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Abstract

Online recommender systems are an important tool that people use to find
new music. To generate recommendations, many systems rely on tag repre-
sentations of music. Such systems however suffer from tag sparsity, whereby
tracks lack a strong tag representation. Current state-of-the-art techniques
that reduce this sparsity problem create hybrid systems using multiple rep-
resentations, for example both content and tags. In this paper we present a
novel hybrid representation that augments sparse tag representations without
introducing content directly. Our hybrid representation integrates pseudo-
tags learned from content into the tag representation of a track, and a dy-
namic weighting scheme limits the number of pseudo-tags that are allowed
to contribute. Experiments demonstrate that this method allows tags to re-
main dominant when they provide a strong representation, and pseudo-tags
to take over when tags are sparse. We show that our approach significantly
improves recommendation quality not only for queries with a sparse tag rep-
resentation, but also those that are well-tagged. Our hybrid approach has
potential to be extended to other music representations that are used for
recommendation, but suffer from data sparsity, such as user profiles.
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1. Introduction

During the past decade a massive shift has occurred in the way that
people store, listen to and discover music. Traditionally, either a single or
album was stored on external media such as cassette or CD. With advances
in hardware and the growth of the world wide web, this storage has moved to
large music collections on personal hard-drives and websites offering massive
catalogues of music.

An interesting new problem that has arisen as a consequence of this shift,
is how to find and discover new music. Radio stations and music maga-
zines continue to offer advice but, with such a large amount of music readily
available, many people now look to recommender systems provided by online
services. Users provide a query, such as an example track, and a recommender
system will then return a set of recommendations to the user.

Core to this task of providing recommendations is the representation of
tracks. Each track in the collection must have a corresponding representa-
tion, which describes the key facets of the track. Many state-of-the-art music
recommender systems make use of tag-based representations, for example the
hugely popular Last.fm service [1]. The tags typically consist of two com-
ponents: standardised meta-data, such as artist, track title and genre; and
free-text that users provide. Free-text tags are extremely useful to a recom-
mender system, providing a wealth of different information, such as genres,
artists, topics, opinions and contexts [2, 3]. Many of these tags provide useful
information for recommendation, for example, tags relating to genres, artists
and topics. Context such as location can be used to improve personalised
recommendations, such as when it is known a user is working in a given
location [4, 5].

Uninformative tags can be problematic for tag-based recommender sys-
tems, but a far larger problem is when very few tags exist at all. This is a
problem commonly known as cold-start and arises from a large popularity
bias in music listening habits [6]. As a result, many tracks are under tagged;
a track is tagged if it is listened to, but a track is only recommended, and
therefore listened to, if it already has tags.

Figure 1 displays the general pattern of results found in the experiments,
and here is used to illustrate the cold-start problem in query-by-example
tag-based recommender systems. The horizontal axis shows the number of
tags a query has, and the vertical axis shows recommendation quality. The
dotted curve in Figure 1 represents average recommendation quality in a tag-
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Figure 1: The Cold-Start Problem

based recommender system. As the number of tags increases, so does the
quality of tag-based recommendation, since a larger amount of meaningful
knowledge is available. The horizontal dashed line in Figure 1 represents
average recommendation quality in a content-based recommender system.
Since this system does not rely on tags, the quality of recommendations does
not vary as the number of tags changes. For a low number of tags, content-
based recommendations are better than tag-based, but as tags increase the
tag-based system becomes better than content.

A simple hybrid approach, which can reduce the effects of the cold-start
problem, is to use content-based methods for low tagged queries, and then
switch to tag-based methods. This hybrid does not offer an improvement
over any individual method, but will produce better recommendations as an
overall system. In this simple hybrid approach however, deciding when to
change from content- to tag-based recommendation can cause problems.

Ideally, the switch from content- to tag-based recommendation is made at
point n1 in Figure 1. In this case, the maximum performance is achieved for
all numbers of tags. However, in practice it is very difficult to get this switch
over correct. If the switch is made too early then performance of the system
is decreased by not using the strongest representation. Similarly, if the switch
is made too late, then the full potential of the tag-based recommender is not
taken advantage of. Further, the extreme case of cold-start is at point n0,
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where a query track has no tag representation. This does not affect content-
based recommendation, but will reduce a tag-based system to making random
recommendations.

The aim of a hybrid system designed to reduce cold-start is to consis-
tently provide recommendations in the shaded area. In this case, the hybrid
system is able to take advantage of both content and tags, and through their
combination improve recommendation quality in all cases. Making recom-
mendations in this area is the motivation for developing our approach to
cold-start recommendation using a hybrid recommender system.

In this paper related work on the cold-start problem, hybrid recommender
systems, and their constituent parts is discussed first. We then define and
present our approach to learning pseudo-tags from content, which guarantees
a tag-based representation for every track in a collection. Next, we present
our novel hybrid representation, which is a dynamic combination of both
pseudo-tags and tags. To evaluate our approach, we then examine both
the recommendation quality, and the quality of pseudo-tagging. Finally, we
present our results and conclusions.

2. Related Work

Tag-based representations, and the knowledge they describe, are very im-
portant to music recommender systems. For certain recommendation prob-
lems, tags are able to offer greater performance than either content-based or
collaborative filtering methods [7]. Whilst a lot of progress has been made in
how this knowledge can best be used, cold-start continues to cause problems
in many tag-based systems [2].

To try and understand why cold-start remains a problem, Turnbull et al.
[8] compare five approaches to collecting tags, in terms of both scalability and
quality. The two approaches they discuss that are relevant to our work are
social tagging and auto tagging. Social tagging systems allow users to label
tracks with any text, and allows the representation to benefit from social
wisdom and context. The main weakness the authors highlight however is
that social tags tend to be sparse for unpopular tracks, a phenomenon often
referred to as the long tail.

Investigating the level of tagging among various websites, the authors
of [9] confirm that this long tail is present in each. This is further illustrated
for music tags by the Last.fm contribution to the million song dataset [10, 11].
To compound the problem further, the authors of [6, 12] also find evidence of
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popularity bias in music listening habits. The combination of the long-tail in
tagging, and popularity bias in listening habits, results in many tracks being
very under tagged; the cold-start problem.

Two simple approaches to reducing cold-start in tag-based representa-
tions are to collect them by survey [13] or through an online game [14, 15].
Two of the most successful approaches are the Tag-a-Tune game [15] and
MajorMinor game [16], collecting tags for 30, 237 and 2, 300 tracks respec-
tively. Both of these approaches however suffer from scalability problems,
and as such risk limiting tagging to popular tracks, rather than tagging the
popularity long-tail where it is needed.

A further approach to reducing cold-start in tag-based recommender sys-
tems is auto-tagging [17]. The goal of auto-tagging is to learn a set of tags
which are relevant to a track; these tags may then be used as a represen-
tation of the track. In general, most auto-tagging systems follow a similar
approach; the content of tracks is modelled, and a training set of tags cre-
ated. A multi-class classification algorithm is then used to predict the top n
most likely classes, or tags, for any given track.

To generate auto-tags, the content of each track is modelled from content-
based representations. The most common content-based representations used
include chroma, rhythm and texture [18], which are typically described as
a bag-of-features. For auto-tagging, a growing trend has been to model
these bags-of-words using Gaussian Mixture Models (GMM) [13], which de-
scribe the bag-of-words as a mixture of Gaussian distributions. Tags may be
modelled in a similar manner, in which case auto-tagging can be achieved
using the weights of correlated distributions. This method achieved the top
f-measure and AUC ROC-tag score in the MIREX (Music Information Re-
trieval Evaluation eXchange) 2008 auto-tagging competition [19].

A further GMM based approach was adopted by Tardieu et al. in their
MIREX 2011 auto-tagging submission [20]. A Universal Background Model
(UBM) GMM is trained using the expectation maximisation algorithm. The
model for each track is then learned by adapting the UBM to fit the track
content data. This is achieved by modifying only the mean vectors of the
UBM, and thus each track can be represented by the mean vectors of its
Gaussian components. In MIREX 2011, this method achieved the top tag
classification accuracy, negative example accuracy, precision, and f-measure.

The authors in [21] argue that such classification approaches to auto-
tagging are too simple, and that further statistical modelling is required.
They refine the approach by modelling concepts, not tracks, using GMMs.
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These models are then refined using a set of SVM classifiers. The approach is
competitive with other methods, but does not justify the extra computational
complexity that is introduced.

We take inspiration for our work from a more simple approach, which
has been used for style and mood annotation [22, 23], and for propagating
semantic information [24]. The authors in each case use content-based re-
trieval to provide a set of ordered retrievals. It is the order and number of
these retrievals which should be used for annotation, not tag correlations
with content. This general idea has been used successfully in other related
domains, including playlist generation [25], and image tagging systems [26].

Further approaches to reducing cold-start make use of a hybrid system,
many of which rely on content, not auto-tags. In our previous work we in-
vestigated generalising concatenated tag-content representations [27]. Using
this generalisation we were able to increase the cold-start discovery of tracks,
while maintaining a recommendation quality comparable to a tag-based rec-
ommender system. A similar hybrid approach was investigated by Levy and
Sandler [28], but using a representation they call muswords. In this hybrid
system the authors first cluster the content representation so that it is com-
parable with tags, and then concatenate the representations.

This notion of combining musical representations, and then generalising
them is a growing trend in hybrid recommendation systems. Combinations
of representations include: audio features and user-ratings [29]; audio sym-
bols and user-ratings [30]; user-tags and user-ratings [31]; and tags and au-
dio [27, 28]. The intuition behind such approaches is that sparsities in some
representations (tags, user-ratings) can be overcome using content. In each
case, the way that content is used is based on its correlation with another
representation. One issue with these approaches however is that content
does not always correlate with other representations. For example, tags can
describe non musical properties, and so looking for non-existent correlations
may introduce noise into the hybrid system.

This problem of correlating content with other representations is avoided
in [31]. The authors look for correlations in user-tags and user-ratings; the
user provides a direct link and so correlations are meaningful. To reduce the
sparsity, and therefore cold-start problem, the authors investigate propagat-
ing user-tags based on content-based similarity. The authors describe this as
a way of combining content with other features, which slightly obscures the
insight of their method.

It is known that content on its own does not perform well compared to
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other methods [27]. Based on the previous work in hybrid recommender
systems, we propose that content should not be used for recommendation di-
rectly at all. Content should be used to strengthen other representations, but
should not be integrated into these representations. Our approach attempts
to follow these lessons from auto-tagging and hybrid recommendation, and
we propose a method where content is used to define a pseudo-tag represen-
tation, which is then used in our hybrid recommender system.

3. Constructing a Pseudo-Tag Representation

Methods designed to address the cold-start problem in music represen-
tations may make use of audio content. The primary advantage of such
content-based approaches is that for many recommender systems the audio
for every track is available. However, recommendations based solely on con-
tent are not as strong as when tags are used. One reason for this is that
content is unable to capture the rich social and contextual aspects that may
be contained in tags.

To reduce the problems encountered when using a content-only method
for cold-start representations, we have developed a novel approach to learning
a pseudo-tag representation. Pseudo-tags are tags that are assigned to a track
algorithmically, based on the content representation of the track. Further,
pseudo-tags should be able to describe non-musical properties of a track,
based on the tags that similar tracks are assigned. Thus, pseudo-tags offer
a representation that is available to every track in a collection, and that is
more knowledge rich than content alone. In this section we first describe the
content representation we use, and then our method for learning pseudo-tags.

3.1. Representing Audio Content

There are several different ways that musical content can be described.
For example, musical aspects such as chroma and melody may be captured,
or structural elements like beats and sections may be described. One of the
most widely-used descriptors for music recommendation however is texture,
also known as timbre [6].

To describe texture, we use the Mel-Frequency Spectrum (MFS) repre-
sentation developed in previous work [32]. The MFS representation is a
musical adaptation of the well-known Mel-Frequency-Cepstral-Coefficients
(MFCC) texture representation, which was initially developed for speech
recognition [33].
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The first part of extracting the MFS representation from a track’s audio
is similar to many audio representations. The track is split into windows and
for each window the time-domain audio signal is converted into a frequency-
domain spectrum using a fast Fourier transform (FFT). This spectrum de-
scribes frequency in terms of equally spaced bins, where each bin k represents
the contribution of that frequency range to the original time-domain signal.
The specific frequency f that bin k describes is

f =
k

NT
(1)

where N is the number of samples that describe each frame and T is the
length of each frame in seconds. For our experiments, the audio sampling
rate is 44.1kHz and the track is split into windows of length 213 (186ms).
The audio signal is converted into a frequency-domain spectrum of size 212

with maximum frequency 22.05kHz and bin resolution 5.4Hz.
To create the MFS texture representation from the frequency spectrum

obtained, the spectrum bins k must be grouped into buckets according to
the mel scale [34]. This scale describes the way in which humans perceive
frequency, and is roughly linear up until 1000Hz, and then becomes logarith-
mic. The following equation describes the conversion from frequency f to
mel φ(f).

φ(f) = 2595 log10

(
f

700
+ 1

)
(2)

Triangular filters are used to discretise the frequency-spectrum into mel-
spaced buckets, as illustrated in Figure 2. Each filter is of equal width in
terms of the mel scale, defined as

Δ(φ) =
φ(fmax)

M
(3)

where M is the number of filters used. The lower bound l and upper bound
u frequency spectrum bins of each filter m are therefore calculated as

lm = φ−1(mΔφ)NT (4)

um = φ−1((m+ 1)Δφ)NT (5)
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Figure 2: Frequency-mel relationship and filter placement

and thus the width of filter m in terms of frequency spectrum bins k is

Δkm = um − lm (6)

From these lower and upper bound frequency dimensions, a triangular
filter bank F , where each column contains a single triangular filter, may be
constructed to achieve the discretisation as

Fkm(x) =

{
2

Δkm+1
· (Δkm+1

2
− ∣∣(x− lm)− Δkm−1

2

∣∣) if lm ≤ x ≤ um

0 otherwise
(7)

and finally applied to the frequency spectrum X as Y = XF .
Each filter is spaced equally along the mel scale, shown on the vertical

axis of Figure 2, therefore distributing the buckets along the frequency axis
as shown by the horizontal axis. The curve shown in Figure 2 is the mel scale
defined in Eq. (2). One further consideration in describing musical texture is
how notes are distributed amongst this discretisation. The number of musical
notes in each bucket can be calculated as

notes(f, fref) = 12 log2(
f

fref
) (8)
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where fref is a reference frequency, which we set as the note C0, 16.35Hz.
The results of this equation are illustrated by the bars in Figure 2, showing
most musical notes occur at low frequencies, and very few occur at higher
frequencies. This observation affects the way that the frequency range may
be discretised when constructing the MFS representation, where changing the
number of triangular filters used can have a significant effect. Tuning this
parameter also requires an understanding of how the representation will be
used in a retrieval model. For the experiments 40 mel-spaced filters are used,
based on empirical evidence found to be best for MFS with aggregation-based
recommender models [32].

The vector created as a result of discretising the frequency range using
mel-spaced filters is the MFS representation; one vector for each time sample.
The collection of vectors for each track therefore is the input to any model
which must use them.

3.2. Content-Based Recommendation

After obtaining an MFS vector for each window in a track, the next step
is to model these vectors. Based on previous work in [32] we construct a
single MFS vector for the track, where each dimension in this vector is the
mean value of that dimension across all the track’s MFS vectors.

We compute the mean MFS vector for each track in our collection, and
construct a mean-vector by track matrix. Latent semantic analysis [35] is
then used to discover musical texture concepts from the mean-vector by track
matrix M such that

M = UΣV T (9)

Using this model we now have a baseline method for cold-start recom-
mendation. Given a query track q, the track’s MFS vector can be projected
into our LSA model as

q′ = Σ−1UT q (10)

and recommendations made using Cosine similarity with k nearest neighbour
retrieval. This baseline approach will be referred to as Content.

3.3. Pseudo-Tag Recommendation

The Content model described can be used not only to provide cold-start
recommendations directly, but also to generate pseudo-tags for a track. These
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pseudo-tags are tags which are learned offline, and may be used to represent
a track. Pseudo-tags are not intended to be revealed to users as tag sugges-
tions, but are instead used as a replacement representation for content. It
is expected that pseudo-tag representations will benefit over content because
factors such as context and opinions will also be present in the representa-
tion as the result of human tagging activity. This generation of pseudo-tags
allows for recommendations to be made using tags directly, rather than using
content for recommendation.

The first step to generating pseudo-tags is to find tracks that are similar
to a track τ . First, a nearest-neighbour retrieval is made using content-based
similarity, where the K most similar tracks to τ are retrieved. Each of these
K retrieved tracks will have an associated tag representation, which can then
be used to learn pseudo-tags for track τ .

A simple approach to creating a pseudo-tag vector is to treat all tag
vectors as being binary, and count tag occurrences. One drawback of using a
binary representation is that the original contribution of each tag is not fully
taken into account. A more refined approach is to weight the contribution
of each retrieved track’s tag vector, based on how similar it is to the query.
However, content-based similarity can vary depending on the query, and so
each neighbour’s rank should be used, as shown by [39, 40]. We therefore
propose a solution where a neighbour’s rank is used as a weighting function
to the original tag contribution. The weight w of a given track’s tag vector
is determined as

wk = 1− k − 1

K
(11)

where k is the position of the track in the nearest neighbour retrieval in the
range 1 to K, and K is the number of nearest-neighbours retrieved.

The pseudo-tag vector p for a given query track is initialised to 0, and
the dimensions corresponding to each nearest neighbour’s tags calculated as

pi =
K∑
k=1

wkti(k) (12)

where ti(k) is the term-frequency of the ith tag in the tag vector of the track
at position k in the nearest neighbours. Tag vectors are sparse vectors of the
tag vocabulary, and pseudo-tag vectors are aggregations of tag vectors.
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Given this pseudo-tag representation, we are now able to recommend
tracks using only tag-based methods, where the pseudo-tag vector is used as
a substitute for the query’s mean MFS vector. This approach will be referred
to as PseudoTag.

While investigating the weightings for Eq. (12), we looked at introduc-
ing thresholds for the nearest neighbour search. One intuition was that a
minimum threshold value should be placed on the number of tags that each
nearest neighbour has. For example, only including tracks with more than
20 tags in our nearest neighbour search. It was found however that such a
threshold is harmful, and that all tracks should be allowed to contribute.

4. Tag and Pseudo-Tag Hybrid

Pseudo-tags can be used to improve the quality of cold-start recommen-
dations, but they do not solve one other important problem; when should
pseudo-tags be used? A threshold may be set based on the number of tags a
query has, and a decision made as to whether or not the track is a cold-start
item. If this threshold is too high however then recommendation quality is
hampered by the pseudo-tags; if the threshold is too low then recommenda-
tion may still be hampered by a lack of useful tags.

To overcome this problem we develop a novel approach to creating a dy-
namic hybrid representation, using both tags and pseudo-tags, which does
not rely on this kind of threshold. In this section we first discuss the selec-
tion of how many pseudo-tags to use, and then our weighting and retrieval
method.

4.1. Selecting Pseudo-Tags

Pseudo-tags can be learned using Eq. (11) and Eq. (12). In this pseudo-
tag vector many tags will be present, since it is the summation of K tracks’
tag vectors. This increased number of pseudo-tags over the typical number of
tags can provide problems when computing similarity between a pseudo-tag
vector and tag vector, and so only the most relevant pseudo-tags should be
selected.

Pseudo-tag and tag vectors may be compared using cosine similarity

similarity(p, t) =
p · t

||p|| ||t|| (13)
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which compares the intra-vector strength of each dimension in vector p and t
respectively. The denominator normalises each vector, so that it is effectively
a unit vector, and therefore also normalises the weights of each dimension.

In most cases where cosine similarity is used this normalisation is desir-
able. However, in a recommender system containing both tag and pseudo-tag
representation this introduces a bias; tag-based representations will tend to
be similar to other tag-based representation, and pseudo-tag representations
with tend to be similar to other pseudo-tag representations. The reason for
this is that a tag-based representation will tend to have a few strong tags,
and a moderate number of weak tags. In comparison, a pseudo-tag represen-
tation is likely to have many strong tags, and many weak tags. In a hybrid
representation which contains both pseudo-tags and tags, this means that
well-tagged queries are unlikely to generate cold-start recommendations, and
conversely cold-start queries are unlikely to generate well-tagged recommen-
dations.

To overcome this bias we merge the pseudo-tag and tag vectors for each
track into a new vector, and an important step in this process is first re-
stricting the number of pseudo-tags which a track may have. As the number
of tags in a track increases, so does the recommendation quality, and so,
intuitively, as the number of tags T increases, the number of pseudo-tags P
should decrease. If too many pseudo-tags are introduced to a well-tagged
track’s representation, then the existing tags will not influence recommenda-
tion as much as they should. In this combination, both the pseudo-tag and
tag vectors must both be normalised to a unit-vector before combination,
ensuring that one does not overpower the other.

To test this intuition we evaluate recommendations using differing num-
bers of pseudo-tags and tags in a combined representation. Using a leave-n-
out strategy on our training set, we evaluate recommendation quality using
different numbers of pseudo-tags, and aggregate these results based on how
many tags a track has. To provide a meaningful aggregate, the number of
tags each track has are discretised into buckets of 10 tags, for example, all
tracks with between 1 and 10 tags are aggregated together.

The solid line in Figure 3 illustrates the number of pseudo-tags, which
when combined with a tag vector produce the best recommendation quality.
The dashed line is a line-of-best-fit through this data. Based on this observa-
tion, we therefore limit the number of pseudo-tags representing a track using
the line-of-best-fit. Pseudo-tags are ranked by the weighting they are given
using Eq. (12), and the top P pseudo-tags are selected, based on the line in
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Figure 3: Balancing number of pseudo-tags against tags

Figure 3, as the PseudoTag representation to be used in our hybrid model.

4.2. Weighting Tags and Pseudo-Tags

Having obtained a suitable pseudo-tag vector, the next step is to combine
the pseudo-tag and tag vectors into a single representation. This is achieved
by assigning both the pseudo-tag and tag vectors an importance weighting,
and then summing the vectors. Thus, the hybrid vector h is computed as

hi = αpi + (1− α)ti (14)

where p is the pseudo-tag vector, t is the tag vector. Both p and t are
normalised per-track prior to computing the hybrid vector. The α parameter
weights the influence of pseudo-tags and tags.

From our previous evaluation we found that the weight of pseudo-tags α
must also decrease linearly, illustrated in Figure 4. The solid line illustrates
the weight of pseudo-tags which produce the best recommendation quality.
The dashed line is a line-of-best-fit through the data.

We therefore weight the pseudo-tag vector as

α = ln+ c (15)

where l is the gradient reducing the pseudo-tag weight, set empirically as l =
−0.005, and c is the maximum weight that pseudo-tags may have, set as c =
0.5. This value for c is chosen to ensure that tags, where present, will always
maintain the primary influence within the hybrid vector. Where no tags are
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present, the value of c does not affect the hybrid vector. This is because
the cosine similarity measure we use calculates the angle between normalised
hybrid vectors, and so modifying c may change pseudo-tag magnitudes, but
will not change the angles computed.

Using this method of combining pseudo-tags with tags, we are now able
to represent every track by a hybrid vector h. For tracks which are well-
tagged, the tag vector will be the main contributor to h, and therefore allow
recommendation to be made using the strengths of tag representation. For
weakly-tagged tracks, any tags which they have will not be ignored, but
instead enhanced by the inclusion of pseudo-tags in h. Recommendations
are made using this hybrid representation based on cosine similarity, and
will be referred to as Hybrid.

5. Evaluating Recommendation Quality

The objective of our evaluation is to investigate the performance of our
Hybrid recommender system, compared with a purely tag-based recommender
system, by evaluating the quality of recommendations made. To evaluate our
approach to recommendation, we evaluate all the building blocks of the sys-
tem. We first measure recommendation quality using only PseudoTag, and
compare this to the quality of Content recommendations. This compari-
son allows us to quantify and understand the effect of our pseudo-tags when
making recommendation. Next we compare the recommendation quality of
our Hybrid model with the tag-based model. This evaluation allows us to
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understand the effects that pseudo-tags have on the system as a whole, and
also the effect our Hybrid representation has across varying degrees of tag
sparsity.

5.1. Experimental Design

We structure our evaluation of recommendation quality as a query-by-
example task, where each query is a single track. This type of recommender
system is commonly found in systems where users can listen to single tracks,
and then browse music based on the recommendations provided. We use 10-
fold cross validation, and split the folds so that each track appears in the test
set exactly once. For each query in our test set, we make 10 recommendations.
To measure the quality of these recommendations, we use the association
score measure developed in previous work [27]. This measure estimates the
relationship between two tracks, based on the proportion of listeners who
liked both tracks. Association score is calculated as

association(si, sj) =
likes(si, sj)

listeners(si, sj)
(16)

where si and sj are the query and recommended tracks. listeners(si, sj) is
the number of people who have listened to both track si and track sj, and
likes(si, sj) is the number of people who have liked both si and sj.

Using Eq. (16) we are able to measure the quality of recommendations,
on a scale of 0 to 1. A score of 0 indicates that there is no evidence of
users liking a query-recommendation pair. A score of 1 indicates that the
number of users who have liked both query and recommendation is equal to
the number of estimated listeners of a query-recommendation pair, and the
track is therefore a high quality recommendation. The scores we present in
our results are the mean average association score achieved by all query-track
pairs across all folds in our evaluation.

5.2. Datasets

Our dataset contains 3174 tracks by 764 separate artists. The average
number of tracks per artist in the collection is 4, and the most common artist
in our collection has 78 tracks. The tracks fall into 12 distinct super-genres:
Alternative (29%), Pop (25%), Rock (21%), R&B (11%); and Dance, Metal,
Folk, Rap, Easy Listening, Country, Holiday and Classical making up the
remaining 14% of the collection. We collect tag annotations for each track
in our collection using the Last.fm Audioscrobbler API [1]. Last.fm provides
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normalised frequency values for the tags assigned to each track, with the most
frequent tag always having a frequency of 100. Thus, these tag-frequencies
are in the range 0 to 100 and there are 5160 unique tags in our dataset. We
have access to the audio for this dataset, and so use the MFS representation
to describe content. Pseudo-tags are learned from MFS neighbourhoods of
size K = 40, based on empirical evaluation.

The evaluation data which we use to calculate the association score be-
tween two tracks was collected using the Last.fm Audioscrobbler API. We
collect data for 175000 users over a period of 2 months, recording the tracks
which a user gives a “thumbs up” through the Last.fm interface. On average,
each user has liked, or given a “thumbs up” to 5.4 tracks in our collection.
Further information that we collect using the Last.fm API is the number
of listeners of each track in our collection, which we then use to estimate
listeners(si, sj).

5.3. Recommendation Results

We first evaluate the performance of our PseudoTag method against that
of Content recommendation. Figure 5 shows the results obtained; the hori-
zontal axis shows the number of recommendations that were made for each
query, and the vertical axis shows the association score, measuring recom-
mendation quality. The values presented are the mean average association
score at the given number of recommendations. Significance at 95% is tested
using a two-tailed paired Student’s t-test, and error bars are shown also at a
95% confidence interval from the mean.

The Content recommender performance is illustrated by the dark dashed
line, and PseudoTag by the dark solid line. When only 1 recommenda-
tion is made, both the PseudoTag and Content systems offer comparable
performance. For 2 or more recommendations however, the PseudoTag rep-
resentation is able to generate significantly better recommendations. The
PseudoTag recommender system is also able to provide a more stable level
of recommendation quality.

The improved quality and stability illustrate the power of using PseudoTag
over Content. While the PseudoTag representation is based on content-based
similarity, the tags learned do not necessarily describe content. This is the
main advantage pseudo-tags have; additional knowledge from user tagging
activities will also be discovered. Introducing this knowledge into the repre-
sentation results in the improvements shown.
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Figure 5: Recommendation Quality of Pseudo-Tags

The grey dashed line in Figure 5 shows recommendation quality for
PseudoTag when the weighting scheme in Eq. (12) in not applied. This
clearly shows that taking advantage of the order of tracks in content-based
retrieval is advantageous, and not doing so reduces the quality of pseudo-tags.

Figure 6 shows our results comparing tag-based recommendation to our
Hybrid approach. The format of this figure is the same as with Figure 5.
The solid line shows recommendation quality for our Hybrid method, and
the dashed line for tag-based recommendations.

For all numbers of recommendation, the Hybrid approach offers signifi-
cantly better recommendations than the tag-based method. The strength-
ened representation offered by using pseudo-tags in our Hybrid system is able
to influence recommendation in such a way that more relevant recommen-
dations appear first in the recommendation list, resulting in this improved
quality.

For tracks with a small number of tags, the pseudo-tag representation
is given a higher weighting in the hybrid representation, and are allowed to
control recommendation. It is important to remember that we inject a dy-
namic amount of pseudo-tags into our representation. This dynamic element
is extremely helpful, since it allows tracks with a strong tag representation
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Figure 6: Recommendation Quality of Hybrid Representation

to still take advantage of this knowledge.
To further examine how this dynamic generation of a hybrid representa-

tion affects recommendation, we show the results by the number of tags a
query has, in Figure 7. The vertical axis this time shows the difference in
association score, between the Hybrid and tag-based approach.

The solid black line shows the improvement made when a query has be-
tween 0 and 9 tags, and the dashed black line shows the improvement made
when a query has between 80 and 89 tags. These lines are the two extreme
scenarios of cold-start and well-tagged in our system. To give a full picture,
we also show the improvements made for between 10 and 79 tags as light
grey lines, where each line shows a 10 tag interval.

As expected, the largest improvement made by using our hybrid approach
is when a query has a very low number of tags. The improvement of 0.07
for 1 recommendation is greater than the improvement of the system as a
whole. However, less expected is when the query has a large number of tags
(80 to 89); our hybrid approach is still able to offer an improvement. We
may only be adding a very small number of pseudo-tags to the tag-based
representation, but they are meaningful and aid performance.

When we examine the set of recommendations made as a group, few
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Figure 7: Improvement by Number of Tag Using Hybrid Representation

differences appear between the tag and hybrid groups. What does differ
is the order in which these recommendations are presented. The effect of
pseudo-tags on tracks with a large number of tags is refinement. The subtle
differences introduced to the hybrid representation are enough to alter the
specific ordering of recommendations in a positive way.

In our initial Figure 1 in Section 1 we define the challenge of cold-start,
and argue that a desirable solution must provide recommendation quality
within the grey shaded area. That is, the recommendation quality of a
hybrid system must always be greater than the maximum quality of both
content and tags, for all given numbers of tags in a representation. Figure 8
shows our results in the same format as Figure 1, and illustrates how each
recommendation method performs as the number of tags a query has differs.
The horizontal axis shows the number of tags the query track has, and the
vertical axis shows the mean association score achieved for these tracks. The
values shown are a moving average of the last 5 values, for example, the
values shown for 20 tags is the average of the means for between 16 and 20
tags.

For our hybrid approach to meet the initial goal, its quality must always
be greater than both that shown by Content, illustrated by the dashed grey
line, and Tag, illustrated by the solid grey line. When the number of tags

20



Figure 8: Quality at 5 Recommendations by Number of Tags

is less than 5, our hybrid approach must outperform Tag, and when the
number of tags is 5 or more, our approach must outperform Content. The
performance of Hybrid is shown by the solid black line, which for up to 20
tags clearly out-performs the Tag approach. For more than 20 tags Hybrid
always performs at least as well as Tag (see Figure 7).

The reason that Hybrid is able to achieve this higher quality is because
of the pseudo-tags that are embedded into the representation. These pseudo-
tags allow the hybrid approach to have a distinct advantage when less tags
are available, instead of reverting to the random recommendations of Tag.
The quality of the PseudoTag method backing up the hybrid approach is
illustrated by the dashed black line, and the quality of Content is illustrated
by the dashed grey line. These results show that the ability to learn correct
pseudo-tags can have a positive impact on recommendation quality regardless
of how many tags a track has.

6. Evaluating Pseudo-Tagging Quality

To gain further insight into how our hybrid recommendation approach
behaves, we examine the quality of pseudo-tags produced by our PseudoTag
method. Pseudo-tags which are learned by our model should provide a precise
representation for each track. If this is not the case, then our model may
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be learning pseudo-tags which introduce noise to a track’s representation.
Therefore, to evaluate pseudo-tags we compare our pseudo-tagging method
with a similar current state-of-the-art auto-tagging method.

6.1. Dataset

For this evaluation we use the CAL500 dataset [13]. The collection of 500
tracks is annotated by 174 tags, where each tag describes either instruments,
vocals, genres, emotions, concepts or usage [13]. These tags were generated
by 66 students, who collectively provided 1700 track-tag pairs. The creators
of this dataset provide tag data in two formats: soft annotations which are
weighted track-tag pairs, based on how the students voted on tags; and hard-
annotations which identifies tags as relevant, if a predefined threshold is met.

The CAL500 dataset also comes with pre-extracted audio features, includ-
ing chroma, dynamic-MFCC, and delta-MFCC feature vectors, and 32kbps
30-second clips of audio for each of the tracks. This combination of standard
content and tag features provides an excellent small scale collection with
which to evaluate MIR tasks, and has been used by many authors to eval-
uate auto-tagging [17, 36, 37]. However, instead of using the pre-extracted
features to learn our pseudo-tags, we use our MFS representation, since this
is what our Hybrid representation uses.

Figure 9 shows the full distribution of tag assignments throughout the
CAL500 and our private collection described in Section 5.2. The horizontal
axis shows the number of tags a track has, and the vertical shows the per-
centage of tracks which have this number of tags. The plot for the CAL500
dataset is created from the hard-annotations provided. As a result of the
human annotation method used to collect tags, each track has between 13
and 43 tags, and there are no tracks with 0 tags. In contrast, the distribution
observed for our private collection is very different. The general trend here is
that the number of tracks decreases as the number of tags increases. This is
to be expected in a real-world dataset, and is the result of a popularity bias
within the collection [8]; popular tracks are more likely to be well-tagged.
The average number of tags assigned to a track in our private collection is
34, with a standard deviation of 24.4. The more focused tagging in CAL500
make it more suited for auto-tagging experiments than our private collec-
tion. Evaluation of recommendation quality was not reported for CAL500,
because its tagging in Figure 9 is very different from the private collection,
which more accurately reflects what is observed in a popular online music
service.
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Figure 9: CAL500 and private dataset tag distributions

6.2. Experimental Design

The first stage of creating our hybrid representation is to generate pseudo-
tags using content-based similarity, and so we aim to examine the quality
of these pseudo-tags. Our method for generating pseudo-tags is based on
summarising the tag vectors of the K nearest neighbours of a track using
Eq. (12). These neighbours are generated by a content-based recommender
system using the MFS representation.

This task of generating pseudo-tags is very similar to auto-tagging, in that
we are trying to generate the most suitable tags for a track. The main differ-
ence between standard auto-tagging and pseudo-tagging is that the evalua-
tion criteria are slightly different. In auto-tagging, a wide range of evaluation
measures are relevant [38] including precision, recall, f-score, accuracy and
AUC-ROC, and the objective is to perform well in all measures.

Many evaluations of auto-tagging measure the per-tag precision and recall
of the auto-tagger, that is, how well a fixed number of tracks can be assigned
to a tag. In our case this evaluation does not make sense; all tags will be
assigned to a track, but there is no guarantee that all tracks will be assigned
a tag. We therefore measure the mean per-track precision and recall, which
examines how well a fixed number of tags are assigned to a track. Precision
measures the percentage of pseudo-tags correctly applied to a track, and
recall is the percentage of a track’s tags which are generated as pseudo-tags.
Precision and recall are calculated as

precision(s) =

∑P
i=1 rel(pi‖s)

P
(17)
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recall(s) =

∑P
i=1 rel(pi‖s)

T
(18)

where rel(pi‖s) is 1 if pseudo-tag pi has a weight greater than 0 in the tag
vector of track s, and 0 otherwise. T is the number of tags in the tag vector
of track s, and P is the number of pseudo-tags generated for track s.

For our pseudo-tags, we are most interested in achieving a high preci-
sion. We are not evaluating a classification task, or providing annotations
for humans; we are trying to generate a representation to use in cold-start
recommendation which correctly describes a track. Recall for the system will
vary depending on how many pseudo-tags are required, but it is important
that the precision for all levels of recall remains strong.

The average number of tags each track has in the CAL500 dataset is 26,
and there are 174 possible tags in the collection. The mean precision of a
random pseudo-tagger therefore is 0.15. However, our PseudoTag method
is based on the K nearest neighbours of a track. As a more meaningful
baseline measure, we evaluate the performance of pseudo-tagging when tags
are selected randomly from the K nearest neighbours. This baseline will be
referred to as Random.

We also compare our pseudo-tagging method with Sordo’s current state-
of-the-art k nearest neighbour approach [23]. Sordo’s method involves re-
trieving N tracks for each track that must be annotated, and giving a higher
influence to the tags of the nearest K tracks. The influence of each track is
calculated as

w(k) =

{
1 if k ≤ K
1
k2

otherwise
(19)

and these influence weights are then used to count the total influence of all
tags of the nearest tracks, calculated as

pi =
N∑
k=1

w(k)�ti(k)� (20)

where �ti(k)� evaluates to 1 if ti(k) is present, and 0 if it is not.
In Sordo’s method, N is set to the number of songs in the training set,

and K is set in the same way as for PseudoTag. The effect is that the nearest
K tracks all get an equal vote, and the votes of the remaining N −K tracks
have an inverse square decay.
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6.3. Pseudo-Tagging Results

The first measurement in our pseudo-tag evaluation compares how each
method performs at varying levels of K. Figure 10 shows the mean precision
obtained when 10 pseudo-tags are learned; the error bars shown are at a 95%
confidence interval from the mean. The solid black line shows the precision
obtained when using our PseudoTag method, the grey line shows that of
Sordo’s method, and the dotted line shows the baseline random method.

As expected, the performance of the random approach is much lower than
both PseudoTag and Sordo. When K is 10 both the PseudoTag and Sordo
methods perform similarly, with a precision of approximately 0.68. As K
is increased however, each method starts to behave differently. Precision of
our PseudoTag method improves until K is around 40, whereas precision of
the Sordo method gradually decreases. For values of K greater than 10, our
pseudo-tagging method achieves significantly better precision than Sordo.

Figure 10: Precision learning 10 tags for different sizes of content neighbourhoods K

It is interesting that precision of the random method also decreases as K
is increased, with a large decrement occurring between K = 20 and K = 30.
In our method we take the position of each track in the content retrieval
list into account. In the Sordo and random methods, each track in the
near neighbourhood is considered to be equally important, and thus the tag
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vectors of the K nearest tracks are all considered equal. The reason that
our PseudoTag method is able to achieve significantly increased precision
over the Sordo method is that each of the K nearest tracks are not treated
equally. The weighting function that we apply allows the tags of the most
similar tracks to have a larger influence, and to effectively control how tags
are learned.

As K is increased beyond 40, the precision of all methods decreases.
This exact threshold is specific to the CAL500 dataset, but the trend is not.
Increasing K allows more unique tags to be found, and the weights of these
tags will gradually increase as more tracks are included. With the random
method, when K is equal to the size of the training set, precision is reduced
to that of the completely random system. With Sordo method, when K is
equal to the size of the training set, precision is reduced to what is achieved
by assigning the most popular tags in the collection.

Figure 11 shows the recall-precision curve of each method, with a fixed
K = 40 content neighbourhood. The points were generated by evaluating
the precision and recall of each method for between 1 and 100 pseudo-tags.
For both our PseudoTag and Sordo, precision decreases as the number of
pseudo-tags learned is increased. This result is expected, since the chance
of making an incorrect pseudo-tag assignment also increases. However, our
pseudo-tag method that we use for recommendation, maintains a reasonable
precision for all numbers of pseudo-tags. This is very important, and must
be interpreted slightly differently to standard auto-tagging tasks.

When auto-tagging is used for suggesting tags to users, or providing a
permanent tag representation, it is normal to suggest only 10 or 20 tags.
For our task of creating a hybrid representation however, anywhere from 0
to 100 pseudo-tags may be required, depending on how well-tagged a track
is. Regardless of how many pseudo-tags are required, we need them to be as
precise as possible. It is therefore useful that our method is able to provide
a competitive precision even when a large number of pseudo-tags is learned.

7. Conclusions

In this paper we have presented a method to improve music recommenda-
tion by tackling the problem of sparse tagging. We propose a dynamic hybrid
representation that combines tags and pseudo-tags to reduce the sparsity of a
track-tag representation matrix of a given dataset. There are two main con-
tributions: the generation of pseudo-tags learned from similar tracks; and
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Figure 11: Recall Precision Curve

the dynamic combination of these pseudo-tags with existing tags.
Pseudo-tags are learned by aggregating tags from similar tracks; i.e. tracks

whose audio content is similar according to the MFS music inspired texture
representation. We note that pseudo-tags are not learned from content, they
are learned from content and tags for other tracks. Tags capture human in-
terpretations of low level music features as well as social/contextual concepts,
and frequently used tags in musical neighbourhoods can provide a consensus
of high level and social/contextual information. For tracks that are weakly
tagged, this has the effect that pseudo-tags enable them to inherit human
interpretation of content and social/contextual information, from the tags of
similar tracks. In this way useful tag information is spread to neighbouring
tracks in the content space.

The dynamic combination of these pseudo-tags with existing tags creates
a hybrid representation which assigns more or less influence to pseudo-tags
depending on how well-tagged a track is already. Sparsely tagged tracks at-
tract more pseudo-tags, and these new tags are more equally weighted with
existing tags; well-tagged tracks use existing tags to dominate the represen-
tation. Our Hybrid recommender system generates recommendations using
these combined tags and pseudo-tags. Synergy from a hybrid system should
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be able to outperform its component parts, regardless of the sparseness of
tagging. Our results demonstrate that Hybrid provides improved recommen-
dations compared to Tag and Content individually. The benefit from the
social and contextual information in this combined meta-data can be seen
in good recommendations when tracks are sparsely tagged. There is also
improved recommendation quality for well-tagged tracks, indicating that the
small influence of pseudo-tags is not harmful but adds some diversification
to the representation.

Sparsely tagged tracks suffer from the cold-start problem in music recom-
mendation. Since learning pseudo-tags is based on content-based retrieval,
pseudo-tagging does not suffer from cold-start, unless all similar tracks are
untagged. For extreme cases of cold-start, when a track has no tags, pseudo-
tags provide a stronger alternative to content. We have shown that pseudo-
tags with high precision may be learned by taking advantage of the order of
tracks in content-based retrieval.

In future work, it will be interesting to investigate a similar approach
with different tasks/domains. For example, in a recommender system which
uses collaborative filtering, it may be possible to reduce cold-start by learn-
ing pseudo-profiles for new users. In this case the hybrid representation
would potentially consist of real user track plays, and pseudo-user track plays.
There are other domains with dual representations that could benefit from
using our dynamic approach to creating a hybrid representation; e.g. image
retrieval with pixel content and incomplete captioning could exploit pseudo-
captions; product recommendation with some available reviews could learn
key comments for pseudo reviews.
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