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Abstract

In recent years, software tools used for Global Software Development (GSD) processes (e.g., con-
tinuous integration, version control and bug tracking) are increasingly being deployed in the cloud
to serve multiple users. Multitenancy is an important architectural property in cloud computing
in which a single instance of an application is used to serve multiple users. There are two key
challenges of implementing multitenancy: (i) ensuring isolation either between multiple tenants
accessing the service or components designed (or integrated) with the service; and (ii) resolving
trade-offs between varying degrees of isolation between tenants or components.

The aim of this thesis is to investigate how to architect the deployment of cloud-hosted service
while guaranteeing the required degree of multitenancy isolation. Existing approaches for archi-
tecting the deployment of cloud-hosted services to serve multiple users have paid little attention to
evaluating the effect of the varying degrees of multitenancy isolation on the required performance,
resource consumption and access privilege of tenants (or components). Approaches for isolating
tenants (or components) are usually implemented at lower layers of the cloud stack and often apply
to the entire system and not to individual tenants (or components).

This thesis adopts a multimethod research strategy to providing a set of novel approaches for
addressing these problems. Firstly, a taxonomy of deployment patterns and a general process,
CLIP (CLoud-based Identification process for deployment Patterns) was developed for guiding
architects in selecting applicable cloud deployment patterns (together with the supporting tech-
nologies) using the taxonomy for deploying services to the cloud. Secondly, an approach named
COMITRE (COmponent-based approach to Multitenancy Isolation Through request RE-routing)
was developed together with supporting algorithms and then applied to three case studies to empir-
ically evaluate the varying degrees of isolation between tenants enabled by multitenancy patterns
for three different cloud-hosted GSD processes, namely-continuous integration, version control,
and bug tracking. After that, a synthesis of findings from the three case studies was carried out to
provide an explanatory framework and new insights about varying degrees of multitenancy isola-
tion. Thirdly, a model-based decision support system together with four variants of a metaheuristic
solution was developed for solving the model to provide an optimal solution for deploying com-
ponents of a cloud-hosted application with guarantees for multitenancy isolation.

By creating and applying the taxonomy, it was learnt that most deployment patterns are related
and can be implemented by combining with others, for example, in hybrid deployment scenarios
to integrate data residing in multiple clouds. It has been argued that the shared component is better
for reducing resource consumption while the dedicated component is better in avoiding perfor-
mance interference. However, as the experimental results show, there are certain GSD processes
where that might not necessarily be so, for example, in version control, where additional copies of
the files are created in the repository, thus consuming more disk space. Over time, performance
begins to degrade as more time is spent searching across many files on the disk. Extensive perfor-
mance evaluation of the model-based decision support system showed that the optimal solutions
obtained had low variability and percent deviation, and were produced with low computational
effort when compared to a given target solution.

Keywords: Cloud-hosted Services, Cloud Pattern, Application Component, Global Software De-
velopment(GSD) tools, Multitenancy, Degree of Isolation, Metaheuristic, Continuous Integration,
Version control, Bug tracking.
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Chapter 1

Introduction

1.1 Overview

The advent of the web has led to a significant shift in the way business software is organised.

Business applications are no longer designed with a monolithic architecture, where single pro-

grams running on a single computer or computer clusters does everything (e.g., data input and

output, data processing, error handling, and the user interface). In the past, communications were

local and often within an organisation, but now software is highly distributed, sometimes across

the world. Business applications are usually designed from extensive reuse of components and

programs instead of being programmed from scratch (Sommerville 2011, Stephens 2015).

It has been proposed in the last few years that business applications will not usually run on

local computers but run on a “cloud computing environment” that is accessed over the internet.

Cloud computing is a “new computing paradigm, whereby shared resources such as infrastructure,

hardware platform, and software applications are provided to users on-demand over the Internet

(cloud) as services” (Khazaei, Misic & Misic 2012). In a cloud computing environment, software

is owned and managed by a software provider, rather than the organisation using the software.

Users do not buy software but pay according to how much software is used or are given free

access in return for watching adverts that are displayed on their screen (Goth 2008).

For software users, the key benefit of deploying services (or software) to the cloud is that the

cost associated with managing the services or software is transferred to the cloud provider (e.g.,

Google and Amazon). The cloud provider is responsible for installing the software, fixing bugs,

1
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upgrading the software, and dealing with changes to the operating system platform, and ensuring

that hardware capacity can meet demand. The cost of managing the software license is zero since

there would be no need to license software for several computers owned by the same person.

Again, if software is only used occasionally, the pay-per-use model may be cheaper than buying

an application (Sommerville 2011).

Assuming the services or functionality delivered through the SaaS model (i.e., hosted centrally

and licensed on a subscription basis) is implemented using a service-oriented architecture (SOA)

technology, then it becomes possible for applications to use service APIs to access the functionality

of other applications, so they can be integrated into more complex systems. We refer to these

services as “cloud-hosted service”. A cloud-hosted service refers to any resource or functionality

hosted in a cloud computing environment. Examples of such services include business software

such as CRM, software development tools such as Hudson, office applications such as Google

docs, web-based email, photo sharing, etc.

When cloud-hosted services are delivered to multiple users, there is a need for implementing

multitenancy (Fehling, Leymann, Retter, Schupeck & Arbitter 2014). Multitenancy is an essential

cloud computing architectural property where a single instance of an application is used to serve

multiple users. One of the challenges of implementing multitenancy isolation is how to ensure

that when there are workload changes, the performance and resource consumption of one of the

tenants does not affect other tenants (hereafter referred to as multitenncy isolation). The fact

that a tenant may require different or varying degrees of isolation makes the task of achieving the

required degree of multitenancy isolation even more challenging due to the existence of conflicting

trade-offs (Fehling et al. 2014, Sommerville 2011). A high degree of isolation (e.g., a component

offering critical functionality) is important for avoiding performance interference, but leads to

high resource consumption and running cost while a low degree of isolation (e.g., a component

that requires minimal reconfiguration) promotes resource sharing but is more prone to performance

interference when workload changes.

This thesis investigates how to architect the deployment of cloud-hosted services in a way that

guarantees the varying degrees of multitenancy isolation for tenants (or components) associated

with a cloud-hosted service. The type of cloud-hosted service used for illustration is within the

domain of software engineering, and in particular software tools used to support Global Software

development practices (e.g., Hudson used for continuous integration).
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1.2 Problem Context

In recent years, software tools used for Global Software Development (GSD) processes such as

continuous integration (CI), version control (VC) and bug tracking (BT), are increasingly being

deployed on the cloud (Chauhan & Babar 2012, Buyya, Broberg & Goscinski 2011). For example,

large companies like Apple and Oracle are using software tools like Hudson to set up deployments

and automate the management of cloud-based infrastructure (Moser & O’Brien 2016). The CI

systems used by Saleforce.com (a major cloud provider), runs 150000 + test in parallel across

many servers and if it fails it automatically opens a bug report for software architects and devel-

opers responsible for that checkin (Hansma 2012). It is becoming common practice for distributed

enterprises to hire cloud deployment architects or “application deployers” to deploy and manage

cloud-hosted GSD tools (Badger, Grance, Patt-Corner & Voas 2012).

These software tools are moving to the cloud in response to the widespread adoption of Global

Software Development practices and collaboration tools that support geographically distributed

enterprises software projects (Lanubile, Ebert, Prikladnicki & Vizcaı́no 2010). In global soft-

ware development, there are not only software developers, but also many stakeholders such as

database administrators, test analysts, project managers, etc. Therefore, there is a need to have

software tools that support collaboration and integration among members of the team involved in

the software development project (Aspray, Mayadas, Vardi et al. 2006, Herbsleb 2007, Larman &

Vodde 2010). This trend will continue because the cloud offers a flexible and scalable platform

for hosting a broad range of software services including, APIs and developments tools (Armbrust,

Fox, Griffith, Joseph, Katz, Konwinski, Lee, Patterson, Rabkin, Stoica & Zaharia 2010, Buyya

et al. 2011, Chauhan & Babar 2012, Bass, Clements & Kazman 2013). Figure 1.1 illustrates the

concept of Global Software Development where a groups of developers located in different parts

of the world are working together to develop a single software product.

The architectures (or architectural patterns) used to deploy these tools to the cloud are of great

importance to software architects, because they determine whether or not the system’s required

quality attributes (e.g., performance) will be exhibited (Junuzovic & Dewan 2006, Bass et al. 2013,

Stol, Avgeriou & Babar 2011). Architectural and design patterns have long been used to provide

known solutions to a number of common problems facing a distributed system (Bass et al. 2013,

Vlissides, Helm, Johnson & Gamma 1995). Collections of patterns mined from projects across
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Figure 1.1: Global Software Development. A group of developers located across the world are
working together to deliver a single software product.

several industries, already exist for capturing real-life solutions and proven practices. (Hohpe &

Woolf 2004, Hanmer 2013).

In a cloud computing environment, cloud patterns represent a well-defined format for describ-

ing a suitable solution to a cloud-related problem. For example, collections of cloud patterns exist

for describing the cloud and its properties, and how to deploy and use various cloud offerings

(Fehling et al. 2014, Homer, Sharp, Brader, Narumoto & Swanson 2014). However, there is little

or no research into applying these patterns to describe the cloud-specific properties of applications

in the software engineering domain (e.g., collaboration tools for GSD, hereafter referred to as GSD

tools) and the trade-offs to consider during cloud deployment. This makes it very challenging to

know the deployment patterns (together with the technologies) required for deploying GSD tools

to the cloud to support specific software development processes (e.g., continuous integration (CI)

of code files with Hudson). Figure 1.2 shows examples of software tools used for Global Software

development.

As these software tools are deployed to the cloud to be used by multiple tenants/users, there is

a need to isolate tenants, processes and components, and thus implement multitenancy. Multite-

nancy is an important cloud computing property where a single instance of an application is pro-

vided to multiple tenants (or components), and so would have to be isolated from each other when-
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Figure 1.2: Software tools used for Global Software Development

ever there are workload changes (Moens, Truyen, Walraven, Joosen, Dhoedt & De Turck 2014).

Therefore, implementing multitenancy implies ensuring that the performance and resources util-

isation of one tenant do not affect other tenants when there are workload changes. (Fehling

et al. 2014, Bauer & Adams 2012). Furthermore, it is important to note that there are different

or varying degrees of isolation. For example, the degree of isolation for a component used for

critical functions would be higher than that of a component that requires minor configuration.

If there is a requirement for a high degree of isolation between components, then components

must be duplicated or created for each tenant. This duplication leads to high resource consumption

and running cost. A low degree of isolation may also be required, in which case, it might reduce

resource consumption and running cost since there is sharing of resources, but there is a possi-

bility of interference when workload changes and the application does not scale well (Fehling

et al. 2014, Ochei, Bass & Petrovski 2016) . Therefore, the challenge is how to determine op-

timal solutions that address these trade-offs in the presence of conflicting alternatives (Martens,

Ardagna, Koziolek, Mirandola & Reussner 2010, Legriel, Le Guernic, Cotton & Maler 2010).

Multitenancy isolation has been tackled mostly at the data tier level (Chong, Carraro & Wolter

2017, Schneider & Uhle 2013, Zeng 2016), and the main aspects of isolation have been the perfor-

mance isolation of tenants or components (Kurmus, Gupta, Pletka, Cachin & Haas 2011, Herbst,

Krebs, Oikonomou, Kousiouris, Evangelinou, Iosup & Kounev 2016, Krebs 2015). For example,
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it is common for companies to install the database software multiple times on a shared server or

by using a hypervisor or use hardware virtualization to share resources. This approach is not fea-

sible at the application level, especially when there is need to modify an existing application to

compensate for availability and performance challenges.

This thesis focuses on developing approaches and models for architecting the deployment of

components of a cloud-hosted service at the application level. In particular, our focus is to enable

architects to deploy components of a cloud-hosted service in a way that guarantees the required

degree of multitenancy isolation when there are workload changes. The rest of this chapter is

organised as follows: Section 1.3 discusses the research motivation including a motivating exam-

ple and problem statement. The aim and objectives of the research are presented in Section 1.4.

Section 1.5 discusses the contributions of the thesis. Section 1.6 outlines the structure of the thesis.

Figure 1.3: Deploying Components of a Cloud-hosted Service in a Multitenant Infrastructure

1.3 Research Motivation

Typical approaches for deploying components of cloud-hosted services for multiple tenants/users

rely on multitenancy architectures. This is based on the assumption that tenants share resources

as much as possible which leads to a reduction in resource consumption and running cost per

tenant. Overall this makes it feasible to target a wider audience as more resources would be made
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available (Fehling et al. 2014). Before continuing our discussion, let us consider the following

scenario which captures a similar thought process, and serves to elaborate more on our motivation.

Let us assume that there are multiple components of a cloud service hosted on the same or

different cloud infrastructure. These components which are of various types and sizes are required

to design (or integrate with) a cloud-hosted service and their supporting processes for deployment

to multiple tenants. Tenants, in this case, may be multiple users, departments of a company or

different companies as shown in Figure 1.3. The laws and regulations of the company make it

liable to share and archive data generated from the component (e.g., builds of source code) and

keep it accessible for auditing purposes. However, access to some components or some aspects of

the archived data will be provided solely to particular groups of tenants for security reasons. The

question is: in a resource-constrained environment, how can we architect the optimal deployment

of components of this cloud-hosted service in a way that guarantees the required degree of isola-

tion between other tenants when the workload of one of the tenants (or components) experiences

a high workload.

The above hypothetical scenario highlights several significant problems as summarised below:

1. The motivating scenario points to the fact that it would not be possible to use one cloud

pattern to deploy the service to the cloud due to the different requirements of the service

including accessibility of the service to a wider audience and a combined assurance for

security and privacy. For instance, the architect would require a combination of several

deployment patterns together with supporting technologies for archiving components of the

cloud-hosted service (i.e., in a hybrid fashion) to integrate components located in a different

cloud environment to form one cloud solution. Moreover, if communication is required

internally to exchange messages between application components, then a message-oriented

middleware technology would also be needed. The challenge, however, is that there are

no existing classifications or frameworks that can be referenced to select suitable patterns

together with the supporting technologies.

2. From the motivating scenario, it is clear that some of the tenants would require a higher

or different degree of isolation than others. At the very basic degree of multitenancy, ten-

ants would be able to share application components as much as possible which translates

to increased utilisation of underlying resources. However, while some application com-
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ponents may benefit from a low degree of isolation between tenants, other components

may need a higher degree of isolation because the component may either be too critical or

not shareable due to certain laws and regulation. For example, there is growing evidence

that many cloud providers are unwilling to set data centres in mainland Europe because

of tighter legal requirements that disallow the processing of data outside Europe (Hon &

Millard 2017, Google 2017). This requirement will traverse down to the IaaS level, and

customers must take this into consideration if intending to host applications outsourced to

such cloud providers (Fehling et al. 2014). The challenge, therefore, for a cloud deployment

architect is that there are no case studies to understand and evaluate the effect of the required

degree of isolation on the performance, systems resources and access privileges at different

levels of a cloud-hosted service when opting for one (or combinations) of a particular degree

of isolation between tenants.

3. Another important point highlighted in the motivating scenario is that depending on the re-

quired degree of isolation, there are fundamental trade-offs that would have to be taken into

consideration when deploying components of a cloud-hosted service. For example, a high

degree of isolation can be achieved by deploying an application component exclusively for

one tenant. This would ensure that there is little or no performance interference between the

components when workload changes. However, because components are not shared (e.g., in

a case where strict laws and regulations are preventing them from being shared), it implies

duplicating the components for each tenant, which leads to high resource consumption and

running cost. Overall, this will limit the number of requests allowed to access the com-

ponents. A low degree of isolation would allow sharing of the component’s functionality,

data and resources. This would reduce resource consumption and running cost, but the per-

formance of other components may be affected when one of the components experiences a

change in workload.

Many cloud providers (e.g., Amazon and Microsoft) do not guarantee isolation and avail-

ability for a single component (e.g., disk) and but only for the whole system (Fehling

et al. 2014). This re-enforces the need to automate the monitoring and management of

components of cloud-hosted services to guarantee multitenancy isolation. Therefore, to op-

timise the deployment of components, the architect has to resolve the trade-off between a
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lower degree of isolation versus the possible influence that may occur between components

or a high degree of isolation versus the challenge of high resource consumption and the

running cost of the component. This is a decision-making problem that requires an optimal

decision to be taken in the presence of a trade-off between two or more conflicting objectives

(Martens et al. 2010) (Legriel et al. 2010).

The main research question this thesis addresses is: “How can we architect the deployment

of cloud-hosted services for guaranteeing multitenancy isolation?”. This research question is

further divided into three sub-questions as follows:

1. How can we create and use a taxonomy for selecting appropriate deployment patterns to-

gether with the supporting technologies for deploying services to the cloud?

2. How can we evaluate the varying degrees of isolation between tenants enabled by multite-

nancy patterns for cloud-hosted services?

3. How can we optimise the deployment of components of a cloud-hosted service to guarantee

multitenancy isolation?

1.4 Research Aim and Objectives

The aim of this research is to provide a framework for architecting the optimal deployment of

components of a cloud-hosted service in order to guarantee the required degree of multitenancy

isolation. The specific objectives of the research are:

1. To create a taxonomy and demonstrate its practicality for selecting applicable deployment

patterns together with the supporting technologies for cloud deployment of GSD tools.

2. To develop an approach for implementing the required degree of multitenancy isolation and

demonstrate its practicality using different cloud-hosted GSD processes.

3. To conduct three case studies that apply the approach developed in 2 to empirically evaluate

the varying degrees of isolation between tenants enabled by multitenancy patterns for three

different cloud-hosted GSD processes, namely-continuous integration, version control, and

bug tracking.
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4. To synthesise the findings of the three case studies (conducted in 3) to provide an explana-

tory framework and new insights on implementing the varying degrees of multitenancy iso-

lation.

5. To develop a model-based decision support system (DSS) for providing optimal solutions

for deploying components of a cloud-hosted service for guaranteeing multitenancy isolation.

6. To develop and evaluate a metaheuristic solution for solving the model (developed in 5).

1.5 Contributions of the Thesis

As discussed earlier, deploying services to the cloud to serve multiple users requires implementing

multitenancy so that the required performance and resource consumption of other tenants are not

affected if one of the tenants experiences high load. However, achieving multitenancy isolation

is challenging due to the demand for different or varying degrees of isolation between tenants.

When implementing multitenancy, the usual assumptions are: (i) the shared component promotes

resource sharing, but is prone to performance interference and so guarantees a low degree of

isolation, (ii) the dedicated component guarantees a high degree of isolation, but with limitations

of high resource consumption and running cost, and reduction in the number of tenants allowed to

access the cloud-hosted service.

This thesis argues that by employing a set of approaches including using taxonomy to select

suitable deployment patterns, evaluating the varying degrees of multitenancy isolation required by

tenants, and simulation based on an optimization model, we can architect the deployment of cloud-

hosted services for guaranteeing multitenancy isolation by maximising both the required degree

of isolation for tenants and the number of requests allowed to access a cloud-hosted service.

The key contributions of this thesis are:

1. A novel taxonomy of deployment patterns and a general process, CLIP (CLoud-based Iden-

tification process for deployment Patterns) has been developed for guiding architects in

selecting applicable cloud deployment patterns (together with the supporting technologies)

using the taxonomy for deploying services/application to the cloud.
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2. A novel approach, COMITRE (Component-based approach to multitenancy isolation through

Request Re-routing) has been developed together with supporting algorithms for implement-

ing the varying degrees of multitenancy isolation for cloud-hosted services.

3. The practicality of the COMITRE approach was demonstrated by applying it to three case

studies that empirically evaluated the varying degrees of isolation between tenants enabled

by multitenancy patterns for three different Global Software Development processes: con-

tinuous integration, version control, and bug tracking.

4. A synthesis of findings from the three case studies was carried out to provide an explanatory

framework and new insights on the effect of the required degree of multitenancy isolation

on the optimal deployment of components of cloud-hosted services under different cloud

deployment conditions.

5. A novel model-based decision support system(DSS), OptimalDep, has been developed to

provide optimal solutions for deploying components of a cloud-hosted service for guaran-

teeing multitenancy isolation. The model-based decision support system combines an open

multiclass Queuing Network Model and multiobjective optimisation model (based on Mul-

tichoice Multidimensional Knapsack Problem MMKP).

6. Four variants of a metaheuristic solution: HC(Random), HC(Greedy), SA(Random) and

SA(Greedy) have been developed for solving the optimisation model integrated into the

decision support model (in 5). The first two variants are based on the Hill climbing algorithm

while the last two variants are based on Simulated annealing algorithm. These metaheuristic

solutions are required in a cloud environment to sample a sets of solutions for guaranteeing

multitenancy isolation which are often too large to be completely sampled or are required in

a dynamic and real-time situations (e.g., timely provisioning of components due to frequent

workload changes).

These contributions can be illustrated through a layered architecture in Figure 1.4, which shows

how the different approaches presented in this thesis work together to support the task of archi-

tecting the deployment of components of a cloud-hosted service for guaranteeing multitenancy

isolation. Layer one represents our novel taxonomy and a general process, CLIP, for guiding

software architects in selecting applicable cloud deployment patterns (together with the support-
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ing technologies) for deploying GSD tools. CLIP has been applied to a motivating deployment

problem involving the cloud deployment of a GSD tool to serve multiple users in such a way that

guarantees isolation among different users. Layer two represents our approach, COMITRE, for

implementing and empirically evaluating the required degree of multitenancy isolation between

tenants enabled by three multitenancy patterns in three case studies involving different GSD pro-

cesses. The three GSD processes (continuous integration, version control and bug tracking) and

the three (cloud) multitenancy patterns (i.e., shared component, tenant-isolated component and

dedicated component) were identified in layer one.

In layer three, a new whole out of parts (i.e., by synthesising the findings of the three primary

case studies) has been made to provide a novel explanatory framework and new insights into the

effect of multitenancy isolation on the three different GSD processes. In layer four, new insights

acquired from the case study synthesis are used to develop a model-based decision support system

(DSS) for providing near-optimal solutions for deploying components of a cloud-hosted service

for guaranteeing the required degree of multitenancy isolation.

Figure 1.4: A layered architecture for architecting the deployment of cloud-services for guaran-
teeing multitenancy isolation

1.6 Thesis Structure

This thesis is divided into nine chapters. The remaining chapters are organised as follows:

Chapter 2 Literature Review: Chapter 2 provides an overview of basic concepts used in the
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thesis, including relevant work related to Global Software Development (GSD), cloud-hosted GDS

tools, cloud deployment patterns, multitenancy isolation, and optimal allocation of resources in a

cloud environment.

Chapter 3 Methods: In Chapter 3, the methodology of the research which is the multimethod

research method, is discussed. The multimethod research combines two or more research methods

(which are conducted separately following the usual procedure of each method) to form one single

research process. The key research methods used in this thesis are described: exploratory study,

case study (i.e., made up of the three case studies), case study synthesis and simulation based on a

model.

Chapter 4 Taxonomy of Cloud Deployment Patterns for Cloud-hosted Services: Chapter

4 discusses the development and use of a taxonomy for selecting applicable deployment patterns

together with the supporting technologies for deploying GSD tools. A general process for guiding

architects in selecting appropriate deployment patterns using the taxonomy is described.

Chapter 5 Case Studies of Evaluating Degrees of Multitenancy Isolation: Chapter 5 presents

three case studies that empirically evaluated the effect of varying degrees of isolation on the re-

quired performance, and the resource consumption of tenants. The case studies were based on

three different cloud-hosted Global Software Development (GSD) processes: continuous integra-

tion, version control, and bug tracking.

Chapter 6 Synthesis of Case Studies of Evaluating Degrees of Multitenancy Isolation:

Chapter 6 discusses the synthesis of findings of the three case studies to provide an explanatory

framework and new insights on multitenancy isolation. This framework provides information on

the (i) commonalities and differences observed in the case studies, and (ii) trade-offs to consider

when implementing the required degree of multitenancy isolation.

Chapter 7 Optimal Deployment of Components for Guaranteeing Multitenancy Isolation:

Chapter 7 presents a model-based decision support model which combines a queuing network

model and an optimisation model to provide optimal solutions for deploying components of a

cloud-hosted service for guaranteeing multitenancy isolation. Also, four variants of a metaheuris-

tic solution are presented for solving the model integrated into the decision support system.

Chapter 8 Discussion: Chapter eight discusses the implications of the results and how the dif-

ferent aspects of the work contribute to solving the problem addressed in this thesis. The different

areas where our work can be applied to support the deployment of components of a cloud-hosted
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service in a way that guarantees multitenancy isolation have been presented.

Chapter 9 Conclusion and Future Work: Chapter 9 revisits the contributions of the thesis and

then discusses the scope and limitations of the study. A reflection on the PhD has been presented

by highlighting the challenges and lessons learned. Finally, this chapter presents the future work

and after that concludes the thesis.



Chapter 2

Literature Review

2.1 Introduction

This chapter presents an overview of the basic concepts and existing literature related to the task

of architecting the deployment of components of a cloud-hosted service for guaranteeing multi-

tenancy isolation. Our literature review will be divided into four main sections as follows. The

first section gives an overview of Global Software Development (GSD), software processes and

supporting tools that have been found to have the most impact on Global Software Development,

and the deployment of software tools to the cloud to support GSD. Section two discusses ex-

isting taxonomies and classifications of architectural patterns and cloud deployment patterns for

deploying cloud services and software tools to the cloud. Section three gives an overview of multi-

tenancy isolation and the challenges of achieving the required degree of isolation between tenants

(or components) when workload changes. Section four will discuss related work on the optimal

deployment of components of cloud-hosted services for guaranteeing multitenancy isolation.

2.2 Cloud-hosted GSD Processes and Supporting Tools

The section will first introduce the concept of Cloud computing, Global Software Development

and thereafter discusses the key software processes and their role in supporting Global Software

Development practices.

15
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2.2.1 Cloud Computing

Simply put, cloud computing is the delivery of software and functionality as services over the

internet by service providers. According to the National Institute of Standards and Technology,

it is a model for enabling ubiquitous, convenient, on-demand network access to a shared pool of

configurable computing resources (e.g., networks, servers, storage, applications, and services) that

can be rapidly provisioned and released with minimal management effort or service provider inter-

action (Mell & Grance 2011). (Buyya et al. 2011) defined cloud computing as a “parallel and dis-

tributed computing system consisting of a collection of inter-connected and virtualised computers

that are dynamically provisioned and presented as one or more unified computing resources based

on service-level agreements (SLA) established through negotiation between the service provider

and consumers.”

According to (Armbrust et al. 2010), “cloud computing refers to both the applications deliv-

ered as a service over the Internet and the hardware and systems software in the data centers that

provides those services.” The cloud entails the data center hardware and the software. The cloud

could either be a public cloud (that is, cloud is provided in a prepaid manner to the general public),

private cloud (that is, internal IT infrastructure of an organization is inaccessible to the general

public), or a hybrid cloud (that is, the computing ability of the private cloud is boosted by the

public cloud).

Although there are so many definitions that have been given for the term cloud computing, there is

common agreement on the basic characteristics of a cloud computing environment. These include

(Buyya et al. 2011) - pay-per-use, elastic capacity and the illusion of infinite, self-service interface,

and resources that are abstracted or virtualized.

There are three basic cloud service models:

(i) Software as a Service (SaaS): In the SaaS model, cloud providers can install, operate and access

their application software using a web browser. An example of a SaaS provider is Salesforce.com,

which utilizes the SaaS model to provide Customer Relationship Management (CRM) applications

located on their server to customers. This eliminates the need for customers to run and install the

application on their own computers.
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(ii) Platform as a Service (PaaS): In the PaaS model, cloud providers deliver cloud platforms

which represent an environment for application developers to create and deploy their applications.

A notable example of PaaS is the Google App Engine, which provides an environment for creating

and deploying web-based applications written in specific programming languages.

(iii) Infrastructure as a Service (IaaS): In the IaaS model, cloud providers offer physical (comput-

ers, storage) and virtualized computer resources. Examples of IaaS providers include: Amazon

EC2, and Azure Services Platform.

Cloud computing provides a dependable and scalable platform for delivering services and

software either as a SaaS, PaaS or IaaS to multiple users. Most services such as business software

(e.g., CRM) and software development tools (e.g., Hudson) are deployed to the cloud using the

SaaS delivery model. The SaaS model is very attractive to both customers and providers because

the Web browser can be utilised as a universal client. For the customers, the service is flexible

and easy to use. For the cloud provider, the service can be easily delivered and improved since a

single version of the service/software is at a centralised location. Because of the ability and desire

to change or upgrade services provided using the SaaS model, the Agile software development

process is mostly used in the software development life-cycle (Fox, Patterson & Joseph 2013,

Sommerville 2011).

2.2.2 Global Software Development

In recent times, Global Software Development has emerged as the dominant methodology used

is developing software for geographically distributed enterprises. The number of large-scale

geographically distributed enterprise software development projects involving governments and

large multi-national companies is on the increase (Aspray et al. 2006, Herbsleb 2007, Larman &

Vodde 2010).

Definition 2.1: Global Software Development. GSD is defined by Lanubile (Lanubile 2009) as

the splitting of the development of the same software product or service among globally distributed

sites. Global Software Development involves several partners or sites of a company working

together to reach a common goal, often to make a product (in this case, software) (Lanubile 2009,

Pesola, Tanner, Eskeli, Parviainen & Bendas 2011).

In geographically distributed enterprise software development, there are not only software

developers, but many stakeholders such as database administrators, test analysts, project managers,
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etc. Therefore, there is a need to have software tools that support collaboration and integration

among members of the team involved in the software development project. As long as a software

project includes more than one person, there has to be some form of collaboration (Babar &

Zahedi 2012, Pesola et al. 2011, Bass 2014, Herbsleb & Mockus 2003).

2.2.3 GSD Tools and Supporting Processes

Cloud-hosted software services play an important role in Global Software Development (GSD)

practices. There are different types of essential software processes used to support GSD. Four

examples of widely used Global Software Development processes are discussed below (Portillo-

Rodriguez, Vizcaino, Ebert & Piattini 2010):

(1) Continuous Integration (CI): CI is a development practice that requires developers to integrate

the source code into a shared repository several times. Each check-in is then verified by an auto-

mated build, allowing teams to detect problems early (Fowler 2017). Hudson is a widely used GSD

tool used for continuous integration, which is written in Java for deployment in a cross-platform

environment. Hudson is hosted partly as an Eclipse Foundation project and partly as a Java.NET

project. It has a comprehensive set of plugins, making it easy to integrate with other software

tools. Organisations such as Apple and Oracle use Hudson for setting up production deployments

and automating the management of cloud-based infrastructure (Moser & O’Brien 2016).

(2) Version Control: Version control is the process of tracking incremental versions of files and, in

some cases, directories over time, so that specific versions can be recalled later (Collins-Sussman,

Fitzpatrick & Pilato 2004). In Global software development, version control systems are being

relied upon as a communication medium for developers in a software development team. For

example, viewing past revisions and changesets is a valuable tool to see how a project has evolved

and for reviewing teammates code (Herbsleb 2007).

In Global Software Development, cloud-hosted Version Control Systems are used to ensure

that changes happening across different environments (some of which may be static data centres)

are properly monitored and controlled across various layers and environments of an application

software (Krishna & Jayakrishnan 2013).

There are two main categories of version control systems: centralized (e.g., Subversion) and

distributed (e.g., Git and Mercury). This thesis focuses on the centralized version control system,



2.2. Cloud-hosted GSD Processes and Supporting Tools 19

which works in a client and server relationship. That is, the repository is located in one place and

provides access to many clients. It can be likened to a scenario where an FTP client connects to an

FTP server. All changes and commits by users are sent and received from the central repository. A

widely used GSD tool for version control is Subversion (Collins-Sussman et al. 2004). Subversion

implements a centralised repository architecture whereby a single central server hosts all project

metadata. This facilitates distributed file sharing (Lanubile et al. 2010).

(3) Issue/Bug Tracking: Bug tracking (or issue tracking) is the process of keeping track of re-

ported software bugs or issues in software development projects. Examples of widely used error

and bug tracking tools are JIRA (Atlassian.com 2016), ITracker, Rational ClearQuest, and Track-

Studio. This thesis focuses on Bugzilla, a web-based general-purpose bug tracker and testing tool,

originally developed and used for the Mozilla project (Bugzilla 2016).

Bug tracking, as used in this thesis, also includes issues and enhancements to an application

and is not only restricted to error-related data such as stack traces and log files. However, we do

not include task registry, which is more related to the function of a project management system

(Serrano & Ciordia 2005a).

The main component of a bug tracking system is the database that stores bugs and attachments,

which require isolation. Attachments are usually added to complement the process of submitting

a bug. Developers are usually encouraged to use attachments instead of comments especially for

large chunks of ASCII data, such as trace, debugging output files, or log files (Bugzilla 2016).

These attachments have to be isolated as bugs can be assigned to different teams members for

resolution.

(4) Agile Management: The development of cloud-hosted services is not usually driven by user

requirements, but by the service providers assumptions about what users need. The software,

therefore, needs to be able to evolve quickly after the providers get feedback from users on their

requirements. Agile development with incremental delivery is, therefore, a commonly used ap-

proach for software that is to be delivered as a service (Fox et al. 2013).

Agile methodologies are increasingly being used in Global Software Development projects.

Agile architects propose initial architecture and run with that until its technical requirements be-

come too difficult or complicated, at which point they need to refactor (Bass et al. 2013). Agile
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management has to be adapted to cope with large projects. Sommerville suggests some criti-

cal adaptations that can be introduced into agile management such as continuous integration and

cross-team communication mechanisms (Sommerville 2011). One of the essential tools used for

managing agile practices is VersionOne (Versionone.com 2017a, VersionOne.com 2017b).

2.2.4 Deployment of Software Tools to the Cloud

Software tools used for Global Software Development projects are increasingly being moved to

the cloud (Chauhan & Babar 2012). This is in response to the widespread adoption of Global

Software Development practices and collaboration tools that support geographically distributed

enterprises software projects (Lanubile et al. 2010). This trend will continue because the cloud

offers a flexible and scalable platform for hosting a broad range of software services including,

APIs and developments tools (Buyya et al. 2011, Chauhan & Babar 2012).

Definition 2.2: Cloud-hosted GSD Tool. “Cloud-hosted GSD tool” refers to collaboration tools

used to support GSD processes in a cloud environment. The standards adopted are (i) NIST Defi-

nition of Cloud Computing to define properties of cloud-hosted GSD tools (Liu, Tong, Mao, Bohn,

Messina, Badger & Leaf 2011); and (ii) ISO/IEC 12207 standard as a frame of reference for defin-

ing the scope of a GSD tool (Singh 1996). Portillo et al. (Portillo-Rodriguez et al. 2010) identified

three groups of GSD tools for supporting ISO/IEC 12207 processes:

(i) Tools to support Project Processes- These tools are used to support the management of the over-

all activities of the project. Examples of these processes include project planning, assessment and

control of the various processes involved in the project. Several GSD tools fit into this group. For

instance, JIRA and Bugzilla are software tools widely used in large software development projects

for issue and bug tracking.

(ii) Tools to support Implementation Processes such as requirements analysis and integration pro-

cess. For example, Hudson is a widely used tool for continuously integrating different source code

builds and components into a single unit (Moser & O’Brien 2016, Wiest 2017).

(iii) Tools for Support Processes - Software tools that fall into this group are used to support

documentation management processes and configuration management processes involved in the

software development project. For example, Subversion is a software tool used to track how the

different versions of a software evolve over time.
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These GSD tools which are also referred to as Collaboration tools for GSD (Portillo-Rodriguez

et al. 2010), are increasingly being deployed to the cloud for Global Software Development by

large distributed enterprises. The work of Portillo et al. (Portillo-Rodriguez et al. 2010) presents

the requirements and features of GSD tools and also categorises various software tools used for

collaboration and coordination in Global Software Development.

2.3 Architectures for Cloud-hosted Applications

The previous section established that collaboration tools used to support Global Software Devel-

opment (GSD) processes are increasingly being deployed on the cloud (Ochei, Bass & Petrovski

2015b, Buyya et al. 2011, Chauhan & Babar 2012). The architectures or cloud patterns used to

deploy these tools to the cloud are of great importance to software architects because they deter-

mine whether or not the system’s essential quality attributes (e.g., performance) will be exhibited

(Junuzovic & Dewan 2006, Bass et al. 2013, Stol et al. 2011). The basic concepts of architec-

tural patterns and cloud patterns, and their relevance in deploying software tools to the cloud are

discussed in the sections that follow.

2.3.1 Architectural Patterns

Architectural and design patterns have long been used to provide known solutions to many com-

mon problems facing a distributed system (Bass et al. 2013, Vlissides et al. 1995). The architecture

of a system/application determines whether or not its required quality attributes (e.g., performance,

availability and security) will be exhibited (Junuzovic & Dewan 2006, Bass et al. 2013).

Definition 2.3: Architectural Pattern. Architectural patterns are compositions of architectural

elements that provide packaged strategies for solving recurring problems facing a system (Bass

et al. 2013). Architectural patterns can be broadly classified into three groups based on the nature

of the architectural elements they use (Bass et al. 2013):

(i) Module type patterns - which show how systems are organised as a set of codes or data units in

the form of classes, layers, or divisions of functionality.

(ii) Component-and-connector (C&C) type patterns - which show how the system is organised as

a set of components (i.e., runtime elements used as units of computation, filters, services, clients,

servers, etc.) and connectors (e.g., communication channels such as protocols, shared messages,
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pipes, etc.).

(iii) Allocation patterns - which show how software elements (typically processes associated with

C&C and modules) relate to non-software elements (e.g., CPUs, file system, networks, etc.) in

its environment. In other words, this pattern shows how the software elements are allocated to

elements in one or more external environments in which the software is executed.

2.3.2 Cloud Deployment Patterns

In the cloud computing environment, a cloud pattern represents a well-defined format for describ-

ing a suitable solution to a cloud-related problem (Fehling et al. 2014). Several cloud problems

exist such as how to: (i) select a suitable type of cloud for hosting applications; (ii) select an

approach for delivering a cloud service; (iii) deploy a multitenant application that guarantees the

isolation of tenants. Cloud deployment architects use cloud patterns as a reference guide that doc-

uments best practice on how to design, build and deploy applications to the cloud.

Definition 2.4: Cloud Deployment Pattern. A “Cloud deployment pattern” is defined as a type

of architectural pattern, which embodies decisions as to how elements of the cloud application will

be assigned to the cloud environment where the application is executed.

Our definition of cloud deployment pattern is similar to the concept of design patterns (Vlissides

et al. 1995), (architectural) deployment patterns (Bass et al. 2013), collaboration architectures

(Junuzovic & Dewan 2006), cloud computing patterns (Fehling et al. 2014), cloud architecture

patterns (Wilder 2012), and cloud design patterns (Homer et al. 2014). These concepts serve

the same purpose in the cloud (as in many other distributed environments). For example, the

generic architectural patterns- client-server, peer-to-peer, and hybrid (Bass et al. 2013) - relate to

the following: (i) the 3 main collaboration architectures, i.e., centralized, replicated and hybrid

(Junuzovic & Dewan 2006); and (ii) cloud deployment patterns, i.e., 2-tier, content distribution

network and hybrid data (Fehling et al. 2014).

One of the key responsibilities of a cloud deployment architect is to allocate elements of the

cloud application to the hardware processing (e.g., processor, files systems) and communication

elements (e.g., protocols, message queues) in the cloud environment so that the required quality

attributes can be achieved. Figure 2.1 shows how the elements of Hudson (a typical of GSD tool)

are mapped to the elements of the cloud environment. Hudson runs on an Amazon EC2 instance
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while the data it generates is regularly extracted and archived on separate cloud storage (e.g.,

Amazon S3).

Figure 2.1: Mapping elements of a GSD tool to External Environment

2.4 Taxonomies and Classifications of Cloud Deployment Patterns

This section defines what a taxonomy is, and its relevance in software engineering. This is fol-

lowed by a discussion of existing taxonomies and classifications of deployment patterns for cloud-

hosted services and the shortcomings of these taxonomies. This discussion will lay the foundation

for creating and using a novel taxonomy that will address these deficiencies.

2.4.1 What is a Taxonomy and its Purpose?

The IEEE Software & Systems Engineering Standards Committee defines a Taxonomy as “a

scheme that partitions a body of knowledge into taxonomic units and defines the relationship

among these units. It aims for classifying and understanding the body of knowledge (IEEE 1990).”

As understanding in the area of cloud patterns and cloud-hosted software tools for distributed en-

terprise software development evolves, relevant concepts and relationships between them emerge

that warrant a structured representation of these concepts. Being able to communicate that knowl-

edge provides the prospects to advance research (Unterkalmsteiner, Feldt & Gorschek 2013).

Taxonomies and classifications facilitate the systematic structuring of complex information.
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Taxonomies are mechanisms that can be used to structure, advance understanding and communi-

cate this knowledge (Glass & Vessey 1995). According to Sjoberg (Sjoberg, Dyba & Jorgensen

2007), the development of taxonomies is crucial to documenting the theories that accumulate

knowledge of software engineering. In software engineering, they are used for comparative stud-

ies involving tools and methods, for example, software evolution (Buckley, Mens, Zenger, Rashid

& Kniesel 2005) and Global Software Engineering (Smite, Wohlin, Galvina & Prikladnicki 2012).

The work of Glass and Vessey (Glass & Vessey 1995) and Bourque and Dupuis (Dupuis 2004) laid

the foundation for developing various taxonomies for software development methods and tools in

software engineering.

2.4.2 Related Work on Taxonomies and Classifications of Cloud Deployment Patterns

Several attempts have been made by researchers to create classifications of cloud patterns to build

and deploy cloud-based applications. Wilder (Wilder 2012) describes eleven patterns: Horizon-

tally Scaling Compute, Queue-Centric Workflow, Auto-Scaling, MapReduce, Database Sharding,

Busy Signal, Node Failure, Colocate, Valet Key, Content Delivery Network, and Multisite Deploy-

ment. The authors then illustrate how each pattern can be used to build cloud-native applications

using the Page of Photos web application and Windows Azure. Each pattern is preceded by what

the authors refer to as “primers” to provide a background of why the pattern is needed. A de-

scription is provided about how each pattern is used to address specific architectural challenges

that are likely to be encountered during cloud deployment. The Multisite deployment pattern is

an interesting cloud pattern because it can be used to deploy a single application to more than one

data center.

A collection of over 75 patterns for building and managing a cloud-native application are

provided by Fehling et al. (Fehling et al. 2014). The “known uses” of the implementation of each

pattern is provided with examples of cloud providers offering products that exhibit the properties

described in the pattern. This helps to further give a better understanding of the core properties of

each pattern. The examples of known uses of patterns under the “storage offering” category (e.g.,

blob storage, key-value storage) are very useful in understanding how to modify a GSD tool to

access a cloud storage. For example, Amazon S3 and Google Cloud storage are products offered

by Amazon and Google, respectively, for use as blob storage on the cloud. Blob storage is based

on object storage architecture, and so the GSD tool should be modified to allow access using a
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REST API.

Homer et al. (Homer et al. 2014) describe: (i) twenty-four patterns that are useful in de-

veloping cloud-hosted applications; (ii) two primers and eight guidance topics that provide basic

information and good practice techniques for developing cloud-hosted applications; and (iii) ten

sample applications that illustrate how to implement the design patterns using features of Windows

Azure. The sample code (written in C#) for these sample applications is provided, thus making

it easy for architects who intend to use similar cloud patterns to convert the codes to other web

programming languages (e.g., Java, Python) for use in other cloud platforms.

Moyer (Moyer 2012) discusses a collection of patterns under the following categories: image

(e.g., prepackaged images), architecture (e.g., adapters), data (e.g., queuing, iterator), and cluster-

ing (e.g., n-tier) and then use a simple Weblog application written using Amazon Web Services

(AWS) with Python to illustrate the use of these patterns. For example, one of the architectural

patterns- Adapters, is similar to “Provider Adapter” pattern described by Fehling et al. (Fehling

et al. 2014), which can be used for interacting with external systems not provided by the cloud

provider. The weblog application uses a custom cloud-centric framework created by the author

called Marajo, instead of contributing extensions to existing Python frameworks (e.g., pylons).

Apart from Marajo’s tight integration with AWS, it may be difficult for it to be widely used by

software architects since it does not offer the rich ecosystem and large public appeal which other

Python-based web frameworks currently offer.

Sawant and Shah discussed patterns for handling “Big Data” on the cloud (Sawant & Shah

2013). These include patterns for big data ingestion, storage, access, discovery and visualisation.

For example, it describes how the “Federation Pattern” can be used to pull together data from

multiple sources and then process the data. Doddavula et al. (Mahmood 2013) present several

cloud computing solution patterns for handling application and platform solutions. For instance, it

discusses cloud deployment patterns for (i) handling applications with highly variable workloads

in public clouds; and (ii) handling workload spikes with cloud burst.

Erl et al. (Erl & Naserpour 2014) present a catalogue of over 100 cloud design patterns for

developing, maintaining and evolving cloud-hosted applications. The cloud patterns, which are

divided into eight groups cover several aspects of cloud computing, such as scaling and elasticity,

reliability and resilience, data management, and network security and management. For exam-

ple, patterns such as shared resources, workload distribution and dynamic scalability (which are
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listed under the “sharing, scaling and elasticity” category) are used for workload management

and overall optimisation of the cloud environment. The major strength of Erl et al.’s catalogue of

cloud patterns is in its extensive coverage of techniques for handling the security challenges of

cloud-hosted applications. It describes various strategies covering areas such as hypervisor attack

vectors, threat mitigation and mobile device management.

The authors in (Jamshidi, Pahl, Chinenyeze & Liu 2015) describe a catalogue of fine-grained

service-based cloud architecture migration patterns that target multi-cloud settings which are spec-

ified with architectural notations. The key patterns reflect the different construction principles for

cloud architecture: re-deployment, cloudification, relocation, refactoring, rebinding, replacement

and modernization. These patterns are presented as migration strategies, decision making and best

practices for cloud migration, and so are different from cloud patterns shown in (Wilkes 2011,

Mendonca 2014, Fehling et al. 2014) and so may not be applied at runtime during the design and

deployment. Other documentation of cloud deployment patterns can be found in (Strauch, Breit-

enbuecher, Kopp, Leymann & Unger 2012, Varia 2014b, Musser 2012, Arista.com 2014, Brandle,

Grose, Young Hong, Imholz, Kaggali & Mantegazza 2014, Varia 2014a).

2.5 Implementing Multitenancy Isolation in a Cloud Computing En-

vironment

Multitenancy is an essential cloud computing property where a single instance of a cloud offering

is used to serve multiple tenants and/or components (Pearson 2013, Krebs, Momm & Kounev

2014). One of the challenges of implementing multitenancy on the cloud is how to enable the

required degree of isolation between multiple components of a cloud-hosted application (or tenants

accessing a cloud-hosted application). We refer to this as multitenancy isolation.

2.5.1 Multitenancy Isolation

Definition 2.4: Multitenancy isolation. The term “Multitenancy Isolation” as used in this thesis

is an approach for ensuring that the required performance, stored data volume and access privi-

leges of one tenant does not affect other tenants accessing the component or the functionality of a

shared application component. Multitenancy isolation can be captured in three main cloud multi-

tenancy patterns (Fehling et al. 2014):
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(1) Shared component: Tenants share the same resource instance, and may not be aware that it is

being used by other tenants.

(2) Tenant-isolated component: Tenants share the same resource instance, but their isolation is

guaranteed. This pattern allows the tenant-specific configuration of the provided functionality or

resource.

(3) Dedicated component: Tenants do not share resource instance. That is, each tenant is associ-

ated with one instance (or a certain number of instances) of the resource.

Definition 2.5: Application Component. An Application Component is defined as an encap-

sulation of a functionality or resource that is shared between multiple tenants. An application

component could be a communication component (e.g., message queue), data handling compo-

nent (e.g., databases), processing component (e.g., load balancer), or a user interface component

(e.g., AJAX).

2.5.2 Related Work on Approaches for Implementing Multitenancy

There are several approaches for implementing multitenancy that have been widely discussed in

the literature. Multitenancy can be implemented at different layers of the cloud stack: application

layer, the middleware layer, and data layer. For example, in (Mehta 2017c, Mehta 2017a, Mehta

2017b), the author discusses several approaches for implementing multitenancy in the application

tier and data tier.

Multi-tenancy can also be realised at the PaaS level so that service providers can offer multiple

tenants customizable versions of the same version for consumption by their users. The authors in

(Strauch, Andrikopoulos, Leymann & Muhler 2012) discussed how to implement multitenancy

at the PaaS (or middle tier) of an application/cloud stack. In this work, the requirements for

multitenancy in an Enterprise Service Bus (ESB) solutions, a key component in service-oriented

architecture (SOA), were identified and discussed as part of the PaaS model. An implementation-

agnostic ESB architecture was proposed whereby multitenancy can be integrated independently

from the implementation into the ESB.

Implementing multitenancy for a cloud-hosted service particularly at the application level is

very challenging and could involve rewriting the application. In agreeing with this position, Mehta

states that achieving multi-tenancy can be downright hard and expensive if it is not implemented

during the earliest stages of a development project (i.e., the architecture phase) (Mehta 2017b).
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In (Khan, Mirza et al. 2012), several approaches for implementing multitenancy are discussed

and more importantly suggest that customization is the solution to addressing the hidden con-

straints on multitenancy such as complexities, security, scalability and flexibility. The author in

(Momm & Krebs 2011) presents a qualitative discussion of different approaches for implementing

multi-tenant SaaS offerings, while the author in (Aiken 2017) discusses the advantages and disad-

vantages of multitenancy in SaaS offerings. They both agree that a plugin is the solution to true

multitenancy and that most of the available options for implementing multitenancy to some extent

require a re-engineering of the cloud service.

2.5.3 Related Work on Degrees of Multitenancy Isolation

Several work of literature acknowledge that there could be varying degrees of isolation between

tenants. In (Chong & Carraro 2006), three approaches to managing multi-tenant data are dis-

cussed. Chong et al. state that the distinction between the shared data and isolated data is more of

a continuum, where many variations are possible between the two extremes. Three multitenancy

patterns have been identified which express the degree of isolation between tenants accessing a

shared component of an application (Fehling et al. 2014). These patterns are referred to as shared

component, tenant-isolated component and dedicated component. The shared component repre-

sents the lowest degree of isolation between tenants while the dedicated component represents the

highest. The degree of isolation between tenants accessing a tenant-isolated component would be

in the middle.

The authors in (Wang, Guo, Gao, Sun, Zhang & An 2008) explore key implementation patterns

of data tier multi-tenancy based on different aspects of isolation such as security, customization

and scalability. For example, under the resource tier design pattern, the authors identified the

following patterns: (i) totally isolated (dedicate database pattern); (ii) partially shared (Dedicate

table/schema pattern); and (iii) totally shared (Share table/schema pattern). These patterns are

similar to the shared component, tenant-isolated component and dedicated component patterns at

the data tier, respectively (Fehling et al. 2014). The author (Vengurlekar 2012) describes three

forms of database consolidation which offers differing degrees of inter-tenant isolation as follows:

(i) multiple application schemas consolidated in a single database, multiple databases hosted on a

single platform; and (iii) a combination of both.

The authors (Mietzner, Unger, Titze & Leymann 2009) describe how the services (or com-
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ponents) in a service-oriented SaaS application can be deployed using different multi-tenancy

patterns and how the chosen patterns influence the customizability, multi-tenant awareness and

scalability of the application. These patterns are referred to as a single instance, single config-

urable instance and multiple instances. Although this work describes how individual services of a

SaaS application can be deployed with different degrees of customizability, we believe that these

concepts are similar to different degrees of isolation between tenants.

The three main aspects of multitenancy isolation are performance, stored data volume and

access privileges. For example, in performance isolation, other tenants should not be affected by

the workload created by one of the tenants. Guo et al. evaluated different isolation capabilities

related to authentication, information protection, faults, administration, etc. (Guo, Sun, Huang,

Wang & Gao 2007). Bauer and Adams discuss how to use virtualization to ensure that the failure

of one tenant’s instance does not cascade to other tenant instances (Bauer & Adams 2012).

In the work of Walraven et al., the authors implemented a middleware framework for enforcing

performance isolation (Walraven, Monheim, Truyen & Joosen 2012). They used a multitenant

implementation of a hotel booking application deployed on top of a cluster for illustration. Krebs

et al. implemented a multitenancy performance benchmark for web application based on the TCP-

W benchmark where the authors evaluated the maximum throughput and the number of tenants

that can be served by a platform (Krebs, Wert & Kounev 2013). Other work related to multitenancy

isolation can be found in (Chong & Carraro 2006) (IEEE 2017).

At the very basic degree of multitenancy, tenants share application components as much as

possible which translates to increased utilisation of underlying resources. However, while some

application components may benefit from a low degree of isolation between tenants, other com-

ponents may need a higher degree of isolation because the component may either be too critical or

needs to be configured very specifically for individual tenants because of their unique deployment

requirements. Again, tenant-specific requirements, such as laws and corporate regulations, may

even further increase the degree of isolation required between tenants. The challenge, therefore,

for a cloud deployment architect would be how to resolve the trade-offs between the required per-

formance, systems resources and access privileges at different levels of an application when opting

for one (or combinations) of the multitenancy patterns for cloud deployment of software tools.

The focus of our work is evaluating the degree of isolation between tenants enabled by mul-

titenancy patterns. Specifically, we are interested in providing empirical evidence of the effect of
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performance and resource utilisation on other tenants due to the high workload created by one of

the tenants. In our work, we implemented multitenancy as a component integrated into an open

source Global Software Development (GSD) tool. Also, our evaluation is done in a real cloud

environment. The application we used for our evaluation is within the domain of software engi-

neering, to emulate a typical software development process. Furthermore, we deployed our GSD

tool to the cloud using cloud multitenancy patterns

2.6 Optimizing Components Deployment for Guaranteeing Multite-

nancy Isolation

This section first describes the conflicting trade-offs that exist when implementing multitenancy

isolation. This is followed by a discussion of related work in optimal deployment and allocation

of cloud resources.

2.6.1 Conflicting Trade-offs in Multitenancy Isolation

When implementing multitenancy, users may require varying or different degrees of isolation be-

tween components. A high degree of isolation between components may be required to avoid

interference, but this usually leads to high resource consumption and running cost per compo-

nent. A low degree of isolation promotes the sharing of components, thus leading to low resource

consumption and running cost, but with a high possibility of performance influence when the

workload changes and the application do not scale up/down.

Therefore, the challenge is how to determine an optimal solution in the presence of trade-offs

between two or more conflicting objectives (Martens et al. 2010) (Legriel et al. 2010). To resolve

this trade-off, the problem is modelled as a multi-objective optimisation problem. Many multi-

objective optimisation problems result in a trade-off situation that involves losing some quality

of one objective function in return for gaining quality in some of the other objective functions

(Martens et al. 2010) (Legriel et al. 2010, Garg, Versteeg & Buyya 2012). In our case, we either

lose resource sharing to gain isolation when implementing dedicated component or lose perfor-

mance interference to gain resource sharing and target a large number of users.
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2.6.2 Related Work on Optimal Deployment and Allocation of Cloud Resources

Research work on optimal deployment and allocation of resources in a cloud environment are quite

significant. However, there is no work undertaken on providing an optimal solution for deploying

components of a cloud-hosted service in a way that guarantees the required degree of multitenancy

isolation.

Fehling et al. argued that the deployment of component instances in a cloud environment can

be optimized by (i) sharing the instances between tenants, especially if the components provide the

same functionality to some of all the tenants, and (ii) sharing the cloud resources that the instances

are hosted on so that the underlying resources are efficiently utilized, thus avoiding deployment

redundancy. Regarding provisioning of application component instances, this can be achieved

by limiting the number of application components deployed exclusively for one tenant (Fehling

et al. 2014).

In (Yusoh & Tang 2012), the authors used an evolutionary algorithm to minimise resource

consumption for SaaS providers and improve execution time. The authors in (Shaikh & Patil 2014)

and (Westermann & Momm 2010) used a multitenant SaaS model to minimise the cost of cloud

infrastructure. Heuristics were not used in this work. The authors in (Candeia, Santos & Lopes

2015) developed a heuristic for capacity planning that is based on a utility model for the SaaS. This

utility model mainly considers the business aspects related to offering a SaaS application with the

aim of increasing profit.

In (Abbott & Fisher 2009), the authors described how the optimal configuration of a virtual

server could be determined, for example, the amount of memory to host an application through a

set of tests. Fehling et al. (Leymann, Fehling, Mietzner, Nowak & Dustdar 2011), considered how

to evaluate the optimal distribution of application components among virtual servers. A closely

related work to ours is that of Aldhalaan and Menasce (Aldhalaan & Menascé 2015b), where the

authors used a simple heuristic (instead of a metaheuristic) search technique based on hill climbing

to minimise the SaaS cloud provider’s cost of using VMs from an IaaS with response time SLAs

constraints.
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2.7 Conclusions from Literature Review

This section summarises our conclusions from the literature review to show the gaps identified

and how these gaps are addressed in the thesis. As stated earlier, the architectures or cloud pat-

terns used in deploying services to the cloud are very important to architects since it determines

whether or not the cloud service will be able to exhibit the required quality attributes. The liter-

ature revealed that existing classifications of cloud patterns do not arrange the individual patterns

into a well-organised hierarchy or taxonomy. This is because most of the patterns tend to handle

multiple architectural concerns (Wilder 2012). This makes it difficult for an architect to decide

whether the implementation of the cloud can be done by modifying the cloud-application itself or

the components of the cloud environment where the application is running.

Most cloud patterns in existing classifications and taxonomies were not applied to any spe-

cific application domain, such as a set of applications or a cloud-hosted GSD tools in software

engineering domain. Some of these taxonomies might be less useful because they ignore some

application-dependent properties such as application architecture, resource consumption and sup-

ported workload and processes that would influence their deployment to the cloud. For instance,

Fehling et al. (Fehling et al. 2014) catalogued a collection of cloud patterns, but these patterns

were not applied to a set application in a specific domain. In other cases, the cloud patterns were

applied to simple web-based applications (e.g., Weblog application (Moyer 2012)) without consid-

ering the different application processes they support. GSD tools may have similar architectural

structure but they (i) support various software development processes, and (ii) impose varying

workloads on the cloud infrastructure, which would influence the choice of a deployment pattern.

For example, Hudson being a compiler/build tool would consume more memory than subversion

when exposed to high intensive workload.

This problem is addressed in chapter 4 by developing a taxonomy and a general process for

selecting applicable deployment patterns together with the supporting technologies for deploying

cloud-hosted services. This taxonomy categorises cloud deployment patterns into the two main

components of an architectural deployment structure: the cloud-application (e.g., multitenancy

patterns) and cloud environment (e.g., content distribution network). Moreover, the practicality of

the taxonomy has been demonstrated by applying it to position a set of Global Software Develop-

ment tools such as Hudson, Subversion, Bugzilla, JIRA and Versionone.
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There are several research work which have established that there are varying degrees of mul-

titenancy isolation. For example, Fehling et al. (Fehling et al. 2014) captured the degree of mul-

titenancy in three cloud patterns: shared component, tenant-isolation component and dedicated

component; and also, suggested that the degree of isolation between tenants is the main factor

that can be used to distinguish between these patterns. However, the various deployment condi-

tions which offer the required degree of isolation are not known. There is no research work that

has empirically evaluated these varying degrees of isolation between tenants for applications in a

particular application domain.

To address this challenge, an approach for implementing multitenancy, termed, COMITRE

(Component-based approach to Multitenancy Isolation through Request Re-routing (COMITRE)

has been developed. This approach is then applied to empirically evaluate the degree of isolation

between tenants enabled by multitenancy patterns within the context of cloud-hosted GSD tools

under different cloud deployment conditions. This study has demonstrated the practicality of the

approach and provided empirical evidence of the effect of performance and resource utilisation on

other tenants due to the high workload created by one of the tenants.

Case studies in software engineering often focus on a particular phenomenon in context, and it

is usually not possible to investigate all aspects of a phenomenon in one case study(Cruzes & Dybå

2010, Cruzes & Dybå 2011). Therefore it is important to adopted strategies for synthesising and

providing new interpretative explanations about existing case studies derived from diverse aspects

of a phenomenon (Cruzes & Dybå 2010, Cruzes & Dybå 2011). To address this challenge, three

case studies were conducted to extend the overall evidence base beyond a single case to empirically

evaluate the effect of varying degrees of multitenancy isolation on the performance and resource

consumption of tenants under different cloud deployment scenarios. After that, a synthesis of

the findings of the three case studies was carried out to provide an explanatory framework and

new insights for explaining the (i) commonalities and differences in the case studies, and (ii) the

trade-offs to consider when implementing multitenancy isolation.

Research on multitenancy isolation has largely focused on isolation at the data tier (Chong

et al. 2017, Vanhove, Vandensteen, Van Seghbroeck, Wauters & De Turck 2014, Schneider &

Uhle 2013, Schiller 2015, Kurmus et al. 2011, Zeng 2016). The main aspect of isolation is usu-

ally performance isolation (Kurmus et al. 2011, Herbst et al. 2016, Krebs 2015). For example the

authors in (Krebs 2015, Krebs et al. 2013) mainly focuses on performance isolation in a multi-
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tenant application in the cloud. Several metrics and techniques such as the relative difference of

the QoS, increased workload on the QoS of the abiding tenants, and the arithmetic mean for dis-

ruptive workloads have been described for quantifying performance isolation in multitenant cloud

applications

The varying degrees of multitenancy isolation based on three multitenancy patterns and dif-

ferent aspects of isolation are described in (Fehling et al. 2014). Guo et al (Guo et al. 2007)

evaluated different isolation capabilities for authentication, information protection, faults, admin-

istration etc. Other work related to multitenancy isolation can be seen in (Krebs et al. 2013)

(Krebs & Loesch 2014). None of the related work (for example, the (Guo et al. 2007, Krebs

et al. 2013, Krebs & Loesch 2014)) considers implementing multitenancy in a way that guarantees

the required degree of isolation between tenants.

This thesis describes the architecture for implementing multitenancy isolation together with

supporting algorithms. It also describes how to determine the isolation level of an application

component or functionality in almost real-time. Similar to our proposed approach, most cloud

providers also implement techniques that can intercept a user request, inspect it, and then decide

what level of isolation is required. This is typically what production systems do across the overall

application logic, for example, when providing subscriptions with different levels of isolation at

different price tiers. However, while carrying out these provisioning and decommissioning opera-

tions, most cloud providers do not guarantee the availability and multitenancy isolation of specific

components/individual IT resources (for example, disk storage), but only for the offering as a

whole (for example, starting new virtual servers). Our algorithm can address this problem by ini-

tially tagging each component and after that identify which isolation level is suitable for deploying

a component based on the metadata of existing components. This will allow the component and

the application to run efficiently and also help in optimising the deployment of components of the

cloud-hosted service.

Research work on optimal deployment and allocation of cloud resources on the cloud are quite

significant. Most of this research focuses on minimising the cost of using the cloud infrastructure

resources (Yusoh & Tang 2012). Previous work does not use metaheuristic to provide optimal

solutions for deploying components of a cloud-hosted service in a way that guarantees the re-

quired degree of multitenancy isolation. Most of the research concerning optimization of cloud

resources do not use heuristic at al, although a few use simple heuristics. For example, the authors
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in (Aldhalaan & Menascé 2015a, Aldhalaan & Menascé 2015b) used a heuristic based on hill

climbing for minimising the cost of a SaaS cloud providers with response time SLAs constraints.

Our work, unlike others, focuses on providing an optimal solution for deploying components of a

cloud-hosted application in a way that guarantees the required degree of multitenancy isolation.

This thesis addresses this problem in chapter seven by developing a model-based decision

support system as a framework for providing near-optimal solutions for deploying components

of a cloud-hosted application that maximises both the required degree of multitenancy isolation

and the number of requests allowed to access the components. In addition, four variants of a

metaheuristic solution (based on simulated annealing and hill climbing) have been developed to

solve the model integrated into the decision support system.

2.8 Chapter Summary

This chapter has reviewed the relevant literature related to our research. Firstly, several studies on

taxonomies and classifications of cloud patterns have been reviewed. It was discovered that many

of these taxonomies were not benchmarked to existing classifications and not applied to applica-

tions in a particular domain. Secondly, related work on implementing varying degrees of multi-

tenancy isolation was discussed. The literature review revealed that approaches for implementing

multitenancy have mostly focused on the data tier, and are mostly directed towards performance

isolation. Although the literature acknowledges that there are varying degrees of multitenancy iso-

lation, their effect on performance and resource consumption on tenants have not been evaluated

empirically on applications in a particular domain. Thirdly, the literature on providing optimal

allocation of cloud resources was reviewed. The review has concluded that research in this area

focused on minimising the cost of deploying cloud resources and does not use metaheuristic for

optimisation. Furthermore, optimisation of cloud resources is not done in a way that guarantees

multitenancy isolation.

These issues are addressed in subsequent chapters (i.e., in chapters four, five, six, and seven)

by: (i) creating and applying a taxonomy of cloud deployment patterns to GSD tools and support-

ing processes; (ii) developing an approach for implementing not just multitenancy, but varying

degrees of multitenancy isolation and applying the approach to three case studies (followed by

a synthesis of the findings of the case studies) that empirically evaluated the varying degrees of
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multitenancy isolation in GSD tools and supporting processes; and (iii) developing a model-based

decision support system for providing optimal solutions for deploying components of a cloud-

hosted service.



Chapter 3

Methodology

3.1 Introduction

In chapter one, it was stated that the main research question addressed in this thesis is how to

architect the deployment of cloud-hosted services for guaranteeing multitenancy isolation. This

question was further broken down into three sub-questions. Each sub-question addresses a differ-

ent but related aspect of the research, hence the need for a combination of more than two research

methods.

This chapter is organised as follows: Section 3.2 introduces the multimethod research method-

ology adopted for the research. After that, Section 3.3 to 3.5 discusses each research method that

make up the multimethod approach. This discussion covers the selection of Global Software De-

velopment tools used for case studies, the experimental setup, procedure and metrics for evaluating

the results. Section 3.6 discusses the motivation for adopting the multimethod approach and how

each research method fits into the overall research process.

3.2 The Multimethod Research Approach

This research adopts the multimethod research method in an interlinked process. Multimethod

research includes the use of more than one method of data collection or research in a study or set

of related studies (Collier & Elman 2008). The basis of the method is to investigate a phenomenon

using a combination of empirical research methods with the intention that the combination of

techniques complement each other. Complementing may take several forms, for example, helping

37
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to confirm research findings, one study being used to generate research hypotheses for another, or

one study being used to help explain the findings of another. It is argued that such an approach can

help limit the effect of threats to experimental validity, which is a particular problem in human-

intensive research areas such as the social sciences and software engineering (Wood, Daly, Miller

& Roper 1999).

Three main research methods are used in this thesis: the exploratory study, case study and case

study synthesis and simulation based on a model. As shown in Figure 3.1, the overall research pro-

cess is divided into three phases, and captures how the three research methods are linked together.

The sections that follow explain the components of each research 1. This is followed by a dis-

cussion on the motivation of using the multimethod research method and then shows how these

different research methods fit into the overall research process.

Figure 3.1: Components of the methodology adopted for the study

3.3 Phase 1: Exploratory Study

The first phase of the research applied an exploratory study. An exploratory study is used to find

out what is happening, seeking new insights, and generating ideas and hypotheses for new research
1The symbols - CI, VC, and BT used in Figure 3.1 refers to continuous integration, version control and bug tracking,

respectively.
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(Runeson & Host 2009). Exploratory studies usually start with a general idea and use research as

a tool to identify issues that could be the focus of future research. The first phase of the research

process is composed of two steps: (i) selecting the software processes and tools used in Global

Software Development; and (ii) exploring the various types of deployment patterns used to deploy

services to the cloud. These steps are summarised below.

3.3.1 Selection of GSD Tools and Processes

An empirical study was conducted to find out: (1) the type of GSD tools used in large-scale

distributed enterprise software development projects; and (2) what tasks they utilise the GSD tools

for. The study produced a set of five GSD processes and supporting tools: JIRA for issue tracking,

VersionOne for agile management, Hudson for continuous integration, Subversion for version

control and Bugzilla for bug tracking (Bass 2014, Ochei, Bass & Petrovski 2015a). Details of the

study are presented in chapter four.

From this dataset, three GSD processes widely used in Global Software Development were

selected: continuous integration, version control and bug tracking. These GSD processes were

chosen for three main reasons: (i) these processes are widely used in GSD; (ii) there are open-

source tools and/or plugins that are specifically developed to support these processes; and (iii) the

open-source tools that support these processes are flexible to customise and extend.

This study used the most-similar technique (that is, purposive, non-random selection proce-

dure) to select the three cases. Random sampling is inappropriate as a selection method (Yin 2014)

for case study research methodology. This is because the selection of cases is not governed by sam-

pling logic and representativeness: rather cases are selected for being typical, critical, revelatory,

or unique in some respect (Yin 2014).

Applications used in software engineering domain were chosen, and in particular, Global soft-

ware development, in order to have a proper basis for comparison and evaluation. The software

processes selected (i.e., continuous integration, version control and bug tracking) were not gen-

eral software processes but were unique in terms of the processes they are associated with, the

way tenants interact with these processes, the type of components they use to store data and the

resources they consume.

It is important to note that the emphasis of this study is not on the GSD tools or plugins but

on the GSD processes they support. These tools may be used for other tasks, but they are primar-
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ily used for a specific software process. For example, Hudson is used primarily for continuous

integration, even though it can be used to trigger other software processes such as issue tracking,

software testing, and continuous deployment. Therefore, our intention was to know how these

processes and the data they generate impact on multitenancy isolation with regard to performance

and resource utilisation.

3.3.2 Exploring Cloud Deployment Patterns

In this step, an exploratory study on cloud deployment patterns was carried out by relying on

secondary research technique which entails reviewing available literature (such as textbooks, aca-

demic journals and conference papers, white papers, technical reports etc.) on similar or related

studies taken and learning from their results. This study produced a taxonomy of deployment pat-

terns together with the supporting technologies for cloud-hosted services. The practicality of the

taxonomy was demonstrated by applying it to position a set of GSD tools on the taxonomy. It is

important to note that the previous step helped select the GSD processes and supporting tools used

to apply against our taxonomy. Furthermore, a general process, CLIP, was created for selecting

applicable deployment patterns using the taxonomy. After that, CLIP was then applied to select

applicable patterns for solving a motivating cloud deployment problem.

As software tools are increasingly being deployed in the cloud to serve multiple users, there

is need not just to implement multitenancy, but to also ensure proper isolation of both the tenant’s

data (e.g., code files) and processes (e.g., builds) associated with these tools. The next phase

of the research focused on multitenancy patterns to evaluate the effect they have on the required

performance, and resource consumption of tenants when there are workload changes.

3.4 Phase 2: Case Study and Case Study Synthesis

The second phase of the research was used to conduct several case studies and after that a synthesis

of findings from the case studies. These procedures are discussed in the sections that follow.

3.4.1 Case Study

Case study research is an empirical study aimed at investigating contemporary phenomena in their

context (Runeson & Host 2009, Yin 2014, Robson & McCartan 2016). Case studies are well suited
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for software engineering research since they study contemporary phenomena in its natural context

(i.e., real-world open-source GSD tools in our case) (Runeson & Host 2009).

The specific design of the case study is multiple-case design with multiple embedded units of

analysis. This case study design represents a form of mixed method research which relies on a

more holistic data collection strategy for studying the main case but then calls upon more quan-

titative techniques(in this case, experimentation) to collect data about the embedded unit(s) of

analysis (Yin 2014). The experiments within the case study enable us to collect data for evaluating

the effect of multitenancy isolation (i.e., based on different multitenancy patterns) on the perfor-

mance and resource consumption of tenants under realistic cloud deployment conditions of GSD

tools.

Figure 3.2 shows a component of the design for the first case study. The context of the case

study is Deployment Patterns for GSD processes. Case study two and three can be captured using

the same diagram by simply replacing the ”‘The Case”’ with multi-tenancy deployment patterns

for the version control system and bug tracking systems, respectively. This study did not rely on

Figure 3.2: Multiple-case (embedded) design adopted for the study

any explicit theory; instead, a frame of reference was developed. Developing a research direction

using theories is not well developed in software engineering (Shull & Feldmann 2008). The term

”frame of reference” as used in this thesis refers to a set of basic assumptions or standards that

govern the way tenants data and processes are isolated when accessing a multitenant application.

In our case, the following assumptions are made: (i) that the varying degrees of multitenancy iso-

lation are captured in three main cloud patterns: shared component, tenant-isolated, and dedicated

component; (ii) shared component represents a low degree of isolation, while dedicated compo-
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nent represents a high degree of isolation; and (iii) each multitenancy pattern has an impact on the

required performance, stored data volume and access privileges of other tenants when one of the

tenants experiences a high workload.

3.4.2 Evaluation of the Case Study

The three case studies were evaluated using the same experimental design, setup, procedure and

statistical analysis. The evaluation of the case studies is summarised in the sections that follow.

Experimental Design

A set of four tenants (T1, T2, T3, and T4) are configured into three groups to access an application

component deployed using three different types of multitenancy patterns (i.e., shared component,

tenant-isolated component, and dedicated component). Each pattern is regarded as a group in

this experiment. Two different scenarios were created for all the tenants. Treatment was created

by configuring T1 so that it will experience a high workload. The details of the scenarios and

treatment are explained in Chapter 5. For each group, one of the four tenants (i.e., T1) is config-

ured to experience a demanding deployment condition (e.g., large instant loads) while accessing

the application component. The performance metrics (e.g., response times) and systems resource

consumption (e.g., CPU) of each tenant are measured before the treatment (pre-test) and after the

treatment (post-test) was introduced.

The aim of the experiment is to evaluate the degrees of isolation enabled by multitenancy patterns

for cloud-hosted GSD tools.

The hypothesis of the experiment is that the performance and system’s resource utilisation expe-

rienced by tenants accessing an application component deployed using each multitenancy pattern

changes significantly from the pre-test to the post-test.

Based on this information, a two-way repeated measures (within-between) ANOVA was adopted

as the experimental design. This experimental design is used when there are two independent vari-

ables (factors) influencing one dependent variable (Verma 2015). In our case, the first factor is the

multitenancy deployment pattern, and the second factor is time. The multitenancy pattern is the

between factor because our interest is in looking at the differences between the groups using dif-

ferent multitenancy patterns for deployment. Time is the within factor because our interest is in
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measuring each group twice (pre-test and post-test). The data view of our experimental design is

composed of a Group column that indicates which of the three groups the data belongs to, and two

columns of actual data, one for the Pre-test and one for the Post-Test.

Experimental Setup

The experimental setup consists of a private cloud setup using Ubuntu Enterprise Cloud (UEC).

UEC is an open-source private cloud software that comes with Eucalyptus (Johnson, Kiran, Murthy,

Suseendran & Yogesh 2016). There are five basic components in UEC’s architecture which are

summarised below:

(i) Cloud Controller(CLC): This is the front end to the entire cloud infrastructure. It provides

an interface to monitor the running instances, the availability and usage of resources in the

cloud.

(ii) Walrus Storage Controller (WS3): This component provides a persistent simple storage ser-

vice using REST and SOAP APIs compatible with S3 APIs.

(iii) Cluster Controller: This component communicates between cloud controllers and node con-

trollers. In addition to this, the cloud controller manages one or more node controllers and

deploys instances on them.

(iv) Storage Controller (SC): The SC provides persistent block storage (like Elastic Block storage

for Amazon Web Services (AWS)) for use by the deployed instances.

(v) Node Controller (NC): The node controller runs on each node of the UEC and controls the

life cycle of all instances. It queries the operating system on each node to determine, for

example, the physical resources of the node, the number of cores, the size of memory, the

available disk space and the state of the VM instances running on each node and then sends

these details to the cluster controller.

Figure 3.3 shows a simple UEC setup with 3 physical machines- one client node and two server

nodes. For our UEC setup, six physical machines were used - one head node and five sub-nodes.

The experimental setup is based on the typical minimal Eucalyptus configuration where all user-

facing and back-end controlling components - (Cloud Controller(CLC), Walrus Storage Controller
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Table 3.1: Hardware and Network Configuration of the UEC

Hardware Settings
HeadNode Sub-nodes

CPU VT extension, 64 bit, mul-
ticore

2 x2 GHz

Memory 4 GB 2 GB
Disk 7200 rpm SATA/SCSI 7200 rpm SATA
Disk Space 80 GB 40
Networking 1 Gbps 1Gbps
Network Settings

HeadNode Sub-nodes
Functionality CLC,WS3,CC,SC NC
No of NICs 2 (eth0 and eth1) 1(eth0)
IP Addresses 10.85.56.4 10.85.56.5-10.85.56.9
Hostname nc1 n1, n2,n3,n4,n5
Name Servers 10.12.5.100-10.12.5.102 10.12.5.100-10.12.5.102
Gateway IP 10.85.56.3 10.85.56.3

(WS3), Cluster Controller (CC), and Storage Controller (SC)) are grouped on the first machine,

and the Node Controller (NC) components are installed on the second physical machine. The

guidelines for installing UEC as outlined in (Pantić & Babar 2012) were followed to extend the

configuration by installing the NC on all the other sub-nodes to achieve scalability. The head node

was also used as the client machine since it does not have to be a dedicated machine. Installing

UEC is like installing Ubuntu server; the only difference is the additional configuration screens for

the UEC components. The Hardware configuration of the head node and sub-nodes is summarised

in Table 3.1.

Figure 3.3: Setup of the UEC used for experiments
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Experimental Procedure

A summary of the experimental procedure is outlined in Figure 3.5. The procedure outlined in

Figure 3.5 captures an abstract summary which runs across all the case studies. However, it does

not show how the GSD tool used for each case study was modified, and the specific details of

how the processes associated the GSD tools were simulated. Chapter 5 describes the experimental

procedure for each case study in more detail. In a nutshell, the GSD tool used for each case study

is modified to support multitenancy isolation. This involved developing a plugin and integrating it

with the GSD tool so that it can be accessed by different tenants. The GSD tool is then bundled as

a VM image and uploaded to a private cloud with a typical minimal UEC configuration.

To evaluate the degree of multitenancy isolation between tenants, four tenants (referred to as

tenant 1, 2, 3, and 4) were configured based on access to the functionality/component of the GSD

tool that is to be served to multiple tenants. Access to this functionality is associated with a tenant

identifier that is attached to every request. Based on this identifier, a tenant-specific configuration

is retrieved from the tenant configuration file and used to adjust the behaviour of the GSD tool’s

functionality that is being accessed.

A remote client machine was used to access the GSD tool running on the instance via its IP

address. Apache JMeter is used as a load balancer as well as a load generator to generate workload

(i.e., requests) to the instance and monitor responses (Erinle 2013). The following system metrics

were collected and analysed:

(i) CPU Usage: The %user values (i.e., the percentage of CPU time spent) reported by SAR

were used to compute the CPU usage.

(ii) System load: The one-minute system load average reported by SAR was used.

(iii) Memory usage: The kbmemused (i.e., the amount of used memory in kilobytes) recorded by

SAR was used.

(iv) Disk I/O: The disks input/output volume reported by SAR was recorded.

(v) Response time: The 90% latency reported by JMeter.

(vi) Throughput: The average throughput reported by JMeter was used.
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(vii) Error %: The percentage of the total number of requests whose response time is unacceptably

slow and above which the request is considered a failure. This is calculated statistically as

the upper bound of the 95% confidence interval of the average response time of all request.

To measure the effect of tenant isolation, tenant 1 was configured in JMeter to simulate a large

instant load by: (i) increasing the number of requests using the thread count and loop count (ii)

increasing the size of the requests by attaching a large file to it; (iii) increasing the speed at which

the requests are sent by reducing the ramp-up period by one-tenth, so that all the requests are

sent ten times faster; and (iv) creating a heavy load burst by adding the Synchronous Timer to

the Samplers in order to add delays between requests, such that a certain number of requests are

fired at the same time. This treatment type is like unpredictable (i.e., sudden increase) workload

(Fehling et al. 2014) and aggressive load (Walraven et al. 2012).

Each tenant request is treated as a transaction composed of all types of request simulated. For

example, when using Hudson for case study one, the HTTP request triggers a build process while

JDBC request logs data into a database which represents an application component that is being

shared by the different tenants. The transaction controller is used to group all the samplers in

order to get the total metrics (e.g., response time) for carrying out the two requests. Figure 3.4

shows the experimental setup used to configure the test plan for the different tenants in Apache

JMeter. The setup values for the experiment are shown in Table 3.2. It is important to note that

Figure 3.4: Experimental Setup

since different processes are being simulated using different GSD tools, the setup values (e.g.,
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Table 3.2: Setup parameters used in the experiments

Parameters Values for Case Study 1 Values for Case Study 2 Values for Case Study 3
No of threads 10 for tenant 1 (i.e., the ten-

ant experiencing high load);
5 for all other tenants

2 for all tenants 5 for all tenants

Thread Loop count 2 5 for all tenants 2 for all tenants
Loop controller
count

10 for HTTP requests of
tenant 1, and 5 for all other
tenants; 200 for JDBC re-
quests of tenant 1, and 100
for all other tenants

4 for tenant 1, and 2 for all
other tenants for each type
of request (HTTP, Bean-
Shell and FTP upload and
FTP download request sam-
plers)

20 for tenant 1 and 10 for all
other tenants for the HTTP
and BeanShell samplers

Ramp-up period 6 seconds for tenant 1, 60
seconds for all other tenants

6 seconds for tenant 1, 60
seconds for all other tenants

6 seconds for tenant 1, 60
seconds for all other tenants

Size of request 1MB for tenant 1, and
200KB for other tenants.

1MB for tenant 1, and
200KB for other tenants.

1MB for tenant 1, and
200KB for other tenants.

thread count, loop count and loop controller count) will vary slightly. To have a balanced basis

for comparison, the workload was carefully varied to cope with the private cloud used in such a

way that: (i) the number of requests sent by tenant 1 (i.e., the tenant that experiences a very high

workload or aggressive load) is two times more, five times heavier, and ten times faster than the

other tenants; and (ii) all other tenants regardless of the type of request being simulated send the

same number of requests.

Ten iterations for each run were performed and the values reported by JMeter used as a mea-

sure for response times, throughput and error%. For system activity, the average CPU, memory,

disk I/O and system load usage at a one-second interval was recorded using the SAR tool. As

the experiments were concerned with determining which tenant changed significantly within each

group/pattern from pre-test to post-test, the mean/average was chosen (instead of the median or

mode) because it is more sensitive to ”outliers”data values at the extremes of a group. That is, the

mean value always reflects the contributions of each of the data values in the groups (i.e., the three

multitenancy patterns - shared component, tenant-isolated component, and dedicated component).

Approach for Statistical Analysis of the Case Study

Based on the information about the experimental design, the two-way Repeated Measures (within-

between) ANOVA was adopted for the statistical analysis. There are two main advantages in

adopting the two-way repeated measures (within-between) ANOVA. The first reason is that of cost

advantage because it does not require many subjects since each subject would be measured twice.

Four subjects (i.e., four tenants) were used in our experiments. The second reason is that this sta-
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1. Prepare the Private Cloud for the Test Run

(a) Create an Ubuntu Virtual Machine Image

(b) Install the modified GSD tool on the image

(c) Upload the Image to UEC

(d) Launch the instance and SSH to the instance

2. Execute the Test Run

(a) Start the GSD tool and view it on a browser

(b) Start JMeter load test on the GSD tool

(c) Start instance monitoring with SAR tool

(d) Stop test run after all responses received

3. Collect Results

(a) Export JMeter and SAR result to text file

(b) Clear previous JMeter and SAR results

(c) Reboot instances for next test run

(d) Repeat step 2 for more runs

Figure 3.5: Experimental Procedure

tistical design eliminates the difficulty of trying to match subjects perfectly between the different

conditions in all respects. By allowing the same subjects in all conditions, there is a significant re-

duction in the variation of scores between groups which is usually due to non-experimental factors

such as random differences between the different subjects (Field 2013). Therefore, since all the

tenants are used in all the conditions, the only difference between a tenant’s effect for the different

conditions would be due to our experimental manipulations (i.e., exposing one of the tenants to a

very high load) (Howitt & Cramer 2011).

The tool used for statistical analysis is SPSS v21. The two-way (within-between) ANOVA

was performed first to determine if the groups had significantly different changes from Pre-test to

Post-test. After that, planned comparisons were carried out involving the following:

(i) a one-way ANOVA followed by Scheffe post hoc tests to determine which groups showed sta-

tistically significant changes relative to the other groups. The Dependent variable (simply called

“Change”), used in the one-way ANOVA test was determined by subtracting the Pre-test from

Post-test values.
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(ii) a paired sample test to determine if the subjects within any particular group changed sig-

nificantly from pre-test to post-test measured at a 95% confidence interval. This would give an

indication as to whether or not the workload created by one of the tenants has affected the perfor-

mance and resource utilisation of other tenants. The “Select Cases” feature in SPSS was used to

select the three tenants (i.e., T2, T3, T4 that did not experience large instant loads) for each pattern

and for each deployment scenario giving a total of 6 cases for each metrics which was measured

(Sheridan & Ong 2011).

After the first two steps outlined above, the plots of estimated marginal means were analysed

(see Figure 5.8 to Figure 5.27) in combination with ANOVA (plus post hoc test) and paired sample

test results from SPSS output. These plots are referred to as the “Estimated Marginal Means of

Change (EMMC)”. Note that the word “Change” refers to the transformed variable used as the

dependent variable in the one-way ANOVA. The plot of EMMC is simply a plot of the mean value

for each combination of factor level.

The quasi-independent variable is nominally scaled in SPSS, and the interpolation line was

changed to a bar chart to give a meaningful interpretation of the result (Sheridan & Ong 2011).

Therefore, each bar chart shows how each pattern performed on the pre-test and the post-test

with each bar representing a group (i.e., 1, 2, and 3 represents the shared component, tenant-

isolated component and dedicated component, respectively). The bar chart also shows which

groups improved significantly relative to the other groups, and the magnitude of that improvement.

Therefore, in a situation where the paired sample test is the same for all groups, the plots of EMMC

can be used to find out the magnitude of change for each group.

The effect of tenant 1 that experiences high load (i.e., T1) on the other three tenants (i.e.,

T2, T3, T4) is summarised in a tabular form for each case study. These tables can be seen in

chapter five. The key used in constructing the table is as follows: YES - represents a significant

change between the metrics measured from pre-test to post -test. NO - represents some level

of change which cannot be regarded as significant; no significant influence on the tenants. The

symbol “-” implies that the standard error of the difference is zero and hence no correlation and

t-test statistics can be produced. This means that the difference between the pre-test and post-test

values are nearly constant with no chance of variability.
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3.4.3 Synthesizing the findings of the Case Studies

Research synthesis is used to summarise, integrate, combine and compare the findings of different

studies on a specific topic or research question (Cruzes & Dybå 2010, Cruzes & Dybå 2011). Case

study synthesis entails organising the relevant evidence extracted from the sources included in the

case studies and then finding a way to organise the evidence. In our research, the case study syn-

thesis involved organising and summarising key aspects of the studies using tables and charts and

figures. There are several methods of conducting case study synthesis, but the most widely used

ones are cross-case analysis, thematic synthesis and narrative synthesis (Cruzes, Dybå, Runeson

& Höst 2015). The method chosen usually depends on the type and scope of evidence required

and the preference of the researcher (Pope, Mays & Popay 2007).

This thesis adopted a hybrid approach which entails using cross-analysis complemented with

narrative synthesis to synthesise the findings of the three primary case studies. Cross-case analysis

was selected because it involves a highly systematic process and allows us to include diverse types

of evidence. Narrative synthesis was chosen because it is very flexible and can cope with a large

evidence base, made up of diverse evidence types (Cruzes et al. 2015).

The case study synthesis is based on three primary case studies which empirically evaluated the

degree of isolation between tenants enabled by multitenancy patterns for Cloud-hosted GSD tools

and processes under different cloud deployment conditions. Case study one involves continuous

integration with Hudson, case study two involves Version Control with FileSystem SCM Plugin,

and case study three involves bug tracking with Bugzilla. These three case studies were conducted

and published separately ((Ochei, Bass & Petrovski 2015c, Ochei, Petrovski & Bass 2015, Ochei,

Bass & Petrovski 2016)).

3.4.4 Drawing Conclusions and Discussing the Implications of the Study

The last step in this case study method involves drawing conclusions and providing an explanatory

framework and new insights into how the required degree of multitenancy isolation affects the

performance and resource consumption of tenants. In developing an explanatory framework, the

different degrees of isolation were mapped to different software processes used in the case study

to the required performance and resources consumption of tenants interacting with the processes.

This step also discusses the challenges, recommendations and trade-offs to be considered in order
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to achieve the required degree of isolation.

3.5 Phase 3: Modelling and Simulation

Phase three of the research was used to conduct modelling and simulation. This entails developing

a model-based decision support (DSS) system for providing near-optimal solutions for deploying

components of a cloud-hosted service in a way that guarantees multitenancy isolation when the

workload of one of the tenants/components experiences a very high workload. Our DSS is a

combination of an open multiclass queueing network (QN) (Menasce, Almeida & Lawrence 2004)

and an optimisation model (based on a multichoice multidimensional knapsack problem (MMKP)

(Martello & Toth 1987)). This phase also involves developing different variants of a metaheuristic

solution for solving the optimisation model integrated into the DSS. It is important to note that

the term simulation as used in this thesis means that the experiments were conducted based on the

model that has been developed. This phase of the research process is covered in chapter seven of

this thesis.

3.5.1 Dataset and Instance Generation

This section discusses the generation and composition of the dataset used for the experiments.

Also discussed is the applicability of the generated instances to real-life cloud deployment scenar-

ios.

Dataset

The dataset used for simulation experiments on the optimisation model were based on a simulation

testbed. There are two datasets used in this study: the MMKP instance file and the workload file.

(a) MMKP Instance file: Due to the unique nature of our problem, the multichoice multidimen-

sional knapsack (MMKP) instances used in the experiments were randomly generated and not

based on a publicly available dataset of MMKP instance. However, the instance was generated

based on the standard approach widely used in literature (Parra-Hernandez & Dimopoulos 2005,

Cherfi & Hifi 2010). The justification for mapping our problem to an MMKP is explained in

Section 7.2.3. The format of the MMKP instance is shown in Figure 3.6. The description of the

MMKP instance format is summarised below:
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(i) the first row contains three values separated by whitespace - the number of component groups

in the MMKP instance, the maximum number of components in each group and the maximum

number of resources supporting each component. The maximum number of resources supporting

each component is four (i.e., represented by CPU, RAM, Disk space and Bandwidth) and remains

the same for all instance types.

(ii) the second row contains four values which represent the limit of each resource support a com-

ponent.

(iii) the third column contains the number of components for the first group.

(iv) the rows that follow contain six properties associated with each component of the group. These

properties are the isolation value of the component, the number of requests allowed to access the

component, and the resource consumption for CPU, RAM, Disk space and Bandwidth which sup-

port the component. So assuming the column contains the value 20, it means that the first group

contains 20 components. Row four to row twenty-three contains the properties associated with

each of the twenty components of the group.

(v) after the row that contains the properties of the last item of group one then follows the number

of items for group two. The format for the remaining groups follows the same pattern. The next

section explains how these values (e.g., the resource capacities and consumption) were generated.

(b) Workload file: Workload file contains the values that are used to simulate the workload offered

to the system. The key values it contains are the arrival rate of requests and the service demands of

each resource supporting the components. The above format of the MMKP instance can be used

to explain the workload file as follows:

(i) the first, second, and third row are the same as in the MMKP instance. (ii) the only difference

is in the composition of the properties that associated with each component. For the workload file,

there are five properties: the arrival rate of the requests to the component and the service demands

CPU, RAM, Disk space and Bandwidth which support the component. The next section explains

how the arrival rate and service demands were generated.

Instance Generation

Several problem instances of various sizes and densities were randomly generated. After that,

these instances were solved using each variant of the metaheuristic. Two categories of instance
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Figure 3.6: Format of the MMKP Instance

were generated and tailored on the instances widely cited in literature: (i) OR benchmark Li-

brary (Beasley 1990) and other standard MMKP benchmarks (CERMSEM 2017, Hifi, Michrafy

& Sbihi 2004, Khan, Li, Manning & Akbar 2002), and (ii) the new irregular benchmarks used

by Shojaei et al. (Eckart & Marco n.d.). These benchmarks are usually used for single objective

problems. This benchmark format was modified and extended to conform to a multiobjective case

by associating each component with two different profit values: isolation values and the average

number of requests (Zitzler & Thiele 1999). The format of the MMKP instance used on running

the simulation experiments is shown in Figure 3.6.

(i) Defining an Instance Generating Function: To generate the values associated with compo-

nents in each class i, the values were first bound with two parameters: vmini and vmaxi . After that,

a uniform generating function was applied to draw values uniformly and randomly within this

interval. The uniform generating function is given as:

pij = U(vmini , vmaxi ) (3.1)
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(ii) Generating Isolation, Number of Requests and Resource Consumption: For isolation, the

values were randomly generated in the interval [1-3]. The value for the average number of request

supported by each item was initially set to zero (0) for all items. This value is updated in the prob-

lem instance by solving the QN model each time the workload changes. This updated instance

is then solved by the metaheuristic to obtain optimal solutions for deploying components to the

cloud. The values of a component’s consumption of CPU, ram, disk capacity, and bandwidth (i.e.,

the weights) were generated in the interval [1-9].

(ii) Generating Resource Capacities: Values for the capacities of a component’s resources (i.e.,

knapsack capacities for CPU, ram, disk and bandwidth) are generated by setting it to half of the

maximum possible resource consumption.

ck =
1

2
×m×R (3.2)

The same principle has been used to generate instances available at OR Benchmark Library, and

also for instances used in (Parra-Hernandez & Dimopoulos 2005, Cherfi & Hifi 2010).

(iv) Generating Workload and Service Demands: For workload, the values were randomly

generated following a Poisson distribution (with mean=3) in the interval [1, 5]. Values for service

demand were in the interval [0.05,0.25]. In this work, the number of resources in each group

is four, which corresponds to the basic resources (CPU, ram, disk, bandwidth) required for a

component to be deployed to the cloud. The notation for each instance is C(n, r, m), where n, r,

and m stands for the number of groups, the number of components in each group, and the number

of resources, respectively.

Applicability of the Generated Instances to Real-life Cloud Deployment Scenario

The MMKP problem instances represent a repository of components configuration that can be used

to deploy components designed to use (or integrate with) a cloud-hosted service. A component

could be a database, database table, a message queue, VM or even Docker container. It is also im-

portant to note that although the weight values (i.e., the resource consumption of the components)

generated in the MMKP instance may appear to be in the same interval, in reality these values



3.5. Phase 3: Modelling and Simulation 55

could be normalised (or transformed) to represent different resources units of the components.

As an illustration, one of Amazon’s EC2 instance types, named ”‘compute optimized (c4.xlarge

model)”’, has the following specification: 4 vCPU, 8 GiB of memory, EBS-optimized only stor-

age (which is similar to an IOPS provisioned on an Amazon Elastic Block store volume (EBS))

and 750 Mbps of dedicated EBS bandwidth (Amazon 2016). An Amazon EBS can be created

with Provisioned IOPS SSD(io1) volumes up to 16 TiB in size. So assuming the weights of a

component on a generated MMKP instance is given as [4, 8, 8, 8], this specification could easily

be transformed to the actual specification of the above named Amazon EC2 instance using this

normalisation format: [CPU, RAM, DISK/2, BANDWIDTH/100]. This means that this particular

component is supported with 4 virtual CPUs, 8GB of memory, 8 TB of disk space and 8 Mbps of

bandwidth. Another approach suggested by Han et al. (Han, Leblet & Simon 2010), is to include

the dimension index k as a parameter of the generating function so that the weight for a dimension

k can be chosen in a range that depends on k for the uniform generating function.

3.5.2 Evaluation Metric and Analysis for Simulation

The model-based decision support system is novel in the sense that it combines a Queuing Net-

work (QN) model and metaheuristics to find optimal solutions for component deployment while

guaranteeing the required degree of multitenancy isolation. Thus, there are no existing approaches

that can be used to make a direct comparison with our novel decision support system. Because

of this, the solutions obtained from our approach were first compared with the optimal solutions

obtained from an exhaustive search of a small problem instance. Thereafter, the obtained solutions

were also compared with the target solution obtained from different problem instances of varying

sizes and densities. The performance indicators considered are:

(1) Quality of Solution: The quality of solutions obtained was measured in terms of the percent

deviation of the obtained solution to the absolute difference of the target/reference solution. This

is given as:
|f(s)− f(s∗)|

f(s∗) (3.3)

where s is the obtained solution and s* is the reference solution obtained from the exhaustive

search (Talbi 2009).
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(2) Robustness: The robustness of the solutions was measured in terms of how sensitive the solu-

tions are, against small deviations in the input data or other parameters; the lower the variability,

the better the robustness (Talbi 2009). Standard deviation of a set of optimal solutions was used

as a measure of this variability.

(3) Computational Effort: The computation effort required to produce the solutions was measured

in terms of the average execution time of the metaheuristic. The execution time for the SA(Greedy

and HC(Greedy) is computed as:

ExecT ime = GreedyT ime+ (FEvalT ime ∗NoFEval) (3.4)

where ExecT ime means the total time to run the metaheuristic, GreedT ime is the time to pro-

duce the initial greedy solution, FEvalT ime is the time to evaluate a randomly generated so-

lution, and NoFEval is the number of function evaluations to reach the target solution. For

SA(Random) and HC(Random), the GreedyT ime is replaced with RandomTime, which is the

time to produce an initial random solution. The NoFEval represents the average number of

function evaluations over 20 runs for each instance size.

Other important metrics computed in addition to the above metric are the success rate and

performance rate of producing the solutions from the different variants of the metaheuristics. The

success rate was measured as the number of successful runs over the total number of runs or trials.

The percent success (i.e., success %) is the percentage number of runs that reached the target

solution over 20 runs/trials.
number of successful runs

total number of runs
(3.5)

The performance rate of our approach when compared to the optimal solution was measured

in terms of the number of successful runs that the target solution has attained over the number of

runs as a function of the number of optimal function evaluations (Talbi 2009). This is given as:

number of successful runs
number of function evaluations× total number of runs

(3.6)

Furthermore, the plots were used to analyse the interaction between the different performance

indicators. For example, a graph of run-time length distribution (RLD) was plotted to analyse the

convergence behaviour of the metaheuristic on the number of function evaluations. RLD indicates



3.5. Phase 3: Modelling and Simulation 57

the probability of reaching a pre-specified objective function value over a specified number of

functional evaluations (Banati & Bajaj 2013, Hoos & Stützle 2004). The probability value (success

rate) is the ratio between the number of runs to find a solution of a certain quality and the total

number of runs. RLD is usually used when time is measured with any architecture-independent

unit, such as the number of evaluations or generations (Barrero, Muñoz, Camacho & R-Moreno

2015, Hoos & Stutzle 1998).

It is important to note that there were limitations in the computational power of the machine

used for the experiments and so the overall computation time required by the optimalDep algo-

rithm to produce the optimal solutions was not considered. To address this challenge, the execu-

tion time of the metaheuristic was measured based on the average number of function evaluations

which is independent of the computer system. In addition to this, the simulation experiments were

performed with very large MMKP problem instances.

Statistical analysis was used to conduct a performance assessment of optimalDep algorithm

(i.e., the main supporting algorithm for the model-based decision support system) when combined

with the different variants of the metaheuristic solution. The two-way ANOVA was adopted to

determine if there is an interaction between the two independent variables (i.e., type of instance

size and variants of metaheuristic) and the dependent variables (i.e., percent deviation, standard

deviation and execution time). The statistical test focused on three performance indicators: quality

of solutions, robustness and computational effort required to produce the solutions.

3.5.3 Applicability of the Experiments and Frameworks in other Cloud Environments

In this thesis, it is important to note that although the experimental procedures and the result-

ing framework (i.e., taxonomy, COMITRE and model-based decision support system) presented

in this thesis are based on the assumption that this research is carried out in a private cloud,

the frameworks are also applicable in other cloud environments such as public cloud and hybrid

clouds. The two possible areas of application are (i) migrating existing service/application and

workloads to a public cloud, (ii) creating a disaster recovery repository for your VM images.

(i) A service/application installed on a Virtual Image (e.g., Ubuntu VM) can be uploaded from

a company’s private cloud infrastructure, an on-premise virtualization or LAN infrastructure to a

public cloud such as Amazon Web Services (AWS) via Amazon EC2 instances. This means that
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it is possible to utilise existing investments in VMs which have been built to meet the users IT

configuration, legal and security requirements. For example, a modified GSD tool can be installed

on a VM image to a produce a VM-based version of the application. Thereafter, the VM-based

version of the GSD tool (together with the workload needed to support it) can be migrated to the

Amazon EC2 using the AWS import/export feature. This is important to preserve the GSD tool

and its settings that have been configured on existing VMs, while at the same time taking advan-

tage of running the GSD tool and its supporting workload in Amazon EC2.

(ii) Our experimental procedures and novel approaches can also be applied in a hybrid scenario.

An example is in the use of a hybrid backup deployment pattern to create a backup and disaster

recovery repository for the VM images installed with GSD tools. That is, the VM images can be

imported from a static on-premise infrastructure to Amazon EC2 for backup and disaster recovery

contingencies. The advantage of this is that in the case of an eventuality, a user can quickly launch

the instances residing on AWS to preserve business continuity while at the same time exporting

them to rebuild the on-premise infrastructure.

3.6 Multimethod Research: combining exploratory study, case study,

case study synthesis, and simulation

As stated in the chapter introduction, this study used the multimethod research methodology. Ac-

cording to Bazeley, multimethod research is when different approaches or methods are used in

parallel or sequence but are not integrated until inferences are being made (Bazeley 2006, Morse

2003). In our case, it means that the exploratory study, case study and the simulation were con-

ducted according to the established research procedures of each method.

It should be noted that multimethod research is different from mixed method research. In

mixed method research, quantitative and qualitative data is collected or analysed in a single study.

Data may be collected concurrently or sequentially, and only the data is integrated at one or more

stages in the process of the research (Teddlie & Tashakkori 2003).
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3.6.1 Motivation

The main motivation for adopting the multimethod research was to achieve both realism and pre-

cision. The rationale for each research method is summarised below:

(1) Exploratory Study: The purpose of using exploratory study was to gather preliminary infor-

mation to help define the problem and suggest hypotheses. As rightly pointed out by Runeson et

al. (2012), our aim was to seek new insights into cloud deployment patterns, and thus generate

ideas and hypotheses for the research (Runeson, Host, Rainer & Regnell 2012).

(2) Case Study: The case study method was chosen to conduct an empirical enquiry to investi-

gate a small number of instances (i.e., the effect of varying degrees of multitenancy isolation in

three case studies involving cloud-hosted GDS tools) of a contemporary software engineering phe-

nomenon within its real-life context using real-world GSD tools deployed in a cloud environment

(Runeson et al. 2012).

(3) Case Study Synthesis: The case studies synthesis was carried out to synthesise the findings

from multiple case studies. This allowed us to derive the commonalities and differences found in

the three case studies conducted. This synthesis also provided an explanatory framework and new

insights on multitenancy isolation under different cloud deployment scenarios.

(4) Simulation based on a model: Simulation allowed us to achieve precision by validating and

experimenting with the model. Also, the simulation allowed us to run experiments on the model

by assuming a large-scale project size and different cloud deployment scenario.

Figure 3.7: Components of the overall research process
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3.6.2 How the different methods fit into the research process

The different research methods (i.e., exploratory study, case study and case study synthesis and

simulation) are used in an interlinked fashion to form the essential components of the overall

research process. It is interlinked because the processes and data collected in one method leads

to the processes and data used in another method. Combining the different research methods

has allowed us to gain synergies, harmonise weaknesses and assess the relative strengths of each

method (Hellstrom & Nilsson 2006).

Figure 3.7 illustrates how the various research methods were combined to form the essential

components of our thesis. This research started from an exploratory study to gather preliminary

information about architectural patterns and cloud patterns to help define the research problem,

suggest hypotheses, and the frame of reference for the research. The key input to the exploratory

stage is data derived from secondary sources especially publications such as textbooks, journal

and conference papers, software manuals, white papers and technical reports. For example, we

searched the cloud patterns described in textbooks and then identified technologies used to support

these technologies. This information will be used to develop the taxonomy and also position a set

of GSD tools on the taxonomy. The key output of the exploratory study (which also represents the

input to the case study and synthesis) are: (i) the dataset of GSD tools and supporting processes,

(ii) taxonomy of cloud deployment patterns together with supporting technologies, (iii) CLIP, a

general process for using the taxonomy to select suitable deployment patterns. The second stage

first used the case study research to conduct several case studies for understanding the context of

the phenomena, identifying and measuring relevant characteristics of the studied system. The key

output of the case study and synthesis stage (which also represents the input to the modelling and

simulation stage) are (i) key resources supporting the components (ii) metrics for measuring tenant

isolation in terms of performance (e.g., response times) and resource consumption (CPU usage).

Finally, the simulation method was used in the third stage to perform simulation experiments based

on the designed model to gain further insights into the behaviour of the system. It allowed us to

conduct experiments by assuming problem instances of varying sizes and densities and different

cloud deployment scenarios. The output of the modelling and simulation stage are (i) the model-

based decision support system which is made up of the QN model and optimisation model plus a

set of metaheuristic for solving the model, and (ii) the optimal solution for deploying services or
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components to the cloud.

3.7 Chapter Summary

This chapter has explained the overall methodology used in this research. The multimethod

method was adopted in this research which entails combining different research methods: ex-

ploratory study, case study and case study synthesis and the simulation method. This chapter has

explained the components of each method, how each method was carried out, and the metrics

used for evaluation. Finally, this chapter discussed the motivation for adopting the multimethod

research and how each method fits into the overall picture of the research process in an interlinked

fashion.

The different research methods were chosen based on the qualities that each research method

can contribute to answering our research question. The exploratory study allowed us to carry

out an empirical study to find out the type of software process and the supporting tools used in

Global Software development projects and also explore the different cloud deployment patterns

for deploying services to the cloud. The case study provided the simulation with an in-depth

understanding of the software processes selected for the research and facilitated the development

of an explanatory framework for understanding how the required degree of multitenancy isolation

affects the performance and resource consumption of tenants. The simulation method allowed us

to achieve precision by validating and experimenting with the model in order provide an optimal

solution for deploying components of a cloud-hosted service.



Chapter 4

Taxonomy of Deployment Patterns for

Cloud-hosted Services

4.1 Introduction

This chapter presents a novel taxonomy together with a general process for guiding architects in

selecting appropriate patterns for deploying applications/services to the cloud. The chapter also

shows how the taxonomy was applied to position a set of Global Software Development tools on

the taxonomy. The findings and discussion reported in this chapter have been published in (Ochei,

Bass & Petrovski 2015a). The report in the paper is presented in this chapter and duly referenced.

In chapter 2 it was stated that collections of cloud patterns exist for describing the cloud, and

how to deploy and use various cloud offerings (Fehling et al. 2014)(Homer et al. 2014). How-

ever, there is little or no research regarding applying these patterns to describe the cloud-specific

properties of applications in the software engineering domain (e.g., collaboration tools for GSD,

hereafter referred to as GSD tools) and the trade-offs to consider during cloud deployment. This

makes it very challenging to know the deployment patterns (together with the technologies) re-

quired for deploying GSD tools to the cloud to support specific software development processes

(e.g., continuous integration (CI) of code files with Hudson).

Motivated by the problem, this chapter explains how to create a taxonomy of deployment pat-

terns for cloud-hosted applications to help software architects select suitable patterns for deploying

GSD tools to the cloud. There are multiple taxonomies developed by researchers to categorise the

62
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cloud computing space into various aspects such as cloud resources provisioned to customers,

features of the cloud environment for research and scientific experimentation, and cloud usage

scenarios (Milenkoski, Iosup, Kounev, Sachs, Rygielski, Ding, Cirne & Rosenberg 2013). This

study considered cloud deployment patterns that could be used to design and deploy applications

to the cloud.

The rest of the chapter is organised as follows: Section 4.1 discusses the approach used in

developing the taxonomy including taxonomy development, description and validation. Section

4.2 discusses the selection of the GSD tools and processes. Section 4.3 is the application of

the taxonomy including positioning a set of GSD tools on the taxonomy and applying a general

process for selecting applicable patterns to a motivating cloud deployment problem. Section 4.4

presents the findings of the study while Section 4.5 discusses the findings of the study. Section 4.6

provides recommendations for using the taxonomy. Section 4.7 summarises the chapter.

4.2 Developing a Taxonomy of Cloud Deployment Pattterns

This section presents the methodology for developing and using the taxonomy, a description of

the taxonomy and applying them against the taxonomy.

4.2.1 Procedure for Developing the Taxonomy

The taxonomy was developed using a modified form of the approach also used by Lilien (Lilien

2007) in his work for building a taxonomy of specialised ad hoc networks and systems for a given

target application class. The approach is summarised in the following steps:

Step 1: Select the target class of Software Tool- The target class is based on the ISO/IEC 12207

taxonomy for the software life cycle process. The following class of tools are excluded: (i) tools

not deployed in a cloud environment (even if they are deployed on a dedicated server to perform

the same function); and (ii) general collaboration tools and development environments (e.g., MS

Word, Eclipse).

Step 2: Determine the requirements for the Taxonomy- The first requirement is that the taxon-

omy should incorporate features that restrict it to GSD tools and Cloud Computing. In this case,
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the taxonomy adopted the ISO/IEC 12207 framework (Portillo-Rodriguez et al. 2010) and NIST

cloud computing definition (Mell & Grance 2011). Secondly, it should capture the components of

an (architectural) deployment structure (Bass et al. 2013) - (i) software elements (i.e., GSD tool

to be deployed) and (ii) external environment (i.e., cloud environment). Therefore, our proposed

taxonomy is a combination of two taxonomies - Taxonomy A, which relates to the components of

the cloud environment (Mell & Grance 2011), and Taxonomy B, which relates to the components

of the cloud application architecture (Fehling et al. 2014).

Step 3: Determine and prioritise the set of all acceptable categories and sub-categories of the

Taxonomy- The categories of the taxonomy are prioritised to reflect the structure of a cloud stack

from physical infrastructure to the software process of the deployed GSD tool. The categories and

sub-categories of the two taxonomies are described as follows:

(1) Application Process: the sub-categories (i.e., project processes, implementation processes and

support processes) represent patterns for handling the workload imposed on the cloud infras-

tructure by the ISO/IEC 12207 software processes supported by GSD tools (Portillo-Rodriguez

et al. 2010). For example, the unpredictable workload pattern described by (Fehling et al. 2014)

can be used to handle the random and sudden increase in the workload of an application or con-

sumption rate of the IT resources.

(2) Core cloud properties: the sub-categories (i.e., rapid elasticity, resource pooling and measured

service) contain patterns used to mitigate the core cloud computing properties of the GSD tools

(Fehling et al. 2014).

(3) Service Model: the sub-categories reflect cloud service models- Software as a Service (SaaS)

provides software that is hosted centrally and licensed on a subscription basis; Platform as a Ser-

vice (PaaS) provides a platform to allow customers to develop, run, and manage hosted services;

Infrastructure as a Service (IaaS) provides virtualized computing resources over the Internet (Mell

& Grance 2011).

(4) Deployment Model: the sub-categories reflect cloud deployment models - private (i.e., a cloud

dedicated to a single organization), community (i.e., a specific community with common concerns

such as security and jurisdiction on share cloud resources), public (i.e., cloud services delivered

to multiple organizations) and hybrid (i.e., combines two or more types of cloud) (Mell & Grance

2011).
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(5) Application Architecture: the sub-categories represent the architectural components that sup-

port a cloud-application such as application components (e.g., presentation, processing, and data

access), multitenancy, and integration. For example, multitenancy patterns are used to deploy a

multitenant application to the cloud in such a way that guarantees varying degrees of isolation

of the users. The three patterns that reflect these degrees of isolation are the shared component,

tenant-isolated component and dedicated component (Fehling et al. 2014).

(6) Cloud Offerings: the sub-categories reflect the major infrastructure cloud offerings that can

be accessed- cloud environment, processing, storage and communication offering (Fehling et al.

2014). For example, patterns that fall under “communication patterns” are probably the best doc-

umented in this group. Examples include Priority Queue (Homer et al. 2014), Queue-centric

workflow, and message-oriented middleware which are used to ensure the reliability of messages

exchanged between users.

(7) Cloud Management: contains patterns used to manage both the components and processes or

runtime challenges of GSD tools. The two sub-categories are - management components, which

are used for managing hardware components (e.g., servers) and management processes, which

are used for managing processes (e.g., database transactions) (Fehling et al. 2014). The node

failure pattern described by Wilder (Wilder 2012) can be used to handle sudden hardware failures.

The “Health Endpoint Monitoring” pattern (Homer et al. 2014) and the “resiliency management”

pattern can be used to handle runtime failures or unexpected software failures.

(8) Composite Cloud: contains compound patterns (i.e., patterns that can be formed by com-

bining other patterns or can be decomposed into separate components). The sub-categories are

decomposition style and hybrid cloud application (Fehling et al. 2014). The patterns under the

decomposition style describe how the software and hardware elements of the cloud environment

are composed (or can be decomposed) into separate components. A well-known example is the

two-tier (or client/server) pattern, in which each component or process on the cloud environment

is either a client or a server. Another example is the multisite deployment pattern (Wilder 2012),

where users form clusters around multiple data centres or are in globally distributed sites. Hybrid

cloud application patterns are integrations of other patterns and environments. For example, the

“hybrid development environment” pattern can be used to integrate various clouds patterns to han-

dle different stages of software development- compilation, testing and production etc.
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Step 4: Determine the space of the Taxonomy- The selected categories and their associated sub-

categories define the space of the taxonomy. The taxonomy (Table 4.1) is composed of 24 sub-

categories, which were systematically integrated and structured into eight high-level categories.

The information that the taxonomy conveys has been arranged into four columns: deployment

components, main categories, sub-categories and related patterns.

4.2.2 Description of the Taxonomy

Table 4.1 shows the taxonomy captured in one piece. The following section describes the key

sections of the taxonomy.

Deployment Components of the Taxonomy: There are two sections of the taxonomy: the upper-

half represents Taxonomy A, which is based on NIST Cloud Computing Definition, while the

lower-half represents Taxonomy B, which is based on the components of a typical cloud applica-

tion architecture. The taxonomy has twenty-four sub-categories, which are structured into eight

high-level categories: four categories each for Taxonomy, A and B.

Hybrid Deployment Requirements: The thick lines (Table 4.1) show the space occupied by pat-

terns used for hybrid deployment scenarios. There are two groups of hybrid-related patterns: one

related to the cloud environment and the other related to the cloud-hosted application. For exam-

ple, the hybrid cloud pattern (i.e., under “hybrid clouds” sub-category of Taxonomy A) is used to

integrate different clouds into a homogenous environment while the hybrid data pattern (i.e., under

“hybrid cloud applications” sub-category of Taxonomy B) is used to distribute the functionality of

a data handling component among different clouds.

Examples of Related Patterns: Entries in the “Related Pattern” column show examples of patterns

drawn from well-known collections of cloud patterns such as (Fehling et al. 2014, Homer et al.

2014, Wilder 2012). The cloud patterns found in these collections may have different names but

they share the same underlying implementation principle. For example, the message-oriented

middle-ware pattern (Fehling et al. 2014) is captured in Homer et al. (Homer et al. 2014) and

Wilder (Wilder 2012) as a Queue-centric workflow pattern and competing consumers pattern,
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respectively.

Table 4.1: Taxonomy of Deployment Patterns for Cloud-hosted Applications

Deployment
Components

Categories of Deployment Patterns Related PatternsMain Categories Sub-Categories

Cloud-hosted
Environment
(Taxonomy A)

Application
Process

Project processes Static workload
Implementation processes Continuously changing workload
Support processes Continuously changing workload

Core Cloud
Properties

Rapid Elasticity Elastic platform,Autoscaling
(Wilder 2012)

Resource Pooling Shared component, Private cloud
Measured Service Elastic Platform, Throttling (Homer

et al. 2014)

Cloud Service
Model

Software resources SaaS
Platform resources PaaS
Infrastructure resources IaaS

Cloud Deployment
Model

Private clouds Private cloud
Community clouds Community cloud
Public clouds Public cloud
Hybrid clouds Hybrid cloud

Cloud-hosted
Application
(Taxonomy B)

Composite Cloud
Application

Hybrid cloud applications Hybrid Processing, Hybrid
Data,Multisite Deployment
(Wilder 2012)

Decomposition style 2-tier/3-tier application, Content
Delivery Network (Wilder 2012)

Cloud
Management

Management Processes Update Transition Process, Sched-
uler Agent (Homer et al. 2014)

Management Components Elastic Manager, Provider Adapter,
External Configuration Store
(Homer et al. 2014)

Cloud Offerings

Communication Offering Virtual Networking, Message-
Oriented Middleware

Storage Offering Block Storage, Database Sharding
(Wilder 2012), Valet Key (Homer
et al. 2014)

Processing Offerings Hypervisor, Map Reduce (Wilder
2012)

Cloud Environment Offer-
ings

Elastic Infrastructure, Elastic Plat-
form, Runtime Reconfiguration
(Homer et al. 2014)

Cloud Application
Architecture

Integration Integration Provider, Restricted
Data Access Component

Multi-tenancy Shared Component, Tenant-
Isolated Component

Application components Stateless Component, User Inter-
face Component

4.2.3 Validation of the Taxonomy

The taxonomy was validated in theory by adopting the approach used by Smite et al. (Smite

et al. 2012) to validate his proposed taxonomy for terminologies in global software engineering.

A taxonomy can be validated with respect to completeness by benchmarking against existing

classifications and demonstrating its utility to classify existing knowledge (Smite et al. 2012).

Taxonomy A is benchmarked to existing classifications: the ISO/IEC 12207 taxonomy of soft-

ware life cycle processes and the components of a cloud model based on NIST cloud computing

definition, NIST SP 800-145. Taxonomy B is benchmarked to components of a cloud application
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architecture such as cloud offering and cloud management, as proposed by Fehling et al. (Fehling

et al. 2014). The collection of patterns in (Fehling et al. 2014) captures all the major components

and processes required to support a typical cloud-based application, such as cloud management

and integration.

The utility of the taxonomy has been demonstrated in Section 4.4.2 by (i) positioning the five

selected GSD tools within the taxonomy; and (ii) applying CLIP to guide an architect in iden-

tifying applicable deployment patterns together with the supporting technologies for deploying

GSD tools to the cloud. Tables 4.3 and 4.4 show that several deployment patterns (chosen from

different studies such as (Fehling et al. 2014, Homer et al. 2014, Wilder 2012)) can be placed in

the sub-categories of our taxonomy. Furthermore, Section 4.4.2 describes CLIP, a general process

for selecting applicable patterns using the taxonomy and then demonstrate its practicality with a

motivating cloud deployment problem in Section 4.4.3.

4.3 GSD Tool Selection

This section explains how the GSD tools and supporting processes used in the study were selected.

4.3.1 Research Site

An empirical study was carried to find out: (1) the type of GSD tools used in large-scale dis-

tributed enterprise software development projects; and (2) what tasks they utilise the GSD tools

for. The study involved eight international companies, and interviews were conducted with 46

practitioners. The study was conducted between January 2010 and May 2012 and then updated

between December 2013 and April 2014. The companies were selected from a population of large

enterprises involved in both onshore and offshore software development projects. The compa-

nies had head offices in countries spread across three continents: Europe (UK), Asia (India), and

North America (USA). Data collection involved document examination/reviews, site visits and

interviews. Further details of the data collection and data analysis procedure used in the empirical

study can be seen in Bass (Bass 2014).
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4.3.2 Derived Dataset of GSD Tools

The selected set of GSD tools are: JIRA (Atlassian.com 2016), VersionOne (VersionOne.com

2017b), Hudson (Moser & O’Brien 2016), Subversion (Collins-Sussman et al. 2004) and Bugzilla

(Bugzilla 2016). These tools were selected for two main reasons: (i) practitioners confirmed

the use of these tools in large-scale geographically distributed enterprise software development

projects (Bass 2014); (ii) the tools represent a mixture of open-source and commercial tools that

support different software development processes; and are associated with stable developer com-

munities (e.g., Mozilla Foundation) and publicly available records (e.g., developer’s websites,

white-papers, manuals). Table 4.2 (another view of the one in (Bass 2014)) shows the participat-

ing companies, projects and the GSD tools they used. A summary of the selected GSD tools is

given below:

JIRA: JIRA is a bug tracking, issue tracking and project management software tool. JIRA prod-

ucts (e.g., JIRA Agile, JIRA Capture) are available as a hosted solution through Atlassian OnDe-

mand, which is a SaaS cloud offering. JIRA is built as a web application with support for plu-

gin/API architecture that allows developers to integrate JIRA with third-party applications such as

Eclipse, IntelliJ IDEA and Subversion (Atlassian.com 2016).

Hudson: Hudson is a Continuous Integration (CI) tool, written in Java, for deployment in a cross-

platform environment. Hudson is hosted partly as an Eclipse Foundation project and partly as a

Java.NET project. It has a rich set of plugins making it easy to integrate with other software tools

(Hudson 2016c). Organisations such as Apple and Oracle use Hudson for setting up production

deployments and automating the management of cloud-based infrastructure (Moser & O’Brien

2016).

VersionOne: VersionOne is an all-in-one agile management tool built to support agile devel-

opment methodologies such as Scrum, Kanban, Lean, and XP (VersionOne.com 2017b). It has

features that support the handling of vast amounts of reports and globally distributed teams in

complex projects covering all aspects of teams, backlog and sprint planning. VersionOne can be

deployed as a SaaS (on-demand) or On-Premises (local) (Versionone.com 2017a).

Subversion: Subversion is a free, open source version control system used for managing files and

directories, and the changes made to them over time (Collins-Sussman et al. 2004). Subversion



4.4. Applying the Taxonomy 70

Table 4.2: Participating Companies, Software Projects, Software-specific Process and GSD tools
used

Companies Projects Software pro-
cess

GSD tool

Company A, Banga-
lore

Web Mail
Web Calendar

Issue tracking
Code integration

JIRA
Hudson

Company B, Banga-
lore

Web Mail
Web Calendar

Issue tracking
Version control

JIRA
Subversion

Company H, Delhi
Customer ser-
vice
Airline

Agile tailoring
Issue tracking

VersionOne
JIRA

Company D, Ban-
galore (Offshore
Provider to Com-
pany E)

Marketing
CRM

version control
Error tracking

Subversion
Bugzilla

Company E, London
Banking
Marketing
CRM

Issue tracking
Agile tailoring
Code Building

JIRA
VersionOne
Hudson

implements a centralised repository architecture whereby a single central server hosts all project

metadata. This facilitates distributed file sharing (Lanubile et al. 2010).

BugZilla: Bugzilla is a Web-based general-purpose bug tracker and testing tool originally devel-

oped and used for the Mozilla project (Bugzilla 2016). Several organisations use Bugzilla as a

bug tracking system for both open sources (Apache, Linux, Open Office) and proprietary projects

(NASA, IBM) (Serrano & Ciordia 2005b).

4.4 Applying the Taxonomy

In this section, our focus is to demonstrate the practicality of the taxonomy in two ways: (i)

positioning the selected GSD tools against the taxonomy (see Table 4.3 and Table 4.4); and (ii)

presenting a process for identifying applicable deployment patterns for cloud deployment of GSD

tools (see Section 4.4.3). This framework may be used for other similar GSD tools not listed in

our dataset.

4.4.1 Positioning GSD Tools on the Taxonomy

The practicality of the taxonomy is demonstrated by applying it to position a selected set of GSD

tools. The collection of patterns from (Fehling et al. 2014) is used as our reference point, and then

complemented the process with patterns from (Homer et al. 2014, Wilder 2012).

The structure of the positioned deployment pattern, in its textual form, is specified as a string

consisting of three sections-(i) Applicable deployment patterns; (ii) Technologies required to sup-

port such implementation; and (iii) Known uses of how the GSD tool (or one of its products)
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implements or supports the implementation of the pattern. In a more general sense, the string can

be represented as: [PATTERN; TECHNOLOGY; KNOWN USE]. When more than one pattern

or technology is applicable, they are separated by commas. Each sub-category of the taxonomy

represents a unique class of a reoccurring cloud deployment problem, while the applicable de-

ployment pattern represents the solution. Table 4.3 and Table 4.4 shows how the GSD tools were

positioned on the taxonomy.

4.4.2 How to Identify Applicable Deployment Patterns using the Taxonomy

Based on the experience gathered from positioning the selected GSD tools on the taxonomy, this

thesis describes CLIP (CLoud-based Identification process for deployment Patterns), a general

process for guiding software architects in selecting applicable cloud deployment patterns for GSD

tools using the taxonomy. The development of CLIP (shown in Figure 4.1 in Business Process

Model and Notation (BPMN)) was inspired by IDAPO. Stol et al. (Stol et al. 2011) used IDAPO

to describe a process for identifying architectural patterns embedded in the design of open-source

software tools.

Figure 4.1: CLIP Framework for Identifying Deploying Patterns

The process of selecting the cloud deployment pattern(s) is an iterative process. The first step

is to (1) find out the main business requirements of the organization. An example of a business

requirement is fast feedback time, secure access to the shared component, and even the require-
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ment of a limited resource. The next step is to (2) gather information about the architectural

structure of the GSD tool. This study recommends the use of IDAPO, a process designed by Stol

el al(Stol et al. 2011) for identifying architectural patterns in open-source software. At the end

of that process, the architect would be able to identify among other things, the type of software

and its domain, the technologies used, components and connectors, data source requirements (e.g.,

database type, data access method, file system etc.), and the default architectural pattern used in

the design of the software.

After gathering information about the architectural structure of the GSD tool, the next step

is to (3) identify all the installation and configuration requirements of the GSD tool. This

information can be obtained directly from the documentation of the GSD tool or by creating a

test application with the GSD tool. Based on the information gathered in the previous steps,

the architect would be able to (4) from the given cloud infrastructure, select a suitable level

of the cloud application stack that will accommodate all the installation and configuration

requirements of the user. If in doubt, it would be recommended that the architect should start

with the first cloud stack level, which is the application level (i.e., GSD tool together with the

software process it supports).

At this stage, the architect has to (5) choose the architectural deployment component of

interest. In the cloud (as in other distributed environments), a cloud deployment pattern targets

either the cloud environment or the cloud application. If the architect is concerned with the cloud

environment, then Taxonomy A should be used to select patterns for mapping business require-

ments to the unchangeable cloud properties, such as the location of the cloud infrastructure. How-

ever, if the architect is concerned with the cloud-hosted application, then Taxonomy B should be

used to select deployment patterns for mitigating cloud properties, for example, the performance

and availability of the cloud application.

The architect should then (6) check for hybrid deployment requirements. Usually, there

are three main requirements that motivate the use of a hybrid-related cloud pattern. These include

(i) elasticity where there is need to increase or decrease the availability of cloud resources; (ii)

accessibility; and (iii) combined assurance of privacy, security and trust (Fehling et al. 2014). For

Taxonomy A, a typical requirement would be the need for integration of multiple clouds into a

homogenous environment (e.g., using the hybrid cloud pattern), while that of Taxonomy B would

be the need for distribution of the functionality/components of the GSD tool among different
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clouds (e.g., using the hybrid processing pattern). In either case, the respective hybrid related

sub-category should be referenced to identify applicable patterns. Otherwise, the architect has to

(7) select a cloud deployment problem that corresponds to the sub-category of the chosen

Taxonomy. The cloud deployment patterns have been arranged into 8 high-level categories and

24 sub-categories that represent a recurring cloud deployment problem.

At this point, the process of selecting suitable deployment patterns involves referencing many

sources of information several times. The architect can map the component/process of the GSD

tool to the resources of the cloud infrastructure. It is recommended that the architect should re-

visit steps 1, 2, and 3. Assuming an architect wants Hudson to communicate with other external

components/applications, then a better deployment pattern of choice would be Virtual Network-

ing (via self-service interface) to allow different users to be isolated from each other, to improve

security and shield users from performance influence. However, if the communication is required

internally to exchange messages between application components, then a message-oriented mid-

dleware would be the obvious choice.

After selection, the (8) patterns have to be validated to ensure that the chosen cloud stack

level can accommodate all the installation and configuration requirements of the GSD tool. This

can be done by mapping the components/process of the GSD tool identified from the previous

steps to the available cloud resources. Another option would be to create a test application with

the GSD tool to check if deploying to the cloud is workable. If validation fails, the architect may

move one level lower in the cloud stack and repeat the process from step 4. Once confirmed, the

(9) selected pattern(s) (together with the use case that gave rise to the selection) should be

registered in a repository for later use by other architects.

4.4.3 Case Study: Selecting Patterns for Automated Build Verification Process

This section presents a simple case study of a cloud deployment problem to illustrate how to use

the process described in this thesis (i.e., CLIP) given our taxonomy to guide in the selection of

applicable pattern for deploying components used in an automated build verification process.

Motivating Problem: A cloud deployment architect intends to deploy a data-handling component

to the cloud so that its functionality can be integrated into a cloud-hosted Continuous Integration

System (e.g., Hudson). The laws and regulations of the company make it liable to archive builds
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of source code once every week and keep it accessible for auditing purposes. Access to the repos-

itory containing the archived source code will be provided solely to certain groups of users. How

can an architect deploy a single instance of this application to the cloud to serve multiple users,

so that the performance and security of a particular user do not affect other users when there is a

change in the workload?

Proposed Solution: This section will explain how to go through the steps outlined in Section

4.4.2 to select an appropriate cloud deployment pattern for handling the above cloud deployment

problem.

Step 1: The key business requirements of this company are: (i) the shared repository that archives

the source code cannot be shared; (ii) a single instance of this application should be deployed to

the cloud to serve multiple users, and (iii) isolation among individual users should be guaranteed.

Step 2: Hudson is a web-based application, and so it can easily be modified to support a 3-tier

architectural pattern. An important component of this architectural pattern is the shared repository

containing the archived data.

Step 3: Information obtained from Hudson documentation suggests that Hudson needs a fast and

reliable communication channel to ensure that data is archived simultaneously between different

environments/clouds.

Step 4: A review of the hardware and software requirements from Hudson documents suggests

that having access to the application level and middle-level of the application stack will be suf-

ficient to provide the configuration requirements for deploying and running Hudson on the given

cloud infrastructure. A self-service interface can be provided as a PaaS (e.g., Amazon’s Elastic

Beanstalk) for configuring the hardware and software requirements of Hudson.

Step 5: The architectural deployment component of interest is the cloud-application itself since

the user has no direct access to the cloud IaaS. Therefore, the architect must select a deployment

pattern that can be implemented at the application level to handle the business requirements of

the company. Based on this information, the architect turns to Taxonomy B, which contain cloud

patterns used to mitigate cloud properties such as performance on the application level. The fact

that the architect is not attempting to integrate two cloud environments further strengthens the

choice of our architectural deployment component of interest.

Step 6: After a careful review of the requirements, the architect concludes that a hybrid-related
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deployment pattern is the most suitable cloud deployment pattern for addressing the requirements

of the customer. It is assumed that the data archived by Hudson contains the source code that

drives a critical function of an application used by the company. Any unauthorised access to it

can be disastrous to the company. The hybrid backup deployment pattern seems to be the most

appropriate in this circumstance. This pattern can be used to extract and archive data to the cloud

environment. Fehling et al. (Fehling et al. 2014) discussed several types of hybrid -related patterns

that can be used at the application level.

Step 7: As the hybrid backup pattern has been selected in the previous step, carrying out step 7 to

select a deployment problem that corresponds to a particular sub-category of the taxonomy is no

longer relevant. However, there are other patterns that can be selected from Taxonomy B for com-

plementary purposes. For example, in a situation where the performance of the communication

channel is an issue, the message-oriented pattern can be used to assure the reliability of messages

sent from several users to access the component that is shared.

Step 8: The selected deployment pattern was validated by carefully reviewing its implementation

to ensure that it can accommodate the user’s configuration requirements and ultimately address the

cloud deployment problem. Hudson and its supporting components are mapped to the available

cloud resources.

Figure 4.2 shows the architecture of the hybrid backup that is proposed for solving the cloud

deployment problem. The architecture consists of two environments: one is a static environment

that hosts Hudson and the other is an elastic cloud environment where the cloud storage offer-

ing (e.g., Amazon’s S3) resides. This static environment represents the company’s Local Area

Network (LAN) that runs Hudson. During Hudson’s configuration on the “Post-build Action”

section, the location of the files to archive should point to the storage offering that resides in the

cloud environment.

The cloud storage (accessed via a REST API) should be configured in such a way that guaran-

tees isolation among the different users. It is assumed that the data handling component is initially

available as a shared component for all users. To ensure that the archived data is not shared by ev-

ery user, the same instance of the shared component can be instantiated and deployed exclusively

for a certain number of users.

From an implementation standpoint, all user id’s associated with each request to Hudson are

captured and those requests with exclusive access rights are then routed to the cloud storage. An
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approach named “COMITRE (Cloud-based approach to Multitenancy Isolation Through Request

RE-routing) is discussed in Ochei et al. (Ochei, Bass & Petrovski 2015c) for deploying a single

instance of Hudson to the cloud for serving multiple users (i.e., multitenancy) in such a way that

guarantees different degrees of isolation among the users.

The different degrees of isolation between users accessing an application component that is

shared is captured in three multitenancy patterns: shared component, tenant-isolated component

and dedicated component (Fehling et al. 2014).

Step 9: Finally, the cloud deployment scenario, the selected patterns together with the imple-

mented architecture is documented for reference and reuse by other architects.

Figure 4.2: Mapping Hudson to Cloud Stack based on Hybrid Backup pattern

4.5 Findings

This section presents the findings obtained by applying the taxonomy against a selected set of GSD

tools: JIRA, VersionOne, Hudson, Subversion and Bugzilla. Refer to Section 4.3.2 for details of

the processes supported by these tools.

(1) Patterns Related to Cloud-Environment or Cloud-Hosted Application: The cloud deployment

patterns featured in Taxonomy A (i.e., the upper part of Table 4.1) relate to the cloud environ-



4.5. Findings 77

ment hosting the application, while the cloud deployment patterns in Taxonomy B (i.e., the lower

part of Table 4.1) relate to the cloud-hosted application itself. For example, the PaaS pattern falls

within Taxonomy B and can be used to provide an execution environment to customers on the

provider-supplied cloud environment. The Elastic platform pattern falls within Taxonomy A and

can be used in the form of a middleware integrated into a cloud-hosted application to provide an

execution environment.

(2) Hybrid-related deployment Patterns: Both taxonomies contain patterns for addressing hybrid

deployment scenarios (i.e., the space demarcated by thick lines). For example, a hybrid cloud

(Taxonomy A) integrates different clouds and static data centres to form a homogeneous hosting

environment, while hybrid data (Taxonomy B) can be used in a scenario where data of varying

sizes generated from a GSD tool resides in an elastic cloud, and the remainder of the application

resides in a static environment.

(3) Patterns for Implementing Elasticity: This study observes that there are patterns that can be

used by GSD tools to address rapid elasticity at all levels of the cloud stack. For example, an

Elastic manager can be used at the application level to monitor the workload experienced by the

GSD tool and its components (based on resource utilisation, the number of messages exchanged

between the components, etc.) to determine how and when to provision or de-provision resources.

Elastic platform and Elastic infrastructure can be used at the platform and infrastructure resources

level, respectively.

(4) Accessing Cloud Storage: The data handling components of most GSD tools are built on block

storage architectures (e.g., relational databases such Oracle and MySQL used within Hudson and

Bugzilla) for storing data, which are directly accessible by the operating system. However, a vast

majority of storage offerings available on the cloud are based on object storage architecture. For

example, Amazon S3, Google Cloud Storage and Windows Azure Blob provide cloud storage to

cloud applications according to the blob storage pattern (Fehling et al. 2014). Blob storage can be

very useful for archiving large data elements (e.g., video, installers, and ISO images) arising from

Hudson builds and test jobs.
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(5) Positioning of GSD tools on the Taxonomy: Tables 4.3 and 4.4 show the findings obtained

by positioning the cloud-hosted GSD tools on each sub-category of the taxonomy. The section

that follows presents a shortlist of these findings to show how to identify applicable deployment

patterns to address a wide variety of deployment problems.

(i) All the GSD tools considered in this study are based on web-based architecture. For exam-

ple, Bugzilla and JIRA are designed as a web-based application, which allows for separation of

the user interface, and processing layers from the database that stores details of bugs/issues being

tracked.

(ii) All the GSD tools support API/Plugin architecture. For example, JIRA supports several APIs

that allow it to be integrated with other GSD tools. The Bugzilla:Web services, a standard API for

external programs to interact with Bugzilla, implies support for a stateless pattern. These APIs

represent known uses of how these deployment patterns are implemented.

(iii) Virtualization is a key supporting technology used in combination with other patterns to

achieve elasticity at all levels of the cloud stack, particularly in ensuring fast provisioning and

de-provisioning of infrastructure resources.

(iv) The GSD tools use Web services (through a REST API in patterns such as integration provider

(Fehling et al. 2014)) to hold external state information, while messaging technology (through

message queues in patterns such as Queue-centric workflow (Wilder 2012) and Queue-based

load leveling (Homer et al. 2014)) is used to exchange information asynchronously between GSD

tools/components.

(vi) Newer commercial GSD tools (JIRA and VersionOne) are directly offered as SaaS on the pub-

lic cloud. On the other hand, older open-source GSD tools (Hudson, Subversion and Bugzilla) are

preferred for private cloud deployment. They are also available on the public cloud, but by third

party cloud providers.

The findings are summarised as follows: Although there are a few patterns that are mutu-

ally exclusive (e.g., stateless versus stateful components, and strict versus eventual consistency
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(Fehling et al. 2014)), most patterns still have to be combined with others (e.g., combining PaaS

with an Elastic platform). These deployment patterns may also use similar technologies such as

REST, messaging and virtualization to facilitate their implementation.

4.6 Recommendations for using the Taxonomy

This section presents a set of recommendations in the form of selection criteria in Table 4.5 to

guide an architect in choosing applicable deployment patterns for deploying any GSD tool.

To further assist the architect in making a good choice, this study describes CLIP (CLoud-

based Identification process for deployment Patterns), a general process for guiding architects in

selecting applicable cloud deployment patterns for GSD tools using our taxonomy. The develop-

ment of CLIP was inspired by IDAPO, a similar process proposed by Stol et al. for identifying

architectural patterns in open source software (Stol et al. 2011).

The key for successfully using CLIP is selecting a suitable level of cloud stack that will ac-

commodate all the configuration requirements of the GSD tool to be selected. The architect has

more flexibility to implement or support the implementation of a deployment pattern when there

is greater “scope of control” of the cloud stack according to either the SaaS, PaaS or IaaS service

delivery model (Badger et al. 2012). For example, to implement the hybrid data pattern (Fehling

et al. 2014) for deploying Hudson to an elastic cloud, the architect would require control of the

infrastructure level of the cloud stack to allow for provisioning and de-provisioning of resources

(e.g., storage, memory, CPU).

4.7 Chapter Summary

This chapter discussed how to create and use a taxonomy of deployment patterns for cloud-hosted

applications to contribute to the literature on cloud deployment of Global Software Engineer-

ing tools. Eight categories that form the taxonomy have been described: Application process,

Cloud properties, Service model, Deployment model, Application architecture, Cloud offerings,

Cloud management, and Composite applications. These categories were further partitioned into

24 sub-categories, which were mapped to the components of an (architectural) deployment struc-

ture. This mapping revealed two component classes: cloud-hosted environment and cloud-hosted
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Table 4.3: Positioning GSD Tools on the Proposed Taxonomy (Taxonomy A)

Category Sub-
Category

JIRA VersionOne Hudson Subversion Bugzilla

Application Process
Project
processes

Static workload,
Continuously
changing work-
load; SaaS; JIRA
used by small no.
of users, issues
tracked reduces over
time(Atlassian.com
2016)

Static workload;
SaaS; VersionOne
is installed for
a small number of
users(VersionOne.com
2017b)

Process not sup-
ported

Process not sup-
ported

Process not sup-
ported

Implementation
processes

Process not sup-
ported

Process not sup-
ported

Continuously
changing work-
load; PaaS; Hudson
builds reduces grad-
ually as project
stabilizes(Moser &
O’Brien 2016)

Process not sup-
ported

Process not sup-
ported

Support pro-
cesses

Process not sup-
ported

Process not sup-
ported

Process not sup-
ported

Static workload,
Continuously
changing work-
load;PaaS, Hy-
pervisor; rate of
code files checked
into Subversion
repository is nearly
constant or reduces
over time(Collins-
Sussman et al. 2004)

Continuously
changing workload;
PaaS,Hypervisor;
Errors tracked
using Bugzilla
reduces over
time(Bugzilla 2016)

Core Cloud
Properties

Rapid Elas-
ticity

Stateless pattern,
Elastic platform;
REST API; JIRA is
installed in cloud as
SaaS(Atlassian.com
2016)

Stateless pattern,
Elastic platform;
REST API; Ver-
sionOne is in-
stalled in cloud as
SaaS(VersionOne.com
2017b)

Elastic infras-
tructure, shared
component; hy-
pervisor; Hudson
server is supported
by hypervisor in a
private cloud(Moser
& O’Brien 2016)

Elastic infras-
tructure, tenant-
isolation com-
ponent; hypervi-
sor; Subversion
repository is sup-
ported by Elastic
infrastructure(Collins-
Sussman et al. 2004)

Stateless pattern;
REST API; Bugzilla
is installed in cloud
as SaaS in private
cloud(Bugzilla 2016)

Resource
Pooling

Hypervisor, Public
Cloud, ; Virtu-
alization; JIRA
deployed on the
public cloud as
SaaS(Atlassian.com
2016)

Hypervisor, Pub-
lic cloud; Vir-
tualization; Ver-
sionOne deployed
on public cloud as
SaaS(VersionOne.com
2017b)

Hypervisor, Tenant-
isolated component;
Virtualization; Hud-
son is deployed on a
hypervisor(Moser &
O’Brien 2016)

Hypervisor, Tenant-
isolated component;
Virtualization;
Subversion is
deployed on a
hypervisor(Atlassian.com
2016)

Hypervisor, Public
cloud; Virtualiza-
tion; Bugzilla de-
ployed on the public
cloud(Bugzilla 2016)

Measured
Service

Static workload,
Elastic Infrastruc-
ture,Throttling
(Homer et al. 2014);
Virtualization;
Small number
JIRA users gener-
ates a nearly constant
workload(Atlassian.com
2016)

Static workload,
Elastic Infrastruc-
ture,Throttling
(Homer et al. 2014);
Virtualization;
Small number
of VersionOne
users generates small
workload(VersionOne.com
2017b)

Static workload,
Elastic Infrastruc-
ture,Throttling
(Homer et al. 2014);
Virtualization;
Hudson can be
supported on public
cloud by elastic
infrastructure(Moser
& O’Brien 2016)

Static workload,
Elastic Infrastruc-
ture,Throttling
(Homer et al. 2014);
Virtualization; Sub-
version can be
supported on pub-
lic cloud by elastic
infrastructure(Collins-
Sussman et al. 2004)

Static work-
load, Elastic
Infrastructure,Throttling(Homer
et al. 2014); Virtu-
alization; Bugzilla
can be supported
on third party pub-
lic cloud by elastic
infrastructure(Bugzilla
2016)

Cloud Service
Model

Software re-
sources

SaaS; Web Ser-
vices, REST; JIRA
OnDemand(Atlassian.com
2016)

SaaS; Web Services,
REST; VersionOne
OnDemand(VersionOne.com
2017b)

SaaS; Web Services,
REST; Hudson is
offered by 3rd party
cloud providers like
CollabNet(CollabNet
n.d.)

SaaS; Web Services,
REST; Subversion is
offered by 3rd party
cloud providers like
CollabNet(CollabNet
n.d.)

SaaS; Web Services,
REST; Bugzilla is
offered by 3rd party
cloud providers like
CollabNet(CollabNet
n.d.)

Platform
resources

PaaS; Elastic
platform, Mes-
sage Queuing;
JIRA Elastic
Bamboo(Atlassian.com
2016)

PaaS; Elastic plat-
form, Message
Queuing; No known
use

PaaS; Elastic plat-
form, Message
Queuing; Build
Doctor and Amazon
EC2 for Hudson

PaaS; Elastic plat-
form, Message
Queuing; Flow
Engine powered
by Jelastic for
Subversion

PaaS; Elastic plat-
form, Message
Queuing; No known
use

Infrastructure
resources

Not applicable Not applicable IaaS; Hypervisor;
Hudson is a dis-
tributed execution
system compris-
ing master/slave
servers(Moser &
O’Brien 2016)

IaaS; Hypervisor;
Subversion can
be deployed on a
hypervisor

Not applicable

Cloud Deployment
Model

Private usage Private cloud; Hy-
pervisor; JIRA can
be deployed on pri-
vate cloud using pri-
vate cloud software
like OpenStack

Private cloud;
Hypervisor;
VersionOne On-
premises(VersionOne.com
2017b)

Private cloud; Hy-
pervisor; Hudson
can be deployed
on private cloud
using private cloud
software

Private cloud; Hy-
pervisor; Subversion
can be deployed on
private cloud using
private cloud soft-
ware

Private cloud; Hy-
pervisor; Bugzilla
can be deployed
on private cloud
using private cloud
software

Community
usage

Community cloud;
SaaS; Bugzilla can
be deployed on pri-
vate cloud

Community cloud;
SaaS; Bugzilla can
be deployed on com-
munity cloud

Community cloud;
SaaS,Paas, IaaS;
Bugzilla can be
deployed on commu-
nity cloud

Community cloud;
SaaS,IaaS; Bugzilla
can be deployed on
community cloud

Community cloud;
SaaS, PaaS; Bugzilla
can be deployed on
community cloud

Public usage Public cloud; SaaS;
JIRA OnDemand
is hosted on public
cloud(Atlassian.com
2016)

Public cloud;
SaaS; VersionOne
is hosted on public
cloud(VersionOne.com
2017b)

Public cloud;
SaaS,PaaS,IaaS;
Hudson is
hosted on public
cloud(via 3rd party
providers)(CollabNet
n.d.)

Public cloud; SaaS,
IaaS; Subversion
is hosted on public
cloud(via 3rd party
providers)(CollabNet
n.d.)

Public cloud; SaaS,
PaaS; Bugzilla is
hosted on public
cloud(via 3rd party
providers)(CollabNet
n.d.)

Hybrid usage Hybrid cloud; SaaS;
JIRA used to track
issues on multiple
clouds

Hybrid cloud; SaaS;
Agile projects are
stored in different
clouds(Collins-
Sussman et al. 2004)

Hybrid cloud;
SaaS,PaaS, IaaS;
Hudson builds done
in separate cloud

Hybrid cloud; SaaS,
IaaS; Subversion
repository resides in
multiple clouds

Hybrid cloud; SaaS,
PaaS;Bugzilla DB
can be stored in
different clouds
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Table 4.4: Positioning GSD Tools on the Proposed Taxonomy (Taxonomy B)

Category Sub-
Category

JIRA VersionOne Hudson Subversion Bugzilla

Application
Architecture

Application
Components

User interface com-
ponent,Stateless;
REST API, AJAX;
State information
in JIRA thru REST
API(Atlassian.com
2016)

User-interface com-
ponent,Stateless;
jQuery AJAX,
REST/Web Service;
VersionOne REST
API(VersionOne.com
2017b)

User-interface com-
ponent,Stateless;
REST API, AJAX;
Hudson Dash-
board pages via
REST(Moser &
O’Brien 2016)

User-interface
compo-
nent,Stateless;REST
API, AJAX; ReSTful
Web Services used
to interact with Sub-
version Repositories
(Collins-Sussman
et al. 2004)

Stateless;
Bugzilla:WebService
API;
Bugzilla::WebService
API(Bugzilla 2016)

Multitenancy Shared component;
Elastic Platform, Hy-
pervisor; JIRA login
system(Atlassian.com
2016)

Shared component;
Hypervisor; Ver-
sionOne supports re-
useable configuration
schemes(VersionOne.com
2017b)

Shared component;
Hypervisor; Hud-
son 3.2.0 supports
multi-tenancy with
Job Group View and
Slave isolation(Moser
& O’Brien 2016)

Tenant Isolated
component; Hy-
pervisor; Global
search/replace
operations are
shielded from cor-
rupting subversion
repository.(Collins-
Sussman et al. 2004)

Shared component;
Hypervisor; Different
users are virtually iso-
lated within Bugzilla
DB(Bugzilla 2016)

Cloud Inte-
gration

Restricted Data
Access compo-
nent, Integration
provider; REST
API; JIRA REST
API is used to inte-
grate JIRA with other
applications(Atlassian.com
2016)

Integration
provider; REST, Web
Services; VersionOne
OpenAgile Integra-
tions platform, REST
Data API for user
stories(VersionOne.com
2017b)

Integration
provider; REST,
Web Services; Sta-
pler component of
Hudson’s architecture
uses REST(Moser &
O’Brien 2016)

Integration
provider; REST, Web
Services; Subversion
API(Collins-Sussman
et al. 2004)

Integration
provider; REST,
Web Services;
Bugzilla::WebService
API(Bugzilla 2016)

Cloud Offering

Cloud en-
vironment
Offering

Elastic platform;
PaaS; JIRA Elastic
Bamboo runs builds
to create instances
of remote agents
in the Amazon
EC2(Atlassian.com
2016)

Integration
provider; REST,
Web Services; Ver-
sionone’s Project
Management tools
are used with
TestComplete for
automated test-
ing environment
(VersionOne.com
2017b)

Elastic Infras-
tructure/Platform,
Node-based Avail-
ability; PaaS,
IaaS; Hudson is a
distributed build
platform with ”mas-
ter/slave” config-
uration (Moser &
O’Brien 2016)

Elastic platform;
PaaS; Subversion
repository can be
accessed by a self-
service interface
hosted on a shared
middleware

Elastic Platform;
PaaS; Bugzilla s
hosted on a mid-
dleware offered by
providers(Bugzilla
2016)

Processing
Offering

Hypervisor; Virtual-
ization; JIRA is de-
ployed on virtualized
hardware

Hypervisor; Virtual-
ization; VersionOne
can be deployed on
virtualized hardware

Hypervisor; Virtual-
ization; Hudson is de-
ployed on virtualized
hardware

Hypervisor; Virtual-
ization; Subversion is
deployed on virtual-
ized hardware

Hypervisor; Virtual-
ization; Bugzilla is
deployed on virtual-
ized hardware

Storage
Offering

Block; Virtualization;
Elastic Bamboo can
access centralized
block storage thru an
API integrated into
an operating system
running on virtual
server(Atlassian.com
2016)

Block storage; Virtu-
alization; VersionOne
can access centralized
block storage thru an
API integrated into
an operating system
running on virtual
server(VersionOne.com
2017b)

Block, Blob storage;
Virtualization; Azure
Blob service used as
a repository of build
artifacts created by a
Hudson

Hypervisor; Virtual-
ization; Subversion
can access centralized
block storage thru an
API integrated into
an operating system
running on virtual
server

Hypervisor; Virtual-
ization; Bugzilla can
access centralized
block storage thru an
API integrated into
an operating system
running on virtual
server

Communication
Offering

Message-Oriented
Middleware;
Message Queu-
ing; JIRA Mail
Queue(Atlassian.com
2016)

Message-Oriented
Middleware; Mes-
sage Queuing;
VersionOne’s
Defect Work
Queues(VersionOne.com
2017b)

Message-Oriented
Middleware, Vir-
tual network-
ing;Message Queu-
ing,Hypervisor;Hudson’s
Execution System
Queuing component

Message-
Oriented Middle-
ware;Message Queu-
ing;Subversion’s
Repository
layer(Collins-
Sussman et al. 2004)

Message-
Oriented Mid-
dleware;Message
Queuing; Bugzilla’s
Mail Transfer
Agent(Bugzilla 2016)

Cloud
Management

Management
Components

Provider Adapter,
Managed Config-
uration, Elastic
manager;RPC,
API; JIRA Connect
Framework(Atlassian.com
2016), JIRA Ad-
vanced configuration

Managed Config-
uration;RPC, API;
VersionOne seg-
regation and appl.
configuration

Elastic load bal-
ancer, watch-
dog;Elastic platform;
Hudson execution
system’s Load Bal-
ancer component)

Managed Config-
uration;RPC, API;
configuration file is
used to configure
how/when builds are
done

Managed Config-
uration;RPC, API;
Bugzilla can use
configuration file
for tracking and
correcting errors

Management
Processes

Elastic management
process;Elasticity
Manager; JIRA
Elastic Bamboo,
and Time Tracking
feature(Atlassian.com
2016)

Elastic management
process;Elasticity
Manager; Ver-
sionOne’s On-
Demand security
platform(VersionOne.com
2017b)

Update Transition
process;Message
Queuing; continu-
ous integration of
codes by Hudson’s
CI server(Moser &
O’Brien 2016)

Update Transition
process;Message
Queuing; contin-
uous updates of
production versions
of the appl. by
Subversion(Collins-
Sussman et al. 2004)

Resiliency man-
agement pro-
cess;Elasticity plat-
form; Bugzilla Bug
monitoring/reporting
feature(Bugzilla
2016)

Composite
Application

Decomposition
Style

3-tier;stateless, pro-
cessing and data
access components;
JIRA is web-based
application(Atlassian.com
2016)

3-tier;stateless, pro-
cessing and data
access components;
VersionOne is a web
application(VersionOne.com
2017b)

3-tier, Content Dist.
Network;user inter-
face, processing, data
access components,
replica distr.; Hudson
is an extensible web
application, code file
replicated on multiple
clouds(Moser &
O’Brien 2016)

3-tier;stateless, pro-
cessing and data
access components;
Subversion is a web-
based application
(Collins-Sussman
et al. 2004)

3-tier;stateless, pro-
cessing and data
access components;
Bugzilla is a web
application(Bugzilla
2016)

Hybrid Cloud
Application

Hybrid process-
ing; processing
component; JIRA
Agile used to track
daily progress
work(Atlassian.com
2016)

Hybrid Develop-
ment Environ-
ment;processing
component; Ver-
sionOne’s OpenAgile
Integration(VersionOne.com
2017b)

Hybrid Data, Hy-
brid Development
Environment;
data access com-
ponent;Separate
environment for
code verification and
testing

Hybrid Data, Hy-
brid Backup; data
access compo-
nent,stateless;Code
files extracted for
external storage

Hybrid Processing;
processing compo-
nent; DB resides in
data center, process-
ing done in elastic
cloud
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Table 4.5: Criteria for Selecting Applicable Patterns for Cloud Deployment of GSD Tools

Category Sub-Category Selection Criteria Applicable Patterns

Application Process
Project Processes Elasticity of the cloud environment is not re-

quired
Static workload

Implementation Pro-
cesses

Expects continuous growth or decline in
workload over time

Continuously changing workload

Support Processes Resources required is nearly con-
stant;continuous decline in workload

Static workload, Continuously changing
workload

Core Cloud
Properties

Rapid Elasticity Explicit requirement for adding or removing
cloud resources

Elastic platform, Elastic Infrastructure

Resource Pooling Sharing of resources on specific cloud stack
level-IaaS, PaaS, SaaS

Hypervisor, Standby Pooling Process

Measured Service Prevent monopolization of resources Elastic Infrastructure, Platform, Throt-
tling/Service Metering(Homer et al. 2014)

Cloud Service
Model

Software Resources No requirement to deploy and configure GSD
tool

Software as a Service

Platform Resources Requirement to develop and deploy GSD tool
and/or components

Platform as a Service

Infrastructure as a
Service

Requires control of infrastructure resources
(e.g., storage, memory) to accommodate con-
figuration requirements of the GSD tool

Infrastructure as a Service

Cloud Deployment
Model

Private Usage Combined assurance of privacy, security and
trust

Private cloud

Community Usage Exclusive access by a community of trusted
collaborative users

Community cloud

Public Usage Accessible to a large group of
users/developers

Public cloud

Hybrid Usage Integration of different clouds and static data
centres to form a homogenous deployment
environment

Hybrid cloud

Application
Architecture

Application Compo-
nents

Maintains no internal state information User Interface component, Stateless pattern

Multitenancy A single instance of an application compo-
nent is used to serve multiple users, depend-
ing on the required degree of tenant isolation

Shared component, tenant-isolated compo-
nent, dedicated component

Integration Integrate GSD tool with different components
residing in multiple clouds

Integration provider, Restricted Data Access
component

Cloud Offering

Cloud environment Requires a cloud environment configured to
suit PaaS or IaaS offering

Elastic platform, elastic infrastructure

Processing Offering Requires functionality to execute workload
on the cloud

Hypervisor

Storage Offering Requires storage of data in cloud Block storage, relational database
Communication Of-
fering

(1) Require exchange of messages internally
between appl. components; (2) Require com-
munication with external components

(1) Message-oriented middleware; (2) Virtual
Networking

Cloud Management Management Com-
ponents

(1) Pattern supports Asynchronous access; (2)
State information is kept externally in a cen-
tral storage

(1) Provider Adapter; Elastic manager; Man-
aged Configuration

Management Pro-
cesses

(1)Application component requires continu-
ous update; (2) Automatic detection and cor-
rection of errors

(1) Update Transition process; (2) Resiliency
management process

Composite
Application

Decomposition
Style

Replication or decomposition of application
functionality/components

(1) 3-tier; (2) Content Distribution Network

Hybrid Cloud Ap-
plication

Require the distribution of functionality
and/or components of the GSD tool among
different clouds

(1) Hybrid processing; (2) Hybrid Data; (3)
Hybrid Backup; (4) Hybrid Development En-
vironment
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application. Cloud-hosted environment and cloud-hosted application classes capture patterns that

can be used to address deployment challenges at the infrastructure level and application level,

respectively.

By positioning a selected set of software tools, JIRA, VersionOne, Hudson, Subversion and

Bugzilla, on the taxonomy, it is easy to identify applicable deployment patterns together with

the supporting technologies for deploying cloud-hosted GSD tools. It was observed that most

deployment patterns are related and can be implemented by combining with others, for example,

in hybrid deployment scenarios to integrate data residing in multiple clouds.

Also, this chapter has described CLIP, a novel approach for selecting applicable cloud deploy-

ment patterns, and after that applied it to a motivating deployment problem involving the cloud

deployment of a GSD tool to serve multiple users in such a way that guarantees isolation among

different users. Recommendations have been provided in a tabular form, which shows the selection

criteria to guide an architect in choosing applicable deployment patterns. Examples of deployment

patterns derived from applying these selection criteria have been presented.



Chapter 5

Case Studies of Degrees of Multitenancy

Isolation using COMITRE Approach

5.1 Introduction

This chapter presents an approach for implementing multitenancy isolation and its application

to three case studies that empirically evaluates the varying degrees of multitenancy isolation for

cloud-hosted GSD processes (i.e., continuous integration, version control and bug tracking). The

three case studies have been published separately in (Ochei, Bass & Petrovski 2015c), (Ochei,

Petrovski & Bass 2015) and (Ochei, Bass & Petrovski 2016). The report in these papers are

presented and duly referenced in this chapter.

In chapter two, it was stated that as software tools used for Global Software Development

(GSD) are increasingly being deployed to the cloud to serve multiple users/tenants, there is need

to implement multitenancy. Multitenancy is an essential architectural practice in cloud computing

that allows a single instance of a service to be used to serve multiple tenants. Since multiple users

are expected to access a shared functionality or resource, therefore in addition to implementing

multitenancy, there is also need to implement multitenancy isolation to ensure that the processes

and data (e.g., source code, bug reports) associated with a particular tenant (or component) does

not affect others. (Fehling et al. 2014) (Bauer & Adams 2012).

This chapter begins by describing an approach for implementing and evaluating the required

degree of multitenancy isolation in Section 5.2. This description covers its architecture and pro-

84
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cedure for implementation, supporting algorithms and problem scenarios for illustrating multite-

nancy isolation. After that, the approach is applied to empirically evaluate the varying degrees of

multitenancy isolation in three case studies. The case studies are continuous integration with Hud-

son (Section 5.3), Version control with File System SCM plugin (Section 5.4) and Bug tracking

with Bugzilla (Section 5.5). Section 5.6 summarises the chapter.

5.2 COMITRE: An Approach for Implementing Multitenancy Isola-

tion

This section describes an approach, known as COMITRE (Component-based approach to multite-

nancy isolation through Request Re-routing) for implementing the required degree of multitenancy

isolation and the supporting algorithms that are integrated into the GSD tools to support the im-

plementation of the varying degrees of multitenancy isolation.

5.2.1 Architecture and Procedure for Implementation

The Component-based approach to multitenancy isolation through Request Re-routing (COMITRE)

is an approach for implementing the varying degrees of multitenancy isolation for cloud-hosted

services/applications. COMITRE can be seen as an abstract format that allows the implementa-

tion of multitenancy isolation in various ways. It captures the essential properties required for

the successful implementation of multitenancy isolation while leaving large degrees of freedom to

cloud deployment architects depending on the required degree of isolation between tenants. Fur-

thermore, our approach can be applied at different levels of the application or cloud stack because

it exploits client transactions/requests by capturing and analysing them. Figure 5.1 captures the

architecture of COMITRE. The approach for implementing the varying degrees of multitenancy

isolation is summarised in the following steps:

Step 1: Define the structure of the tenant request- The structure of the tenant identifier has to be

clearly defined. The tenant identifier can be in various forms such as an IP address, port number,

request header, or a query string attached to the request. Once the format of the tenant identifier has

been chosen, this is then used to define the structure of a typical tenant request. For example, when

using a load generator like Apache JMeter, the tenant identifier can be sent as a parameter along
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with the request which will appear as a query string. The structure of the HTTP request looks like

this: 172.19.1.2:8080/FileTrigger1/build?delay=0sec?tenant1=1. There are other attributes that

can be extracted from a client request such as sessionID used in web service transactions, machine

identifier of the client request (Connolly 2004).

Step 2: Configure Server to re-route tenant request to application component: The next step is

to configure the web server to re-route the server request to a component of the application. This

entails reconfiguring the hosts(file) (hereafter also referred to as tenant-conf file), an operating

system file that maps hostnames to IP addresses. This reconfiguration can be done in two ways:

(i) programmatically configuring the hosts (file) using programming language like Java or even in

bash shell script; (ii) manually entering the tenant identifier into the hosts (file) (/etc/hosts/) so that

the request of all the tenants points to the same IP address of the localhost (usually 127.0.0.1 in

Ubuntu).

Step 3: Create a configuration for each multitenancy pattern: The configuration of each multi-

tenancy pattern (i.e., shared component, tenant-isolated component and dedicated component) is

created. A default configuration is also created to be assigned to every tenant in case a matching

tenant-identifier was not found in the tenant-conf file. These configurations map to the different

degrees of isolation between tenants. Assuming the component to be shared is a database, creating

a configuration for the tenant-isolated component pattern simply translates to having a separate

schemas/tables for each tenant within a single database.

Step 4: Tenant Identification and Resolution: This is a two-step process: (i) capture the incoming

request (e.g., HTTP, FTP, JDBC request); (ii) extract the tenant-identifier (based on the format

defined in step 1) from the request and use it to resolve the identity of each tenant. Assuming the

request is represented in the form of a string, there are various ways to return a new string that is

a substring of this string programmatically depending on the chosen programming language (e.g.,

the substring() in Java).

Step 5: Configure tenant-specific information: Based on this tenant-identifier and its associated

information, a specific configuration is created for each tenant. The configuration includes but is
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not limited to information such as tenant-identifier, tenant request, the required degree of isolation,

and the application component that is to be accessed by the tenant. This component can be in any

tier of the application stack- application tier, middle tier, or data tier.

Step 6: Select matching tenant configuration: From the list of tenants in the tenant-conf file, select

the tenant configuration that matches the tenant-id of the user. The selected tenant configuration is

returned to the tenant that made the request, otherwise the default tenant configuration is returned

if a matching tenant is not found.

Step 7: Send viewable response to the user: The last step is to present the viewable response to

the user. This response is the multitenant component that has been adjusted based on the tenant-

specific configuration.

Figure 5.1: COMITRE Architecture.

5.2.2 Algorithms for Supporting COMITRE

The actual implementation of the COMITRE is anchored on shifting the task of routing a request

from the server to a separate component at the application level of the cloud-hosted GSD tool.

For example, this component could be a program component (e.g., Java class file) or a software

component (e.g., plugin) which can be integrated into the GSD tool. Once the request is re-
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routed to a component and captured, then important attributes of the request can be extracted and

configured to reflect the degree of isolation required by the tenant. The logic that is implemented

in the component is shown in Algorithm 1.

The input to the algorithm is the tenant request and tenant-conf file, while the output is the

multitenant functionality or component that is shared among the different tenants. This input

could be a text file or a database that contains among other things the tenant-identifier, the default

functionality of the applications as well as the functionality that is to be exposed to the different

tenants. Each tenant-specific data should be configured (either manually or programmatically)

before the request for each tenant is sent to the application. Another option could be to update

the “hosts” file (i.e., typically found in the “/etc/hosts” folder on Ubuntu) and add entries for the

IP addresses of other tenants to point to the default IP address of the host. The algorithm begins

by capturing the tenant identifier from an incoming request (e.g., HTTP, FTP, JDBC request).

The tenant identifier could be a query string attached to the URL of each request or an IP address.

Tenant-specific data for each tenant is selected from the configuration file and mapped to the tenant

request which is then used to adjust the behaviour of the functionality or component that is being

shared. If tenant configuration is not found, then the default functionality is returned.

The algorithm presented in this paper captures how to implement the required degree of iso-

lation between tenants using the appropriate multitenancy pattern. The required isolation level of

tenants is set to 1, 2, and 3 for the three different multitenancy patterns. The logic is summarised

as follows: (i) if the isolation level is 1, then a tenant can access the created component regardless

of where is it located; (ii) if the isolation level is 2, then the tenant has to be authenticated first and

assigned a unique tenantID which is then used to adjust the behaviour of the created component;

and (iii) if the isolation level is 3, then the created component is marked as not to be shared with

others, and so is reserved exclusively for one tenant.

Algorithm 1 assumes that the architect specifies the required isolation level for each compo-

nent. However, in a cloud environment, such decisions should be taken in almost real-time, and an

algorithm is needed that can determine which isolation level is best for a component or function-

ality to be created. Algorithm 2 presents an algorithm to determine the isolation level for a tenant

application function based on an existing application component in a component repository. The

input to the algorithm is a component repository and the shared status of the components (i.e.,

whether or not the component can be shared with other tenants). In line 4, if sharedStatus is false,
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then isolation level is set to either 1 or 2; otherwise, control is transferred to line 14-15 to assign

the isolation level 3. The first type of information is whether or not the application component is

similar in functionality or configuration to existing ones. This is captured in line 5-8 of Algorithm

2, where similar components are searched for in the component repository. If components with

similar configurations are found, then isolation level is set to 1 in line 10; otherwise, it is set to 3.

Algorithm 1 COMITRE Algorithm
1: INPUT: tenantRequest, tenantConf-file, isolationLevel, tenantID
2: OUTPUT: multApplFunctn
3: Get tenant identifier from incoming request
4: tenantConf← null
5: share← true
6: Select tenantData from tenantConf-file
7: if tenantData is found then
8: tenantConf← tenantData
9: end if

10: Create defaultApplFunctn
11: multApplFunctn← defaultApplFunctn
12: if tenantConf is not null then
13: if isolationLevel = 1 then
14: Create tenantApplFunctn
15: else if isolationLevel = 2 then
16: Authenticate tenantID
17: Create tenantApplFunctn
18: Adjust tenantApplFunctn with tenantID
19: else if isolationLevel = 3 then
20: Create tenantApplFunctn
21: share← false
22: end if
23: multApplFunctn← tenantApplFunctn
24: end if
25: return multApplFunctn

The algorithms presented in this study require an initial contribution from the software ar-

chitect in the sense that the component should be tagged to differentiate the varying degrees of

isolation. This is at least necessary to populate the component repository and generate initial

metadata for the algorithm. Subsequently, the tagging for each component is done dynamically by

relying on the metadata of existing components in the component repository.

There are several research work on developing approaches for component specification and

retrieval from local and global component repository, which is required in line 5 of Algorithm 2.

Such approaches range from syntax-based (traditional) approaches to semantic-based approaches
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Algorithm 2 IsolationLevel Algorithm
1: INPUT: compRepository, shareStatus
2: OUTPUT: isolationLevel
3: sameConf← false
4: if shareStatus = true then
5: Search compRepository for comp. with similar conf.
6: if similar compConf is found then
7: sameConf← true
8: end if
9: if sameConf = true then

10: isolationLevel = 1
11: else
12: isolationLevel = 2
13: end if
14: else
15: isolationLevel = 3
16: end if
17: return isolationLevel

(Seacord, Hissam & Wallnau 1998, Braga, Mattoso & Werner 2001, Braga, Werner & Mattoso

2006). For example, the Multiple-Viewed and Interrelated Component Specification ontology

model (MVICS) has been proposed and demonstrated to provide an ontology-based architecture

to specify components from a range of perspectives (Li 2012). Further details about how this

approach can be used to achieve the required degree of multitenancy isolation plus a case study

application can be seen in (Ochei, Petrovski & Bass 2016a).

5.2.3 Validating the Implementation of Multitenancy Isolation

Our approach (i.e., COMITRE) for implementing multitenancy isolation is validated both in theory

and in practice. Each application of the approach to a particular multitenancy pattern will result in

a differently looking behaviour of the component that is being shared among the different tenants,

but all applications of the approach will share a common set of desired properties.

Each multitenancy pattern was validated in theory by following the implementation proposed

by Fehling et al (Fehling et al. 2014):

(i) A careful analysis was carried out on the sketch of the architecture proposed for the three mul-

titenancy patterns, the description of the patterns and their behaviour after implementation.

(ii) Our implementation was systematically cross-checked against other implementations of multi-

tenancy architectures and also examined carefully to ensure that our implementation is compliant
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with how tenants access a multitenant component.

From an implementation standpoint, Fehling et al’s (Fehling et al. 2014) explanation of row-

based isolation (i.e., tenants with different tenant-Id’s sharing the same database and table) and

table-based isolation (i.e., tenants sharing the same database, but having different tables) reflects

the shared component and tenant-isolated component respectively. This implementation is similar

to other well-known implementations of multi-tenant (data) architecture (MSDN 2016, Wang et al.

2008).

The practicality of our approach has been demonstrated by applying it to implement vary-

ing degrees of multitenancy isolation on three GSD tools, namely, Hudson (used for continuous

integration), File System Plugin (used for version control) and bugzilla (used for bug tracking).

Experimental results confirm that the approach is a reasonable representation of how tenants in-

teract with a multitenant application. Experts and researchers in the field of cloud deployment

patterns and Global Software Development have confirmed that the implementation of multite-

nancy isolation together with the output represents the behaviour of tenants interacting with a

shared functionality/component of a cloud-hosted service.

5.2.4 Scenarios for Illustrating Multitenancy Isolation

Our implementation of multitenancy isolation captures isolation both at the process level and at

the data levels of a cloud-hosted application. This was achieved by introducing a process and

data-handling component to the GSD tool so that the processes and data of different tenants are

handled in an isolated fashion. For multitenancy isolation at the process level, the component that

is being shared is a lock object, while for isolation at the data level, the component that is being

shared is the database. Figure 5.2 and 5.3 captures the architecture of both implementations.

In addition to capturing isolation at the process and data levels, our implementation also cap-

tures two types of scenario which are consistent with the way tenants (e.g., developers) interact

with GSD tools and supporting processes. These scenarios are summarised below:

(i) Variation in request arrival rate: This scenario represents a case where there is variation in the

frequency with which code changes are committed to the source code to trigger a build process.

Simulating this behaviour in JMeter simply entails adding the Gaussian Random Timer to the

Samplers. Also, the Synchronous Timer was added to the Samplers and the ramp-up period was

reduced by one-tenth so that all the requests are sent ten times faster. The scenario is similar to the
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Figure 5.2: Architecture of Multitenancy Isolation at the Data Level.

Figure 5.3: Architecture of Multitenancy Isolation at the Process Level.

unpredictable (i.e., sudden increase) workload (Fehling et al. 2014) and aggressive load (Walraven

et al. 2012).

(ii) Enabling Locking on processes and data: This scenario illustrates a case where a tenant that

first accesses an application component or process locks (or blocks) it from other tenants until the

transaction commits. This behaviour was simulated in JMeter by setting the transaction isolation
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level to TRANSACTION-SERIALIZABLE for the JDBC request.

5.3 Case Study 1 - Continuous Integration

This case study is based on continuous integration process using Hudson to show how the varying

degrees of multitenancy isolation affect the performance and resource consumption of tenants.

5.3.1 Implementing Multitenancy Isolation in Hudson

Hudson is a continuous integration server, written in Java for deployment in a cross-platform

environment. It has a rich set of plugins making it easy to integrate with other software tools

(Hudson 2017). Large organisations such as Apple and Oracle use Hudson for setting up pro-

duction deployments and automating the management of cloud-based infrastructure (Moser &

O’Brien 2016). The main scenario of interest to us is capturing the isolation of a tenant’s data and

process during automated build verification and testing, an essential development practice when

using a continuous integration system.

Multitenancy isolation was implemented by modifying Hudson using the Hudson’s Files-

Found-Trigger plugin, which polls one or more directories and starts a build if certain files are

found within those directories (Hudson 2016a). This involved introducing a Java class into the

plugin that accepts a filename as an argument. During execution, the plugin is loaded into a sep-

arate class loader to avoid conflict with Hudson’s core functionality. Again, during the build pro-

cess, data is logged into a database every time a change is detected in the file. To simulate locking,

the concept of database isolation level is introduced. This concept is used to control the degree of

locking that occurs when selecting or updating data in a database. The database component of the

application was set to the highest isolation level: SERIALIZABLE level, to evaluate the impact of

the lock duration when locks on data are held until the transaction completes (Oracle 2017).

5.3.2 Experimental Procedure for Case study 1

A file is pushed to a Hudson repository to trigger a build process that executes an Apache JMeter

test plan configured for each tenant. Each VM instance is installed with a SAR tool (from Red

Hat sysstat package) and a Linux du command to monitor and collect system activity information.
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Every tenant executes its JMeter test plan which represents the different configurations of the

multitenancy patterns.

All the tenants simultaneously send requests to Hudson. To measure the effect of tenant iso-

lation, a tenant that experiences intense or aggressive workload is introduced. All other tenants

experience the same normal load which is set to just below the maximum capacity of the system

determined separately through repeated test runs. For each test run, the same number of requests

are sent by all the tenants except the one that is experiencing a large intense and aggressive load.

This means that the total number of requests for each run is spread over the different tenants.

Each tenant request is treated as a transaction composed of the two types of request: HTTP

request and JDBC request. The HTTP request triggers a build process while JDBC request logs

data into the database which represents an application component that is being shared by the

different tenants. A Transaction controller was introduced to group all the samplers to get a total

metrics (e.g., response time) for carrying out the two requests.

Ten iterations were performed for each run and the values reported by JMeter were used as

a measure for response times, throughput and error%. For system activity, the average CPU,

memory, disk I/O and system load usage at a one-second interval was reported. The initial setup

values for the experiment are presented in Table 3.2. With this setup, it means that for each run the

tenant experiencing high load receives twice the number of requests received by each of the other

tenants, and the requests are sent ten times faster to simulate an aggressive load.

5.3.3 Results for Case Study 1

The results of the case study are analysed based on the results of the paired sample t-test shown

in Table 5.1, and supplemented with information from the plots of Estimated Marginal Means

of Change(EMMC)1. The keys used in constructing the paired sample t-test table are explained

in Section 3.2.2. Figure 5.5 to Figure 5.17 show the plots of the estimated marginal means of

change2.

(1) Response times and Error%: Table 5.1 shows that the response times and error% of tenants

did not change significantly except for the dedicated component. The plot of the EMMC revealed

that the magnitude of change for response times showed a much larger change for the dedicated
1The word ”Change in the acronym EMMC refers to the dependent variable used for paired sample t-test.
2The symbol CS1 used in Figure 5.4-5.17 stands for Case Study 1 under scenario 1.
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Figure 5.4: Response Time Changes [CS1] Figure 5.5: Response Time Changes [CS1]

Figure 5.6: Changes in Error% [CS1] Figure 5.7: Throughput Changes [CS1]

Figure 5.8: Changes in CPU [CS1] Figure 5.9: Changes in Memory [CS1]
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Table 5.1: Paired Sample Test Analysis for Case Study 1

Pattern Response
times

Error% Throughput CPU Memory Disk I/O System
Load

Shared NO NO YES YES YES NO -
Tenant-
isolated

NO - YES NO YES YES -

Dedicated YES YES YES NO YES - -

Figure 5.10: Changes in Disk I/O [CS1] Figure 5.11: System Load [CS1]

component. This is due to the overhead incurred because of opening multiple connections to the

database each time a JDBC request is made to a different database. For error%, the magnitude

of change was larger for tenants deployed based on the shared component than for other patterns.

A possible explanation for this is that there is resource contention since multiple connections are

opened while sending requests that log all the data into the same component (i.e., database table)

that is being shared. Overall, this causes delay in completion times thereby producing a negative

effect on error%.

(2) Throughput: The paired sample test result showed that the throughput changed significantly,

implying a low degree of isolation. In this situation, the shared component is not recommended

for avoiding a situation where requests are struggling to gain access to the same application com-

ponent, thereby resulting in some request either being delayed or rejected. For a tenant-isolated

component and dedicated component, there would be not much change in throughput because re-

quests are not concentrated on one application component but instead are directed to the separate

components reserved for different tenants. Throughput can be likened to bandwidth, and so it

means that the bandwidth was not sufficiently large to cope with the size, number and frequency

of requests sent to the CI system.
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(3) CPU and System Load: The paired sample test showed that CPU consumption of tenants did

not change significantly for most patterns except for the shared component. Therefore, once a

reasonable CPU size (e.g., multiple CPUs or a multi-core CPU) is used, there should be no prob-

lem in performing builds. Builders are not known to consume much CPU. For example, Hudson

does not consume much CPU; a build process can even be setup to run in the background without

interfering with other processes (Moser & O’Brien 2016).

One of the most significant findings of this study is that the system load did not influence any of

the patterns. The paired sample test results were similar in all patterns; that is, the standard error

difference was the same for tenants (or components) deployed using all the three multitenancy

patterns. This result shows that the system load was nearly constant with no variability in the

values from pretest to post-test. Therefore, in a real cloud deployment, the system load would not

be a problem especially if CPU is reasonably large enough to allow the application to scale well.

(4) Memory: The paired sample test result showed that there was a significant change in memory

consumption for all three patterns. Complex and difficult builds are those that are composed of

a vast number of modular components including different frameworks, components developed

by different teams or vendors, and open source libraries (Electric-Cloud 2016). Compilers and

builders consume a lot of memory especially if the build is difficult and complex (Moser & O’Brien

2016). In a large project, it is expected that multiple builds will interact with multiple components

to create several dependencies and supported behaviour with each other thereby making builds

difficult and complex.

(5) Disk I/O: Compilers and builders are known to consume disk I/O especially for I/O intensive

builds (Moser & O’Brien 2016). The results show that only the shared component showed no

significant change in disk I/O usage. This is understandable because multiple transactions are

channelled to the same component which would either be delayed or blocked because of sharing

the components. Further analysis of the plot of the EMMC confirmed that the magnitude of change

for the shared component was the least, and therefore is recommended for builds that particularly

involve intensive I/O activity especially when locking is enabled.
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5.4 Case Study 2 - Version Control

This case study is based on a version control process using File System SCM Plugin integrated

into Hudson to show how the varying degrees of multitenancy isolation affect the performance and

resource consumption of tenants.

5.4.1 Implementing Multitenancy Isolation in File System SCM Plugin

The File System SCM plugin was used in the case study to illustrate the version control process

because our interest was in simulating the process on a local development machine. Specifically,

our aim was to point a build configuration to the locally checked out code and modified files on a

shared repository residing on a private cloud. Filesystem SCM plugin can be used to simulate the

file system as a source control management (SCM) system by detecting changes such as the file

system’s last modified date (Hudson 2016a). This plugin can be integrated into several GSD tools:

continuous integration systems (e.g., Hudson), version control systems (e.g., Perforce, Git) and an

error/issue tracking system (e.g., JIRA).

The File System SCM plugin was integrated into Hudson to represent a scenario where a

code file is checked into a shared repository for Hudson to build. Multitenancy isolation was then

implemented by modifying this plugin within Hudson. This involved introducing a Java class into

the plugin that accepts a file path and the type of file(s) that should be included when checking out

from the repository into Hudson workspace. During execution, the plugin is loaded into a separate

class loader to avoid conflict with Hudson’s core functionality.

5.4.2 Experimental Procedure for Case Study 2

A typical version control process involves a combination of continuous integration (i.e., building a

code file), checkouts (i.e., file download), check-ins (i.e., file upload), and updating and synchro-

nising files with the latest version from the repository. The experimental procedure translates into

the following steps:

1. The first step is to put a new file in the repository for the first time. To achieve this, the HTTP

request sampler in JMeter was used to send requests to Hudson to trigger a build. Within Hudson,

the ”Execute Shell” feature was used to execute a shell script. This shell script simply selects the

initial contents of a MySQL database (i.e., used here to represent a shared data handling compo-
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nent) and then outputs it into two separate files (referred to as file1 and file2). The first file (i.e.,

file1) represents the local working copy and the second file (i.e., file2) represent the main copy.

2. The second step is to checkout the copy of the new file to the local machine. To implement this

in JMeter, the FTP request sampler was used and the get (RETR) selected to download the file

from the repository. In effect, this action downloads file1 from the repository into a local machine

and saves it as file3.

3.The third step involves making changes to the file by inserting records into the Mysql database

and then outputting the latest content to the local working copy. This is simulated by using the

BeanShell Sampler in JMeter to invoke a custom Java class. This Java class is specifically written

to insert records into the MySQL database, and then to update file3 with the latest content of the

database.

4.The last step is to checkin file3 back into the repository with a timestamp message (”Row added

at 2015-01-01-00.00.01”). To implement this in JMeter, the FTP request sampler is used and then

the put (STOR) is selected to upload the file to the repository and append the content to file2.

Each tenant request is treated as a transaction composed of the three types of request: HTTP

request, FTP request, and File I/O operation. The JMeter Transaction controller is introduced to

take the aggregate measurement of all the requests involved in the end-to-end action sequence of

the scenario. The initial setup values for the experiment are presented in Table 3.2. With this

setup, it means that in each run the tenant experiencing high load (i.e., tenant 1) receives twice the

number of requests received by each of the other tenants, and the requests are sent ten times faster

to simulate an aggressive load.

Ten iterations were performed for each run and the values reported by JMeter were used as a

measure for response times, throughput and error%. The error% is computed as the percentage of

the total number of requests (i.e., in the end-to-end sequence of version control process) whose re-

sponse time is unacceptably slow and above which the request is considered a failure. Statistically,

this translates to a response time greater than the upper bound of the 95% confidence interval of

the average response time of all requests. For system activity, the average CPU, memory, disk I/O

and system load usage at a one-second interval was reported.
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5.4.3 Results for Case Study 2

The results of the case study are analysed based on the paired sample t-test supplemented with

information from the plots of Estimated Marginal Means of Change(EMMC).

(1) Response times and Error%: The paired sample test results showed that response times

changed significantly for most of the patterns. As expected, the plot of the EMMC demonstrated

that the magnitude of change for response times was much higher for the shared component and

the tenant-isolated component. The results seem to show that there were no long delays that af-

fected the error% rate. The error% showed no significant change based on the paired sample t-test.

One aspect where error% (i.e., unacceptably slow response times) is known to have an impact is

when committing a large number of files to a repository that is directly based on the native OS file

system (e.g., FSFS). Delays usually arise when finalising a commit operation which could cause

tenants requests to time out while waiting for a response.

(2) Throughput: The paired sample t-test results show that throughput changed significantly for

all the patterns. Further analysis of the plots of the EMMC showed that the magnitude of change

for the shared component was much higher than the other patterns. Since locking was enabled,

it seems to show that it had an adverse impact on a tenant deployed based on shared component.

Therefore, the dedicated component would be recommended for tenants accessing bugs, especially

if the bugs are stored in a database with locking enabled.

(3) CPU and System Load: The paired sample t-test showed that CPU changed significantly for

all patterns. A possible reason for this is the overhead incurred in transferring data from the shared

repository based on FSFS to the database (i.e., MySQL). The plot of the EMMC showed that the

magnitude of change in CPU increased steadily across the three patterns with the dedicated com-

ponent being the most influenced. Therefore, if there is need to avoid high CPU consumption, then

the dedicated component is therefore not recommended for version control. This is because stor-

ing or retrieving bugs could involve locking or blocking other tenants from accessing a component

that is being shared.

Table 5.2 shows that system load was nearly constant with no chance of variability, and so

this means that system load did not influence any of the patterns. Therefore, with a reasonably

high-speed network connection and CPU size, there should be no problem with system load when

sending data across a shared repository residing in a company’s LAN or VPN.
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Table 5.2: Paired Sample Test Analysis for Case Study 2

Pattern Response
times

Error% Throughput CPU Memory Disk I/O System
Load

Shared YES NO YES YES YES YES -
Tenant-
isolated

NO NO YES YES YES YES YES

Dedicated YES NO YES YES YES YES -

(4) Memory and Disk I/O: Memory consumption changed significantly for all patterns based on

the paired sample t-test result. The plot of the EMMC showed that the magnitude of change for

the shared component was higher than the other patterns. Therefore, the shared component would

not be recommended when there is a need for better memory utilisation. The paired sample t-test

revealed that the usage of disk I/O by tenants changed significantly from pre-test to post-test for

all the patterns. This is due to the intense frequency of the I/O activities in the disk because of the

file upload and download operations. The dedicated component would be recommended since this

would allow each tenant to have exclusive access to the component being shared, thereby reducing

a possible contention for disk I/O and other resources when the number and frequency of request

increase suddenly.

5.5 Case Study 3 - Bug Tracking with Bugzilla

This case study is based on bug/issue tracking process using Bugzilla to show how the varying

degrees of multitenancy isolation affect the performance and resource consumption of tenants.

5.5.1 Implementing Multitenancy Isolation in Bugzilla

Bugzilla was modified using the recommended Bugzilla Extension mechanism. Extensions can be

used to modify either the source code or user interface of Bugzilla, which can then be distributed

to other users and re-used in later versions of Bugzilla. Bugzilla maintains a list of hooks which

represent areas in Bugzilla that an extension can hook into, thereby allowing the extension to

perform any required action during that point in Bugzilla’s extension (Bugzilla 2016).

For our experiments, a special extension was written and then ”‘hooked”’ into Bugzilla using

the hook named install before final checks. This hook allows the execution of custom code before

the final checks are done in checksetup.pl, and so the COMITRE algorithm was implemented in

this hook.
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Figure 5.12: Changes in Response Times [CS2] Figure 5.13: Changes in Response Times [CS2]

Figure 5.14: Changes in Error% [CS2] Figure 5.15: Changes in Throughput [CS2]

Figure 5.16: Changes in CPU [CS2] Figure 5.17: Changes in Memory [CS2]
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Figure 5.18: Changes in Disk I/O [CS2] Figure 5.19: Changes in System Load [CS2]

5.5.2 Experimental Procedure for Case Study 3

The two main processes of interest to be captured in Bugzilla are: (i) creating a bug, and (ii) adding

an attachment specific to a bug. Creating a simple bug with attachment in Bugzilla requires access

to three main tables: bugs, attachments and attach data. Most bug tracking systems like JIRA

and Bugzilla use a database to store bugs/issues created by users during the software development

process. Simulating this in Apache JMeter entails using the JMeter BeanShell sampler to invoke

two separate custom Java classes that run a query that: (i) inserts multiple bugs with large attach-

ments into the Bugzilla database concurrently; and (ii) sets the database transaction isolation level

to SERIALIZABLE (i.e., the highest isolation level) during bug creation with attachment.

Our experimental procedure captures a scenario that involves variation in the frequency with

which large instant bugs are submitted concurrently to a database when support for locking is

enabled. Locking, in this case, is used to prevent conflicts between multiple tenants attempting

to access a bug database. This type of scenario is very important in distributed bug tracking in

which some bug trackers such as Fossil and Veracity, are either integrated with or designed to

use distributed version control systems or continuous integration systems, thus allowing bugs to

be generated automatically and added to the database at varying frequencies (Corbet 2009). To

measure the effect of isolation between tenants, one of the tenants is configured to simulate large

instance loads as explained in section 3.2.2. The experimental setting is also presented in section

3.2.2.
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5.5.3 Results for Case Study 3

This section presents a summary of the experimental results for case study 3. The results for the

paired sample t-test are summarised in Table 5.3, while the plots of the estimated marginal means

of change are shown in Figures 5.20 - 5.27

(1) Response times and Error%: From plots of the estimated marginal means of change (EMMC),

it can be seen that the dedicated component showed a lower magnitude of change in response

time, and it is recommended for achieving isolation between tenants accessing bugs in a database

with locking enabled. However, the plots of EMMC show that the number of requests with unac-

ceptable response times was much higher for shared components compared to tenant-isolated and

dedicated components. This is possibly due to the effect of locking on the database which causes

a delay in the time it takes for requests to be committed. Using the dedicated component ensures

a high degree of isolation, but with limitations of increased resource consumption (e.g., memory

and disk I/O). To address this challenge, it is suggested storing large bug attachments on the disk

and then storing the links to these files on the bug database to improve performance, especially

when retrieving data.

(2) Throughput: The paired sample test result showed that there was no significant change in

throughput for most of the patterns unlike two previous case studies. This result is similar to that

of the two previous case studies where throughput was relatively stable. The implication of this is

that if the component being shared is a database, then throughput should not be expected to change

drastically. Based on the plot of the EMMC, the shared component would be recommended when

bugs are stored in a database with locking enabled.

(3) CPU and System Load: The results of the paired sample test show that there was a significant

change in CPU for all the patterns. By analysing the plots of the EMMC, the results show that

the dedicated component changed the most and so would not be recommended if optimising CPU

usage is a key requirement. As with other case study results, there was no influence on any of the

patterns for system load. The plots of EMMC showed that system load increased steadily across

the patterns from shared component to dedicated component.

(4) Memory and Disk I/O: The paired sample test for both the memory and disk I/O showed a

highly significant difference from pretest to post-test both for memory and disk I/O. For memory,

the plot of the EMMC similarly showed that the dedicated component had the highest significant
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Table 5.3: Paired Sample Test Analysis for Case Study 3

Pattern Response
times

Error% Throughput CPU Memory Disk I/O System
Load

Shared NO YES NO YES YES YES -
Tenant-
isolated

YES YES YES YES YES YES -

Dedicated NO NO NO YES YES YES -

change compared to the other patterns. This is possibly due to running Bugzilla under mod perl

environment, and so using a dedicated component would not be a good option for optimising sys-

tem resources. It is well known that running Bugzilla in mod perl environment consumes a lot

of RAM (Bugzilla 2016). The significant change in disk I/O consumption is due to the intense

frequency of read/write activities in the database. For disk I/O consumption, having enough stor-

age space would be required, especially if a large volume of bugs with attachments is expected. If

a large number of users are expected, then applying disk space saving measures such as purging

unwanted error or log files regularly could reduce disk I/O consumption and improve the chance

of having a higher degree of isolation.

5.6 Chapter Summary

This chapter first presented a novel approach, COMITRE (Component-based approach to Multi-

tenancy Isolation through Request Re-routing) for implementing multitenancy isolation on cloud-

hosted services. After that, the approach is applied to implement multitenancy and also evaluate

the varying degrees of isolation between tenants enabled by multitenancy patterns in three sep-

arate case studies involving GSD processes. The three case studies are - continuous integration

with Hudson, version control with File System SCM Plugin and bug tracking with Bugzilla. Three

multitenancy patterns (i.e., shared component, tenant-isolated component and dedicated compo-

nent) were implemented by modifying the GSD tool and deploying it as a Virtual Machine (VM)

instance to the UEC (Ubuntu Enterprise Cloud) private cloud.

The study to a large extent confirms that when multiple tenants are accessing a cloud-hosted

service deployed based the different multitenancy patterns, the shared component provides a lower

degree of isolation between tenants, while the dedicated component provides a higher degree

of isolation when one of the tenants experiences a high workload. Case study 1 revealed that

when code files are checked into a shared repository at a low frequency to trigger a build process,
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Figure 5.20: Changes in Response Times [CS3] Figure 5.21: Changes in Response Times [CS3]

Figure 5.22: Changes in Error% [CS3] Figure 5.23: Changes in Throughput [CS3]

Figure 5.24: Changes in CPU [CS3] Figure 5.25: Changes in Memory [CS3]



5.6. Chapter Summary 107

Figure 5.26: Changes in Disk I/O [CS3] Figure 5.27: Changes in System Load [CS3]

then a high degree of isolation (regarding response times) is expected both for the tenant-isolated

component and the dedicated component. For case study 2, the error% (i.e., the number of requests

with unacceptably slow response times) was negatively impacted especially when committing a

large number of files to a shared repository that interacts directly with the native OS filesystem.

Case study 3 revealed that for transactions on bug database where support for locking is enabled,

performance isolation between tenants (e.g., regarding response time) could be improved with a

dedicated component while resource consumption (e.g., CPU and memory) could be improved

with the shared component.

The next chapter will be devoted to showing unexpected and varying results across the three

case studies and well as results that are common across the case studies and which can be gen-

eralised. In addition, the next chapter will also present (i) an explanatory framework and new

insights on multitenancy isolation, and (ii) the trade-offs for consideration in order to achieve the

required degree of multitenancy isolation.



Chapter 6

Degrees of Multitenancy Isolation:

Synthesis of three Case studies

6.1 Introduction

In chapter three, three separate case studies were presented that applied COMITRE to implement

and evaluate the varying degrees of multitenancy isolation in cloud-hosted GSD processes: (i)

continuous integration with Hudson; (ii) version control with subversion; and (iii) bug tracking

with Bugzilla. The three case studies were carried out because of realisation of the fact that it

is usually not possible to adequately investigate all aspects of a phenomenon in one case study,

hence the need for more than one case study. As pointed out by Cruzes and Dyba (2011), no matter

how well designed and executed, empirical findings from single studies are limited in the extent

to which they may be generalised (Cruzes & Dybå 2011).

The aim of this chapter is, therefore, to extend the overall evidence beyond a single case, by

synthesising the findings of the three primary case studies that empirically evaluated the varying

degrees of multitenancy isolation on cloud-hosted GSD processes. This synthesis will provide a

novel explanatory framework and new insights into varying degrees of multitenancy isolation.

The rest of the chapter is organised as follows - Section 6.2 discusses the approach used in

synthesising the findings of the three case studies. Section 6.3 presents an explanatory framework

and new insights into varying degrees of multitenancy isolation. Section 6.4 discusses the threats

to the validity of the case study synthesis. Section 6.5 summarises the chapter.

108
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6.2 Synthesis of Case Studies Findings

This section explains how the findings from the three case studies were synthesised. The case

synthesis was done using cross-case analysis approach and then complemented with narrative

synthesis.

6.2.1 Cross-case Analysis

In a cross-case analysis, evidence from each primary study is summarised and coded under broad

thematic headings, and then summarised within themes across studies with a brief citation of

primary evidence (Cruzes et al. 2015). This paper adopts Miles and Huberman’s approach for

conducting the cross-case analysis. The approach consists of three mains steps: data reduction,

data display, and conclusion drawing and verification (Huberman & Miles 2002, Cruzes et al.

2015). These steps were applied in an iterative manner during the analysis to reach the conclusion.

Data Reduction

This mainly involves the identification of items of evidence in the primary studies (Cruzes et al.

2015). In our study, much of the data reduction process was already done in the primary case

studies. For each case study the following details were presented: (i) the paired test sample test,

(ii) plots of the estimated marginal means of change, (iii) discussion of the findings and recom-

mendations for achieving the required degree of isolation between tenants.

The experimental results in Table 5.1, Table 5.2, and Table 5.3 show the paired sample test

result for case study 1, case study 2, and case study 3, respectively. The plots of the estimated

marginal means of change (EMMC) are shown in Figure 5.4 - 5.11 for case study 1, Figure 5.12

- 5.19 for case study 2, and Figure 5.20 - 5.27 for case study 3. In addition to this data, a table

showing the characteristics of the three cases studies is presented (see Table 6.1).

Data display

This step involves organising and assembling information that allows the drawing of conclusions

using tools such as meta-matrices/tables and cause and relationship graphs. The data display steps

will be tackled from two approaches to cross-case comparisons: variable -orientated and case-

oriented (Ragin 2004).
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Table 6.1: Characteristics of the Case Studies

Aspect Case Study 1 Case Study 2 Case Study 3
Research Aim To evaluate the degrees of

isolation of multitenancy pat-
terns for cloud-hosted contin-
uous integration system

To evaluate the degrees of iso-
lation of multitenancy patterns
for cloud-hosted version con-
trol system.

To evaluate the degrees of iso-
lation of multitenancy patterns
for cloud-hosted bug tracking
system

Target process Continuous integration Version control Bug tracking
GSD tool/plugin that can be
used to simulate the process

Hudson Subversion, FileSystem SCM
Plugin (integrated in Hudson)

Bugzilla

User-level Process investi-
gated

Automated Build Verifica-
tion/Testing

Check-in, Check-out, locking Bug creation with file attach-
ment

Process simulated in JMeter sending HTTP/HTTPS
request to continuous integra-
tion server

sending an FTP download file
and upload file request to a
Version control repository

sending an JDBC Request(an
SQL query) to a database, in-
voking external JMeter APIs
and Java classes via BeanShell

Developer community Eclipse Foundation Apache Software Foundation Mozilla Foundation
Implementation Language Java Python, Java Perl, Java
Mechanism for Customiza-
tion and Extension

Hudson plug-in using Hudson
HPI tool

Hook scripts or any program
triggered by some repository
event (e.g., pre-hooks which
run in advance of a repository
operation)

Bugzilla Extensions Hooks

Storage/DBMS used (Back
end)

MySQL Postgree SQL, Berkley DB MySQL, PostgreSQL

Implementation of Multite-
nancy Isolation (based on
COMITRE)

Easy to implement due to Java
programming language famil-
iarity

Fairly simple to implement but
files permissions could be an
issue

Difficult and challenging due
to existing database restric-
tions/constraints

Key implementation chal-
lenges

Insufficient system resources
(e.g., memory)

File permission errors Restrictions of database
schema (e.g., file size, maxi-
mum open connections)

Table 6.2: Comparison of different aspects in which the Cases vary

Aspects Case 1- Continuous integration Case 2 Version control Case 3 Bug tracking system
Resource consump-
tion

High RAM and Disk I/O con-
sumption (e.g., during the build-
ing of files)

Some native OS filesystem for-
mat (e.g., FSFS) consumes CPU
(e.g., Delification, compressing
data). Consumes memory during
data caching

CPU and RAM consumption
(could consume more CPU de-
pending on runtime library used.
Bugzilla consumes huge RAM
if mod perl is enabled), con-
sumes memory during Caching
DB transactions

Storage Space Requires large storage space to
store build history

Requires large storage space to
store additional copies of data

Limited (except large bug attach-
ments are needed)

Latency and Band-
width of client ac-
cessing the server

Transferring large data size
across network; long distance
between CI server and SCM
server

Compressing data across, Mi-
grating repository, Repository
backup, Enabling file locking

Transferring large bug attach-
ments across a network, Enabling
Locking on DB transactions

Type of GSD pro-
cess

Long running build, large num-
ber of builds, complex and diffi-
cult builds

File locking Long running DB transactions
with support for locking could
consume more RAM

Storage format of the
backend server

Portable across different OS.
Storing massive builds on NFS
mount reduces performance.

Some DBMS (e.g., Berkeley DB)
might not be portable across dif-
ferent OS

Fairly portable across different
OS

Interdependencies
with other tools

Depends on Version control
server for store archive data

Depend on a CI server to trigger
polling before checkout data

Integrated with CI server or other
issue tracking systems
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(A) Variable oriented approach: This approach focuses on the variables to explain why the cases

vary. This study focused on factors such as performance and resource consumption that are known

to affect isolation between tenants. The data derived at this stage is a table (see Table 6.2) showing

the factors in which the cases vary, to explain why there is variation in the degree of multitenancy

isolation across the cases. It is assumed that factors such as performance, resource utilisation,

that are known to affect isolation between tenants were already used to evaluate the three cases

independently. These factors are captured in the seven metrics used to evaluate the three cases:

response times, error%, throughput, CPU, Memory, disk I/O, and system load. Knowing the var-

ious aspects in which the cases vary would enable us to explain the variation in the degrees of

multitenancy isolation for different GSD processes. The synthesis identified five aspects in which

the cases vary: size of data generated, the resource consumption of the GSD process, client’s la-

tency and bandwidth, supporting task performed, and error messages due to sensitivity to workload

changes. These aspects are summarised below.

1. Size of Data Generated: One of the most important factors that account for the variation

in the degree of multitenancy isolation is the fact that some GSD tools generate more data

than others. For example, several of the problems that occur in version control relate to the

fact that version control systems usually create additional copies of files on the repository,

especially the ones that use the native operating system (OS) file system directly. This

adversely affects performance because these files occupy more disk space than they actually

use, and the OS spends a lot of time seeking across many files on the disk.

2. Effect of GSD process on Resource Consumption: Another important factor that accounts

for the variation in the degree of multitenancy isolation is the effect of the particular GSD

process on the cloud infrastructure resources. Some GSD processes consume more of a

particular resource than others, and so this is bound to affect the degree of multitenancy

isolation required by tenants. As shown in the experiments, continuous integration showed

no significant change in CPU consumption when used with most of the patterns compared to

version control and bug tracking. Under normal conditions, continuous integration systems

being compilers consume huge amounts of memory and disk I/O during high workload.

Based on our results, the dedicated component was recommended for performing builds

when there is a sudden increase in workload.
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3. Client Latency and Bandwidth: Another factor that can help explain the variation in the

degree of multitenancy is the latency and network bandwidth of the client accessing the GSD

tool. If a client with a low bandwidth is trying to access a version control repository, then

response time and %error will be negatively impacted. Compressing the data transmitted

across the network can boost performance, but the drawback is that it consumes much CPU.

The results of case study one (i.e., continuous integration) showed that the magnitude of

change for response time was more for the shared component compared to other patterns.

This seems to suggest that a CI server (e.g., Hudson) should be configured close to an SCM

server when polling a version control repository for changes.

4. Type of GSD Process and Supporting operations: There are several conditions associated

with a GSD process that can result in different or varying degrees of isolation. Examples

of such conditions include (i) running long builds, (ii) running a large number of builds, (ii)

running complex and difficult builds, and (iv) enabling file locking. For example, a complex

and difficult build involving lots of inter-dependencies will consume more resources (e.g.,

CPU) than an ordinary check-out process in a version control system.

5. Error Messages and Sensitivity of workload Changes: The cases also vary in terms of their

sensitivity to workload changes as manifested in the nature and type of error messages pro-

duced by the different GSD processes during the implementation of multitenancy isolation.

The experimental results show that when a tenant experiences a high workload, different

kinds of error messages were generated depending on the GSD process. The error messages

are summarised as follows: for continuous integration, the most common type of error was

that of insufficient system resource (e.g., memory); for version control, the common er-

ror was that of directory and file permissions; and for bug tracking the common error was

database-related errors (e.g., exceeding maximum number of allowed queries, connections

and packets etc.)

(i) Case-oriented approach: This approach focuses on the case itself instead of the variables to

explain in what ways the cases are alike. The data derived at this stage is a table (see Table 6.3)

showing the factors that are alike across the cases, and which appear to lead to similar outcomes

when evaluating the varying degrees of multitenancy isolation in cloud-hosted GSD tools. By

knowing the aspects in which the cases are alike it is then possible to generalise our findings, for
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Table 6.3: Comparison of different aspects in which the Cases are alike

Aspects Case 1- Continuous integration Case 2 Version control Case 3 Bug tracking system
Generation of addi-
tional data

Archives the results of all the builds
it performs, by default

Creates additional copies of files
which occupies space

No additional copies created except
bug attachments

Use of Locking Used to block builds depen-
dencies from starting if an up-
stream/downstream project is in the
build queue

Used to prevent clashes between
multiple tenants operating on the
same working copy

Used to prevent clashes between
multiple tenants trying to access the
bug database

Use of back-end Stor-
age

stored data native OS Filesystem di-
rectly

Mostly stores data on native OS
File system directly (occasionally
on database)

DBMS or database library

Use of disk saving
strategies

Configure system to discard old
builds

Transfer differences between ver-
sions instead of complete copies;
concatenate files into a single pack

Purge error files and log files

Use of Web Server
and Runtime Library

Java Runtime Environment (JRE)
and JVM

Apache Portable Runtime (APR) Mod perl and mod cgi

Size of users and
project

Multiple developers triggering mul-
tiple concurrent builds

Multiple developers access working
copy of a project

Multiple developers and testers sub-
mitting and corrects bugs

System Load and
CPU

Low consumption low consumption (could be high
during delification, data compres-
sion)

Average consumption (could be
high depending on runtime library
used)

example, to identify factors that appear to lead to high (or low) degree of multitenancy isolation

with a corresponding effect on resource consumption. The synthesis identified five aspects in

which the cases are alike: a strategy for reducing disk space, locking, low consumption of some

system resources, use of plugin architecture for extending the GSD tool, and aspects of multite-

nancy isolation. The various aspects in which the cases are alike are summarised as follows.

1. Strategy for Reducing Disk Space: An interesting feature of all the GSD tools is that they

have strategies for reducing disk space because of the possibility of the GSD tool generating

a large volume of data due to the size, the number of artefacts and the number of users

that may be involved in the project. For instance, CI systems can be configured to discard

old builds. Version control systems can use delification (i.e., a process for transferring

differences between versions instead of complete copies) and packing to manage disk space.

For a bug tracking system, the error and log files can be purged from the database regularly.

2. Locking Process: All the GSD tools implement some form of locking whether at the database

level or filesystem level. For example, locking is used internally in version control systems

to prevent clashes between multiple tenants operating on the same working copy (Collins-

Sussman et al. 2004). In Bugzilla, locking is used to prevent conflicts between multiple

tenants or programs trying to access the Bugzilla database (Bugzilla 2016). In continuous

integration, locking can be used to block builds with either upstream or downstream de-

pendency from starting if an upstream/downstream project is in the middle of a build or

the build queue (Moser & O’Brien 2016). When using a version control system that im-
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plements locking, fetching large data remotely and finalising a commit operation can lead

to unacceptably slow response times (and can even cause tenants’ request to time out), and

so having the repository together with the working copy located on your machine is ben-

eficial. The results of case study two recommended the shared component to address the

trade-off between resource utilisation and the speed of accessing or completing a version

control process (e.g., checking out files from a repository).

3. Low Resource Consumption: Most GSD tools do not consume much system resources like

CPU and memory but can benefit from optimisations when there is a sudden change in

workload. For continuous integration, memory and disk I/O will be mostly affected. For

Bugzilla, it will be memory especially if locking and database transactions are enabled. For

subversion, disk space and disk I/O are the obvious resources that will be most affected.

System load and CPU consumption were generally low, and so using any of the patterns

would not make much difference.

4. Mechanism for customization and Use of Plugin Architecture: All the GSD tools implement

a ”plugin architecture” for use in customising, modifying and extending the GSD tool. This

means that other programs and components can be easily integrated with it (Ochei, Bass

& Petrovski 2015a). For example, Hudson is easily extensible using plugins. A series of

extension points are provided in Hudson that allows developers to extend its functionality

(Hudson 2016b). These extension points are where the GDS tools can be customised to

support multitenancy isolation.

5. Aspects of Isolation: The results generally showed that performance-related parameters such

as response time, %error and throughput had changed significantly for shared pattern com-

pared to system’s resources such as CPU, memory, disk I/O and bandwidth. Because of this,

the dedicated component is recommended to improve performance related parameters while

the shared component was recommended to improve resource utilisation. For example, in

version control and bug tracking, the dedicated component is recommended to improve re-

sponse time while the shared component is recommended to improve utilisation of memory

and disk I/O.
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Conclusion Drawing

This step involves further refining the above steps to produce conclusions concerning a particular

aspect of interest. The outcomes of this step are (i) key conclusions from the statistical analysis,

and (ii) the recommended patterns for achieving the required degree of multitenancy isolation.

Summary of Findings from Statistical Analysis

The conclusions presented in this section are based on trends noticed in the statistical analysis per-

formed to answer the hypothesis of the experiment which was to determine how tenants deployed

using a particular pattern changed from pre-test to post-test.

1. For most of the GSD tools, the shared component changed significantly for performance-related

parameters (e.g., response times, error% and throughput), while the dedicated component changed

significantly for system’s resource-related parameters (e.g., CPU, memory and disk I/O). As the

results show, the shared component would be recommended for improving systems resource con-

sumption while the dedicated patterns would be recommended for improving performance. For

example, the dedicated component was recommended to improve resource utilisation in bug track-

ing and CI systems under similar conditions. This is possibly due to the effect of locking which

may have had an adverse impact on tenant isolation.

2. System load is nearly constant and no variability was found in almost all the case study results.

A possible explanation for this is that the configuration of the deployed component, the nature of

tasks, and absence of piled-up task queue for a long time being processed resulted in reasonably

good throughput. In most cases, if the load average is less than the total number of processors in

the system, this suggests that the system is not overloaded and so it is assumed that nothing else

influences the load average.

3. CPU changed significantly for version control and bug tracking systems, but not for continuous

integration. This confirms what is already known about compiler/builders which is that it does

not consume much CPU. However, it is important to note that certain operations or settings could

increase CPU consumption regardless of the GSD tool used. Examples of such operations include

enabling locking, data compression, and moving data between repositories in different file format

(i.e., FSFS).

4. Throughput changed significantly, and this change was relatively stable for most of the patterns
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in all the three case studies, except for case study three where there was no meaningful change.

This may be because the system quickly reached peak capacity and so additional requests simply

do not add to the throughput. Furthermore, the small private cloud used for the experiments may

have contributed to this fairly stable but significant change in throughput.

Summary of Recommended Multitenancy Patterns for Deployment

Table 6.4 shows a summary of the recommended multitenancy patterns for achieving multitenancy

isolation between tenants when one of the tenants experiences a high load. These recommended

patterns are derived by first checking the paired sample test result and then analysing the plots of

the estimated marginal means of change (EMMC) to compare the magnitude of change in each

pattern relative to other patterns. The key used in constructing the table is as follows: (i) the

symbol “X”means that the pattern is recommended; (ii) the symbol “x” means that the pattern is

not recommended; and (iii) the symbol “-” implies that there is no difference in effect, and so any

of the three patterns can be used.

For example, to ensure performance isolation in CI systems (e.g., regarding response time), the

shared component is recommended for performing builds generally, and a dedicated component

for performing version control especially when locking is enabled. The results generally showed

no meaningful change for system load, and so any of the patterns can be used. For Bugzilla,

the dedicated component was recommended to improve performance and the shared component

to reduce resource consumption. This is based on our experience with Bugzilla which seems to

suggest that bug trackers are very sensitive to increase workload especially if bugs are stored in

the database with locking enabled. It was noticed that frequent crashes of the Bugzilla database

occurred in our experiments which required recovery, and there were also numerous database

errors related to restrictions on the maximum number of allowed queries, connections and packets,

etc.

6.2.2 Narrative Synthesis

To further enrich the case study synthesis, the narrative synthesis was also used. Narrative

synthesis is a textual approach to condense and explain the findings from case studies (Cruzes

et al. 2015, Miles & Huberman 1994). A condensed summary is provided to (i) explain the ef-

fect of performance and resource utilisation on tenants deployed based on different multitenancy
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Table 6.4: Recommended Patterns for optimal deployment of components

Case Studies Aspects of
Isolation Parameters Shared Tenant-

Isolated Dedicated

Case Study 1-
Continuous
Integration
with Hudson

Performance
Response X
Error% X
Throughput X X

Resource
Consumption

CPU X X
Memory X
Disk I/O X
System Load - - -

Case Study 2-
Version Control
with File System
SCM Plugin

Performance
Res X X
Error X
Thru X

Resource
Consumption

CPU X X
Memory X
Disk I/O X X
System Load - - -

Case Study 3 -
Bug Tracking
with Bugzilla

Performance
Resp X
Error% X X
Throughput X X

Resource
Consumption

CPU X X
Memory X X
Disk I/O X X
System Load - - -

patterns when one of the tenants experiences a sudden change in workload, and (ii) present some

recommendations for achieving the required degree of multitenancy isolation.

(1) Response times and Error%: The case studies results showed that response times and error%

did not change significantly for the shared component, and so it is recommended for addressing

low latency and the bandwidth requirements of tenants. This suggests that a GSD tool should

be configured close to the backend storage. For example, CI server (e.g., Hudson) should be

configured close to the SCM server when polling a version control repository for changes. The

performance of tenants with low bandwidth accessing a version control system can be boosted by

minimising the size of the network communications (e.g., reducing file size transferred between

shared repositories). When committing large files to a repository residing over a network, de-

lays could arise causing requests to time out (Collins-Sussman et al. 2004). For version control

systems, the error% (i.e., requests with unacceptably slow response times) could be negatively

impacted when committing a large number of files to a repository that is using a native OS file

system (e.g., FSFS). Tenants request could time out while waiting for a response due to delays in

finalising a commit operation (Collins-Sussman et al. 2004).

(2)Throughput: Throughput did not change significantly for most of the patterns. Throughput can

be likened to network bandwidth and so when the network is reasonably fast, a significant change

in throughput should not be expected for application components deployed to the cloud. When ac-

cessing a repository over a slow or low bandwidth network, large data sizes could be compressed

to improve throughput and performance, although this could lead to more CPU consumption.
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(3) CPU and System Load: The case study results show that most GSD tools do not consume

much CPU; consumption only slightly increased for some patterns. Therefore, the key in efficient

utilisation of CPU while achieving the required degree of isolation lies in avoiding operations that

are likely to increase CPU consumption. For continuous integration systems, a build can be run

in the background without affecting other resources or processes, but this could increase if builds

are difficult and complex (Electric-Cloud 2016). For version control systems, CPU consumption

could increase when moving data from one repository into another (e.g., using svnadmin dump and

svnadmin load subcommands in subversion) or switching from a repository that uses a database

(e.g., Berkeley DB or MySQL) to a repository that is based on FSFS file format (Bugzilla 2016).

Compressing data of large sizes in a bid to improve performance could also consume more CPU.

System load was not influenced by any of the patterns, possibly because the number and size of

requests did not overload the system to cause any significant change.

(4) Memory: As expected, the experiments showed a highly significant change in memory espe-

cially for the CI system, and therefore careful consideration is required especially when dealing

with difficult and complex builds. The dedicated pattern would be recommended for achieving a

high degree of isolation, for example, during complete integration build. When using bug tracking

systems that store bugs in a database, certain runtime libraries could increase memory consump-

tion. For example, Bugzilla consumes huge RAM if used in a mod-perl environment.

(5) Disk I/O: The experiments showed a highly significant change in disk I/O consumption espe-

cially for the CI system because builders and compilers consume a lot of disk I/O. For version

control systems, there would be not much difference if any of the patterns were used, although

the dedicated pattern would be recommended for exclusive access to the disk space. A large disk

space would be required to cope with additional copies of files when using a version control sys-

tem, and to also cope with the large size and volume of bugs when using a bug tracking system

that stores bugs in a database.

6.3 Explanatory Framework for Degrees of Multitenancy Isolation

This section is used to provide an explanatory framework (in a descriptive form) and new insights

into multitenancy isolation. Firstly, this section presents a mapping of different degrees of multi-

tenancy isolation to the GSD processes, the cloud application stack and cloud resources on which
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the GSD tools are hosted. Secondly, the trade-offs that should be considered when implementing

the required degree of multitenancy isolation are discussed.

Figure 6.1: Mapping of Degrees of Isolation to Cloud-hosted GSD Process and Resources

6.3.1 Mapping of Multitenancy Isolation to GSD Processes and Resources

Figure 6.1 maps the different degrees of multitenancy isolation to: (i) software processes triggered

by the cloud-hosted GSD tools; (ii) cloud application stack; and (iii) cloud resources on which the

processes are executed. As shown in Figure 6.1, GSD processes are placed on the left and cloud

resources on the right. In this mapping, it is assumed that the ease and flexibility of achieving

multitenancy isolation increases vertically, from top to bottom, and horizontally, from left to right.

(1) Mapping Multitenancy Isolation to Layers of a Cloud Stack: The mapping in Figure 6.1,

shows that a high degree of isolation can be achieved on the infrastructure layer and vice versa.

Therefore, as the required degree of isolation increases, the ability to improve resource consump-

tion reduces when implementing multitenancy isolation. On the other hand, as the required degree

of isolation increases, the ability to improve performance increases. This means that it is better

to implement resource sharing or efficient resource utilisation using the shared component and

reduce performance interference using a dedicated component.

Depending on the layer of the application stack (i.e., application layer, platform layer, or in-
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frastructure layer), multitenancy isolation may be realised differently with associated implications.

Assuming the component being shared is a database, implementing the shared component on a bug

tracking system at the SaaS layer implies allowing multiple tenants to share a single instance of

the bug database. This ensures efficient sharing of cloud resources, but isolation is either very

low or not guaranteed at all due to possible performance interference. Implementing a dedicated

component at the IaaS layer would require installing the bug database for each tenant on its own

instance of virtual hardware. This guarantees a high degree of isolation but with limitations of

high runtime cost and reduction in the number of tenants that can be served.

(2) Mapping Multitenancy Isolation to GSD Processes: Multitenancy isolation can be imple-

mented at different levels of a cloud application stack depending on the type of component or

process being shared. Due to the way in which software processes interact with an operating sys-

tem, files system and systems resources, the GSD processes can be mapped to varying degrees of

multitenancy isolation, and hence the application stack. Figure 6.1, show a mapping of the three

GSD processes to different levels of the cloud application stack. Notice that the GSD processes

are placed in the following order from top to bottom: continuous integration, version control and

bug tracking. In the mapping, the continuous integration process is placed in the top to fit into

a situation where it is deployed to multiple users using the SaaS model. However, in a hybrid

scenario, it is possible to place continuous integration on the middle tier of the cloud application

stack (e.g., based on the PaaS deployment model). This scenario is suitable in a case where the

continuous integration system is used as a platform to configure and host other programs. The bug

tracking system when used with a database to store bugs would be placed on the bottom layer.

(3) Mapping Multitenancy Isolation to Aspects of Isolation: As shown in Figure 6.1, the mapping

of the different aspects of isolation between tenants is done in the following order: performance,

security, resource consumption, from top to bottom for process isolation, and vice versa for data

isolation. This means, for example, that it is better to use the shared component to improve

resource consumption when implementing multitenancy isolation at the data/infrastructure level.

On the other hand, it means that it is better to use the shared component to improve performance

related requirements when implementing multitenancy isolation at the application level.

Again, the chance of implementing the required degree of isolation increases across the map-
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ping (i.e., Figure 6.1) from left to right for performance-related requirements such as response

time and throughput, while it increases from right to left for systems resource related require-

ments such as CPU and disk I/O usage. Issues related to security, privacy, trust and compliance

to regulation can mostly be tackled in a hybrid related fashion. For example, data/bugs generated

from a bug tracking system could be stored in a certain location to comply with privacy and legal

regulations while the architecture of the GSD tool could be modified to restrict exposure of certain

data to users located in regions not considered to be of interest to the owners of the hosted data.

Architecting the deployment of a cloud service based on this arrangement can be best be tackled

using a hybrid approach.

The mapping presented in this chapter is useful for several reasons: (i) it can be used to select

a suitable multitenancy pattern or combination of patterns for deploying services to the cloud; (ii)

it can be used to select an appropriate layer of the cloud application stack to implement multi-

tenancy isolation in order to obtain the optimal performance and allocation of cloud resources,

and minimize the risk to tenants; and (iii) in some cases, the business requirements set by cloud

consumers may be either not feasible or too costly to implement. In such a case, the mapping

provided will guide an architect in re-considering the business requirements of organisations to

cope with available cloud resources.

6.3.2 Exploring Trade-offs for Achieving Multitenancy Isolation

This section discusses the key trade-offs for consideration when implementing the required degree

of multitenancy isolation for cloud-hosted software processes. The case study synthesis identified

six trade-offs that should be considered while implementing multitenancy isolation: multitenancy

isolation versus (resource sharing, number of users/requests, customizability, the size of generated

data, the scope of control of the cloud application stack, and business constraints). These trade-offs

are explained below:

Multitenancy Isolation versus Resource sharing

The trade-off between multitenancy isolation and resource sharing is one of the most important

considerations when deploying services to the cloud for guaranteeing multitenancy isolation. As

the degree of isolation increases, the ability to share resources reduces. A low degree of isolation
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promotes resource sharing in the sense that the component and the underlying cloud resources can

be shared with other tenants, thus leading to efficient utilisation of resources. However, there is

a price to pay regarding possible performance interference. On the other hand, a high degree of

isolation implies duplicating resources for each tenant since sharing is not allowed. This results in

high resource consumption and a reduction in the number of users that can access the component.

Therefore, if a GSD tool naturally consumes more of a particular resource, then the challenge

would be how to avoid certain operations that would further increase the consumption of that

resource. For example, continuous integration systems (or builders) consume a lot of memory and

disk I/O. As the experiments in case study 1 showed, this consumption could increase much more

if locking is enabled for application components deployed based on the dedicated component.

Multitenancy Isolation versus Number of Users

Another important trade-off to consider is that of multitenancy isolation versus the number of

users. As the degree of isolation increases, the number of users/requests that can access the com-

ponent reduces. A possible explanation is that as the number of users increases, physical con-

tention also increases because more requests contend for the available shared resources (e.g., CPU

and Disk). Contention either delays or blocks requests, meaning that more time will be spent by

requests waiting to use the system’s resources. Thus, performance will be impacted negatively

leading to a low degree of isolation. This behaviour explains why a larger magnitude of change

was noticed for the shared component and tenant-isolated component in case study 1 with contin-

uous integration.

Multitenancy Isolation versus Customizability

To implement the required degree of multitenancy isolation on a GSD tool, some level of cus-

tomization would have to be done depending on the level where the process or component to be

customised resides (Khan et al. 2012). The higher the degree of isolation that is required, the easier

it is to implement the GSD tool. For example, implementing multitenancy isolation for a GSD tool

like Hudson via virtualization on the infrastructure level will not be as difficult as implementing it

on the application level in terms of the effort, time and skill required. Implementing isolation on

the application level would require good programming skills to modify the source code, and also
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address issues of compatibility and interdependencies between the GSD tool and required plugins

and libraries (Hudson 2016b). Each time a multitenant application or its deployment environment

changes, then a tedious, complex and maintenance process may also be required.

Multitenancy Isolation versus Size of Generated Data

There is also a trade-off between multitenancy isolation and the size of data generated by the GSD

tool. The more data is generated, the more difficult it is to achieve a higher degree of isolation.

For example, most version control systems (e.g., Subversion, File System SCM plugin) create

additional copies of files on the shared repository. Over time, these files will occupy disk space

thereby adversely affecting the performance experience by tenants. This will lead to a low degree

of isolation between tenants since a lot of time would be spent fetching data from the repository

that contains numerous unused or unwanted files. The study recommended a dedicated component

for exclusive access to disk space, but again this implies significantly increasing the disk space and

other supporting resources allocated to each tenant. In Figure 6.1, the GSD tools mapped to the

lower level of the cloud stack (i.e., version control system and bug tracking) generate the most

data. It is important to note that other GSD tools can be configured to generate additional data.

For instance, Hudson can be configured to archive artefacts to a repository. Because of this, most

the GSD tools have mechanisms for removing unwanted files, thereby saving disk space.

Multitenancy Isolation versus Scope of Control

Implementing the required degree of multitenancy isolation to a large extent depends on the “scope

of control” of the cloud application stack. The term cloud application stack refers to the different

layers of resources provided by the cloud infrastructure on which the cloud-hosted service is being

hosted. This could either be the SaaS, PaaS or IaaS level (Badger et al. 2012). The architect has

more flexibility to implement or support the implementation of the required degree of multitenancy

isolation when there is greater scope of control of the cloud stack application. In other words, if

the scope of control is restricted to the higher level of the cloud stack (i.e., the SaaS) then the

architect may only be able to implement a low degree of isolation (e.g., shared component), and

vice versa. Therefore, if an architect is interested in achieving a high degree of isolation (e.g.,

based on the dedicated component), then the scope of control should extend beyond the higher
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level to the lower levels of the cloud stack (i.e., PaaS and IaaS). This would enable an architect to

deploy a GSD tool on the IaaS platform so that exclusive access can be provided to the customer

together with all the configuration requirements to support any operation that requires frequent

allocation and de-allocation of resources. For example, using a version control system to perform

operations that involve moving a repository between different hosts and keeping history would

require having file system access in both hosts (Subversion 2016).

Multitenancy Isolation versus Business Constraints

The trade-offs between multitenancy isolation and business requirements is a key consideration

in architecting the design and deployment of cloud-hosted services. As the degree of isolation

increases from top to bottom, the ease and flexibility to implement business requirements that

cannot be compensated for at the application level reduces. The shared component, which offers a

low degree of isolation, can be used to handle business requirements that can be compensated at the

application level. Examples of such business requirements include performance and availability.

The architect can easily modify the application architecture of the GSD tool to address this type

of requirement.

On the other hand, the dedicated component which offers a high degree of isolation can be

used to handle business requirements that cannot be easily compensated. Examples of this type of

requirements include legal restrictions and the location and configuration of the cloud infrastruc-

ture. For instance, a legal requirement can state that the data hosted in one place (e.g., Europe) by

a cloud provider cannot be stored elsewhere (e.g., in USA). An architect would, therefore, have to

map this type of requirement to a cloud infrastructure that directly satisfies this requirement.

6.4 Validity of the Case Study Synthesis

The validity of case study research can be evaluated using four key criteria: construct validity,

internal validity, external validity and reliability (Yin 2014). Construct validity has been achieved

by first conducting a pilot study, and after that three case studies using the same experimental pro-

cedure and analysis. The results of the study including the plots of estimated marginal means and

the statistical results of the three case studies were compared and analysed to ensure consistency.

Construct validity was further increased by maintaining a clear chain of evidence from the pri-
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mary studies to the synthesised evidence, including the approach for implementation multitenancy

isolation, experimental procedure and statistical analysis. Furthermore, the validity of the synthe-

sised information has been increased by involving the authors of the primary studies to review the

synthesis.

Internal validity has been achieved by precisely distinguishing the units of analysis and linking

the analysis to a frame of reference about the degrees of isolation between tenants as identified in

the literature review. This frame of reference is based on the fact that the varying degrees of

multitenancy isolation are captured in three multitenancy patterns: shared component, tenant-

isolated component and dedicated component. The case studies were carried out one after the

other; each was done with a space of about a three month interval. Before the next study was

done, the cloud infrastructure was shutdown, previous data erased and then the infrastructure

started again.

External validity has been achieved by using multiple case studies design and comparing the

evidence gathered from the three case studies. Furthermore, statistical analysis (i.e., paired sample

t-test) has been used across the three case studies to evaluate the degree of isolation. It should be

stated that the findings and conclusions of this study should not be generalised to small size soft-

ware tools and processes, especially the ones that are not mature and stable. This study applies to

cloud-hosted GSD tools (e.g., Hudson) for large-scale distributed enterprise software development

projects.

Reliability is achieved by replicating the same experimental procedure (based on applying

COMITRE) in the three case studies. Due to the small size of the private cloud used for the

experiment, the setup values (e.g., the number of requests and runs for each case study experiment)

were carefully varied to get the maximum capacity of the simulated process before conducting the

experiments. The case study synthesis combined two approaches: narrative synthesis and cross-

case analysis, thus allowing us to gain synergies, harmonise weaknesses and assess the relative

strengths of each approach. On the transparency of the case study, all the information derived

from the case studies is easily traceable, and the whole process is repeatable. The authors had

access to the raw data which gave them the opportunity to go deeper in their synthesis. This

means that the case studies’ report was synthesised at the right level of abstraction and granularity.
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6.5 Chapter Summary

This chapter presented a synthesis of findings of three case studies (i.e., continuous integration

with Hudson, version control with FileSystem SCM Plugin and Bug tracking with Bugzilla) that

empirically evaluated the degrees of multitenancy isolation between tenants for components of a

cloud-hosted service. The case study synthesis combined cross-case analysis and narrative synthe-

sis approach to produce the commonalities and differences in case studies. Five aspects in which

the cases are alike were identified: the strategy for reducing disk space, locking, low consumption

of some system resources, and use of plugin architecture for extending the GSD tool, aspects of

multitenancy isolation. Five aspects in which the cases differ were identified: size of data gen-

erated, the resource consumption of the GSD process, client’s latency and bandwidth, supporting

task performed, and error messages due to sensitivity to workload changes.

A further contribution of this chapter is an explanatory framework for (i) mapping the multi-

tenancy isolation to different GSD processes, cloud resources and layers of the applications stack;

(ii) explaining the different trade-offs to be considered for optimal deployment of components with

a guarantee of the required degree of multitenancy isolation. The case studies synthesis identified

six trade-offs that should be considered while implementing multitenancy isolation: multitenancy

isolation versus (resource sharing, number of users/requests, customizability, size of generated

data, scope of control of the cloud application stack and business constraints).

The study confirmed overall that a high degree of multitenancy isolation leads to high resource

consumption and the running cost of tenants (or components). On the other hand, a low degree of

isolation promotes an efficient utilisation of resources but with a possibility of performance inter-

ference. Therefore, there is need to resolve these trade-offs when optimising the deployment of

services to the cloud while guaranteeing the required degree of multitenancy isolation for tenants.

This is a decision-making problem which will be addressed in the next chapter by developing a

model-based decision support system to achieve optimal deployment of components of a cloud-

hosted service for guaranteeing multitenancy isolation.



Chapter 7

Optimal Deployment of Components for

Guaranteeing Multitenancy Isolation

7.1 Introduction

In chapter 5 and 6, it was established that there are varying or different degrees of multitenancy iso-

lation between tenants (or components) which in turn produce different effects on the required per-

formance and resource consumption of tenants (or components) when there are workload changes

(Fehling et al. 2014, Bauer & Adams 2012). A high degree of isolation between components

may be necessary to avoid interference and enhance service security, but this usually leads to high

resource consumption and running cost per component. A low degree of isolation promotes the

sharing of components, thus leading to low resource consumption and running cost, but with a

high possibility of performance influence when the workload changes, and the application does

not scale up/down.

Therefore, the challenge is how to resolve the trade-off between a lower degree of isolation

versus the possible influence that may occur between components or a high degree of isolation

versus the challenge of high resource consumption and running cost of tenants. This is a decision-

making problem that requires an optimal decision to be taken in the presence of a trade-off between

two or more conflicting objectives (Martens et al. 2010) (Legriel et al. 2010). Previous work on

providing optimal allocation of cloud resources have focused on developing models that minimize

the cost of cloud resources. Furthermore, previous work either do not use heuristic for optimisation

127
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(Shaikh & Patil 2014, Westermann & Momm 2010) or use simple heuristic (e.g., hill climbing) in

very few cases to find optimal solutions (Aldhalaan & Menascé 2015b).

Motivated by this problem, this chapter presents a model-based decision support system (DSS)

together with a metaheuristic technique that can be used to provide optimal solutions for deploying

components of a cloud-hosted application in a way that guarantees multitenancy isolation, while

at the same time allowing as many requests as possible to access the components. This chapter

is based on preliminary work in (Ochei, Petrovski & Bass 2016b) and therefore duly referenced.

Unlike the preliminary work, there are four variants of the metaheuristic in this chapter and the

simulation experiments carried out on the model are based on: (i) datasets made up of larger

instances of varying sizes and densities, (ii) a large number of function evaluations (i.e., 1000000

function evaluations); and (iii) a higher number of runs or trials (i.e., 20 runs).

The rest of this chapter is organised as follows: Section 7.2 describes and formalises our prob-

lem by mapping it to a multichoice multidimensional knapsack problem (MMKP). Section 7.3 dis-

cusses the open multiclass queueing network model, while Section 7.4 discusses the metaheuristic

solution. In section 7.5, the decision support system (DSS) is described including its architecture,

and the algorithm for implementing the DSS. Section 7.6 is the evaluation and results. Section 7.7

summarises the chapter.

7.2 Problem Formalization and Notation

This section formalises the problem and then describes how it is mapped to a Multichoice Multi-

dimensional Knapsack Problem (MMKP).

7.2.1 System Model and Description of the Problem

Let us assume that there are multiple components of the same tenant on the same underlying cloud

infrastructure. A tenant in this context represents a team or department of a software development

company, whose responsibility is to build or maintain a cloud-hosted application and their sup-

porting processes with various components. These components which are of different types and

sizes are required to integrate with or designed to use a cloud-hosted application for deployment

in a multitenant fashion. The components may also be categorised into different groups based on

type (e.g., storage components, processing components, communication components, user inter-
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face components, etc.), purpose or size or some other feature (see Figure 7.1). Different groups

may have components with varying degrees of isolation, which means that some components can

provide the same functionality, and hence can be shared with other tenants while other components

are exclusively dedicated to some tenants or group of tenants.

Each application component requires a certain amount of resources of the underlying cloud

infrastructure to support the number of requests it receives. Assuming that one of the components

of the cloud-hosted application experiences a very high load, how can an architect select compo-

nents for optimal deployment in response to workload changes in a way that: (i) maximizes the

degree of isolation between components by ensuring that they behave as if they were components

of different tenants and, thus, are isolated from each other; and (ii) maximizes the number of re-

quests allowed to access the component (and the application as a whole) without having the total

resources used to exceed the available resources.

Figure 7.1: System Model of a Cloud-hosted Service with multiple groups of components

7.2.2 System Notations and Assumptions

The following notations(Table 7.1) and assumptions are used in this study.

1. Component of a cloud-hosted service: A component of a cloud-hosted service is an encap-

sulation of functionality or resource that is shared between multiple tenants. An application

component could be a communication component (e.g., message queue), data handling com-

ponent (e.g., databases), or processing component (e.g., load balancer) or hardware (e.g.,

virtual server). Each component is associated with six parameters: the isolation value, the
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Table 7.1: Notations and Mapping of Multitenancy Problem to QN Model and MMKP

Notation Multitenancy Isolation
Problem

MMKP QN Model

N Total number of groups of
components

Total number of groups of
objects

Total number of classes

l Total number of items in a
group

Total number of objects in a
group

-

m (K is
used for
QN)

Total number of resources Total number of resources Total number of service cen-
ters

α (k is
used for
QN)

Index for resource support-
ing a component

Index for resource support-
ing a component

Index for service centers

i (c is used
for QN)

Index value for the Group Index value for the Group Index value for the Class

j Index value for the compo-
nent

Index value for the object -

aij A component which is asso-
ciated with isolation value,
number of requests, cpu,
ram, disk and bandwidth
size)

Objects in a group -

c Group of component
(c1,..., cN )

Group of objects Class

rαij Resource consumption of
each component

Resources required by the
object in the knapsack

Service centres in the system
(cpu, ram, disk, bandwidth)

R Limit of each resource sup-
porting each component (R
(=1,m))

Resources available in the
knapsack (knapsack capac-
ity)

System/Component capac-
ity

Iij Isolation value for a compo-
nent.Used to compute G

- -

Qij The number of requests al-
lowed to access a compo-
nent. Used to compute G

- The queue length of class c
at center k,

Dc,k The service demands at
the cpu,ram,disk, and
bandwidth

- Service demand of class c at
k service centres (cpu, ram,
disk, bandwidth)

λij Workload on the component
(arrival rate of request to the
component/system)

- Workload on the component
(arrival rate of request to the
component/system)

gij Optimal value for one com-
ponent in a group

Profit of one object in
MMKP

-

G Optimal function of the so-
lution

Profit of the solution in
MMKP

-
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number of requests allowed to access the component, and resource consumption for CPU,

RAM, Disk and Network bandwidth. A component could be located at any level of the

cloud stack- SaaS, PaaS or IaaS layer.

2. Tenant and Multi-tenant: This study extends the notion of tenant and multitenant from a

single user/customer to a team, department of a software company or software company,

whose responsibility is to build or maintain a cloud-hosted application and their supporting

processes with various components.

3. Component Group: A component group is a collection of components (e.g., database com-

ponents, virtual servers) with a common functionality or purpose but with different config-

urations and hence different resource consumption requirements.

4. A cloud-hosted service/application: A cloud-hosted service/application is made up of differ-

ent interacting micro-services where each micro-service is regarded as a component. These

components are used to integrate with or designed to use a cloud-hosted service to serve

multiple users.

5. Optimal Function: As stated in the problem description (section 7.2.1), there are two ob-

jectives in the problem. An aggregation method is used to transform the multiobjective

problem into a single objective problem by combining the two objective functions, (i.e.,

g1=degree of isolation, and g2=number of request) into a single objective function (i.e.,

G=optimal function) in a linear way. The particular aggregation strategy used is the priori

single weight strategy which consists of defining the weight vector to be selected according

to the preferences of the decision maker (Talbi 2009). This approach has been widely used in

literature for metaheuristic such as genetic algorithm and simulated annealing(Chipperfield,

Whidborne & Fleming 1999, Karasakal & Köksalan 2000)

Therefore, the goal is re-stated as follows: to provide an optimal solution for deployment

to the cloud in such a way that meets the system requirements and also provides the best

value for the optimal function, G. G is defined by a weighted sum of parameters including

the degree of isolation, average number of requests allowed to access the component, and

the penalty for solutions that violate the constraints.
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Definition 7.1 (Optimal Function): Given an isolation value of a component I, and the

average number of request Q, that can be allowed to access the component:

gij = (w1× Iij) + (w2×Qij)− (w3× Pij)

The penalty, P, for violating constraints of a component of the cloud-hosted service is:

Pij =
m∑
j=1

Rjmax

{
0,

(
Rj −Rmaxj

Rmaxj

)}2

(7.1)

where w1,w2,w3 are the weights for isolation value (w1=100), number of requests(w2=1) and

penalty(w3=0.1). The weights are chosen based on problem-specific knowledge so that more im-

portance or preference is given to the isolation value and number of requests which are parameters

to be maximised in our model. The degree of isolation, Iij , for each component, is set to either 1,

2, or 3 for shared component, tenant-isolated component and dedicated component, respectively.

The penalty function, Pij , is subtracted from the optimal function to avoid excluding all infeasible

solutions from the search space. The expression Rj − Rmaxj in the penalty function shows the

degree of constraint violation. This expression is divided by the resource limit and squared to

make the penalty heavier for violating any constraint.

7.2.3 Mapping the Problem to a Multichoice Multidimensional Knapsack problem (MMKP)

For a cloud-hosted service that can be designed to use or integrated with several components in N

different groups, and with m resource constraints, the problem of providing optimal solutions that

guarantee multitenancy isolation can be mapped to a 0-1 multichoice multidimensional knapsack

problem (MMKP) (Martello & Toth 1987, Kellerer, Pferschy & Pisinger 2004). An MMKP is a

variant of the Knapsack problem which has been shown to be a member of the NP-hard class of

problems (Martello & Toth 1990). Our problem is formally defined as follows:

Definition 7.2 (Optimal Component Deployment Problem): Suppose there are N groups of

components (c1,..., cN ) with each having li (1 ≤ i ≤ N) components that can be used to design

(or integrate with) a cloud-hosted application. Each application component is associated with: (i)

the required degree of isolation between components (Iij); (ii) the arrival rate of requests to the

component λij ; (iii) the service demand of the resources supporting the componentDij (equivalent
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to Dc,k in the QN model as shown in section 7.3); (iv) the average number of requests that can

be allowed to access the component Qij (equivalent to Qc,k in the QN model as shown in section

7.3) and (v) m resources which are required to support the component, rαij = r1ij , r
2
ij ,..., r

m
ij . The

total amount of available resources in the cloud required to support all the application components

is R = Rα (α = 1,...,m). The objective of an MMKP is to pick exactly one component from

each group for a maximum total value of the collected items, subject to m resource constraints

of the knapsack (Yu, Zhang & Lin 2007, Akbar, Rahman, Kaykobad, Manning & Shoja 2006).

Concerning our problem, the goal is to deploy components of a cloud-hosted service by selecting

one component from each group to meet the resource constraints of the system and maximise

the optimal function G. There are unique features in our problem that lend to solving it using an

MMKP and an open multiclass problem. For example, the resources supporting each component

are mapped to the resources required by the object in MMKP and are also mapped to the service

centres of each class in the open multiclass QN. The third and fourth columns of Table 7.2 show

how some of the key attributes of the multitenancy isolation problem map to the MMKP and the

open multiclass QN.

The optimization problem faced by a cloud architect for deploying components of a cloud-

hosted application due to workload changes is thus expressed as follows:

Maximize G =
N∑
i=1

∑
j∈Ci

gij .aij

subject to

N∑
i=1

∑
j∈Ci

rαij .aij ≤ Rα(α = 1, 2, ...,m)

N∑
j∈Ci

aij = 1

aij ∈ 0, 1(i = 1, 2, ..., N), j ∈ Ci

(7.2)

where aij is set to 1 if component j is selected from group Ci and 0 otherwise. The notation

rij = r1ij , r
2
ij ,..., r

m
ij , is the resource consumption of each application component j from group Ci.

The total consumption of all resources rαij of all application components must be less than the total

amount of resources available in the cloud infrastructure R = Rα (α = 1,...,m).

To calculate the number of requests, Qij that can be allowed to access the component, an
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open multiclass QN model has to be solved (Menasce et al. 2004) for each component using the

arrival rate of each class of requests, and the service demands of each resource required to support

the component (i.e., CPU, RAM, Disk capacity, and Bandwidth). Section 7.3 describes how the

average number of requests allowed to access each component is computed.

Figure 7.2: Open Multiclass Queuing Network Model

7.3 Open Multiclass Queuing Network Model

Queueing network modelling is an approach to computer system modelling in which the computer

system is represented as a network of queues which is evaluated analytically. A network of queues

is a collection of service centres, which represent system resources, and customers, which rep-

resent users or transactions (Menasce et al. 2004). Figure 7.2 shows an example of an open QN

model with two service centres (i.e., CPU and disk).

Assumptions: This study makes the following assumptions about a component:

(i) a component is deployed to support a single cloud application, and so cannot support different

applications or applications at different system requirements.

(ii) requests sent to a component have significantly different behaviour whose arrival rate is inde-

pendent of the system state.

(iii) the service demands at the CPU, RAM, Disk, and Bandwidth that support each component

are known or can be easily measured by either the SaaS provider or the SaaS customer.

(iv) the resources supporting each component are enough to handle the magnitude of new incom-

ing requests as the workload changes. This ensures that there is no overload when all components
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are functional.

The above assumptions allow us to use an open multiclass queuing network (QN) model to de-

termine the average number of requests that can be allowed to access the component while meeting

the required degree of isolation and system requirements. In an open multiclass QN, the workload

intensity is specified by the request arrival rate. This arrival rate usually does not depend on the

system state, that is, it does not depend on the number of other tenants in the system (Menasce

et al. 2004).

Definition 4 (Open Multiclass Queuing Network Model): Given N number of classes in a

model, where each class c is an open class with arrival rate λc. The vector of arrival rates is

denoted by
−→
λ ≡ (λ1, λ2, ... λN ). The utilization of each component of class c at centre k is given

by:

Uc,k(
−→
λ ) = λcDc,k (7.3)

In solving the QN model, it is assumed that a component represents a single open class system

with four service centres (i.e., the resources that support the component CPU, RAM, Disk capacity

and Bandwidth). The average number of requests at a particular service centre (e.g., CPU) for a

particular component is:

Qc,k(
−→
λ ) =

Uc,k(
−→
λ )

1−
∑N

i=1 Ui,k(
−→
λ )

(7.4)

Therefore, to obtain the average number of requests that would access this component, the queue

length of all requests that visit all the service centres (i.e., the resources that support the compo-

nents - CPU, RAM, Disk capacity and Bandwidth) are added together.

Qc(
−→
λ ) =

K∑
k=1

Qc,k(
−→
λ ) (7.5)

7.4 Metaheuristic Search

The optimisation problem described in Section 7.2.1 and then mapped to an MMKP in Section

7.2.3 is an NP-hard problem which has been known to have a feasible state space that grows in

a combinatorial way (Yu et al. 2007). The number of feasible states for our optimal component
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deployment problem is given by the following expression:

{(
l

j

)}N
(7.6)

Equation 7.6 above represents the number of ways for selecting one component (j items) from

each a group (made of up l items) out of several (N) groups of components to integrate with or

designed to use a cloud-hosted application when workload changes in a particular time interval.

Thus in response to the workload changes, the number of ways of selecting one component (i.e.,

j=1) each from twenty groups (i.e., N=20) containing ten items in each group (i.e., l=10) will

result in approximately 10.24 x 1012 states. Depending on the number of times and frequency

with which the workload changes, the number of states could grow very large at a much faster

rate.

Therefore, an efficient heuristic is needed to find an optimal solution to the optimisation prob-

lem, which must be solved by the decision support system and provided to the SaaS customer (or

a cloud deployment architect) in almost real-time. The section that follows presents four variants

of metaheuristic solutions; two are based on Hill climbing (i.e., HC(Random and HC(Greedy)),

and the other two are based on simulated annealing (i.e., (SA(Random) and SA(Greedy)). The

justification for deciding to base the variants of the metaheuristic on hill climbing and simulated

annealing is that hill climbing represents a family of improvement heuristic, while Simulated an-

nealing represents a family of modern heuristic. The difference between improvement heuristic

and modern heuristic are summarised as follows (Rothlauf 2011):

(i) Usually, modern heuristics are defined as problem-independent, whereas improvement heuris-

tics are explicitly problem-specific and exploit problem structure. This means that modern heuris-

tic can be applied to a wide range of different problems with little or no modification while im-

provement heuristic is demanding to design and use as it requires knowledge and exploitation of

problem-specific properties.

(ii) Improvement heuristic starts with a complete solution and iteratively tries to improve the solu-

tion, while modern heuristic use during search both intensification (exploitation) and diversifica-

tion (exploration) phases.

(iii) In contrast to modern heuristic where improvement steps alternate with diversification steps,

which usually lead to solutions with a worse objective value, improvement heuristic use no explicit
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diversification steps.

Any of the four variants of the metaheuristic solution can be utilised with OptimalDep (see line

17 of Algorithm 3). Also, an algorithm is developed to perform an exhaustive search of the entire

solution space for a small problem. The algorithms for optimalDep and SA(Greedy) are presented

as Algorithm 3 and Algorithm 4, respectively. A high-level description of these algorithms is

provided below:

Algorithm 3 optimalDep Algorithm
1: optimalDep (workloadFile, mmkpFile)
2: optimalSoln← null
3: Accept workload from SaaS users
4: Load workloadFile, mmkPfile; populate global variables
5: repeat
6: /*Compute No. of req. using QN Model*/
7: for i← 1, NoGroups do
8: for i← 1,GroupSize do
9: Calculate Utilization /*see Equation 7.3*/

10: Calculate No. of req. /*see Equation 7.4*/
11: Calculate Total No. of req. /*see Equation 7.5*/
12: Store fitValue, Isol, qLength of optimal soln.
13: end for
14: end for
15: Update the mmkpFile with qLength
16: /*Run Metaheuristic*/
17: SA(GREEDY)( )
18: /*Display optimal solution for deployment*/
19: until no more workload
20: Return (optimalSoln, fitValue, Isol, qLength)

The SA(Greedy) for optimal Solution: This algorithm combines simulation annealing and a

greedy algorithm to find an optimal solution to our optimization problem which has been modelled

as an MMKP. The algorithm loads the MMKP problem instance and then populates the global

variables (i.e., arrays of varying dimensions that store the values of isolation, and the average

number of requests, and component resource consumptions). A simple cooling schedule is used

which is expressed as:

Tt = T0 − ηt (7.7)

The above cooling schedule (equation 7.7) is linear and which means that T decreases every t iter-

ations by an amount ηt. Since the introduction of this linear cooling schedule shown in Equation
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Algorithm 4 SA(Greedy) Algorithm

1: SA(Greedy) (mmkpFile, N)
2: Randomly generate N solutions
3: Set initial temperature T0 to st. dev. of all optimal values
4: Create greedySoln a1 with optimal value g(a1)
5: optimalSoln← g(a1)
6: bestSoln← g(a1)
7: for i← 1, N do
8: Create neighbouring soln a2 with optimal value g(a2)
9: Mutate the soln a2 to improve it

10: if a1 < a2 then
11: bestSoln← a2

12: else
13: if random[0,1) < exp(-(g(a2) - g(a1))/T) then
14: a2 ← bestSoln
15: end if
16: end if
17: Ti+1 = T0 − ηiT /*see Equation 7.7*/
18: end for
19: optimalSoln← bestSoln
20: Return (optimalSoln)

7.7 by the authors in (Kirkpatrick, Gelatt, Vecchi et al. 1983), it has been widely used in several

optimization models relying on simulated annealing (Nourani & Andresen 1998, Pirkwieser &

Raidl 2008, Zoraghi, Najafi & Akhavan Niaki 2012, Huang 2003). In the above cooling schedule,

the variable η is computed as follows:

η =

(
T0

max(t)

)
(7.8)

Our strategy for setting the initial temperature T0 is to randomly generate a number of solutions

equal to the size of the number of groups in the problem instance, before the simulated annealing

algorithm runs, and then to set the initial temperature T0 to the standard deviation of all the ran-

domly generated optimal solutions (line 2-4). Another option could be to set T0 to the standard

deviation of a set of solutions from a heuristic whose initial solution was generated randomly. In

line 4, a greedy solution is then created as an initial solution. The simulated annealing process

improves the greedy solution, and provides the optimal solution for deploying components to the

cloud (line 5-19).

A simple dry run of the algorithm for the instance C(20,20,4) is as follows: 20 optimal so-
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lutions are randomly generated and then the standard deviation of all the solutions is computed.

Assuming this value is 5.26, the T0 is set to 5. At the first iteration, g(a2) = 151634.9773 and

g(a1) = 151535.7984 and the current temperature then becomes 4.999995. At the next iteration,

the current temperature is expected to reduce further (see equation 7.8). After five iterations, the

algorithm constructs an initial/first solution with g(a1) = 151732.4362, a current/second random

solution with g(a2) = 151733.9821 and with a current temperature of 4.999975. The solution a2

will replace a1 with probability, P =exp(-(1.5459)/4.999975)=0.7340, because g(a2) > g(a1). In

lines 13 to 15, a random number between 0 and 1 (i.e., rand = 0.0968) is generated, and since

rand < 0.7340, a2 replaces a1 and the algorithm continues with a2. Otherwise, the algorithm

continues with a1. At the next iteration, the temperature T is reduced which now becomes T6 =

4.99997 (line 17). The iteration continues until N (i.e., the number of iterations set for the algo-

rithm to run) is reached, and so the search converges with a high probability to the optimal solution.

SA(Random): This variant of the metaheuristic requires only a slight modification. The SA(Random)

randomly generates a solution and then passes it to the simulated annealing process to become the

initial solution. That is, in line 4, instead of constructing a greedy solution, a random solution

is simply generated. It is important to note that the two variants based on simulated annealing

algorithm (i.e, SA(Greedy and SA(random)) can be converted to a local search based on the hill

climbing algorithm by setting the initial temperature to zero (i.e., T=0) so that the simulated an-

nealing is forced to systematically explore the neighbourhood around the current solution and to

ensure that the search returns a local minimum.

HC(Random) and HC(Greedy): The HC(Random), uses a randomly generated solution as the

initial solution to run the hill climbing algorithm, while the HC(Greedy), uses a greedy solution

as the initial solution to run the hill climbing algorithm. From an implementation standpoint, this

translates to leaving out lines 12-15 (i.e., the else part of the if statement) of Algorithm 4.
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7.5 Decision Support System for Optimal Deployment of Compo-

nents

A model-based decision support system (DSS) has been created to provided optimal solutions for

deploying components of a cloud-hosted service.

7.5.1 Architecture of the Decision Support System

The DSS can be implemented in different ways, for example, as a web-based application or a

desktop application. It can then be deployed directly to the cloud or installed on a Docker con-

tainer. This section shows the architecture of the DSS which is composed of five main modules

(see Figure 2).

Input Interface

This module is used to send input to the decision support system. In our case, the main input

is the workload of the system, which is represented as the arrival rate of requests (λ) and the id

of the (MMKP) problem instances, which represents the different configurations of components

integrated with or designed to use a cloud-hosted service.

Information repository

This module stores MMKP instances (which contains information about component configuration)

and the service demands of resources supporting the components in the MMKP instance). The

service demand of the component together with the arrival rate of request to the component is

used to solve the QN model to obtain the average number of requests that can be allowed to access

the component. From the implementation standpoint, the repository stores three types of file:

(i) MMKP instances, which contain component configuration, (ii) workload file, which contains

service demands and arrival rate for each component, and (iii) updated MMKP instance, which

contains updated details on the MMKP each time there are changes in workload. Note that there

may be multiple workload files associated with/generated for a single MMKP instance.
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Queuing Network Model

The input to this module is the arrival rate of the requests to each component and the id of the

required (MMKP) problem instance. When there is a change in workload based on the arrival rate

of requests, the id of the MMKP instance is used to retrieve the service demand of resources that

supports the components whose configuration are in the MMMKP instance file. This information

(i.e., arrival rate and service demands) is used to calculate the number of requests, Q, allowed to

access the component. The new/current value of Q is then used to update the MMKP instance

to reflect the current change in workload regarding the number of requests that can be allowed to

access the component. This updated MMKP instance is returned to the repository, and the id of

this problem instance is passed to the optimisation module. The number of requests allowed to

access each component and the total number of requests allowed to access the whole/entire cloud

service can be computed and sent to the output interface.

Optimization Module

The input to the optimisation module is the id of the updated MMKP instance. In the optimisation

module, the metaheuristic is invoked to search for and provide optimal solutions from the updated

MMKP instance whose id was passed to it. The optimal value (i.e., fitness/objective function) of

the obtained solution together with the optimal solution for deploying components of the cloud-

hosted service is evaluated. This information (i.e., optimal value and the optimal solution) is sent

to the output interface for use in architecting the deployment of components of a cloud-hosted

service to guarantee the required degree of multitenancy isolation.

Output Interface

The output interface will display several details associated with the optimal deployment of compo-

nents of a cloud-hosted service for guaranteeing multitenancy isolation when there are workload

changes. These include: the optimal function, optimal solution (e.g., as shown in section 7.5.2),

the number of requests accessing each component and the total number of requests accessing the

whole cloud service
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Figure 7.3: Architecture of the Model-based Decision Support System

7.5.2 OptimalDep: An algorithm for Optimal Deployment of Components

This section describes the OptimalDep algorithm and also shows how the open multiclass QN

model and the heuristic search fits into the decision support model.

Description of OptimalDep Algorithm

A high-level description of the optimalDep algorithm is as follows: when a request arrives indicat-

ing a change in workload, the algorithm uses the open multiclass QN model to determine for each

class, the queue length (i.e., the average number of requests allowed to access a component) as a

function of the arrival rates (i.e., λ) for each class (lines 7-14). The average number of requests is

used to update the properties of each component (i.e., mmkpFile) (line 15). Then the metaheuristic

search is run to obtain the optimal solution for deploying the component with the highest degree

of isolation and the highest number of requests allowed per component (line 17). This algorithm

assumes the optimal solution is the one that guarantees the maximum degree of isolation and the

highest number of requests allowed to access the components and the whole cloud-hosted service.

Clearly, the algorithm can be extended to work for the required degree of isolation by including

the isolation value (i.e., isolation value 1, 2 or 3), as an input parameter both in the OptimalDep

algorithm and in the metaheuristics to search for and extract components that correspond to the
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Table 7.2: An example of optimal Component Deployment

GROUP 1 GROUP 2 GROUP 3
Item 1 Item 2 Item 1 Item 2 Item 1 Item 2

Initial State
Isolation 1 2 2 3 2 1
No. of Req. 0 0 0 0 0 0
Item Resources:
(CPU,MEM,DSK,BDW) 8,6,3,3 9,3,9,9 4,1,2,6 2,6,1,6 7,9,4 ,6 2,5,1,7

Service Demands:
(CPU,MEM,DSK,BDW)

0.25,0.23,
0.22,0.20

0.25,0.23,
0.22,0.20

0.25,0.23,
0.22,0.20

0.25,0.23,
0.22,0.20

0.25,0.23,
0.22,0.20

0.25,0.23,
0.22,0.20

Request to increase workload from 0 to 3.7req/min
No. of Req. (updated) 5.20 5.20 5.20 5.20 5.20 5.20

Current Solution
Solution Format = (F/ I/ Q)
Solution 1: 515.6/5/15.60 X X X
Solution 2: 415.6/4/15.60 X X X
Solution 3: 615.6/6/15.60 X X X
Solution 4: 515.6/5/15.60 X X X
Solution 5: 615.59/6/15.60 X X X
Solution 6: 515.59/5/15.60 X X X
Solution 7: 715.59/7/15.60 X X X
Solution 8: 615.59/6/15.60 X X X

required degree of isolation.

Note that the algorithms described in this chapter are different from the autoscaling algorithms

offered by IaaS providers like Amazon and existing optimisation models proposed for use by SaaS

providers such as Salforce.com (Aldhalaan & Menascé 2015b). Saas providers may be able to

monitor and estimate to a certain degree the performance and resources utilisation of applications

components integrated within applications running on VMs that they have rented out to SaaS cus-

tomers. However, SaaS providers do not know the required degree of isolation of each application

component (e.g., components that offer critical functionality), the number of available components

to be deployed, and the number and capacities of resources required to support each component.

In some cases, it may also be necessary to associate a particular user/request to certain compo-

nents or group of components to guarantee the required degree of isolation. These details are only

available to SaaS customers (e.g., a cloud deployment architect) since they own the components

and are also responsible for deploying and managing the components to the cloud.

OptimalDep Algorithm Example

The following example shows the different solutions evaluated by optimalDep combined with the

SA(Greedy) algorithm to find a optimal solution to the optimization problem. Every time there is

a change in the workload, the optimalDep algorithm finds a new optimal solution for deploying
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components with the highest degree of isolation and the highest number of supported requests.

Let us assume that there are three groups of components (N=3) that can be designed to use (or

integrate with) a cloud-hosted service and each component has a maximum number of requests

that can be allowed to access it without having a negative impact on the degree of isolation between

components of the cloud-hosted service. Each component is supported by four main resources:

CPU, RAM, Disk capacity and bandwidth. The service demands for CPU=0.25, RAM=0.23,

disk=0.22, bandwidth=0.2, while the maximum capacity of each of these resource is 20.

When a request arrives indicating a change in workload (i.e., in our case, this means an arrival

rate between 0 to 3.7 req/min), the QN model equations 7.3, 7.4, and 7.5 is solved to find the

average number of requests that can access the components. The ninth row shows the updated

problem instance with the current number of requests (i.e., 5.2) that can access the components

in each group. The updated problem instance is then solved with the metaheuristic and the state

with the highest optimal function value is returned. Solution 1 (in row twelve) shows the optimal

value of 515.6 for selecting a solution that deploys the first component from all the groups. This

solution results in an optimal value of 515.6 (isolation value=500; and number of request=15.60).

Note that no component can be selected for deployment and hence no changes can be effected on

the cloud environment until the search is over and a better solution is found.

Up to this point all the solutions have been evaluated and only the solution with the optimal

value is returned as the optimal solution. In this example, the optimal solution with the highest

fitness value is solution 7 with a utility value of 715.60. Note that this example assumes a fixed

service demand for all components in each group. In an ideal situation, components would have

different service demands. This would lead to different values for the number of requests, thus

further opening up different options of the selection of an optimal solution.

7.6 Evaluation and Results

This section evaluate the optimalDep algorithm which is the main algorithm that drives the model-

based decision support system. The optimaDep algorithm requires a metaheuristic (see line 17 in

Algorithm 3) to provide optimal values from the MMKP instance. The rest of the algorithm

requires computation of the queuing network model equations. Therefore, it will test the appli-

cability and the effect of the different variants of the metaheuristic in driving the optimalDep
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Table 7.3: Parameter values used in the experiments.

Open Multiclass QN Model Value
λ (offered load) [0,4]
Isolation Value [1,2,3]
No. of Requests [1,10]
Resource consumption [1,10]
Service Demands [0.15, 0.24]
SA(Greedy) Algorithm
No of Iterations N=1000000
No. of Runs 20
Temperature T0 = st. dev of N randomly generated solutions

(N=no. of groups)
Cooling Schedule Tt = T0 − ηt ()see equation 7.7 and 7.8)

algorithm.

The performance evaluation will be presented in terms of the quality of solution, robustness

and computational effort of the optimalDep algorithm when combined with any of the four differ-

ent variants of metaheuristics solution:(i) HC(Random) - Hill climbing with a random solution as

the initial solution; (ii) HC(Greedy) - Hill climbing with a greedy solution as the initial solution;

(iii) SA(Random) - Simulated Annealing with a random solution as the initial solution; and (iv)

SA(Greedy) - Simulated Annealing with a greedy solution as the initial solution.

7.6.1 Experimental Setup and Procedure

The problem/MMKP instances used for our experiments were generated as described in section

3.3.1. The instance generating program and the algorithms were written using Java programming

with Netbeans IDE 7.3.1. All experiments have been carried out on the same computation plat-

form, which is a Windows 8.1 running on a SAMSUNG Laptop with an Intel(R) CORE(TM)

i7-3630QM at 2.40GHZ, with 8GB memory and 1TB swap space on the hard disk. Table 7.3

shows the parameters used for the experiments. Each instance is tested with a workload associ-

ated with it. The exhaustive search algorithm was incapable of solving large instances. This was

because of the low memory of the used machine. And so a small MMKP instance, C(4,5,4) was

used for the evaluation and comparison of the algorithms.

Aim of the experiment: The aim of the experiment is to evaluate the performance (i.e., regard-

ing obtained solution quality, robustness, scalability and computational effort) of the different

variants of the metaheuristic when integrated into the model-based decision support system (i.e.,

optimalDep).
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7.6.2 Comparison of Solutions obtained from optimalDep Algorithm with the Optimal So-

lution

The approach presented in this chapter is novel in that it combines a QN model and metaheuristics

to find optimal solutions for component deployment with guarantees for the required degree of

multitenancy isolation. Therefore, there are no existing approaches that can be used to make a

direct comparison with our approach. Because of this, the solutions obtained from the optimalDep

algorithm (when running either with HC(Random), HC(Greedy), SA(Random), SA(Greedy) are

compared with the optimal solutions obtained by running the OptimalDep algorithm with the

exhaustive search of a small problem size. The quality of the optimal solutions was measured in

terms of percent deviation from the optimal solution. The instance used is C(4,5,4) because it was

small enough to cope with the requirements of the machine. The workload (i.e., the arrival rate)

for each component was randomly generated between 0.0 and 4.

The results are summarised in Table 7.4. Each row of the first column shows a different work-

load with an arrival rate ranging from 2.7-3.9. The second column shows the optimal function

variables as (OP/IV/RV), which stand for the value of the optimal function, isolation value, and

the number of allowed requests, for the optimal solution. The third, fourth, fifth and sixth columns

show the optimal function variables as (OP/FEval), which stand for the value of the optimal func-

tion and the number of function evaluations to attain the optimal solution.

As shown in Table 7.4, all the four variants of the metaheuristic produced results that were the

same as the optimal solution for all workloads. This means that the four variants of the metaheuris-

tic attained a 100% success rate and 0% percent deviation. The similarity seen in the results may

be due to the small size of the instance. This small size was chosen to cope with the machine used

for the experiments which could not solve problem instance larger than C(4,5,4) due to limitations

in its hardware requirements (i.e., CPU and RAM). Notice that the number of function evaluations

required to produce the optimal solution for the greedy variations of the algorithm is 0. This is due

in part to the small size of the MMKP instance, and the fact that some effort has already been put

in to produce the greedy solution and so the optimal solution is attained very quickly with little or

no computational effort in terms of the number of function evaluations.

In Figure 7.4, the Run Length Distribution (RLD) of the instance is shown based on the arrival

rate of 3.9 request per seconds for only 20 iterations since the target solution is attained after about
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Table 7.4: Comparing HC(Rand), HC(Greedy), SA(Rand), SA(Greedy) with optimal solution

Workload(λ) Optimal HC(Rand) HC(Greedy) SA(Rand) SA(Greedy)
2.7 1220.8/12/20.8 1220.8/41 1220.8/0 1220.8/41 1220.8/0
2.9 1225.69/12/25.69 1225.69/38 1225.69/0 1225.69/51 1225.69/0
3.1 1232.38/12/32.38 1232.38/56 1232.38/0 1232.38/60 1232.38/0
3.3 1242.14/12/42.14 1242.14/52 1242.14/0 1242.14/38 1242.14/0
3.5 1257.99/12/57.99 1257.99/38 1257.99/0 1257.99/41 1257.99
3.7 1289.77/12/89.77 1289.77/32 1289.77/0 1289.77/32 1289.77/0
3.9 1415.09/12/215.09 1415.09/17 1415.09/0 1415.09/18 1415.09/0

20 iterations due to the small size of the instance used. This plot shows the performance of the

metaheuristic in a scenario where there is limitation regarding the time and amount of resources

required to execute the decision support system before attaining an optimal value. It is observed

that HC(Greedy) and SA(Greedy) reach a 100% success rate and a corresponding performance

rate after the first iteration. However, the other variants that start with a random solution (i.e.,

HC(Random) and SA(Random)) attain 100% success after 9 and 15 iterations, respectively. This

means that for small instances there may be not much difference between the Hill climbing and

the simulated annealing when the initial solution starts with a greedy solution.

7.6.3 Comparison of Solutions obtained from optimalDep algorithm with the Target Solu-

tion

As an optimal solution could not be obtained with large instances (e.g., C(500,20,4)), the results

were compared to a target solution as proposed by (Talbi 2009). In our case, the target solution

represents a requirement defined by a decision maker on the quality of the solutions to obtain. This

is expressed as:

TargetSoln = ((n×max(I)× w1) + (0.05× (n×max(Q)× w2))) (7.9)

where n is the number of groups, max(I) is the maximum isolation value, max(Q) is the maxi-

mum possible number of requests (calculated based on the upper limit of the arrival rate) and w1

assigned to I and w2 is the weight assigned to the Q. This equation when used to compute the

target solution of C(4,5,4) with arrival rate of 2.7 req/sec gives 1219.2, which is very close to

the optimal solution shown in Table 7.4. The target solution for all instance sizes ranging from

C(10,5,4)/C(10,20,4) to C(1000,5,4)/C(1000,20,4) are shown in Table B.1 and B.2 of appendix B.
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The optimal values obtained for each instance were the same for all the variants of the metaheuris-

tic (see Table B.1 and Table B.2 in appendix B). The rest of the experiment was conducted with

an arrival rate of 3.9 requests per second.

It should be noted that the simulation ran for 1000000 function evaluations in order to be able

to attain the best possible solution for the algorithm. Therefore, the success rate would be expected

to be nearly 100%, with the corresponding performance rate since the optimal solution would have

converged. Because of this, this study extends the evaluation to cover scenarios where there are:

(i) limited resources or a need to optimise available resources while providing optimal solutions;

and (ii) limited time to provide optimal solutions, for example, when the algorithm can run for

only 1000 iterations.

Measuring the Quality of Solutions

The quality of the solutions was measured in terms of the percent deviation from the target solution

(see equation 3.3). As shown in Table 7.5, the percent deviation for all the variants of the meta-

heuristic was the same. It was noticed that the percent deviation of solutions is lower when the

number of components per group is high. For example, the percent deviation for C(500,5,4) is 3.5

when the number of components is 5 and the percent deviation of C(500,20,4) and then 1.49 when

the number of components is increased to 20. This means that the quality of solutions is a function

of the number of components per group. The more choices of a particular type of component there

are, the better the chance of obtaining an optimal configuration. This is particularly important for

large open-source projects that are either designed to use a large number of components within the

cloud-hosted service or be integrated with several components residing in other locations.

Table 7.6 shows the percent deviation for a large instance size (i.e., C(500,20,4)). It was

observed that the percent deviation for SA(Greedy) and HC(Greedy) was better than the other

variants. For example, the percent deviation for SA(Greedy) was less than 0.96 in most cases

and was much more controlled and stable than the other variants. Therefore, for large problem

instances, while HC(Greedy) may produce the best optimal solutions, the SA(Greedy) will still

produce more stable solutions than other variants.

In Figure 7.6, the quality of solutions is shown for the first 10000 function evaluations. This

represents a scenario where there is a limitation in time or resources to do an exhaustive search

of the entire problem size. The two variants that started with the greedy solution as the initial
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Table 7.5: Average performance on different instance sizes(m=5; m=20)

Instance
Size

HC
(rn)

HC
(gr)

SA
(rn)

SA
(gr) Gr Instance

Size
HC
(rn)

HC
(gr)

SA
(rn)

SA
(gr) Gr

C(10,5,4) 7.64 7.64 7.64 7.64 10.94 C(10,20,4) 1.38 1.38 1.38 1.38 0.17
C(20,5,4) 0.7 0.7 0.7 0.7 9.39 C(20,20,4) 1.98 1.98 1.98 1.98 4.75
C(30,5,4) 1.44 1.44 1.44 1.44 9.35 C(30,20,4) 0.09 0.09 0.09 0.09 6.83
C(40,5,4) 1.34 1.34 1.34 1.34 4.32 C(40,20,4) 1.39 1.39 1.39 1.39 2.18
C(50,5,4) 3.38 3.38 3.38 3.38 11.41 C(50,20,4) 1.4 1.4 1.4 1.4 3.56
C(60,5,4) 1.99 1.99 1.99 1.99 8.11 C(60,20,4) 2.04 2.04 2.04 2.04 2.46
C(70,5,4) 0.96 0.96 0.96 0.96 4.58 C(70,20,4) 1.03 1.03 1.03 1.03 3.68
C(80,5,4) 4.08 4.08 4.08 4.08 8.29 C(80,20,4) 1.36 1.36 1.36 1.36 3.93
C(90,5,4) 1.62 1.62 1.62 1.62 5.28 C(90,20,4) 2.01 2.01 2.01 2.01 4.47
C(100,5,4) 5.03 5.03 5.03 5.03 9.87 C(100,20,4) 2.11 2.11 2.11 2.11 4.09
C(200,5,4) 3.79 3.79 3.79 3.79 8.04 C(200,20,4) 1.48 1.48 1.48 1.48 4.37
C(300,5,4) 5.22 5.22 5.22 5.22 10.7 C(300,20,4) 1.13 1.13 1.13 1.13 3.61
C(400,5,4) 3.7 3.7 3.7 3.7 8.92 C(400,20,4) 1.29 1.29 1.28 1.28 4.19
C(500,5,4) 3.53 3.53 3.53 3.53 8.03 C(500,20,4) 1.49 1.49 1.48 1.48 4.53
C(600,5,4) 3.36 3.36 3.36 3.36 7.7 C(600,20,4) 1.25 1.25 1.25 1.25 4.99
C(700,5,4) 3.78 3.78 3.78 3.78 8.49 C(700,20,4) 1.25 1.25 1.24 1.24 4.7
C(800,5,4) 3.84 3.84 3.84 3.84 8.91 C(800,20,4) 1.43 1.43 1.43 1.43 3.82
C(900,5,4) 3.44 3.44 3.44 3.44 8.05 C(900,20,4) 1.11 1.11 1.11 1.11 4.39
C(1000,5,4) 4.28 4.28 4.28 4.28 8.99 C(1000,20,4) 1.17 1.17 1.16 1.16 4.1
AVG 3.32 3.32 3.32 3.32 8.39 AVG 1.39 1.39 1.39 1.39 3.94
STD 1.66 1.66 1.66 1.66 1.89 STD 0.44 0.44 0.45 0.45 1.29

solution (i.e., HC(Greedy) and SA(Greedy) benefited significantly from the greedy solution than

the other two variants. For example, it will take up to 7500 function evaluations (which translates

to more time and resources) for the SA(Random) and HC(Random) to attain an optimal value of

at least 153000. That same optimal value would have been reached by HC(Greedy) after about

2500 iterations.

Measuring the Robustness of the Solutions

Robustness refers to how sensitive the solutions are, against small deviations in the input data or

other parameters; the lower the variability, the better the robustness(Talbi 2009). The standard

deviation was used as a measure of this variability. Table B.1 and B.2 (in Appendix B) show the

standard deviation for all instance sizes in the variable, Opt/Std. For example, 0.27 is the value for

standard deviation for C(1000,20,4). It was observed that the standard deviation for SA(Random)

and SA(Greedy) was higher than that of HC(Random) HC(Greedy) in most cases. This means that

metaheuristic based on hill climbing was more stable and robust than the other variants based on

simulated annealing, especially for large instances.

Table 7.6 shows that although the minimum, maximum, average values of solutions produced

by the HC(Greedy) when applied to a large instance (i.e., C(500-2-4)) for the first 10000 function
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Table 7.6: Comparing Solution Quality with Number of Function Evaluations

ITRN HC(Rand) HC(Greedy) SA(Rand) SA(Greedy) HC(rn) HC(gr) SA(rn) SA(gr)
0 102493.35 151639.99 102553.45 151635.01 32.75 0.50 32.71 0.50
500 120066.77 152030.99 120232.32 152011.96 21.22 0.24 21.11 0.25
1000 130650.02 152453.57 130639.45 152296.21 14.27 0.04 14.28 0.07
1500 137610.24 152720.79 137510.18 152469.75 9.70 0.21 9.77 0.05
2000 142329.22 152932.51 141946.25 152670.75 6.61 0.35 6.86 0.19
2500 145443.36 153086.08 145022.77 152815.44 4.56 0.45 4.84 0.27
3000 147491.14 153262.74 147231.31 152991.31 3.22 0.57 3.39 0.39
3500 148966.65 153406.7 148858.75 153136.21 2.25 0.66 2.32 0.48
4000 150116.54 153533.35 150050.23 153246.17 1.50 0.74 1.54 0.56
4500 151066.03 153643.3 150837.07 153329.15 0.88 0.82 1.03 0.61
5000 151679.1 153726.85 151530.88 153420.63 0.47 0.87 0.57 0.67
5500 152093.62 153822.14 152003.19 153486.9 0.20 0.93 0.26 0.71
6000 152468.36 153888.66 152361.67 153329.15 0.04 0.98 0.03 0.61
6500 152752.03 153937.59 152683.1 153620.12 0.23 1.01 0.19 0.80
7000 152982.12 153986.83 152947.19 153673.2 0.38 1.04 0.36 0.84
7500 153151.13 153986.83 153111.49 153734.31 0.49 1.04 0.47 0.88
8000 153355.56 154102.75 153258.93 153756.01 0.63 1.12 0.56 0.89
8500 153512.38 154129.54 153392.12 153799.05 0.73 1.13 0.65 0.92
9000 153623.17 154162.96 153492.14 153829.5 0.80 1.16 0.72 0.94
9500 153752.4 154198.51 153570.9 153855 0.89 1.18 0.77 0.95
10000 153752.4 154226.25 153669.08 153870.42 0.89 1.20 0.83 0.96
Min 102493.35 151639.99 102553.45 151635.01 32.75 0.50 32.71 0.50
Max 153752.4 154226.25 153669.08 153870.42 0.89 1.20 0.83 0.96
Avg 145683.60 153470.43 145566.78 153189.35 4.41 0.70 4.48 0.52
Std 12877.15 725.97 12822.48 635.43 8.45 0.48 8.41 0.42

evaluations are better than the other variants of the metaheuristic, the standard deviation values for

HC(Greedy) were slightly higher than that of SA(Greedy). As expected, the standard deviation

for HC(Random) was greater than that of SA(Random) and all other variants. This means that

for large instances when there is limitation in terms of time and available resources, the variants

of metaheuristic that start with an initial greedy solution, especially when used with simulated

annealing (i.e., SA(Greedy) produce solutions that are more robust and stable.

Measuring the Computational Effort

The computational effort was measured using several metrics: success rate, performance rate and

average execution time required to produce a solution. Table 7.7 presents the success rate and

performance rate for C(500-20-4) after running the algorithms for 10000 function evaluations.

It was observed that the variants of the metaheuristics that start with the initial greedy solution

performed better. For example, the HC(Greedy) requires 2000 function evaluations to attain a

100% success rate whereas HC(Random) requires 5000 function evaluations.

Figure 7.5 shows the run length distribution of the C(500-20-4) instance for all the variants

of our metaheuristic. As expected, the variants that start with the initial greedy solution have a
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Table 7.7: Success Rate and Performance Rate based on Target Solution (C(500-20-4))

ITRN HC(rn) HC(gr) SA(rn) SA(gr) HC(rn) HC(gr) SA(rn) SA(gr)
0 0 0 0 0 0 0 0 0
500 0 5 0 0 0 0.01 0 0
1000 0 55 0 35 0 0.06 0 0.04
1500 0 90 0 65 0 0.06 0 0.04
2000 0 100 0 95 0 0.05 0 0.05
2500 0 100 0 100 0 0.04 0 0.04
3000 0 100 0 100 0 0.03 0 0.03
3500 0 100 0 100 0 0.03 0 0.03
4000 0 100 0 100 0 0.03 0 0.03
4500 0 100 0 100 0 0.02 0 0.02
5000 5 100 5 100 0 0.02 0 0.02
5500 15 100 15 100 0 0.02 0 0.02
6000 70 100 40 100 0.01 0.02 0.01 0.02
6500 85 100 85 100 0.01 0.02 0.01 0.02
7000 95 100 100 100 0.01 0.01 0.01 0.01
7500 100 100 100 100 0.01 0.01 0.01 0.01
8000 100 100 100 100 0.01 0.01 0.01 0.01
8500 100 100 100 100 0.01 0.01 0.01 0.01
9000 100 100 100 100 0.01 0.01 0.01 0.01
9500 100 100 100 100 0.01 0.01 0.01 0.01
10000 100 100 100 100 0.01 0.01 0.01 0.01
Min 0 0 0 0 0 0 0 0
Max 100 100 100 100 0.01 0.06 0.01 0.05
Avg 41.43 88.10 40.24 85.48 0 0.02 0 0.02
Std 46.47 29.42 46.33 31.66 0 0.02 0 0.01
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Table 7.8: Function Evaluations to attain Target Solution.

Instance HC(Random) HC(Greedy) SA(Rand) SA(Greedy)
C(10,20,4) 88 0 97 0
C(20,20,4) 220 102 204 93
C(30,20,4) 613 616 504 2620
C(40,20,4) 361 0 455 0
C(50,20,4) 558 145 459 140
C(60,20,4) 522 0 550 0
C(70,20,4) 884 236 490 262
C(80,20,4) 899 74 940 74
C(90,20,4) 865 103 979 105
C(100,20,4) 1022 0 1019 0
C(200,20,4) 2331 611 2449 816
C(300,20,4) 3679 923 4090 1046
C(400,20,4) 4874 689 4968 788
C(500,20,4) 5763 1055 6154 1217
C(600,20,4) 7416 892 7826 979
C(700,20,4) 8764 1510 9355 1628
C(800,20,4) 8771 1140 9448 1198
C(900,20,4) 11330 2324 12353 2865
C(1000,20,4) 12642 1986 13169 2238
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Figure 7.4: Run Length Distribution for Small Instance (C(4-5-4))

better %success than the other variants. This confirms our earlier conclusion that in a real-time

environment when there are fewer resources, HC(Greedy) will provide better results than the other

variants. Table 7.8 shows the number of iterations reached for each run before attaining the target

solution.
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Figure 7.5: Run Length Distribution for a Large Instance(C(500,20,4))
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Figure 7.6: Quality of Solution for a large instance size(C(500-20-4))

In addition to the above metrics, the estimated execution time required by each variant of the

metaheuristic to reach the target solution for different instance sizes, was also computed. The

estimated execution time is calculated using the formula given in equation 3.4 (section 3.4.2).

Table 7.9 summarises the results. Each row of the first column shows a different problem/instance

size ranging from C(10,20,4) to C(1000, 20, 4). The second, fourth, and sixth columns show the

mean execution times for obtaining a greedy solution, random solution and optimal value from a

randomly generated solution, respectively. The third column, fifth, and seventh column show the
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Figure 7.7: Computational Effort for a large instance size(C(500-20-4))

standard deviation of the mean execution times for obtaining a greedy solution, random solution

and optimal value, respectively. Columns eight, nine, ten, and eleven show the execution times for

reaching the target solution for each of the variants of the metaheuristic.

The results show that it takes the variants of the metaheuristic that start with the greedy solu-

tion a far less number of functions evaluations to reach the target solutions. For example, Table

7.8 shows that the number of function evaluations for HC(Random) in most of the cases are be-

tween 3 to 8 times more than that of HC(Greedy). As expected, Table 7.9 shows that the average

execution times for producing the initial greedy solution is larger than that of the random solution.

Surprisingly, as illustrated in Figure 7.7, the time to compute the initial greedy solutions seems not

to affect the overall execution times for HC(Greedy) as it is even less than that of HC(Random).

Table 7.9 shows that the execution time required to produce an initial greedy solution is 400 times

in most cases over that of random solutions. However, because the average number of function

evaluations required by the metaheuristic that start with greedy solutions (i.e., HC(Greedy) and

SA(Greedy)) is far less than those that start with random solutions, the overall execution time of

HC(Greedy) and SA(Greedy) is still less than that of HC(Random) and SA(Random). Therefore,

the variants of the metaheuristic that start with the greedy solution used less computational effort

regardless of whether or not it is used with Hill climbing or Simulated annealing.

The results of the study can be summarised as follows:

(i) Percent deviation for all variants was nearly the same. For large instances, percent deviation of
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Table 7.9: Computational Effort (in seconds) of different instant sizes

Instance
Size

AVG
(gr)

STD
(gr)

AVG
(rn)

STD
(rn)

AVG
(fe)

STD
(fe)

HC
(rn)

HC
(gr)

SA
(rn)

SA
(gr)

C(10,20,4) 30.78 3.5 0.23 0.67 0.46 0.42 40.71 30.78 44.85 30.78
C(20,20,4) 66.91 4.05 0.55 0.14 0.54 1.59 119.35 121.99 110.71 117.13
C(30,20,4) 117.81 2.48 0.78 0.15 0.75 0.16 460.53 579.81 378.78 2082.81
C(40,20,4) 170.51 3.45 0.11 1.06 0.93 0.08 335.84 170.51 423.26 170.51
C(50,20,4) 223.66 4.25 0 0.02 1.05 0.05 585.9 375.91 481.95 370.66
C(60,20,4) 277.6 12.55 0.28 0.07 1.67 0.26 872.02 277.6 918.78 277.6
C(70,20,4) 328.99 6.55 0.65 0.11 1.89 0.08 1671.41 775.03 926.75 824.17
C(80,20,4) 386.56 5.96 0.78 1.95 1.62 0.21 1457.16 506.44 1523.58 506.44
C(90,20,4) 435.65 8.76 0.86 0.11 2.14 0.08 1851.96 656.07 2095.92 660.35
C(100,20,4) 508.17 30.24 1.01 0.03 2.94 0.17 3005.69 508.17 2996.87 508.17
C(200,20,4) 1007.66 21.9 2.24 0.08 10.63 0.24 24780.77 7502.59 26035.11 9681.74
C(300,20,4) 1536.93 71.97 3.2 1.95 24.28 0.22 89329.32 23947.37 99308.4 26933.81
C(400,20,4) 2163.23 69.04 4.96 0.06 29.7 0.2 144762.76 22626.53 147554.56 25566.83
C(500,20,4) 2638.34 34.8 5.98 0.08 23.99 0.97 138260.35 27947.79 147640.44 31834.17
C(600,20,4) 3246.27 60.23 7.03 0.07 36.36 0.23 269652.79 35679.39 284560.39 38842.71
C(700,20,4) 3799.79 77.58 8.34 0.22 19.04 0.16 166874.9 32550.19 178127.54 34796.91
C(800,20,4) 4417.39 114.31 10.17 0.11 29.82 0.18 261561.39 38412.19 281749.53 40141.75
C(900,20,4) 5004.77 112.35 11.01 0.09 29.54 3.06 334699.21 73655.73 364918.63 89636.87
C(1000,20,4) 5592.63 87.27 12.06 0.16 30.78 3.09 389132.82 66721.71 405353.88 74478.27

variants based on greedy solutions was smaller and more stable.

(ii) Standard deviation of solutions from simulated annealing was higher than that of hill climbing.

However, for a limited number of function evaluations (i.e., less than 10000 in the experiments),

the standard deviation of simulated annealing was lower than that of hill climbing.

(iii) Metaheuristics that started with greedy solutions attained a 100% success rate much faster and

used less execution time than those that started with random.

(iv) Small instance size had no significant effect on robustness and quality of solutions. However,

as with large instance sizes, the variants of the metaheuristics that start with a greedy solution

required fewer function evaluations to reach the target solution.

(v) Instances with more components per group had less percent deviation, hence a higher chance

of producing better quality solutions

The implication of the results are as follows: The benefit of our model-based decision sup-

port system is in monitoring, evaluating, adjusting and deploying components of cloud-hosted

service (especially for large-scale projects) for guaranteeing multitenancy isolation when there are

workload changes. For large-scale cloud-hosted services, running the model-based decision sup-

port system with a metaheuristic whose initial solution starts with a greedy solution (compared

to random solutions) can significantly boost the quality and robustness of the solutions produced.
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Solutions from hill climbing were more stable and robust than that of simulated annealing, es-

pecially for large instances. However, when there is a limitation in terms of time and resources,

simulated annealing will produce more robust and stable solutions for large instances compared

to hill climbing. Metaheuristics that started with greedy solutions were more scalable and require

fewer function evaluations to reach the target solution when compared to metaheuristics that start

with random solutions.

7.6.4 Statistical Analysis

This section presents a performance assessment of the metaheuristic using the two-way ANOVA

model. The primary purpose of a two-way ANOVA is to understand if there is an interaction

between the two independent variables on the dependent variable (Laerd.com 2017). The vari-

ables of interest are (i) percent deviation (for testing quality of solution); (ii) standard deviation

of a set of optimal solutions(for testing robustness and variability); and (iii) execution time based

on the number of functional evaluations required to reach a target solution (for testing computa-

tional effort). There are two factors being studied: (i) type of instance, which is classified into

two levels - small instances (i.e., C(10,20,4) - C(60,20,4)) and large instances (i.e., C(500,20,4) -

C(1000,20,4)) and (ii) variant of metaheuristic, which is classified into four levels - HC(Random),

HC(Greedy), SA(Random) and SA(Greedy). The computational aspect involves computing F-

statistic and p-value (α = 0.005) for the hypothesis. This study assumes typical conditions of

normality, independence and equality of variance (Cohen 1995, Talbi 2009).

In the design, the type of instance and the variant of metaheuristic has two and four levels,

respectively. In all there are 2 x 4 = 8 groups. The version of the two-way ANOVA used is the

one with more than one observation per cell, but the number of observations in each cell is equal.

In our case, each group had six observations making it a total of 46 cells. This version is useful

for determining if the type of instance and the variant of metaheuristic are independent of each

other (or if there is interaction); they are independent if the effect of instance size on percent devi-

ation/standard deviation/success rate/execution time remains the same irrespective of whether the

variant of metaheuristic used is taken into consideration. Additionally, if there is interaction, then

a follow-up analysis is done to determine whether there are any “simple mains effect” and what

these effects are. Simple mains effect for our problem involves determining the mean difference in

percent deviation/standard deviation/success rate/execution time between the type of instance for
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each variant of the metaheuristic, as well as between variants of the metaheuristic for each type of

instance.

The null hypothesis to be tested is:

• H0: The two factors (i.e., type of instance and variant of metaheuristic) are independent, or

that an interaction effect is not present.

• H1: The two factors (i.e., type of instance and variant of metaheuristic) are not independent,

or that an interaction effect is present

The results of the statistical analysis are summarised below:

(i) Quality of Solutions: There was no statistically significant interaction between the effects of

instance sizes and different variants of metaheuristic on percent deviation of the obtained solution

to the target solution, (F(3, 40) = 0.000, p=1.000)). This means that type of instance and variant

of metaheuristic are independent of each other. In other words, the effect of variant of metaheuris-

tic on quality of solutions (i.e., regarding percent deviation from the target solution) remains the

same irrespective of whether the type of instance used is taken into consideration. This result is

expected because each variant of the metaheuristic is running for 1000000 function evaluations,

which ensured that the search converges to an optimal solution.

(ii) Robustness: There was a statistically significant interaction between the effects of instance

size and variants of the metaheuristic on standard deviation, F (3, 40) = 0.033, p = 0.010. Simple

mains effect shows that there was no difference in standard deviation when the different variants of

the metaheuristic were applied to small instance sizes. However, there was a significant difference

in standard deviation when the different variants of the metaheuristic were applied to large in-

stances. Specifically, out of the six possible combinations, the results shows that there was a signif-

icant difference between the following metaheuristics: HC(Random) and SA(Random)(p=0.09),

HC(Random) and SA(Greedy)(p=0.013), HC(Greedy) and SA(Random)(p=0.09), and HC(Random)

and SA(Greedy)(p=0.013). There was no difference between HC(Random) and HC(Greedy)(p=1.000)

and SA(Random) and SA(Greedy)(p=0.882). This means that for large instance sizes, there is no

difference in robustness if hill climbing is started either with the random or greedy solution. The

same holds for simulated annealing.
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(iii) Computation Effort: There was a statistically significant interaction between the effects of

instance size and variants of the metaheuristic on the execution time (based on the number of

function evaluations), F (3, 40) = 19.114, p = 0.000. Simple mains effect shows that there was

no difference in execution time when the different variants of the metaheuristic were applied to

small instance sizes. However, there was a significant difference in execution time when the

different variants of the metaheuristic were applied to large instances. Specifically, out of the

six possible combinations, the results show that there was a significant difference between the

following metaheuristic: HC(Random) and HC(Greedy)(p=0.000), HC(Random) and SA(Greedy)

(p=0.000), HC(Greedy) and SA(Random)(p=0.000), and SA(Random) and SA(Greedy)(p=0.000).

There was no difference between HC(Random) and SA(Random)(p=0.561) and HC(Greedy) and

SA(Greedy)(p=0.843). This means that for large instance sizes, there is no difference in execution

time if a random solution is used to start either hill climbing or simulated annealing. The same

holds for the greedy solution. Therefore, the difference is in terms of the initial starting solutions,

and not in terms of the variants of the metaheuristic used as was the case with robustness.

7.7 Chapter Summary

This chapter presents the implementation of the model-based decision support system (DSS) for

providing optimal solutions for deploying components designed to use (or integrated with) a cloud-

hosted application in a way that guarantees multitenancy isolation, to contribute to the literature

on multitenancy isolation and optimising the deployment of components of cloud-hosted services.

The DSS works as follows: when a request arrives indicating a change in workload, the DSS

solves an open multiclass QN model to determine the average number of requests that can access

each component, updates the component configuration file with this information, and then uses

a metaheuristic to find an optimal solution for deploying components with the highest degree of

isolation together with the maximum possible number of requests that can be allowed to access

the component.

The study revealed that the optimalDep when combined with metaheuristic that starts with an

initial greedy solution, provides solutions that are robust and of better quality when compared with

the metaheuristic that starts with random solutions. For large projects, starting the metaheuristic

with an initial solution with a greedy solution can boost the model-based DSS. Also, for large in-
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stances, when there are limitations regarding time (e.g., real-time and dynamic environments) and

resources (e.g., resource constrained environment) then simulated annealing produces solutions

that are more robust and stable when compared to hill climbing.



Chapter 8

Discussion

8.1 Introduction

In the previous chapters, the findings from the different strands of this work were presented in

general terms. This chapter will first discuss the findings of the different aspects of the thesis,

followed by some recommendations for architecting the deployment for cloud-hosted services for

guaranteeing multitenancy isolation. Finally, the different areas where our work can be applied

will be discussed.

8.2 Discussion of Findings: Exploratory, Case Studies, Synthesis and

Modelling

This section discusses the findings from the exploratory study, case studies, case studies synthesis

and modelling.

8.2.1 Discussion on Findings from Exploratory Study on Deployment Patterns

The results clearly suggest that by positioning a set of GSD tools on our proposed taxonomy, the

purpose of the study has been achieved. The overarching result of the study is that most deploy-

ment patterns should be combined with others during implementation. The findings presented here

support previous research suggesting that most patterns are related and so two or more patterns

can be used together (Bass et al. 2013, Vlissides et al. 1995).

160
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(1) Combining Related Deployment Patterns: Many deployment patterns are related and cannot

be fully implemented without being combined with others, especially to address hybrid deploy-

ment scenarios. This scenario is very common in collaborative GSD projects, where a GSD tool

either requires multiple cloud deployment environments or components, each with its set of re-

quirements. Our taxonomy, unlike others (Wilder 2012, Homer et al. 2014), clearly shows where

to look for hybrid-related deployment patterns (i.e., the space demarcated by thick lines in Table

4.1) addresses this challenge. For example, when using Hudson, there is usually need to periodi-

cally extract the data it generates to store in an external storage during the continuous integration

of files. This implies the implementation of a hybrid data pattern. Hudson can be used in com-

bination with other GSD tools, such as Subversion (for version control) and Bugzilla (for error

tracking) within a particular software development project, each of which may also have their de-

ployment requirements.

(2) GSD Tool Comparison: The taxonomy gives us a better understanding of various GSD tools

and their cloud-specific features. While other taxonomies and classifications use simple web ap-

plications (Wilder 2012) to exemplify their patterns, a mixture of commercial and open-source

GSD tools is used. For example, commercial GSD tools (i.e., JIRA and VersionOne) are offered

as a SaaS on the public cloud, and they also have a better chance of reflecting the essential cloud

characteristic. Their development almost coincides with the emergence of cloud computing, al-

lowing new features to be introduced into revised versions. The downside is that they offer less

flexibility regarding customization (Sommerville 2011).

On the other hand, open-source GSD tools (i.e., Hudson, Subversion) are provided in the pub-

lic cloud by third party providers, and they rely on API/plugins to incorporate support for most

cloud features. The downside is that the developer’s community does not maintain many of the

plugins available for integration and, so consumers use them at their risk. The taxonomy also

revealed that open-source GSD tools (e.g., Hudson, Subversion) are used at a later stage of a soft-

ware life-cycle process in contrast to commercial tools, which are used at the early stages.

(3) Support for API/Plugin Architecture: Another interesting feature of our taxonomy is that by

positioning the selected GSD tools on it, it was discovered that support for the implementation of
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most deployment patterns is practically achieved through API/Plugin integration (Musser 2012).

This is no coincidence, as a typical cloud application is composed of various web-based related

technologies such as web services, SOA and n-tier architectures. Therefore, a GSD tool with

little or no support for APIs/Plugins is unlikely to attract interest from software developers. For

example, JIRA’s Elastic Bamboo support for Blob storage on Windows Azure is through an API

(Atlassian.com 2016). JIRA has a plugin for integrating with Hudson, Subversion and Bugzilla

(Atlassian.com 2016) and vice versa.

(4) Maintaining State and Exchanging Information Asynchronously: Our taxonomy also high-

lights the technologies used to support the software processes of GSD tools, unlike others, which

focus mostly on the design of cloud-native applications (Fehling et al. 2014). Web services (via

REST) and messaging (via message queues) are the preferred technologies used by cloud deploy-

ment patterns (e.g., stateless pattern, message-oriented middleware) to interconnect GSD tools and

other components. Public cloud platforms favour the REST style. For example, JIRA’s support

for SOAP and XML-RPC is depreciated in favour of REST (Atlassian.com 2016). This trend is

also reported in (Wilder 2012, Musser 2012).

(5) Accessing Data stored in Cloud Storage: Some GSD tools (e.g., Subversion) handle signifi-

cant amounts of data (images, music, video, documents/log files) depending on the nature of the

software development project. This data can be stored in cloud storage to take advantage of its

ability to scale almost infinitely and store large volumes of unstructured data. The downside is that

the application code of the GSD tool has to be modified to enable direct HTTP-based REST API

calls. Cloud storage’s object architecture requires REST API to be either integrated as a plugin

into the GSD tool or coded separately. Storing data on the cloud is invaluable in a case where the

GSD tool runs in a static environment, and the data it generates is to be archived on an elastic cloud.

(6) Patterns for Cloud-application Versus Cloud-environment: Our taxonomy can be used to

guide an architect in focusing on a particular architectural deployment component of interest -

that is, either a cloud-hosted application or cloud-hosted environment. Other taxonomies (Homer

et al. 2014, Wilder 2012) are concerned with the design of cloud-native applications. Assuming

an architect is either interested in providing the right cloud resources or mapping the business
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requirement to cloud properties that cannot be changed (e.g., location and ownership of the cloud

infrastructure), then Taxonomy A would be more relevant.

However, if the interest is in mitigating certain cloud properties that can be compensated for

at an application level (e.g., improving the availability of the cloud-hosted GSD tool), then Tax-

onomy B should be considered. Fehling et al. describe other cloud properties that are either

unchangeable or compensatable for deploying cloud applications (Fehling et al. 2014).

8.2.2 Discussion of Findings from Case Studies and Case Study Synthesis

This section presents some recommendations for implementing varying degrees of multitenancy

isolation based on the results of the case studies and case study synthesis carried out. These

recommendations are summaries below:

(1) Volume of Data Generated : The case studies revealed that the volume of data generated could

have a significant impact on the required degree of isolation. The continuous integration process

and version control process can potentially generate more data than bug tracking systems. For

example, several of the problems that occur in version control relate to the fact that version control

systems usually create additional copies of files on the repository (especially the ones that use the

native operating system (OS) filesystem directly) (Collins-Sussman et al. 2004). This adversely

affects performance because these files occupy more disk space than they use, and the OS spends

a lot of time seeking across many files on the disk.

(2) Optimising Cloud Resources while Guaranteeing Isolation: Apart from the continuous inte-

gration process (that is, build/compilation process), which are known to consume much memory

and disk I/O, most GSD processes do not consume much IT resources. For example, Hudson

which is used to simulate continuous integration does not consume much CPU because builds can

be set-up to run in the background without interfering with other processes. Therefore, to optimise

the cloud resources while guaranteeing multitenancy isolation, the architect should avoid certain

operations that would increase system’s resource consumption. Generally, operations that would

lock processes for a long time should be avoided. For example, in continuous integration, it would

be recommended to avoid as much as possible (i) carrying out difficult and complex builds (i.e.,

builds that have many interdependencies with other programs or systems), and (ii) running a large

number of builds concurrently. For the version control, it would be recommended to avoid moving
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data from one repository to another, data compression and packing. For bug tracking process that

uses a relational database to store data, it would be recommended to avoid caching database trans-

actions and using run-time libraries (e.g., model perl) that are known to consume much memory.

Data generated in the cloud environment are mostly unstructured. This seems to suggest that rela-

tional databases are not ideal for multitenancy and so it is recommended to use simpler databases

(e.g., Amazon Simple DB, SQL Azure, and Google Big Table) provided by large cloud producers

(Sommerville 2011, Doddavula, Agrawal & Saxena 2013a).

(3) Sensitivity to Workload Interference: Our experience seems to suggest some of the GSD pro-

cesses are sensitive to workload interference. For example, bug tracking (with Bugzilla) was

susceptible to increased workload especially if locking is enabled for the bug database. It was

noticed that frequent crashes of the Bugzilla database occurred in our experiments which required

recovery. There were also numerous database related errors. It would be recommended to increase

the maximum size of a file that can be stored in the database. It may also be necessary to remove

restrictions on the maximum number of allowed queries, connections and packets, etc. There

are several cloud patterns which can be used to minimise workload interference in multitenant

applications. For example, Doddavula et al. present several cloud computing solution patterns

for handling application workloads such as applications with highly variable workloads in public

clouds, and workload spikes with cloud burst (Doddavula, Agrawal & Saxena 2013b)

(4) Interacting with GSD Processes with Sufficient Latency and Bandwidth: When a client network

has high latency and bandwidth, it can have a negative impact on the performance of other tenants

and hence the required degree of multitenancy isolation. For bug tracking, if a client with a low

network bandwidth is interacting with a GSD process (e.g., bug tracking), it may be advantageous

to compress large bug attachments before moving the data across the network, though with limi-

tations of high CPU consumption. For the continuous integration (CI) process, it is recommended

that the network connection has low latency especially if the CI server is configured to publish

artefacts to a source control server automatically.

(5) Implementing Multitenancy on Different layers of the Application Stack: Depending on the

layer of the application stack, achieving multitenancy isolation for cloud-hosted GSD tools and
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supporting processes may be realised differently with associated implications. For example, im-

plementing the shared component on the SaaS layer for a bug tracking process that uses a database

to store data would ensure efficient sharing of cloud resources, but isolation is either very low or

not guaranteed at all. Implementing a dedicated component on the IaaS layer would require in-

stalling the bug database for each tenant on its instance of virtual hardware, thus increasing the

runtime cost and limiting the number of tenants that can be served. Previous research work focused

on implementing multitenancy at the data tier (Wang et al. 2008, Vanhove et al. 2014). The ap-

proach we have presented in this thesis addresses this challenge by capturing and analysing tenants

requests/transactions at the application tier and then using this to adjust the behaviour of the cloud-

hosted service based on the required degree of isolation (Ochei, Bass & Petrovski 2015c, Ochei,

Petrovski & Bass 2015).

8.2.3 Discussion of Findings from Modelling and Simulation

In this section, the results of the study on modelling and simulation are discussed.

(1) Quality of the solutions: The model-based decision support system (DSS) can be used to

obtain high-quality solutions with any of the four variants of metaheuristic when dealing with

small instances. The DSS would perform well both in small problem instances and large problem

instances when started with an initial greedy solution (i.e., HC(Greedy) and SA(Greedy). Using a

greedy solution and other forms of improvement heuristics to construct an initial solution for the

metaheuristic has been shown in several research work to improve the quality of solutions. Many

variants of metaheuristic often use initial solutions generated randomly (Rothlauf 2011).

The results show that the percent deviation of solutions from instances with five components in

a group was higher than the percent deviation from instances with twenty components in a group.

This seems to suggest that there may be a greater chance of obtaining better quality solutions when

there are more components in a group (i.e., more deployment configurations to choose from).

Our approach is well suited for this type of scenario in the sense that it allows us to use during

search both intensification (exploitation) and diversification (exploration). A good balance of both

will usually improve the performance of the metaheuristic and hence the quality of the solutions

(Rothlauf 2011).

Another important lesson from this study is that starting the metaheuristic with an initial set of
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solutions (e.g., the greedy solutions as used in our approach) can significantly improve the quality

of optimal solutions for guaranteeing the required degree of multitenancy isolation. This agrees

with the conclusions from (Sliwko & Getov 2015) where the author developed a prototype meta-

heuristic load balancer to allocate services on a cloud system without overloading the nodes and

maintaining the system stability with minimum cost. The author recommended that better results

can be achieved if solutions pool is initially created from an already pre-computed set.

(2) Robustness of the solutions: The results show that optimalDep algorithm when used with

HC(Greedy) and HC(Random) was more robust and stable on small problem instances. However,

it was discovered that the problem instances with more components (i.e., m=20) were less robust

because the standard deviation was much higher. This means that a cloud-hosted service with

several components per group may have a higher chance of producing solutions that are of better

quality, but with low robustness or stability.

This could have an adverse impact on cloud-hosted services that may have several interde-

pendencies with other components or cloud-hosted services. Therefore, when working on large

open-source projects, it is advisable to limit or control such interdependencies or better still use

a combination of local search with greedy principles. This can also help to improve robustness

and avoid unstable solutions in environments where the workload is expected to change very fre-

quently. Several research work have made reference to such unstable environments where there

are frequent workload changes (Fehling et al. 2014), unpredictable and aggressive workloads

(Doddavula et al. 2013b, Walraven et al. 2012).

The result also shows that variants of metaheuristic based on hill climbing were more stable

and robust than simulated annealing. However, when there is limitation in terms of time and avail-

able resources, then simulated annealing would produce stable and robust solutions. This implies

that when workload changes frequently, then hill climbing would be more suitable, but when time

and resources are limited, then simulated annealing would be more appropriate.

(3) Computational Effort: The result of the experiments show that the scalability of the solutions

and the computational effort required to attain an optimal solution depend in part on the instance

size and the type of metaheuristic used. The results of the experiment show that variants of the

metaheuristic that start with an initial greedy solution (i.e., HC(Greedy) and SA(Greedy)) were
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more scalable and they also attained the target solution much faster (i.e., with less number of

function evaluations), especially for large instance sizes. Variants of metaheuristic that start with

random solutions are suitable either for small problem instances or when there is need to produce

optimal solutions frequently and quickly from large problem instances. Therefore, if frequent pro-

visioning and decommissioning of components characterise a cloud deployment scenario, then the

OptimalDep algorithm should be run with either HC(Greedy) or SA(Greedy). As with previous

work, our results show that metaheuristics which start with greedy solutions as the initial solu-

tion will require less computational effort to provide optimal solutions for deployment (Sliwko &

Getov 2015).

Our approach assumes that the initial solution is computed first before running the metaheuris-

tic, so it is expected that the time and effort required to calculate the greedy solution will be more

than that of a random solution which would have a negative impact on the variants of the meta-

heuristic that start with the greedy solution. However, the results show the high execution time

required to produce a greedy solution was not enough to counter the small number of function

evaluations required by metaheuristic that start with greedy solutions to attain the target solutions.

Therefore, our DSS when supported with metaheuristic that starts with greedy solutions would

be suitable for handling large scale projects that may have a significant number of interdependent

components.

There are several situations where there is need to reduce the computational effort required to

produce an optimal solution. For example, many customers and cloud providers would be inter-

ested in being able to provision and decommission resources so that tenants can access servers and

other IT resources more quickly and efficiently while guaranteeing the required degree of multi-

tenancy isolation. Another situation is when there is need to ensure that a cloud service is failure

resistant to guarantee the availability of specific/individual components. Existing approaches do

not often guarantee the availability and isolation of individual components but for a whole cloud

service (Fehling et al. 2014). Our model-based DSS addresses this challenge by first tagging each

component and then using a suitable metaheuristic to provide optimal solutions for deploying

components of a cloud-hosted service with less computational effort.
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8.3 Challenges and Recommendations

This section presents a general discussion that focuses on the challenges of implementing multi-

tenancy isolation and the recommendations that can be followed to achieve the required degree of

isolation.

8.3.1 Type and Location of the application component or process to be shared

The degree of isolation between tenants, to a large extent, depends on the type and location of

application component that is being shared. There are different techniques for realising multite-

nancy isolation depending on the level of the application stack. On the lower level (i.e., IaaS)

multitenancy isolation can be achieved by virtualization. On the middle-level, a hypervisor can be

used to set up different databases for different tenants.

On the application level, multitenancy isolation can be implemented by introducing a tenant-id

field to tables so that tenants can only access data that is associated with their tenant-id. An ap-

proach (i.e., COMITRE) has been developed for evaluating the required degrees of multitenancy

which is anchored on shifting the task of routing a request from the server to a separate component

(e.g., Java class or plugin) at the application level of the cloud-hosted GSD tool (Ochei, Bass &

Petrovski 2015c). One of the advantages of using this approach is that it can be used at the appli-

cation level to optimise the utilisation of the underlying cloud resources in a resource constrained

environment, for example, where there are limited CPU, Memory and disk space. The drawback is

the effort and skill required in modifying the GSD tool before implementing the COMITRE logic.

8.3.2 Customizability of the GSD tool and supporting process

Most GSD tools would have to be customised to implement the required degree of multitenancy

isolation. This can be a big challenge if the GSD has several components that are being shared.

Different application components can be implemented at different levels to address the problem

between aspects of the GSD that can be customised with ease and those that cannot. For example,

Bugzilla interface can be exposed as an integrated component to different tenants working on other

GSD tools like JIRA while the Bugzilla database can be implemented as a dedicated component

to ensure proper isolation of bugs belonging to various tenants.

Another major challenge associated with customization is that a GSD tool can have many
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inter-dependencies on different levels of the application itself and with other applications, plugins,

libraries, etc., deployed with other cloud providers. There is also a serious risk of using incompat-

ible plugins and libraries required to modify, customise and execute these GSD tools. This could

corrupt the GSD tool and stop other supporting programs/processes from running. An easy way to

address this challenge on the cloud is to push the implementation of multitenancy isolation down

the lower levels of the cloud stack, where the architect can, for example, install the GSD tool on

a PaaS platform. Issues of middleware and methods for customizability of Saas applications have

been discussed in (Walraven, Van Landuyt, Truyen, Handekyn & Joosen 2014, Walraven 2014).

8.3.3 Optimization of Cloud Resource due to changing Workload

The case studies have clearly highlighted the need to optimise the deployment of cloud GSD

tools and support processes under different cloud deployment conditions while guaranteeing the

required degree of multitenancy isolation. Under typical configurations, most GSD tools may

not consume much cloud resources. However, there is always a real need for optimisation of

the system’s resource in a situation where there is either under-utilisation of resources or over

utilisation of resources (e.g., if the shared application component is overloaded).

Under-utilisation of resources in a cloud environment is possible for two main reasons: (i)

when there are excess resources available on the cloud infrastructure, and (ii) when there are a

small number of tenants accessing the application component (and data stored). The type of cloud

deployment model and the particular type of resource that the architect intends to optimise could

significantly affect the degree of multitenancy isolation. For example, elasticity can be restricted

to a significant extent in a case where the GSD tool is deployed on a private cloud to support a

small number of users.

As pointed out in the case study involving continuous integration with Hudson, CPU con-

sumption of tenants changed significantly for the shared component. Therefore, on a private cloud

which supports a small number of tenants, the shared component can be used to optimise CPU

utilisation. However, there would be no guarantee of a high degree of isolation between tenants.

In a continuous integration system, builds are known to consume a vast amount of disk I/O, and so

running a large number of builds concurrently and running builds that are too complex should be

performed on a dedicated component (Moser & O’Brien 2016). If the shared component is used

to deploy Bugzilla (where mod perl is enabled) on the same type of cloud infrastructure described
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above, then minimising RAM consumption would be the main issue of concern, and not CPU

(Bugzilla 2016).

Our recommended approach for optimising cloud resources while guaranteeing the required

degree of isolation is through the use of a model-based decision support system. Models used

in previous work have focused on minimising the cost of using cloud resources. Metaheuristics

were not used for the optimisation and only in a few cases were simple heuristics used (Aldhalaan

& Menascé 2015b)). The model integrated into our decisions considers optimising the required

degree of isolation and metaheuristics were used to solve the model (Ochei, Petrovski & Bass

2016b).

8.3.4 Hybrid Cloud Deployment Conditions

There are situations where combining more than one multitenancy pattern is more suitable for

implementing isolation between tenants. One example may be to handle hybrid deployment sce-

narios, for instance, integrating data residing on different clouds and static data centres. There

are several cloud offerings such as Dropbox 1 and Microsoft’s Azure StorSimple 2 that allow cus-

tomers to integrate a cloud-based storage with a company’s storage area network (SAN). Another

scenario that is suitable for combining more than one multitenancy pattern is when different set-

tings are applied concurrently to a particular software process. For example, settings could be

applied to vary the frequency with which code files are submitted to a shared repository or lock

certain software processes to prevent clashes between multiple tenants.

For example, builds or commits to a repository could be configured to run concurrently or

at regular intervals. Running such builds as a long complete integration build in a slow network

environment could take a lot of time and resources. To achieve a high degree of isolation while

guaranteeing efficient resource utilization, the integration build can be split into two different

stages, so that: (i) the first stage creates a commit build that compiles and verifies the absence

of critical errors when each developer commits changes to the main development stream, and (ii)

the second stage creates secondary build(s) to run slower and less important tests (Fowler 2016).

As the result of case study one involving continuous integration showed, CPU consumption of
1Dropbox is a file hosting service that offers cloud storage, file synchronization, personal cloud, and client software

(http://www.dropbox.com)
2Azure StoreSimple is a cloud storage service that integrates primary storage data deduplication, automated tiered

storage of data across local and cloud storage (https://www.microsoft.com/en-gb/cloud-platform/azure-storsimple)



8.3. Challenges and Recommendations 171

tenants changed significantly for the shared component; and so, the first stage of the build can use

a dedicated component while the second stage of the build can use the shared component. This

will ensure that secondary builds do not consume many resources and even if they fail, it will

not also affect other tenants. Several other hybrid cloud deployment scenarios can be utilised to

guarantee the required degree of multitenancy isolation1.

8.3.5 Tagging Components with the Required Degree of Isolation

Components designed to use or integrated with a cloud-hosted service should be tagged as much

as possible when there is need to implement the required degree of multitenancy isolation. Our

approach achieves tagging by mapping our problem to an MMKP instance and associating each

component with its required degree of isolation, thus allowing us to monitor and respond to work-

load changes efficiently. Tagging can be a challenging and cumbersome process and may not

even be possible under certain conditions (e.g., in a case where the component is integrated into

other services and are not within the control of the customer). Therefore, instead of tagging each

component with an isolation value as required, this can also be predicted in a dynamic way. In

our previous work (Ochei, Petrovski & Bass 2016a), an algorithm was developed which learns

the features of existing components dynamically in a repository and then uses this information to

associate each component with the appropriate degree of isolation. This information is crucial for

making scaling decisions and optimisation of resources consumed by the components, especially

in a real-time or dynamic environment.

Our approach is related in many ways to existing cloud offering such as Amazon’s Auto Scal-

ing and EC2 (Amazon 2016), and Microsoft Azure’s Web Role (Microsoft 2016) where users can

specify the different configurations for a component, for example, the number of components that

can be deployed for a certain number of requests. However, users cannot tag each component with

the required degree of isolation before deployment, as has been proposed in our approach.

8.3.6 Error Messages and Security Challenges during Implementation

Multitenancy isolation introduces significant error and security challenges in the cloud especially

when the resources are shared among multiple tenants. Sharing of resources is closely associated

with implementing the shared component, which does not guarantee a high degree of isolation
1Fehling et al. describes several cloud patterns that are suitable for deploying cloud services in a hybrid fashion
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between the tenants. In this situation, if an error is triggered in the cloud service due to overload

or insufficient resources, or if one of the tenants on the network is malicious, it can cause a denial

of service and performance degradation for other tenants (Bass et al. 2013).

The type of error messages received from the case studies is a pointer to the key resources to

consider in achieving the required degree of multitenancy isolation. For continuous integration,

the error messages were related to insufficient system resources. For example, while implementing

multitenancy isolation with Hudson, the most common error experienced was that of insufficient

memory allocation. The cloud infrastructure did not cause this but it was partly caused by Hudson

as it is not very optimised and also by the demands of the continuous integration process.

For the bug tracking process where bugs are stored in a database, the most common errors

were related to resolving database errors, for example, exceeding the limit of file size, query, con-

nections, etc. Therefore, it is necessary to modify the bug database to remove these restrictions.

The bug database running on the VM instance can be quite sensitive to workload changes depend-

ing on the size, the volume of bugs, and the bug database isolation level. For the version control

process, the most common error was that of insufficient memory and file or directory permission

issues (e.g., when setting FTP request configurations). This problem becomes more acute when

moving the VM image instance (whose file permission had been set on a local machine) to the

cloud infrastructure. Therefore, it is necessary to get repository ownership and permission right

before conducting the experiments.

8.4 Practical Applications

Some practical applications of our work are summarised below.

(1) Applicability of the Taxonomy of Cloud Deployment Patterns

Taxonomies are applied in software engineering to document theories that accumulate knowledge

on software engineering (Sjoberg et al. 2007), and to carry out comparative studies involving

tools and methods, for example, software evolution (Buckley et al. 2005) and Global Software

Engineering (Smite et al. 2012). Our taxonomy can be used by a cloud architect to know the type

of cloud deployment pattern to select and where the cloud pattern is targeting, for example, either

the cloud-application or the cloud environment.
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As stated earlier, most cloud patterns are related and have to be combined with others during

implementation (Vlissides et al. 1995, Bass et al. 2013). One possible area of application is in

selecting deployment patterns for deploying cloud services in a hybrid deployment scenario. This

will be the case if data stored in different locations is to be integrated to form one cloud solution.

For example, the cloud solution might require architecting the deployment to store some data in

a particular format or to comply with certain regulations. These complexities would require a

careful selection of cloud deployment patterns that would map the requirements to properties of

the cloud infrastructure that cannot be changed and those that can be changed at the application

level of the cloud-hosted solution.

The taxonomy can reduce the learning times of software architects. Collaborative work is

made easier as similar cloud patterns for a particular project/task can be identified for use by prac-

titioners in the organisation. Knowledge sharing can be automated more readily because similar

and compatible cloud patterns would have been used while working on similar projects/tasks.

(2) Applicability of COMITRE Approach and Case Study Findings

One of the areas of applying COMITRE (a key outcome of the case study) is in software de-

velopment, particularly in customising existing open-source tools and legacy systems. Most of

these applications were not implemented using any multitenant architecture, and so they should

be customised to support varying degrees of multitenancy isolation before deploying them to the

cloud.

The several case studies allow us an in-depth understanding of the behaviour of different cloud-

hosted services and the effects of varying degrees of multitenancy isolation of tenants or compo-

nents. The case study synthesis has provided an explanatory framework and new insights into

how multitenancy isolation affect a variety of software processes used to support Global Software

Development. For example, the explanatory framework can help architects to (i) select suitable

patterns to deploy services depending on the type of software processes they support; (ii) optimize

cloud resources (e.g., CPU, memory) in a resource-constrained environment; and (iii) understand

the trade-offs to consider when implementing multitenancy isolation.

(3) Applicability of the Model-based Decision Support System

Our proposed decision support system has several applications in the real cloud computing envi-
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ronment. Some example scenarios where our work can be applied are presented below:

(i) Optimal Allocation in a Resource-constrained Environment: In a resource-constrained environ-

ment, users are always looking for options to optimise the consumption of resources. Our decision

support system can achieve this by setting a limit on the resources that are used to support each

component (i.e., CPU, RAM, Disk and Bandwidth). After that, the decision support system can

be used to provide optimal solutions that represent the required degree of isolation (i.e., either

the highest, average or lowest degree) and the maximum number of requests that can access each

component based on the available resources.

(ii) Monitoring Runtime Information of Components: Another application of our model-based de-

cision support system is that it can be used as a cloud deployment pattern or integrated into other

cloud patterns like an elastic load balancer, and an elastic manager to monitor runtime information

about individual components. Examples of information that could be monitored include the num-

ber of requests that can concurrently access the application components and the feasibility of the

limits/capacities set for the resources supporting each component to achieve the required degree

of isolation.

Even though many cloud providers offer a significant amount of rule-based scaling or load

balancing functionality (e.g., Amazon’s Auto Scaling 1 and Microsoft Azure Traffic Manager 2),

our decision support system can be customised to monitor and adjust the configuration of compo-

nents that were created as part of the original scaling rules, and thus provide optimal solutions that

guarantee the required degree of multitenancy isolation. This is especially important when there

are frequent workload changes and different or varying user behaviours.

(iii) Controlling the Provisioning and Decommissioning of Components: When runtime informa-

tion of components is available, they can be used to make important decisions concerning scaling,

provisioning of required components and decommissioning of unused components. For exam-

ple, when the required degree of components is known, this information can be used to adjust

the number of component instances to reflect the current workload experienced by the applica-

tion. Decommissioning components that would not impact negatively on the performance of other

components and the application could lead to significant cost savings for users.
1Available at https://aws.amazon.com/autoscaling/
2Available at https://docs.microsoft.com/en-us/azure/traffic-manager/traffic-manager-overview
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Our model-based decision support system can be customised to provide information for de-

commissioning of components failed components or components that are not working properly to

achieve the required degree of isolation. Although many providers offer monitoring information,

for example, information about network availability and utilisation of components deployed on

their cloud infrastructure, it is the responsibility of the customer to extract, deduce and interpret

these values and then provide information regarding the availability of components.

8.5 Chapter Summary

This chapter has presented a discussion of results from each aspect of the study and after that

the challenges and recommendations for achieving the required degree of isolation. Firstly, by

creating a taxonomy and applying it to position a set selected of software tools, it demonstrates

that appropriate deployment patterns can be identified together with the supporting technologies

for deploying cloud-hosted services. It is observed that most deployment patterns are related and

can be implemented by combining with others, for example, in hybrid deployment scenarios to

integrate data residing in multiple clouds. Secondly, by empirically evaluating the varying de-

grees of multitenancy isolation in different case studies, it means that the approach developed in

this study (i.e., COMITRE) has been applied not only to implement multitenancy but the required

degree of multitenancy isolation between tenants. Thirdly, our model-based decision support sys-

tem provides a model as well as a metaheuristic solution for providing near-optimal solutions for

deploying components of a cloud-hosted service.

This chapter has also presented some concrete examples and application scenarios where our

work can be applied. Our research can be applied in situations where there is need to select

and combine two or more cloud deployment patterns together with their supporting technology

for deploying cloud-hosted services. The case studies and their synthesis provide information to

architects on a range of issues, such as how to implement multitenancy isolation in cloud-hosted

services (e.g., GSD tools), recommended multitenancy patterns and general recommendations for

implementing the required degree of multitenancy isolation. The model-based decision support

system can be used to provide near-optimal solutions in (i) resource constrained environment

where architects work with limited resources (e.g., CPU, memory); and (ii) a real-time/dynamic

environment, where monitoring components and responding to workload changes is critical.



Chapter 9

Conclusion

9.1 Summary

This thesis has investigated how to architect the deployment of components of a cloud-hosted

service for guaranteeing the required degree of multitenancy isolation. In previous chapters, this

thesis has presented how this problem has been addressed from different perspectives. Chapter

one introduced the thesis, while chapter two discussed the theoretical concepts used in the thesis

and relevant related work. Chapter three focused on the methodology used for the research. This

thesis applied a multimethod research approach by combining exploratory study, case study and

case study synthesis, and simulation based on a model. Chapter four explains how to create and

use a taxonomy of cloud deployment patterns to guide architects in selecting suitable deployment

patterns together with associated technology for deploying cloud-hosted services. Chapter five

presents the three case studies conducted to empirically evaluate the varying degrees of multite-

nancy isolation in different case studies of GSD processes. To generalise the results and explain

observed variations and exceptions, a synthesis of findings from the three case studies in chapter

six was carried out.

Chapter seven provides a model-based decision support system that combines a Queueing

Network and optimisation model to provide near-optimal solutions for deploying components of a

cloud-hosted service. Chapter eight first presents a discussion of each aspect of the work followed

by recommendations for achieving the required degree of multitenancy isolation. The rest of

this chapter is organised as follows: Section 9.2 revisits the research contributions of this thesis.

176
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Section 9.3 discusses the scope and limitations of the research. Section 9.4 reflects on the PhD by

discussing the challenges and lessons learned, while Section 9.5 is the future work. Section 9.6 is

the conclusion of the thesis.

9.2 Research Contributions Revisited

This section revisits the main contributions of the thesis.

1. A novel taxonomy and a general process for selecting applicable cloud deployment pat-

terns (chapter 4): Previous taxonomies of cloud patterns were not benchmarked to existing

classifications and also not applied to applications in a particular domain. Current research

has been extended by developing a taxonomy that is benchmarked to existing classifica-

tions: ISO/IEC 12207 taxonomy of software life cycle processes, components of a cloud

model based on NIST cloud computing definition, NIST SP 800-145, and components of an

architectural deployment structure (i.e., cloud-application and cloud environment).

A further contribution is the application of our taxonomy to position a set of Global Soft-

ware Development (GSD) tools and process, which also allowed us to identify technologies

that can support the selected deployment patterns. Our taxonomy, unlike others (Wilder

2012, Homer et al. 2014), clearly shows where and how to select deployment patterns for

addressing hybrid deployment scenarios, for example, integrating data residing in multiple

cloud environments.

The findings presented here support previous research that most patterns are related and so

two or more patterns can be used together (Bass et al. 2013, Vlissides et al. 1995). By ap-

plying the taxonomy, recent technological trends in cloud deployment have been identified,

for example, the use of plugin architectures for customization (Musser 2012, Atlassian.com

2016), preference for REST and messaging to interconnect GSD tools and other compo-

nents. (Wilder 2012, Musser 2012)

2. A novel approach, COMITRE, together with supporting algorithms for implementing vary-

ing degrees of multitenancy isolation (Chapter 5): Previous research on implementing mul-

titenancy assumes two extreme cases of isolation: shared isolation and dedicated isolation

which are mostly implemented at the data tier (Chong et al. 2017, Vanhove et al. 2014,
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Schneider & Uhle 2013, Schiller 2015), and so ignore the effect of varying degrees of isola-

tion between tenants. Unlike previous research which focuses more on performance isola-

tion (Krebs 2015, Krebs et al. 2013), our approach also applies to other aspects of isolation

including resource consumption of tenants (e.g., CPU, RAM). Specifically, our approach

extends the current research by considering the effect of varying degrees of multitenancy

isolation for individual components of a cloud-hosted service under different cloud deploy-

ment conditions. For example, by capturing and configuring tenants request/transaction

(i) implementation can be done at different levels (although more flexible at the applica-

tion level for optimizing cloud resources); (ii) individual components can be monitored and

adjusted to reflect changing workload; and (iii) trade-offs between the performance and re-

source consumption of tenants can be resolved easily depending on the required degree of

isolation. One of the key benefits of our approach is that the underlying middleware and

infrastructure do not necessarily need to be multitenant aware as the isolation is handled on

the application level.

Similar to our approach, many providers implement techniques that capture client transac-

tions/requests and decide what level of isolation is required. However, these approaches do

not guarantee the availability and multitenancy isolation of specific components/individual

IT resources (e.g., a particular virtual server or disk storage), but for the offering as a whole

(e.g., starting new virtual servers) (Amazon 2017, Fehling et al. 2014). To address this prob-

lem, our approach initially tags each component and after that decides which isolation level

is suitable for deploying a component based on the metadata of existing components in a

component repository.

3. Evaluating varying degrees of Multitenancy Isolation (Chapter 5): This study extends cur-

rent research by empirically evaluating the varying degrees of multitenancy isolation. Three

case studies were conducted: continuous integration with Hudson, version control with File

System SCM plugin and bug tracking with Bugzilla. Conducting more than one case study

helps not only to strengthen the validity of our results but generalises our findings. (Cruzes

& Dybå 2010, Cruzes & Dybå 2011). Previous research has applied multitenancy pat-

terns/architectures (and cloud patterns generally) to simple web applications, for example,

weblog applications (Moyer 2012, Homer et al. 2014) and largely ignored key factors that
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could influence pattern selection such as application processes, workload and resource de-

mands imposed on cloud service and cloud infrastructure on which the service is hosted.

The research makes several contributions in relation to multitenancy isolation:

(i) In case study 1, it was discovered that the shared component provides the lowest degree

of isolation between other tenants when one of the tenants is exposed to demanding deploy-

ment conditions (e.g., large instant loads). There was no significant difference between the

implementation of the tenant-isolated component and the dedicated component for a small

number of build processes. The study concludes that when code files are checked into a

shared repository at a low frequency to trigger a build process, then a high degree of iso-

lation (regarding response times) is expected both for the tenant-isolated component and

dedicated component. For the shared component, the degree of isolation is lower which

means that it is more prone to performance effect when exposed to high load (Ochei, Bass

& Petrovski 2015c).

(ii) In case study 2, it was discovered that when using a version control system, the dedicated

component provides the highest degree of isolation between tenants (compared to the shared

component and tenant-isolated component) regarding error% (i.e., the percentage of errors

with unacceptably slow times) and throughput. While response times, CPU and memory

consumption had the most negative impact on tenant isolation when exposed to large instant

loads, system load of tenants showed no variability, and hence did not influence the degree

of tenant isolation for all the three multitenancy patterns (Ochei, Petrovski & Bass 2015).

(iii) In case study 3, it was discovered that when requests/transactions are sent to the bug

database where support for locking is enabled, performance isolation between tenants (e.g.,

in terms of response time) can be improved with a dedicated component while resource

consumption (e.g., CPU and memory) can be reduced with a shared component. The study

recommends that during bug tracking, the storage space should be reasonably large enough

to accommodate bugs with large attachments. Bugs can be stored directly on disk while the

file paths to the bugs are stored in the database table (Ochei, Bass & Petrovski 2016).

4. An explanatory framework and new insights on multitenancy isolation (Chapter 6): This

study extends previous research by carrying out a synthesis of findings from the three case

studies to find out: (i) commonalities that could be generalised; and (ii) differences that
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would help explain the exceptions and variations. The commonalities include generation

of additional data, use of locking, use of back-end storage, use of disk saving strategies,

use of web server and runtime library, the size of users and project, and system load and

CPU consumption. The differences include resource consumption, storage space, latency

and bandwidth of clients accessing the server, type of GSD processes, storage format of the

backend server, and inter-dependencies with other tools.

It has been argued that the shared component is better for resource utilisation while the

dedicated component is better in avoiding performance interference (Fehling et al. 2014).

And yet, as this experiment shows, there are certain GSD processes where that might not

necessarily be so, for example, in version control, where additional copies of the files are

created in the repository, thus consuming more disk space. Over time, performance begins

to degrade as more time is spent searching across many files on the disk (Ochei, Petrovski

& Bass 2015, Collins-Sussman et al. 2004).

A further contribution of this study is an explanatory framework for (i) mapping multite-

nancy isolation to different GSD processes, cloud resources and layers of the cloud service

stack; (ii) explaining the different trade-offs to be considered for optimal deployment of

components for guaranteeing the required degree of multitenancy isolation. Six trade-offs

were identified for consideration while implementing multitenancy isolation: multitenancy

isolation versus (resource sharing, number of users/requests, customizability, the size of

generated data, the scope of control of the cloud application stack and business constraints.

5. A model-based decision support system (DSS) (Chapter 7): A clear contribution of this

thesis to knowledge is the fact that the problem of tenants requiring varying degrees of

multitenancy isolation is first modelled as a optimization model (which combines a QN

model and combinatorial optimization) and then wrapped into a decision support system.

This study focuses on an aspect of multitenancy isolation in a way that has not been done

before. Previous research in multitenancy isolation has focused on a scenario where multi-

ple tenants are accessing a component or cloud-hosted service and behave as if they were

different tenants (Fehling et al. 2014, Krebs 2015, Walraven et al. 2012). Our research con-

siders a particular case where multiple components of one tenant behave as if they were

components of different tenants and, thus, are isolated from each other.
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It was learnt that components designed to use (or integrated) with a cloud-hosted service

should be tagged (or associated with a set of desired properties) as much as possible to

achieve the required degree of multitenancy isolation especially when there is a possibility

of frequent or sudden workload changes. This will allow each component (and the whole

cloud-hosted service) to easily monitor and respond to workload changes in a timely and

efficient manner.

6. Metaheuristic solution for solving the optimisation model(Chapter 7): This study con-

tributes to knowledge and thus extends previous research by developing four variants of a

metaheuristic technique and applying it to a new area, namely, provision of optimal solutions

for deploying components of a cloud-hosted service for guaranteeing multitenancy isolation.

Previous research focused on minimising the cost of using cloud infrastructure resources

and used no metaheuristics (Shaikh & Patil 2014, Westermann & Momm 2010). In some

cases, simple heuristics, and not metaheuristic were used (Aldhalaan & Menascé 2015b),

to provide optimal solutions in a way that guarantees the required degree of multitenancy

isolation.

Performance evaluation showed that the variants of the metaheuristic that start with an initial

greedy solution produce solutions that are robust and of better quality compared to meta-

heuristic that start with initial random solutions. However, there is a price to pay regarding

the time and resources (i.e., computational effort) required to produce the optimal solutions,

therefore making them unsuitable in real-time or dynamic environments where workload

changes frequently.

9.3 Research Scope and Limitations

The scope and limitations of this research are summarised below:

1. The focus of this thesis is on using architectural patterns or cloud patterns to solve prob-

lems facing the deployment of components of a cloud-hosted service. More specifically,

this thesis focuses on multitenancy architecture/patterns that capture the varying degrees of

isolation between tenants (or components). Furthermore, the approach and the associated

algorithms that are presented in this thesis apply to multitenancy patterns and other related
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patterns that target the cloud-hosted service at the application level, and so are implemented

almost at runtime.

2. The three case studies conducted to evaluate the varying degrees of multitenancy isola-

tion empirically focused on well-known software processes (and not tools) used to sup-

port Global software development processes. Based on these processes, open-source GSD

tools/plugins were selected that could be used to trigger these processes: Hudson for contin-

uous integration, File System SCM Plugin for version control, and Bugzilla for bug tracking.

The reason for using open-source tools is obvious because our interest was to modify the

source code to allow us to implement multitenancy isolation.

3. This study focused on cloud-hosted GSD tools (e.g., Hudson) used for large-scale dis-

tributed enterprise software development projects. Therefore, other cloud-hosted services

(e.g., cloud storage services, and document, video, audio, image sharing services) are out-

side the scope of this study, and so the findings of this study do not apply to all cloud-hosted

services. Large software projects are usually executed with stable and reliable GSD tools,

whereas for small software projects (with few developers and short duration), high perfor-

mance and low cost may be the primary consideration in tool selection.

4. The number and size of requests sent to the application component during the experiments

were within the limit of the private cloud used (i.e., Ubuntu Enterprise Cloud). Therefore,

the results of this study apply to private clouds and should not be generalised to large public

clouds. This study assumes that a small number of users send multiple requests to compo-

nents of the GSD tool. For example, some GSD tools like Hudson (which is well known

to consume a lot of memory) are not very optimised to accept a large number of requests,

and so the most common error experienced during the experiments was that of insufficient

memory allocation. Therefore, it is necessary to properly vary the setup values to get the

maximum capacity of the software process triggered by the GSD tool (e.g., Hudson’s build

processes) running on the private cloud before conducting experiments.

5. The dataset (i.e., MMKP instances) used for the simulation experiments on the model-based

decision system (DSS) were generated randomly following a standard approach used for

similar problems. Also, we could not measure the overall computation time of the Op-
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timalDep algorithm (i.e., the main algorithm supporting the DSS) due to the limitation in

the hardware (e.g., processor) of the machine used. Therefore, we used the number of func-

tion evaluations which is a performance indicator that is independent of the computer system

for measuring the computational effort required by the metaheuristic solutions to produce

the optimal solutions.

9.4 Reflection on the PhD

This section reflects on the conduct of the PhD by highlighting some challenges (e.g., choice of

research methods, conducting the experiments, setting up a private cloud, etc.) and lessons learned

in the process.

1. Choosing a suitable research methodology: The first major challenge was how to select an

appropriate methodology for the research. The choice of the multimethod research strategy

evolved over time during the research. After each phase of the work, it was realised that

different methodologies were needed to solve the problem. By the time, the research was in

the last phase (i.e., modelling and simulation), it was discovered that three key methodolo-

gies had been used: exploratory study, case study (with case study synthesis) and simulation

based on a model.

During the writing-up of the thesis, there was the challenge of pulling together the results

and outcomes of the different research methodologies to form a coherent thesis. This prob-

lem was addressed with the guidance of the supervisory team. Over time, the required

research methods could be selected and applied in the right order. It was also easy to deter-

mine how each method contributed to the overall research process in an interlinked fashion.

It was learned that there should be careful consideration of the research questions and ex-

pected contributions early in the research to determine whether or not a single research

method or multiple research methods would be adopted. It would be recommended that if

a research student decides to use multimethod (i.e., multiple research methods) research,

then it is important to carefully consider the time frame for the research and the availability

of expertise to support the research process. Furthermore, it would be helpful to develop a

flowchart early on during the research process to show how each method contributes to the
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overall research process.

2. Learning different programming languages and GSD tools: The second major challenge

was that of learning several programming languages and GSD tools (together with support-

ing plugins and libraries) at each phase of the PhD. This was very difficult and frustrating

sometimes because I had to learn some of these tools concurrently. For example, the dif-

ferent GSD tools used were developed using different programming languages: Hudson is

developed in Java, Subversion is developed in Python, and Bugzilla is developed in Perl. I

also had to learn Linus/Ubuntu commands, Eucalyptus (i.e., an open-source software plat-

form) administration commands for setting up and managing the private cloud, the database

schema used for some GSD tools (e.g., Bugzilla bug database), load generator and testing

tool (i.e., JMeter) and statistical tools (e.g., SPSS).

In terms of having a sense of the implementation effort (e.g., man-hour, lines of code, num-

ber of classes) required to modify the GSD tools, it would be advised that researchers who

may want to either repeat the experiments or experiment with other GSD tools should focus

on the recommended approach by the original developers for modifying such tools. It is

normal to expect that most (if not all) would present a detailed procedure for modifying

and extending such tools. For example, the standard procedure recommended by Mozilla

Foundation for modifying Bugzilla is presented on its website and associated manuals and

textbooks (i.e., the Bugzilla Guide). The extension procedure defines a consistent API for

extending the standard templates and source files in a way that separates standard code from

extension code. This means that it is possible to write extensions that work across multi-

ple versions of Bugzilla, making upgrading a Bugzilla installation with installed extensions

easier as each extension is basically a simple directory structure (Bugzilla 2016). There-

fore the implementation effort for modifying Bugzilla simply translates to knowing what to

add/modify and then carefully studying the source code to identify the hook (i.e., a named

place in a standard source file) where the extension code for that hook get processed. There-

after, hooking an extension source file to the hook is simply putting the extension file into

the extension’s code directory.

3. Setting up UEC Private Cloud: Setting up a private cloud for the experiments was very

difficult for me since there has been no one previously in RGU. I had to refer to several
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reference materials and online sources to figure out how to setup a UEC private cloud for

experiments. Because of this, I ended up spending so much time and effort moving back

and forth until it was finally done.

It would be recommended that a PhD student intending to conduct experiments in a cloud

environment should insist on having a private cloud setup within the school so that the IT

staff can support the student with the technical aspects of managing the private cloud. I

envisage that if I were to do the PhD again, I would insist that an alternative arrangement

be put in place with another University or research centre that has a private cloud, at least to

offer some technical support.

4. Conducting the experiments in a private cloud: Before conducting the experiments, I had to

study the source code of each of the GSD tools to identify the extension points or modules

that can be modified to implement multitenancy isolation. Many times, the code documen-

tation did not match the actual source code that was downloaded from the code repository.

There were also permission and login issues before being able to download and update

modified versions of these tools.

During the experiment, there were several conflicting error messages that were triggered

while running the modified GSD tool on the cloud. Some of the errors were associated

with: (i) the GSD tool (ii) the plugin used by the GSD tool (iii) operating system used (iv)

the database used and (iv) the load generating and testing tool. To resolve these errors, I had

to check and analyse comments from users on the online developer community that were

working actively on the tool.

It was learnt that knowing the sequence of what to learn is as important as knowing what to

learn during the PhD process, especially when using a multimethod research strategy. For

example, I spent too much time learning how to use publicly available cloud platforms like

Amazons Elastic Bean Stalk and Microsoft Azure instead of the programming language,

database schema used to design the GSD tools and the commands for managing the private

cloud.

5. Incompatible Plugins and Libraries: Some plugins and libraries used to install and con-

figure GSD tools (e.g., Hudson) are either obsolete or no longer maintained by developers
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community. This is because the development team of some open-source GSD tools (e.g.,

Hudson) have split and so some of the tools/libraries and procedures for installing and con-

figuring the plugins have also changed.

It would be recommended that when using software tools that require re-configuration with

plugins, it would be necessary to use: (i) stable versions of the plugins/libraries before the

split; (ii) plugins certified by the developers community; and (iii) and plugins that have a

well-defined set of procedures for installation and configuration. Furthermore, download-

ing and installing incompatible plugins and libraries required to execute software tools like

Hudson and Bugzilla could corrupt the source code of the GSD tools and even stop other

supporting programs/processes from running. To avoid this, it would be advisable to prevent

automatic system updates and also shield the private cloud from public access.

6. Frequent Crashes of Private Cloud and Software Tools: One of the most difficult challenges

I encountered while conducting the experiments were the frequent crashes; for instance, the

GSD tool shutting down, a plugin ceasing to run, a database being corrupted and even the

private cloud shutting down. Each time this happened, I would have to restart the whole

process and in some cases, re-configure some GSD tools before continuing with the experi-

ments. For example, before conducting the experiments with Hudson, I varied the setup of

the testing environment by sending load/requests to the GSD tool to determine the capacity

of the UEC private cloud and whether it could give the required effect for the experiment.

It was initially difficult for me to address the technical and network issues of the private

cloud because of lack of expertise in setting up and managing a private cloud. By referencing

online developer communities such as askubuntu, stackoverflow etc., I was able to get help

in resolving errors while setting up and conducting the experiments.

9.5 Conclusion

This thesis has investigated how to architect the optimal deployment (i.e., regarding performance,

resources consumption and access privileges) of components of a cloud-hosted service to serve

multiple users in a way that guarantees the required degree of isolation between tenants (or com-

ponents) when one of the tenants (or components) experiences a high workload.
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The key solution created for the multitenancy isolation problem can be looked at as a frame-

work composed of three main components: (i) a taxonomy and general process for selecting ap-

plicable deployment patterns together with supporting technologies for deploying services to the

cloud, (ii) a COMITRE approach for implementing the varying degrees of multitenancy isolation

for cloud-hosted services, and (iii) a model-based decision support system together with meta-

heuristics for providing for optimal solutions to deploy service to the cloud.

Several lessons have been learnt in relation to implementing the required the degree of mul-

titenancy isolation. Firstly, it was learned in this study that deploying components of a cloud

-hosted application would require reference to the taxonomy to help in deciding whether to target

a cloud-hosted application or cloud-hosted environment. The positioning of a set of GSD tools

on the taxonomy has shown how our taxonomy can guide architects in selecting suitable cloud

deployment patterns for deploying services to the cloud.

Secondly, it was learnt that before deploying a component to the cloud for guaranteeing the re-

quired degree of multitenancy isolation, there is need to evaluate the effect of the varying degrees

of isolation of tenants (components) on the performance and resource consumption of components.

The COMITRE approach allows us to implement and evaluate the varying degrees of multitenancy

isolation, provide explanations for commonalities and differences that exist in different case stud-

ies as well as the trade-offs to consider when implementing multitenancy isolation.

Thirdly, the optimal deployment of components can be achieved by using a model-based de-

cision support system (DSS) to maximise both the required degree of multitenancy isolation and

the number of requests allowed to access the components of a cloud-hosted service. Different

variants of the metaheuristic solutions have also been presented to support the model-based DSS

in providing optimal solutions for deploying components of cloud-hosted service for guaranteeing

multitenancy isolation.



9.6. Future Work 188

9.6 Future Work

There are many future directions for our research as explained in the following section.

9.6.1 Multitenancy Isolation Problem: Exploring other Models and Metaheuristics

The model created in this study is an analytic model composed of a set of formulas and compu-

tational algorithms to solve the problem instances. This work can be extended by developing a

simulation model (or a simulator) which is based on computer programs that emulate the different

dynamic aspects of a system as well as their static structure (Menasce et al. 2004). Although many

providers offer similar functionality in the form of rule-based algorithms (Amazon’s Auto-Scaling

1) and Microsoft’s Windows Azure Traffic Manager 2) to configure the scaling functionality of the

cloud-hosted services (Amazon.com 2017, Microsoft.com 2016), these offerings do not implement

the varying degrees of multitenancy isolation for individual components.

In our case, an architect can specify that a new set of components be selected for deployment

either once an average utilization of components/whole system exceeds a defined threshold or

once the arrival rate of requests exceeds a defined threshold. The simulation model will allow the

different behaviour or aspects of the system to be captured and evaluated when there are workload

changes. The workload for testing the model can be generated randomly or an observed trace

script from a real cloud-environment can be used. Consider the following questions which can be

answered using the simulation model:

• How many requests can be allowed to access a specific component or the whole application

based on the required degree of isolation.

• Assuming the required degree of isolation is the shared component pattern, what is the

correct ratio between CPU and RAM for optimal deployment of components.

• What is the optimal solution (i.e., a suitable configuration of components) for deployment

once an average utilization of a particular component (or group of components) exceeds a

defined threshold.
1Auto Scaling ensures that the correct number of Amazon EC2 instances is available to handle application load.
2Microsoft Azure Traffic Manager allows you to control the distribution of user traffic for service endpoints in

different datacenters.
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These types of questions would be easier to answer using simulation models that pure mathe-

matical models because several architectural parameters can be turned into constants and ranges.

Also, it can be used to analyse the architectural design space of cloud-hosted services in situations

where requirements are often difficult and complex to interpret and could change suddenly due to

workload interference (Bass et al. 2013).

It would also be interesting to consider integrating other types of metaheuristics into the Op-

timalDep algorithm (i.e., the main algorithm driving the decision support system) or combining

simple heuristics with more advanced metaheuristics. Several research work have developed al-

gorithms that combine genetic algorithm (GA)(i.e., a population-based algorithm) with simulated

annealing (SA) for solving various optimization problems (Gan, Huang & Gao 2010, Chen, Jiang,

Chen & Zhang 2012). For example, the authors in (Chen et al. 2012) have developed the GA-SA-

combined algorithm, an algorithm that combines genetic algorithm with simulated annealing for

optimization of wideband antenna matching networks. In their algorithm, the GA starts the ini-

tial phase of the optimization and provides its values as the initial parameters of SA which forms

the second phase of the optimization; as a result, fast convergence with an optimized solution is

expected. The basis for this combination is that GA is not sensitive to initial starting parameters,

and so it can iterate fast to nearby optimal solution for the SA to take over. Due to the good initial

parameters from GA, only a small number of iterations are needed for SA to obtain the optimal

solution.

9.6.2 Predicting QoS of Components based on Required Degree of Isolation

Another area where our research can be extended is to incorporate a module into our decision

support system for evaluating and predicting the effect of the required degree of multitenancy

isolation on different Quality of Service (QoS) of functional properties of components. Apart from

performance (which as considered in this study), another QoS attribute whose analytic framework

is well-understood is availability (Bass et al. 2013). Availability can be used to indicate the uptime

of a system (or components of a system) over a sufficiently long duration. Availability can be

expressed as:
MTBF

(MTBF +MTTR)
(9.1)
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where MTBF is the mean time between failure, which is derived based on the expected value of

the implementations’ failure probability density function (PDF), and MTTR refers to the mean

time to repair.

Increasing the availability of a component (or whole system) deployed using a particular multi-

tenancy pattern can be achieved using different types of fault recovery tactics. Most fault recovery

tactics rely on introducing a backup copy of a component that will take over in case the primary

component suffers a failure (Scott & Kazman 2009). For example, in an active redundancy, a

redundant spare, which possesses an identical state to the active processor, can take over from a

failed component in a matter of milliseconds. These tactics differ primarily in how long it takes

to bring the backup copy up to speed, and so the MTTR will be where the difference among the

tactics shows up. The availability of components is of particular importance because many cloud

providers do not guarantee the availability of individual cloud resources (e.g., CPU, RAM, disk

servers, bandwidths, virtual servers), but only for the whole cloud offering (e.g., the ability to start

a new virtual server) (Fehling et al. 2014, Ochei, Petrovski & Bass 2016a).

9.6.3 Multitenancy Isolation: exploring different scenarios, tools and processes

Our research focused on evaluating the effect of multitenancy isolation on a software process in-

voked by a cloud-hosted GSD tool. Furthermore, our approach to achieving multitenancy isolation

was implemented at the application level where the request ID is captured and re-routed to a sep-

arate component that adjusts the configuration of the system to the required degree of isolation.

This research can be extended in the following directions:

1. Conducting case studies with other cloud-hosted software tools and processes:. An in-

teresting option would be agile management tools and support processes. The agile soft-

ware development process is now widely used by large scale distributed enterprises with

rapidly evolving requirements and short time-to-market constraints (Fairbanks 2010, Bass

et al. 2013). Code refactoring, for example, is the mainstay practice of agile development

projects. Based on the required degree of multitenancy isolation, there may be an interest in

comparing the performance and resource consumption of each code refactoring task to the

base system during every proposed improvement before deploying it to the cloud.
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2. Conducting case studies with other cloud-hosted services: There are several classes of

widely used cloud-hosted services/tools that can be experimented with. These tools are

deployed on the cloud to serve multiple users and so would require multitenancy isolation.

Notable examples include customer relationship management systems (e.g., SalesforceIQ,

and Sales cloud) and content management system (e.g., WordPress). In this case, the focus

will be on evaluating the effect of multitenancy isolation on the data generated from these

tools.

3. Conducting case studies with other cloud deployment scenarios and indicators: There are

other performance indicators that could affect multitenancy isolation that could also be ex-

plored. These include the effect of different file system formats; the number and size of

data generated or stored; and concurrent running processes. For example, the performance

of version control systems like Subversion can be affected by the type of file system format

used to store artefacts (Ben Collins-Sussman 2011).

4. Conducting case studies using human subjects: The different multitenancy patterns can be

evaluated in multi-user collaborations involving cloud-hosted GSD tools such as Hudson

and Bugzilla. For example, developers can carry out a collaborative task dealing with a

software project where developers are working on multiple branches simultaneously using a

version control tool such as (e.g., subversion). Several research work have evaluated the per-

formance/response times of operations made by remote users of a collaborative system such

as a LiveMeeting/Webex shared application, instant messenger, and checkers (Junuzovic

& Dewan 2006, Junuzovic, Chung & Dewan 2005). In addition to configuring the mul-

titenancy patterns as a network, this can also be done in terms of the order in which the

messages are exchanged between tenants and the system. This will help in selecting a suit-

able type of collaboration architecture to be used for certain types of services or processes

that are shared by multiple users.
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Aldhalaan, A. & Menascé, D. A. (2015a). Near-optimal allocation of vms form iaas providers by

saas providers, Technical report, George Mason University.
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Karasakal, E. K. & Köksalan, M. (2000). A simulated annealing approach to bicriteria scheduling

problems on a single machine, Journal of Heuristics 6(3): 311–327.

Kellerer, H., Pferschy, U. & Pisinger, D. (2004). Introduction to NP-Completeness of knapsack

problems, Springer.

Khan, M. F., Mirza, A. U. et al. (2012). An approach towards customized multi-tenancy, Interna-

tional Journal of Modern Education and Computer Science 4(9): 39.

Khan, S., Li, K. F., Manning, E. G. & Akbar, M. M. (2002). Solving the knapsack problem for

adaptive multimedia systems, Stud. Inform. Univ. 2(1): 157–178.

Khazaei, H., Misic, J. & Misic, V. B. (2012). Performance analysis of cloud computing centers

using m/g/m/m+ r queuing systems, Parallel and Distributed Systems, IEEE Transactions on

23(5): 936–943.

Kirkpatrick, S., Gelatt, C. D., Vecchi, M. P. et al. (1983). Optimization by simulated annealing,

science 220(4598): 671–680.

Krebs, R. (2015). Performance Isolation in Multi-Tenant Applications, PhD thesis, Karlsruhe

Institute of Technology.

Krebs, R. & Loesch, M. (2014). Comparison of request admission based performance isolation

approaches in multi-tenant saas applications., CLOSER, pp. 433–438.

Krebs, R., Momm, C. & Kounev, S. (2014). Metrics and techniques for quantifying performance

isolation in cloud environments, Science of Computer Programming 90: 116–134.

Krebs, R., Wert, A. & Kounev, S. (2013). Multi-tenancy performance benchmark for web appli-

cation platforms, Web Engineering, Springer, pp. 424–438.

Krishna, R. & Jayakrishnan, R. (2013). Impact of cloud services on software development life

cycle, Software Engineering Frameworks for the Cloud Computing Paradigm, Springer,

pp. 79–99.

Kurmus, A., Gupta, M., Pletka, R., Cachin, C. & Haas, R. (2011). A comparison of secure multi-

tenancy architectures for filesystem storage clouds, Proceedings of the 12th International

Middleware Conference, International Federation for Information Processing, pp. 460–479.



BIBLIOGRAPHY 201

Laerd.com (2017). Two-way anova in spss statistics. [Online: accessed in February, 2017 from

https://statistics.laerd.com/spss-tutorials/.

Lanubile, F. (2009). Collaboration in distributed software development, Software Engineering,

Springer, pp. 174–193.

Lanubile, F., Ebert, C., Prikladnicki, R. & Vizcaı́no, A. (2010). Collaboration tools for global

software engineering, Software, IEEE 27(2): 52–55.

Larman, C. & Vodde, B. (2010). Practices for scaling lean and agile development: large, multisite,

and offshore product development with large-scale Scrum, Pearson Education.

Legriel, J., Le Guernic, C., Cotton, S. & Maler, O. (2010). Approximating the pareto front of multi-

criteria optimization problems, Tools and Algorithms for the Construction and Analysis of

Systems, Springer, pp. 69–83.

Leymann, F., Fehling, C., Mietzner, R., Nowak, A. & Dustdar, S. (2011). Moving applications

to the cloud: an approach based on application model enrichment, International Journal of

Cooperative Information Systems 20(03): 307–356.

Li, C. (2012). A Holistic Semantic Based Approach to Component Specification and Retrieval,

PhD thesis, Edinburgh Napier University.

Lilien, L. (2007). A taxonomy of specialized ad hoc networks and systems for emergency appli-

cations, Mobile and Ubiquitous Systems: Networking & Services, 2007. MobiQuitous 2007.

Fourth Annual International Conference on, IEEE, pp. 1–8.

Liu, F., Tong, J., Mao, J., Bohn, R., Messina, J., Badger, L. & Leaf, D. (2011). Nist cloud

computing reference architecture, NIST special publication 500: 292.

Mahmood, Z. (2013). Cloud Computing: Methods and Practical Approaches, Springer-Verlag

London.

Martello, S. & Toth, P. (1987). Algorithms for knapsack problems, North-Holland Mathematics

Studies 132: 213–257.

Martello, S. & Toth, P. (1990). Knapsack problems: algorithms and computer implementations,

John Wiley & Sons, Inc.



BIBLIOGRAPHY 202

Martens, A., Ardagna, D., Koziolek, H., Mirandola, R. & Reussner, R. (2010). A hybrid approach

for multi-attribute qos optimisation in component based software systems, Research into

Practice–Reality and Gaps, Springer, pp. 84–101.

Mehta, A. (2017a). Implementing a multi-tenancy architecture, tier by tier. [Online: accessed in

January, 2017 from http://www.devx.com/architect/Article/47708/.

Mehta, A. (2017b). Multi-tenancy for cloud architectures: Benefits and challenges. [Online:

accessed in January, 2017 from http://www.devx.com/architect/Article/47798/.

Mehta, A. (2017c). Successful strategies for a multi-tenant architecture. [Online: accessed in

January, 2017 from http://www.devx.com/architect/Article/47662.

Mell, P. & Grance, T. (2011). The nist definition of cloud computing, NIST special publication

800(145): 7.

Menasce, D., Almeida, V. & Lawrence, D. (2004). Performance by design: capacity planning by

example, Prentice Hall.

Mendonca, N. C. (2014). Architectural options for cloud migration, Computer 47(8): 62–66.

Microsoft (2016). Introducing microsoft azure. [Online: accessed in September 13, 2016 from

https://azure.microsoft.com/].

Microsoft.com (2016). Overview of traffic manager. [Online: accessed in March 2017 from

https://docs.microsoft.com/en-us/azure/traffic-manager/traffic-manager-overview.

Mietzner, R., Unger, T., Titze, R. & Leymann, F. (2009). Combining different multi-tenancy pat-

terns in service-oriented applications, Enterprise Distributed Object Computing Conference,

2009. EDOC’09. IEEE International, IEEE, pp. 131–140.

Milenkoski, A., Iosup, A., Kounev, S., Sachs, K., Rygielski, P., Ding, J., Cirne, W. & Rosenberg,

F. (2013). Cloud usage patterns: A formalism for description of cloud usage scenarios, Tech-

nical report, Standard Performance Evaluation Corporation(SPEC) Research Cloud Working

Group.

Miles, M. B. & Huberman, A. M. (1994). Qualitative data analysis: An expanded sourcebook,

Sage.



BIBLIOGRAPHY 203

Moens, H., Truyen, E., Walraven, S., Joosen, W., Dhoedt, B. & De Turck, F. (2014). Cost-effective

feature placement of customizable multi-tenant applications in the cloud, Journal of Network

and Systems Management 22(4): 517–558.

Momm, C. & Krebs, R. (2011). A qualitative discussion of different approaches for implementing

multi-tenant saas offerings., Software Engineering (Workshops), Vol. 11, pp. 139–150.

Morse, J. M. (2003). Principles of mixed methods and multimethod research design, Handbook of

mixed methods in social and behavioral research 1: 189–208.

Moser, M. & O’Brien, T. (2016). The hudson book. Online: accessed in November, 2015 from

http://www.eclipse.org/hudson/the-hudson-book/book-hudson.pdf.

Moyer, C. (2012). Building Applications for the Cloud: Concepts, Patterns and Projects, Addison-

Wesley Publishing Company, Pearson Education, Inc, Rights and Contracts Department, 501

Boylston Street, Suite 900, Boston, MA 02116, USA.

MSDN (2016). Multi-tenant data architecture. [Online: accessed in December, 2016 from

https://msdn.microsoft.com/en-gb/library/hh534480.aspx].

Musser, J. (2012). Enterprise-class api patterns for cloud and mobile.

Nourani, Y. & Andresen, B. (1998). A comparison of simulated annealing cooling strategies,

Journal of Physics A: Mathematical and General 31(41): 8373.

Ochei, L. C., Bass, J. M. & Petrovski, A. (2015a). A novel taxonomy of deployment patterns

for cloud-hosted applications: A case study of global software development (gsd) tools and

processes, International Journal On Advances in Software. 8, numbers 3 and 4: 420–434.

Ochei, L. C., Bass, J. M. & Petrovski, A. (2015b). Taxonomy of deployment patterns for cloud-

hosted applications: A case study of global software development (gsd) tools, The Sixth

International Conference on Cloud Computing, GRIDs, and Virtualization (CLOUD COM-

PUTING 2015), IARIA, pp. 86–93.

Ochei, L. C., Bass, J. & Petrovski, A. (2015c). Evaluating degrees of multitenancy isolation: A

case study of cloud-hosted gsd tools, 2015 International Conference on Cloud and Auto-

nomic Computing (ICCAC), IEEE, pp. 101–112.



BIBLIOGRAPHY 204

Ochei, L. C., Bass, J. & Petrovski, A. (2016). Implementing the required degree of multitenancy

isolation: A case study of cloud-hosted bug tracking system, 13th IEEE International Con-

ference on Services Computing (SCC 2016), IEEE.

Ochei, L. C., Petrovski, A. & Bass, J. (2015). Evaluating degrees of isolation between tenants en-

abled by multitenancy patterns for cloud-hosted version control systems (vcs), International

Journal of Intelligent Computing Research 6, Issue 3: 601 – 612.

Ochei, L. C., Petrovski, A. & Bass, J. (2016a). An approach for achieving the required degree of

multitenancy isolation for components of a cloud-hosted application, 4th International IBM

Cloud Academy Conference (ICACON 2016).

Ochei, L., Petrovski, A. & Bass, J. (2016b). Optimizing the deployment of cloud-hosted appli-

cation components for guaranteeing multitenancy isolation, IEEE Conference Publications,

pp. 77 – 83. 2016 International Conference on Information Society (i-Society 2016).

Oracle (2017). Oracle database concepts 10g release 1 (10.1). [Online: accessed in February,

2017 from http://docs.oracle.com/.
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Appendix B

Numerical Results from Simulation

Experiments

Table B.1: Optimal values and standard deviation of different instances(m=5)

Instance Target
Solution

HC(Rand) HC(Greedy) SA(Rand) SA(Greedy) Greedy

C(10,5,4) 3048 2815.09/0.0 2815.09/0.0 2815.09/0.0 2815.09/0.0 2714.43
C(20,5,4) 6096 6053.26/1.5E-4 6053.26/1.5E-4 6053.26/1.5E-4 6053.26/1.50 5523.81
C(30,5,4) 9144 9012.30/0.0 9012.30/0.0 9012.30/0.0 9012.30/0.0 8289.1
C(40,5,4) 12192 12028.67/0.0 12028.67/0.0 12028.67/0.0 12028.67/0.0 11665.49
C(50,5,4) 15240 14725.40/0.0 14725.40/0.0 14725.40/0.0 14725.40/0.0 13501.17
C(60,5,4) 18288 17923.88/0.0 17923.88/0.0 17923.88/0.0 17923.88/0.0 16805.41
C(70,5,4) 21336 21130.89/5.5E-4 21130.89/5.5E-4 21130.88/7.3E-4 21130.89/7.3E-4 20359.45
C(80,5,4) 24384 23389.81/0.0 23389.81/0.0 23389.81/0.00 23389.81/0.00 22361.58
C(90,5,4) 27432 26987.22/0.0 26987.22/0.0 26987.22/0.0 26987.22/3.5E-4 25983.6
C(100,5,4) 30480 28945.60/0.0 28945.60/0.0 28945.60/0.00 28945.60/0.00 27472.12
C(200,5,4) 60960 58647.49/0.0 58647.49/0.0 58647.47/0.01 58647.47/0.01 56055.95
C(300,5,4) 91440 86662.80/0.003 86662.80/0.00 86662.77/0.02 86662.77/0.02 81659.39
C(400,5,4) 121920 117405.24/0.0 117405.24/0.0 117405.15/0.04 117405.14/0.05 111049.71
C(500,5,4) 152400 147023.93/0.0 147023.93/0.00 147023.73/0.09 147023.77/0.07 140156.27
C(600,5,4) 182880 176735.26/0.00 176735.26/0.0 176734.98/0.10 176734.94/0.10 168795.78
C(700,5,4) 213360 205301.82/0.00 205301.82/0.00 205301.49/0.12 205301.44/0.14 195237.57
C(800,5,4) 243840 234472.96/0.0 234472.96/0.00 234472.51/0.16 234472.44/0.16 222105.9
C(900,5,4) 27432 264883.40/0.00 264883.40/0.00 264882.74/0.20 264882.83/0.18 252231.84
C(1000,5,4) 304800 291763.61/0.0 291763.61/0.0 291762.78/0.27 291762.85/0.17 277411.4
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Table B.2: Optimal values and standard deviation of different instances(m=20)

Instance Target
Solu-
tion

HC(Rand) HC(Greedy) SA(Rand) SA(Greedy) Greedy

C(10,20,4) 3048 3090.18015/0.0 3090.18/0.0 3090.18/0.0 3090.18/0.0 3042.95
C(20,20,4) 6096 6216.57/2.11E-

4
6216.57/2.11E-
4

6216.57/2.1E-4 6216.57/2.11 5806.68

C(30,20,4) 9144 9151.83/0.0 9151.83/0.0 9151.83/0.00 9151.83/0.00 8519.55
C(40,20,4) 12192 12361.51/0.0 12361.51/0.0 12361.50/0.00 12361.50/0.00 11925.67
C(50,20,4) 15240 15452.77/0.0 15452.77/0.0 15452.76/0.01 15452.76/0.01 14697.84
C(60,20,4) 18288 18661.63/2.4E-

4
18661.63/2.4E-
4

18661.62/0.01 18661.62/0.01 17837.44

C(70,20,4) 21336 21555.88/
4.9E-4

21555.88/4.9E-
4

21555.85/0.03 21555.85/0.03 20550.67

C(80,20,4) 24384 24715.83/0.0 24715.83/0.0 24715.80/0.01 24715.77/0.06 23426.28
C(90,20,4) 27432 27982.72/9.8E-

4
27982.72/9.8-
E4

27982.69/0.03 27982.68/0.03 26206.78

C(100,20,4) 30480 31124.34/5.98 31124.34/5.98 31124.28/0.03 31124.28/0.03 29233.1
C(200,20,4) 60960 61861.47/0.0 61861.47/0.0 61861.11/0.17 61861.10/0.16 58297.87
C(300,20,4) 91440 92474.27/0.0 92474.27/0.0 92473.23/0.28 92473.13/0.40 88139.89
C(400,20,4) 121920 123488.32/0.00 123488.32/0.00 123486.36/0.52 123486.44/0.42 116808.95
C(500,20,4) 152400 154665.71/0.0 154665.71/0.0 154662.53/0.70 154662.7/0.60 145493.58
C(600,20,4) 182880 185163.64/0.00 185163.64/0.00 185158.51/0.67 185158.34/0.71 173758.37
C(700,20,4) 213360 216017.65/0.0 216017.65/0.0 216010.27/1.26 216010.57/0.95 203323.86
C(800,20,4) 243840 247335.56/0.0 247335.56/0.0 247325.61/1.28 247325.92/1.18 234522.64
C(900,20,4) 27432 277366.77/0.0 277366.77/0.0 277354.00/1.46 277353.75/1.86 262264
C(1000,20,4) 304800 308359.13/0.00 308359.13/0.00 308344.05/2.00 308344.64/1.67 292307.23
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Figure C.1: Quality of Solution- 1 Figure C.2: Quality of Solution- 1

Figure C.3: Robustness of Solution - 1 Figure C.4: Robustness of Solution - 2

Figure C.5: Computational Effort - 1 Figure C.6: Computational Effort - 2

Figure C.7: Estimated Marginal Means for 2-way ANOVA
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