

AUTHOR:

TITLE:

YEAR:

OpenAIR citation:

OpenAIR takedown statement:

 This work is made freely
available under open
access.

This ǘƘŜǎƛǎ is distributed under a CC ____________ license.

__

Section 6 of the “Repository policy for OpenAIR @ RGU” (available from http://www.rgu.ac.uk/staff-and-current-
students/library/library-policies/repository-policies) provides guidance on the criteria under which RGU will
consider withdrawing material from OpenAIR. If you believe that this item is subject to any of these criteria, or for
any other reason should not be held on OpenAIR, then please contact openair-help@rgu.ac.uk with the details of
the item and the nature of your complaint.

This work was submitted to- and approved by Robert Gordon University in partial fulfilment of the following degree:

CAWIML: A Computer Assisted Web
Interviewing Mark-up Language

Jose Miguel Lloret Perez

A thesis submitted in partial fulfilment of the

requirements of the

Robert Gordon University

for the degree of Master of Research

This research programme was carried out

in collaboration with Pexel Research Services

October 2016

Abstract

Computer-Assisted Web Interviewing (CAWI) is the new mode of conducting surveys

through web browsers. This on-line solution extends the traditional paper questionnaire

with functionality to inform the order of questions, the logic to guide question relevance

and inconsistency checks to validate responses. Large scale international surveys are

typically conducted by research agencies in multiple countries using CAWI systems.

However, these demand for non-proprietary and platform independent questionnaire

definitions that work throughout multiple survey systems.

In this thesis, we conduct a comparative analysis at two levels: one for the different

Extensible Markup Language (XML) authoring solutions that capture questionnaire

features; and another to explore the architecture styles for the most popular CAWI

solutions. The popular hierarchical model, employed to manage the questionnaire flow,

is not semantically intuitive to domain experts and lacks flexibility to allow for ques-

tionnaire design refinements. An analysis of system architectures suggests that the

commonly adopted multi-page paradigm to build web pages, neither reduces the server

burden nor addresses the responsiveness requirements expected from survey systems.

Accordingly to address the language shortcomings we introduce a Computer Assisted

Web Interviewing Markup Language (CAWIML) that uses two schema languages to

validate vocabulary, structures and relationships among XML constructs and adopts a

state-transition model to manage the routing and flow of questions. CAWIML serves

our Representational State Transfer (REST) system to drive the design and collection

stages through a single-page web build. We present our language results from testing

CAWIML on a comprehensive set of real-world surveys from Pexel Research Services

and use the distribution of CAWIML’s vocabulary on this sample to demonstrate its

coverage of questionnaire features and effective routing support. In order to evaluate

our platform, we computationally simulate both the stress test for parallel processing

of requests and interviewee behaviour in terms of different user interaction response

configuration levels. Results suggest that both the parallelism and variation in user

behaviour can be handled within acceptable levels of usability thresholds.

ii

Keywords: survey, questionnaire, xml, mark-up, xml schema, cai, cawi, state-

transition, rest, single-page.

iii

Declaration of Authorship

I declare that I am the sole author of this thesis and that all verbatim extracts contained

in the thesis have been identified as such and all sources of information have been

specifically acknowledged in the bibliography. Parts of the work presented in this

thesis have appeared in the following publication:

• Lloret, J. and Wiratunga, N. (2015). Survey state model (SSM). XML Authoring

of Electronic Questionnaires. In XML Prague. A conference on XML, pages

159-177. (Chapter 4)

iv

Acknowledgements

Firstly, I would like to express my sincere gratitude to my supervisor Dr. Nirmalie

Wiratunga for the continuous support of my MRes study and related research, for her

patience, motivation, and immense knowledge. Her guidance has helped me in all the

time of research and writing of this thesis.

Besides my supervisor, I would like to thank Pexel Research Services and Robert Gor-

don University for giving me the opportunity to undertake a Knowledge Transfer Part-

nerships (KTP) project with the possibility to study for a postgraduate qualification.

In particular, I am grateful to Bruce Leslie for his insightful comments and expertise at

every stage of this research, but also for his task of selecting and testing the real-world

survey samples through my experiments.

On a more personal level, I must thank my patient and understanding girlfriend Daria

for all her love and support. She has not only accepted me on all my bad days but

also has encouraged me many times to put all my best for this research. I have also

to mention perhaps the most faithful companion, my dog Hugo, for all the days and

nights that he has been sat next to me.

Last but not least, I thank my family, and in particular my mum, who has been always

proud of all the efforts I have made in order to look for better career opportunities.

v

Contents

Abstract iii

Declaration of Authorship iv

Acknowledgements v

1 Introduction 1

1.1 Research Motivation . 2

1.2 Research Aim and Objectives . 3

1.3 Significance of Research Contributions 4

1.4 Ethical Issues . 5

1.5 Thesis Overview . 5

2 Background 7

2.1 Electronic Questionnaires . 7

2.2 Extensible Mark-up Language (XML) 10

2.3 Schemas Languages . 11

2.3.1 Document Type Definition (DTD) 12

2.3.2 XML Schema Definition (XSD) 13

2.3.3 Regular Expression Language for XML New Generation (RELAX

NG) . 14

2.3.4 Schematron (SCH) . 14

2.4 XPath Query Language . 16

2.5 Conclusion . 16

3 Literature 18

3.1 The XML Languages . 18

3.1.1 Survey Interchange Standard (Triple-S) 18

3.1.2 Questionnaire Definition Language (QDL) 19

3.1.3 Data Documentation Initiative (DDI) 19

vi

3.1.4 Simple Survey System (SSS) . 19

3.2 Comparative Analysis of XML Languages 20

3.2.1 Routing Constructs . 20

3.2.2 Personalisation Constructs . 20

3.2.3 Routing Flow Paradigms . 22

3.2.4 Schema Languages . 24

3.2.5 Expressions Notation . 25

3.2.6 Survey Stages . 26

3.3 CAWI Systems . 27

3.3.1 CAWI System Architectures . 27

3.3.2 Performance Testing . 29

3.4 Conclusions . 30

4 CAWI Mark-up Language 31

4.1 The State-Transition Modelling Solution 31

4.2 The RPN Notation . 34

4.3 The XML Language Solution . 35

4.4 CAWIML Language Details . 35

4.4.1 The Content Constructs . 38

4.4.2 The Routing Constructs . 40

4.4.3 The Personalisation Constructs 45

4.5 Conclusions . 49

5 CAWI System 50

5.1 Architecture of the System . 50

5.1.1 RESTful API . 51

5.1.2 Business Layer . 52

5.1.3 Database Solution . 54

5.1.4 Single Page Application . 54

5.2 Implementation Details . 55

5.2.1 The Server Side . 55

5.2.2 The Client Side . 59

5.3 Conclusions . 62

6 Evaluation 63

6.1 XML Language Evaluation . 63

6.2 Collection Stage Evaluation . 64

6.2.1 Methodology . 64

6.2.2 Metrics . 67

vii

6.2.3 Results . 67

6.3 Conclusions . 70

7 Conclusion 72

7.1 Objectives Revisited . 72

7.2 Future Work . 73

Bibliography 75

A Appendix 78

A.1 Real Questionnaires Sample . 78

A.2 CAWIML Instance . 78

viii

List of Tables

2.1 Validation levels supported by the most popular XML schema languages 12

3.1 Comparison of XML languages for electronic questionnaires 21

4.1 Unary Operators of CAWIML . 34

4.2 Binary Operators of CAWIML . 36

6.1 Frequency of questionnaire constructs separated by survey 65

6.2 Stress test results varying No. Users . 69

6.3 Stress test totals for each configuration level 70

ix

List of Figures

2.1 Fully functional paper questionnaire instance 9

2.2 XML validation process . 11

2.3 Schematron XSLT validation process . 15

3.1 Petri Net instance . 23

3.2 The 5 stages of survey research . 26

3.3 Blaise Architecture . 28

3.4 SurveyMonkey Architecture . 29

4.1 State-Transition for the paper questionnaire in Figure 2.1 33

4.2 Validation process of CAWIML . 37

5.1 REST architecture . 51

5.2 Class diagram for the Collection Manager 53

5.3 Client architecture . 55

5.4 Routing design interface . 60

5.5 Content/Personalisation design interface 60

5.6 Collection interface . 61

5.7 Analysis interface . 61

6.1 Total construct frequencies for fifteen surveys 64

x

Chapter 1

Introduction

Internet is the new medium for conducting surveys [Bethlehem and Biffignandi, 2012].

The accessibility to a large group of respondents, the low cost of distribution and the

flexibility for the respondents to choose the right time to answer a questionnaire are

factors that have made the Computer-Assisted Web Interviewing (CAWI) the most pop-

ular Computer-Assisted Interviewing (CAI) solution today. Although, benefits such as

manually less demanding on interviews, improved data collection quality and fewer tran-

scribing errors are already experienced with other CAI modes (e.g. Computer-Assisted

Telephone Interviewing (CATI), Computer-Assisted Personal Interviewing (CAPI)),

the use of CAWI is more attractive as it eliminates the need for interviewers and conse-

quent time restrictions to interview completion. Furthermore, it is a convenient solution

requiring only a computer equipped with a browser and an Internet connection in order

to conduct the survey.

With the increasing popularity of CAI systems, the traditional questionnaires, com-

posed of questions and instructions, have been extended to now include features that

automatically decide the order of the questions, the conditions under which they have

to be asked or inconsistency checks to be applied to responses. In order to ease the

task of defining questionnaire specifications, several domain specific languages have

been developed such as Blaise [Netherlands, 2015], from the Statistics of Netherlands,

or Computer-Assisted Survey Execution System (CASES) by the University of Cal-

ifornia [of California, 2015]. These systems are aimed at capturing the requirements

for question design, specifications for conditions and checks needed to route or tra-

verse the questions space. In particular this routing requires that the inherent logical

relationships between responses provided during the course of responding to a ques-

tionnaire is captured accurately. Similarly, different CAWI solutions have emerged

providing visual interfaces for defining questionnaires with the purpose of reducing or

1

eliminating the necessity of programmers for describing complex questionnaire’s logic

(e.g. SurveyMonkey, Qualtrics or NEBU).

Although a CAWI system offers several advantages to its predecessors

[Bethlehem and Biffignandi, 2012], its choice comes at a price, since special at-

tention must be paid to ensure all stages of functionality are managed by smart

interfaces, i.e. the absence of interviewers to collect data or the task of authoring

questionnaire’s logic by designers, requires for richer and maintainable interfaces that

quickly adapt to user’s requirements. Accordingly, to address these demands, a clear

separation of the presentation of the questionnaire constructs from the code that

process questions and instructions is needed.

1.1 Research Motivation

The correctness of a questionnaire specification involves two tasks: one is checking that

every construct conforms to a vocabulary, structure and content, i.e. the grammatical

aspect, and the other consist of validating integrity relations and business specific

constraints, i.e. the validation rules. Authoring language solutions such as Blaise and

CASES sufficiently address both levels of correctness, however the problem arises when

large surveys (e.g. European Community Household Panel, European Union Labour

Force Survey or European Health Interview Survey among others) have to be conducted

through several research agencies across different countries. Since these companies

usually have different CAI solutions to support the life-cycle of survey research, the use

of specifications that are only understandable by specific software solutions, raises the

need for having a language solution that is non-proprietary and platform independent.

Two exchangeable data formats exist today to address the requirements of reusable

questionnaire specifications: one is Extensible Markup Language (XML), widely used

to exchange data among organisations and best known for its declarative and extensi-

ble properties; and the other is JavaScript Object Notation (JSON), increasingly used

to communicate modern web applications because of its direct support by JavaScript.

Intuitively, the JSON choice is more attractive due to its less verbose expressive descrip-

tions as well as its faster performance when compared to XML [Nurseitov et al., 2009].

However, it lacks support from standards such as World Wide Web Consortium (W3C)

or International Organization for Standardization (ISO) in terms of including rules that

can validate correctness of documents. Accordingly for this research we make use of

XML as an authoring solution making use of its different schema solutions to express

constraints.

2

The routing structure of a questionnaire is another aspect that has to be carefully con-

sidered. When the flow of a questionnaire is defined, designers or social researchers

commonly use skip patterns to filter one or several questions. This enables the smooth

movement from one part of the questionnaire to another by removing irrelevant ques-

tions from an interview. Despite the fact that using unstructured patterns such as

GOTO to express logic in programming was stated by Djisktra [Dijkstra, 1968], it is

widely accepted by the software community as best avoided. In contrast, social re-

searchers, who are typically the designers of questionnaires, have no qualms about

designing questionnaires with complex logic that involve multiple GOTO constructs.

Therefore, a solution to find a modelling structure that describes questionnaires in a

structured manner while allowing designers to express their logic without the need for

programmers is needed [Madsen, 2009].

In addition to the issues related to the specification of questionnaires, there exists

different architectural properties that should also be considered when designing a CAWI

solution:

• Scalability, known as the capacity to work under different workloads. For in-

stance, when an interview is carried out, keeping the status of the last operation

performed for each respondent is needed. As such, this is typically solved by

storing interviewee’s status through a session variable making it impossible to

free server resources until an interview is completed. This stateful communica-

tion impacts negatively over the infrastructure making it hard to replicate and

synchronise an architecture when multiple servers can handle requests from the

same respondent.

• Simplicity, which is achieved through the separation of functionalities such as

the user interfaces into a separated component within the server [Fielding, 2000].

For instance, popular CAWI solutions such as SurveyMonkey use the Model-

View-Controller (MVC) design pattern for building multiple web pages on the

server. However, with the introduction of the second generation of World Wide

Web (WWW), these tasks can be moved to the client, i.e the browser, and help to

reduce not only the time to complete requests but also simplify the server burden.

• Portability, that permits a software solution running on different platforms. This

architectural property has particular significance for web application allocation

where it is important to frequently utilise services from large data centres. For

that purpose, it is not desired that a CAWI solution is tied to a particular op-

erating system or more specifically to have a database solution that is platform

dependent.

3

• Reliability, which is determined by the capacity of a system to replace a com-

ponent under any failure. This property constitutes one of the most important

aspects to consider since a CAWI system has to offer flexibility to allow question-

naire completion when it suits the user.

In order to address the issues discussed above in relation to the specification of ques-

tionnaires as well as the architectural properties of CAWI systems, this thesis explores

the following research questions:

1. Are the current state-of-art XML authoring languages able to validate the cor-

rectness of questionnaire constructs using standard XML schema languages?

2. How can we represent the flow of questionnaires using structured patterns adapted

to facilitate the questionnaire logic for routing purposes?

3. Do the popular CAWI solutions consider the architectural properties of scalability,

flexibility, portability and reliability adequately?

1.2 Research Aim and Objectives

The aim of this thesis is to design and implement a new CAWI solution that provides

web interfaces closer to native desktop applications. Specifically, this study is focused

on the design and collection stages of surveys but also extends its functionality to cover

some aspects of the management, analysis and reporting stages. The system solution

has to have a clear separation of concerns, i.e. an authoring XML solution should

be utilised to create questionnaire specifications through a visual design interface and

similarly these descriptions should aid to automatically drive the routing logic for survey

response data collection.

As such, we intend to achieve our research aim with the following six objectives:

1. Conduct a comparative analysis of the state-of-art XML language solutions that

cover questionnaire definitions with a focus on the coverage of constructs and the

capacity to validate correctness with standard XML schema formalisms.

2. Critically appraise current modelling approaches in terms of their ability to man-

age questionnaire flow definitions for the purposes of routing.

3. Develop a new XML authoring solution to better address the correctness, together

with the state-transition structures necessary for routing.

4. Analyse the architecture of different CAWI solutions in order to determine

4

whether the necessary and sufficient properties for a CAWI system solution are

induced or not.

5. Implement an architecture based on Representational State Transfer (REST) to

better handle architectural properties such as scalability, simplicity, portability

or reliability.

6. Conduct an evaluation at two levels, one for the coverage of questionnaire con-

structs and another to evaluate the capacity of the proposed architecture to work

under different workloads.

1.3 Significance of Research Contributions

This study has been carried out as part of the Knowledge Transfer Partnerships (KTP)

project between Robert Gordon University and Pexel Research Services 1. This com-

pany, which is based on Glasgow, conducts telephone interviewing through its own

infrastructure of units and is considered one of the largest in Europe. With the emer-

gence of the new on-line survey mode, they are keen to consider the design and devel-

opment of a new hybrid solution that permits cost reductions of training their staff to

use complex interfaces.

The first significant contribution of this work has been to design a novel XML solution

that combines two approaches for expressing constraints in XML. The validation of cor-

rectness, conducted in a two-step process, permits reducing or eliminating the need to

rely on general purpose programming languages for checking complex rules. Moreover,

as the XML language proposes the state-transition paradigm to express questionnaire’s

routing, not only is it better able to adapt to changes in specifications but also the use

of structured patterns allows for adaptability that can support and mimic the require-

ments that are important to designers of questionnaires (such as social researchers).

The second significant contribution has been the system architecture that better induces

the properties of: scalability, through a stateless communication among the parts; sim-

plicity, by transferring the web pages building to the client-side; portability, through a

platform independent programming language combined with a cross platform database

choice; and reliability, through loose coupling components that are easy to change under

any failure.

Secondary contributions of this research include the possibility to incorporate a search-

able central repository of survey definitions according to our XML solution. This has

1http://www.pexel.co.uk/

5

http://www.pexel.co.uk/

the potential to help researchers, who often want to know what questions can be used

for a particular topic [Corbett, 2011], to reuse past questions when creating new ques-

tionnaires.

1.4 Ethical Issues

The XML solution that we have designed has been evaluated against several real ques-

tionnaires provided by third parties to Pexel. These paper questionnaires remain under

the company premises and cannot be disclosed. In the Appendix A.1, we have provided

links to these real questionnaires implemented in our authoring language, however, we

have replaced and eliminated any sensitive information in order to anonymise the third

parties behind each survey. In respect to the survey used to explain the different features

that a questionnaire may have (see Figure 2.1), this instance constitutes a simulated

paper questionnaire and consequently does not contain any confidential information

from any third party.

The evaluation of our new CAWI architecture for the gathering of responses for ques-

tionnaires presented in Chapter 6 has used randomly generated data, thus having no

ethical implications. Other experiments that have been conducted during the course

of this on-line survey solution such as usability testing in which the system was eval-

uated by Pexel’s employees, may contain personal details or handling of commercially

sensitive information but these are adequately described by ISO 20252 with which the

company complies.

1.5 Thesis Overview

The rest of this thesis is outlined as follows: Chapter 2 introduces the different ques-

tionnaire features that can be used to specify surveys. We also discuss XML as the

exchangeable data format to create reusable questionnaire definitions together with

an extensive comparison of the relevant XML schema languages to validate and check

correctness at grammatical and semantic levels.

In Chapter 3 we conduct a comparative analysis of the state-of-art XML languages

for questionnaire design with focus on routing and personalisation aspects, notation

adopted to define questionnaire expressions, schema language utilised to define con-

straints as well as flow modelling for question’s sequencing. Additionally, we explore

different architecture styles adopted by the most relevant CAWI systems in order to

6

determine how well they support properties such as scalability, simplicity, portability

and reliability.

Chapter 4 presents the Computer Assisted Web Interviewing Markup Language (CAW-

IML), a contribution of this thesis to address the validation of questionnaire specifi-

cations using XML schema formalisms. Here we explain the state-transition paradigm

adopted to model questionnaire flow and present the Reverse Polish Notation (RPN)

notation formalism to define expressions that permit filtering, computing or personal-

ising questions and their contents. The use of CAWIML’s main features are discussed

using a running example of a questionnaire.

Chapter 5 presents a REST based architectural solution that implements the expected

CAWI system properties. Different layers for communicating client and server, the

business objects that address the survey life-cycle stages as well as its non-relational

persistence solution to address high demands of data are presented. Additionally, the

Single Page Application (SPA) paradigm adopted to build the client interfaces directly

in browsers is discussed.

Evaluation is in Chapter 6 with results organised under two themes: coverage of ques-

tionnaire constructs by CAWIML analysed on fifteen real questionnaires; and simulated

load testing of increasing numbers of concurrent users with focus on different response

time thresholds.

We conclude this thesis in Chapter 7 with a summary of our main contributions and

desirable extensions for future work.

7

Chapter 2

Background

This chapter is intended to introduce the reader to the terminology and concepts in

the context of CAI systems. We have focused our efforts on XML as the standard

for exchange and representation of electronic questionnaires. Although we could have

considered JSON as a more attractive representation format due to its direct mapping

to JavaScript objects, its simplicity and its less verbosity for using across a web appli-

cation, we have discarded it because as far as we know, there is no standard schema

formalism that permits the validation of correctness without relying on general purpose

programming languages.

The rest of this Chapter is structured as follows: Section 2.1 uses an example ques-

tionnaire to describe the different features that are used in surveys. The Section 2.2

explains the origin of XML as well as the requirements needed to consider a file as XML

well-formed. Section 2.3 discusses the different schema paradigms that can be used to

create constraints over well-formed XML documents and finally, Section 2.4 introduces

the reader to XPath query language since it is widely used for specifying sophisticated

constraints.

2.1 Electronic Questionnaires

Questionnaires are defined as instruments to collect data. Typically, they are com-

posed of questions and instructions to guide the flow through an interview. With the

introduction of CAI systems, these have been extended with additional features. There

are two studies that explore the different constructs required to specify questionnaires.

The first approach, proposed by Katz [Katz et al., 1997], describes the different tasks

8

involved in creating specifications for questionnaires whereas the second proposal, in-

troduced by Bethlehem [Bethlehem, 2000], uses an object-oriented paradigm to better

understand all the features of an electronic questionnaire.

In order to describe all the different constructs that may be used to construct question-

naires, we present in Figure 2.1 a questionnaire intended to unify the efforts from Katz

and Bethlehem. The most common types of questions are single-response, multiple-

response and open-ended (e.g. Q1, Q3 and Q5 respectively) whilst grid (e.g. Q4)

unlike the common types is naturally more cognitively demanding on the interviewee

since more than one question in the form of rows is asked [Bock, 2013].

Usually questionnaires are divided into sections where intro statements (e.g. INF1,

INF2, END) become helpful to establish the context and introduction to a part of the

questionnaire. For instance, in this example, there are two sections used to organise

the set of questions, the outer section for INF1, Q1, Q2, Q3, Q4, Q5, INF2 and END

and an inner for Q6a which can be asked multiple times.

The instructions, in bold font, are normally included to manage questionnaire routing

according to interviewee responses. There are three such routing constructs describing

the flow through the questionnaire in our example:

• skip feature allows the interviewee to skip over questions to move on to another

question. This can be an unconditional skip, as in the case of skips associated

with responses in Q1 or Q2; or a conditional skip, presented in Q5.

• filter constructs are based on a logical expression involving the responses to one

or more questions. They are described as if-then-else statements, for instance the

instructions attached over Q5 or INF2 and also known as complex branching.

• loop feature permits repeated execution of a questionnaire sub-part. For example,

the instruction over Q6a defines a loop that iterates a maximum of four iterations

over the selected responses from Q2 and Q3.

In addition to the constructs listed above, there are further features which are less

frequent but nevertheless are also featured in questionnaire design.

• Piping which allows retrieving responses from one or more previous questions as

part of the text for another (e.g. question text for Q6a) or generating a set of

responses based on an expression (e.g. Q3 responses are generated automatically

according to those responses not mentioned in Q2).

• Randomising or Rotating features which reduce bias evasive responses by altering

the data order presented to the user [Warner, 1965] (e.g. the random presentation

9

of the question Q6a).

• Computation constitutes the execution of an arithmetical expression and its as-

signment over a reference variable. Typically it is used to communicate responses

among sections. For example, after Q6a a stateful variable is needed to capture

all the affirmative responses for Q6a. This global variable is used later as part of

the filter condition associated with INF2.

• Check allows the functionality to establish whether or not a logical expression is

being satisfied and thereafter to notify the respondent about any inconsistencies.

These constructs are helpful for a post-validation of constraints. For instance, a

case in which a respondent answered that she is a non-smoker and later responds

to a question as spending money on buying cigarettes. In this example, this

construct could warn the respondent about such as inconsistency.

10

INF1. We are conducting a survey in order to determine how important are for a driver’s car
a set of features.

Q1. How often do you use your car?

01. Never GOTO END
02. Almost never GOTO END
03. Occasionally/Sometimes GOTO END
04. Almost every time
05. Every time

Q2. Which brands are you aware of? [FIRST SPONTANEOUS MENTION]

01. A
02. B
03. C
04. D
05. E
06. F
07. G
08. H
99. Don’t know GOTO END

Q3. Which brands are you aware of? [OTHER SPONTANEOUS MENTIONS Q2]

Q4. Using a scale 1 to 5 where; 5 = essential, 4 = very important, 3 = quite important, 2 =
relatively unimportant and 1 = not at all important. How important are the following safety
features when you want to buy a car?

01. Cruise Control
02. Seat Heater
03. Automatic transmission
04. Sunroof
05. Navigation system
06. Knee airbags

Q5. [IF F IS MENTIONED IN Q2 OR Q3 OTHERWISE GOTO END] How many cars
have you had or have of F brand?

[FOR EACH BRAND MENTIONED AT Q2 AND Q3. SELECT 4 RANDOMLY]

Q6a. Have you ever had a car from [ANSWER FROM Q2 OR Q3] brand?

01. Yes
02. No

INF2. [IF RESPONDENT HAD EVERY CAR ASKED] We are really happy knowing
that you had the opportunity to have every car brand mentioned.

END. THANKS AND CLOSE

Figure 2.1: Fully functional paper questionnaire instance

11

2.2 Extensible Mark-up Language (XML)

The web browsers use HyperText Markup Language (HTML) to build the presentation

of information. They interpret each HTML tag in order to display words, images or

videos. However, this language is neither able to capture the description of contents, i.e.

semantics, nor permits extending its mark-up with tags that are application-specific.

In order to address these limitations, W3C developed XML. This meta-language, not

only permits representing semi-structured data [Bray et al., 2008a] but also serves as a

medium of communication that is widely used across Internet applications.

XML files are composed of elements, attributes and relationships [Varde et al., 2010].

Listings 2.1 shows an XML document example that describes a small questionnaire with

two sections and their respective routing. Specifically, an element is used to represent

an entity which is enclosed through a start and end tag (e.g. survey, section, intro,

single, multiple, routing and variable). An element may contain character data, other

elements or a mixture of both within. Also, this may have attributes whose presence is

limited to the start-tag exclusively (e.g. id or ref).

1 <survey>

2 <section id="section1">

3 <multiple id="Q1"/>

4 <single id="Q2"/>

5 <intro id="Q0"/>

6 </section>

7 <section id="section2">

8 <intro id="Q3"/>

9 </section>

10 <routing ref="section1">

11 <variable ref="Q0"/>

12 <variable ref="Q1"/>

13 <variable ref="Q2"/>

14 </routing>

15 <routing ref="section2">

16 <variable ref="Q3"/>

17 </routing>

18 </survey>

Listing 2.1: XML example case

The relationship captures the nesting of elements and permit creating for simple to

complex structures. For instance, the section element has ’section1’ as id attribute

and contains multiple, single and intro elements as children. Similarly, a more complex

structure is the survey root element that contains section and routing elements within.

12

XML only requires for documents to be well-formed, i.e a valid XML document accord-

ing to W3C must have:

• a unique single root element in which every other element is contained within,

• properly nesting of all the elements,

• presence of start and end tag for every element,

• and value for attributes enclosed with quotes.

However, XML by itself is merely a standard notation which does not restrict the

elements and attributes permitted or the structures and content allowed. Therefore, in

order to differentiate well-formed documents from those that a valid according to an

XML authoring language, it is needed to formally define a schema by using an XML

schema language.

2.3 Schemas Languages

XML schema languages are formal languages used to define schemas. A schema repre-

sents the definition of the syntax and semantics that is allowed for an XML authoring

language [Mller and Schwartzbach, 2006]. The syntax consist of defining the vocab-

ulary of the language as well as the different structures in which the elements and

attributes are permitted. In contrast, the semantics determines whether or not the

syntax expressed in an XML document is meaningful.

The use of a schema language to formalise an XML authoring solution permits obtaining

instance specifications that are non-ambiguous and benefits the software program that

parses the instances since the number of errors can be reduced or eliminated. In order

to check whether an XML document conforms to a specific XML language, a schema

processor, which is an implementation program for an XML schema language, takes

two arguments: the XML document or instance; and the schema (see Figure 2.2). This

processor, automatically decides the validity of a document and in addition, for those

documents that are not valid, it provides a report document explaining the reasons of

its failure.

13

Figure 2.2: XML validation process

During the process of validating XML documents against an XML language, four differ-

ent levels of validation [Sthrenberg and Christian, 2010] are checked in order to ensure

the correctness of an XML specification:

1. Structure: This level validates the mark-up introduced as well as the order and

occurrences of elements and attributes.

2. Data-types: At this stage it is determined whether the content defined for elements

and attributes conforms to the data-types defined in the schema.

3. Integrity constraints: This level verifies uniqueness of identifiers as well as checks

that any reference points to existing keys. Usually, the keys and references to

these, are values that are set for attributes.

4. Business rules: At this level, any additional data constraints [Van der Vlist, 2006]

that cannot be categorised in any of the above mentioned levels is checked. This

level is very specific to the application domain in which the authoring XML

language was designed for.

The XML schema languages are divided into two approaches: grammar-based and rule-

based [Sthrenberg, 2013]. The grammar-based schema languages specify the mark-up,

structure and data-types expected for XML documents. For instance, they restrict the

presence of attributes and elements, the type expected for values, the order in which

14

elements or attributes may appear in the document or the minimum and maximum

number of occurrences allowed. In contrast, the rule-based schema languages mainly

ensure that the relationships among elements and attributes is consistent. However,

they can also constraint XML documents by incorporating business specific rules that

make specifications meaningful for the application domain.

Different schema languages exist today aimed to express constraints that are checked

at any of the above mentioned validation levels. The three most popular grammar-

based schema languages are Document Type Definition (DTD), XML Schema Defi-

nition (XSD) and Regular Expression Language for XML New Generation (RELAX

NG). Regarding the rule-based language formalisms, Schematron (SCH) is the only

candidate representative. Table 2.1 summarises the validation levels that these schema

languages support. Throughout the next following subsections, the schema languages

most relevant to ensure the correctness of XML specifications are explored.

DTD XSD RELAX NG SCH

Structures Basic Yes Yes No

Data-types Limited 44 built-in Not directly Not directly

Integrity Constraints

ID unique

Not directly YesIDREF key
key-ref

Business rules No No No Yes

Table 2.1: Validation levels supported by the most popular XML schema languages

2.3.1 Document Type Definition (DTD)

DTD is the built-in schema language since the first working draft of XML

[Bray et al., 2008b]. There are many XML authoring languages that are specified using

DTD such as Extensible HyperText Markup Language (XHTML) or Survey Interchange

Standard (Triple-S). The last mentioned, is known as the standard XML language for

describing questionnaires. DTD has basic support to define syntax for documents since

it is not possible to constraint the order and occurrences of elements when character

data and elements are allowed within an element structure. Regarding the data-types,

it is neither capable of constraining character data (e.g. id attribute for section starts

with section followed by any number) nor allows frequent used types such as integer,

date or Uniform Resource Identifier (URI). In regard to the integrity constraints, it

provides ID and IDREF for uniqueness and referential key respectively. However, any

defined ID works for the entire document not being able to specify a more restricted

scope (e.g. the question id cannot be duplicated across different sections). Moreover,

15

compound keys, i.e. those that combine different attributes to form a key is not sup-

ported either. With regards to business rules, there is no mechanism that permits

validating semantics over syntactically valid XML instances.

DTD was designed before the name-space mechanism was introduced. This feature,

which permits reusing other schema specifications to create a new XML language, is

not provided and consequently it is not only hard to create modular schemas but also

it is difficult to evolve them. Furthermore, a schema defined through DTD does not

use XML notation so checking that a specification of an XML language conforms to

DTD requires the use of non-standard XML tools to verify its validity.

2.3.2 XML Schema Definition (XSD)

XSD is the recommendation schema language for W3C

[Sperberg-McQueen and Thompson, 2012]. It was designed to be more expres-

sive than DTD and introduces name-spaces, data-types and an XML syntax for

restricting well-formed XML files. As such, it permits importing structures of elements

through the URI mechanism, uses XML syntax to express constraints, which eliminates

the need to learn a new proprietary syntax and provides a richer built-in data-types

system. Additionally, to strengthen the data-types set, it allows the definition of

customised types through restriction (e.g. Uniform Resource Locator (URL) type is

a subset of the string base type) and by extension (e.g. an element single question

extends from question element by adding a set of open-closed response elements).

This schema language unlike its counterparts, provides a better mechanism to express

integrity constraints for XML documents. XSD overcomes the limitations of ID, IDREF

that are present in DTD by using a subset of XPath Query Language (see Section 2.4)

to define unique values for elements or attributes and to reference these through key

and key-ref features respectively. For instance, Listings 2.2 defines a key to ensure

the uniqueness of a question (e.g. intro, single, multiple or open) in the context of

a section from a survey through a selector element. Moreover, to determine what

attribute of a question element is used to check the uniqueness, the field element is

utilised. Similarly, in that example, the key-ref uses the selector to select a variable

within a routing element in which the attribute ref is used to hold the reference to a

unique question key. Note that key-ref also defines a refer attribute which points at a

key element previously defined in the schema for an authoring language.

1 <?xml version="1.0" encoding="UTF-8"?>

2 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified ←↩
">

3 <xs:element name="survey">

16

4 ...

5 <xs:key name="questionKey">

6 <xs:selector xpath="section/intro | section/single | section/multiple | ←↩
section/open"></xs:selector>

7 <xs:field xpath="@id"></xs:field>

8 </xs:key>

9 ...

10 <xs:keyref name="questionKeyRef" refer="questionKey">

11 <xs:selector xpath="routing/variable"></xs:selector>

12 <xs:field xpath="@ref"></xs:field>

13 </xs:keyref>

14 </xs:element>

15 ...

16 </xs:schema>

Listing 2.2: Key and references in XSD

The above mentioned integrity constraints could be used to verify that the document

from Listings 2.1 does not actually introduce duplicate keys for question ids neither

specifies a reference to a non-existent question id within the routing.

XSD is one of the most used schema language for defining XML languages, mainly

because supports enough expressiveness to define structure, data-types and integrity

constrains for XML documents. However, it is hard to learn due to the amount of

features that provide and does not introduce any mechanism to express business rules.
1

2.3.3 Regular Expression Language for XML New Generation (RE-

LAX NG)

RELAX NG is a schema language developed within the Organization for the Advance-

ment of Structured Information Standards (OASIS). This language was built with the

design principles of simplicity and expressiveness. As such, its syntax to express con-

straints for XML documents is closer to plain English instructions [Van der Vlist, 2003].

RELAX NG is part of the ISO/International Electrotechnical Commission (IEC) 19757.

Specifically, it is the candidate schema language for describing structure and content

of XML documents.

The data-types and integrity constraints are not directly supported by the language

1The version 1.1. introduces assertions to express business rules through a subset of XPath expres-
sions (attributes, children and descendants of an element) [Gao et al., 2012]. However other existing
relationships among XML documents such as parent, ancestors or siblings are unable to express which
restrict its expressiveness and usage.

17

so it relies on external schema languages to address these tasks. Specifically, the data-

types for elements and attributes are usually imported from XSD whereas the integrity

constraints are weakly supported by having a special compatibility data-type library

that uses ID and IDREF from DTD. Regarding the business rules, as this language is

categorised as grammar-based, it does not directly offers features for specifying addi-

tional constraints.

2.3.4 Schematron (SCH)

SCH is a schema language designed by Rick Jelliffe [Dodds, 2001]. This language differs

from grammar-based XML schema languages in that it is rules-based, i.e. defines

assertions within a rule context that are evaluated over XML instance documents.

This language, likewise RELAX NG, also takes part from the ISO/IEC 19757 and

constitutes the standard reference to ensure that documents match the rules defined

through a schema. In SCH, the constraints are specified via XPath query language

(see Section 2.4). The use of these expressive queries, permits defining any kind of

tree relationships (e.g. child, parent, ancestor) that are inherited in XML documents

making this schema language unique in terms of expressing semantics.

The core constructs of Schematron are patterns, rules and assertions. Listings 2.3

describes an integrity constraint that check the uniqueness of section identifiers. The

pattern element is used to group different rules. A rule requires a context attribute

which constitutes the path used to evaluate one or more asserts (e.g. this rule is fired

for every section within the survey element). An assert is specified through the test

attribute and addressed to check a constraint within the context rule described. For

instance, the assert example counts the preceding section’s identifiers that are equals to

the identifier set through the place holder $id (e.g. let element) in order to determine

whether is zero or not. A false result for the assert, displays the customised message

within that element.

1 <?xml version="1.0" encoding="UTF-8"?>

2 <schema xmlns="http://purl.oclc.org/dsdl/schematron" queryBinding="xslt2">

3 <pattern id="integrity_constraints" >

4 <rule context="/survey/section">

5 <let name="id" value="@id"/>

6 <assert test="count(preceding-sibling::*[@id = $id]) = 0">

7 duplicate key found for section id <value-of select="$id"/>

8 </assert>

9 </rule>

10 </pattern>

11 </schema>

18

Listing 2.3: Integrity constraint expressed in SCH

The validation of XML documents against a SCH schema can be carried out either by

using an Extensible Stylesheet Language Transformations (XSLT) [Clark, 1999] proces-

sor or by using an XPath implementation. The XSLT approach, represented in Figure

2.3 requires performing two steps:

Figure 2.3: Schematron XSLT validation process

• First, an XSLT processor gets a SCH schema together with a pre-defined SCH

template, provided by Academia Sinica Computing Centre 2, in order to produce

a transformed SCH schema understandable by the XSLT processor.

• Second, the transformed schema, together with the XML document is passed to

the XSLT processor to finally produce the output report based on the rules and

assertions in the original SCH schema defined.

The XPath implementation, unlike its counterpart, is faster for validating XML docu-

ments since the transformation step is not needed. However, it has less functionality

due to XSLT-specific functions such as document() or key() which are not supported.

For instance, document function permits validating rules among XML documents.

The high expressiveness of SCH not only makes this schema language the best for rep-

resenting any integrity constraint [Murata et al., 2005] but also extends its capacity

to define any sort of business rule. Regarding the structure, although it is able to

describe many instances of grammars [Jellife, 2007], this constraining level is best ad-

dressed through grammar-based languages. In regard to the data-types, SCH does not

2https://www.ascc.sinica.edu.tw/en/about/overview.html

19

https://www.ascc.sinica.edu.tw/en/about/overview.html

directly provide any built-in type. However, these may be simulated using the XPath

functions.

2.4 XPath Query Language

XPath is a query language that uses path expressions to navigate through XML docu-

ments. It is the recommended query language for XML documents by W3C. SCH was

the first schema language that used XPath for expressing rules and after XSD borrowed

this idea to specify its integrity constraints. The syntax used in this query language is

based on a location path, i.e. a similar concept used in file systems, which consist of a

sequence of location steps:

• axis to direct the navigation with the relationships parent, children, siblings,

ancestors or descendants [Clark and DeRose, 2015] since this language treats the

XML files as trees of nodes,

• node test that permits filtering the path to a specific node or element and

• predicates which allow selecting only those nodes with specific properties or at-

tributes.

To better understand how this syntax works, we show some examples using the

XML document from Listings 2.1. For instance, in order to select the sec-

tion 1 element and children, we could express /survey/section[@id=’section1’] with

the node test /survey/section and the predicate specified in brackets, but we

could be more specific about retrieving only the ids of the questions /survey/sec-

tion[@id=’section1’]/child::node()/@id. Note, that the first example obviates the axis,

i.e. the expression has been defined using the abbreviated mode, which is more compact.

In contrast, the second one explicitly uses the axis to guide the location deeper in the

sub tree /survey/section and it is known as full syntax mode.

2.5 Conclusion

In this Chapter we have explained questionnaires through a representative example

that covers the spectrum of questionnaire constructs. These instruments, composed of

questions and instructions, guide an interview’s flow and are separated into three cate-

gories: content to describe questions grouped into sections; routing to decide question’s

sequence; and personalisation to adapt the questionnaire structural and sequencing

properties to an interviewee given their real time responses.

20

Our study of different XML schemas has shown that grammar-based schema languages

are adequate to cover correctness levels such as structure and data-types, however they

fail to address integrity and business constraints. In contrast, the rule-based schema

formalisms and in particular SCH is best suited to specify semantics.

21

Chapter 3

Literature

Several authoring languages have been proposed to specify questionnaires. The two

most popular solutions are CASES, that provides structured and unstructured patterns

for routing and Blaise, which promotes the design of skip free logic in favour of loops,

conditional branches and modules. Although these languages offer adequate construct

coverage, their adoption remains restricted due the proprietary nature of the language

and lack of being a standard interchange format.

As part of the aim to design and implement a new CAWI solution for Pexel, we have

done research at two levels: one to seek responses in terms of correctness of question-

naire specifications. For that purpose, we have conducted a comparative analysis of the

state-of-art XML languages in terms of routing and personalisation constructs, nota-

tion style adopted for expressions, schema language formalism utilised, underlying flow

modelling for routing or the survey stages that they support; and the other to deter-

mine the properties induced by the architectural style adopted for the most relevant

CAWI solutions.

The rest of this Chapter is structured as follows: Section 3.1 introduces the XML

authoring language solutions for questionnaires before comparing them in Section 3.2.

Finally, Section 3.3, reviews the architecture styles of Blaise and SurveyMonkey CAWI

systems and introduces the methodology and testing methods useful for evaluating our

new CAWI solution proposed.

22

3.1 The XML Languages

The most relevant XML languages addressed to cover questionnaire constructs are

Triple-S, Simple Survey System (SSS), Questionnaire Definition Language (QDL) and

Data Documentation Initiative (DDI). The following sections provide a brief description

of each authoring solution before conducting a comparative analysis.

3.1.1 Survey Interchange Standard (Triple-S)

Triple-S is aimed to represent the content aspects of surveys [Gerrard et al., 2011] in

order to make it easier to transfer data and meta data among CAI systems or any

analysis software package. This language is considered the standard for representing

social surveys and at least fifty registered implementers may be found on its website

[Gerrard et al., 2015]. Although its focus has been to provide a comprehensive coverage

of survey functionality, we have found one case study where Triple-S has been adapted

to describe a business decision making tool [Wright, 2007].

3.1.2 Questionnaire Definition Language (QDL)

QDL is a language built for Tool for Analysis and Documentation of Electronic Ques-

tionnaires (TADEQ) project whose aim is at building a software tool that represents

questionnaire specifications in a human-readable format [Bethlehem, 2000]. This tool

can operate in either textual or graphical mode. It is suited to designers who want

detailed information of the constructs and interviewers who need documentation to

help them when they are conducting interviews. Although this project has some im-

plementers like Blaise that has its own converter, this project has been abandoned and

there is no longer support for this language.

3.1.3 Data Documentation Initiative (DDI)

DDI emerged in 1995 as an international project to create standardised meta data to

document social science datasets [Rasmussen and Blank, 2007]. It emerged to solve

the problems of documenting datasets and introduces XML as the exchangeable data

format to be both, machine-readable and human-understandable. It has an important

value for analysis and archiving since permits describing data at two levels: variable

level, which consist of describing the different variables involved on the research; and

study level, since it allow describing the population that links to the stored information.

23

In its third version was introduced the description of social surveys. Since then, the

Austrian Bureau of Statistics (ABS) has been experimenting with this exchangeable

format for their design tool for questionnaires. Similarly, National Institute of Statis-

tics and Economics Studies (INSEE), that uses Blaise CAI system for collecting data

has shown interest on using DDI as a standard to communicate different disciplines

in the data collection field. For that purpose, a Proof of Concept (POF) was cre-

ated by de Bolster to convert from Blaise language specifications to DDI 3.1. From

that experiment, it was concluded that neither DDI instances are human readable nor

compatibility between different versions is considered. For instance, when valid DDI

instances for questionnaires were verified against the schemas of the newer version at

least 365 errors occurred [de Bolster, 2013].

3.1.4 Simple Survey System (SSS)

SSS is a CAPI system solution developed for Research Triangle Institute (RTI) which

has its own XML language to address content, routing and personalisation features of

surveys [Bethke, 2008]. This language unlike Triple-S, QDL or DDI has a robust schema

to represent the logical and arithmetical expressions based on functional programming

style.

3.2 Comparative Analysis of XML Languages

In this section we detail a comparative analysis of the XML authoring languages used

to define questionnaire specifications. For that purpose, we explore the coverage of

routing and personalisation constructs in Section 3.2.1 and 3.2.2 respectively. The

relevant flow paradigms used to capture the routing sequence for questionnaires is

explained in Section 3.2.3. The constraining level coverage of the schema languages

used to define these XML languages is addressed in Section 3.2.4. Section 3.2.5 studies

the three notation to describe logical and arithmetical expressions through an example

from a real questionnaire and finally the survey life-cycle stages in which every XML

language is focused on is detailed in Section 3.2.6. Table 3.1 summarises the above

mentioned aspects that will be treated on the next sections.

3.2.1 Routing Constructs

The filter construct is well represented by SSS, QDL and DDI whereas it is partially

described by Triple-S since this language is only able to represent simple logic involving

24

C
a
te
g
o
ry

F
ea

tu
re

T
ri
p
le
-S

S
S
S

Q
D
L

D
D
I

R
o
u
ti
n
g

S
k
ip

N
o

N
o

Y
es

N
o

F
il
te

r
P

ar
ti

al
Y

es
Y

es
Y

es
L

o
o
p

N
o

Y
es

P
ar

ti
al

Y
es

C
h

e
ck

N
o

N
o

Y
es

N
o

C
o
m

p
u

ta
ti

o
n

N
o

Y
es

Y
es

Y
es

P
e
rs

o
n

a
li
sa

ti
o
n

P
ip

in
g

-
te

x
t-

fi
ll

N
o

Y
es

N
o

Y
es

P
ip

in
g

-
c
a
rr

y
-f

o
rw

a
rd

N
o

N
o

N
o

N
o

R
a
n

d
o
m

is
in

g
N

o
N

o
N

o
P

ar
ti

al
R

o
ta

ti
n

g
N

o
N

o
N

o
P

ar
ti

al

O
th
e
r

F
lo

w
P

a
ra

d
ig

m
N

/A
H

ie
ra

rc
h

ic
al

H
ie

ra
rc

h
ic

al
H

ie
ra

rc
h

ic
al

X
M

L
S

ch
e
m

a
L

a
n

g
u

a
g
e

D
T

D
X

S
D

1.
0

D
T

D
X

S
D

1.
0

E
x
p

re
ss

io
n

s
N

o
ta

ti
o
n

N
/A

P
re

F
ix

In
fi

x
In

fi
x

S
u

rv
e
y

S
ta

g
e

A
n

al
y
si

s/
R

ep
or

ti
n

g
D

es
ig

n
/C

ol
le

ct
io

n
D

es
ig

n
A

n
al

y
si

s/
R

ep
or

ti
n

g

T
ab

le
3
.1

:
C

om
p

ar
is

on
of

X
M

L
la

n
gu

ag
es

fo
r

el
ec

tr
on

ic
q
u

es
ti

on
n

ai
re

s

25

only one variable.

In contrast, the skip logic is only defined by QDL which considers the fact that for ques-

tionnaire designers it is difficult to express conditional statements [Katz et al., 1997].

However, as far as we know, the tool that implements this language does not offer

support since it is difficult to implement conditions without having restrictions over

the type of jumps allowed [Bethlehem and Hundepool, 2004]. The other languages do

not cover this construct either because the skips can be reversed and use filters in-

stead [Bethke, 2008] or since surveys designed without unstructured patterns are easy

to modify, share and understand [Spencer, 2012].

The loop construct is well represented in SSS and DDI. Despite the fact that DDI offers

three types of loops (RepeatUntil, RepeatWhile and range loop) [Thomas et al., 2009],

we consider that SSS is more flexible than DDI to define expressions since it embodies

a simple functional programming style through the use of XML tags. In spite of QDL,

it only offers support for range loop but does not consider iterations over lists (see

the instruction after Q5 in Figure 2.1). Regarding Triple-S, it does not directly define

any mechanism to iterate, although offers an interesting feature to relate data collected

from hierarchical surveys (e.g. survey responses for a household survey followed by

responses of the property members defined in another survey) [Wright, 2007].

The check construct is only featured in QDL and this is likely to be motivated by the

need to describe multi-item constraints to check consistencies among answers to related

questions [Katz et al., 1997] or alternatively because this XML language is strongly

related to Blaise system [Bethlehem, 2000]. Regarding the computation feature, other

than Triple-S, all others languages support its representation.

3.2.2 Personalisation Constructs

Although SSS and DDI offer mechanisms to describe text-fill aspects, the other piping

feature, i.e. the carry-forward has not been considered. This construct, which permits

describing operations to retrieve selected on unselected responses from previous ques-

tions as part of the responses for other questions (see Q3 from Figure 2.1), may help to

better adapt surveys for each respondent. Accordingly, we consider that a specification

language cannot leave out this construct. For instance, the popular SurveyMonkey

CAWI system, we have observed that it implements this personalisation feature as part

of its interface functionalities.

Regarding the randomising and rotating features, these constructs are only partially

covered by DDI permitting to change the order for content constructs such as single

26

and/or multiple question responses. However, more sophisticated patterns like selecting

a specific number of responses after randomising/rotating or reordering only a subset

of responses is not taken into account. For instance, the instruction above Q6a from

Figure 2.1 not only specifies to randomise the elements selected but also requires to

iterate a maximum of four times.

3.2.3 Routing Flow Paradigms

The questionnaire’s flow captures the sequence for the question constructs defined in a

questionnaire. The designers or social researchers commonly use skip patterns that can

be interchanged with filters to express the logical order of elements in a questionnaire.

We have explored the directed graphs, Petri Nets and the hierarchical paradigms in

order to establish the suitability for representing sequence logic.

The directed graph, was explored in the past by Fagan et al. in order to analyse the use of

skip constructs on surveys. These graphs based on nodes and arcs are able to represent

question and response choices respectively. When additional information such as the

conditions that determine the ordering of questions are added to these graphs, they

become flowcharts which result in tools to document and understand questionnaire’s

flow [Jabine, 1985]. The directed graphs, permit validating the correctness of data

gathered from surveys by detecting whether or not a question response is missed or is

not applicable. These verifications are conducted applying different graph properties

[Fagan and Greenberg, 1988]. Although the properties from graphs can be used to

model the flow of questionnaires, as far as we know, this paradigm has not been used

to formally define questionnaire specifications in XML.

In more recent work, Petri Nets have been applied to visualise and analyse complex

questionnaires [Rolke, 2010]. Figure 3.1 illustrates the Petri Net representation on part

of the questionnaire from Figure 2.1 in relation to question Q1 and the skip construct

that permit navigating either to Q2 or END. Here a place (e.g. Q1, Q2 and END)

captures the static information from a question whereas a transition (e.g. 01, 02,

03, 04, 05) represents a response choice. Additionally exist arcs to connect places to

transitions (e.g. arrow connecting Q1 to 01) and vice versa (e.g. 01, 02 and 03 to END).

A Petri Net permits validating the reachability of places, i.e. checking whether or not

a set of responses given for questions correspond to a valid state of the net. However,

this modelling approach is only limited to finite domain, i.e. it is only applicable for

single and multiple questions, but becomes hard to manage open questions since an

arc connecting places to/from transitions has to be specified for any possible value

expected.

27

Figure 3.1: Petri Net instance

SSS, DDI and QDL adopt a hierarchical modelling approach where the use of skip pat-

tern is avoided in favour of structured constructs (if-then-else, loops and sequences) as

advocated by Dijkstra [Dijkstra, 1968]. As such, the routing structure of surveys can be

seen as trees permitting not only the identification of the path followed but also deter-

mining all the circumstances under which a question may be triggered [Spencer, 2012].

Algorithm 1 describes in pseudo-code the routing of the questionnaire from Figure 2.1

according to the hierarchical modelling. Note how the nesting of constructs is used to

avoid skips. However, this nesting is not naturally well suited to reusability.

The benefits of eliminating skip patterns are universally acknowledged by high-level

programme languages architects, however designers or social researchers still specify

questionnaires through documents using skips to navigate from one question to an-

other [Katz et al., 1997], not only because they do not have programming skills but

also because the final client interested in the survey, demands plain English instruc-

tions. As the hierarchical approach replaces the use of skip constructs, there is an

evident gap between what the social researchers design versus the code that a CAWI

system uses to execute a survey. Costigan states that having two sources of specifica-

tion, i.e. the code and the document requires duplication of effort and it is prone to

error [Costigan and Elder, 2003]. To unify these two sources, Spencer proposes that

researchers should be trained to use structured patterns [Spencer, 2012], i.e. avoid the

use of skip constructs. However, in practice, motivating social researchers to adopt this

practice remains a problem [Costigan and Elder, 2003].

The ability to introduce changes to questionnaires is another factor to consider since

clients often demand the modification of survey logics when the data collection is al-

ready taking place. This involves having a modelling approach that addresses the

adaptability appropriately. It is evident from the above hierarchical representation

that strong coupling between the inner and outer filters increases with increasing skip

28

Algorithm 1: Hierarchical modelling example

INF1;
Q1;
if NOT(Q1 IS SEL ’01’ OR Q1 IS SEL ’02’ OR Q1 IS SEL ’03’) then

Q2;
if NOT(Q2 IS SEL ’99’) then

Q3;
if NOT(Q3 IS SEL ’99’) then

Q4;
if Q2 IS SEL ’06’ then

Q5;
for each Q2 SEL do

Q6a;
end
if HAD CAR >1 then

INF2;
end

end

end

end

end
END;

constructs. As dependencies among constructs are like to impact negatively to changes

to questionnaire’s flow, there is a need to explore a less intrusive model.

3.2.4 Schema Languages

The different XML languages reviewed are formally defined through an XML schema.

Specifically, they use grammar-based schemas to define the vocabulary, structure and

data-types expected for instances defining a questionnaire. Throughout this section,

the XML example from Listings 2.1 will be used to discuss features supported by DTD

and XSD.

QDL and Triple-S are defined using DTD (see Section 2.3.1). This schema formalism

has two weaknesses: inability to express complex structures for elements; and lim-

ited number of data-types whereby common types such as number or date are not

supported.With regards to the integrity constraints, the ID and IDREF mechanisms,

offered for describing uniqueness of elements and references to valid identifiers respec-

tively, are not robust enough for expressing semantic constraints over XML documents.

Specifically, the lexical space of an identifier is global to the entire document (e.g.

29

the question id cannot be duplicated across different sections) and as Fan and Simeon

state, this is a very strong restriction for a schema language [Fan and Simon, 2003].

Moreover, the IDREF is not able to point to a specific key identifier (e.g. it cannot

be described such that the ref attribute for a routing element links to the identifier

attribute of a section). Regarding the business rules level, there is no such feature to

constraint the additional semantics for XML documents.

SSS and DDI use a more expressive schema language that was built to address the lim-

itations of DTD. Most structures are supported in XSD. Its very rich set of data-types

goes farther than simply supporting only common type such as string, boolean, decimal,

integer or date to permitting the definition of any customised type through regular ex-

pressions. Regarding the integrity constraints, although a more expressive mechanism

using key and key-ref through XPath expressions is provided (see Section 2.3.2), not ev-

ery possible relationship existing in XML documents can be defined [Gao et al., 2012].

Specifically, in XSD the XPath expression for a xs:selector can only use children and

descendants of the element in which it is defined. In addition, the xs:field restricts the

XPath expressions to only select attributes [Van der Vlist, 2006]. For instance, it is not

possible to constraint the variables Q0, Q1 or Q2 such that they can point to questions

defined in ’section1’. With respect to the business rules, only XSD 1.1, which is not

used neither in SSS nor DDI, supports assertions to express additional semantics for

XML documents. However, the XPath expressions are equally limited to attributes,

children and descendants of the node where the assertion has to be checked.

The grammar-based schema languages are adequate to specify mark-up and syntax

for XML documents, however they are insufficient to express integrity constraints

or business rules. Accordingly to address these issues it is best to use a rule-

based schema languages such as SCH which has no restrictions on XPath expression

definitions. Therefore, if the well defined patterns from grammar-based languages

are combined with the expressiveness of rule-based schemas [Van der Vlist, 2006]

[Costello and Simmons, 2015] [Dongwon and Chu, 2000], it is possible to create an

XML authoring solution that is better suited to handle the different validation stages,

i.e. a language that ensures the correctness of questionnaire specifications without

the necessity of relying on programming languages to validate complex semantic con-

straints.

3.2.5 Expressions Notation

The routing constructs contain logical and arithmetical expressions applicable for filters,

loops, checks and computations. Typically these expressions are defined using infix

30

style. For instance, questionnaire languages such as QDL and DDI use this mode.

Consider the following infix notation example, that follows the normalised convention

proposed by Hughes [Huhges, 2007] as an attempt for describing expressions in paper

questionnaires:

ASK IF: [QB = ’Male’ AND (QA = ’Scotland’ OR QA = ’Wales’) AND (Q5 = ’Less’

OR Q5 = ’1-3’)], [Ask males in Scotland and Wales who eat less than or equal to 3

portions of vegetables per week] 1

Firstly, the filter construct (ASK IF) as described, secondly an algebraic expression is

defined and finally a plain English instruction is provided in order to be more readable.

Although this notation constitutes the natural way of thinking, the inclusion of brackets

becomes a necessity in order to override the operators precedence.

Unlike the infix notation, with prefix and postfix notations where the operators are

written before and after their operands respectively. Here the operators are no longer

ambiguous with respect to the operands and consequently the parentheses may be

obviated. Accordingly our example in prefix notation can be stated as follows:

AND AND = QB ’Male’ OR = QA ’Scotland’ = QA ’Wales’ OR = Q5 ’Less’ = Q5

’1-3’

And the postfix representation is:

QB ’Male’ = QA ’Scotland’ = QA ’Wales’ = OR AND Q5 ’Less’ = Q5 ’1-3’ = OR

AND.

SSS uses the prefix mode through a functional programming style inspired by Lisp

Language which is a more desirable approach to choose. However, when prefix mode is

compared with postfix notation, it is less efficient because the order that the operators

have to be evaluated does not strictly follow the left-to-right order, i.e. the operators

placed on the left, must wait until the intermediate operations on the right part are

solved (e.g. the first and second AND operators). This involves moving backward and

forward through the structural representation of the expression, increasing the number

of operations. With respect to postfix mode, there is no need for operands to wait (e.g.

the last two operators OR, AND) have the intermediate results solved before being

evaluated and consequently it is computationally most effective.

1Expression extracted from survey 08 of the Appendix A.1

31

3.2.6 Survey Stages

Survey research is a process that goes beyond asking a set of questions

[Corporation, 2012]. As part of this research process, the survey may be divided into

five stages (see Figure 3.2). These stages are design, that involves the formulation

of questions needed for the achievement of the aim and objectives. The collection,

where an instrument such as a questionnaire is used in order to obtain responses to

the formulated questions. The management, aimed at monitoring the results gath-

ered and helpful to determine the presence of any problematic question. The analysis,

that consist of conducting different statistics to study the data collected and finally

the reporting where different artefacts such as documents, tables, graphs or charts are

used to present the data gathered in order to help decision making. This stage may

serve also as a mechanism to export data and meta data into different formats such as

Comma-separated Values (CSV) that may be utilised by more sophisticated software

vendors such as SPSS to conduct advanced analytics.

Figure 3.2: The 5 stages of survey research

The authoring languages studied are focused on one or more stages of the survey re-

search cycle. For instance, Triple-S and DDI pay special attention to analysis and

reporting stages since they provide structures that permit exporting the data collected

for a questionnaire as well as its associated meta data. In contrast, QDL is best suited

to address the design stage since it is built as part of a project to develop a tool for

documenting questionnaire specifications [Bethlehem and Hundepool, 2002].

Whilst SSS, although was built to facilitate the creation of intuitive interfaces for

32

supporting the design stage, it is more adequate to drive the collection stage given its

formalism to describe expressions which offers more advantages than its counterparts

and permits reducing the number of validations that have to be carried out before

executing a questionnaire.

3.3 CAWI Systems

CAWI systems are based on a Client-Server (CS) architecture style that uses Hypertext

Transfer Protocol (HTTP) to communicate between client and server. Several refine-

ments for this basic architecture have been made over the years such as the distributed

objects style (e.g. Common Object Request Broker Architecture (CORBA)), which

uses the object-oriented paradigm, for client server communication by encapsulating

data and behaviour together [Overdick, 2007]. This approach is not appropriate for

distributed environments since it asserts too much responsibility on the client which

has to manage the life-cycle of objects, i.e. operations such as create, copy, move or

destroy, and the server that has to rely on these operations performed.

A more modern architecture style is Service Oriented Architecture (SOA) that defines

services to address the different functionalities of a system. In this approach, there are

two agents involved: the provider, which implements a defined business function that

operates independently of any other service provider; and the consumer which uses the

service [MacKenzie et al.,]. The interactions among the agents are performed through

different communication protocols such as Simple Object Access Protocol (SOAP) and

using standard exchangeable formats like XML.

As Pexel company demands the design and development of a new CAWI solution that

can offer potential advantages over competitors, we consider that it is important to

evaluate different architectural properties for the existing CAWI systems in order to

determine how they address the simplicity, portability, reliability and scalability. Sim-

ilarly, as the software system is network-based, it is crucial to review different test

strategies for performance since these may help to estimate response times that in

term, impact usability.

The rest of this section is structured as follow: Section 3.3.1 reviews the architectural

style of different CAWI systems and Section 3.3.2 explores different testing methods

and parameters used to simulate scenarios for performance testing of CAWI systems.

33

3.3.1 CAWI System Architectures

This Section explores Blaise and SurveyMonkey architectures in order to determine the

architectural properties being adopted by CAWI systems. However, other software so-

lutions such as CASES, have not been explored due to the absence of publicly available

documentation.

Blaise

The architecture style of Blaise is Windows Communication Foundation (WCF), which

is an implementation of SOA. In this style, the interactions among components is carried

out by sending data through asynchronous messages that can be either XML formatted

or using complex streams of binary data. The CAWI solution offered by Blaise, sep-

arates the functionalities into different roles (see Figure 3.3) [Segel et al., 2015]. The

most important server roles are: survey manager, that holds the creation and publish-

ing of surveys; data entry server, used to validate input and routing logic; data server,

that performs read/write operations into the databases; session server, that stores and

controls the active interviews; and web server used to host and serve web pages to the

end users.

The WCF architecture style of Blaise induces simplicity by making a clear separation of

concerns that leads to have services less complex and interdependent. Additionally, as

this approach defines interfaces to communicate the different roles, any change at any

component should not impact negatively into its consumers. However, the portability,

reliability and scalability are not carefully considered. Specifically, the portability is

not present due to the platform-dependent architecture of WCF that only works under

Microsoft environments. Regarding the reliability, it may be affected by the fact that

the data server role makes the entire system vulnerable under any failure due to its

inability to be set up with multiple physical or virtual machines [Volguine, 2013]. In

respect to the scalability, the presence of a session server role to keep the state of every

interview ongoing, not only prevents the server to free resources but also makes it harder

to manage, replicate and synchronise state changes under a multi-server configuration.

SurveyMonkey

SurveyMonkey is the world’s largest survey company [Groom, 2014]. Its CAWI solution

is written in Python and its core features are separated into different services. Most of

the services communicate through a JSON web Application Program Interface (API)

34

Figure 3.3: Blaise Architecture

over HTTP/HTTPS. SurveyMonkey implements SOA through Web Server Gateway

Interface (WSGI) (see Figure 3.4). In this style, the web server is set up to receive

client’s requests and return responses back. The web server itself, does not directly

creates a response but invokes the web application that produces a response based on

the URL requested and pass it back to the web server. The server ultimately sends to

the client. The WSGI specifies the rules that need to be implemented by both sides,

i.e. the web server and MVC Framework. SurveyMonkey utilises Pyramid as the web

application framework to produce many of its services.

The WSGI architecture style of SurveyMonkey induces simplicity and scalability. The

simplicity is achieved through the use of pyramid MVC web framework which permits

loose coupling due to the separation of concerns. This software pattern, promotes

parallel development (e.g. developers may focus on models, controllers or views). Re-

garding the scalability, unlike Blaise, there is no session persisted on the server, i.e. its

stateless configuration based on a token-based authentication, promotes flexibility to

scale. In respect to the portability, the application code is written in a cross-platform

language, however we have not found enough information to determine whether or not

the reliability or portability are induced.

35

Figure 3.4: SurveyMonkey Architecture

3.3.2 Performance Testing

CAWI systems are addressed for large group of respondents that can access simulta-

neously to complete a questionnaire at any time. As these systems are network-based

applications, it is desired to conduct performance testing in order to determine the

capacity of the system to work under different configurations.

The performance testing consist of creating different test plans by varying parameters

such as number of concurrent users or the complexity of the survey selected. Typically,

the methodology plan to execute performance testing consist of:

• Selecting a survey, where the length and complexity helps to predict the perfor-

mance of the system to deal with questionnaires with similar constructs.

• Designing a specific scenario either by randomly responding to questions or by

taking the most common sequence of questions answered by survey respondents

[Volguine, 2013].

• Varying the number of concurrent respondents and finally running the scenario

under the parameters chosen.

Segel et al. discuss a stress test strategy in order to verify the capacity of a web

deployment of Blaise system [Segel et al., 2013]. In that experiment, they vary the

number of concurrent respondents and introduce the thinking time concept consisting

of setting up a random distributed time that simulates the amount of time that takes

respondents to answer questions. Additionally, they explain the importance of selecting

an adequate time in which the maximum number of concurrent users will be reached

in order to avoid unrealistic simultaneous accesses.

A more recent study carried out by Volguine pursues a stable and responsive on-line

36

survey respondent experience through the introduction of three more test strategies

a part from stress testing. These are: normal capacity consisting in monitoring the

system for two hours under an average load level for a day, peak during two hours

under a maximum load expected for day and endurance with a significant load level

during eight hours [Volguine, 2013]. Although Volguine offers a full suite of tests to

assess performance, reliability and responsiveness of Blaise, it is not clear whether the

thinking time is included or not. Therefore, this can lead to a biased testing situation

that is not close to a real scenario in which an interviewee thinks before responding to

a question. Moreover, the use of normal, peak and endurance tests strategies assumes

that the tester knows what are the system level usages which is not always known,

specially for CAWI systems that have never been in the market.

3.4 Conclusions

We have critically analysed four XML authoring languages to determine the coverage

of questionnaire constructs. The routing features, are only fully addressed by DTD,

hardly addressed by Triple-S and addressed with only structured patterns by SSS and

DDI. Regarding the personalisation constructs, none of the languages explored offers

support for carry-forward functionality, well represented in interfaces of CAWI solutions

such as SurveyMonkey. In respect to the survey stages supported, Triple-S or DDI best

suit the export of survey data and meta data to other social disciplines. In contrast,

SSS offers a more robust expression notation that reduces the validations needed to

execute a questionnaire. However, although this prefix notation eliminates the use of

parentheses, it is less efficient when compared to the postfix notation mode.

The inability of grammar-based schema languages to address the correctness of seman-

tics for questionnaire specifications, is evident in all the authoring solutions reviewed.

Particularly, the DTD schema formalism existing in Triple-S and QDL, is very lim-

ited in its ability to express integrity constraints. Similarly, the use of XSD through

languages such as SSS and DDI does not permit expressing any kind of relationship

existing in XML files, raising the need for using rule-based standard formalisms or

general-purpose programming languages to address the semantic.

Regarding the representation of question sequence, the hierarchical modelling adopted

by QDL, SSS and DDI does not adequately facilitate the questionnaire logic for routing

purposes. Specifically, this paradigm does not only become unsatisfactory to unify the

paper specification of a questionnaire against the code produced but is also difficult to

make changes when skip patterns have to be reversed, which impacts negatively over

the adaptability principle.

37

The study of different architectural styles for CAWI systems, shows for instance that

Blaise does not support the scalability, portability and reliability properties adequately.

In contrast, the stateless configuration adopted by SurveyMonkey promotes flexibility

to scale systems. Respecting the simplicity, although it is sufficiently covered in both

systems by separating the tasks into different services, we consider that building of web

pages could be transferred to the client using the responsive SPA paradigm. Finally,

from all the testing methods reviewed for CAWI system evaluation, we find that the

stress testing is best to determine the capacity of a system when different parameters

such as number of concurrent interviewees or think time metrics varies.

38

Chapter 4

CAWI Mark-up Language

This Chapter presents CAWIML as an alternative authoring language to specify ques-

tionnaires only using standard XML schema languages. Particularly, it uses a state-

transition paradigm for question’s sequence and is intended to facilitate the question-

naire routing logic more adequately than the popular hierarchical model. RPN, is

the expression formalism utilised for describing routing and personalisation constructs

indistinctly.

The rest of this Chapter is structured as follows: Section 4.1 introduces the state-

transition routing structure. Section 4.2 explains the postfix notation mode as the for-

malism for questionnaire expressions, followed by Section 4.3 that explains our XML

authoring solution. Finally, XML details for content, routing and personalisation con-

structs expressed in CAWIML are presented in Section 4.4.

4.1 The State-Transition Modelling Solution

The state-transition modelling approach is our proposal to better address the rout-

ing requirements involving design-code equivalence and adaptability criteria (see

Section 3.2.3). This model, widely used for the specification of reactive systems

[Androutsopoulos et al., 2008], is inspired by the Extended Finite State Machine

(EFSM) [Alagar and Periyasamy, 2011].

An example of the state-transition model, represented in Figure 4.1, describes the

questionnaire presented in Figure 2.1. It contains various types of states, represented

by ellipses, that are linked through transitions to form state models (e.g. the Outer

and Inner rectangles).

39

Each state model contains variables that reference questions defined in a section (e.g.

INF1, Q1, Q2, Q3, Q4, Q5, INF2 and END for the Outer section or Q6a for the Inner).

The scope of these is local to a state model and therefore their references do not exist

outside. In order to reference variables through any state model, this paradigm defines

global place holders, known as fields, that permit sharing data across different parts of a

questionnaire (e.g. HAD CAR describing an integer number of cars that the respondent

had).

The states are addressed to perform single operations and these may be categorised as

follows:

• Simple states are used to present the questions to the respondent and to store

responses in variables (e.g. every state prefixed with ’s’).

• Composite states refer to a defined state model (e.g. c0 and c1 for Outer and Inner

state models respectively) and are useful for reducing coupling among questions

in a survey.

• Pseudo states are normally used to take routing path decisions through the eval-

uation of boolean expressions. Specifically, there are if and for states to decide

the conditions under which questions are asked and check states to validate in-

consistent responses. Additionally, the computation state unlike its counterparts

is utilised to update place holder variables through arithmetic expressions.

The transitions connect a state source with a state target to create a questionnaire’s

flow (e.g. arrows connect ellipses). If a transition does not define a boolean expression,

it is assumed true whenever the state source of the transition is reached. In contrast, if

a boolean expression is defined, this means that the expression has to be evaluated in

order to determine its truth (e.g. Q1 ’01’ IS SEL Q1 ’02’ IS SEL OR Q1 ’03’ IS SEL

OR). Here we propose the use of postfix notation mode as the expression formalism for

all the expressions used in the design of a questionnaire.

The state models have an initial state that determines what state is executed first (e.g.

s0 and s8 for Outer and Inner respectively) as well as one or more ending states (e.g.

’sink0’, ’sink1’ or ’sink2’). Similarly, the state-transition model requires a state model

that marks the beginning, i.e. an entry point for the model to capture a questionnaire’s

flow (e.g. ’c0’ and ’sink0’ states).

Accordingly, we formalise the state-transition model that is applied to questionnaire

routing as follows:

40

M = 〈Q,V, T, I, E〉 (4.1)

where,

1. Q(6= ∅) is a finite set of states.

2. V is the set of state variables. Every variable x ∈ V may be accessed at every

state q ∈ Q.

3. T is a finite set of transitions. A transition t ∈ T is represented as q
[c]−→ q′,

where {q, q′} ∈ Q and c is a boolean expression involving variables of V defined

in pre-state q. The absence of c is interpreted to true.

4. I ⊂ Q is the set of initial states. Every composite state has an initial state and

consequently there is a set of initial states if the model contains composite states.

5. E ⊂ Q is the set of end states. These states may be sink addressed to finish a

state model or terminate to interrupt and finish the execution of a state-transition

model.

41

Figure 4.1: State-Transition for the paper questionnaire in Figure 2.1
42

Name Operand 1 Result

POS Integer/Decimal Integer/Decimal

NEG Integer/Decimal Integer/Decimal

INC Integer Integer

DEC Integer Integer

NOT Boolean Boolean

EMPTY String/List Boolean

SIZE String/List Integer

SEL List List

UNSEL List List

ALL List List

VALUEOF

String

String
Integer
Decimal

List

Table 4.1: Unary Operators of CAWIML

4.2 The RPN Notation

The postfix notation, also known as RPN, is the notation formalism that we have

adopted to define the logical and arithmetical expressions applicable not only for routing

constructs such as filters, loops, checks and computations but also for describing text-

fill and carry-forward personalisation constructs. Its simplicity to evaluate any kind of

expression, the non-ambiguity for operators precedence and its efficiency in terms of

number of operations to perform, make this formalism significantly better than infix

or prefix modes (see Section 3.2.5). The RPN formalism has two types of operations:

unary, that expect one and only one operand; and binary which require two operands.

By combining these two categories, it is possible to express from simple to complex

questionnaire logic constructs.

Table 4.1 lists the set of unary operators that CAWIML provides to express typical

questionnaire constructs. The last four operators (e.g. SEL, UNSEL, ALL and VAL-

UEOF) are particularly useful for operations carried out through piping constructs.

For instance, Figure 2.1 specifies a carry-forward piping to populate the unselected

answers for Q2 as part of responses for Q3 (e.g. Q2 UNSEL). Similarly, the example

questionnaire describes a text-fill construct for the Q6a text. This piping feature, which

may be formally expressed as ITERATOR VALUEOF, describes the current loop iter-

ator value since Q6a may be executed multiple times during the process of conducting

an interview.

The set of binary operator constructs are listed in Table 4.2 and differentiates the

43

operations into four subtypes:

• equality and relational, used for conditional statements such as filter, loop or

check;

• conditional, utilised to join two boolean expressions;

• arithmetical, for operations such as addition, subtraction, multiplication or divi-

sion; and

• list to perform operations like UNION or INTERSECTION of sets.

The commonly used binary operator IS SEL, checks whether or not a response from

a single, multiple or grid question has been chosen. Operators such as UNION or

INTERSECTION are crucial to express personalisation features such as complex carry-

forward constructs as these permit the join of selected, unselected or all responses from

different question types (like single or multiple).

4.3 The XML Language Solution

The limitations for all grammar-based XML language solutions reviewed (see Section

3.2.4) require the use of programming languages to validate semantics for questionnaire

specifications. These restrictions have led us to design and implement a new authoring

language that is non-proprietary, platform independent and use standard formalisms

to define structure, data-types, integrity constraints and business rules. This language,

uses the state-transition model for routing logic (see Section 4.1) together with RPN no-

tation to define expressions either for routing or personalisation constructs (see Section

4.2).

CAWIML uses XSD to define structure and data types together with SCH to express

integrity constraints and business rules. We have chosen XSD due to its well-defined

patterns to express vocabulary and structures, its rich set of data-types, its use of

XML to define constraints and because it is the recommendation schema formalism

proposed by W3C (see Section 2.3.2). SCH adheres to standard ISO/IEC 19757 and is

also the only rule-based schema language known to address the semantics limitations

that grammar-based languages have through XPath query language (see Section 2.3.4).

Therefore, to ensure the correctness of XML questionnaire instances, we employ a two

step process to integrate four different levels of validation. Figure 4.2 describes how

this process is carried out.

44

T
y
p

e
N

am
e

O
p

er
an

d
1

O
p

er
an

d
2

R
es

u
lt

E
q
u

a
li

ty
a
n

d
R

el
a
ti

o
n

a
l

E
Q

S
tr

in
g

S
tr

in
g

B
o
ol

ea
n

In
te

ge
r/

D
ec

im
al

In
te

ge
r/

D
ec

im
al

B
o
ol

ea
n

N
E

S
tr

in
g

S
tr

in
g

B
o
ol

ea
n

In
te

ge
r/

D
ec

im
al

In
te

ge
r/

D
ec

im
al

B
o
ol

ea
n

L
T

In
te

ge
r/

D
ec

im
al

In
te

ge
r/

D
ec

im
al

B
o
ol

ea
n

L
E

In
te

ge
r/

D
ec

im
al

In
te

ge
r/

D
ec

im
al

B
o
ol

ea
n

G
T

In
te

ge
r/

D
ec

im
al

In
te

ge
r/

D
ec

im
al

B
o
ol

ea
n

C
on

d
it

io
n

a
l

O
R

B
o
ol

ea
n

B
o
ol

ea
n

B
o
ol

ea
n

A
N

D
B

o
ol

ea
n

B
o
ol

ea
n

B
o
ol

ea
n

A
ri

th
m

et
ic

a
l

A
D

D
In

te
ge

r/
D

ec
im

al
In

te
ge

r/
D

ec
im

al
In

te
ge

r/
D

ec
im

al
S

U
B

In
te

ge
r/

D
ec

im
al

In
te

ge
r/

D
ec

im
al

In
te

ge
r/

D
ec

im
al

M
U

L
In

te
ge

r/
D

ec
im

al
In

te
ge

r/
D

ec
im

al
In

te
ge

r/
D

ec
im

al
D

IV
In

te
ge

r/
D

ec
im

al
In

te
ge

r/
D

ec
im

al
In

te
ge

r/
D

ec
im

al
M

O
D

In
te

ge
r

In
te

ge
r

In
te

ge
r

L
is

t
IS

S
E

L
L

is
t

S
tr

in
g

B
o
ol

ea
n

U
N

IO
N

L
is

t
L

is
t

L
is

t
IN

T
E

R
S

E
C

T
IO

N
L

is
t

L
is

t
L

is
t

T
ab

le
4.

2:
B

in
ar

y
O

p
er

at
or

s
of

C
A

W
IM

L

45

Figure 4.2: Validation process of CAWIML

An XML document, that is presented either from our interface for designing ques-

tionnaires or from any third party, is passed to the validation component. In the first

instance, the XML schema processor takes our grammar constraints and an XML docu-

ment to verify whether the vocabulary, structures and data-types are valid. Two types

of errors can arise from this operation, non-recoverable errors that halt the process,

i.e. the document is not well-formed (see Section 2.2) or recoverable which are queued

without interrupting the XML processing.

In the second instance, an XSLT processor takes our SCH rules, previously converted

to the valid format accepted from this processor (see Section 2.3.4), and the XML

document to determine whether or not the relationships and domain specific rules are

correct. The absence of any error at this stage confirms that the XML document is valid

according to our structure, data-types, integrity constraints and business rules and it is

consequently ready to be parsed in our CAWI system for conducting the on-line survey.

46

4.4 CAWIML Language Details

CAWIML addresses the content, routing and personalisation constructs of surveys by

structuring XML documents into 5 categories:

1. Survey element defines global information relative to a questionnaire and contains

information such as name, description and date.

2. Content specifies questions grouped through sections. It provides support for the

common question types such as intro, single, multiple, open and grid questions.

3. Field element defines place holders variables needed to share information across

different questionnaire sections. String, integer, decimal and list are the types

supported currently.

4. Routing captures questionnaire’s flow using the state-transition structure pro-

posed in Section 4.1.

5. Personalisation defines constructs to adapt questionnaires for an interviewee

through features such as text-fill, carry-forward, randomising and rotating.

Listings 4.1 represents the necessary elements to create a specification in CAWIML.

The following sections, showcase the content, routing and personalisation categories.

1 <?xml version="1.0" encoding="UTF-8"?>

2 <ssm>

3 <survey>

4 <name>...</name>

5 <description>...</description>

6 <date>...</date>

7 </survey>

8 <content>

9 <section id="Section1">

10 ...

11 </section>

12 ...

13 </content>

14 <field>

15 ...

16 </field>

17 <routing>

18 <statemodel ref="Section1">

19 ...

20 </statemodel>

21 ...

22 <entrypoint>

47

23 ...

24 </entrypoint>

25 </routing>

26 <personalisation>

27 <piping ref="Section1">

28 ...

29 </piping>

30 ...

31 </personalisation>

32 </ssm>

Listing 4.1: CAWIML global structure

4.4.1 The Content Constructs

The content category of CAWIML is structured in sections. A section may contain

one or more questions within and it is referenced through a state model (see Section

4.4.2). Our authoring language permits describing the most common question types

for questionnaires (e.g. intro, single, multiple, open and grid). Listings 4.2 defines

two sections (e.g. Outer and Inner) within the content element to group the questions

specified in Figure 2.1. Essentially the use of a section serves as a container that defines

questions through which state models reference and decide question’s sequence.

1 <?xml version="1.0" encoding="UTF-8"?>

2 <ssm xmlns="https://github.com/jollopre/ssm"

3 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

4 xsi:schemaLocation="https://github.com/jollopre/ssm ../schema/ssm.xsd">

5 ...

6 <content>

7 <section id="Outer">

8 <label lang="en">Outer</label>

9 ...

10 </section>

11 <section id="Inner">

12 <label lang="en">Inner</label>

13 ...

14 </section>

15 </content>

16 ...

17 </ssm>

Listing 4.2: Content category

In the outer section, there are eight questions (e.g INF1, Q1, Q2, Q3, Q4, Q5, INF2,

END). For instance, an open-ended integer question (e.g. Q5), defined in Listings

48

4.3, permits asking the number of cars of brand F that the interviewee has had. The

open-ended integer question offers the possibility to define boundaries (e.g. min and

max elements) in which the number responded must be within. It also allows setting

a default value for the first time the question is shown to the interviewee (e.g. value

element).

1 <?xml version="1.0" encoding="UTF-8"?>

2 <ssm xmlns="https://github.com/jollopre/ssm"

3 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

4 xsi:schemaLocation="https://github.com/jollopre/ssm ../schema/ssm.xsd">

5 ...

6 <content>

7 <section id="Outer">

8 <label lang="en">Outer</label>

9 ...

10 <open name="Q5">

11 <label lang="en">How many cars have you had or have of F brand?</ ←↩
label>

12 <integer>

13 <min></min>

14 <max></max>

15 <value></value>

16 </integer>

17 </open>

18 ...

19 </section>

20 ...

21 </content>

22 ...

23 </ssm>

Listing 4.3: Open-ended question

The inner section unlike the outer, only defines one question (e.g. Q6a) whose type is

single. A single question (see Listings 4.4) is addressed to capture one and only one

response from a set. The example provided, asks through the label element whether

or not the respondent had a car from a particular brand. Note that there is a text-fill

pipe reference defined within that label (see Section 4.4.3) which will be replaced with

the specific brand once the questionnaire is executing. This single question also defines

two closed responses with codes 01 and 02 for yes and no respectively.

1 <?xml version="1.0" encoding="UTF-8"?>

2 <ssm xmlns="https://github.com/jollopre/ssm"

3 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

4 xsi:schemaLocation="https://github.com/jollopre/ssm ../schema/ssm.xsd">

5 ...

49

6 <content>

7 ...

8 <section id="Inner">

9 <label lang="en">Inner</label>

10 <single name="Q6a">

11 <label lang="en">Have you ever had a car from <pipe ref="pipe0"/> ←↩
brand?</label>

12 <close code="01">

13 <label lang="en">Yes</label>

14 </close>

15 <close code="02">

16 <label lang="en">No</label>

17 </close>

18 </single>

19 </section>

20 </content>

21 </ssm>

Listing 4.4: Single question

In order to see other question types, please refer to Appendix A.2 containing the defi-

nition for the questionnaire from Figure 2.1 in CAWIML.

4.4.2 The Routing Constructs

The routing in CAWIML is composed of different state models that reference to sections

defined in the content part of the language. Throughout this section, the questionnaire

from Figure 2.1 will be used to discuss the features supported by CAWIML. In Listings

4.5, there are two state models (e.g. Outer and Inner) to capture the question’s sequence

from those sections. In addition, there is an entry point state model element that marks

the beginning of the questionnaire’s flow.

Every state model defines an initial state that determines what is the first state to

execute through a source element (e.g. Outer defines INF1). Similarly, it requires at

least one state that describes the end of a question’s sequence through sink element.

The different states supported in our state-transition solution for questionnaires are

detailed in the following subsections.

1 <?xml version="1.0" encoding="UTF-8"?>

2 <ssm xmlns="https://github.com/jollopre/ssm"

3 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

4 xsi:schemaLocation="https://github.com/jollopre/ssm ../schema/ssm.xsd">

5 ...

6 <routing>

50

7 <statemodel ref="Outer">

8 <source id="INF1"/>

9 ...

10 <state id="c1">

11 <include statemodel="Inner"/>

12 </state>

13 ...

14 </statemodel>

15 <statemodel ref="Inner">

16 <source id="Q6a"/>

17 ...

18 </statemodel>

19 <entrypoint>

20 <source id="c0"/>

21 <state id="c0">

22 <include statemodel="Outer"/>

23 <transition target="sink0"/>

24 </state>

25 <state id="sink0">

26 <sink/>

27 </state>

28 </entrypoint>

29 </routing>

30 </ssm>

Listing 4.5: State-transition routing

Sink

Sink state is aimed at describing the ending of a state model, i.e. it marks the end of

a section. For instance, Listings 4.6 describes a sink with id ’sink0’. When this state is

reached, the state model Outer finishes and consequently the questionnaire terminates.

As the reader may appreciate, there are no outgoing transitions from this state type.

1 <routing>

2 ...

3 <statemodel ref="Outer">

4 ...

5 <state id="sink0">

6 <sink/>

7 </state>

8 ...

9 </statemodel>

10 ...

11 </routing>

51

Listing 4.6: Sink state

Terminate

Terminate state unlike Sink states, are addressed to interrupt the entire routing, i.e.

when this state is reached not only finishes the state model under which is defined but

also terminates the questionnaire’s flow even if there are more states defined in the

entry point state model. Listings 4.7 describes this state type with an id ’terminate0’.

1 <routing>

2 ...

3 <statemodel ref="Inner">

4 ...

5 <state id="terminate0">

6 <terminate/>

7 </state>

8 ...

9 </statemodel>

10 ...

11 </routing>

Listing 4.7: Sink state

Simple

Simple state is responsible for retrieving variables, i.e. the definition of a question and

its associated responses, if any. It has capabilities to define one or more variables,

i.e. every variable referenced here must be presented on the same screen of the CAWI

collection stage that supports CAWIML. Listings 4.8 describes two simple states (e.g.

INF1 and Q1) that contain references to variables (e.g. INF1 and Q1 for intro and

single question respectively). For instance, when an interviewee decides to move for-

ward through the questionnaire after reading INF1, the state Q1 is reached given the

transition target defined within the INF1 state.

1 <routing>

2 ...

3 <statemodel ref="Outer">

4 ...

5 <state id="INF1">

6 <variable ref="INF1"/>

7 <transition target="Q1"/>

52

8 </state>

9 <state id="Q1">

10 <variable ref="Q1"/>

11 <transition target="p0"/>

12 </state>

13 ...

14 </statemodel>

15 ...

16 </routing>

Listing 4.8: Simple state

Composite

Composite state permits switching to another state model. For instance, the Inner

state model referenced under the ’c1’ state (see Listings 4.9) describes the sequence of

questions for the Inner section of the paper questionnaire that corresponds to Q6a (see

Figure 2.1). Note that this state has been defined within the state model Outer, i.e.

the Inner state model will be only reached under the sequence defined for the Outer

state model.

1 <routing>

2 ...

3 <statemodel ref="Outer">

4 ...

5 <state id="c1">

6 <include statemodel="Inner"/>

7 </state>

8 ...

9 </statemodel>

10 ...

11 </routing>

Listing 4.9: Composite state

If-then-else

If state represents filter and skip constructs indistinctly. It is composed of a boolean

expression in RPN notation and describes two transitions, then and else, for true and

false result of the expression respectively. For instance, Listings 4.10 specifies the skip

features attached over Q1, i.e. if response 01, 02 or 03 is selected, the ’sink0’ state has

to be reached, otherwise the interviewee will see question Q2 on the screen.

53

1 <routing>

2 ...

3 <statemodel ref="Outer">

4 ...

5 <state id="p0">

6 <if>

7 <condition>

8 <variable ref="Q1"/>

9 <constant type="string" value="01"/>

10 <operator name="IS_SEL"/>

11 <variable ref="Q1"/>

12 <constant type="string" value="02"/>

13 <operator name="IS_SEL"/>

14 <operator name="OR"/>

15 <variable ref="Q1"/>

16 <constant type="string" value="03"/>

17 <operator name="IS_SEL"/>

18 <operator name="OR"/>

19 </condition>

20 <then>

21 <transition target="sink0"/>

22 </then>

23 <else>

24 <transition target="Q2"/>

25 </else>

26 </if>

27 </state>

28 ...

29 </statemodel>

30 ...

31 </routing>

Listing 4.10: If-then-else state

Check

Check state defines a boolean expression that validates the presence of an inconsistency.

There are two types supported: warning, that alerts the interviewee but permits her to

continue the section sequence; and error, that stops the execution of the state model

until the conflict is solved. Listings 4.11 describes a case where the questionnaire’s

flow is interrupted if the response was not selected. This example is useful to validate

whether or not people younger than eighteen have never been married. It should

described together with an if-then-else state to filter those interviewees with age under

eighteen.

54

1 <routing>

2 ...

3 <statemodel ref="X">

4 ...

5 <state id="x1">

6 <check type="error">

7 <condition>

8 <variable ref="Qx"/>

9 <constant type="string" value="never"/>

10 <operator name="IS_SEL">

11 </condition>

12 <label lang="en">

13 People younger than 18 have never been married

14 </label>

15 <transition target="x2" />

16 </check>

17 </state>

18 ...

19 </statemodel>

20 ...

21 </routing>

Listing 4.11: Check state

For

For state captures the loop construct of surveys and similar to the if-then-else state, has

two transitions one for executing the loop body and another that is reached whenever

the boolean expression is not met. There are three loop types: range, that iterates

numbers by specifying start, end and step expressions (e.g. start at 0, end at 5 and

step 1 would iterate from 0 to 4); List mode, that iterates all the elements of a list

defined in the field section; and expr list that iterates a list returned by RPN expression.

Listings 4.12 describes the instruction specified over Q6a through expr list loop mode.

This state contains: field element, that references a global variable (e.g. ’p4 iterator’),

updated every time the iterator changes; and two transitions, one for switching to

another state model (e.g. target ’c1’) and the other that is reached when the loop

condition is not met (e.g. target ’p5’). Note that this example includes a randomising

construct (see Section 4.4.3) that alters the iterator order and ensures that at maximum

four times the loop is executed.

1 <routing>

2 ...

55

3 <statemodel ref="Outer">

4 ...

5 <state id="p4">

6 <for>

7 <field ref="p4_iterator"/>

8 <in>

9 <expr_list>

10 <variable ref="Q2"/>

11 <operator name="SEL"/>

12 <variable ref="Q3"/>

13 <operator name="SEL"/>

14 <operator name="UNION"/>

15 </expr_list>

16 <randomising>

17 <all present="4"/>

18 </randomising>

19 </in>

20 <transition target="c1"/>

21 </for>

22 <transition target="p5"/>

23 </state>

24 ...

25 </statemodel>

26 ...

27 </routing>

Listing 4.12: For state

Computation

Computation state is used to update place holder variables. These variables are typi-

cally used to share data across sections. For instance, Listings 4.13 permits aggregating

data from different state models through the global variable HAD CAR. This construct,

implicitly defined within the paper questionnaire must be used together with an if-then-

else to decide whether or not the interviewee responded yes to the Q6a. Note that this

question may be repeated multiple times for each brand mentioned at Q2 or Q3 and

therefore through HAD CAR is captured the number of cars that the interviewee had.

1 <routing>

2 ...

3 <statemodel ref="Inner">

4 ...

5 <state id="p1">

6 <computation ref="HAD_CAR">

7 <assignment>

56

8 <variable ref="HAD_CAR"/>

9 <constant type="integer" value="1"/>

10 <operator name="ADD"/>

11 </assignment>

12 </computation>

13 <transition target="sink0"/>

14 </state>

15 ...

16 </statemodel>

17 ...

18 </routing>

Listing 4.13: Computation state

4.4.3 The Personalisation Constructs

The personalisation constructs in CAWIML define the dynamic behaviour for surveys.

These features, that may serve to adapt the survey for each respondent, are defined

in this questionnaire language through elements such as pipe, randomising and rotat-

ing. The following subsections detail the personalisation constructs through features

extracted From Figure 2.1.

Text-fill piping

Text-fill piping describes the behaviour of retrieving responses from previous questions

as part of the text for another. For instance, in Listings 4.14 a reference to a pipe

(e.g. pipe0) is described as part of the text for Q6a. This pipe, defined within a

piping element points at the Inner state model and has a RPN expression describing

the current loop iterator value. Note that this value may be one of the entire set of

response codes from Q2 or Q3 (e.g. A, B, C, D, E, F, G, H). For instance, if the

response was A for question Q2 and B,C for question Q3, the Q6a would be repeated

three times by changing the pipe value to A, B or C in its question label.

1 <?xml version="1.0" encoding="UTF-8"?>

2 <ssm xmlns="https://github.com/jollopre/ssm"

3 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

4 xsi:schemaLocation="https://github.com/jollopre/ssm ../schema/ssm.xsd">

5 ...

6 <content>

7 ...

8 <section id="Inner">

9 <label lang="en">Inner</label>

57

10 <single name="Q6a">

11 <label lang="en">Have you ever had a car from <pipe ref="pipe0"/> ←↩
brand?</label>

12 <close code="01">

13 <label lang="en">Yes</label>

14 </close>

15 <close code="02">

16 <label lang="en">No</label>

17 </close>

18 </single>

19 </section>

20 ...

21 </content>

22 ...

23 <personalisation>

24 ...

25 <piping ref="Inner">

26 ...

27 <pipe id="pipe0">

28 <variable ref="p4_iterator"/>

29 <operator name="VALUEOF"/>

30 </pipe>

31 ...

32 </piping>

33 ...

34 </personalisation>

35 </ssm>

Listing 4.14: Text-fill

Carry forward piping

Carry-forward unlike its counterpart, is intended to capture the behaviour of populating

responses for a question based on a RPN expression that returns a list. That list

commonly represents the responses selected/unselected from previous questions. For

instance, Listings 4.15 has a multiple question (e.g. Q3) that contains a pipe reference

(e.g. ’pipe0’). This pipe describes the unselected responses from Q2. The CAWI system

must retrieve on real-time those unselected responses to automatically populate them

as part of the responses for Q3 when the gathering of survey responses takes place. For

instance, if the interviewee responded A for Q2, Q3 would be automatically populated

with the responses B, C, D, E, F, G, H and Don’t know, that represent those non-

selected at Q2.

1 <?xml version="1.0" encoding="UTF-8"?>

58

2 <ssm xmlns="https://github.com/jollopre/ssm"

3 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

4 xsi:schemaLocation="https://github.com/jollopre/ssm ../schema/ssm.xsd">

5 ...

6 <content>

7 ...

8 <section id="Outer">

9 <label lang="en">Outer</label>

10 <multiple name="Q3">

11 <label lang="en">Which brands are you aware of? [OTHER SPONTANEOUS ←↩
MENTIONS Q2]</label>

12 <pipe ref="pipe0"/>

13 </multiple>

14 </section>

15 ...

16 </content>

17 ...

18 <personalisation>

19 ...

20 <piping ref="Outer">

21 <pipe id="pipe0">

22 <variable ref="Q2"/>

23 <operator name="UNSEL"/>

24 </pipe>

25 </piping>

26 ...

27 </personalisation>

28 </ssm>

Listing 4.15: Carry-forward

Randomising/Rotating

Randomising and rotating constructs are used to alter the data order presented to the

respondent. In CAWIML these features are usually defined when a question is specified

but they can also be utilised for reordering loops. There are two modes of specifying

data order to both randomising and rotating:

• All that performs ordering of the entire set of responses and contains an attribute

present to determine the number of elements to show. For instance, the for

state (see section 4.4.2) describes this construct to alter the iterator order and

determine the maximum number of times that this loop should be repeated.

• Subset which selects the elements to be randomised or rotated. Listings 4.16

defines a subset of codes (e.g. 01, 02, 03, 04, 05, 06, 07 and 08) that must

59

be reordered randomly. Note that response 09 is not included in that set and

therefore this response must appear as last choice to select for Q2.

The importance of having two modes arises due to the fact that sometimes there can

be responses in which their order should not be modified. For instance, it is frequent

to offer responses such as don’t know or not applicable at last in order to capture

those interviewees that really do not know enough to have a formed opinion. For that

purpose, the subset construct ensures that those responses out of the subset will remain

unaltered.

1 <?xml version="1.0" encoding="UTF-8"?>

2 <ssm xmlns="https://github.com/jollopre/ssm"

3 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

4 xsi:schemaLocation="https://github.com/jollopre/ssm ../schema/ssm.xsd">

5 ...

6 <content>

7 <section id="Outer">

8 <single name="Q2">

9 <label lang="en">Which brands are you aware of? [FIRST SPONTANEOUS ←↩
MENTION]</label>

10 <randomising>

11 <subset>

12 <code ref="01"/>

13 <code ref="02"/>

14 <code ref="03"/>

15 <code ref="04"/>

16 <code ref="05"/>

17 <code ref="06"/>

18 <code ref="07"/>

19 <code ref="08"/>

20 </subset>

21 </randomising>

22 <close code="01">

23 <label lang="en">A</label>

24 </close>

25 <close code="02">

26 <label lang="en">B</label>

27 </close>

28 <close code="03">

29 <label lang="en">C</label>

30 </close>

31 <close code="04">

32 <label lang="en">D</label>

33 </close>

34 <close code="05">

35 <label lang="en">E</label>

36 </close>

60

37 <close code="06">

38 <label lang="en">F</label>

39 </close>

40 <close code="07">

41 <label lang="en">G</label>

42 </close>

43 <close code="08">

44 <label lang="en">H</label>

45 </close>

46 <close code="99">

47 <label lang="en">Don’t know</label>

48 <exclusive value="true"/>

49 </close>

50 </single>

51 </section>

52 ...

53 </content>

54 ...

55 </ssm>

Listing 4.16: Randomising

4.5 Conclusions

In order to ensure correctness of questionnaire specification through XML, we have

presented in this Chapter CAWIML that combines XSD together with SCH to define

structure, data-types, integrity constraints and business rules using a two step vali-

dation process. This language, described through standard and platform independent

schema languages, permits reduce or eliminate the necessity of using programming lan-

guages to validate survey specifications. Furthermore, as it is non-proprietary, survey

agencies may benefit of sharing questionnaire specifications when surveys have to be

conducted across different CAWI systems.

CAWIML abstracts the questionnaire’s routing with the state-transition paradigm.

This approach integrates skip and filter constructs through an if-then-else statement

and better address the conceptual gap between what survey designers want versus

the code needed to produce this functionality. In particular unlike the hierarchical

approach, the state-transition model avoids the necessity to reverse logics when skip

patterns are present. Also, as the states perform single operations, if-then-else nested

structures are non-existent thus helping to reduce coupling and improving adaptability.

In addition, the unification of RPN notation to express piping and routing constructs,

61

not only eliminates ambiguities for complex expressions but also is faster to evaluate

when compared to the prefix notation mode.

62

Chapter 5

CAWI System

This Chapter introduces our CAWI system based on REST architectural constraints to

support survey life-cycle through the specification of questionnaires using CAWIML.

We have proposed a multi-layer architecture that uses XML and JSON for client server

communication. In this infrastructure, the client and server implementations are sepa-

rated, so changes made at any side do not impact negatively into the other which helps

them to evolve independently. The client side, which adopts the novel SPA paradigm

to build the HTML code directly in the browser through JavaScript, has reduced the

server burden and consequently improved responsiveness.

The rest of this Chapter is structured as follows: The system architecture is presented

in Section 5.1 where its different layers are explained. Thereafter Section 5.2 provides

implementation details for server and client respectively.

5.1 Architecture of the System

Our proposed CAWI system uses the REST architecture [Fielding, 2000] to consider

architectural principles such as scalability, simplicity or reliability. Through REST,

the system is constrained to produce uniform interfaces using the HTTP verbs (e.g.

GET, POST, PUT and DELETE). This restriction permits client and server to evolve

independently. For instance, changes at any service implementation reduce or eliminate

the impact produced on the client. The stateless constraint, also from REST, requires

to have a server solution that avoids keeping session state for each client. For that

restriction, we have implemented a token based identifier that makes it easier to scale

our solution without needing to replicate any session data across a multi-server con-

figuration. Reliability is improved because it eases the task of recovering from partial

63

failures within components, connectors or data [Fielding, 2000].

The system is structured to separate the CAWI services from the user interfaces (see

Figure 5.1) using JSON and XML standard exchange data formats for communication.

The server side is structured into different layers:

• the API layer (e.g. RESTful API), that uses the HTTP methods defined by RFC

2616 [Fielding et al., 1999] creates the communication interfaces and is the only

component that is directly accessible by the client;

• the business layer, used by the API, separates the different functionalities of the

system through Java packages (e.g. content, routing, personalisation) in order to

promote reusability; and

• the data access layer, which serves to abstract the data storage solution from

the business layer, makes the system easier to maintain since this connector is

centralised in one place.

This layered server structure induces portability, thanks to the use of Java as the general

purpose programming language that works across any platform.

Figure 5.1: REST architecture

The client side of this architecture makes a clear separation by building and rendering

every HTML code entirely on the client using the novel SPA paradigm (see Section

5.1.4). This approach when compared to the multi-page paradigm, that Blaise or

SurveyMonkey adopt, is more consistent with the simplicity property, since it reduces

the amount of data transferred from the server, improves user experience and reduces

64

the burden on the server.

5.1.1 RESTful API

The process of conducting survey research is separated into five stages (see Section

3.2.6). In order to address these separated steps, we have implemented a REST API

that permits client communication between these five services (e.g. design, collection,

management, analysis and reporting). The business objects, represented as Java classes,

are converted to JSON or XML every time the server responds to a request through

a process named marshalling. Similarly, when data sent from client is received, an

unmarshalling process transforms it to the adequate business object class instance.

The design service, seen as the only stage that uses XML exchange format to com-

municate the parts, deals with the definition of questionnaire instances according to

CAWIML. The rest of the services, only accept JSON because it offers a direct map-

ping to JavaScript objects in which our client interfaces are built and also it is less

verbose than XML which helps to reduce the amount of data transferred across client

and server.

The collection service uses GET, POST and DELETE HTTP verbs to produce uni-

form interfaces for communication. The GET provides services for retrieving general

information of any survey (e.g. title, description or date they were created) or to fetch

incomplete interviews either because the interviewer decided to postpone or because

the browser was closed. The POST verb is used for actions such as starting an inter-

view or to store questionnaire responses when moving forward and backward through

a survey. The DELETE is used throughout this service for activities like marking the

ending of an interview, i.e. to remove the possibility of a valid client token to modify

a questionnaire that is completed.

5.1.2 Business Layer

The business layer, organised into different modules, is built through an object-oriented

paradigm and it is used by the REST API to retrieve or update state and behaviour.

For instance, the content, routing and personalisation packages are built according to

the grammatical rules that CAWIML defines in its XSD schema. These three packages

are widely used across the survey stages and following sections provide a high-level

view of the different modules that are involved in each of the client stages of design,

collection and management analytics.

65

The design stage

The Validation and Parser packages are crucial at the questionnaire design stage as

these carry out the validation, correctness and translation of XML constructs into

artefacts that are ready for data gathering. Particularly, the parser package reads data

from valid XML specifications to produce objects according to the content, routing

and personalisation modules. It uses an event-driven approach that handles a variety

of small to large questionnaire specifications appropriately. The event-driven style when

compared to the popular Document Object Model (DOM) parsing, uses significantly

less resources since there is no need to create a tree of objects in memory representing

the XML file under process.

The collection stage

The collection stage uses the state-transition model expressed in a CAWIML instance

to conduct interviews. The class diagram from Figure 5.2 represents an overview of the

most important classes involved. A state model consisting of states and transitions,

holds variables that represent the questions from a section and their responses. Addi-

tionally, it keeps references to pipes that together with the pseudo states, use the RPN

formalism to execute logical and arithmetical expressions. The routing class, contains

a list of state models and an entry point to mark the state model execution entry point.

It also holds the set of place holder variables (e.g. Field class) that are shared across

state models.

Each interviewee (e.g. User class) has a Manager object that registers the set of state

models defined in a state-transition and controls which state model is active at any time.

The state modelRunnable class, adds behaviour to a state model by including methods

such as hasPrevious(), hasNext(), previousVisible() and nextVisible() that permit nav-

igating backward and forward through an interview. It contains interesting properties

like created, that registers the date and time in which the state model was generated,

and enabled, that determines whether or not the state model variables should be con-

sidered when data is exported or visualised on client interfaces. The instances of this

class are typically identified by a state model and state (e.g. IdStatemodelRunnable)

but also may contain an index if the state model is part of a loop. For instance, the

inner state model from Figure 4.1, that represents the questionnaire from Figure 2.1,

can have up to eight different state modelRunnable instances identified by outer and

’c1’ for the state model and the state respectively. Also an index that varies from 01

to 08 according to the set of response codes from Q2 or Q3 is set to identify each state

model copy uniquely.

66

Figure 5.2: Class diagram for the Collection Manager

The management, analysis and reporting stages

The management stage, aimed at monitoring the data gathered in real time, fetches

questionnaire objects by conducting multiple queries against the persistence layer. For

instance, status objects are sent to the client in order to inform the percentage of

completion of a questionnaire or to determine accurately the current question in an

interview session.

The analysis stage incorporate aggregate queries to study the data collection for ques-

tionnaires for each type of question. For instance, an attractive feature that calculates

the degree of positivity for open string questions, automatically separates sentences into

one of six categories (e.g. strong positive, positive, weak positive, weak negative, nega-

tive or strong negative) proposed by Haque and Tamjid [Haque and Rahman, 2014] by

using the word scores from SentiWordNet [Esuli and Sebastiani, 2006].

The reporting stage offers mechanisms to export survey data and meta data into CSV

67

format currently. This process uses a variation of the Topological Sort algorithm pro-

posed by Kahn [Kahn, 1962] to retrieve the order of the questions as they are defined

in the routing of the CAWIML specification and presents the survey meta data first

followed by the data for each interviewee on each successive line.

5.1.3 Database Solution

The database solution that we have chosen to persist and retrieve survey data and

meta data is a document-based No Structured Query Language (NoSQL) approach.

Through this style the database design, organised in collection of documents, offers

a direct mapping to the business objects of our CAWI solution. Additionally, as this

database style weakly references data from different collections, helps to reduce the

complexity of data synchronisation when information allocated in different servers has

to be combined. We have carefully considered the separation of surveys into different

databases, i.e. for each questionnaire provide separate archives for the data and meta

data. This separation facilitates easy isolation of problem causes when dealing with

the questionnaire life-cycle.

The capacity of NoSQL solutions for horizontal scaling, consisting of connecting mul-

tiple physical or virtual machines, is not only more affordable than vertical, that is

focused on empowering a server with more CPU or RAM as the relational databases sys-

tems do, but also it is significantly easier to set up inducing to a more scalable database

solution. The schema-free feature permits the addition or removal of properties from

data representations without the need for running migration scripts [Padhy et al., 2011]

and therefore provides a more flexible persistence solution. Finally, as this approach

best suits data intensive applications [Gyorodi et al., 2015], it also improves with timely

handling of client requests.

5.1.4 Single Page Application

The client-side architecture follows the novel SPA paradigm. This approach proposes

the creation of components to address a specific functionality of an interface. These

components, based on a MVC design pattern or any of its variations, are loaded dy-

namically when the user interacts with the Web application. Figure 5.3, represents the

different parts that form a component (e.g. model, view and controller). The DOM,

which is an object representation of the HTML produced, is the place where the user

sends any event such as clicking forward or backward buttons through an interview.

These events are captured by controllers that perform tasks like keeping synchronised

68

models and views. The models, used to represent the state of a component are best

allocated to a single area since multiple views may initiate changes to them. Finally,

the views reflect model data changes and contain the HTML code that is rendered on

the browser. In order to abstract the DOM manipulation every time a view changes,

we use the popular AngularJS 1 framework since it automatically handles the DOM

control [Kozlowski and Bacon Darwin, 2013] and reduces the burden of testing compo-

nents due to the different DOM implementations that browsers still have (e.g. Mozilla

versus Internet Explorer).

Figure 5.3: Client architecture

Through the use of SPA paradigm, our server burden has been simplified since the task

of building pages has been transferred to the client which has permitted obtaining rich

interactive interfaces that do not need to be reloaded at every request. Moreover, the

system has gained better responsiveness because the data transferred rather than being

HTML is JSON, known for its compact syntax. Therefore, this solution stands out when

compared to the multi-page paradigm that Blaise or SurveyMonkey have in which the

entire interface is refreshed on every request [Mesbah and van Deursen, 2007] impacting

1https://angularjs.org

69

https://angularjs.org

not only over the system performance but also offering poorer user interactivity.

5.2 Implementation Details

Our CAWI system solution, clearly separates client and server functionalities to obtain

an architecture which offers flexibility and evolvability architectural principles. Section

5.2.1 explains implementation details for the multi-layered server whereas Section 5.2.2

introduces the reader to the three interfaces that give support to survey life-cycle.

5.2.1 The Server Side

The server side of our CAWI system is separated into three layers, i.e. RESTful API,

business layer and data access layer. Section 5.2.1 explains the implementation of

REST principles through an example that overviews the HTTP methods utilised for

the collection stage. Regarding the state-transition used for gathering survey data, we

have focused on explaining the RPN algorithm that evaluates expressions for routing

and personalisation constructs on real-time in Section 5.2.1.

RESTful API

The API layer used to communicate client and server has been implemented through

Jersey, a standard open source framework used to develop RESTful Web Services 2 in

Java. Throughout this section, a Java class that captures the requirements for the col-

lection stage of surveys (see Listings 5.1) will be used to discuss the API implemented to

communicate the parts. This class defines methods (e.g. public void postToken(...)) to

implement functionalities such as resume, forward and backward through an interview.

Also, it specifies annotations (e.g. @POST), that permit an easy mapping between a

Java class and a web resource.

1 @Path("/collection")

2 public class Collection{

3 /* ... */

4 @Path("/token/{id}")

5 @POST

6 public void postToken(@PathParam("id") String id) throws IOException{

7 /* Creates an instance of the survey id for an interviewee */

8 }

9 @Path("/token/{id}")

2https://jersey.java.net/index.html

70

https://jersey.java.net/index.html

10 @DELETE

11 public void deleteToken(@PathParam("id") String id) throws IOException{

12 /* Disables the survey id for an interviewee */

13 }

14 @Path("/surveyinfo/{id}")

15 @GET

16 @Produces(MediaType.APPLICATION_JSON)

17 public Survey getSurveyInfo(@PathParam("id") String id) throws IOException{

18 /* Retrieves the information from the survey id (e.g. name, description and ←↩
datetime that it was created). */

19 }

20 @Path("/resume/{id}")

21 @GET

22 @Produces(MediaType.APPLICATION_JSON)

23 public RoutingStatus getResume(@PathParam("id") String id) throws IOException{

24 /* Retrieves the last state reached for an interviewee. */

25 }

26 @Path("/previous/{id}")

27 @POST

28 @Consumes(MediaType.APPLICATION_JSON)

29 @Produces(MediaType.APPLICATION_JSON)

30 public RoutingStatus postPrevious(@PathParam("id") String id, Vector<Response> ←↩
clientResponse) throws IOException{

31 /* Gets the next state of the survey for an interviewee */

32 }

33 @Path("/next/{id}")

34 @POST

35 @Consumes(MediaType.APPLICATION_JSON)

36 @Produces(MediaType.APPLICATION_JSON)

37 public RoutingStatus postNext(@PathParam("id") String id, Vector<Response> ←↩
clientResponse) throws IOException{

38 /* Gets the previousmark the interviewee has finish the questionnaire and the ←↩
cookie have to deleted from the browser. state of the survey for an ←↩
interviewee */

39 }

40 /* ... */

41 }

Listing 5.1: Collection resource implementation details

@Path annotation describes a relative URI path to a resource. We have defined this

annotation at two levels: at the class level, that permits creating a resource identifier

(e.g. /collection); and at method level, that specifies a sub resource for a given re-

source (e.g. /token{id} that is reachable by clients as /collection/token{id}). Every

request sent to the server requires a survey id for which the interview is conducted

(e.g. @PathParam). @Consumes and @Produces define the exchangeable data format

71

used to communicate client and server (e.g. MediaType.APPLICATION JSON) for re-

quests and responses respectively. In addition, although it not present on the example

provided, every sub resource that consumes or produces survey data and meta data

requires a token header containing the interviewee’s identifier. Through this header,

we have achieved a stateless communication that helps for an easy scaling.

Our REST API uses GET, POST and DELETE HTTP methods. With @GET annota-

tion it is possible to access to sub resources such as /surveyinfo, that retrieves the meta

data of a survey like its title, description and data or /resume, that gives flexibility for

the respondents to choose the right time to continue an interview.

The modification of sub resources is carried with @POST and @DELETE annotations.

@POST, it is used for operations such as moving forward and backward through a

questionnaire (e.g. postPrevious(...) or postNext(...)) and for creating a database

record for a newer interviewee (e.g. postToken(...)). With respect to the @DELETE,

that is used to mark a questionnaire as completed, helps to prevent the modification

of survey data by interviewees.

The RPN Evaluation

The evaluation of a RPN expressions is conducted for every interview that takes place.

Every time a variable is updated, the system automatically re-evaluates those RPN

expressions in which a reference to that variable exists. The algorithm implemented to

execute questionnaire expressions in our CAWI system (see Listings 5.2) only requires

two arrays: expression, that contains an operand or operator in each position; and stack,

to simulate push and pop operations through software [Brown, 2001] for intermediate

operations that are carried out while executing an expression.

1 public Operand evaluate() throws OperandException,RpnException{

2 LOCK = true;

3 if(expression == null){ reset(); throw new RpnException("RPN expression is NULL" ←↩
);}

4 stack.clear();

5 Token first,second;

6 for(int i=0;i<expression.size();i++){

7 if(expression.get(i) instanceof Variable){

8 Variable var = (Variable)expression.get(i);

9 stack.add(var.getOperand());

10 }

11 else if(expression.get(i) instanceof Operand){

12 stack.push(expression.get(i));

13 }

14 else if(expression.get(i) instanceof Operator){

72

15 Operator o = (Operator)expression.get(i);

16 if(o.isBinary()){ //BINARY OPERATION

17 if(stack.isEmpty()){ reset(); throw new RpnException("Empty stack trying to ←↩
retrieve second operand for binary operation");}

18 second = stack.pop();

19 if(stack.isEmpty()){ reset(); throw new RpnException("Empty stack trying to ←↩
retrieve first operand for binary operation");}

20 first = stack.pop();

21 result = ((Operand)first).resolve((Operand) second, o);

22 stack.add(result);

23 }

24 else{ //UNARY OPERATION

25 if(stack.isEmpty()){ reset(); throw new RpnException("Empty stack trying to ←↩
retrieve the operand for unary operation");}

26 first = stack.pop();

27 result = ((Operand)first).resolve(o);

28 stack.add(result);

29 }

30 }

31 else{

32 reset(); throw new RpnException("Unknown token processing the RPN expression" ←↩
);

33 }

34 }

35 if(stack.isEmpty()){reset(); throw new RpnException("Not enough arguments in the ←↩
RPN expression");}

36 first = stack.pop();

37 if(!stack.isEmpty()){reset(); throw new RpnException("Malformed RPN expression") ←↩
;}

38 LOCK=false;

39 result=(Operand)first;

40 return result;

41 }

Listing 5.2: The RPN evaluation

The expression array, is read from left to right (e.g. Line 6). If a variable or constant

is found (e.g. Lines 7 and 11), it is pushed in the stack. In contrast, the presence

of an operator performs one or more operations depending on its type. For binary

operations, two operands are popped from the stack whereas for unary operations,

only one operand is required. In both cases, if there are still positions to read in the

expression array, the intermediate result is pushed in the stack (see Lines 22 and 28).

The algorithm terminates when every position of the expression array has been read

and its computational complexity cost is linear. Exceptions may be thrown at three

different levels:

73

• At the beginning, in cases where the expression is NULL.

• During the loop execution, either because the stack is unexpectedly empty trying

to retrieve an operand for unary or binary operation or because the expression

contains a token element unknown for the algorithm.

• At the end, when the loop has been completed, the stack must have only one

element to pop, otherwise a malformed RPN expression was passed.

5.2.2 The Client Side

The client side of our CAWI solution organises the interface into three separated appli-

cations in order to address the survey life-cycle process. In these interfaces we have used

HTML, Cascading Style Sheets (CSS) and JavaScript for structure, presentation and

behaviour respectively. The following subsections detail design, collection and other

interfaces that have been implemented using the SPA paradigm.

The Design Interface

The interface for designing questionnaires provides high-level visual tools to facilitate

the creation of survey features without needing to write any XML code. This per-

mits designers, that usually do not have programming skills, to create simple to com-

plex questionnaire specifications. The interface has two modes: one for describing the

content and personalisation features; and the other for specifying the questionnaire’s

routing.

Figure 5.4 represents the look and feel of the authoring tool for questionnaire specifi-

cations. Specifically, this screen shot depicts questions INF1, Q1, Q2, Q3 and Q4 from

Figure 2.1 with a top bottom sequence order. At the top, there are two functionalities

that are only applicable for a section. These are, filter that permits describing a logical

expression and loop that allows specifying any of the three iteration modes (e.g. range,

list and expr list explained in the Section 4.4.2). The right side has a toolbox to access

to the global variables (e.g. Variable button) as well as to switch to the content screen

(e.g. content button). Next to each question there is a button (e.g. wheel) that allows

selecting any routing feature. For instance, the example provided describes three skip

constructs (e.g. under Q1, Q2 and Q3) where three combo boxes must be specified: the

first combo, it is used to select a response from a question given (e.g. response never

from Q1); the second requires to choose a binary operator (e.g. IS SEL); and the third

expects a destination question (e.g. END). In order to avoid circular dependencies, this

74

interface provides mechanisms that prevents questionnaire designers to define skips to

questions defined above this construct on the screen.

Figure 5.4: Routing design interface

Figure 5.5 represents the routing from Q4 till END for the questionnaire Figure 2.1.

Two constructs are defined; a filter (e.g. over Q5) and an expr list loop (e.g. above

Q6a). The routing constructs, although are presented in the interface through infix

notation mode, are automatically translated to postfix by using the Shunting-yard

algorithm 3. This is mainly due to the fact that CAWIML only accepts RPN expressions

for logical and arithmetical operations.

Figure 5.5: Content/Personalisation design interface

3http://rosettacode.org/wiki/Parsing/Shunting-yard_algorithm#JavaScript

75

http://rosettacode.org/wiki/Parsing/Shunting-yard_algorithm#JavaScript

The Collection Interface

The interface for collecting survey data separates states such as simple, check, sink or

terminate on different template views. The data validation is entirely performed in the

client (e.g. checking that the number of chosen responses is between a range, ensuring

that every row from a grid question contains at least one response selected or verifying

data-types). These validations help to reduce the amount of operations to carry out

between server and client. Additionally, as this interface reacts to events immediately,

the user experience is greatly improved.

The stateless restriction from our REST architecture requires for each new interview

carried out in a browser to persist the interviewee’s identifier either by using cookies or

through the browser’s data storage. Similarly, when the questionnaire is completed, it

is the responsibility of the client to delete this persisted id. Every time the navigation

is updated, i.e. next or previous action is requested, the server responds with the new

state reached and the client redraws the part of the interface that needs to be changed

without the need for page reloading.

Figure 5.6 represents an example of an interview demo that was presented at the XML

Prague conference 2015. Firstly the display of the example question provides a language

translation option in order to change to other languages. Next, it displays an example of

a single question (e.g. Q1) with multiple responses represented through radio buttons.

Finally, at the bottom, the navigation options (e.g. previous and next) are presented.

Note that the next action appears disabled but it becomes enabled whenever the data

entered for a question successfully passes the client validations.

Figure 5.6: Collection interface

76

The Management, Analysis and Reporting Interface

This interface unifies the management, analysis and reporting stages in one single

interface. The most attractive functionalities from this interface is the visualisation

of real-time survey responses while interviews are taking place. For that purpose, this

interface provides different chart types for each type of question.

For instance, Figure 5.7 represents for each interviewee (e.g. y axis), her response

to an open-ended question enclosed in one of the six categories (e.g. strong positive,

positive, weak positive, weak negative, negative or strong negative) through x axis.

This functionality could help to quickly analyse whether or not the responses obtained

for an open question match with the survey requirements.

Figure 5.7: Analysis interface

5.3 Conclusions

Our CAWI system solution for survey life-cycle adopts REST constraints to adhere

to scalability, simplicity and reliability architectural properties expected for CAWI

systems. Particularly, the REST API, which conforms to the HTTP protocol, has been

implemented with the standard reference library for Java. This multi-layered solution

is highly portable and uses a NoSQL database solution which permits a more flexible

persistence solution when compared to the traditional relational databases.

77

The client side, based on the SPA not only improves the responsiveness of a distributed

system but also helps to produce richer interactive interfaces. This paradigm when com-

pared to the multi-page approach that CAWI systems such as Blaise or SurveyMokey

adopt, is more attractive. Particularly, with the choice of AngularJS as the framework

for building pages, we have gained a simplified cross browser testing of functionalities,

reduced the server burden by transferring interface logics to the client and promoted a

parallel development of design and collection interfaces.

78

Chapter 6

Evaluation

In this Chapter we have conducted experiments at two levels. Firstly, we have en-

coded fifteen real questionnaires into CAWIML in order to determine the coverage

of constructs provided. And secondly, we have performed stress testing of our state-

transition for conducting interviews by simulating a scenario that is executed with

increasing loads.

The rest of this Chapter is structured as follows: Section 6.1 provides the frequencies

for questionnaire’s features in our XML solution and analyses the results obtained.

Section 6.2 introduces the methodology adopted for determining system’s capacity. In

this procedure parameters such as number of interviewees connected or metrics like

response times have been considered in order to analyse results for interviews with

simulated data.

6.1 XML Language Evaluation

In order to test the coverage of questionnaire features through CAWIML language and

to determine typical frequency of constructs, we have randomly chosen a set of fifteen

real questionnaires provided by Pexel. Particularly, we have studied the frequency

distribution of CAWIML vocabulary over this sample of surveys. Figure 6.1 shows the

total number of occurrences for each construct sorted by decreasing order of frequency.

The bar chart separates the content, routing and personalisation features with purple,

green and blue colours respectively. A more detailed view for this dataset, presented in

Table 6.1, represents frequency of questionnaire constructs separated for each survey.

79

Figure 6.1: Total construct frequencies for fifteen surveys

Firstly, we can confirm that all constructs in our sample of questionnaires were en-

codable by CAWIML. Next, in terms of frequency of content, we can observe that

single-response questions are most frequent whereas intro constructs were least fre-

quent. Intro question whose purpose is introducing a part of a questionnaire, does not

appears once at the beginning instead with each of the sections in the sampled surveys

(e.g. questionnaire 04 and 10 with seven and five sections respectively, have only one

intro for the entire survey).

Secondly, for the routing classification, filter construct has obtained the highest number

of occurrences, however it does not appear in every questionnaire (e.g. 02, 04, 07, 12).

In contrast, the skip feature, although slightly less frequent than filter, is popular

amongst the surveys. Therefore, we conclude that skip logic remains an important

feature of questionnaires and so should ideally be facilitated by the underlying language

of surveys. Computation constructs, become essential when data from one section is

needed for another section, but has only been found four times in the questionnaire 13.

The absence of check constructs is not surprising since it is a rare feature that tends

to appear in less well-designed questionnaires.

Thirdly, for the personalisation grouping, the three features are presented in the sample

tested and piping appears to be the most common construct, specially for populating

responses automatically through carry-forward mode. Regarding randomising and ro-

tating constructs, they are less frequent.

80

F
ea

tu
re

01
02

03
04

05
06

07
08

09
10

11
12

13
14

15
T

O
T

A
L

C
o
n
te

n
t

S
in

g
le

8
10

7
16

11
8

10
9

2
9

3
9

4
9

11
12

6
O

p
en

-e
n

d
ed

11
1

5
0

11
6

5
1

6
0

12
3

6
9

2
78

M
u

lt
ip

le
3

0
2

1
1

2
1

6
8

3
8

2
1

7
8

53
S

ec
ti

on
1

1
1

7
1

3
2

1
3

5
3

2
1

1
1

33
G

ri
d

0
0

5
0

1
3

0
1

1
2

0
5

6
7

1
32

In
tr

o
1

2
1

1
2

1
1

2
1

1
3

0
1

1
1

19

R
o
u

ti
n

g

F
il

te
r

1
0

2
0

9
2

0
3

9
3

6
0

5
5

6
51

S
k
ip

lo
g
ic

3
4

1
4

1
5

4
2

2
4

2
4

1
1

5
43

L
o
o
p

0
0

0
0

0
0

0
0

2
0

6
0

0
0

0
8

C
om

p
u

ta
ti

o
n

0
0

0
0

0
0

0
0

0
0

0
0

4
0

0
4

C
h

ec
k

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

P
er

so
n

a
li

sa
ti

on
P

ip
in

g
0

0
3

0
0

0
0

4
9

0
0

0
1

0
5

22
R

a
n

d
om

is
in

g
0

0
0

0
0

0
0

2
1

0
0

0
0

0
3

6
R

ot
at

in
g

0
0

0
0

0
0

0
2

0
0

0
0

0
0

2
4

T
ab

le
6
.1

:
F

re
q
u

en
cy

of
q
u

es
ti

on
n

ai
re

co
n

st
ru

ct
s

se
p

ar
at

ed
b
y

su
rv

ey

81

6.2 Collection Stage Evaluation

6.2.1 Methodology

In order to evaluate the capacity of our CAWI system for collecting survey data, we

have chosen the stress testing strategy with the following server configuration:

• 2.4 GHz Intel Core i5 CPU,

• 1GB RAM dedicated exclusively for the CAWI system,

• and a maximum pool size at 100 to satisfy high number of accesses to the database

for update/retrieve state-transition objects.

This strategy has been executed with the methodology plan presented in Section 3.3.2

in which first a questionnaire is selected, second a scenario is designed and thirdly

different parameters are varied.

Survey Choice

We have chosen questionnaire 09 (see Appendix A.1) since it has an adequate distribu-

tion of survey features. Specifically, for the content features, there are: one intro, one

single-grid, two single, eight multiple and six open-ended questions. In respect to the

routing constructs, there are nine filters, two skip logics and two loops that iterate over

a list of responses with sizes nine and thirteen respectively. Regarding the personali-

sation features, nine pipes are defined either as text-fill or carry forward responses as

well as a randomising construct that changes the element’s order for one of the loops.

Scenario Design

The scenario designed to simulate the gathering of survey data, represented in Algo-

rithm 2, starts with the following statements: first, a new survey instance is created;

second, general information of the questionnaire such as title or description is requested;

and third, the first state of the survey is called. After that sequence, an iterative process

is carried out until the end of the questionnaire is reached.

The loop body firstly executes a random distributed time in order to simulate the

amount of time that takes respondents to answer one or more questions and secondly,

decides whether executing forward or backward requests for 70% or 30% respectively

for the total of iterations. We have chosen a higher value for forward requests in order

82

Algorithm 2: Scenario for stress testing

POST token;
GET surveyinfo;
GET resume;
while stateClass 6= Sink AND stateClass 6= Terminate do

Random Thinking Time from 500ms to 3000ms;
70% of the iterations;
if hasNext then

Answer question(s) randomly;
POST next;

end
30% of the iterations;
if hasPrevious then

POST previous;
end

end
DELETE token;

to ensure that every simulated interview is completed. When the forward action is

requested, a JavaScript functionality that randomly chooses the response for a question

according to its type, is performed. Finally, when the loop is completed, the task of

deleting the client token is requested, i.e. a successful response will prevent the virtual

respondent to modify her survey responses after that.

Parameters Varied

Two parameters have been considered when the scenario is executed: the virtual users,

that is the number of concurrent users that are responding to the questionnaire. This

constant varies from 50 to 300 by increments of 50; and the thinking time, that is ran-

domly distributed from 500 ms to 3000 ms. This parameter has served us to adequately

emulate the interviewee’s thinking behaviour before responding to a question.

6.2.2 Metrics

We have collected average response time, peak load and error rate for each testing level

executed. The average, that corresponds to the statistical mean of the population,

has been measured in milliseconds. Regarding the peak load, that captures the highest

response time obtained for all the requests sent, has permitted us to identify bottlenecks

in resources. In respect to the error rate, that is the percentage of problematic requests

from every testing level executed.

83

In order to determine the responsiveness of the system we have compared the response

times obtained for average and peak load metrics against the following three categories:

100 ms, that is the threshold in which users feel that a system reacts instantaneously

to their requests; 1 second, that constitutes the limit for feeling a seamless flow; and

10 seconds, which is the limit to keep user’s attention. Any time above that threshold

leads to less ideal situations [Nielsen, 2010].

6.2.3 Results

The results obtained after executing stress testing at different load levels of concurrent

users are presented in Table 6.2. This table captures for each level the sub resource,

number of samples, average response time, minimum response time request, peak load

or maximum response time request and the percentage of error. These sub resources

correspond to the sub resources exposed to the client in our CAWI system (see Section

5.2.1).

The average response times for each sub resource remained under 100 milliseconds for

50, 100, 150 number of virtual users, i.e. for the interviews carried out at these levels,

the respondents will feel that the system reacts instantaneously to their requests. POST

token, GET survey info and DELETE token have extended this average response time

threshold until 200 and GET survey info has obtained the greatest average performance

until 250 simultaneous virtual interviewees. On average, none of the sub resources has

exceeded 10 seconds threshold at any level in which the user’s attention is difficult to

handle. Not surprisingly, POST next and POST previous average response times are

significantly higher than the others. In particular, POST next has obtained the highest

average response time which is explained due to the fact that one or more RPN expres-

sions can be executed when moving from one state to another in the questionnaire’s

flow.

In respect to the peak load, every request for GET survey info and DELETE token

at number of users 50 and 100 has been enclosed under the threshold that the system

reacts instantaneously. We have found bottlenecks for POST next at 250 and 300 (e.g.

8095 and 11025 respectively) and for POST previous at 300 (e.g. 11566). We consider

that these values above the user’s attention threshold are directly related to the number

of database connections available when requesting data, i.e. having set up 100 pooling

connections has lead the users to wait until a database connection is free for usage.

Regarding the percentage of errors, it has been encouraging to us that no errors were

raised at any configuration level evaluated. This can be explained by the setting of an

optimum ramp-up time of 10 users per second entering in the system. This value is

84

sufficiently high to avoid saturating the server with unrealistic requests (e.g. all user

at once) at the beginning of each test plan and low enough to prevent any interview to

be completed before all the users are concurrently active.

85

No. Users Sub resource Samples Avg. Min Max Error %

50

POST token 50 38 19 180 0.00%

GET surveyinfo 50 5 3 10 0.00%

GET resume 50 32 20 62 0.00%

POST next 764 42 12 829 0.00%

POST previous 314 46 11 727 0.00%

DELETE token 50 2 2 5 0.00%

100

POST token 100 30 19 132 0.00%

GET surveyinfo 100 6 3 104 0.00%

GET resume 100 28 19 121 0.00%

POST next 1563 55 11 330 0.00%

POST previous 641 52 12 298 0.00%

DELETE token 100 3 2 18 0.00%

150

POST token 150 35 18 155 0.00%

GET surveyinfo 150 5 3 45 0.00%

GET resume 150 31 19 147 0.00%

POST next 2288 89 11 1089 0.00%

POST previous 938 93 12 1055 0.00%

DELETE token 150 6 2 196 0.00%

200

POST token 200 54 18 396 0.00%

GET surveyinfo 200 11 3 157 0.00%

GET resume 200 55 19 479 0.00%

POST next 3146 215 12 3871 0.00%

POST previous 1288 195 11 3163 0.00%

DELETE token 200 6 2 218 0.00%

250

POST token 250 114 18 1822 0.00%

GET surveyinfo 250 38 3 842 0.00%

GET resume 250 168 19 1623 0.00%

POST next 4122 872 12 8095 0.00%

POST previous 1689 924 11 8406 0.00%

DELETE token 250 123 1 4037 0.00%

300

POST token 300 243 18 2898 0.00%

GET surveyinfo 300 108 3 3566 0.00%

GET resume 300 504 19 6133 0.00%

POST next 4602 1737 13 11025 0.00%

POST previous 1886 1606 13 11566 0.00%

DELETE token 300 175 2 3929 0.00%

Table 6.2: Stress test results varying No. Users

86

The average response times obtained can be misleading if other aspects such as the

standard deviation are not considered. For that purpose, we present in Table 6.3 the

overall average response time for each configuration level, its standard deviation as well

as the confidence value. The standard deviation has resulted higher than its mean at

every level, i.e. it indicates that the response times are spread out over the wide range

of values. This variety of data can be explained due to the fact that for every interview

executed different paths can be taken which result in different durations when moving

forward or backward through the questionnaire’s flow.

No. Users Samples Avg. Std. Dev. 95% Confidence

50 1277 40.10893417 53.30459906 2.923595761

100 2603 49.09646426 49.82751791 1.914168922

150 3825 79.93279289 98.4293415 3.119298604

200 5233 182.2417813 327.6495887 8.877329721

250 6809 774.011604 1237.580114 29.39542518

300 7687 1474.736274 2013.843128 45.01894237

Table 6.3: Stress test totals for each configuration level

In order to determine whether or not the average response times obtained are a good

estimation of the statistical mean when this scenario is repeated indefinitely, we have

also studied the confidence value. As we have collected a large number of independent

requests to the server with a finite mean and variance, this parameter permits deter-

mining how likely are these overall averages to fluctuate. For instance, for levels 50,

100 and 150, with 95% confidence, the average response time of the state-transition

collection service is 40.11±2.93, 49.10±1.92 and 79.94±3.12 respectively. Similarly, for

levels 200, 250, 300, the mean should fluctuate around 182.25±8.88, 774.02±29.40 and

1474.74±45.02 respectively, however at these levels the confidence intervals are signifi-

cantly higher, which can be directly related with the instability of the system due the

high number of simultaneous users connected to the limited resources of the server such

as database connections or memory size.

6.3 Conclusions

The implementation of the features from fifteen real paper questionnaires into CAW-

IML has been successfully covered. In this experiment, we have analysed the constructs

frequencies in order to determine the most popular features used at any questionnaire’s

category. Specifically, we have identified for content that single question is the most

87

frequent feature utilised. Respecting the routing, the slightly differences in frequency

between skip and filter constructs have led to determine that they are indistinctly used

for representing conditional logic. Additionally, the checks absence at any questionnaire

has confirmed its rarity across questionnaire specifications. In respect to the personali-

sation, we have identified that piping construct to be the most popular construct either

for dynamic question labelling or for automatic population of responses.

The stress test methodology used to evaluate our state-transition at runtime has em-

ulated adequately the interviewee’s behaviour when responding to a questionnaire.

Specifically, this scenario has considered the interviewee’s thinking time before respond-

ing as well as it has ensured the completion for any questionnaire initiated.

In terms of the average response times obtained, we can conclude that the system reacts

instantaneously for user levels such as 50, 100 and 150 and with seamless flow for the rest

of the levels. Regarding the peak load, the system only has experienced three isolated

cases at high number of users but on average the responsive limit thresholds have been

met. In respect to the error rate, the use of adequate server resources together with

time periods that ensure all the users do not access the system simultaneously, have

permitted the CAWI system to obtain server responses free of errors. Finally, we have

demonstrated that with 95% confidence that acceptable performance is achievable with

real-life questionnaires that share similar features using the proposed architecture and

CAWIML solution.

88

Chapter 7

Conclusion

In this thesis, we addressed the problem of validating correctness of questionnaire spec-

ifications through the use of standard XML schema languages. We compared the dif-

ferent XML solutions in terms of routing or personalisation constructs to conclude

with the necessary and sufficient constructs to address lexical, syntactic and semantic

validation levels.

Additionally, as part of the KTP programme we developed a CAWI system that

uses CAWIML with consideration of different architectural properties expected for

distributed systems. In this chapter, we revisit our objectives proposed and discuss

desirable future extensions to our work.

7.1 Objectives Revisited

1. Conduct a comparative analysis of the state-of-art XML language solu-

tions that cover questionnaire definitions with a focus on the coverage

of constructs and the capacity to validate correctness with standard

XML schema formalisms. In Chapter 3 we critically analysed four XML

authoring languages for representing questionnaire constructs. For routing, we

concluded that these solutions normally replace the use of skip constructs in

favour of structured patterns. Regarding personalisation features, existing lan-

guages do not provide sufficient mechanisms to express piping features such as

carry-forward. In regard to their ability to validate correctness of specifications

only using XML schemas, we explored their underlying schema language and

found that there is generally an inability to address semantics for questionnaire

specifications.

89

2. Critically appraise current modelling approaches in terms of their abil-

ity to manage questionnaire flow definitions for the purposes of routing.

In Chapter 3, we explored modelling solutions such as directed graphs, useful for

analysing skip patterns, or Petri Nets, that help to analyse complex questionnaire

paths. We focused on how the hierarchical modelling is being adopted by almost

every authoring language solution explored. In particular, although this tree rep-

resentation is able to quickly identify the circumstances under which a question is

reached, the hierarchical modelling introduces a conceptual gap between language

of the designers and the language of computation.

3. Develop a new XML authoring solution to better address the cor-

rectness, together with the state-transition structures necessary for

routing. In Chapter 4 we presented CAWIML as a novel authoring language to

specify questionnaire constructs using grammar and rule-based schema languages

to address correctness. This language is able to describe skip and filter constructs

indistinctly, introduces RPN expressions and is faster at processing expressions

for routing and personalisation constructs than infix or prefix modes.

The state-transition adopted by CAWIML for its routing, helps to close the con-

ceptual gap between what designers specify versus the code produced since it

does not require any skip logic reversing. Additionally, the single operation on its

states, prevents defining nested structures and consequently improves the main-

tenance.

4. Analyse the architecture of different CAWI solutions in order to de-

termine whether the necessary and sufficient properties for a CAWI

system solution are induced or not. In Chapter 3 we reviewed Blaise and

SurveyMonkey. Our analysis suggests that SurveyMonkey is better than Blaise in

terms of scalability due to its stateless communication and portability because its

cross platform language. In regard to the simplicity property, although it is well

considered in these systems through a separation of functionalities into different

components, its MVC multi-pages paradigm to build web pages neither reduces

the server burden nor addresses the responsiveness effectively.

5. Implement an architecture based on REST to better handle architec-

tural properties such as scalability, simplicity, portability or reliability.

Our CAWI solution, presented in Chapter 5, adopts REST constraints such as

stateless communication or separation of concerns to induce scalability and sim-

plicity respectively, utilises Java to build a multi-layer cross platform solution and

uses a non-relational persistence platform suitable for data intensive applications.

90

Moreover, the adoption of the SPA paradigm not only offers an improved user

experience but also frees the server of tasks such as building web pages to induce

more adequately the simplicity architectural principle.

6. Conduct an evaluation at two levels, one for the coverage of question-

naire constructs and another to evaluate the capacity of the proposed

architecture to work under different workloads. The evaluation of CAW-

IML with fifteen real questionnaires suggests that the state-transition model is

able to represent a wider range of questionnaire constructs as well as to address

the routing task challenge.

The stress testing methodology proposed to evaluate our architecture considers

the response time in relation to usability thresholds. Moreover, the absence of

errors at the different configuration levels let us conclude that the system is able

to adequately use server resources.

7.2 Future Work

In this section we highlight some desirable future extensions that we would like to carry

out. The first extension consist of conducting user testing for our different interfaces.

At Pexel, they frequently conduct training sessions for newer employees. These sessions

help them to understand the survey life-cycle as well as to get familiarised with the

system. Although, we have tested our collection interface during two sessions, further

experiments would permit us to better assess system responsiveness. Similarly, the

design interface requires different user testing evaluation that was postponed due to

difficulties to arrange time with Pexel designers as well as company willingness to focus

on implementing functionalities at other survey stages (e.g. management, analysis and

reporting).

The second extension consist of empowering the security of our CAWI solution. For

instance, our interfaces are able to validate data entered against the XML rules spec-

ified, however we acknowledge that the API layer requires additional efforts to pre-

vent non-valid data entered. In addition, it is also planned to encrypt sensitive data

on client-server communication through Internet Protocol Security (IPsec) or Secure

Socket Layer (SSL) as well as to introduce mechanisms of auditing to diagnose problems

and observe intrusion signs.

The third extension consist of capturing additional data through our on-line interview-

ing system. This process, known as para-data, may help to improve the overall survey

91

life-cycle and specifically the survey data quality. As such, our management stage may

be enhanced with features that permit:

• identifying respondent response patterns;

• monitoring the data collection progress (e.g. number of times an interview is

started and suspended or at what question a survey is suspended or abandoned);

• examining actions performed in each page (e.g. capturing whether or not the

questions are answered in the order presented, number of keystrokes or mouse

motions); or

• determining time required to complete a questionnaire, section of a questionnaire

or individual questions.

The new management features when analysed adequately may enhance the design of

questionnaires since it should be easier to identify problematic areas of the question-

naire. Therefore, CAWIML can be augmented with constructs at different levels:

• system level, to collect features such as software, database version or operative

system used;

• client level, with mechanisms to identify type of device, operative system, browser

utilised or screen size;

• interview level, to capture features such as language utilised, time zone, geo-

graphic identifiers or questionnaire completion time; and

• question level with mechanisms to track time entered and exit from a question,

number of times a question is revisited or order chosen in multiple response ques-

tions.

The fourth extension consist of designing and implementing a question recommender

aimed at improving the design stage survey life-cycle. Since our survey XML definitions

can be stored in a searchable central repository, CAWIML questions can be extended to

include information relative to the topic of a question, discipline in which it is applied,

or what population is best suited to ask. These new XML constructs together with

the question level para-data collected may benefit our CAWI system to make useful

question recommendations at the questionnaire design stage.

92

Bibliography

[Alagar and Periyasamy, 2011] Alagar, V. S. and Periyasamy, K. (2011). Specification of Software

Systems. Springer London, London.

[Androutsopoulos et al., 2008] Androutsopoulos, K., Binkley, D., Clark, D., and Harman, M. (2008).

Slicing extended finite state machines. Technical report, King’s College London. Department of

Computer Science.

[Bethke, 2008] Bethke, A. D. (2008). Representing procedural logic in xml. Journal of Software, 3(2).

[Bethlehem, 2000] Bethlehem, J. (2000). The routing structure of questionnaires. In ASC 1999. Leading

Survey and Statistical Computing into the New Millennium, pages 1–14.

[Bethlehem and Biffignandi, 2012] Bethlehem, J. and Biffignandi, S. (2012). Handbook of web surveys.

John Wiley and SONS.

[Bethlehem and Hundepool, 2002] Bethlehem, J. and Hundepool, A. (2002). TADEQ prototype version

1.5 User Manual.

[Bethlehem and Hundepool, 2004] Bethlehem, J. and Hundepool, A. (2004). Tadeq: A tool for the

documentation and analysis of electronic questionnaires. Journal of Official Statistics, 20(2):233–

264.

[Bock, 2013] Bock, T. (2013). Market research.

[Bray et al., 2008a] Bray, T., Paoli, J., Sperberg-McQueen, C., Maler, E., and Yergeau, F.

(2008a). Extensible markup language (xml) 1.0 (fifth edition). https://www.w3.org/TR/2008/

REC-xml-20081126/.

[Bray et al., 2008b] Bray, T., Paoli, J., Sperberg-McQueen, C., Maler, E., and Yergeau, F.

(2008b). Prolog and document type declaration. https://www.w3.org/TR/2008/REC-xml-20081126/

#sec-prolog-dtd.

[Brown, 2001] Brown, B. (2001). Postfix notation mini-lecture.

[Clark, 1999] Clark, J. (1999). Xsl transformations (xslt) version 1.0. https://www.w3.org/TR/xslt.

[Clark and DeRose, 2015] Clark, J. and DeRose, S. (2015). Location path - axes. https://www.w3.

org/TR/xpath/#axes. Xpath Axes.

[Corbett, 2011] Corbett, J. (2011). Incorporating metadata standards into existing working practices

- how can it be done? In Proceedings of the Fifth International Conference of the Association for

Survey Computing, pages 177–184.

[Corporation, 2012] Corporation, I. B. M. I. (2012). The hows and whys of survey research.

[Costello and Simmons, 2015] Costello, R. L. and Simmons, R. A. (2015). Two types of xml schema

languages. http://xfront.com/schematron/Two-types-of-XML-Schema-Language.html.

93

https://www.w3.org/TR/2008/REC-xml-20081126/
https://www.w3.org/TR/2008/REC-xml-20081126/
https://www.w3.org/TR/2008/REC-xml-20081126/#sec-prolog-dtd
https://www.w3.org/TR/2008/REC-xml-20081126/#sec-prolog-dtd
https://www.w3.org/TR/xslt
https://www.w3.org/TR/xpath/#axes
https://www.w3.org/TR/xpath/#axes
http://xfront.com/schematron/Two-types-of-XML-Schema-Language.html

[Costigan and Elder, 2003] Costigan, P. and Elder, S. (2003). Does the questionnaire implements the

specification? who knows? In ASC 2003. The Impact of Technology on the Survey Process, pages

85–95.

[de Bolster, 2013] de Bolster, G. (2013). Generating blaise from ddi. In International Blaise Users

Conference, pages 96–102.

[Dijkstra, 1968] Dijkstra, E. W. (1968). Go-to statement considered harmful. ACM 11, 3: 147-148.

[Dodds, 2001] Dodds, L. (2001). Schematron: validating xml using xslt. http://www.ldodds.com/

papers/schematron_xsltuk.html. Retrieved May, 2016.

[Dongwon and Chu, 2000] Dongwon, L. and Chu, W. W. (2000). Comparative analysis of six xml

schema languages. AGM SIGMOD, 29(3).

[Esuli and Sebastiani, 2006] Esuli, A. and Sebastiani, F. (2006). Sentiwordnet: A publicly available

lexical resource for opinion mining. In In Proceedings of the 5th Conference on Language Resources

and Evaluation (LREC06, pages 417–422.

[Fagan and Greenberg, 1988] Fagan, J. and Greenberg, B. (1988). Using graph theory to analyze skip

patterns in questionnaires. Technical report, Statistical Research Division Bureau of the Census

Washington, D.C.

[Fan and Simon, 2003] Fan, W. and Simon, J. (2003). Integrity constraints for {XML}. Journal of

Computer and System Sciences, 66(1):254 – 291. Special Issue on {PODS} 2000.

[Fielding, 2000] Fielding, R. T. (2000). Architectural Styles and the Design of Network-based Software

Architectures. Phd thesis, University of California.

[Fielding et al., 1999] Fielding, R. T. et al. (1999). Hypertext transfer protocol – http/1.1. https:

//tools.ietf.org/rfc/rfc2616.txt.

[Gao et al., 2012] Gao, S., Sperberg-McQueen, C., and Thompson, H. (2012). W3c xml schema

definition language (xsd) 1.1 part 1: Structures. https://www.w3.org/TR/xmlschema11-1/

#assertion-validation. Retrieved May, 2016.

[Gerrard et al., 2011] Gerrard, L., Hughes, K., Jenkins, S., Ross, E., and Wright, G. (2011). The

Survey Interchange Standard. The Asociation for Survey Computing (ASC).

[Gerrard et al., 2015] Gerrard, L., Hughes, K., Jenkins, S., Ross, E., Wright, G., and Molloy, P. (2015).

Triple-s implementations november 2015. http://www.triple-s.org/ssssoft.htm.

[Groom, 2014] Groom, C. (2014). Surveymonkey speeded up with python. Last updated Apr 13, 2014,

12:21 PM.

[Gyorodi et al., 2015] Gyorodi, C., Gyorodi, R., Pecherle, G., and Olah, A. (2015). A comparative

study: Mongodb vs. mysql. In Engineering of Modern Electric Systems (EMES), 2015 13th Inter-

national Conference on, pages 1–6.

[Haque and Rahman, 2014] Haque, A. and Rahman, T. (2014). Sentiment analysis by using fuzzy logic.

International Journal of Computer Science, Engineering and Information Technology, 4:33–48.

[Huhges, 2007] Huhges, N. G. (2007). The difficulty of understanding social survey questionnaires from

the published documentation. In Proceedings of the Fifth International Conference of the Association

for Survey Computing, pages 213–222.

[Jabine, 1985] Jabine, T. B. (1985). Flow charts: A tool for developing and understanding survey

questionnaires. Journal of Official Statistics, 1(2):189–207.

[Jellife, 2007] Jellife, R. (2007). Converting xml schemas to schematron. http://archive.oreilly.

com/pub/post/converting_xml_schemas_to_sche.html. Retrieved May, 2016.

94

http://www.ldodds.com/papers/schematron_xsltuk.html
http://www.ldodds.com/papers/schematron_xsltuk.html
https://tools.ietf.org/rfc/rfc2616.txt
https://tools.ietf.org/rfc/rfc2616.txt
https://www.w3.org/TR/xmlschema11-1/#assertion-validation
https://www.w3.org/TR/xmlschema11-1/#assertion-validation
http://www.triple-s.org/ssssoft.htm
http://archive.oreilly.com/pub/post/converting_xml_schemas_to_sche.html
http://archive.oreilly.com/pub/post/converting_xml_schemas_to_sche.html

[Kahn, 1962] Kahn, A. B. (1962). Topological sorting of large networks. Commun. ACM, 5(11):558–

562.

[Katz et al., 1997] Katz, Irvin an Mason, G., Stinson, L., and Conrad, F. (1997). Questionnaire de-

signers versus instrument authors: Bottlenecks in the development of computer-administered ques-

tionnaires. In Proceedings of the Survey Research Methods Section, pages 1029–1034.

[Kozlowski and Bacon Darwin, 2013] Kozlowski, P. and Bacon Darwin, P. (2013). Mastering Web

Aplication Development with AngularJS. Packt Publishing Ltd.

[MacKenzie et al.,] MacKenzie, C. M., Laskey, K., McCabe, F., Brown, P. F., and Metz, R. Reference

model for service oriented architecture 1.0. Technical report committee specification 1, OASIS.

[Madsen, 2009] Madsen, L. B. (2009). Definition of validation rules for xml data for electronic ques-

tionnaires. Thesis for master of information technology in software development, IT University of

Copenhagen.

[Mesbah and van Deursen, 2007] Mesbah, A. and van Deursen, A. (2007). Migrating multi-page web

applications to single-page ajax interfaces. In Software Maintenance and Reengineering, 2007. CSMR

’07. 11th European Conference on, pages 181–190.

[Murata et al., 2005] Murata, M., Lee, D., Mani, M., and Kawaguchi, K. (2005). Taxonomy of xml

schema languages using formal language theory. ACM Trans. Internet Technol., 5(4):660–704.

[Mller and Schwartzbach, 2006] Mller, A. and Schwartzbach, M. I. (2006). An Introduction to XML

and Web Technologies. Addison-Wesley.

[Netherlands, 2015] Netherlands, S. (2015). Blaise, survey software for professionals.

[Nielsen, 2010] Nielsen, J. (2010). Website response times. https://www.nngroup.com/articles/

website-response-times/.

[Nurseitov et al., 2009] Nurseitov, N., Paulson, M., Reynolds, R., and Izurieta, C. (2009). Comparison

of json and xml data interchange formats: A case study. Scenario, 59715:157–162.

[of California, 2015] of California, U. (2015). Computer-assisted survey execution system.

[Overdick, 2007] Overdick, H. (2007). The resource-oriented architecture. In Services, 2007 IEEE

Congress on, pages 340–347.

[Padhy et al., 2011] Padhy, R. P., Patra, M. R., and Satapathy, S. C. (2011). Rdbms to nosql: Review-

ing some next-generation non-relational database’s. International Journal of Advanced Engineering

sciences and technologies, 11:15–30.

[Rasmussen and Blank, 2007] Rasmussen, K. and Blank, G. (2007). The data documentation initiative:

a preservation standard for research. Archival Science, 7:55–71.

[Rolke, 2010] Rolke, H. (2010). Automata and preti net models for visualizing and analyzing complex

questionnaires - a case study. In Proceedings of the Workshops of the 31st International Conference

on Application and Theory of Petri Nets and Other Models of Concurrency (PETRI NETS 2010),

pages 317–329.

[Segel et al., 2015] Segel, P., Subramanian, M., Frey, R., and Snowden, R. (2015). Blaise 5 server

configuration for web surveys. In International Blaise Users Conference, pages 161–168.

[Segel et al., 2013] Segel, P., Subramanian, M., Snowden, R., Frey, R., and Mike, F. (2013). Imple-

menting blaise 5 in a production environment. In International Blaise Users Conference, pages

243–258.

[Spencer, 2012] Spencer, S. (2012). A case against the skip statement. http://bit.ly/

CaseAgainstSkip.

95

https://www.nngroup.com/articles/website-response-times/
https://www.nngroup.com/articles/website-response-times/
http://bit.ly/CaseAgainstSkip
http://bit.ly/CaseAgainstSkip

[Sperberg-McQueen and Thompson, 2012] Sperberg-McQueen, C. and Thompson, H. (2012). W3c xml

schema. https://www.w3.org/XML/Schema. Retrieved May, 2016.

[Sthrenberg, 2013] Sthrenberg, M. (2013). Quo vadis xml? In XML Prague. A conference on XML,

pages 141–162.

[Sthrenberg and Christian, 2010] Sthrenberg, M. and Christian, W. (2010). Refining the taxonomy of

xml schema languages. a new approach for categorizing xml schema languages in terms of processing

complexity. In Proceedings of Balisage: The Markup Conference 2010.

[Thomas et al., 2009] Thomas, W., Arofan, G., and Gager, J. (2009). User Guide for Data Documen-

tation Initiative Version 3.1.

[Van der Vlist, 2003] Van der Vlist, E. (2003). RELAX NG. O’Reilly Media.

[Van der Vlist, 2006] Van der Vlist, E. (2006). Xml schema languages compared. In XML Prague. A

conference on XML, pages 9–28.

[Varde et al., 2010] Varde, A., Rundensteiner, E., and Fahrenholz, S. (2010). Web-based Support Sys-

tems, chapter XML Based Markup Languages for Specific Domains, pages 215–238. Springer London,

London.

[Volguine, 2013] Volguine, O. (2013). Blaise 4.8.4 web form load and performance testing. In Interna-

tional Blaise Users Conference, pages 64–95.

[Warner, 1965] Warner, S. L. (1965). Randomized response: A survey technique for eliminating evasive

answer bias. Journal of the American Statxistical Association, 60(309).

[Wright, 2007] Wright, G. (2007). Triple-s: The broader horizon. In ASC 2007. The Challenges of a

Changing World: Developments in the Survey Process, pages 241–246.

96

https://www.w3.org/XML/Schema

Appendix A

Appendix

A.1 Real Questionnaires Sample

The following list represents the fifteen real questionnaires provided by Pexel Research

Services that have been implemented in CAWIML:

1. https://github.com/jollopre/ssm/blob/master/real_surveys/01.xml

2. https://github.com/jollopre/ssm/blob/master/real_surveys/02.xml

3. https://github.com/jollopre/ssm/blob/master/real_surveys/03.xml

4. https://github.com/jollopre/ssm/blob/master/real_surveys/04.xml

5. https://github.com/jollopre/ssm/blob/master/real_surveys/05.xml

6. https://github.com/jollopre/ssm/blob/master/real_surveys/06.xml

7. https://github.com/jollopre/ssm/blob/master/real_surveys/07.xml

8. https://github.com/jollopre/ssm/blob/master/real_surveys/08.xml

9. https://github.com/jollopre/ssm/blob/master/real_surveys/09.xml

10. https://github.com/jollopre/ssm/blob/master/real_surveys/10.xml

11. https://github.com/jollopre/ssm/blob/master/real_surveys/11.xml

12. https://github.com/jollopre/ssm/blob/master/real_surveys/12.xml

13. https://github.com/jollopre/ssm/blob/master/real_surveys/13.xml

14. https://github.com/jollopre/ssm/blob/master/real_surveys/14.xml

97

https://github.com/jollopre/ssm/blob/master/real_surveys/01.xml
https://github.com/jollopre/ssm/blob/master/real_surveys/02.xml
https://github.com/jollopre/ssm/blob/master/real_surveys/03.xml
https://github.com/jollopre/ssm/blob/master/real_surveys/04.xml
https://github.com/jollopre/ssm/blob/master/real_surveys/05.xml
https://github.com/jollopre/ssm/blob/master/real_surveys/06.xml
https://github.com/jollopre/ssm/blob/master/real_surveys/07.xml
https://github.com/jollopre/ssm/blob/master/real_surveys/08.xml
https://github.com/jollopre/ssm/blob/master/real_surveys/09.xml
https://github.com/jollopre/ssm/blob/master/real_surveys/10.xml
https://github.com/jollopre/ssm/blob/master/real_surveys/11.xml
https://github.com/jollopre/ssm/blob/master/real_surveys/12.xml
https://github.com/jollopre/ssm/blob/master/real_surveys/13.xml
https://github.com/jollopre/ssm/blob/master/real_surveys/14.xml

15. https://github.com/jollopre/ssm/blob/master/real_surveys/15.xml

A.2 CAWIML Instance

Listings A.1 captures the paper questionnaire provided in Figure 2.1. This instance

has been defined using CAWIML language.

1 <?xml version="1.0" encoding="UTF-8"?>

2 <ssm xmlns="https://github.com/jollopre/ssm"

3 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

4 xsi:schemaLocation="https://github.com/jollopre/ssm ../schema/ssm.xsd">

5 <survey>

6 <name>Paper questionnaire instance</name>

7 <description>Example survey for MRes thesis</description>

8 <date>2016-03-01</date>

9 </survey>

10 <content>

11 <section id="Outer">

12 <label lang="en">Outer</label>

13 <intro name="INF1">

14 <label lang="en">We are conducting a survey in order to determine how ←↩
important are for a drivers car

15 a set of features.</label>

16 </intro>

17 <single name="Q1">

18 <label lang="en">How often do you use your car?</label>

19 <close code="01">

20 <label lang="en">Never</label>

21 </close>

22 <close code="02">

23 <label lang="en">Almost Never</label>

24 </close>

25 <close code="03">

26 <label lang="en">Occassionally/Sometimes</label>

27 </close>

28 <close code="04">

29 <label lang="en">Almost every time</label>

30 </close>

31 <close code="05">

32 <label lang="en">Every time</label>

33 </close>

34 </single>

35 <single name="Q2">

36 <label lang="en">Which brands are you aware of? [FIRST SPONTANEOUS ←↩
MENTION]</label>

37 <close code="01">

98

https://github.com/jollopre/ssm/blob/master/real_surveys/15.xml

38 <label lang="en">A</label>

39 </close>

40 <close code="02">

41 <label lang="en">B</label>

42 </close>

43 <close code="03">

44 <label lang="en">C</label>

45 </close>

46 <close code="04">

47 <label lang="en">D</label>

48 </close>

49 <close code="05">

50 <label lang="en">E</label>

51 </close>

52 <close code="06">

53 <label lang="en">F</label>

54 </close>

55 <close code="07">

56 <label lang="en">G</label>

57 </close>

58 <close code="08">

59 <label lang="en">H</label>

60 </close>

61 <close code="99">

62 <label lang="en">Don’t know</label>

63 <exclusive value="true"/>

64 </close>

65 </single>

66 <multiple name="Q3" refused="true">

67 <label lang="en">Which brands are you aware of? [OTHER SPONTANEOUS ←↩
MENTIONS Q2]</label>

68 <pipe ref="pipe0"/>

69 </multiple>

70 <grid name="Q4">

71 <label lang="en">Using a scale 1 to 5 where; 5=essential, 4=very ←↩
important, 3=quite important,

72 2=relatively unimportant, 1=not at all important. How important are ←↩
the following safety features

73 when you want to buy a car?</label>

74 <single>

75 <rows>

76 <close code="01">

77 <label lang="en">Cruise Control</label>

78 </close>

79 <close code="02">

80 <label lang="en">Seat Heater</label>

81 </close>

99

82 <close code="03">

83 <label lang="en">Automatic transmision</label>

84 </close>

85 <close code="04">

86 <label lang="en">Sunroof</label>

87 </close>

88 <close code="05">

89 <label lang="en">Navigation system</label>

90 </close>

91 <close code="06">

92 <label lang="en">Knee airbags</label>

93 </close>

94 </rows>

95 <columns>

96 <close code="05">

97 <label lang="en">Essential</label>

98 </close>

99 <close code="04">

100 <label lang="en">Very important</label>

101 </close>

102 <close code="03">

103 <label lang="en">Quite important</label>

104 </close>

105 <close code="02">

106 <label lang="en">Relatively unimportant</label>

107 </close>

108 <close code="01">

109 <label lang="en">Not at all important</label>

110 </close>

111 </columns>

112 </single>

113 </grid>

114 <open name="Q5">

115 <label lang="en">How many cars have you had or have of F brand?</ ←↩
label>

116 <integer>

117 <min></min>

118 <max></max>

119 <value></value>

120 </integer>

121 </open>

122 <intro name="INF2">

123 <label lang="en">We are really happy knowing that you had the ←↩
opportunity to have every car brand mentioned</label>

124 </intro>

125 <intro name="END">

126 <label lang="en">THANKS AND CLOSE</label>

100

127 </intro>

128 </section>

129 <section id="Inner">

130 <label lang="en">Inner</label>

131 <single name="Q6a">

132 <label lang="en">Have you ever had a car from <pipe ref="pipe0"/> ←↩
brand?</label>

133 <close code="01">

134 <label lang="en">Yes</label>

135 </close>

136 <close code="02">

137 <label lang="en">No</label>

138 </close>

139 </single>

140 </section>

141 </content>

142 <field>

143 <integer id="HAD_CAR" value="0"/>

144 <iterator id="p4_iterator"/>

145 </field>

146 <routing>

147 <statemodel ref="Outer">

148 <source id="INF1"/>

149 <state id="INF1">

150 <variable ref="INF1"/>

151 <transition target="Q1"/>

152 </state>

153 <state id="Q1">

154 <variable ref="Q1"/>

155 <transition target="p0"/>

156 </state>

157 <state id="p0">

158 <if>

159 <condition>

160 <variable ref="Q1"/>

161 <constant type="string" value="01"/>

162 <operator name="IS_SEL"/>

163 <variable ref="Q1"/>

164 <constant type="string" value="02"/>

165 <operator name="IS_SEL"/>

166 <operator name="OR"/>

167 <variable ref="Q1"/>

168 <constant type="string" value="03"/>

169 <operator name="IS_SEL"/>

170 <operator name="OR"/>

171 </condition>

172 <then>

101

173 <transition target="sink0"/>

174 </then>

175 <else>

176 <transition target="Q2"/>

177 </else>

178 </if>

179 </state>

180 <state id="sink0">

181 <sink/>

182 </state>

183 <state id="Q2">

184 <variable ref="Q2"/>

185 <transition target="p1"/>

186 </state>

187 <state id="p1">

188 <if>

189 <condition>

190 <variable ref="Q2"/>

191 <constant type="string" value="99"/>

192 <operator name="IS_SEL"/>

193 </condition>

194 <then>

195 <transition target="sink0"/>

196 </then>

197 <else>

198 <transition target="Q3"/>

199 </else>

200 </if>

201 </state>

202 <state id="Q3">

203 <variable ref="Q3"/>

204 <transition target="p2"/>

205 </state>

206 <state id="p2">

207 <if>

208 <condition>

209 <variable ref="Q3"/>

210 <constant type="string" value="99"/>

211 <operator name="IS_SEL"/>

212 </condition>

213 <then>

214 <transition target="sink0"/>

215 </then>

216 <else>

217 <transition target="Q4"/>

218 </else>

219 </if>

102

220 </state>

221 <state id="Q4">

222 <variable ref="Q4"/>

223 <transition target="p3"/>

224 </state>

225 <state id="p3">

226 <if>

227 <condition>

228 <variable ref="Q2"/>

229 <constant type="string" value="06"/>

230 <operator name="IS_SEL"/>

231 <variable ref="Q3"/>

232 <constant type="string" value="06"/>

233 <operator name="IS_SEL"/>

234 <operator name="OR"/>

235 </condition>

236 <then>

237 <transition target="Q5"/>

238 </then>

239 <else>

240 <transition target="sink0"/>

241 </else>

242 </if>

243 </state>

244 <state id="Q5">

245 <variable ref="Q5"/>

246 <transition target="p4"/>

247 </state>

248 <state id="p4">

249 <for>

250 <field ref="p4_iterator"/>

251 <in>

252 <expr_list>

253 <variable ref="Q2"/>

254 <operator name="SEL"/>

255 <variable ref="Q3"/>

256 <operator name="SEL"/>

257 <operator name="UNION"/>

258 </expr_list>

259 <randomising>

260 <all present="4"/>

261 </randomising>

262 </in>

263 <transition target="c1"/>

264 </for>

265 <transition target="p5"/>

266 </state>

103

267 <state id="c1">

268 <include statemodel="Inner"/>

269 </state>

270 <state id="p5">

271 <if>

272 <condition>

273 <variable ref="Q2"/>

274 <operator name="SEL"/>

275 <variable ref="Q3"/>

276 <operator name="SEL"/>

277 <operator name="UNION"/>

278 <operator name="SIZE"/>

279 <variable ref="HAD_CAR"/>

280 <operator name="EQ"/>

281 <variable ref="HAD_CAR"/>

282 <constant type="integer" value="4"/>

283 <operator name="EQ"/>

284 <operator name="OR"/>

285 </condition>

286 <then>

287 <transition target="INF2"/>

288 </then>

289 <else>

290 <transition target="END"/>

291 </else>

292 </if>

293 </state>

294 <state id="INF2">

295 <variable ref="INF2"/>

296 <transition target="END"/>

297 </state>

298 <state id="END">

299 <variable ref="END"/>

300 <transition target="sink0"/>

301 </state>

302 </statemodel>

303 <statemodel ref="Inner">

304 <source id="Q6a"/>

305 <state id="Q6a">

306 <variable ref="Q6a"/>

307 <transition target="p0"/>

308 </state>

309 <state id="p0">

310 <if>

311 <condition>

312 <variable ref="Q6a"/>

313 <constant type="string" value="01"/>

104

314 <operator name="IS_SEL"/>

315 </condition>

316 <then>

317 <transition target="p1"/>

318 </then>

319 <else>

320 <transition target="sink0"/>

321 </else>

322 </if>

323 </state>

324 <state id="p1">

325 <computation ref="HAD_CAR">

326 <assignment>

327 <variable ref="HAD_CAR"/>

328 <constant type="integer" value="1"/>

329 <operator name="ADD"/>

330 </assignment>

331 </computation>

332 <transition target="sink0"/>

333 </state>

334 <state id="sink0">

335 <sink/>

336 </state>

337 </statemodel>

338 <entrypoint>

339 <source id="c0"/>

340 <state id="c0">

341 <include statemodel="Outer"/>

342 <transition target="sink0"/>

343 </state>

344 <state id="sink0">

345 <sink/>

346 </state>

347 </entrypoint>

348 </routing>

349 <personalisation>

350 <piping ref="Outer">

351 <pipe id="pipe0">

352 <variable ref="Q2"/>

353 <operator name="UNSEL"/>

354 </pipe>

355 </piping>

356 <piping ref="Inner">

357 <pipe id="pipe0">

358 <variable ref="p4_iterator"/>

359 <operator name="VALUEOF"/>

360 </pipe>

105

361 </piping>

362 </personalisation>

363 </ssm>

Listing A.1: CAWIML instance

106

	coversheetTheses
	CAWIML_A_Computed_Assisted_Web_Interviewing_Language.pdf
	Abstract
	Declaration of Authorship
	Acknowledgements
	Introduction
	Research Motivation
	Research Aim and Objectives
	Significance of Research Contributions
	Ethical Issues
	Thesis Overview

	Background
	Electronic Questionnaires
	Extensible Mark-up Language (XML)
	Schemas Languages
	Document Type Definition (DTD)
	XML Schema Definition (XSD)
	Regular Expression Language for XML New Generation (RELAX NG)
	Schematron (SCH)

	XPath Query Language
	Conclusion

	Literature
	The XML Languages
	Survey Interchange Standard (Triple-S)
	Questionnaire Definition Language (QDL)
	Data Documentation Initiative (DDI)
	Simple Survey System (SSS)

	Comparative Analysis of XML Languages
	Routing Constructs
	Personalisation Constructs
	Routing Flow Paradigms
	Schema Languages
	Expressions Notation
	Survey Stages

	CAWI Systems
	CAWI System Architectures
	Performance Testing

	Conclusions

	CAWI Mark-up Language
	The State-Transition Modelling Solution
	The RPN Notation
	The XML Language Solution
	CAWIML Language Details
	The Content Constructs
	The Routing Constructs
	The Personalisation Constructs

	Conclusions

	CAWI System
	Architecture of the System
	RESTful API
	Business Layer
	Database Solution
	Single Page Application

	Implementation Details
	The Server Side
	The Client Side

	Conclusions

	Evaluation
	XML Language Evaluation
	Collection Stage Evaluation
	Methodology
	Metrics
	Results

	Conclusions

	Conclusion
	Objectives Revisited
	Future Work

	Bibliography
	Appendix
	Real Questionnaires Sample
	CAWIML Instance

	OA Logo:
	AUTHOR: LLORET PEREZ, J.M.
	TITLE: CAWIML: a computer assisted web interviewing mark-up language.
	YEAR: 2016
	OpenAIR citation: LLORET PEREZ, J.M. 2016. CAWIML: a computer assisted web interviewing mark-up language. Robert Gordon University, MRes thesis. Held on OpenAIR [online]. Available from: https://openair.rgu.ac.uk.
	Degree: Master of Research, School of Computing Science and Digital Media.
	License: BY-NC 4.0
	License URL: https://creativecommons.org/licenses/by-nc/4.0
	CC Logo:
		2017-08-15T16:37:19+0100
	OpenAIR at RGU

