. In the table, the proposed model is highlighted in bold letters. It can 

be seen that the model performs better than the SUN saliency model which is popular 

and widely cited. This model computes saliency based on bottom-up and top-down 

features. The fact that the proposed model outperforms the SUN model clearly 

indicates that focus is a key component that plays a significant role in attracting human 

gaze irrespective of bottom-up and top-down features. Further, the model also 

outperforms PQFT which is a popular model built using purely bottom-up features such 

as colour, intensity and motion channels. Inspite of the model using several bottom-up 

features, it achieves lower prediction accuracy when compared with the proposed 

model. In the table WBSD is a recent model built using bottom-up features. The 

proposed model achieves the same accuracy using two metrics and a slightly lower 

score with respect to NSS.  

Figure 5.14:  Images with random regions in focus 
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      Judd’s dataset (1003 images) 

Year Models CC NSS AUC 

2008 SUN [70] 0.15 0.75 0.67 

2010 PQFT [10] 0.12 0.59 0.56 

2013 WBSD [127] 0.18 0.88 0.71 

2013 Proposed [14] 0.18 0.84 0.71 

 

5.6.3 Qualitative Analysis of the Saliency Map 

The saliency maps for sample images from Judd’s database are shown for the 

proposed model and three state-of-the-art saliency models in Figure 5.15. The Ground 

Truth Fixation Maps (GTFM) is also shown in the figure. In the first image (flower), the 

ground truth indicates that users mostly gazed at the centre of image. Moreover, in the 

image the flower is highly in-focus compared to the background. In the saliency map it 

is evident that the focus detection algorithm successfully extracted the in-focus region 

with slightly higher intensity at the centre of the image. It also has lower false 

detections when compared to other models which detects unimportant areas as salient. 

In the second image the ground truth shows that viewers mostly gazed along the tower 

with higher number of fixations around the person. The proposed model gave closer 

performance to the ground truth. The model extracted the tower from the image with 

higher intensity making it a qualitatively better saliency map than SUN, PQFT and 

WBSD.  

In the  Figure 5.16, the ground truth map in the first image shows that viewers 

mainly gazed at the swing seat. For this image the proposed model exhibits high 

intensity in the saliency map around the swing seat. However, the model also detects 

other unimportant areas in the image as salient. Moreover, both PQFT and WBSD 

obtain a very sparse saliency map and they also detect the background as visually 

salient. In the second image ground truth fixation maps clearly indicates that viewers 

are more interested at the centre of the image. The proposed model (similar to the eye 

tracking fixation map) exhibits relatively higher intensity at the centre.  

Table 5.1:  Quantitative comparison of saliency models on Judd 

dataset 
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      Figure 5.15:  Qualitative comparison of sample images from Judd’s 
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           Figure 5.16:  Qualitative comparison of sample images from Judd’s 
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5.6.4 Complexity Analysis 

The main criteria used for comparison with the state-of-the-art are prediction 

accuracy and complexity. During the complexity optimisation of the model the main 

constraint is the prediction accuracy. Therefore, it is a constrained optimisation problem 

in which the complexity of the model has to be reduced by using low complexity 

features that have the ability to achieve a higher accuracy. It means that in a time 

constrained scenario, a saliency model should be fast enough to meet the real time 

performance requirements while meeting the accuracy requirements. In our current 

scenario the proposed model should achieve prediction accuracy better than or equal 

to WBSD with lower complexity. It is already shown in the earlier section that the 

proposed model has achieved better accuracy than SUN and PQFT and an almost 

equal score when compared with WBSD saliency model.  

The complexity of the proposed model is compared with the state-of-the-art 

saliency models in the Table 5.2. We use un-optimised MATLAB code (without MEX 

code) for all of these saliency models in order to ensure a fair comparison. The 

average time required to compute a saliency map is calculated over 100 images with 

resolution 1024x768 from Judd’s database. It is evident that, the proposed model is the 

fastest among the saliency models. Compared to our model, WBSD achieves similar 

performance in terms of prediction accuracy. However, it is still significantly more 

complex than the proposed model. The complexity of the SUN model is increased as it 

uses both bottom-up and top-down features.  

        Judd’s dataset (100 images) 

Year Models Complexity(secs) 

2008 SUN [70] 9.36 

2010 PQFT [10] 0.83 

2013 WBSD [127] 24.28 

2013 Proposed [14] 0.80 

 

 

Table 5.2:  Complexity comparison of the state-of-the-art 

saliency models 
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The low complexity nature of the proposed model can be attributed to DCT 

properties such as energy compaction and data correlation as indicated in section 

5.4.2. The proposed model achieves complexity reduction with prediction accuracy 

similar to WBSD model and hence outperforms this model. 

5.7 Discussion 

During the first phase of model development an image dataset with in-

focus/out-of-focus images is created. Through qualitative investigation on these images 

the DCT coefficients characteristics of in-focus and out-of-focus regions are studied. 

During the investigation, it has been discovered that there are a few large valued 

frequencies which contribute to the most of the energy in the in-focus regions, whereas 

these frequency coefficients hold low magnitude values in the out-of-regions. In the 

second phase an in-focus visual saliency model has been proposed based on the peak 

frequency components. These peak frequencies are identified by zig-zag scanning a 

mean absolute 8x8 superblock of luminance channel in YCbCr colour space. The 

summation of peak frequency magnitudes across all image blocks provides an in-focus 

visual saliency map.  

The results demonstrate that the proposed model achieves similar prediction 

accuracy (CC=0.18, NSS= 0.84 and AUC=0.71) (refer to section 5.6.2) when 

compared with state-of-the-art saliency models [70], [10], [127] at a significant 

reduction of computational complexity. In the literature there are very few works [152], 

[153], [154] which have utilised focus detection as the core element for deriving image 

saliency. As already discussed these works estimate blurriness as way to detect in-

focus regions.  In contrast to these work the proposed focus model does not depend on 

image blur and derives in-focus regions based on DCT coefficients. It is a novel 

contribution as it detects the in-focus regions using the peak frequencies present in the 

DCT domain. Moreover, a mathematical model is developed to detect these peak 

frequencies. The computational complexity of the model is calculated over 100 images 

with resolution 1024x768 on Intel core I7-2600K CPU operating at 3.40 GHz. The 

model takes an average time of 0.80 seconds (refer to section 5.6.4) to compute the 

focus map. The advantages and disadvantages of this model are summarised as 

follows. 

 

Advantages 

 Significant reduction in the computational complexity whilst achieving the 

prediction accuracy similar to or better than some other benchmark models [70], 
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[10], [127]. It has been already discussed that the model takes an average time 

of 0.80 seconds for calculating the saliency map of an image with 1024x768 

resolution. With the same image resolution and testing platform the WBSD 

[127] model achieves similar prediction accuracy as the proposed model; 

however, it requires 24.28 seconds. This indicates that the model is extremely 

fast at detecting salient regions in images. 

 

 The focus detection algorithm has the ability to detect multiple in-focus regions. 

 

 The saliency detection using in-focus regions has achieved better prediction 

accuracy compared to the PQFT model [10]. PQFT uses four channels for 

detecting attended regions namely two colour channels, one intensity channel 

and one motion channel. The proposed model based on a single channel using 

in-focus region detection outperforms the PQFT model. This indicates that 

focus plays an important role in attracting human gaze.  

  

Disadvantages 

 The model achieves prediction accuracy similar to the WBSD model [127] and 

better than SUN [70] and PQFT [10] models. In chapter four several models 

were considered for comparison. The accuracy of the saliency model developed 

is still not better than some of the benchmark models specified in chapter 4 

such as GBVS, SR, NVT etc.  

 

 When an image is made completely out-of-focus the entire image looks visually 

blurred. The attention model when used to detect in-focus regions across such 

images produces incorrect results as the difference between the peak 

frequencies may not be significant enough. This results in false detections 

(detecting non-salient regions as visually salient). Therefore, the model 

produces inaccurate results when an image is completely in-focus or out-of-

focus.  

As already discussed in the advantages section, detecting image focus alone 

outperforms other models that considered several features [70], [10] for predicting 

salient regions. Therefore, focus detection can be considered as a promising idea for 

further development. Therefore, this model forms the foundation for further research 

that resulted in an improved model which is described in the next chapter. 
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5.8 Conclusion  

A novel visual attention model has been developed to detect salient regions in 

images based on camera focus. The model considers in-focus regions in the images to 

derive the visual saliency. The characteristics of DCT coefficients are used in modelling 

the focus map. It outperforms some of the state-of-the-art visual attention models in 

saliency detection performance with respect to low complexity. Note that, in terms of 

prediction accuracy and complexity this model is still behind some of the benchmark 

models such as NVT, GBVS, SR, CAS, SS, RCSS and SDSP. Therefore, future 

research involves improving the accuracy and complexity to outperform the chosen 

benchmark models. To achieve this, in the next chapter the complexity of the model is 

further reduced by replacing the DCT with the Integer Cosine Transform (ICT). 

Moreover, the prediction accuracy of the model is improved by considering some of the 

prominent top-down features. Further, the saliency model will be tested across bigger 

and challenging datasets. 
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6         Visual Attention Model: Top Down Extension 

6.1 Introduction 

n this chapter the DCT based in-focus visual attention model described in the 

previous chapter is improved in terms of both prediction accuracy and 

complexity. To achieve this, the traditional DCT is replaced with Integer Cosine 

Transform (ICT) and HSV colour space is used instead of YCbCr colour space. 

Moreover, top-down features are detected and combined with in-focus map to improve 

the overall prediction accuracy. The model developed predicts human fixations based 

on in-focus regions and top-down components such as image centre and human faces. 

Similar to the focus detection algorithm in chapter 5, the in-focus regions in the images 

are detected using the magnitudes of frequency coefficients in the Integer Cosine 

Transform (ICT) domain. The centre sensitivity maps are constructed by placing 

anisotropic 2D Gaussian distribution at the centre of image with standard deviation as a 

function of the image resolution. The human face map is generated by using a face 

detection algorithm. The ICT based focus maps are convolved, contrast stretched and 

combined with centre and face maps to obtain the salient regions of the image. A hill 

climbing approach is used to tune the model parameters. The performance of the 

model in predicting human fixations is evaluated qualitatively and quantitatively against 

ten state-of-the-art visual saliency detection algorithms. The results demonstrate that 

the proposed algorithm achieves higher prediction accuracy at significantly lower 

computational complexity compared to the state-of-the-art visual saliency detection 

models. Further, the saliency model’s performance was measured using a new 

evaluation method known as dispersion measure. It measures the consistency of a 

saliency model in predicting fixations across each image in the dataset. The existing 

models are compared using the proposed measure and it is shown that the proposed 

model achieves the best dispersion measure compared to the existing models. 

In section 6.2 the hypothesis used for improving the visual saliency model is 

described. The directly related work to the proposed visual saliency model based on 

centre sensitivity and human faces is explained in the section 6.3. In section 6.4 the 

proposed model is described which includes algorithms for the development of focus, 

centre and face saliency map. The experimental results related to prediction accuracy 

and computational complexity of the model is given in section 6.5. The model is 

critically discussed in section 6.6 and concluded in section 6.7. 

I 
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6.2 Hypothesis 

A significant amount of research on human eye saccades and fixations has 

clearly demonstrated that humans are highly sensitive towards the centre of the image 

compared to the periphery [159, 160]. The key factors that are responsible for this 

phenomenon are photographer bias [160-162] and viewing strategy [146]. 

Photographer bias is a natural tendency of the photographer to put the objects at the 

centre to emphasise their importance. They usually tend to put the most interesting 

objects at the centre of the image. As these are at the centre, viewers automatically 

move on to these locations. The other important factor that makes a viewer highly 

sensitive towards the centre is viewing strategy. Viewing strategy is the by-product of 

photographer bias where in the viewers repeatedly re-orient themselves to the image 

centre. Whenever a viewer looks at an image, they have a natural assumption that an 

important or interesting object will lie at the centre of the image and they initiate their 

search process from the centre. In datasets like Judd et al. [12] and DUT-OMRON 

[141] the first eye fixation during eye tracking is eliminated to avoid the viewing strategy 

as the first fixation is generally at the centre of the screen. In addition to these two 

important root causes, some other less-influential factors include, orbital reserve 

(straight head position of the viewer) [161, 163, 164], motor bias (tendency to use short 

viewing saccades) [159, 165], screen centre [166], low sensitivity of the HVS towards 

the periphery of the human eye [167-169] and some other high level influences [167-

169]. 

Humans have a tendency to gaze at faces irrespective of other visual stimuli 

[147, 170, 171]. The evidence of sensitivity of humans towards faces collected from 

infants as young as 6 weeks suggests that faces are visually captivating [172]. It has 

been found that, in free-viewing conditions, people are 16.6 times more likely to look at 

faces compared to other similar regions [147]. Moreover, it is also shown that facial 

expression and gaze direction have an in-built capacity to attract attention [173]. 

Therefore, in this work human faces were considered to be a predominant top down 

feature, irrespective of whether they are in-focus or out-of-focus. 

6.3 Directly Related Work 

In chapter 3 the literature related to the state-of-the-art visual attention models 

was provided. These models were built using different kinds of approaches to detect 

salient regions in the images. The current work is compared with these models to show 

the effectiveness of the proposed approach. In the following sub sections the directly 

related work of the top-down aspects such as centre sensitivity and using human faces 
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which are the key components of the proposed model for improving the prediction 

accuracy are analysed. The main purpose of providing the directly related work is to 

indicate the novelty of the proposed model.  

6.3.1 Centre Sensitivity 

In the literature, centre sensitivity has been used by the authors with an aim of 

improving prediction accuracy. Although by considering centre bias the model’s 

prediction accuracy can be improved, a performance drop can be seen if the key 

components of the attention model are not well innovated architecturally (architectural 

innovation refers to different types of strategies used to combine the key components 

of the developed attention model). Another reason that can affect the performance is 

the response of other feature maps towards the very way in which the centre map has 

been modelled. In the literature the centre map is obtained using different methods. For 

instance a very recent model SDSP [13] considers centre as salient by modelling the 

location prior. Despite considering centre sensitivity the model has achieved low 

prediction accuracy when compared with the state-of-the-art as shown in Table 6.3 

(section 6.5.2). In the work by [174] it is also shown that adding centre bias to some of 

the best models has resulted in performance drop. The models in the literature are 

optimised towards centre either explicitly [12] or implicitly [175]. The GBVS [175] model 

is implicitly centred through activation and normalisation. It is one of the best examples 

of implicit optimisation; however; their approach resulted in an increased computational 

complexity. Judd et.al [12] has explicitly biased towards their saliency maps towards 

the centre by adding a uniform Gaussian blob. Although it has achieved good 

prediction accuracy the complexity of the model is very high due to the calculation of 

several complex channels such as person, face, car, horizontal line, gist, etc [46]. 

6.3.2 Human Faces  

The authors of [9] indicated that face detection can be used as a posteriori 

refinement of the saliency map. Their approach is to use all 1’s for the face regions and 

0 otherwise. However, this is a naive approach as it ignores user sensitivity distribution 

across the human face. Similarly Judd et al. [12] detected human faces in her saliency 

model for improving prediction performance. The authors, through their qualitative 

analysis, indicated that users have different sensitivity to different parts of the human 

face. However, they still used simple bounding boxes leaving modelling of the face 

saliency map to future research.  In the work by [89] the facial centres are convolved 

using 2D Gaussians. Although a better face map is built by this approach, taking 

standard deviations equal to facial radius limits the accuracy. Moreover in their work, 
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face map importance is not preserved as it is equally weighted as the other bottom-up 

features (intensity, colour and orientation).  

6.4 Proposed Model 

The main components of the model are generation of a focus map using the 

salient frequency coefficients present in in-focus areas, generation of a centre 

sensitivity map, face detection and generation of a face map and the integration of 

focus, face and centre maps to obtain the final visual saliency map at the original 

image resolution.        

6.4.1 Focus Map 

The process is similar to the DCT based in-focus attention model described in 

chapter 5, however, with the following improvements. In this work the Integer Cosine 

Transform (ICT) [176] is used because of its low complexity compared to DCT (see 

 

 

 

 

 

 

 

                                                   

section 6.5 for complexity comparison). The Value channel of the perceptual HVS 

colour space is used to calculate the ICT. Earlier work in chapter 5 employed the Y 

component of the YUV color space to calculate the DCT. In this work, HSV colour 

space is used to improve the prediction accuracy of our earlier focus detection 

algorithm. Similar to the procedure followed for developing the in-focus detection 

algorithm in Chapter 5, random images were selected and converted to HSV color 

space. In-focus regions of the images were manually observed and identified as shown 

in Figure 6.1. The value component (V of HSV) of the entire image is extracted and 

divided into 8x8 blocks and the ICT of each 8x8 block is calculated. The 8x8 Integer 

Cosine Transform is defined as  

 

Figure 6.1:  Image with enclosed region in-focus 
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Where X is 8x8 image block as input to the transform, C8 is the core transform matrix 

and W is the output Integer transform of X. The core transform matrix implementation is 

obtained from [176]. The ICT transformed 8x8 blocks revealed that in-focus blocks 

have significantly large coefficients compared to out-of-focus blocks. The foreground 

superblock, background superblock and full image superblock are calculated as they 

were calculated in the earlier work. The spatial frequency composition of in-focus 

(foreground) and out-of-focus (background) regions were analysed by selecting the ICT 

coefficients in all three superblocks using the zig-zag scanning method. The average 

frequency coefficient magnitudes of foreground, background and the overall image 

superblocks are plotted on a graph to determine the relationship between in-focus and 

out-of-focus coefficients. The ICT frequency coefficient amplitude pattern of an image 

is shown in Figure 6.2.  

 

The graph reveals that the peaks of spatial frequency amplitude waveform of the 

foreground (in-focus), background (out-of-focus) and the entire image almost coincide. 

The maximum magnitude difference occurs between in-focus and out-of-focus 

waveform at these peak frequencies. These amplitude differences tends to be 

significant within a band of frequencies which excludes both very low (DC component 

and the first few very low frequencies are not shown here due to higher amplitudes) 

and high frequencies. It also reveals that the peak magnitude frequencies in the in-

focus regions are absent in out-of-focus regions. Further, these peak frequencies have 

       Figure 6.2:  Superblock coefficients magnitude vs. Zig-zag scanned frequencies 
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a significant presence in the overall image ICT. Therefore, the peak frequency 

coefficients in the whole image can be used to identify in-focus regions. Experiments 

with a number of images revealed that the DC frequency coefficient represents gradual 

changes and high frequencies (35-63) do not show a significant difference between in-

focus and out-of-focus areas as shown in the Figure 6.2, Figure 6.3 and Figure 6.4. 
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               (a) Sheep-RGB picture                                  (b) Sheep-Y picture                                     

 

                                   (C) Sheep - Zigzag scanned ICT coefficients        

Figure 6.3: Sheep (a) RGB picture (b) Y-picture (c) Zig-zag scanned ICT coefficients 
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Therefore, these zigzag scanned frequencies coefficients are band-pass filtered to 

remove the high and very low frequency ICT coefficients. All frequency coefficient 

positions that correspond to the peaks within the band of frequencies of the image 

superblock coefficients are identified and stored. These are the salient spatial 

frequencies present in the in-focus areas of the image. 

     Figure 6.4: Face (a) RGB picture (b) Y-picture (c) Zig-zag scanned ICT coefficients 

 

(a) Face-RGB picture                                (b)  Face-Y picture                   

 

                           (c) Face-Zigzag scanned ICT coefficients        
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In the previous model, the final focus map was generated by plotting the sum of 

peak frequencies in each DCT block for the entire image. However, in this work an 

initial focus map is generated using the ICT. Then the initial focus map is filtered with a  

 

 

 

 

 

 

 

                           

 

smoothing Gaussian kernel (size nn ) and contrast stretched by multiplying each pixel 

in the focus map with a factor k . The smoothing filter is used to generate connected 

regions from the sparse focus map. The contrast is stretched to improve the overall 

intensity of the focus map. The resolution of the focus map is 1/8th of the resolution of 

the image in each dimension. This is because the focus map is generated by using the 

sum of salient frequencies of each 8x8 block. Therefore, the focus map is up-sampled 

to the original image resolution using bi-cubic interpolation. The focus map 

corresponding to Figure 6.1 is shown in Figure 6.5.  

6.4.2 Centre Sensitivity Map 

Similar to Judd et al. [12] the centre sensitivity is explicitly taken into account 

but with one major difference. It was hypothesised that human eye saccades are 

affected by the height and width of the image. The eye saccades were oriented 

vertically in the centre if the height of the image is far greater than width. Similarly they 

are oriented horizontally if the width is greater than the height. As an example it can be 

seen in the Figure 6.6, the image with the ship and corresponding eye tracking map 

shows that most of the fixations are clustered around the centre and oriented towards 

the horizon. This phenomenon is different in the other image. As the height of the 

image is higher than the width the fixation are initially clustered at the centre and then 

oriented vertically as saccades transit towards the periphery. This phenomenon is 

computationally modelled by taking an anisotropic 2D Gaussian with standard 

deviations as a function of percentage of image resolution. 

Figure 6.5:  Focus map of the image 

shown in Figure 6.1 
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This percentage is empirically derived using hill climbing approach which is a 

heuristic technique of multi variable optimisation. The centre map is obtained using a 

2D Gaussian with standard deviations x  and 
y  as shown below. 

  x =   6wc  (6-2) 

                         

  
y =   6hc   (6-3) 

 

Where c  is a fraction of height ( h ) and width ( w ) of the original image. The value of 

1c  means that the Gaussian distribution approximately fills the entire centre map 

horizontally and vertically (corresponding to 99.7% of area under curve for a distance 

of 3 standard deviations either side from the centre). A sample centre map is shown in 

Figure 6.7. The focus and the centre maps are normalised to the same dynamic range 

and are combined using the following equation. A linear summation approach was 

utilised to combine the maps as it has some psychophysical support and simple to 

apply [177]. Where,   is a weighting parameter. Therefore, the combined map 

consists of weighted additions of pixel values of focus and centre maps. The resolution 

of the generated saliency map is 1/8th of the resolution of the image in each dimension. 

 

 

Figure 6.6:  Images with Corresponding eye tracking maps 
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  CentreMapFocusMapUniqueMap  )1(   (6-4) 

 

This is because the focus map is generated by using the sum of salient frequencies of 

each 8x8 block. Moreover, the resolution of the centre map is chosen as the size equal 

to that of the focus map. Therefore, the obtained map is up-sampled to the original 

image resolution using bi-cubic interpolation.  

6.4.3 Face Map 

The face detection algorithm from the authors of [90] was used in this work for 

detecting human faces. Square shaped bounding boxes are drawn around the detected 

faces to obtain the size and position of the face. To generate a face map, initially a 

binary map of zeros of original image resolution is constructed. For each detected face, 

2D Gaussian blobs were generated with standard deviation values x  and 
y as:  

 

   x =
y =  *)6/(S   (6-5) 

 

Where S  denotes the length of the bounding box side and   is a parameter 

determining the size of the Gaussian blob or the fixation cluster in relation to the 

bounding box size. The value of 1  means that the Gaussian distribution 

approximately fills the entire bounding box, corresponding to 99.7% of area under 

curve for a distance of 3 standard deviations either side from the centre. When 1 , 

(a) Horizontal Centre map 

Figure 6.7:  Centre map demonstration. (a) Horizontal centre map. (b) Vertical 

centre map 

 

(b) Vertical Centre map 
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the fixation cluster moves towards the centre of the face and 1 expands the cluster 

towards the periphery of the box. However, the Gaussian distribution is confined to the 

bounding box dimensions (clipped at the boundary) because most of the actual 

fixations tend to cluster within the face region. A sample image with faces, bounding 

boxes and the corresponding face maps ( 3.2 ) are shown in Figure 6.8. The 

optimal selection of   is discussed in the later sections. The generated face map is 

combined with the unique map (focus-centre) map as described in the next section.  

 

 

 

 

                           

                                                                                            

                                      

 

 

                                

 

 

6.4.4 Visual Saliency Map 

The saliency map is obtained by combining focus and centre maps that are 

normalised to the same dynamic range. These normalised maps are combined using 

the following equation. 

 

  FaceMapUniqueMapencyMapVisualSali   (6-6) 

 

During the process of combining a number of weightings (including overlaying) were 

considered as part of the parameter tuning process and it has been empirically found 

that overlaying or simple addition of face map to the focus-centre map gives better 

accuracy as the importance of face map or top-down component is preserved.  

6.4.5 Parameter Tuning 

There are a number of model parameter values that need to be tuned. Due to 

the high number of parameters and their value ranges, the parameters of the model are 

tuned using hill climbing method [178]. These parameters are 

      (a)                                           (b)                                          (c) 

 
Figure 6.8:  Face map generation. (a) Image with 3 faces. (b) Face localisation 

using bounding boxes. (c)  Face map using Gaussian blobs 
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i) Gaussian smoothing kernel size n  ( nn kernel) of the focus map. 

ii) Contrast multiplier k  of the focus map. 

iii)  Fraction c  of the centre map, used to calculate the standard deviations of the 2D 

Gaussian centre sensitivity distribution. 

iv)  Weighting parameter , used to combine the centre and focus maps. 

 

The objective of parameter tuning is to choose the model parameters in order to 

maximise the correlation between the eye fixation ground truth of images and the 

saliency maps obtained using the saliency model. Table 6.1 shows the parameters and 

the value ranges involved in the tuning process. An exhaustive search for the selection 

of the optimal set of model parameters will require large number of permutations to be 

tested on a dataset. This requires a prohibitive amount of processing resources. 

Therefore, a hill climbing algorithm [178] was used to tune the parameters of the model. 

The hill climbing approach belongs to the family of heuristic methods of local search for 

computational optimisation. It has been utilised in explanation based learning systems, 

utility analysis models and robotics [179], [180] for calculating optimal solutions. Hill 

climbing is an iterative process in which it starts with a random or arbitrary set of 

parameters as the solution to the problem. These parameters are purely based on  

 

 

 

 

 

 

 

random guess. Then by incrementally changing each variable in the given set of 

parameters the process attempts to find a better solution. If a change in one particular 

variable produces a better result, then the process iterates by making an incremental 

change to the same parameter until no further improvements in solution are found. The 

same procedure is repeated with other sets of parameters.  Generally the hill climbing 

is stopped based on three conditions. 

                     Table 6.1:  Model Parameter Values 

Parameter     Value range 

       n            3 to 24 

       k  0.1 to 4 in steps of 0.1 

       c         0.05 to 1.5 in steps of 0.05 

                 0.05 to 1 in steps of 0.05 
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i) No further improvements can be seen in the solution. 

ii) The goal state is achieved. 

iii) A fixed number of iterations have been performed. 

The goal state or the fitness function of the hill climbing algorithm is evaluated 

using the Correlation Coefficient (CC) [181] metric. During the process different 

parameters are tested to optimise the prediction accuracy between the eye fixation 

ground truth and the proposed attention model under test for the Judd et al. [12]  image 

database. In the current development the hill climbing process is terminated when no 

further improvements are observed. The tuned parameter values were found to be, 

12n , 3k , 95.0c  and 65.0 . 

6.4.6 The Complete Visual Attention Model 

   The complete visual saliency detection model can be summarised as: 

1. An ICT is performed across all 8x8 blocks of the image using the value channel 

of HSV colour space. 

2. The image superblock is calculated and the frequency coefficients are zig-zag 

scanned. 

3. The zig-zag scanned ICT coefficients are band pass filtered. 

4. The peaks of the image ICT are obtained and the magnitude of the frequency 

coefficients corresponding to these peaks are summed and plotted as a salient 

frequency map. 

5. The salient frequency map is Gaussian smoothed, contrast stretched and up-

sampled using bi-cubic interpolation to original image resolution to generate the 

final focus map. 

6. The centre maps are generated by placing anisotropic 2D Gaussian at the 

centre of the image with standard deviation as a function of the image 

resolution. 

7. The focus map and the centre map are combined as per equation (6-4). 

8. Face detection is performed on the original image and any detected faces are 

marked using Gaussian blobs. 

9. The face map is overlaid on the combined focus and centre map to generate 

the final saliency map. 
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6.5 Experimental Results 

 The performance results of the proposed visual attention model are given in the 

following sections. The model has been initially tuned or trained using the Judd et al. 

[12] public dataset which contains 1003 images.  

6.5.1 Quantitative analysis 

A quantitative evaluation of the proposed model was carried out against ten 

popular visual saliency models. Three quantitative metrics, namely, Correlation 

Coefficient (CC) [181], Normalised Scanpath Saliency (NSS) [146] and Area Under 

receiver operating Curve (AUC) [12, 182] are used to evaluate the performance.  In 

order to comprehensively evaluate the performance of the model, the Judd’s database 

is manually split into two sub datasets comprising of images with and without human 

faces (264 images with human faces and 739 images without human faces). 

The sub category which includes human faces is further divided into images 

with clear frontal faces (182) and images with non-frontal faces (82). Category of 

images with non-frontal faces include, faces that are angled sideways, unclear faces 

and very small faces relative to image size. The proposed model uses frontal face 

detection to detect human faces [90]. Therefore, the performance of the model was 

evaluated for the complete dataset and also for these sub categories of images. The 

results are shown in the Table 6.2. It can be seen that the proposed model performs 

better than the state-of-the art in terms of prediction accuracy for all the three metrics 

across all the three sub datasets. As shown in the Table 6.2 the model could only 

accurately detect the faces in clear frontal face category of images (182).  

In the other category, the face detection did not perform accurately (i.e. 

non/partial detections and false detections). In the images with frontal human faces the 

proposed model achieves significant improvement in prediction accuracy. This can be 

attributed to the fact that humans have a predominant generic top down influence in 

looking at human faces. Visual saliency is a combination of both bottom-up and top-

down influences. Therefore to achieve good prediction accuracy the saliency models 

should incorporate both generic bottom-up features in the images and generic top-

down features such as human faces  In the non-frontal face category, the proposed 

model does not perform due to challenges in face detection. However, the proposed 

model still performs better than other state-of-the-art attention models. 
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In the case of images without human faces, the model generates the saliency 

map only using the in-focus detection and centre sensitivity maps. The results show 

that the model performs better than the state-of-the-art saliency models. Similarly on 

the entire dataset the proposed model outperforms the state-of-the-art in predicting 

human fixations which can be seen in the Table 6.3 (section 6.5.2). 

6.5.2 Measure of Dispersion 

The research community has used popular metrics like CC, NSS and AUC to 

evaluate the performance of the saliency models. The performance is quantified by 

taking the mean of the metric scores of all the images within the dataset. Although they 

have used sophisticated metrics to quantify the performance, all of these metrics are 

used only to measure the central tendency or mean across the dataset. However, 

measuring the central tendency in itself is not enough to describe the performance. It 

only indicates the global performance of the saliency model across a dataset, but fails 

to determine how effective and consistent the model is across each image (different 

visual stimuli) within the dataset. In order to determine the consistency, the dispersion 

measure was computed across the dataset.  

Table 6.2:  Quantitative Comparison of Saliency Models on Subsets of Judd 

dataset 

Year Models 

Images without faces 

(739) 

Images with faces: 

Successful face 

detection (182) 

Images with non-frontal 

faces: failed/partially 

failed face detection 

(82) 

CC NSS AUC CC NSS AUC CC NSS AUC 

1998 NVT [6] 0.24 1.10 0.76 0.21 1.02 0.77 0.19 0.88 0.69 

2006 GBVS [7] 0.30 1.36 0.81 0.27 1.32 0.81 0.28 1.32 0.81 

2007 SR [8] 0.18 0.84 0.69 0.18 0.89 0.72 0.19 0.87 0.70 

2008 SUN [70] 0.16 0.76 0.68 0.14 0.69 0.67 0.16 0.76 0.68 

2010 PQFT [10] 0.13 0.63 0.57 0.09 0.47 0.54 0.12 0.59 0.56 

2010 CAS [9] 0.23 1.06 0.74 0.21 1.02 0.76 0.23 1.10 0.76 

2012 SS [11] 0.23 1.07 0.74 0.22 1.08 0.77 0.26 1.22 0.77 

2012 RCSS [122] 0.24 1.08 0.75 0.20 0.96 0.74 0.22 1.00 0.75 

2013 SDSP [13] 0.22 0.99 0.72 0.19 0.95 0.73 0.20 0.93 0.72 

2013 WBSD [127] 0.19 0.90 0.71 0.17 0.85 0.71 0.19 0.89 0.71 

2017 Proposed 0.32 1.43 0.82 0.33 1.64 0.83 0.30 1.38 0.82 
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In statistics the commonly used techniques of dispersion measure are range, 

interquartile range and Standard Deviation (SD). Range is a simple measure of 

dispersion; however, it is very sensitive to outliers and does not use all the 

observations in the dataset.  Interquartile range has an advantage of not being affected 

by the extreme values; however, the main disadvantage regarding this measure is not 

being amenable to mathematical manipulations. On the contrary SD is a widely used 

technique of dispersion measure in statistics. It considers all the values of each image 

in determining the spread. So far, the dispersion measure for saliency consistency has 

not been used by any author to evaluate the performance of a visual attention model. 

The higher the SD, the lower is the consistency. In applications like video compression, 

a higher mean and a lower SD are extremely important for a model to be used across 

each and every video frame. Therefore, depending on the SD and mean, the models 

were categorised as follows. 

 

i) High mean and low SD:  Indicates that the chosen model features and 

combination strategies are very good for computing saliency. Moreover the model 

consistently detects salient regions with high prediction accuracy across different 

visual stimuli in the dataset. 

 

ii) High mean and high SD: Indicates that the model is highly inconsistent. Such a 

type of model is actually tuned to detect salient regions only in certain types of 

images. These models achieve high prediction accuracy in few images and a very 

low accuracy in rest of the images. Therefore, the features employed in developing 

the model are not really effective. 

 

iii)   Low mean and high SD: Indicates that the model is highly inconsistent with low 

prediction accuracy across all the images. 

 

The performance of the saliency model is evaluated on the entire Judd’s dataset 

using three metrics in terms of mean and SD. These results are shown in Table 6.3. It 

can be inferred from the table that the proposed model achieves higher CC and low SD 

compared to the state-of-the-art models. The RCSS model achieves low SD similar to 

the proposed model. However, the prediction accuracy of RCSS is very low compared 

to the proposed model. The other metrics (NSS and AUC) also indicate a high 

accuracy with low SD for the proposed model. 
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                                                         Judd’s dataset (1003) 

Models CC SD NSS SD AUC SD 

NVT  0.23 0.13 1.09 0.66 0.76 0.11 

 GBVS  0.29 0.11 1.35 0.63 0.81 0.08 

SR  0.18 0.15 0.85 0.78 0.69 0.14 

SUN  0.15 0.13 0.75 0.65 0.67 0.13 

PQFT  0.12 0.12 0.59 0.67 0.56 0.08 

CAS  0.22 0.14 1.05 0.73 0.74 0.12 

SS  0.23 0.15 1.08 0.78 0.74 0.12 

RCSS  0.23 0.10 1.05 0.53 0.75 0.08 

SDSP  0.21 0.11 0.97 0.58 0.72 0.10 

WBSD  0.18 0.12 0.88 0.64 0.71 0.12 

Focus+Center 0.30 0.11 1.36 0.57 0.81 0.09 

Proposed 0.32 0.10 1.46 0.52 0.82 0.07 

 

 

6.5.3 Database Independence 

The performance of the model is tested using a larger non-training publicly 

available DUT-OMRON [141] image dataset. The dataset consists of 5168 images 

manually selected from more than 140,000 images. According to the authors these 

images have salient regions with relatively complex background. The ground truth eye 

tracking fixations are collected using 5 participants with normal or corrected to normal 

vision. The results of applying our model on DUT-OMRON are presented in Table 6.4. 

It is clear from the table that the performance of the proposed model is not database 

dependent and once trained it is capable of predicting fixations irrespective of the type 

of visual stimuli. 

 

 

 

 

 

Table 6.3:  Comparison of Dispersion measure of Saliency 

Models on Judd dataset 
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6.5.4 Qualitative Analysis 

The saliency maps for four sample images from Judd’s database for our model 

and ten state-of-the-art saliency models are given in Figure 6.9 (a) and Figure 6.9 (b). 

The Ground Truth Fixation Maps (GTFM) is also shown. In the first image (flower), the 

ground truth indicates the users gazed mostly at the centre of image. The saliency map 

of the proposed model exhibits higher intensity at the centre when compared to the 

other models. It also has lower false detections when compared to other models which 

detect unimportant areas as salient. In the second image, both GBVS and the 

proposed model gave closer performance to the ground truth. In the last two images 

the ground truth maps indicate high user sensitivity towards face regions. The 

proposed model also shows higher intensity at the face regions for both images, 

compared to other models. Most other saliency models fail to detect these regions as 

they ignore top-down features. 

 

 

 

 

 

  Table 6.4:  Quantitative Comparison of Saliency Models on DUT-OMRON Dataset 

Models CC NSS AUC 

NVT  0.36 1.40 0.81 

 GBVS  0.40 1.45 0.83 

SR  0.26 1.10 0.73 

SUN  0.21 0.86 0.70 

PQFT  0.18 0.76 0.62 

CAS  0.32 1.37 0.78 

SS  0.32 1.37 0.78 

RCSS  0.33 1.33 0.80 

SDSP  0.32 1.24 0.76 

WBSD  0.30 1.23 0.77 

Proposed 0.41 1.50 0.84 
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Figure 6.9a:  Qualitative comparison of the state-of-the-art visual saliency 

models for four sample images from Judd’s dataset 
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Figure 6.9b:  Qualitative comparison of the state-of-the-art visual saliency 

models for four sample images from Judd’s dataset 
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6.5.5 Computational Complexity 

In a time constrained scenario, a saliency model should be fast enough to meet 

the real time performance requirements. As mentioned in section 6.4, the proposed 

model uses the Integer cosine transform (ICT) instead of the traditional Discrete Cosine 

Transform (DCT). The model complexity using DCT and ICT and the complexities of all 

the individual components of the proposed model are provided in Table 6.5 and 6.6 

respectively. It can be inferred from Table 6.5 that the proposed model using ICT saves 

30% of complexity with a slight gain in prediction accuracy compared to the model 

using DCT. In the Table 6.6 it can be observed that almost 50% of the time is occupied 

by face detection. However, as shown in Table 6.2 considering human faces for 

saliency detection contributed significantly to prediction accuracy in the images with 

faces and therefore makes it an important choice for saliency detection. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 The complexity of the proposed model is compared with the state-of-the-art saliency 

models in Table 6.7. An unoptimised MATLAB code (without MEX code) was used for 

all of these saliency models in order to ensure a fair comparison. The average time 

required to compute a saliency map is calculated over 100 images with resolution 

Table 6.5:  Prediction accuracy and complexity comparison of 

the proposed model using DCT and ICT (MATLAB) 

Saliency Model  
Prediction Accuracy Complexity 

 (secs) CC NSS AUC 

Model using DCT 0.3202 1.4607 0.8222 0.98 

Model using ICT 0.3208 1.4637 0.8224 0.68 

Saliency Model Individual 

Components 

Complexity 

(secs) 

In-Focus detection 0.33 

Centre detection 0.01 

Face detection 0.34 

Table 6.6:  Complexity comparison of the individual components 

of the proposed model (MATLAB) 
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1024x768 from Judd’s database. It is evident that, SR, SDSP and SS are the fastest 

among the models. However, they are limited in terms of prediction accuracy. 

Compared to our model, GBVS is the next best performing model in terms of accuracy. 

However, it is still significantly more complex than our model. The proposed model 

achieves 42% of complexity reduction and better prediction accuracy compared to 

GBVS and therefore outperforms state-of-the-art saliency models. 

 

        Models NVT  GBVS  SR  SUN  PQFT  CAS  SS  RCSS  SDSP  WBSD  Ours 

Complexity 

(secs) 

(MATLAB) 

0.76 1.18 0.01 9.36 0.83 45.96 0.03 5.01 0.06 24.28 0.68 

 

6.6 Discussion 

A low complexity visual attention model is proposed by improving the DCT 

based in-focus visual attention model proposed in chapter 5. The DCT operation is 

computationally intensive as it involves many floating point multiplications. Therefore, 

to speed up the entire process an Integer Cosine Transform (ICT) is used instead of 

the traditional DCT. The integer based transform involves integer arithmetic (additions 

and possibly multiplications), and thus its implementation is greatly simplified compared 

to the DCT. Moreover, in the earlier model, a DCT based focus map was calculated 

using Y-channel of YCbCr colour space. However, in the improved model the focus map 

is computed in HSV colour space. HSV is a perception oriented non-linear colour 

space. The colour information is represented by hue and saturation and the colour’s 

brightness (the amount of light) is indicated by the value channel. HSV colour space is 

more intuitive to human vision for its good ability of representing the colours of human 

perception. The Human visual system (HVS) is more sensitive to lightness than 

saturation and hue. Therefore, the value channel of HSV colour space is used for 

calculating the saliency map. Moreover, as the saliency is calculated only in 2-D value 

space, it reduces the computational complexity and memory utilisation of the model. 

The results demonstrate that by using ICT and HSV colour space, significant 

computational complexity savings and a slight improvement in the prediction accuracy 

has been achieved. The in-focus detection consumes 0.33 seconds (refer to section 

6.5.5) for computing the focus map for images with resolution 1024x768 on Intel core 

I7-2600K CPU.  

      Table 6.7:  Complexity comparison of state-of-the-art saliency models 
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Centre sensitivity is incorporated into the model to optimise the accuracy. The 

centre sensitivity map has been obtained by using an anisotropic 2D Gaussian as a 

function of image resolution. It has been hypothesised that the viewer’s gaze is 

oriented vertically when the height of the image is greater than the width of the image 

and vice versa. This is the main reason behind using anisotropic Gaussian distribution 

for modelling image centred viewer’s gaze. The time complexity of the model in 

calculating the centre map has been evaluated over 100 images with resolution 

1024x768. The model needs an average time of 0.01 seconds for generating the centre 

map. The performance of the model was analysed qualitatively and quantitatively on 

Judd’s image dataset available in the research community. The results have shown 

that the model has achieved a prediction accuracy of CC=0.30, NSS= 1.36 and 

AUC=0.81 on Judd’s dataset (refer to section 6.5.2). The proposed model has 

achieved a 1% prediction accuracy (with respect to CC metric) improvement with 62% 

of computational complexity savings when compared to the GBVS model. GBVS is the 

best model among the chosen benchmark state-of-the-art saliency models [70], [10], 

[127], [6], [7], [8], [11], [122], [13], [9] according to qualitative and quantitative analysis. 

When compared to the earlier saliency model which detects in-focus regions using 

DCT coefficients, this model has achieved a 12% improvement in prediction accuracy 

(with respect to CC metric) with 57% of complexity reduction.  

The prediction accuracy of the model is further improved by including human 

face map. The main reason behind choosing face sensitivity for modelling visual 

attention was that in free viewing conditions human faces attract viewers more when 

compared to other top-down features and it is also a common top-down bias for 

majority of viewers. Further, there is also evidence in the literature that viewers tend to 

look at human faces independent of the task at hand. The Viola Jones face detection 

algorithm was used to detect human faces due to its wide usage and effectiveness at 

detecting human faces. Face maps were mapped by using square shaped bounding 

boxes around the human faces. This process involves generating a binary map of 

zeros of original image resolution and placing Gaussian blobs in the regions where 

human faces are located. The Gaussian distribution has been confined to the bounding 

box to avoid the false detections (considering non salient regions as visually salient). 

The parameters of the face map have been tuned using the hill climbing approach. The 

computational complexity of the model in calculating the face map has been evaluated 

over 100 images with resolution 1024x768. The model on an average consumes 0.34 

seconds for generating the face saliency map which includes time needed for face 

detection and generating the corresponding face map. The model achieved a 

prediction accuracy of CC=0.41, NSS=1.50 and AUC=0.84 on the DUT-OMRON 
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dataset and an accuracy of CC=0.32, NSS= 1.46 and AUC=0.82 on the Judd’s dataset 

(refer to section 6.5.3 and 6.5.2). When compared to the GBVS model which is the best 

among the benchmark state-of-the-art visual attention models, the proposed model has 

achieved 3% and 1% of prediction accuracy (with respect to CC metric) improvement 

on Judd’s and DUT-OMRON datasets respectively. Further, it has achieved 42% of 

computational complexity savings when compared to the GBVS model (the GBVS 

model has achieved the best prediction accuracy among the chosen benchmark 

saliency models). Note that the computational complexity of the entire model in 

calculating the saliency map has been evaluated over 100 images with resolution 

1024x768 on Intel core I7-2600K CPU. Further, this model has achieved 2% 

improvement in the prediction accuracy (with respect to CC metric) when compared to 

the earlier visual attention model which detects in-focus regions using ICT coefficients 

and centre sensitivity on the Judd’s image dataset. The advantages and disadvantages 

of this model are summarised below. 

   

Advantages 

 This model achieves better prediction accuracy with significant reduction in 

computational complexity when compared to the DCT based in-focus visual 

attention model. 

 

 In the scenario when an image is completely out-of-focus or in-focus the model 

is still able to derive the salient regions by detecting image centre as salient. 

When there are no features of interest in the images then there is a high 

probability that a viewer’s gaze will be oriented towards image centre because 

of photographer bias and viewing strategy. 

 

 The proposed model has achieved a prediction accuracy of CC=0.33, 

NSS=1.64 and AUC=0.83 for images with in-focus regions and frontal human 

faces. The state-of-the-art has achieved a prediction accuracy of CC=0.27, 

NSS=1.32 and AUC=0.81 (refer to section 6.5.1). This clearly indicates 6% of 

improvement in prediction accuracy (with respect to CC metric) over the state-

of-the-art attention models for images with frontal human faces. This indicates 

that the model is good for detecting salient regions with frontal human faces. 

Further, the model requires an average time of 0.68 seconds for computing the 

saliency map of images with resolution 1024x768.  This is 42% of complexity 

reduction when compared to the GBVS model which achieves the best 
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prediction accuracy among the chosen state-of-the-art attention models for this 

research. 

 

 The proposed model has achieved a prediction accuracy of CC=0.32, 

NSS=1.43 and AUC=0.82 in images where top-down features such as human 

faces are absent (refer to section 6.5.1). In this case the GBVS model (the best 

among the state-of-the-art models) has achieved a prediction accuracy of 

CC=0.30, NSS=1.36 and AUC=0.81. This indicates 2% of improvement in 

prediction accuracy (with respect to CC metric) over the state-of-the-art for 

images without human faces. (Note that no improvement can be seen in 

computational complexity as the face detection algorithm operates even on 

images without human faces). The proposed model is able to outperform the 

state-of-the-art based on in-focus regions and centre sensitivity in the absence 

of human faces.  

Disadvantages  

 The model might produce inaccurate results with peripheral salient regions. The 

main reason behind this is the model giving more priority to the image centre 

than periphery. Due to this, less importance is given to peripheral salient 

regions in the images. However, the probability of images with peripheral salient 

regions is very low because of photographer bias and viewing strategy. 

 

 In an image with crowd scene there will be only few visually salient human 

faces in which viewers are interested. In contrast to this the proposed model 

detects all the faces present in the image as visually salient. These false 

detections in the face saliency map will result in the performance (prediction 

accuracy) drop of the attention model. 

 

 The model uses frontal face detection algorithm and hence detects only frontal 

human faces present in the images. The model produces inaccurate results if 

there are non-frontal faces present in the images.  

 

 Although the model is better than the state-of-the-art, its prediction accuracy 

and complexity has to be further improved to use it in real time applications like 

image/video compression. 
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6.7 Conclusion  

In this chapter, a low-complexity visual saliency detection model for detecting 

salient regions in images is proposed. The salient regions are detected using three 

main aspects that attract the attention of the Human Visual System. They are, (a) in-

focus areas – mapped using ICT based salient frequency detection, (b)  image centre 

sensitivity – mapped using a 2D Gaussian distribution and (c) human faces – mapped 

using face detection and Gaussian blobs. The model parameters are tuned using a hill 

climbing algorithm. The performance of the saliency model in predicting human eye 

fixations is evaluated against ten state-of-the-art visual saliency detection models using 

two publicly available datasets. The results demonstrate that the proposed model 

shows higher prediction accuracy in saliency detection at significantly lower 

computational complexity compared to other state-of-the-art saliency models. 
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7 Evaluation of the Effectiveness of Video Quality 
Metrics in Quality Assessment of Pre-processed 

Video 

7.1 Introduction 

n the recent years a growing interest has been witnessed in pre-processing 

based perceptual video quality optimisation algorithms [183], [184], [185], 

[186], [187]. As subjective video quality evaluation is a complex and time consuming 

activity, objective video quality metrics which can be used to detect perceptual quality 

variations when videos are pre-processed will make the development of algorithms 

easier. These objective video quality metrics are essential for speeding up video quality 

tests. Moreover, objective metrics are widely employed during the development of 

perceptual video quality optimisation algorithms as they can be easily implemented in 

software or hardware to generate results automatically without viewer intervention. This 

chapter investigates nineteen state-of-the-art objective video quality metrics to 

determine the effectiveness of the metrics in detecting the perceptual variations 

induced by Gaussian pre-processing filter.  These metrics include Full Reference (FR) 

[188], [189], [190], [191], [192], [193], No Reference (NR) [194], [195], [196], [197], 

[198] and Reduced Reference (RR) [199] video quality metrics. The results show that 

either of these metrics effectively detects the quality variations when videos are pre-

processed. However, No Reference metrics show better performance when compared 

to both FR and RR metrics. In particular, the Naturalness Image Quality Evaluator 

(NIQE) [198] is notably better at detecting perceptual quality variations. Moreover, the 

traditional methods of evaluating video quality metrics such as the Spearman Rank 

Order Correlation Coefficient (SROCC) [200] and Pearson Linear Correlation 

Coefficient (LCC) [200] are shown to be ineffective in determining the effectiveness of 

the quality metric in detecting variations in the perceived quality, particularly when the 

metrics are to be employed during the development of pre-processing based 

perceptual video quality optimisation algorithms.  

This chapter is self-contained with its own background, literature survey, 

methodology, experimental procedure and the results. In the section 7.2 the main 

hypothesis is explained. The subjective testing methods and the objective video quality 

metrics such as Full Reference (FR), Reduced Reference (RR) and No Reference (NR) 

metrics available in the literature are briefly described in the section 7.3. Moreover the 

benefits and drawbacks of each of these approaches are briefly outlined. In section 7.4, 

the perceptual video quality optimisation algorithms and the testing methods used 

I 
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during the development of these algorithms are provided. The test video sequences, 

the procedure followed for pre-processing the selected video sequences and the video 

quality evaluation methods used in this work are explained in detail in the section 7.5. 

The results obtained with all the chosen quality metrics for this study are analysed in 

the section 7.6. Finally, in the section 7.7 this study is critically discussed and the main 

conclusions drawn from this study are summarised in section 7.8. 

7.2 Hypothesis 

In the literature there is very limited evidence to determine the suitability of 

mathematical error based measurements such as PSNR or other FR, RR or NR 

perceptual quality metrics for the measurement of perceptual video quality variations 

induced by video pre-processing. In this work, it is hypothesised that image/video 

quality metrics which includes error-based and/or FR, RR and NR metrics tend to 

produce inaccurate measurements when significant pixel variations are induced by pre-

processing them using filters. This is mainly because the pixel variations that are 

induced by filtering the frequency components are typically interpreted as distortion by 

these metrics. Although some kind of filtering operations achieve subjective quality 

gain, the objective video quality metrics tend to detect this as perceptual loss. 

Therefore, the objective of this work is to evaluate the effectiveness of state-of-the-art 

image/video quality metrics in measuring the quality of pre-processed and coded video. 

During the investigation, a number of videos will be pre-processed at different filter 

intensities and coded at various bitrates. Later the quality of the coded video 

sequences is evaluated using subjective quality testing procedure. The performance of 

the video quality metric is evaluated by determining their effectiveness in detecting the 

perceptual gain/loss that is observed during subjective video quality evaluations.  

7.3 Video Quality Evaluation 

Video quality evaluation is the process of determining the quality of the videos 

using either subjective or objective video quality measurement strategies. These two 

kinds of approaches are described in this section. The subjective testing methodology 

used in the current work and the different categories of objective quality metrics chosen 

for this study is discussed. Moreover, the advantages and disadvantages of each of the 

approaches are also outlined. 

7.3.1 Subjective Video Quality Assessment 

During subjective video quality assessment human subjects are used to judge 

the quality of the videos. In the literature several subjective quality assessment 
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strategies are proposed for multimedia applications [201]. Some of the popular 

methods include Single Stimulus Continuous Quality Evaluation (SSCQE), Double 

Stimulus Continuous Quality Scale (DSCQS), Double Stimulus Impairment Scale 

(DSIS) and Pair Comparison (PC). In the current study, the SSCQE method is used to 

evaluate the quality of the videos as it has the ability to obtain repeatable results during 

video quality evaluation [202], [203]. In this method test video sequences are presented 

one at a time and then rated using a rating scale. After presenting the test sequence, a 

voting time of less than or equal to 10 s is given to rate the video quality. The timing of 

the stimulus presentation is shown in the Figure 7.1.  

 

 

 

 

      

 

 

 

 

 

 

 

 

 

 

   

 

 

 

Figure 7.1:  Test sequence presentation in the SSCQE method (source [201]) 

 

Figure 7.2:  Eleven point quality rating scale (source [201]) 
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Generally a 5-point rating scale is used however, in the current work an eleven 

point scale is used as a higher discriminative power is needed during the quality 

evaluation. The scale is shown in the Figure 7.2. The number 0 indicates worse quality 

or the reproduction of the video is in no way similar to the original video shown. The 

number 10 indicates best quality and the reproduced video sequence has the quality 

similar to the original video and in no way can be improved further. The quality ratings 

after watching the test sequences by the subjects are written down on a response 

sheet. These numerical responses from the viewers are averaged to draw conclusions 

regarding the quality of the video. The number of subjects used for the test generally 

range from 4 to 40. The general recommendation is to use at least 15 viewers for the 

test and the actual number depends on the required validity. Prior to the actual 

subjective quality test a small group with 4 to 8 video quality experts can be used for 

obtaining indicative results. These subjective quality methods generally provide a 

reliable video quality assessment; however, they are very expensive in terms of 

amount of time and complexity.  

7.3.2 Objective Video Quality Assessment  

The video quality evaluation using a mathematical algorithm is called objective 

video quality assessment. Extensive research performed in the area of video quality 

assessment has produced three categories of algorithms namely FR, RR and NR 

algorithms. The Full Reference (FR) algorithms access the quality of the degraded 

image/video sequence by making a comparison with reference image/video. In the 

case of Reduced Reference (RR) metrics specific features are extracted from the 

reference and the image/video under test. These specific features that are extracted 

from the reference Image/video are sent to the receiving system via a communication 

channel to evaluate the quality. These features include blurriness, blockiness, spatial 

and temporal information. No Reference (NR) metrics quantify the image quality 

without the need of pristine images. It means these video quality metrics do not require 

original image/video as the reference for comparison with the image/video under test. 

In contrast to both FR and NR video quality metrics, NR metrics determine the visual 

quality based on the local statistics of the video. An objective video quality evaluation 

system is shown in Figure 7.3. The input video sequence is initially encoded and sent 

over the network or stored. The received video is then decoded and displayed at the 

end user system. It can be seen in the figure that the Full Reference quality metric 

needs both the original and the decoded video or video under test to evaluate the video 

quality whereas the No Reference (NR) video quality metric needs only the video under 

test to quantify the perceived quality. The current investigation considers FR, RR and 
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NR metrics in evaluating their performance. The different types of FR, RR and NR 

metrics available in the literature are briefly discussed in the following sections. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7.3.2.1 Full Reference (FR) quality metrics 

In traditional error based metrics such as Mean Squared Error (MSE), PSNR, 

Root Mean Squared Error (RMSE), Mean Absolute Error (MAE) and Signal to Noise 

Ratio (SNR) the fidelity is computed as the sum of mathematical operations on 

individual pixels (i.e. pixel error measurements). Similar to these metrics, Zhou and 

Bovik [204] proposed Universal Quality Index (UQI) which is also mathematically 

defined metric to measure the perceived quality.  In this metric, the distance between 

the test and the original signal is measured as a function of luminance, loss of 

correlation and contrast distortion. According to the authors the metric has better 

prediction ability at detecting blurring distortion compared to MSE. However, the 

effectiveness of the metric is studied only with respect to images but not with 

temporally correlated images such as videos.  The authors of [188] further extended 

UQI and proposed Structural Similarity Index (SSIM) FR metric based on the 

hypothesis that changes in structural information can be well approximated to 

perceived distortion in the videos. To compute the visual distortion they compare pixel 

FULL REFERENCE METRIC  NO REFERENCE METRIC  

 
 
   ENCODER 

 

  DECODER 

Figure 7.3:  Objective Video Quality Evaluation System 
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intensity patterns of normalised luminance and contrast for both the original and the 

video under test. The SSIM is further improved in [189], named MS-SSIM and it has 

the ability to incorporate details of the images at different resolutions.  

The Video Quality Metric (VQM) [190], also known as NTIA-VQM,  considers 

distortions that occur during the video coding process and the transmission phase in 

computing the perceived visual quality. The authors of [205] for assessing the video 

quality consider the statistical information shared between the source and the test 

image as the fidelity measure. This concept is further extended to Visual Information 

Fidelity (VIF) measure in [191] .  

The video quality metrics based on the characteristics of Human Visual System 

(HVS) are proposed in [192, 193]. In [192] a Noise Quality Measure (NQM) is 

proposed. It is a two-step process in which the source and the modeled restored image 

(Original image processed using restoration algorithm) are initially processed by using 

a contrast pyramid. Later the NQM is computed as the SNR of the restored degraded 

image and model restored image. The authors of [193, 206] quantified fidelity based on 

near and suprathreshold distortions. It is also a two stage process similar to NQM 

where a contrast threshold is defined for detecting perceived distortions. The perceived 

contrast of the distortions is computed and the extent to which it degrades the visual 

quality is modeled as Visual Signal to Noise Ratio (VSNR).  

As the approach has access to the reference, Full Reference (FR) video quality 

metrics usually tend to obtain better accuracy at predicting the perceived quality. These 

metrics are used in designing image/video quality optimisation algorithms. However, 

the main drawback is the computational complexity and the requirement of reference 

image/video under test.  

7.3.2.2 Reduced Reference (RR) quality metrics 

The authors of [199] proposed a RR algorithm known as Reduced Reference 

Entropy Differencing (RRED) metric in which the scaled local entropy differences 

between the source and test image in the wavelet domain are computed to determine 

the perceived video quality. Their work achieves a Spearman correlation value of 

94.53%, when images are Gaussian blurred. 

Reduced complexity compared to Full Reference metrics is the main advantage 

of these metrics. In contrast to these FR video quality metrics, in RR metrics the 

specific information related to the reference is transmitted over a communication 

medium that is needed for the computation of perceived video quality. The need of a 

communication channel for the delivery of the features is the main drawback of RR 

metrics. 
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7.3.2.3 No Reference (NR) quality metrics 

In addition to the FR and RR metrics, several NR metrics are also proposed in 

the literature. The statistics of locally normalised coefficients in the spatial domain are 

used to determine the overall perceived quality in Blind/Reference less Image Spatial 

Quality Evaluator (BRISQUE) [194]. A two stage NR metric that determines quality 

based on Natural Scene Statistics (NSS) is proposed in Blind Image Quality Index 

(BIQI) [195]. The compression induced effect on the nonlinear dependencies of natural 

scenes is quantified as a measure of perceived quality in [207].  

In the literature, several blur based NR metrics are also proposed. In the work 

by Ferzli and Karam [196] initially the Just Noticeable Blur or the blur intensity that can 

be masked around the edges is determined. The perceived image quality is then 

determined by using JNB as a function of contrast. The metric is further extended in 

[197] by combining JNB with Cumulative Probability of Blur Detection (CPBD). The 

authors of [208] estimated the blur in the DCT domain. The perceived quality is 

approximated to changes in the blur levels caused by the variations in edge strength. A 

low complexity video quality evaluation method for JPEG compressed images is 

proposed in [209]. The blocky artifact influences and the observed blur are both used in 

evaluating the image quality. In [210] a computationally efficient metric is developed in 

which the image quality is computed by estimating the sharpness based on localised 

frequency content analysis. The software implementation of blur based metrics are 

available to download from [211].  

An opinion and distortion unaware Naturalness Image Quality Evaluator (NIQE) 

NR metric is proposed by the authors of [198]. This metric uses a ‘quality aware’ 

collection of statistical features, using a database of natural undistorted images, based 

on a space domain Natural Scene Statistics (NSS) model.  A similar set of features 

based on the NSS model, are extracted from the image under test. The fidelity between 

quality aware features and multivariate Gaussian fit of NSS features extracted from the 

image under test is quantified as perceived quality. The NIQE implementation along 

with some other FR, RR and NR metrics are available to download from [212]. 

The prediction ability of these metrics tends to be low when compared to FR 

and RR metrics as the reference image/video is not available. However, their main 

advantage is the ability to assess the quality without the reference. All the FR, RR and 

NR metrics discussed above will be evaluated using the experimental procedure 

described in section 7.6 to determine their effectiveness in detecting quality variations. 

7.3.2.4 Performance Evaluation of Video Quality Metrics 

According to Video Quality Experts Group (VQEG) [200] the performance of 
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any objective video quality metric can be evaluated by analysing three important 

attributes such as prediction accuracy, monotonicity and consistency of the developed 

assessment model. The VQEG stated that these attributes can be computed by using 

mathematical measures such as Spearman Rank Order Correlation Coefficient 

(SROCC), Linear Correlation Coefficient (LCC), Outlier ratio, Root Mean Square Error 

(RMSE) and Mean Absolute Error (MAE). Among these, the LCC and SROCC are 

widely used methods to quantify prediction accuracy and monotonicity respectively. 

The Pearson Correlation measures the strength of linear association between two 

variables. The Pearson Correlation  
pr  for N data pairs  ii yx ,

 
can be defined as:   

 

 

(7-1) 

 

                   
pr - is the Pearson correlation and  mm yx ,  indicate Means. 

Accordingly the Spearman Correlation measures the strength of association between 

two ranked variables. The Spearman Correlation  sr for N ranked data pairs  rr yx ,
 

can be defined as:   

 

 

(7-2) 

          

                sr - is the Spearman correlation and   rr yx ,  indicate Mid-ranks,  

 

As the Spearman correlation is computed on ranks, it depicts a monotonic 

relationship between the variables. In contrast, the Pearson correlation is measured on 

true variables and it depicts only linear relationship between the variables. The 

published correlation values with respect to subjective Mean Opinion Scores (MOS) for 

some of the discussed metrics, when images are Gaussian blurred are shown in Table 

7.1. The SROCC and LCC values shown in the table are extracted from the references 

given against the corresponding metrics. These values are not directly comparable 

between the metrics as they are evaluated on different datasets. However, they give a 

performance estimation of a particular metric in predicting the video quality when 

images are Gaussian blurred. It is clear from the table that the majority of the metrics  
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achieve very high correlation values when the measured quality is compared with the 

actual score. However, it is not clear whether these metrics can detect quality 

variations accurately despite exhibiting high scores. For a metric to be employed during 

the development of perceptual quality optimisation algorithms its ability to measure 

quality variations is a key factor in determining its suitability. Therefore, in this 

investigation, a Gaussian low pass filter is used to simulate the quality variations and a 

HEVC CODEC [214] to compress the videos in determining the ability of the discussed 

metrics in detecting  quality variations. 

7.4 Video Quality Measurement for Perceptual Quality 

Optimisation Algorithms 

The main aim of perceptual video quality optimisation algorithms is to enhance 

the perceived subjective video quality of the compressed video. The video coding tools 

that are employed in the popular video coding standards such as H.264 [80] and HEVC 

[81] generally aim to minimise the overall pixel errors between original and encoded 

video frames to optimise the perceptual quality. In contrast to these video coding tools, 

in pre-processing based algorithms visually insignificant frequency components are 

reduced to achieve improvements in the perceived quality. These are the components 

to which the HVS is less sensitive and this process discards them during visual 

processing. In the literature, a number of pre-processing based perceptual video quality 

optimisation algorithms that employ low-pass pre-processing filter were proposed [183-

         Table 7.1:  Published correlation values of objective video quality metrics 

Type Metric SROCC 
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PSNR [195] 0.761 0.782 

UQI [193] 0.938 0.945 

NQM [193] 0.874 0.903 

VIF[193] 0.973 0.975 

VSNR [193] 0.941 0.934 

SSIM [194] 0.9321 0.9395 

MS-SSIM [194] 0.9607   0.9762 

N
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 BRISQUE [194]   0.9435   0.9498 

BIQI [213] 0.8463 0.8293 

NIQE [198] 0.9341 0.9525 

JNBM [196] 0.932 0.936 

CPBD [197] 0.9437 0.9107 
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187, 215-223].  

In [183], the authors present an adaptive edge-preserving smoothing and detail 

enhancement pre-processing filter for perceptual quality optimisation. The authors 

presented results in the form of subjective MOS scores as well as PSNR. However, the 

results clearly showed that the PSNR does not always correlate well with the subjective 

quality variations. In [184] a pre-processing filter is used to remove spurious noise and 

insignificant features present in the video frames. The results indicated PSNR 

improvements, however, without any subjective verification.  

In the research by Mancuso and Borneo [185], the filtering intensity is 

dynamically adjusted according to the amount of noise present in the video sequence 

to generate perceptually optimised videos. The PSNR is used as the quality metric to 

show that their nonlinear filters achieve higher quality videos. Similarly, in [186] and 

[187], the quality improvement is presented in the form of achieved gains in PSNR. 

Further, the authors have shown the screenshots of video frames to highlight the 

artefact reduction. However, no subjective evaluation was carried out. 

The authors of [215] have used variable Gaussian pre-processing filters 

controlled by a visual quality map which indicates the distance to the Region of Interest 

(ROI). They have used PSNR as the objective video quality metric to show that a 

variable number of Gaussian filters improve the perceptual quality. However, actual 

subjective quality testing results were not presented. In [216], the authors interpret that 

the filtered surgical video with quality improvements in regions of interest is visually 

equivalent to non-filtered surgical video for a telesurgery application. De-Frutos-Lopez 

et al. [217] proposed texture and motion adaptive filtering in which the bilateral filter 

parameters are dynamically estimated based on the motion and texture present in the 

video. PSNR and visual comparisons of the video frames are used to demonstrate the 

improvements in the performance of the algorithm.  

In [218], a low complexity version of a traditional bilateral filter is used to 

achieve faster pre-processing of videos. The authors show quality improvements using 

the RMSE metric and they have also provided the visual evidence of frame 31 from 

Foreman video sequence. However, more substantial evidence would be to use 

subjective quality testing procedures to complement the achieved results. In the work 

of Liang-Jin and Ortega [219] PSNR is used to validate the proposed rate control 

scheme. The rate control algorithm determines the pre-filtering strength which is then 

coupled with block classification to achieve improvements in PSNR. 

  Young and Evans [220] proposed an image pre-processing algorithm based on 

attribute morphology. The authors choose the image area and the power criterion 

based on subjective evaluations. However, they do not correlate well with the results 
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obtained from chosen objective (RMSE vs. compression ratio) measure.  Further, to 

improve the compression efficiency the authors have investigated Multidimensional 

attribute (MA) morphology filters and proposed a sliding window AM filter in [221].  

PSNR values for different attributes are presented but without bit rate savings to 

ascertain the compression efficiency of the proposed pre-processing algorithm.   

The authors of [222] selectively attenuate the insignificant high frequency 

content while preserving the significant frequency content which is of interest to the 

human eye. PSNR is used as the measurement metric to show improvements in visual 

quality. However, the bit rate savings and subjective testing results are not shown. The 

authors of [223] claimed that by filtering noise from the videos a better compression 

can be achieved. However, no rate distortion curves of the pre-processed video with 

respect to the original videos are shown. Moreover, neither a subjective nor an 

objective video quality metric is used to validate the achieved visual quality 

improvements.  

In spite of the availability of many objective video quality metrics and subjective 

video quality testing methods, most perceptual video quality research typically 

employed PSNR [183-187, 215, 217, 219, 221, 222] and RMSE [218, 220] to evaluate 

perceptual quality. This is mainly because the subjective video quality testing methods 

are expensive in terms of amount of time and the number of viewers needed to carry 

out the testing process. Therefore, these objective video quality metrics can be used to 

generate large number of test result data points that are necessary to develop robust 

algorithms (e.g. hundreds/thousands of bit rate – quality data points corresponding to 

different parameters necessary for generating mathematical models/algorithms). It is 

not practically possible to use subjective quality tests for a very large number of test 

cases. Therefore, the use of objective video quality testing for perceptual quality 

optimisation algorithms during the development stages is perceived to be justified, 

given the practical limitations of subjective testing procedures. Further, it is also evident 

that, when videos are pre-processed there is no reliable and widely accepted method 

of measuring perceived quality to assess the performance of perceptual quality 

optimisation algorithms. Therefore in this work, the state-of-the-art video quality metrics 

are evaluated to determine their effectiveness in measuring the quality of pre-

processed video.    

7.5 Experimental Procedure      

The main aspects of the experimental procedure used in this investigation are, 

I)  Selection of test video sequences,  

II)  Pre-processing of test video sequences  
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III)  Video quality testing procedure.  

These are explained in the following sections. 

 

A. Selection of Test Video Sequences 

Experiments were carried out using five different widely used CIF resolution 

YUV 4:2:0 format video sequences chosen from International Telecommunication 

Union (ITU) test video materials. The sequences are Coastguard, Mother and 

Daughter, Soccer,  Hallmonitor and Crew  [224]. Sample video frames from these 

sequences are shown in the Figure 7.4. They are chosen to represent a different level 

of motion and detail, a range of video content and camera movements. These 

sequences are described below. 

(a) Soccer:  This is a scene with players on the soccer field. The players continuously 

run on the field kicking the ball. There are high levels of detail and movement in the 

sequence with continuous change in the background. The camera pans to track the 

players.  

(b) Mother & daughter: This is a scene of a woman and a child sitting in a room. The 

woman talks to the camera while stroking the child’s hair. The sequence has moderate 

amount of detail with some head and hand movements. The camera is static and 

captures the frontal view of both mother and daughter. It has low to moderate amount 

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

Figure 7.4: Sample frames from video sequences in CIF format – (a) Soccer (b) 

Mother & daughter (c) Crew (d) Hall monitor (d) Coastguard 

 

(d) Hall monitor (e)   Coastguard 

(a) Soccer (b) Mother & daughter (c) Crew 
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of movement.  

(c) Crew:  This is a scene with a team of crew members walking with some of them 

smiling and waving their hands. There are many head, leg and hand movements with 

high amount of detail. There is a moderate change in the background. The camera 

moves to capture the view of the crew. 

(d) Hall monitor:  This is a scene with two people walking opposite towards each other 

in the hall way. The surveillance camera is located at the end of the hall monitoring the 

people entering and leaving the hall. The video clip has less amount of detail. The 

camera is stationary and the background does not change. 

 (e) Coastguard: This is a scene with a cruise moving at high speed in the water. The 

video sequence has moderate to high amount of detail with its background changing 

continuously. The camera pans to capture the cruise in motion.  

 

B. Pre-processing stage 

The state-of-the-art perceptual quality algorithms induce spatially adaptive 

filtering variations to achieve perceptual quality optimisation. The majority of them have 

used filters (such as Gaussian and Bilateral) to obtain these filtering variations. In the 

current work Gaussian pre-processing filter has been used to induce the pre-

processing based quality variations. Note that the objective of the work is to test the 

performance of the metrics in detecting quality variations but not Gaussian pre-

processed video. Here a Gaussian filter is only used to simulate the pre-processing 

used in many perceptual quality optimisation algorithms. Gaussian filters have become 

a common choice for image pre-processing because of the applications in areas such 

as human vision models [225], edge detection techniques [226] and scale space 

filtering [227]. Gaussian filters are applied during the pre-processing stage of video 

compression. In a perceptual quality optimisation scenario, Gaussian filtering is 

employed to improve the overall bitrate vs. visual distortion efficiency. The filter 

eliminates some unwanted high frequency components which are of lesser interest to 

the HVS. This process may also result in some visual distortions in the uncompressed 

filtered frames. However, the reduction in high frequencies may also result in better 

compression performance (i.e. improved bitrate vs. visual quality). Therefore, as a 

result, the overall quality for an equivalent bitrate may improve. 

During the pre-processing phase, three different kernel sizes namely 3x3,2x2 

1x1,  and ten different standard deviations ranging from σ = 0.1, 0.2, 0.3,….,1.0 are 

chosen. Each video sequence among the chosen five video sequences are pre-
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processed using the chosen kernel sizes and standard deviations. This results in ten 

different pre-processed versions of each original video sequence at each kernel size. 

These sequences are encoded and are then subjectively evaluated using the 

methodology described in the next section.   

 

C. Video quality testing 

In the current work, the subjective quality assessment methods recommended 

by ITU [228-230] are adopted for video quality evaluation. The single stimulus Absolute 

Category Rating (ACR) method is chosen for the experiment.  A 40 inch monitor with 

1920x1080 resolution was used to display the test videos. All videos were displayed at 

their native CIF resolution. To avoid distractions, the videos are played on a 

homogeneous screen and they are centered as they occupy a very small area of the 

screen. The videos are played at a rate of 30 frames per second with duration of 10 

seconds per each sequence. They are presented one at a time with an interval of 7 

seconds duration for voting time. In order to ensure an unbiased assessment of the 

video quality, all the video sequences are presented in a random order. Precautions 

are taken to avoid random votes from incoherent voters. An extended 11-point quality 

rating scale (from Bad to Excellent) is used during the experiment to identify subtle 

differences in perceptual video quality.  

The subjective perceptual quality results are used as a benchmark to evaluate 

the effectiveness of the metrics chosen for evaluation. These subjective evaluations 

were carried in two phases.  During the first phase of the subjective evaluation, a 

limited number of test subjects were utilised for quality assessment (however with large 

number of quality variations) to identify and select suitable quality variations that 

achieve perceptual gain and loss over the original video. In the second phase, some of 

the selected quality variations are tested using more comprehensive subjective video 

quality evaluation. 

The 30 variations of each video sequence that were generated during pre-

processing phase were encoded at four different quantisation values (namely 16, 24, 

32 and 40) using an HEVC encoder, resulting in four encoded rate-quality points per 

each version of the sequence. A higher QP difference of 8 was chosen to ensure the 

effectiveness of the metrics in detecting the variations in perceptual quality can be 

studied at both low and high bitrates. 15 non-expert viewers were used for the 

subjective video quality assessment. Based on the subjective results two test cases 

(kernel sizes) were identified that achieve perceptual gain and perceptual loss. These 

two selected test cases will undergo a comprehensive subjective video quality 

assessment in the next phase.  
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During the second phase, the pre-processed and coded versions of each video 

sequence (QP = 16, 24, 32 and 40) of the selected test cases were subjectively 

evaluated by 60 non-expert viewers using standard test methodology as described 

earlier. The higher number of subjects and an extended 11-point rating scale helps in 

identifying subtle video quality variations. Furthermore, during the objective video 

quality assessment, 19 objective video quality metrics were chosen for evaluating the 

perceptual quality of preprocessed videos. 

7.6 Results and Discussion 

The Mean Opinion Score (MOS) values from the actual subjective tests were 

plotted against the bit rate for all encoded versions of the Crew video sequence at 

different standard deviations as shown in Figure 7.5. It can be observed that the 

Gaussian filter with standard deviation σ = 0.3 produces higher perceptual quality vs. 

bitrate performance.  All the other blur levels (standard deviations) produced a rate-

perceptual quality loss. Figure 7.6 shows the PSNR vs. bitrate plots for the same Crew 

video sequence. It is evident that PSNR is steadily decreasing with an increase in 

standard deviation.  

 

 

   

 

 

 

 

                                                 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 7.5:  Crew video quality evaluation using ACR 
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        Figure 7.6:  Crew video quality evaluation using PSNR 

Figure 7.7:  All sequences percentage subjective gain/loss at σ=0.3 
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Therefore, PSNR does not show the gain in subjective quality that was 

observed at σ = 0.3. This can be attributed to the induced variation in pixel values by 

the Gaussian filter (i.e. higher filter strength leads to lower PSNR). In Figure 7.7 and        

Figure 7.8 the percentage subjective gain/loss is plotted against bitrate at σ = 0.3 and 

0.8 respectively for all tested video sequences. The percentage of quality gain/loss of 

filtered sequence is computed with respect to the original video sequence. In Figure 7.7 

the area above the horizontal bitrate axis indicates quality gain and that below is the 

percentage of quality loss.  

Almost all the sequences, as shown in Figure 7.7 achieve higher perceptual 

quality when pre-processed with standard deviation equal to 0.3 when compared with 

the original video sequence (with an exception for soccer sequence at lower bitrates).  

Whereas in Figure 7.8, the graph shows rate-perceptual loss for all sequences at σ = 

0.8 except for coastguard sequence. These subjective results from all the video 

sequences at σ = 0.3 and 0.8 serve as the benchmark for comparison with the chosen 

metrics to determine the metric that best correlates with subjective perception. Note 

that the actual percentage values are not directly comparable between different metrics 

due to their unique non-linear algorithms. 

The percentage PSNR variation at σ = 0.3 for all the sequences is plotted in 

Figure 7.9 (a). It is clear that in all the tested video sequences PSNR shows a rate 

       Figure 7.8:  All sequences percentage subjective gain/loss at σ =0.8 
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perceptual loss. A similar behaviour is also observed in SSIM as shown in the Figure 

7.9 (b). Full reference metric VIF in the Figure 7.9 (c) shows partial detection 

performance for the video sequences Soccer, Coastguard and Crew at σ = 0.3. 

Moreover, the metric detected the perceptual gain that is observed at σ = 0.8 in 

coastguard sequence.  The video quality variations detected by all the tested FR and 

RR metrics are shown in abbreviated format in Table 7.2. The performance of the 

metrics at two different standard deviations (namely σ = 0.3 and σ = 0.8) is shown in 

the table. The first row indicates whether subjective results showed a gain or a loss in 

quality for a specific video sequence. The X or √ for each metric indicates whether that 

particular metric was able to correctly detect the actual gain or loss. It is evident that all 

FR and RR metrics can detect a loss in video quality corresponding to σ = 0.8 (except 

for the coastguard sequence that shows a gain at σ = 0.8). However, these metrics fail 

to reliably detect quality gains corresponding to σ = 0.3.  
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(c) VISUAL INFORMATION FIDELITY (VIF)
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(d) VISUAL INFORMATION FIDELITY (VIF)
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Quality 

Metric 

Standard 

Deviation 

Video Sequences 

Mother 

and 

Daughter 

Soccer Hall 

monitor 
Crew Coastguard 

Subjective 

Quality 

(MOS) 

0.3 gain gain gain gain gain 

0.8 loss Loss loss loss gain 

PSNR 0.3 X X X X X 

0.8     X 

UQI 0.3 X X X  Partial 

detection 0.8     X 

SSIM 0.3 X X X X X 

0.8     X 

MS-SSIM 0.3 X X X X X 

0.8     X 

VQM 0.3 X X X X X 

0.8     X 

IFC 0.3 X Partial 

detection 

X  Partial 

detection 0.8      

VIF 0.3 X Partial 

detection 

X  Partial 

detection 0.8      

NQM 0.3 X X X X X 

0.8     X 

VSNR 0.3 X  Partial 

detection 

 Partial 

detection 0.8     X 

RRED 0.3 X X X Partial 

detection 

X 

0.8     X 

Table 7.2:  Full and Reduced Reference metrics 

Figure 7.9:  Full Reference metrics percentage gain/loss at σ = 0.3 and 0.8 
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A few exceptions to this are UQI, Information Fidelity Criterion (IFC), VIF and 

VSNR which show partial detection performance at some bitrates and clear detection in 

one or more sequences. This behaviour could be attributed to the fundamental 

assumption behind FR and RR metrics, which is that the reference image is the ideal 

representation and any difference in image under test is considered as a deviation from 

ideal quality. Therefore, it can be understood that pixel differences induced by pre-

processing algorithms are typically interpreted as perceptual loss in video quality by FR 

and RR quality metrics.  

In contrast to the FR metrics some of the NR metrics have shown better 

detection ability. It can be seen in Figure 7.10 (a) that NR metric BRISQUE has 

detected perceptual gain in coastguard and crew video sequence at σ = 0.3, but failed 

to detect the gain at σ = 0.8 (Figure 7.10 (b)). The video quality variations detected by 

all the chosen NR metrics for the study are shown in abbreviated form in Table 7.3. No 

Reference metric BIQI showed partial gains for Soccer, Mother and Daughter, and a 

clear gain in Coastguard video sequence. However, BIQI failed to detect the perceptual 

gain in Hall monitor, crew and the perceptual loss in Hall monitor and mother daughter 

at σ = 0.8.  

In the current study blur based metrics are also chosen to determine their 

effectiveness. The blur based metrics (such as JNBM, CPBD, HP and Marichal metric) 

despite quantifying the quality using sensitivity of HVS towards sharpness and blur in 

the image, show only partial detection ability in detecting quality variations.  
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(d) NATURALNESS IMAGE QUALITY EVALUATOR (NIQE)
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Quality 

Metric 

Standard 

Deviation 

Video Sequences 

Mother and 

Daughter 
Soccer 

Hall 

monitor 
Crew Coastguard 

Subjective 

Quality 

(MOS) 

0.3 gain gain gain gain gain 

0.8 loss Loss loss loss gain 

NR JPEG 0.3 X X Partial 

detection 

 

 

 

 

 

tial 

detection 

X X 

0.8     X 

BRISQUE 0.3 X X X   

0.8     X 

BIQI 0.3 Partial 

detection 

Partial 

detection 

X X  

0.8 X  X   

JNBM 0.3 Partial 

detection 

X X X X 

0.8     X 

CPBD 0.3 Partial 

detection 

Partial 

detection 

X Partial 

detection 

X 

0.8     X 

Marichal 0.3 Partial 

detection 

Partial 

detection 

Partial 

detection 

X X 

0.8 X X X X  

NR for JPEG 

2000 

0.3 X X X X X 

0.8     X 

HP  0.3 X X Partial 

detection 

X X 

0.8     X 

NIQE 0.3     X 

0.8     X 

Table 7.3:  No Reference (NR) metrics 

Figure 7.10:  No Reference metrics percentage gain/loss at σ = 0.3 and 0.8 
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The NR metric NIQE detects the perceptual gain and loss that is shown by subjective 

results in four out of five tested video sequences except for coastguard video (depicted 

in Figure 7.10 (c) and Figure 7.10 (d)). Therefore, NIQE shows better detection ability 

compared to all other objective video quality measurement metrics.  

The published correlation values of a number of metrics for Gaussian blurred 

images were presented earlier in Table 7.1. From the table it can be seen that NIQE 

has low monotonicity and prediction accuracy according to the SROCC and LCC 

scores. However, NIQE outperforms other metrics that have higher SROCC and LCC 

scores in detecting video quality variations. Although metrics such as VIF, SSIM and 

MS-SSIM show higher correlation scores, they perform poorly in detecting video quality 

variations. Therefore, SROCC and LCC are not fully reliable in indicating the ability of a 

quality metric to detect video quality variations. 

7.7 Discussion 

The objective of this work is to investigate the existing video quality metrics 

such as Full Reference (FR), Reduced Reference (RR) and No Reference (NR) quality 

metrics to determine their ability in detecting perceptual quality variations induced by 

the pre-processing filter. Nineteen state-of-the-art metrics have been investigated with 

five different video sequences pre-processed and coded at various filter intensities. The 

videos are pre-processed using a Gaussian low pass filter to simulate the pre-

processing used in many perceptual quality algorithms and these filtered videos have 

been encoded using HEVC video CODEC. 

The results clearly show that No Reference (NR) metrics are more effective 

when compared to Full Reference (FR) and Reduced Reference (RR) video quality 

metrics. Further, among the No Reference (NR) metrics investigated the Naturalness 

Image Quality Evaluator (NIQE) has been shown to be better at evaluating the quality 

of pre-processed videos.  

In the literature the Spearman Rank Order Correlation Coefficient (SROCC) and 

Pearson Linear Correlation Coefficient (LCC) have been widely used for evaluating the 

performance of many objective video quality metrics. However, in this work it has been 

shown that they are ineffective at determining the effectiveness of the quality metric in 

detecting variations in the perceived quality, particularly when the metrics are used 

during the development of perceptual video quality optimisation algorithms. The 

investigation has identified that NIQE shows better performance at detecting perceptual 

quality variations when videos are pre-processed. NIQE uses a collection of features 

on a database of undistorted images based on the Natural Scene Statistics (NSS) 
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model as the reference for quantifying perceived quality. The NSS model of this metric 

has to be further improved for detecting quality variations more effectively.  

The study can be further improved by evaluating the performance of the video 

quality metrics against spatially-adaptive Gaussian filtering techniques.  The current 

work relied on spatially invariant Gaussian filtering techniques for assessing the 

performance of metrics. Moreover, the prediction performance is only compared on 

images with perceptual quality better than the original. The global performance of the 

video quality metrics has not been analysed. 

7.8 Conclusion 

In this work, 19 state-of-the-art objective video quality metrics were investigated 

in order to determine the ability to detect the perceptual variations when videos are pre-

processed. This work highlighted the issues related to effective perceptual quality 

measurement in the development of perceptually optimised compression techniques.  

Here the main conclusions of our research work are listed. 

 

1) The existing Full Reference (FR) and Reduced Reference (RR) perceptual 

quality metrics, although having high overall correlation with subjective quality, do not 

effectively identify the changes in perceptual quality when video frames are pre-

processed. This may be because the pixel differences induced by filtering/pre-

processing being interpreted as a quality loss by these metrics.   

2)  No reference (NR) metrics are far more effective compared to FR and RR 

metrics in detecting the variations. In particular, Naturalness Image Quality Evaluator 

(NIQE) is notably better at detecting the perceptual gain/loss shown by the subjective 

evaluations.  

3) Moreover, the traditional techniques of evaluating video quality metrics such 

as Spearman Rank Order Correlation Coefficient (SROCC) and Pearson (Linear) 

Correlation Coefficient (LCC) are shown to be weak in determining the effectiveness of 

the quality metric in detecting quality variations, particularly when the quality metric is 

to be employed during the development of pre-processing based perceptual quality 

optimisation algorithms. 

Furthermore, No Reference (NR) video quality measurement metrics such as 

NIQE may be further developed to detect small visual quality variations, by extending it 

with a computational model of visual attention (visual saliency model) [231]. So that it 

could be employed during the development and evaluation of perceptual video quality 

algorithms. 
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8                Conclusions and Future Directions 

isual attention is an essential component of human vision which selects 

relevant information from the scene and allows the Human Visual System 

(HVS) to allocate needed resources for further processing of the attended locations in 

the scene. This mechanism efficiently solves the trade-off between the visual 

information entering the human eye and the processing capacity of the human brain. 

In computer vision, the visual attention paradigm is of high relevance because 

the computational complexity is a major issue. Computer vision systems often deal with 

high resolution images introducing significant amount of overhead during real time 

operation. To address this problem many computational models of attention have been 

developed in the literature. These models predict where humans look in the images 

and thereby reducing the amount of information that has to be processed. The existing 

visual attention models have either achieved better prediction accuracy with high 

complexity or low prediction accuracy with faster operation at detecting salient regions 

in the images. To attain better accuracy they have modelled more number of feature 

channels present in the images. This resulted in an increase of computational 

complexity. Moreover they have relied mostly on bottom-up features compared to top-

down features as these features are easier to model. These scenarios made it difficult 

for the existing models to be efficiently employed in computer vision applications. 

Therefore, the objective of this research work is to develop a novel computational 

model of visual attention for detecting salient regions in images. The model developed 

should be computationally fast with better prediction accuracy compared to the state-

of-the-art attention models. This is achieved by modelling in-focus regions in the 

images which are bottom-up in nature and top-down aspects such as image centre and 

human faces in this thesis. This has allowed an efficient extraction of salient regions in 

the images.  

The research project has been achieved using a preliminary study work and a 

list of key objectives as described in chapter 1. Each of these objectives has been 

completed successfully. A brief summary of each of these is given below. 

 

Objective 1: Study the state-of-the-art visual attention models available in 

the literature. Further, critically analyse them and empirically evaluate their 

performance. 

V 
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During the preliminary study work for this research project a comprehensive 

literature review of the existing state-of-the-art visual attention models was carried out 

to obtain the relevant theoretical knowledge of what is already known in the field. The 

ideas behind these models were critically analysed by identifying their advantages, 

disadvantages and interesting aspects. This background knowledge and the critical 

review of the attention models have been presented in the chapter 2 and chapter 3 of 

this thesis. The image datasets, qualitative and quantitative assessment techniques 

used in the literature to validate the saliency models have been identified. The 

characteristics of the datasets and assessment techniques used in this work have been 

described in chapter 4. These attention models, datasets and assessment techniques 

were obtained using different data collection strategies mentioned in chapter 4. Ten 

state-of-the-art attention models have been evaluated using qualitative and quantitative 

research methods to analyse their performance in terms of prediction accuracy and 

computational complexity. It has been observed that GBVS has achieved highest 

prediction accuracy across two image datasets.     

 

Objective 2: Development of a novel bottom-up computational model of 

attention based on in-focus regions. 

During the first objective of this project a novel bottom-up visual attention model 

based on in-focus regions present in images has been developed. The in-focus regions 

have been detected using the peak frequencies present in the DCT domain. The 

performance results of the proposed model have been presented in chapter 5 of this 

thesis. Qualitatively it has been shown that the in-focus detection algorithm has very 

good ability to differentiate the in-focus and out-focus regions. The attention model 

performance has been evaluated on a dataset of 1003 images. The results indicated 

that the proposed model has achieved similar or better prediction accuracy (CC=0.18, 

NSS= 0.84 and AUC=0.71) compared to the state-of-the-art visual attention models. 

The model takes an average time of 0.80 seconds for generating a saliency map of an 

image with 1024x768 resolution. The WBSD [127] model achieves similar prediction 

accuracy as the proposed model; however, it requires 24.28 seconds with respect to 

the same image resolution and testing platform. This indicates that the proposed model 

has good ability to detect salient regions with a lower computational complexity.  

 

Objective 3: Manage the computational complexity of bottom-up visual 

attention model developed in the second objective and improve the prediction 

accuracy using top-down components of human attention. 
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During the third objective of this project the computational complexity of the 

bottom-up visual attention model has been further reduced by using the Integer Cosine 

Transform (ICT) instead of the DCT. The prediction accuracy of the model has been 

enhanced by choosing HSV colour space instead of YCbCr colour space and 

integrating it with location based top-down component known as centre sensitivity. The 

parameters of the model developed have been tuned using a hill climbing approach. 

The results of this attention model have been presented in chapter 6 of this thesis. Its 

performance has been evaluated on the Judd’s image dataset. The model has 

achieved 1% of prediction accuracy (with respect to CC metric) improvement with 62% 

of computational complexity savings when compared to the GBVS model. GBVS is the 

best model among the chosen benchmark state-of-the-art saliency models. 

Furthermore, the literature related to face sensitivity has been studied and it has been 

found that human faces highly attract the viewer’s gaze. The Viola Jones face detection 

algorithm was used to detect human faces present in the images. The human face 

maps have been developed by initially drawing square shaped bounding boxes around 

the human faces and then placing Gaussian blobs in the regions where human faces 

are located. Similar to the model developed in second objective, the parameters of the 

model have been tuned using a hill climbing approach to improve the overall prediction 

accuracy. When compared to the GBVS model which is the best among the benchmark 

state-of-the-art visual attention models, the proposed model has achieved 3% and 1% 

of prediction accuracy (with respect to CC metric) improvement on Judd’s and DUT-

OMRON datasets respectively. Further 42% of computational complexity savings has 

been achieved when compared to the GBVS model. This work achieves the main 

objective of this research project, which is to develop novel computational model of 

visual attention with high prediction accuracy and low computational complexity.  

In addition to achieving the main objective, an investigation of the existing video 

quality metrics for detecting quality variations in pre-processed video was carried out in 

chapter 7. The study has identified suitable metrics that can be utilised during the 

development of perceptual video quality optimisation algorithms. 

The thesis fulfils the aims and objectives of this research project which is to 

propose a novel computational model of visual attention for detecting salient regions in 

images. The proposed model should have the ability to extract salient information with 

higher prediction accuracy and low computational complexity when compared to the 

state-of-the-art attention models. It proposed new solutions for predicting salient 

regions in the images. The main contributions made to the body of knowledge in 

computational modelling of visual attention can be summarised as: 
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 Development of a novel DCT based bottom-up in-focus visual attention model. 

To develop the model a self-dataset of images with different regions in-focus 

and out-of-focus has been created. During the development stage these images 

have been used for hypothesis generation and for testing the focus detection 

performance. The proposed model detected salient regions using the peak 

frequencies present in the DCT domain with a lower computational complexity. 

The main novelty of this model lies in detecting in-focus regions using the peak 

frequencies present in the DCT domain. 

 

 Development of a low complexity visual attention model for detecting salient 

regions in the images. The computational complexity of the DCT based 

attention model has been further reduced by using the Integer Cosine 

Transform (ICT) instead of the DCT. The prediction accuracy is enhanced using 

the value channel of HSV colour space and location based top down 

component known as centre sensitivity. The novelty of this work compared to 

the earlier developed model is in a) Using the Integer transform instead of the 

traditional DCT for detecting peak frequencies. b) Modelling the centre map by 

placing the Gaussian blob at the image centre as a function of image resolution 

and c) Tuning the parameters using a hill climbing approach. 

 

 Development of high prediction accuracy model by integrating learning based 

top down feature known as human face sensitivity into the earlier model with 

focus and centre sensitivity. Further, the parameters of the model have been 

tuned using a hill climbing approach to optimise the overall prediction accuracy 

of the model. The novelty of this work is in modelling a face map using 2D 

square shaped Gaussian distribution as it makes the centre of the face more 

salient compared to the periphery. Further, the parameters of the model have 

been tuned using the hill climbing approach to optimise the overall prediction 

accuracy.  

  

 Investigation of the existing video quality metrics to determine their 

effectiveness in detecting perceptual quality variations when videos are pre-

processed. This investigation has identified that No Reference (NR) metrics are 

far more effective than Full Reference (FR) and Reduced Reference (RR) 

metrics in detecting quality variations. Furthermore, the NR metric NIQE is the 

most effective one among the NR metrics that have been tested.  

 



148 
 

The proposed models are based on firm theoretical foundations and do not 

depend on empirically obtained thresholds. The hypothesis of detecting salient regions 

based on in-focus regions, image centre and human faces has been formulated using 

formal logic, inductive, deductive and analogical inferences. The formulated hypothesis 

has been corroborated by testing it with an improved methodology when compared to 

the earlier models. The model has been tested with large datasets which have very 

high number of ground truth images with complex and varied image statistics. 

Moreover, it has been analysed empirically using methodological triangulation in which 

blended qualitative and quantitative approaches using multiple mathematical metrics 

have been utilised. They have the ability to withstand the test of time and can be 

subjected to constant testing by other researchers, modification and even refutation as 

new ideas, datasets and metrics with different viewpoints emerge in the literature. 

Further, the proposed models have the predictive capabilities that can guide future 

investigation. 

Novel contributions of this work may be used in applications such as object 

recognition, image segmentation, perceptual video coding and video quality 

assessment. Specifically during the development of perceptual video coding 

algorithms, a higher accuracy attention model can detect the salient regions in the 

video frames more effectively and thereby the non-salient/irrelevant information can be 

compressed more efficiently. Further as the proposed attention model is 

computationally fast at detecting the salient regions it can be used in videos with 

different formats (resolutions) and frame rates. Based on the major issues covered in 

this thesis, it can be concluded that this thesis work has given rise to a computational 

model of visual attention that can operate with low complexity and better prediction 

accuracy with applicability to computer vision tasks.  

8.1 Future Directions  

The future directions related to this research work and the general directions for 

the saliency research are presented in the following sections. 

8.1.1 Future Directions Related To The Proposed Model 

This section presents the future directions mainly aimed at addressing the 

disadvantages of the developed models and improving them to achieve better 

performance in terms of computational complexity and prediction accuracy. They are 

 

1. The focus detection algorithm developed to detect in-focus regions initially 

generates a sparse focus map. Gaussian blurring is later used to connect these 
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regions. This process makes region edges denser making them more salient 

compared to the centre of the in-focus regions. The human fixations are mostly 

clustered near the centre of any salient region. The fixation density is reduced 

towards the edges. This indicates that the centre of the salient regions have to 

be given more priority during the development of a saliency map. In contrast to 

this the proposed focus detection algorithm gives relatively higher priority to the 

edges. This reduces the prediction accuracy of the model. Further, when the 

edges are blurred they fade into the out-of-focus area and tend to become 

visually salient. Therefore, better approaches have to be developed to connect 

these sparse salient regions giving higher priority to the centre of the in-focus 

regions to improve the prediction accuracy of the model. 

 

2. The model considers the centre of the image as highly salient compared to the 

periphery of the image. The centre of the image is modelled as a function of 

image resolution. In a real-time scenario, although the majority of the fixations 

are clustered more at the centre, they are not consistent across stimuli with 

different image statistics. For example, when human faces are present in an 

image, the viewer gaze is mostly oriented towards the face and the image 

centre is highly ignored. Even in such a scenario the proposed models consider 

both human faces and centre as salient and will result in false detections. 

Therefore, to improve the prediction accuracy the centre bias has to be 

modelled dynamically depending on the image statistics.  

 

3. The models developed in this thesis give more priority to the image centre in 

detecting the salient regions of an image. They have to be further improved to 

detect peripheral salient regions. Detecting these regions will help in improving 

the prediction accuracy of the model. The nature of these regions has to be 

investigated and the key characteristics of these regions have to be modelled 

as a visual saliency map. 

 

4. The visual attention model which has been developed considers human faces 

as visually salient. Human faces are detected using a face detection algorithm. 

The faces are mapped using square shaped bounding boxes and 2D Gaussian 

blobs. However, the influence of other shapes (such as oval, ellipse and circular 

enclosing of human faces) on prediction accuracy has to be evaluated. Mapping 

using Gaussian blobs indicates that the centre of the face is given higher 
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priority when compared to the periphery. Although this is a better approximation 

based on Ground truth, it ignores the sensitivity of humans towards different 

parts of human faces. For example, viewers look at human eyes more often 

compared to nose and mouth. Furthermore, the impact of image resolution on 

human face fixations and sensitivity towards bigger and smaller human faces 

should be considered during the development of the face saliency map. 

 

5. In an image with many human faces there will be only few faces which are 

visually salient. As the current research has shown that regions in-focus are 

more salient. A possible direction is to study the gaze sensitivity towards in-

focus and out-of-focus human faces in the crowd scene and develop face map 

as a function of focus strength across different faces. This helps in developing a 

face map that has the ability to distinguish between salient and non-salient 

human faces.  

 

6. The Viola Jones face detection used in the attention model which has been 

developed has the ability to detect only frontal faces. A non-frontal face 

detection algorithm can be incorporated to detect faces that are turned 

sideways. Further, human fixations patterns towards non-frontal faces have to 

be studied using an eye tracker and a novel attention map has to be developed. 

The developed non-frontal face map has to be integrated into the attention 

model to improve the overall prediction accuracy.  

 

7. The proposed models use weighted addition for focus and centre. The face 

map is simply added to preserve its importance. Majority of the models have 

used linear summation as it has psychophysical support and simplicity in 

application. Better ways have to be investigated to combine the feature maps 

for increasing the prediction accuracy of the attention models. 

8.1.2 General Directions For Visual Saliency Research 

This section suggests some of the general directions needed for future saliency 

modelling. They are  

 

1. Text can be as effective as human faces in attracting gaze. A text detection 

algorithm can be used to detect text present in images. Novel techniques have 

to be developed for generating text maps. For example the letter edges, text 
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size and font are some of the key aspects which are to be considered during 

the development of text saliency maps. 

  

2. A general direction for the future is to model overt versus covert attention. All 

the models developed in the literature (including the proposed model) consider 

that viewers pay attention to whatever they look at in the images. However, in 

reality, although the human eyes fixate (overt attention) on some regions, they 

might not pay attention. This is due to the covert attention interested in some 

other regions in the images. For example, when a person is driving a car his 

overt attention may be on the road but his covert attention will continuously 

monitor traffic lights. 

 

3. To develop real time visual attention models, the models should be made faster 

by reducing the computational complexity, improve the prediction accuracy, 

make them robust to noise, illumination changes and image transformations. 

 

4. The proposed models can be further developed for detecting salient regions in 

videos. Videos consist of many in-focus, out-of-focus regions and temporal 

characteristics such as motion etc. that needs to be computationally modelled. 

The proposed models can be further developed by considering these temporal 

characteristics and evaluating their performance on video saliency datasets. 

 

5. The influence of culture, gender, age on human fixations is still an open 

research question. 

 

6. Connectionist approaches with deep learning architectures such as convolution 

neural networks, deep Boltzmann machine, ensemble learning, stacked auto 

encoders and deep belief networks should be investigated for developing 

efficient visual attention models. 
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Appendix B: Image/Video Saliency Detection 

 

B.1  Introduction 

n image/video saliency detection software application based on the 

attention model proposed in this thesis is implemented. The software 

detects salient regions of an image/video using focus, image centre and face detection. 

The application has been extended to include video encoding and decoding using 

H.264 video CODEC.  

B.2  Project Objectives 

The objectives of this project are: 

1. Identify the algorithmic components of the proposed model required to be 

implemented.  

2. Identify the libraries of programming functions that are needed for the real-time 

software implementation. 

3. Investigate the required functionalities and design the high level architecture of the 

software. The proposed architecture should allow the provision for future 

modifications and extensions.  

4. Implement focus, image centre and face detection components of the model and 

integrate them. 

5. Profile the computation complexity of the implemented software and optimise the 

code.  

 

B.3  Software Development Environment 

The set of technologies, frameworks and libraries needed for the development 

of software prototype are briefly discussed in the following sub sections.  

B.3.1  Visual Studio 

Visual studio [232] is an Integrated Development Environment (IDE) developed 

by Microsoft for its .NET technologies. It uses software development platforms such as 

A 
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Windows API and Windows Forms with the ability to produce both native and managed 

code. It supports various programming languages such as VC++, C# and F#. 

B.3.2  Programming Language 

The software prototype is implemented using C++ programming language. The 

main reasons for this choice are high performance, less run-time overhead and a high 

level of abstraction. It is an object-oriented programming language which allows the 

usage of plain C and assembler code. This helps in reducing the computational 

complexity by implementing instructions directly on the processor’s register. Further, it 

is often used for real time computer vision applications because of computational 

efficiency when compared to other programming languages like MATLAB and Java.  

B.3.2  Qt  

Qt [233] is a cross-platform application framework for developing application 

software with graphical user interfaces (GUI). It is an open source project which is easy 

to use and very flexible. It can be used to run on various software and hardware 

platforms with little change in the underlying code. It helps to create good user 

interfaces with high performance in speed.  

B.3.3  OpenCV  

OpenCV [234] is an open source computer vision library. It has C++, C, Python 

and Java interfaces and supports Windows, Linux, Mac OS, iOS and Android. It was 

designed for computational efficiency aiming at real-time computer vision applications. 

The library is written in optimised C/C++ and it can take advantage of multi-core 

processing. OpenCV has a very big user community and it is easy to find 

documentation and information. In this project it is used for image processing and for 

face detection purposes. 

B.3.4  FFmpeg  

FFmpeg [235] is a cross-platform multimedia framework used to convert audio 

and video formats.  It includes audio/video CODEC library which can be used to 

encode and decode the video frames. It can grab pictures from live audio/video source. 

In this project it is mainly used for decoding H.264 encoded videos. 
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B.4  Prototype Interface 

The prototype’s interface is shown in the Figure B.1. It has been developed 

using Qt project. The interface menu is shown on the left side of the application 

window. The menu gives the possibility to select the type of input. The input can be an 

image or a movie clip or it can be a live video feed from an external camera. The 

browse button is used to select the file location on the disk. The software is run by 

using the start/stop button. When the program is launched, if the camera source is not 

detected, then the camera radio button is disabled. During the run time, it is possible to 

dynamically select the core components of the attention model that have to be 

executed using the check boxes under the algorithms label. This process helps in 

studying the behaviour of individual components of the attention model. The output of 

the attention model is a grey scale image with salient regions shown with higher 

intensity. The input (left) and the output (right) images have been placed next to each 

other within the application window.  

 

 

 

Figure B.1:  Software prototype user interface 
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B.5  Software Architecture 

B.5.1  Unified Modelling Language (UML) Diagram 

This project architecture is composed of four namespaces. They are interface, 

algorithm, input and tools namespaces. These are briefly discussed below. 

Interface: It handles the interface and all information that the user can see on the 

screen.  

Algorithm:  It is the main namespace of the prototype. It comprises of classes that 

process input pictures to generate focus map, image centre map and face map and 

combines them into a visual saliency map. 

Input:  It contains classes and member functions that handle the input from different 

sources such as external video camera, movie clips and images.  

Tools: It contains classes that are useful for other namespaces.  

B.5.2  Interface Namespace 

This namespace is composed of four classes namely Image, Interface and 

QOpenCV2Widget as shown in the UML diagram in Figure B.2. The purpose of these 

classes along with their operation is discussed below. 

 

 Figure B.2:  Interface Namespace UML diagram 
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Image: It processes different types of algorithms such as focus detection, image centre 

and face detection on the given input picture to detect the saliency map. 

Interface: It contains all the information that the user needs to use the application and 

run it. 

QOpenCV2Widget: It converts OpenCV generated image (IplImage) into Qt image 

(QImage) and displays it on the application window. 

When the user runs the application by choosing the necessary input type, the 

program initially creates two image data structures with image pointers IplImage 

Saliency and IplImage origin. IplImage is an OpenCV image data structure. The input 

picture selected by the user is assigned to the image pointer IplImage origin. The 

IplImage saliency is a grey scale image with same resolution as the original picture. 

IplImage saliency is the image pointer which points to the final visual saliency map. The 

program runs the attention model on IplImage origin and modifies the IplImage saliency 

pointer variable. Finally, the two image pointers are converted into two QImage type 

objects to display on the user interface. The program uses QOpenCV2Widget class to 

convert the image type. This class converts IplImage’s into RGB and assigns it to a 

QImage object. QImage class belongs to Qt interface which is used to display the 

images. Further, the program has a timerEvent, which is used to read a new frame 

from the input video clip or from the external camera at regular intervals. The 

application extracts a picture, runs the attention model on the picture and displays the 

saliency map on the user interface. This process iterates until end of the video file is 

reached.  

B.5.3  Algorithm Namespace 

The algorithm namespace consists of classes that implement the main 

components of the visual attention model. It contains CenterMapping class, 

FaceMapping & Detection Mapping class, FocusMapping class, Process and Runnable 

classes as shown in the Figure B.3.  

Focus Mapping: This class implements DCT based in-focus visual saliency algorithm 

of the attention model.  
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Centre Mapping: This class implements the image centre algorithm of the attention 

model. It generates a Gaussian blob as a function of the input image resolution and 

places it in the centre of the grey scale map.  

 

Face mapping and detection mapping: These classes detect the frontal human 

faces present in the images and generate the face saliency map. The prototypes uses 

OpenCV implementation of Viola Jones face detection algorithm to detect the human 

faces. Once the faces are detected the face mapping class generates the face saliency 

map. 

 

 

 

 

The final saliency map is generated by performing a weighted addition as described in 

chapter 6 of this thesis. Firstly the focus and the centre map is combined using 

weighted addition. Finally, the face map is overlaid on to the combined maps.  

Process and Runnable: These classes are useful to extend the application in the 

future. To add another algorithm to this application, the developer just needs to add a 

new class to this namespace that extends Runnable. The Process class is called from 

the Image class to run all the algorithms implemented in the Runnable class.  

   Figure B.3:  Algorithm Namespace UML diagram 
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B.5.4  Tools Namespace 

The tools namespace is composed of three classes namely Gauss class, Tool 

class and Test class as shown in the Figure B.4. These are briefly discussed below. 

Gauss:  It is mainly used to create a Gaussian blob. Gauss class dynamically 

generates a Gaussian filter based on the information (kernel size, position) from the 

attention model. 

Tool class: It encapsulates two member functions that are useful in other classes. For 

example, roundf function is used in all the mapping algorithm implementations to round 

the values. 

 

 

 

 

 

 

 

 

Test:  Test class compares the output from the developed prototype to the output from 

the original MATLAB implementation.  

B.5.6  Input Namespace 

The input namespace is composed of five classes namely Input, Video, Picture, 

Compressed Video and Camera class as shown in the Figure B.5. The purpose of 

these classes is briefly discussed below. 

      Figure B.4:  Tools Namespace UML diagram 

 



186 
 

 

 

Input:  This class will act as an interface to take the picture, video from external source 

and movie clip as the input.  

Picture and Camera: These classes handle the image and external camera objects 

and are given as the input to the Input class for further processing. 

Video: It contains general function for video inputs from Camera and 

Compressedvideo classes.  

CompressedVideo:  The objective of this class is to extract image frames from 

compressed video file. A video sequence is a set of continues images (frames) 

captured at a particular frame rate. Each frame consists of a number of pixels (picture 

units) depending on the video format.  A video file consists of both audio and video and 

is compressed in a particular format. It is necessary to separate these audio and video 

tracks before processing an image from the video. FFmpeg uses DeMux command to 

separate these tracks. The video track that is separated from the video file is then 

decompressed using a video codec.  

             Figure B.5:  Input Namespace UML diagram 
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 Figure B.6:  FFmpeg video frame extraction 

 

The video codec is selected from the FFmpeg library based on the compression 

format used to encode the video. The YUV frames are then extracted from the 

decompressed video for further processing. This entire process is illustrated in the 

Figure B.6. 

B.5.7  Algorithm Behaviour 

The Figure B.7 shows how the software works when the pictures are captured 

at regular intervals. First, the interface creates the instances of all the classes and 

checks for the availability of external camera before the first input picture is processed.  

The captured picture is displayed on the user interface using the putImage member 

function of QOpenCV2Widget’s class. The OpenCV IplImage format is converted into 

QImage for displaying the image on the user interface. The displayed image is 

assigned to the Image object. The software runs the attention model on the Image 

object and generates a saliency map of the input Image. The Interface calls Image 
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class display function to get the output saliency map and displays it on the interface 

using putImage function. 

 

 

          Figure B.7:  Camera’s pictures processing 

 

B.6  Code Optimisation 

The code optimisation process involves identifying the portion of the code or 

module of the program that is running slow. These computationally intensive modules 

are modified to reduce the time complexity.  

B.6.1  Software Profiling 

The software profiling is the investigation of the software behaviour during the 

execution. A profiler is used to do the software profiling. It is a performance analysis 

tool that measures the frequency and duration of the function calls, total time required 

by the software from the point of invocation to termination. In this project Visual studio’s 

in-built profiler has been used to profile the code.  The profiler has identified that some 

of the OpenCV and Qt project functions were called repeatedly and they causing delay 
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during the program execution. The different techniques that have been used to 

optimise the code are briefly discussed below. 

B.6.2  Optimisation Methods 

Array:  The OpenCV implements a container for images called CV::MAT  to 

access raw image data. This matrix has been often used in the program. Mat is a class 

with two data parts namely matrix header and pointer to the header containing pixel 

values. The size of the matrix header is constant and stores information such as matrix 

size, storage method, address etc. The Mat class is easy to use. However, the pointer 

to the header apart from storing pixel values stores other information such as picture 

type, pointer to the data, number of rows and columns etc. A better way is to use a 2D 

array to store the data. Thereby when a loop processes a picture, the program looks 

into a 2D array and doesn’t need to use a pointer (using a pointer will make it to point 

to the matrix initially, then it points to the matrix data and finally to the pixel value). A 

2D array is still an array of pointer. The 2D array can be further simplified by using a 1D 

array. The implementation will be less readable and requires more time and effort to 

code however it is a computationally faster approach. Indeed, to access a value from a 

2D array the row and column number is enough as shown below. 

𝑎𝑟𝑟𝑎𝑦[𝑟𝑜𝑤][𝑐𝑜𝑙𝑢𝑚𝑛].  

However, in the case of a 1D array the code is less readable and the application needs 

to calculate position of the array as shown below.  

  

                              𝑎𝑟𝑟𝑎𝑦[𝑟𝑜𝑤 ∗ 𝑛𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝑅𝑜𝑤 + 𝑐𝑜𝑙𝑢𝑚𝑛].  

 

Moreover, when we want to read an 8x8 array in a bigger array as shown in the Figure 

B.8 another variable is used to indicate the position of 8x8 array within the bigger array. 

  

     𝑎𝑟𝑟𝑎𝑦[(𝑆𝑢𝑚 𝑜𝑓 𝑛𝑜. 𝑟𝑜𝑤𝑠 𝑖𝑛 𝑏𝑖𝑔𝑔𝑒𝑟 𝑎𝑛𝑑 𝑠𝑚𝑎𝑙𝑙𝑒𝑟  𝑎𝑟𝑟𝑎𝑦) ∗

(𝑛𝑜. 𝑜𝑓 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑜𝑓 𝑏𝑖𝑔𝑔𝑒𝑟 𝑎𝑟𝑟𝑎𝑦) +  𝑏𝑖𝑔𝑔𝑒𝑟 𝑎𝑟𝑟𝑎𝑦 𝑐𝑜𝑙𝑢𝑚𝑛 +

𝑠𝑚𝑎𝑙𝑙𝑒𝑟 𝑎𝑟𝑟𝑎𝑦 𝑐𝑜𝑙𝑢𝑚𝑛] 
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This way of indexing the array is an optimised version used in the software. However, 

this version can be further improved by using a pointer on this array and incrementing it 

as array Address + 0, then array Address + 1, and then array Address + 2... Each time 

the program starts from base address to find the right position.  

C function: During the run time the software initialises many arrays and also copies 

memory blocks. C functions such as memcopy and memset are used instead of for 

loops which consumes significant amount of time during the run time. 

 

Increment/decrement operators: A simple operator creates a temporary object 

whereas addition operation creates additional memory spaces whose creation and 

destruction requires much time.  

 

Bit shifting: Bit wise operations are faster than multiplication and division. The focus 

algorithm involves working frequently with 8x8 arrays of an image. Shifting operations 

are used instead of division and multiplication. For example shift number by 3 instead 

of multiplying it by 8. Depending on the processor type multiplication or division 

requires more number of processor cycles compared to shifting operation. 

 

Datatypes: Memory and time can be saved by using a float variable instead of double. 

Floating point variables occupy only 32 bits whereas double variable needs 64bits of 

space for storing the data.  

 

Loop unrolling: During the process of loop unrolling, the loop counter is updated less 

often and due to this the loop overhead is decreased. A better performance is achieved 

by using loop unrolling, however at the expense of increased code size (number of 

instructions between the branches increases). Compilers automatically unroll the loops 

with fixed number of iterations but when the number of iterations is unknown loops 

have to be unrolled manually.  

Figure B.8:  Accessing 8x8 block in an image 
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B.7  Results and Discussion 

During the software testing the output from the software prototype is compared 

with the output from the proof of concept developed in MATLAB. The testing process 

involved visual comparison of the outputs from focus detection algorithm, image centre 

algorithm, face map algorithm and the entire visual attention model’s output. The 

absolute difference of outputs from MATLAB and C++ has been calculated to identify 

the minor differences. Further, the computational complexity of the individual 

components of the prototype is given. 

B.7.1  Focus Detection 

The focus maps from the C++ and MATLAB are shown in the Figure B.9. It can 

be seen that visually they both look similar however the absolute difference highlights 

minor differences. These minor differences could be due to the type of variables used. 

In the MATLAB code, variables are stored as double which needs 64 bits. In the C++ 

code, for optimisations reason, float variables which only require 32 bits to store the 

data are used. It can have a minor impact on the output focus map as values are 

rounded. 

 

 

 

 

 

 

 

 

 

 

 

   Figure B.9:  Comparison between C++ and MATLAB focus detection 

implementation 

MATLAB Pixel Difference C++ 
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B.7.2  Image Centre  

The centre map from the MATLAB and C++ is shown in the Figure B.10. The 

comparison shows that the output from the C++ and MATLAB are visually same. The 

absolute difference also shows no difference between the two images. Therefore, the 

C++ image centre implementation is exactly identical to the MATLAB version. 

 

 

B.7.2  Face Map 

The face map from the MATLAB and C++ is shown in the Figure B.11. The visual 

comparison between the C++ and the MATLAB shows that they are almost similar. 

 

 

                  

Figure B.10:  Comparison between C++ and MATLAB image centre 

implementation 

Figure B.11:  Comparison between C++ and MATLAB face map 

implementation 

MATLAB  Pixel Difference C++ 

MATLAB Pixel Difference C++ 
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However, the absolute difference indicates minor differences between the two outputs. 

This minor difference is from the OpenCV face detection algorithm. As already 

indicated it is due to the change in the type of variables used for optimisation reasons. 

B.7.3  Visual Saliency Map 

The visual saliency map from the MATLAB and C++ is shown in the Figure B.12. 

Visually the output from C++ and MATLAB are almost similar.  

 

 

 

 

 

 

 

 

The absolute difference also indicates this by showing a minor difference 

between the two outputs.  These negligible differences clearly shows that the C++ 

implementation is very close to original MATLAB version and can be reliably used for 

visual saliency detection purposes. 

B.7.4  Computational Complexity 

The computational complexity of the software prototype is calculated over 100 

images with resolution 1024x1024 on Intel core I7-2600K CPU operating at 3.40 GHz. 

The time complexity of the individual components of the model is given in the Table 

B.1. This performance can be further improved by using a low complexity version of 

Haar cascade in the OpenCV during face detection in the images. However, the speed 

improvement is achieved at the expense of loss in the accuracy of face detection. 

   

Figure B.12:  Comparison between C++ and MATLAB visual saliency 

map implementation 

MATLAB Pixel Difference C++ 
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B.7  Future Work 

The future directions related to this development work are given below. 

1. When the program is processing a movie, it is not possible to select a particular 

frame within the movie file. It could be interesting to add a scroll bar on to the 

application window to select the frame of the movie the viewer wants to study. 

 

2. Recording the live feed that is obtained from the camera, provision to change 

the software internal variables such as Gaussian blur, algorithm variables 

through the user interface are some of the things that can be done to improve 

the software. 

 

3. Code security is a major concern of the software prototype. The code security 

can be improved in three steps. In the first step, to protect confidentiality and 

integrity it is better to use security classes, crypto keys and encryption 

algorithms within the code. Buffer overflows which is kind of vulnerability in the 

computer software should be avoided. In the second step, the entire code has 

to be obfuscated. This process makes the code logic harder to understand.  In 

the third step, as the .NET framework produces assemblies that are similar to 

assembly language code. Any programmer can use an assembly editor to 

reverse engineer and get the original source code. This problem has to be 

solved by converting the DLL’s into native machine code (binary).  

 

 

 

Attention model Individual 

Components 
Complexity 

(secs) 

In-Focus detection 0.046 

Centre detection 0.028 

Face detection 0.131 

Table  B.1:  Computational complexity of individual components of 

the attention model 
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B.8  Conclusion 

A software prototype has been developed to detect visually salient regions. It 

implements visual attention model proposed in this thesis. The user can detect salient 

regions in a picture, a video or a live feed from an external camera. The software 

provides front end flexibility of choosing the algorithms between focus, centre 

detection, face mapping algorithm and the overall integrated attention model. The 

results show that the prototype achieves similar results when compared to the proof of 

concept developed in MATLAB. Moreover, optimisation methods have been used to 

reduce the computational complexity of the software.  
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