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Abstract 

 

The Palladium (Pd) based membranes have long been the focus of studies for the 

separation of hydrogen due to its high permeability and selectivity toward hydrogen. 

However, palladium is a precious metal and extremely expensive and its wider 

applications will depend largely on its ability to become economically feasible to 

compete with other separation technologies. Hence, the main focus of this study is to 

produce a supported, thin and defect free palladium composite membrane in a cost 

effective manner. This thesis also highlights some of current advances in palladium 

research, especially the membrane preparation methods. 

 

In this study, the Pd composite membranes were fabricated by depositing Pd metal as a 

thin layer by using advanced electroless plating coupled with partial suction method onto 

a 30nm γ-Al2O3 support. The suction pressure creates a pressure difference between the 

bore and tube side of the support and this will eventually encourage the transfer of more 

Pd metal onto the ceramic support, at the same time densifying the deposited layer and 

simultaneously prevent mass transfer from the film back into the solution, which is the 

major problem with conventional electroless plating techniques. 

 

The final membrane produced has a thickness of about 6 microns with flux in the order 

of ~0.1 mol/m2s and H2/N2 selectivity of 140 at 673K. The membrane also show its 

capability in purifying H2 gas using a reformate gas mixtures containing 67% H2, up to 

the value of 97.3% pure H2 in a single stage pass at 673K at low pressure differentials of 

0.8 barg. 

 

Studies conducted also investigate the effects of electroless plating condition and 

parameters in their resulting relationship with the pore sizes of the ceramic support have 

on the palladium layer deposited. 
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1.0 Introduction 

 

Due to its high energy density and relative abundance, fossil fuels have become the 

world’s most important source of energy over the last few decades. For that reason, the 

consumption level has increased every year and it is becoming scarcer [1]. As the supply 

becomes more limited and oil prices escalate, society has begun to look toward other 

alternative sources.  

 

It is known that scientists today is exploring possible future energy sources and 

technologies that will produce lower toxic and greenhouse gas emissions, greater 

efficiency in energy use, and most importantly affordability. For many, the future 

invokes the idea of renewable energies such as hydrogen power (if hydrogen is produced 

from electrolysis of water with electricity generated from renewable sources like the sun 

and wind), solar power, wind power, tidal power, and biomass. Although, existing 

technologies for new energy sources are promising, there are still commercial and 

environmental uncertainties associated with renewable energy. Therefore, these 

technologies still require substantial research and sustained development before they 

could become economically viable. 

 

1.1 Hydrogen Energy 

 

In recent years, as one of the alternative energy sources, hydrogen power has started to 

gain international recognition as a key component to a clean and sustainable energy 

system. However, the transition to hydrogen will take some time to realize a hydrogen 

based economy. The technology is still associated with uncertainties such as the 

development of efficient fuel cell technologies, problems in hydrogen production, 

purification, distribution infrastructure, and the response of petroleum markets [2]. 

Therefore, it has encouraged more research and development in finding the solutions to 

these uncertainties and to ensure a smooth future implementation. 
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President Bush, during his State of the Union Address in 2003 announced a $1.2 billion 

to stimulate the hydrogen economy [3] and in 2006 said that US is addicted to oil and the 

best way to go forward is through renewable energies [4]. Therefore, the US government 

will invest more in zero emission coal-fired plant, revolutionary solar and wind 

technologies, clean and safe nuclear energy and hydrogen energy [4]. In fact, currently 

healthy competition has emerged between nations as diverse as Iceland, China, Germany, 

Japan, US and many more in the race to commercialise a hydrogen powered vehicle in 

the 21st century [5]. 

 

Presently, hydrogen production is still a growing industry. Globally, about 50 million 

metric tonnes of hydrogen were produced in 2004 compared to 41 million metric tonnes 

in 2003 [6]. The overall US hydrogen market is estimated at $798 million in 2005 and is 

expected to rise to $1,605 million in 2010. Meanwhile, the overall European market is 

estimated to be about $368 million in 2005 and is expected to grow at an average annual 

growth rate of 15% to $740 million in 2010 [7]. This unprecedented growth has 

motivated more research into new methods and technologies for hydrogen production, 

separation, purification, transportation, distribution, storage and application. 

 

 

1.2 Background of This Work 

 

Although hydrogen is widely used in space craft launches, petroleum refining and 

methanol production, the technology is not yet advanced enough to be commercially 

viable, particularly in the sector of production and storage [8]. Hence, the main focus of 

this research is to address one of the sectors, which is purification of hydrogen gas. 

Presently, there are a variety of different technologies that can be targeted for the 

purification of hydrogen. The main ones include pressure swing adsorption, cryogenic 

processing, membrane separation, and metal hydrides. Amongst them, membrane 

separation technology is considered most suitable for small and medium scale 

applications but also have the potential for large scale applications [9] (see chapter 2.2.2). 
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In this work, the membrane technology being applied refers to metallic or multi-metallic 

membrane, mainly using Palladium based metal or alloying Palladium with other metals. 

Although the ability of metals, particularly Palladium to selectively permeate hydrogen 

has been known for a century [8], the commercial utilisation of this property for the 

production and purification of hydrogen is relatively recent [8]. 

 

The development of Palladium-Silver alloys as diffusion membrane material in the late 

1950s, overcame the principal technical difficulties associated with the technique. Thus it 

has enabled the successful development of commercial equipment [8]. 

 

However, a general issue in these membrane technologies is the attainment of high 

selectivity and high permeability. Both of these properties contribute significantly in the 

reduction of component size and cost [10]. Furthermore, complete hydrogen selectivity 

with high permeability is required for applications with ultra-pure hydrogen such as fuel 

cells. Hence, the study conducted in this work using gas mixture is of vital importance. 

 

Currently, most commercial Palladium and Palladium alloy membranes are made of free-

standing foils and tubes (monolithic system). In the initial phase of applications, 

Palladium and its alloy foil of high thickness (50-200µm) are suggested [11]. The higher 

thickness is usually required to achieve mechanical strength to withstand pressure 

differentials (about 15 bars) during operation. However, by doing so the membrane is 

then prone to other limitations including low flux and the high cost of palladium. The 

membrane will be expensive and will have lower hydrogen production per unit area due 

to the high thickness. In addition, the higher the thickness of Palladium membrane, the 

lower the flux, as the later is inversely proportional to the membrane thickness [11]. 

Nevertheless, these limitations have provided incentives for the preparation of thinner 

membranes in order to lower cost and to achieve higher hydrogen permeation rate. 
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1.3 Target of This Work 

 

As a significant amount of time in this research involves experimental work, the method 

or technique being applied to produce the membrane is crucial. Currently, there are 

various techniques of membrane preparation (fabrication) available such as electroless 

plating, magnetron sputtering, chemical vapour deposition etc [12]. Extensive review of 

literature and other related texts have revealed that the electroless plating method is one 

of the most suitable in terms of commercial suitability. The method and the reasons for 

using this technique will be discussed more in detail in chapter 3, 4 and 5. 

 

In the first phase of research developments and subsequent applications, preparation and 

utilisation of composite membranes has received considerable attention due to the fact 

that deposition of a thin palladium layer on the surface of a highly porous support has the 

potential to overcome the limitation of using higher thickness (which at present have 

about 20 – 40µm palladium metal layer on porous alumina or stainless steel supports). 

For these composite membranes, certain limitations do exist. The hydrogen flux is a 

function of the thickness of the palladium/palladium alloy film.  The lower the thickness 

of the film the lower the cost and the higher the hydrogen produced per unit membrane 

area.  Because of this problem, achievement of lower thickness (1 – 5 µm) for successful 

industrial applications is not practical [13 - 18] as it will not be able to withstand the 

operational pressure.. 

 

The optimal thickness of palladium film in a composite membrane depends upon a 

number of factors such as method of preparation, mechanical stability, dense film 

formation, surface defects of the support and type and quality of the support [19].  The 

effect of these factors is discussed in chapter 4 and 5. In this research the optimal 

thickness of Pd film produced would be in the range of approximately 6 – 20µm on 

porous ceramic supports (alumina) having the pore size range of 30 – 6000nm. 
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Hence, the aim for the research work is “Fabrication of metallic composite membrane 

for the production of hydrogen/high-purity hydrogen”. While the objectives of the 

research are as follows: 

 

1. To promote the development of H2 gas separation membranes and their 

applications in association to the emergence of H2 economy. 

2. To be able to produce high-purity hydrogen or hydrogen gas using membrane 

separation. 

3. To be able to produce a metallic composite membrane for separation and 

purification purpose. 

4. To identify crucial parameters in the preparation methods (membrane 

manufacturing). 

5. To identify suitable preparation method for possible industrial processing 

(commercialisation) 

6. To identify possible ways for simultaneous decrease in membrane cost and 

increase in separation capability.  

 

Based on the knowledge of available literatures, it is known that the selectivity of the 

membrane towards hydrogen gas is dependent on the successful formation of a dense 

layer of Pd or Pd-alloy metal. However, there are still so many other factors that might 

influence the performance of the membrane in its operating environment. Therefore, 

there are still further tests that need to be carried out in understanding the effect of 

temperature (up to 500 0C), effect of feed gas purity (gas mixtures), and the effect of 

higher pressure. 
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2.0 Review of Literatures, Technologies and Membranes 

 

2.1 Hydrogen Gas Review 

 

The need for hydrogen energy is caused by the concern about the depletion of fossil fuel 

and most importantly, the reduction and elimination of all harmful and climate affecting 

emissions. These factors will be the main drivers in propelling the next energy transition. 

 

Fossil fuels are non-renewable resource and although in abundance, they were initially 

used with little consideration for efficiency/performance. In addition, in recent history 

fossil fuel has been consumed at an increasing rate and supply is getting limited while 

demand is still increasing, particularly in China, India and other developing countries. 

Most non-OPEC (Organisation of Petroleum Exporting Countries) countries are nearing 

their peak production and most of them cannot produce enough oil to meet their own 

demand and started importing from oil-rich countries [1]. 

 

 

2.1.1 Hydrogen Economy 

 

The term ‘hydrogen economy’ refers to all the infrastructures supporting the energy 

requirement of the society based on the use of hydrogen rather than fossil fuel [1]. It will 

feature hydrogen as an energy carrier in stationary power, transportation, industrial, 

residential and commercial sectors [2]. The concept of using hydrogen as an energy 

system is not new and goes as far back as 1875 when the famous French writer Jules 

Verne projected in his book ‘The Mysterious Island’ that water would one day replace 

coal as fuel by splitting it into hydrogen and oxygen to supply endless electricity and heat 

[3]. 
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The current economy is primarily fuelled by fossil fuel to provide energy has caused the 

emission of greenhouse gases and other pollutants. The release of CO2 into atmosphere 

may bring about climate change by contributing to global warming. Other air pollutants 

such as Carbon Monoxide, Nitrogen Oxide, Sulphur Oxide, volatile organic compounds 

and fine particulates causes acid rain or react with sunlight to create ground level smog 

[4]. 

 

 

2.1.2 Hydrogen Gas 

 

Hydrogen is the first element on the periodic table of elements and is represented by the 

symbol H. It is the simplest element with a single electron orbiting around a single 

proton. It is also the most common and abundant element in the universe accounting for 

90% of the universe by weight [6]. However, little exists as free gas since it 

readily/always combines with other elements.  

 

Under normal conditions, hydrogen is colourless, odourless, tasteless, non-poisonous and 

highly flammable gas. It burns with a pale-blue, almost invisible flame (difficult to see 

with the naked eye) and produces no carbon dioxide, particulate or sulphur emissions 

although it can produce nitrous oxide (NOx) under some conditions [6]. 

 

Hydrogen has the highest energy content of any common fuel by weight, about 3 times 

more than gasoline and 7 times more than coal in equal weight, but it has the lowest 

energy content by volume [7]. It also has a very low density at standard temperature and 

pressure, and usually stored under high pressure or extremely low temperature in liquid 

form. 
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2.1.3 Hydrogen Gas Safety 

 

Like any fuel, hydrogen is flammable and can be dangerous under certain conditions. It 

has a flammability range of 4% to 75% in air by volume [8]. However, due to its 

buoyancy and low density, hydrogen disperses rapidly if leaked to atmosphere. 

Therefore, it is difficult for it to concentrate in an un-enclosed area to create a 

combustible situation. Even if hydrogen is ignited, it burns upward and is quickly 

consumed. By comparison, gasoline vapour and natural gas are heavier than air making it 

difficult to disperse, making them more dangerous. 

 

Hydrogen gas is also non-toxic and non-poisonous compared to other fuels (petroleum 

fuels) which are harmful to humans [8]. When it leaks, it will not pollute the atmosphere 

or cause an environmental concern that is usually associated with fossil fuel. 
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2.1.4 Hydrogen Gas Production 

 

Although hydrogen can be produced from a wide variety of feedstocks, the great 

potential for the diversity and renewability of supply is an important reason why it is a 

promising energy carrier.  

 

Hydrogen can be produced from a variety of feedstocks; from fossil resources (such as 

natural gas and coal), from renewable sources such as water with input from renewable 

energy sources (e.g. solar, wind or hydro-power), and from biomass [10]. However, each 

technology is currently at a different stage of development and complexity, and each has 

its own opportunities and challenges. 

 

Although the usage of hydrogen produces little or no emission at all, some H2 production 

method can release greenhouse gases and other harmful by-products depending on the 

method and the feedstock. Generally, the production method of hydrogen can easily be 

categorised by the feedstocks or sources use: 

• fossil fuels 

• biomass 

• water 
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2.1.4.1 Hydrogen from Fossil Fuel 

 

Hydrogen production from fossil fuel system is the oldest method and also a proven 

technology. It also tends to have the lowest production cost due to it being a mature 

technology and, the relative availability and lower costs of resources (especially coal). 

However, fossil fuels are carbon-based, so they will release carbon monoxide (CO) or 

carbon dioxide (CO2) as by-products during the conversion process [11]. Presently, 

technologies that use fossil fuel as resources in hydrogen production are: 

• steam reforming 

• partial oxidation 

• auto-thermal reforming 

• gasification 

 

 

2.1.4.1.1 Steam Reforming 

 

Steam reforming refers to a reaction process that utilizes hydrocarbon fuel in the 

presence of water (steam). In this process hydrocarbon gas often methane rich (CH4) is 

mixed with steam at high temperatures (750-1000 oC) and pressure (3-25 bars) in the 

presence of catalyst to produce synthesis gas, which consist of H2 and CO (see Eq1).  

 

CH4 + H2O → CO + 3H2                (Eq 1)  

CO + H2O → CO2 + H2                    (Eq 2)    --------------------------------------- [1] 

 

At the same time, the CO produced from the initial reaction will react further with steam 

in the presence of the same catalyst to produce H2 and CO2 (see Eq 2). This process is 

also known as the ‘water gas shift’ reaction. In the final step, a process known as 

pressure swing adsorption* removes the CO2 and other impurities, leaving only pure H2. 

This whole process makes 4 parts of H2 from 1 part of methane and 2 parts of water. This 

process can also be used to produce hydrogen from other fuels such as ethanol, propane, 

or even gasoline [12]. 
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Steam reforming is a relatively efficient, well proven, widely implemented and the most 

cost effective way of producing hydrogen on a large scale. However, steam reforming 

uses natural gas in the process; hence the cost is heavily influence by the fluctuation 

price of natural gas and it also produces some emissions of CO2. To avoid emissions of 

CO2 into the atmosphere, it can be used by pumping it into the reservoir for enhanced oil 

recovery or it can be captured and sequestered (carbon sequestration). Nonetheless, steam 

reforming is poised to be the near term hydrogen production method of choice before 

other methods become more economically viable [13]. 

 

 

(*Pressure swing adsorption is a separation technology at utilizes high pressure at 

ambient temperature to separate some gas species from a mixture of gases according to 

their individual molecular characteristics and affinity to the adsorbent material. The 

process then swing to low pressure to release the gas species from the adsorbent 

material hence, the name pressure swing adsorption. The adsorbent material used for the 

process is dependent on the target gas.) 

 

 

2.1.4.1.2 Partial Oxidation and Auto-Thermal Reforming 

 

Partial oxidation process refers to the incomplete oxidation of hydrocarbon with a limited 

amount of oxygen gas so that it does not completely oxidize the hydrocarbons. The 

partial oxidation process directly oxidizes methane in a one step reaction, while auto-

thermal reforming combines the partial oxidation with reforming process by catalytically 

reacting methane with a mixture of oxygen and steam [11]. Partial oxidation is therefore 

different from steam reforming since in the latter process methane reaction with steam 

only. 

 

With less than the stoichiometric amount of oxygen available for reaction, the partial 

oxidation process produces syngas (a mixture of CO and H2), following the reaction:  

 

CH4 + 1/2O2 → CO + 2H2               (Eq 3)     --------------------------------- [11] 
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For auto-thermal reforming, the CO produced from initial partial oxidation reaction is 

further converted to H2 and CO2 with water gas shift reaction (Eq 2). However, the 

product also contains a small amount of CO2 and other compounds since it is in 

competition with the total oxidation reaction as shown in equation 4: 

 

CH4 + 2O2 → CO2 + 2H2O            (Eq 4)     -------------------------------- [11] 

 

Although, both processes do not require the presence of catalyst, the use of a catalyst will 

definitely increase hydrogen yield and reduce the operating temperature. The partial 

oxidation is an exothermic process and hence requires careful control and reactor design 

to facilitate the heat exchange. 

 

 

2.1.4.1.3 Gasification 

 

Gasification is a process in which coal is converted into a gaseous state. There are 3 steps 

involved, which are: 

1. treatment of coal at high temperature with steam,  

2. catalytic shift reaction (water gas shift), and  

3. purification of the product (pressure swing adsorption). 

 

In the first step, coal is chemically broken down by high temperature (1330 oC) and high 

pressure steam to produce syngas (Eq 5), as shown below [11]: 

 

Coal + H2O → H2 + CO                 (Eq 5)     ---------------------------------- [11] 

 

In the second step, the CO produced will then be further reacted with steam in a ‘water 

gas shift reaction’ to produce more H2 (see Eq 2). Subsequently, pressure swing 

adsorption is then used to remove the impurities from the product stream to produce pure 

H2.  

 

 



Chapter 2 - Review of Literatures, Technologies and Membranes 
 

Chee Chong, CHEN                                                                                                  - 17 - 
 

Although coal is an attractive energy source due to its abundance and low raw material 

cost, there are additional technical and economic consideration needed for the handling 

and, also capture and storage of CO2 produced [11]. This method of H2 production can be 

more environmentally viable if CO2 produced is sequestered or used to recover methane 

trapped in un-minable coal beds [14]. 

 

 

2.1.4.2 Hydrogen from Biomass 

 

Similar to coal, biomass can also be gasified to produce hydrogen in a three step 

gasification process. In this process, biomass such as forestry by-products, straw, 

municipal solid waste or sewage is heated at high temperature in a reactor to break the 

bonds in the biomass molecules [9]. This will then produce a raw syngas mixture 

consisting of CH4, H2, CO and CO2. It is then followed by the catalytic water gas shift 

reaction and purification process. 

 

Alternatively, biomass can first be reformed to a liquid biofuel state in a process called 

pyrolysis (thermal decomposition of biomass). The biofuel is then steam reformed using 

a nickel-based catalyst at 750-850 oC, followed by the same shift reaction and 

purification process as in gasification [11]. However, in this process the CO2 emissions 

from biomass gasification or pyrolysis do not contribute to a net increase in greenhouse 

gas emissions because it consumes CO2 in the atmosphere as part of its natural growth 

process [15]. 
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2.1.4.3 Hydrogen from Water 

 

Hydrogen can be produced sustainably and cleanly from water splitting processes using 

energy supplied from renewable sources such as solar, wind, wave, hydropower and 

nuclear heat. These processes are considered as newer technologies and tend to be more 

complex and expensive than fossil fuel processes, but it does not produce harmful 

emissions or consume large quantities of non-renewable feedstocks [11]. Presently, the 

varieties of technologies available for water splitting processes are: 

 

• Electrolysis of water 

• Thermo-chemical water splitting (high-temperature water decomposition) 

• Photo-electrochemical water splitting (Photo-electrolysis/catalytic) 

• Photo-biological water splitting (Photo-synthetic) 

 

 

2.1.4.3.1 Electrolysis of Water 

 

Electrolysis is a process of splitting water into molecules of H2 and O2 by passing 

electricity through the water. The whole reaction takes place in a unit known as an 

electrolyzer and it contains two electrodes within a conducting medium, which is 

generally an alkaline electrolyte solution (such as an aqueous solution of potassium 

hydroxide (KOH)) [11]. When an electric potential is applied across the electrodes, H2 

gas will be generated from the negative cathode and O2 at the positive anode [14]: 

 

Cathode:      2H2O + 2e- → H2 + 2OH- 

Anode:         2OH- → 1/2O2 + H2O + 2e- 

Total:           H2O → H2 + 1/2O2                 ------------------------------------ [11] 
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The only product produced are H2 and O2, resulting reduced harmful and greenhouse gas 

emissions. However, this is only true if the electricity used for the splitting process is 

generated from clean renewable sources (e.g. solar and wind power) and the life cycle 

assessment. On the other hand, the process has a disadvantage of requiring a large 

amount of electricity to split the water, thus increasing its hydrogen production cost.  

 

Currently, there are only limited types of industrial electrolyzers available, with the most 

common one such as alkaline, polymer electrolyte membrane (PEM), and solid oxide 

(SOE) electrolyzers. Although each of them functions a little differently, their basic 

operating principle is the same with the only main distinction being the types of 

electrolyte they use.  

 

 

2.1.4.3.2 Thermo-chemical Water Splitting (high-temperature water decomposition) 

 

Thermo-chemical water splitting process involves separating water into H2 and O2 

through chemical reactions in multiple steps at high temperature. High temperature heat 

ranging from 500-2000 oC needed for the process are supplied by the heat from nuclear 

reactors (up to 1000 oC) or from sunlight with solar concentrators (up to 2000 oC), while 

the chemical used are chosen such that it could recycled and reused within each cycle, 

thus creating a closed loop system that produces only H2 and O2 [16]. 

 

The main advantage of the process is that it reduces the consumption of electricity by 

using high temperature heat. An example of the process is the sulphur-iodine (SI) cycle 

that used water through a series of reactions involving sulphur and iodine at different 

temperature as described by the reactions below: 

 

2H2O + SO2 + I2 → H2SO4 + 2HI                   (<120 oC)          

                   2HI → H2 + I2                           (>300 oC)                                    

               H2SO4 → H2O + SO2 + 1/2O2          (>800 oC)            

Net:            H2O → H2 + 1/2O2     ------------------------------------------------ [11] 
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There are many other thermo-chemical processes that can be utilised, but like SI cycle, 

still require more research and developments before they could reach industrial scale. 

However, like most processes, it comes with a drawback. The process is usually 

associated with the corrosion of the process reactors, system materials, and also the 

safety issues of chemical handling [16]. 

 

 

2.1.4.3.3 Photo-electrochemical Water Splitting (Photo-electrolysis/catalytic) 

 

In this process, H2 is produced from water using a special semiconductor also known as 

photo-catalyst materials with energy input from sunlight irradiation to directly 

disassociate water into H2 and O2. There is a variety of semiconductor materials available 

and each work at particular wavelength of light and energies [17]. 

 

This technology is still in its infancy stage and not yet economically feasible for 

hydrogen production, however it does have similar advantages to other water splitting 

processes. The process is clean, producing no harmful emissions and relies on solar 

energy, thus having the potential to offer long-term sustainable hydrogen production. 

Currently, more research is being carried out in order to the increase the efficiency of the 

process to make it more economically viable [11]. 
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2.1.4.3.4 Photo-biological Water Splitting (Photo-synthetic) 

 

This process while similar to photo-electrochemical technique, but differs in that it uses 

specialized micro-organisms to consume water in the presence of sunlight to produce H2 

as a by-product of their natural metabolic process just like plants producing O2 during 

photosynthesis.  

 

Micro-organisms such as green algae and cynobacteria are used because they contain the 

hydrogenase enzymes that are needed in the process. The current limitation of this 

process is that the amount of hydrogen produced is limited by the amount of light and is 

too slow for efficient H2 production. Nonetheless, like other water splitting processes, 

with sustained research and development, it does have the potential to offer long-term 

sustainable H2 production with no environmental impact. 

 

The process is based on two steps, photosynthesis and hydrogen production catalyzed by 

hydrogenase enzyme: 

 

Photosynthesis:                     2H2O → 4H+ + 4e- + O2 

Hydrogen production:     4H+ + 4e- → 2H2   -------------------------------------- [11] 

 

A more detailed explanation of the process can be found in reference 18 and 19. 
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2.1.5 Hydrogen Storage  

 

Developing a safe and reliable hydrogen storage technology is important to the 

implementation of hydrogen economy. However, hydrogen storage is proving to be one 

of the biggest obstacles [20], because hydrogen has the highest energy content per unit 

weight but it is also the lightest element; therefore it has very low energy content per unit 

volume. Hence, hydrogen is either stored under high pressure or extremely low 

temperature in liquid form.  

 

Nevertheless, for hydrogen to be used as fuel, the methods for storing hydrogen will 

certainly depend on the safety, ease of use, and also other factors such as volume and 

weight of the storage unit, space restrictions, and the end use purpose. Presently, there 

are a variety of storage methods available to store hydrogen in different states (solid, 

liquid and gaseous) and in addition there are some other new methods that are still in 

research and development stage. The most common hydrogen storage methods are: 

• Compressed hydrogen (gaseous state) 

• Liquid hydrogen (liquid state) 

• Metal hydride tank (gaseous/liquid state) 

• Chemically stored hydrogen (solid state – e.g.: NH3, HI, CH3OH) 

• Carbon nanotubes (solid state) 

 

The simplest option is to store hydrogen in its gaseous form, but it has to be compressed 

to a high pressure. This process requires substantial amount of energy to compress the 

hydrogen and it would also require specialized tanks that can withstand high pressure and 

to keep it from bursting and leaking in the event of an impact. Despite all these, the 

weight of hydrogen stored in gaseous form only represents a few percentages (1 - 2%) of 

the total weight of the tank [3]. For this reason, more research is still needed to find 

lightweight and inexpensive materials strong enough to withstand the high pressure [23].  
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Hydrogen can also be stored in its liquid form but has to be at an extremely low 

temperature (- 253 oC). Like compression, a considerable amount of energy is required to 

chill hydrogen to its liquid form [22]. In addition, special equipments are also needed for 

its storage and tanks have to be properly insulated to maintain the temperature, the two 

main challenges of liquid hydrogen storage (the efficiency of the liquefaction process and 

thermal insulation to limit boil off (evaporation) [24]). 

 

More recently, H2 has been stored in its solid form instead of the more common gaseous 

or liquid form by using metal hydride system [21]. Metal hydride systems consist of a 

specific type of metallic alloys that can absorb and store hydrogen. It functions much like 

a sponge absorbing water. It has a unique ability to absorb, then store hydrogen within its 

structure and later release it either at room temperature or through heating of the tank 

[22]. Currently, there is a vast variety metallic alloys being developed to store H2 which 

include lithium hydride, sodium borohydride, and the new emerging class of ultraporous 

nanotech materials [23].  

 

The metal hydride system does offers the potential for volume efficiency, high safety, 

low pressure containment, and ambient temperature of operation [21]. However, the 

percentage of gas absorbed to the volume of the metal hydride is still low (1 - 7% of the 

total weight of the tank), and some hydrides required high temperature to release the 

hydrogen [22].  

 

Hydrogen can also be stored in solid form by using carbon nanotubes or chemical 

reactions. Since hydrogen is often found in compound forms in nature, many of these 

compounds can be utilized as a storage method. A chemical reaction is used to combine 

hydrogen in a compound form while a second reaction can then release it later for 

subsequent use.  
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Carbon nanotubes are microscopic tubes of carbon that can store hydrogen in its 

microscopic pores within the tube structure [20]. The mechanism of storing and releasing 

hydrogen is similar to that of metal hydrides but it has the advantage of storing more 

hydrogen than metal hydride. Carbon nanotubes are capable of storing from 4.2 – 65% of 

their own weight in hydrogen [22]. However, like other storing methods, further research 

is still needed in order to understand the material nature and potentials of using carbon 

nanotubes and chemical hydrides for increasing the storage efficiency [21]. 

 

 

2.1.6 Hydrogen Distribution 

 

One of the key elements in the successful implementation of a future hydrogen economy 

is the delivery and distribution of produced hydrogen to end use such as hydrogen 

refuelling station or a fuel cell plant. However, like storage, the transportation of 

hydrogen poses some unique challenges due to its properties [25]. Presently, hydrogen is 

usually transported and distributed in its gaseous form through pipelines or in liquid form 

by special tankers. 

 

Pipelines are considered the cheapest and safest way to deliver hydrogen in large volume, 

but the current pipeline infrastructure is very small and limited, it exists only for a short 

distance. It totalled 1500 km in Western Europe [27] and 900 km in America compared 

to more than 1 million km of natural gas pipelines in America alone [26]. Hydrogen is 

also transported in its gaseous form but in a much smaller volume for short distances by 

road using tube trailers [26]. 

 

Due to its low energy density by volume, transportation of hydrogen using pipeline is 

three times more expensive compare to natural gas [3]. Besides that, there is a problem 

always associated with pipelines where the pipes and fittings can become brittle and 

cracked as hydrogen diffuses into the metal (hydrogen embrittlement) [28]. Although the 

problem can be prevented, this would eventually bring up the cost of transportation 

significantly.  
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Hydrogen is more commonly transported in its liquid form by two modes of 

transportation; by road using cryogenic liquid hydrogen tankers or by sea using ocean 

tankers. Although the liquefaction process cost is high, it is still the preferred method for 

transportation due to the unavailability of transport pipeline [24]. Besides that, liquefied 

hydrogen is denser and has higher energy content in a given volume than its gaseous 

form. 

 

 

2.1.7 Hydrogen Utilization 

 

The importance of hydrogen has been known since Isaac de Rivaz (Switzerland) 

developed the first combustion engine fuelled with hydrogen in 1805 [2]. Although the 

interest and potential is long known, there are still some obstacles that need to be 

overcome before a hydrogen economy can be realized [5, 8, 29]. Besides that, smooth 

transition to a hydrogen economy will requires a large amount of investments into further 

research toward the end use technologies and potential applications.  

 

Hydrogen has the highest energy to weight ratio and a much wider limit of flammability 

in air compare to fossil fuels. For that reason, it is more efficient, powerful, light weight 

and more importantly, burns much cleaner. Hence, it is extremely suitable to be used as 

transportation fuel [29]. Its combustion properties will also enable the development of an 

engine that would meet all current and future emissions standards and regulations [30]. 

 

Thus, a wide range of hydrogen energy related technologies are being developed or 

modified to run on hydrogen or hydrogen-blended fuels with reduced emission. These 

includes vehicles powered by internal combustion engines, fuel cell powered vehicles, 

and hybrid vehicle [29]. Hydrogen can also be used as fuel directly in an internal 

combustion (IC) engine which requires little or no modification and crucially, the 

combustion product is clean, consisting of water and little amount of nitrogen oxides 

[31]. 
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In a longer term, fuel cell vehicles are more attractive compare to IC engine vehicles 

because they can offer similar performance but with several more advantages, including 

better environmental performance, quiet operation, rapid acceleration from a standstill, 

and potentially lower maintenance requirements [32]. However, for the time being, the 

hybrid powered vehicles have been more successful in penetrating the transport market 

largely due to the convenience of fossil fuel distribution system (distribution and 

refuelling station). This is also one of the major drawbacks in utilizing hydrogen within 

the transportation sector.  

 

Besides transportation, hydrogen can also play a more important role in the industrial and 

power generation sectors. Currently, industrial boilers and process heaters are fuelled by 

combustion of fossil fuels (natural gas and coal). In the US market alone, the 

consumption is more than 75% of its manufacturing market [32]. However, gas turbines 

can be modified to operate using hydrogen or hydrogen rich fuels to generate electricity 

[29, 31-33] and this will undoubtedly offer an expanded use of hydrogen in this sizeable 

end-use market. 

 

In addition to hydrogen gas turbines, fuel cell systems can also be used for stationary 

power generation [32]. Fuel cells are modular design and can be used as single units, 

stacked together or they can be connected to other systems located all over the country to 

form a distributed network. By this way, they can form an easy to control network of 

decentralised power generation to supply power or to compensate load fluctuation in the 

grid [34]. Summarised below are examples of some current applications of hydrogen gas 

[21, 33]: 

 

1. Transport sector: hydrogen fuelled IC engines or fuel cell power vehicles such as 

scooters, cars, buses, and possible future use in aviation and marine applications. 

2. Industrial sector: ammonia production (fertilizers), high temperature industrial 

fuel, synthesis of methanol, ethanol, dimethyl ether (DME), hydrogenation of 

hazardous wastes (dioxins, PCBs), hydrogenation of oils in the food industry, 

reducing agent in electronic industry, and more. 

3. Power sector: fuel cells, gas turbines, generators for on-site or distributed power 

generation. 
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2.1.8 Fuel Cells Technology 

 

Fuel cell is based on a principle discovered long ago and it was known at that time that 

water can be separated into hydrogen and oxygen by using electricity (electrolysis) [26]. 

Hence, Sir William Grove believed that the principle might work in the opposite way 

instead, i.e. to produce electricity if hydrogen and oxygen are combined using the right 

infrastructure or technique. Thus, he successfully constructed the first cell in 1839 that 

was capable of producing electricity by using hydrogen and oxygen, which then known 

as fuel cell in a later date [35]. In general, fuel cell is an electrochemical energy 

conversion device that is capable of producing electricity at the point of use [36].  

 

A typical fuel cell is a structure that consists of an electrolyte and two electrodes (anode 

and cathode) with catalysts. The reactions take place at the electrodes with the catalyst 

speeding up the reaction while the electrolyte acts as an ionic conductor which carries the 

electrically charged particles from one electrode to the other [38].  

 

Currently, there are a variety of fuel cells and technologies available, which can be 

distinguished by their nature of ions transfer. Some types of fuel cells use combinations 

of fuel such as hydrocarbons and alcohols, while oxidants used include air and others 

[37]. However, their basic principle of operation remains the same. Generally, fuel cells 

are classified according to the operating temperature of the electrolytes used. Each type 

uses particular materials and fuels, and is usually applicable for a specific application 

[39]. Table 2.1 shows the types of fuel cell and their operating parameters while table 2.2 

shows some of their advantages and disadvantages. 
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Type of 

Fuel Cell 
Electrolyte 

Operating 

Temperature 
Efficiency 

Power 

Output 
Applications 

 

Alkaline 

(AFC) 

 

 

Aqueous 

alkaline solution 

(e.g. potassium 

hydroxide) 

90 – 100 oC 60 % 10 – 100 kW 
- Military 

- Space 

Molten 

Carbonate 

(MCFC) 

Molten alkaline 

carbonate (e.g. 

sodium 

bicarbonate 

600 – 700 oC 45 – 47 % 
1 kW – 1 

MW 

- Electric utility 

- Power station 

Phosphoric 

Acid  

(PAFC) 

Molten 

phosphoric acid 
150 – 200 oC 32 – 38 % 

50 kW – 1 

MW 
- Power station 

Polymer 

Electrolyte 

Membrane 

(PEMFC) 

Polymer 

membrane 
50 – 100 oC 25 – 60 % 1 – 250 kW 

- Backup power 

- Transportation 

Solid Oxide 

(SOFC) 

 

Ceramic oxide 

(e.g. zirconium 

dioxide) 

650 – 1000 
oC 

 

35 – 43 % 
5 kW – 3 

MW 

- Auxiliary 

power 

 -  Power station 

 

Table 2.1: Types of fuel cell and their applications* 

(* taken and modified from reference no. 39) 
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Type of Fuel 

Cell 
Advantages Disadvantages 

Alkaline 

(AFC) 

- cathode reaction faster 

- higher performance 

- expensive removal of CO2 from 

fuel and air streams (CO2 degrades 

electrolyte) 

Molten 

Carbonate 

(MCFC) 

- high efficiency 

- fuel flexibility 

- can use a variety of catalysts 

- slow start-up 

- complex electrolyte management 

- high temperature speeds corrosion 

& breakdown of components 

 

Phosphoric Acid 

(PAFC) 

 

- higher overall efficiency 

- increased tolerance to 

impurities in H2 stream 

- requires expensive platinum 

catalysts 

- low current and power 

- large size/weight 

Polymer 

Electrolyte 

Membrane 

(PEMFC) 

- low temperature 

- quick start-up 

- less corrosion and electrolyte 

management problems  

- requires expensive catalysts 

- high sensitivity to fuel impurities 

- low temperature waste heat 

 

Solid Oxide 

(SOFC) 

 

- high efficiency 

- fuel flexibility 

- can use a variety of catalysts 

- less corrosion and electrolyte 

management problems 

- high temperature speeds corrosion 

& breakdown of components 

- slow start-up 

- brittleness of ceramic electrolyte 

with thermal cycling 

 

Table 2.2: Advantages and disadvantages of different types of fuel cells* 

(* taken and modified from reference no. 39) 
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Because hydrogen and oxygen gases are electrochemically converted into water, fuel 

cells tend to have many advantages: 

• high efficiency,  

• silent operation,  

• low level of pollutants,  

• run on a wide range of fuels, ranging from gaseous fuels such as hydrogen and 

natural gas to liquid fuels (such as methanol and gasoline) [37].  

 

If hydrogen fuel used is produced from renewable energy sources such electrolysis of 

water using solar energy, then the technology can be truly sustainable. Besides that, fuel 

cell has no major moving parts, thus having high reliability. Therefore fuel cell can be a 

very useful power source in remote locations and in space. 

 

Although it has a lot of benefits, it is also associated with some challenges and 

uncertainties. Two of the main problems are the availability of infrastructure and the cost 

of balance-of-plant components it uses, including the precious metal catalysts (e.g. 

platinum). For that reason, researchers must find a way to reduce the amount of catalyst 

used or try to find an alternative replacement [36]. At present, there are no commercial 

infrastructures in place for the generation, delivery and storage of hydrogen fuel, as 

mentioned in previous subchapters. Therefore, in order for the technology to become 

viable and an attractive alternative for consumers, infrastructures such as fuelling stations 

have to be put in place. 
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2.2 Membrane Separation Process & Technology Review 

 

The petrochemical and food processing industries typically consume or produce a vast 

variety of chemicals (feedstocks or by-products) that would either needs separation, 

concentration or purification [40]. Hence, separation application in the field of chemical 

engineering is important. These typically include reagents and chemicals used in 

manufacture, purification of product, and removing of contaminants or recovery of 

valuable component from waste streams. 

 

In the context of chemistry, separation process is generally a method of transforming or 

dividing a mixture of substances into individual or compositional based components. 

Most elements or compounds found in nature are normally in an impure state as a 

mixture of two or more elements. For that reason, it has to be separated from the 

unwanted product before used. A general example is that of crude oil which in its natural 

form contains a mixture of hydrocarbons and other toxic gases. Crude oil has to go 

through the separation process in order to produce the end products such as gasoline, 

diesel, jet fuel, lubricating oils and etc. 

 

Presently, there are a wide variety of separation processes that are being utilized in the 

industry and they can be classified by the physical or chemical properties of the 

components to be separated. Table 2.3 shows some of the many separation process 

utilized. 
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Physical/Chemical Property Separation Process 

Size 

 

Vapour pressure 

Freezing point 

Affinity 

 

Charge 

 

Density 

Chemical nature 

Filtration, microfiltration, ultrafiltration, dialysis, gas 

separation, gel permeation chromatography 

Distillation, membrane distillation 

Crystallisation 

Extraction, adsorption, absorption, reverse osmosis, gas 

separation, pervaporation, affinity chromatography 

Ion exchange, electrodialysis, electrophoresis, diffusion 

dialysis 

Centrifugation 

Complexation, carrier mediated transport 

 

Table 2.3: Separation processes based on physical/chemical properties [40]. 

 

 

2.2.1 Separation Process 

 

The choice of separation process is influenced by a number of important factors such as 

economics, technical feasibility, advantages and disadvantages of the process and the 

type of application. However, depending on the desired end product, a combination of 

two or more processes might be needed for separation. Although these conventional 

processes have performed well in the industries for a long time, there are still a number 

of challenges that need to be addressed and improved, and this is where the membrane 

process comes in [42]. Over the last few decades, membrane separation processes has 

been widely adopted because they are often more economically viable and energy 

efficient [43]. 
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2.2.2 Membrane Separation Process 

 

As a method of separation, membrane processes are still considered relatively new when 

compared to other more conventional methods. It was not considered as a technically 

important and feasible separation process until about 25 years ago and has since 

undergone rapid growth in a wide range of applications [40]. The demand for membrane 

materials in the US market alone is forecasted to increase by 8.2% to $4.3 billion in 

2012, contributed by the advances of membrane applications into key markets such as 

water and wastewater treatment, food and beverage processing, pharmaceuticals and 

medical product, and chemical and industrial gas production [41]. 

 

The one common factor that links every membrane separation system is the physical 

arrangement of the processes in which a membrane is utilised to perform a particular 

separation [43]. A general definition widely used for membrane separation process is “A 

membrane is as a selective barrier that separates two phases, which will either restricts 

or allows the movement of certain species because of their differences in physical, 

chemical or other properties, and thus leads to a separation of components” [42]. 

 

Over the years, membrane technologies are more preferred and extensively used in 

separation for wide variety of mixtures due to their advantages over the conventional 

processes [45 - 46]. Some of these advantages are: 

 

• Flexibility: 

Membrane units are modular in design, thus they are compact and require less 

space. Besides that, modules can be added either to increase output or achieving 

the desired separation. 

 

• Cost efficient: 

In addition to their compact size, it also has less moving parts and low specific 

power consumption, which in return will reduce the overall production cost. 
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• Simplicity: 

Simple, easy to operate and low maintenance process. 

 

• Feasibility: 

Energy efficient and also cost saving as the separation process takes place without 

phase transition and generally carried out in atmospheric conditions. 

 

• Cleaner technology: 

Considered as a clean technology since it only require the use of relatively simple 

and non-harmful materials.  

 

Nevertheless, the membrane separation is also associated with some drawbacks such as; 

fouling of the membranes, durability of the membrane materials and availability of 

suitable membranes for specific operations [45]. This has no doubt prevented a wider 

application of the membrane-based technology. Nonetheless, several main membrane 

separation processes currently being utilized within the industries include microfiltration, 

ultrafiltration, nanofiltration, reverse osmosis, electrodialysis, pervaporation and gas 

separation.  

 

All separation process using membranes are usually classified under the general title of 

membrane processes; however the fundamental principles governing each individual 

process are different. To date, a variety of membrane separation processes have been 

developed for specific industrial applications and the principal characteristics and 

properties of these commercialized membrane processes are determined by the: 

- main objective of separation 

- types and structure of membrane 

- physical phase of the feed and permeates 

- driving forces 

- mechanism of transport 
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Some of the more widely used processes in the industries are shown in table 2.4, while a 

detailed explanation of each processes of each  processes can be found in reference 42. 

 

Process Principle Industrial Applications 

Microfiltration Separation or organic and polymeric 

compounds with micropore ranges 

of 0.1-10 µm. 

Removal of suspended solids, 

bacteria in pharmaceutical,and 

electronic industries 

Ultrafiltration Separation of water and 

microsolutes from macromolecules 

and colloids. 

Removal of colloidal material 

from wastewater, food process 

streams 

Reverse Osmosis Passage of solvents through a dense 

membrane that is permeable to 

solvents but not solutes 

Drinking water from sea, 

brackish or groundwater; 

production of ultra-pure water 

for electronics and 

pharmaceutical industries 

Electrodialysis Ions are transported through a 

membrane from one solution to 

another under the influence of an 

electrical potential. 

De-ionized water from 

conductive spacers, recovery of 

organic acids from salt, heavy 

metal recovery 

Gas Separation Component of mixture of gaseous is 

removed through a pressure gradient 

Removal of nitrogen from air, 

hydrogen from 

petrochemical/refinery vents, 

carbon dioxide from natural gas, 

propylene and VOC removal 

petrochemical vents 

Pervaporation Component of a mixture diffuses 

through, evaporates under a low 

pressure and is removed by vacuum 

Dehydration of solvents, 

separation of azeotropic mixtures 

 

Table 2.4: Brief summary of the main membrane separation processes and their 

applications [47]. 
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2.2.3 Driving Forces for Membrane Processes 

 

Transport through a membrane generally takes place when there is a presence of driving 

force acting on the components either in the feed or permeate side. In most cases, the 

permeation rate through the membrane is proportional to the driving force [42]. The 

driving forces are the differences in terms of: 

 

1. Concentration gradients, 

2. Electrochemical gradients, 

3. Pressure gradients, or 

4. Temperature gradients 

 

 

 

Figure 2.1: A simple diagram of a composite feed stream flowing past a membrane [42]. 

 

Figure 2.1 shows a simplified diagram of a composite feed stream containing a mixture 

of molecules flowing past a membrane based on size. The membrane layer then acts as 

barrier against the larger molecules, allowing only the smaller molecules to pass through 

it. The remaining feed stream is known as the retentate stream and the molecules that 

penetrate through the membrane is known as the permeate stream.  
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In addition to the molecule sizes, the physical and chemical structure of the membrane 

can also help to determine which driving force exist to separate the components, and 

hence determines which application will be most suitable for the membrane. Table 2.7 

shows the driving forces for each membrane processes. Some of the membrane process 

will have more than one driving force which might affect the transport of molecules. 

 

Driving forces Membrane processes 

Pressure difference Microfiltration, Ultrafiltration, 

Nanofiltration, Reverse Osmosis 

Concentration difference Gas separation, Pervaporation, Dialysis, 

Diffusion dialysis 

Temperature Difference Membrane Distillation 

Electrical Potential Difference Electrodialysis 

 

Table 2.5: Membrane processes and their driving forces [46]. 

 

 

2.2.4 Types of Membranes 

 

Other than the driving forces, the membrane (structure and material) itself is the principal 

factor determining the selectivity and permeability, therefore it will also determine the 

most suitable type of application [42]. Progress made on material science over the years 

has enabled membranes to be produced using a variety of materials and with many 

different structures and properties [50]. This in turn has helped improve the performance 

and increase the amount of applications available for membrane separations.  

 

Membranes are usually divided into different types and they are generally classified by 

two set of criteria. The initial classification is the nature or material used, whether it is 

natural or synthetic then whether it is organic or inorganic. Subsequently, they are further 

divided according to their configurations/structure such as porous/non-porous or 

symmetric/asymmetric. Figure 2.2 shows the simplified classification of membrane 

types. 
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Figure 2.2: Simplified diagram of membrane classification. 

 

There are two main structural configuration commonly found in membranes. These are 

symmetric or asymmetric configuration. Symmetric membranes are characterized by 

uniform structure and composition throughout the membrane, while asymmetric 

membranes are classified by non-uniform structures and composition.  

 

A porous membrane is a highly permeable structure with randomly distributed 

interconnected network of pores, whereas the structure of a dense membrane are more 

compact or closely packed together making the structure difficult to penetrate [45].  

 

Membranes are normally made as thin as possible because the resistance to mass 

transport is usually proportional to the thickness. The most common membrane 

configuration is a thin membrane layer on a mechanically strong support (porous support 

with dense or porous membrane on the top layer). These membranes are known as 

composite membranes (see figure 2.3). If the material used for the top layer is different 

from the support material, then it is known as asymmetric composite membrane [46]. 

 

 

Organic/Inorganic 
 

Symmetric Asymmetric 

Porous Non-porous Composite Porous Non-porous 

Natural/Synthetic 
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Figure 2.3: An example of a composite membrane (image obtained using the Scanning 

Electron Microscope). 

 

 

2.2.5 Development of Membrane Gas Separation Process 

 

In the context of this study which is focussed on membrane gas separation/purification, 

only the membrane gas separation process is detailed. More details on other membrane 

separation processes can be found in ref. 40 - 42. 

 

The progress in the field of membrane gas separation has been growing progressively 

from the early basic concept of diffusion and permeation experiments in the 1800’s by 

Thomas Graham and Fick, to industrially accepted products a century later [43 & 51]. 

Graham first observed the separation of gas mixtures by using a rubber membrane in the 

1800’s, but it was nearly a century later before commercial gas separation membranes 

became a reality [43].  

 

 

 

 

Porous  
Structure 

Dense 
Structure 
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Although there had been numerous early gas separation studies carried out, it was not 

until the pioneering work of Weller and Steiner that the potential of using polymeric 

membranes as a means of industrial gas separation was studied seriously [40]. Following 

the early studies on polymeric membranes, inorganic membranes were then developed 

for gas separation largely due to the need for separating gaseous Uranium isotopes in the 

1940’s to help the war effort [40]. However, due to its usage in military and nuclear 

applications, not much publicity was given during its early development.  

 

By 1960, the elements of modern membrane science had developed sufficient knowledge 

on the relationships between structure and function in gas separation membranes. 

Unfortunately, the membranes at the time still suffered from problems such as low 

reliability, low selectivity and high fabrication cost [45, 50, 53].  

 

Major milestone to the commercialisation came when Loeb-Sourirajan successfully 

developed an asymmetric reverse osmosis membrane [43]. The subsequent progress in 

the membrane science and technology was then concentrated on the development and 

refinement of these concepts. As a result, commercial processes for microfiltration, 

ultrafiltration and electrodialysis were all established [45, 51].  

 

Further advances came with the development of composite membranes in the 1980’s, and 

this had led to the production of membranes more suitable for commercial gas separation 

on a large scale and paved way for high performance reverse osmosis membranes [43]. 

Significant progress in every aspect of membrane technology was also made during this 

period including improvement in membrane processing, its chemical and physical 

structures, configurations and wider applications [45, 50].  
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By 1990s, the performance of polymeric membranes had reached its limit for many 

practical applications due to stability problems, low membrane efficiency with time 

caused by fouling, compaction, chemical degradation and thermal instability [50]. This 

has subsequently resulted in the shift toward the use of inorganic membranes to separate 

gas mixtures. Although the inorganic membranes are more costly, they offered the 

advantages of being more temperature and wear resistant, and most importantly being 

chemically inert. Subsequently, studies have since concentrated on the investigations of 

the separation properties of these membranes and their applications in membrane reactors 

[54]. 

 

Like polymeric membrane, inorganic membranes can either be porous or non-porous. 

Porous inorganic membranes are usually characterized by their high permeabilities but 

low selectivities and vice versa for the dense inorganic membrane. Therefore, composite 

membranes were produced in order to combine the high permeabilities of a porous 

membrane and high selectivities of a dense membrane by fabricating a thin layer of dense 

membrane on a porous support. An example used to illustrate this point would be the 

Palladium membrane used in this study.  
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2.2.6 Transport mechanisms for Gas Separation 

 

The separation in membrane processes tends to take place through a variety of different 

transport mechanisms. The presence of any of these transport mechanisms is highly 

dependent on the physical and chemical properties of the membranes (ie. pore size, 

membrane material and structure, and pore size distribution) as well as the gases used (ie. 

molecular weight, affinity, and density of the gas). The type of transport through a 

membrane is generally categorized by the configuration or structure of the membrane 

used such as porous or non-porous as described in figure 2.4 below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4: Diagram of membrane transport mechanisms associated with its structure. 
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2.2.6.1 Transport through Porous Membrane 

 

The two predominant flow mechanisms that are usually present within a porous 

membrane are Knudsen or Viscous flow, and determination of which flow is in operation 

depends largely on both [40]: 

• the pore radius of the membrane, and  

• the mean free path of the gas molecules.  

 

The mean free path is commonly expressed as the average distance travelled by the gas 

molecules between collisions of molecules [43].  

 

Viscous flow prevails when the mean free path of the gas molecule is much smaller than 

the pore radius of the membrane (mean free path << pore radius). Under these conditions, 

the gas molecules collide more frequently with each other rather than with the walls of 

the membrane pores (see figure 2.5). Hence, the gases will flow easily through the pores, 

thus leaving very little or no gas separation.  

 

 

Figure 2.5: Schematic drawing showing Knudsen and Viscous Flow [42].  

 

 

 

 

 

 



Chapter 2 - Review of Literatures, Technologies and Membranes 
 

Chee Chong, CHEN                                                                                                  - 44 - 
 

However, if the mean free path of the gas molecule is larger than the pore size of the 

membrane (mean free path >> pore radius), then Knudsen flow will predominate as the 

collisions of gas molecules with pore wall will be more frequent than collisions between 

gas molecules. As a result, the permeation will be lower and separation will be enhanced; 

since it will be harder for gases with larger molecular weight to pass through the 

membrane compared to the gases with smaller molecular weight. Hence, the separation 

of gas mixtures is achieved because gas species with different molecular weight will 

move at a different rate. 

 

Surface flow/diffusion occurs when certain components within a gas mixture have a 

strong affinity (either chemically or physically) for the membrane surface (or material). 

The molecules will interact with the membrane, then adsorbs along the pore walls, and 

followed by diffusion across the pores [50]. Separation then occurs due to the 

permeability of the more adsorbed component from a mixture. 

 

Capillary condensation is another form of surface diffusion, but with one of the 

components of the gas mixture now a condensable gas. At a certain pressure, the pores 

get filled by the condensed gas which will then evaporate at the permeate side; this will 

simultaneously prevent the flow of other gases through the pores [40] with the formation 

of a liquid layer [51]. 

 

Molecular sieving can occur if the pore size of the membrane is comparable to, or are in 

between those of the gas molecules to be separated [50]. If the membrane pore size is in 

between the smallest and largest molecules, then it will allow only smaller molecules to 

permeate while larger ones are retained from entering the pores. Thus, separation is 

achieved and the separation rate is dependent on the molecular shape and size, pore size, 

and interaction between the pore wall and gas molecules [51].  
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2.2.6.2 Transport through Non-porous Membrane 

 

When the molecule size of the components within a gas mixture is more or less identical 

(eg. oxygen and nitrogen), the use of a porous membrane based on Knudsen mechanism 

will produce little or no separation and a non-porous membrane can be more useful [40]. 

The mechanism for transport through a non-porous membrane is different from that of a 

porous membrane and can be approximated by solution-diffusion mechanism.  

 

The solution-diffusion mechanism is generally driven by the differences in the molecular 

interactions between the membrane material and the permeating species which will create 

a concentration difference between the upstream and downstream side. This will then 

lead the molecules to permeate and diffuse in the direction of the lower concentration. 

 

In this mechanism, the permeants will dissolve in the membrane material and then 

diffuse through it, down the concentration gradient (from high to low concentration). The 

mechanism is commonly considered to occur in three steps [45, 51 - 52]: 

1. Adsorption or absorption of gas molecules at membrane surface on the upstream 

side, followed by 

2. Activated diffusion (solubility) of gas molecules through the membrane in the 

direction of lower concentration, and eventually 

3. Evaporation or desorption of gas molecules on the other side of the membrane. 

 

The rate determining factor which is the permeability coefficient (P) is considered to be a 

function of the product of solubility coefficient (S) and diffusion coefficient (D),  as 

described by equation 1, where [40]: 

 

P = D x S …………………….................................................................................... Eq. 1  

 

If the boundary condition on both side of the membrane is constantly maintained, then 

the diffusion of gas through the membrane can be described by Fick’s First Law [52] as 

in equation 2 [48]: 

 



Chapter 2 - Review of Literatures, Technologies and Membranes 
 

Chee Chong, CHEN                                                                                                  - 46 - 
 

dx

dc
DJ −=  ………………....................................................................…................ Eq. 2  

 

Where: J = Flux (rate of diffusion of the permeate gas per unit area) 

 D = Diffusion coefficient 

 dc/dx = Concentration gradient across the membrane 

 

Equation 2 can then be integrated to give the concentration decreases across the 

membrane [48]. 

 

l

ccD
J

pr )( −
=  ……………..................................................................................... Eq. 3  

 

Where: cr = Retentate concentration on the upstream side of membrane 

 cp = Permeant concentration on the downstream side of membrane 

 l = Membrane thickness 

 

The concentration of the permeating gas within a membrane cannot be measured; 

therefore the external pressure of the gas is used instead to express the concentration 

across the membrane. Thus, by using Henry’s Law which states the linear relationship 

between the concentration inside the membrane and partial pressure of gas outside the 

membrane, the gas concentration can then be expressed as [43] described in equation 4 

[48]: 

 

C = S x p …………………........................................................................................ Eq. 4 

 

Where: S = Solubility coefficient 

 p = partial pressure 
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Substituting Eq. 4 into Eq. 3 gives [43]: 

 

l

ppDS
J

pr )( −
=  ……......................................................................…………...… Eq. 5  

 

Where: pr = partial pressure of the retentate side 

 Pp = partial pressure of the permeant side 

 

Then, by substituting Eq. 1 into Eq.5, we have [43]: 

 

l

p
P

l

ppP
J

pr ∆
=

−
=

)(
 …...................................................................................… Eq. 6  

 

Where: P = Permeability coefficient 

 ∆p = Difference in partial pressure 

 

Finally, the separating ability or selectivity (α) of a membrane can be defined by using 

the ratio of individual gas permeabilities. The equation can be written based on single gas 

permeability of species A and B [43]: 
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2.3 Palladium Based Membrane Review 

 

Palladium (Pd) based membranes have long been widely used for the purpose of 

hydrogen gas separation and purification due to high hydrogen permeability and 

selectivity [54-64]. Due to the market demand for hydrogen in recent years in the 

petroleum refining, petrochemical industries, in semiconductor processing, and fuel cell 

applications, there is currently a renewed and growing interest in Pd based membranes 

[54]. Besides that, Pd based membranes are now used in a variety of processes such as 

membrane reactors for hydrogen related reactions including hydrogenations, 

dehydrogenations and methane reforming [55]. 

 

Nevertheless, a practical limit in the use of these membranes is restricted by the high cost 

of precious metal. In the early days of research and applications, bulk Pd and Pd-alloy 

film of high thickness (50 - 200 µm) were used in order to achieve the mechanical 

strength required to withstand the pressure differentials of up to 15 bars during operation 

[55-56]. However, since hydrogen flux is inversely proportional to thickness, the 

technology is prone to two limitation namely low hydrogen permeability and high cost of 

Pd metal [56]. 

 

Hence, film thickness is the main factor which controls the membrane performance and 

cost. These limitations have provided incentives and motivation toward more research 

and development of thinner Pd membranes. A variety of techniques have since been 

studied and research conducted to reduce the amount of Pd metal used [59]. Current 

development of Pd membranes are mostly composite based in which the Pd or Pd-alloy is 

deposited as a thin film onto a porous support [54-56, 58-60, 63-64, 68-69]. The more 

commonly used supports being ceramic and stainless steel porous supports. 
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2.3.1 Palladium and Palladium-Alloy Composite Membrane 

 

The successful industrial application of Pd membranes depends largely on the ability to 

produce them cost effectively, at the same time having high H2 permeability, good 

mechanical strength and thermal properties [55]. The optimal thickness of Pd film in a 

composite membrane will depend on a number of factors such as: 

• method of fabrication,  

• mechanical stability of the layer, 

• dense Pd film formation, 

• surface defects of the support, and 

• the type and quality of support used.  

 

Therefore, in the subsequent phase of research, development and applications, has 

concentrated on the preparation and utilisation of composite membranes due to the fact 

that successful deposition of thin Pd layer has the potential to overcome the limitation of 

using higher thickness [55, 58, 68]. 

 

These composite membranes (consisting of a thin Pd or Pd-alloy layer on a porous 

support) provide the membrane with high hydrogen permeability and selectivity without 

compromising its mechanical strength. This will then significantly reduce its fabrication 

cost. Porous inorganic support such as Vycor glass, ceramic and stainless steel are 

commonly used for this purpose. In addition, recent improvements in membrane 

fabrication have created new opportunities for preparing thinner supported Pd metal 

films of 4 – 15 µm [58].  

 

However, very thin Pd composite membranes are associated with the major drawback of 

hydrogen embrittlement and cracking. Hydrogen embrittlement is a phenomenon in 

which dissolved hydrogen tends to cause lattice expansions in the metal on repeated 

pressure and temperature cycling, which will eventually cause it to rupture [60]. 

Therefore pure Pd membranes cannot be used below 250 - 300 0C. In addition, the 

membrane is prone to deactivation by carbon compounds at temperatures above 450 0C 

and will suffer irreversible poisoning (Pd catalyst cannot be regenerated) in the presence 

of sulphur compounds [61]. 
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These issues can be reduced or addressed by alloying Pd with group 1b metals [62]. 

Besides that, Pd is also a very expensive metal and by alloying it with other metal, would 

help reduce the amount of Pd needed thus reducing the cost of production. The more 

commonly used metallic elements for alloying with Pd are silver (Ag), gold (Au), copper 

(Cu), iron (Fe), nickel (Ni), platinum (Pt) and yttrium (Y) [61]. 

 

 

2.3.2 Membrane Support 

 

As mentioned earlier, dense thick membranes are characteristically associated with low 

permeability but with high selectivity. The high selectivity being associated with the 

absence of any pinholes. Although permeability can be increased by reducing the 

thickness of the Pd metal, there is a critical thickness below which the mechanical 

strength begins to be affected. In order to improve its permeability while maintaining the 

high selectivity and structural integrity, thin Pd or Pd-alloy layer are usually deposited on 

the outer surface or inside the pores of a porous support. The new configuration is then 

known as composite membrane. 

 

 

2.3.2.1 Inorganic support 

 

Porous inorganic supports are typically utilised for gas separation purposes due to their 

thermal stability, mechanical strength and chemically inertness. Furthermore, the surface 

of the support also has to be smooth and defect free [61]. Uemiya [64] reported that the 

quality of the support used such as the pore size distribution and defects on the surface 

will have an influence on the minimum thickness of the Pd layer.  
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Among the inorganic supports, non-metals such as ceramic and glass are usually 

associated with weak adhesion to the deposited metallic thin film. Besides that, different 

thermal expansion coefficients between the materials during operation may cause 

stability problems [63]. Thermal cycling and hydrogen loading during operation at 

temperature will cause the Pd layer to expand/elongate at different rate with respect to 

the ceramic support, and this increases stress to the adhesion layer and will eventually 

cause it to rupture or peel off [59]. On the other hand, porous stainless steel support also 

has its share of problems at high temperature with atomic inter-diffusion of metals 

between thin Pd/Pd-alloy layer and the support (e.g. stainless steel components). 

 

 

2.3.3 Pd Based Membrane Fabrication Method 

 

Recently, much effort has been focussed in preparing not only thinner, but also pinhole 

or defect free membranes with high permeability and selectivity for hydrogen from a 

variety of methods. Amongst them, the more common and widespread use methods are 

magnetron sputtering, electroless plating and chemical vapour deposition. 

 

 

2.3.3.1 Magnetron Sputtering 

 

Magnetron sputtering is a very powerful and flexible technique which can be used to coat 

any type of support with a wide range of materials and a variety of compounds [65] and 

is usually used for thin film deposition. Sputtering is a physical process whereby atoms 

in a solid target material (Pd) are evicted into the gas phase due to bombardment by 

energetic ion [64]. The process can be summarised as the ion striking a large cluster of 

closed-packed atoms and the rate of deposition is largely driven by the energetic ion 

collision with the target atoms [67]. One major drawback is the process is unable to 

deposit long or large supports due to the facts that a vacuum has to be created during 

deposition. 
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The sputtering process takes place in a vacuum chamber which contains the target of 

material to be sputtered and the support for deposition (see figure 2.6). For this case, the 

target material is Pd metal and the support is ceramic. The Pd metal is maintained at a 

negative potential and, when Argon is introduced into the chamber, it will be ionized into 

positively charged atoms. The positive ion will subsequently accelerate toward the 

negative charge metal and hitting it with enough energy to remove the material. The 

materials that are removed will then settle on the support.  

 

 
 

Figure 2.6: Schematic drawing of a sputtering process (taken from ref. 56). 
 

 

2.3.3.2 Chemical Vapour Deposition (CVD) 

 

CVD is a chemical process often used in the semiconductor industry for the deposition of 

thin film of various materials. In this process the support is exposed to one or more 

volatile precursors which will react and/or decompose on the support surface to produce 

the desired deposit [70]. In this process, the precursor gases (often diluted in carrier 

gases) are delivered into the reaction chamber at ambient temperature. As they pass over 

or come into contact with a heated substrate, they react or decompose forming a solid 

phase and are deposited onto the support [71]. 
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In the case of Pd metal deposition, a chemical reaction associated with the generation of 

the palladium vapour will occur at high temperature. The vapour is then condensed on 

the support to obtain the dense palladium film. The deposition apparatus consists of a 

central reactor, hydrogen and metal chloride vapour delivery system and vacuum system 

as shown in figure 2.7. 

 

Palladium chloride vapour generated by heating the solid was carried by N2 stream 

towards the face of the support while a H2/N2 mixture is introduced from the other side 

(to control vacuum pressure). The deposition can then be started or stopped by adjusting 

the hydrogen feed into the reactor (more detailed information about CVD process can be 

found in reference 72). 

 

 
 

Figure 2.7: Schematic drawing of a chemical vapour deposition process (taken from ref. 

61). 
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2.3.3.3 Electroless Plating (ELP) 

 

Electroless plating is a method that involves deposition of metals on a catalytic surface 

from solution without an external source of current (Pd ions present in a solution are 

transfered to the surface of the support as palladium metal). Since it allows the metal ion 

concentration to cover all parts of the substrate, it deposits metal evenly along edges, 

inside holes, and over irregularly shaped objects which are often difficult to plate evenly 

with electroplating and other methods [73].  

 

The electroless plating technique comprises of three steps, namely sensitization, 

activation and finally the actual plating [74]. Sensitization step is performed to sensitize 

the support surface initially with tin ions, while activation step involves the displacement 

and replacement of tin ions on the support surface with Pd nuclei. These steps are crucial 

for the initiation of electroless plating of Pd on the membrane surface. Sensitization and 

activation processes have to be performed in a cyclic fashion for a number of times in 

order to obtain a fully activated membrane support. Figure 4.3 shows the schematic 

drawing of the electroless plating process. 

 

 

 

 

Figure 2.8: Schematic drawing of the electroless plating process. 
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Subsequently, the porous support that has been uniformly activated with Pd nuclei is then 

subjected to plating in a tank filled with plating solution for a set period of time (e.g. 30 

mins or 60 mins). The tank is placed/heated in a water bath for controlled/constant 

plating temperature. The plating step is also repeated a few times depending on the film 

thickness required.  

 

The rate of metal deposition is slower compared to other methods but, the main 

advantage of using this method is that the process is equally effective, inexpensive and 

far simpler to set-up compared to other methods. However, a major drawback with the 

existing electroless plating technique is the inability to control the rate of deposition of 

the metal onto the substrate. Therefore, advanced technique are required if this process is 

to be commercialized. 

 

 

2.3.4 Review of Pd-based Membrane Applications 

 

Collins and Way [75] presented a detailed fabrication procedure for Pd composite 

membrane. For the first time, the authors have indicated in their work, a factor termed as 

plating surface area. It is defined as the membrane surface area that is exposed to the 

quantity of plating solution used. The authors used asymmetric alumina supports with 

skin layer pore size varying from 10 nm to 200 nm. The bath composition constituted 

PdCl2 of about 5.4 g/l and eight successive depositions for one hour each were 

conducted. The Pd metal plated was at a rate of about 2 – 2.5 microns/hour under those 

conditions.  

 

The membrane thickness obtained varied from 11.4 – 20 microns on the composite 

supports resulting in a hydrogen permeability of about 3.23 x 10-9 mol.m/m2.s.Pa0.62. The 

H2/N2 selectivity of the membrane was about 380 at 823 K. Although the membrane has 

a high selectivity toward H2, it is at the expense of H2 flux due to its thickness. However, 

conventional electroless plating is known to have difficulties in fabricating thinner defect 

free Pd membranes. 
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Li et. al. [76] claimed fabrication of defect free Pd composites using osmosis technique 

for repairing the original membranes prepared using conventional plating method. The 

plating solution composition corresponded to about 4 g/l of tetraammonium palladium 

chloride, (NH4)4.PdCl2. Asymmetric porous supports with the skin layer pore size of 

about 160 nm were used for the fabrication. The original membrane produced using the 

conventional method was then repaired using osmosis process with the circulation of 3M 

NaCl solution through the bore of the membrane tube during electroless plating.  

 

The original deposition time was 7 hours which was extended to a total of 25 hours (18 

hours for osmosis) after the repairing process. The original H2/N2 selectivity of the 

membrane was about 10, which increased to a value of about 970 after repairing and the 

corresponding membrane thickness of 10.3 microns. Here, the authors have improved the 

membrane performance by repairing it osmosis after electroless plating to reduce the 

amount of pinholes. However, osmosis is a very slow process (which has shown by the 

authors) and it takes 18 hours to repair the membrane. At the same time, it will also 

indirectly increase the overall thickness of the deposited Pd layer 

 

Hollein et. al. [77] prepared Pd composite membranes using both stainless steel and 

alumina supports with the average skin layer pore size of about 500 nm and 100 nm 

respectively. The composition of the plating solution used was about 5 g/l of PdCl2. 

Defect free films have been synthesized by having a minimum film thickness of about 3 

microns. However, these membranes offered pinholes during performance at higher 

temperatures and a film thickness of about 7 microns or more is observed to provide a 

better separation factor (100 – 1000 for H2/N2 system). Although both membranes 

showed good performance, the membrane produced with electroless plating has to be 

well above 7 microns in order to obtain a satisfactory separation factor. The final 

membrane has a thickness of 14 microns. 
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Souleimanova et. al. [78] prepared dense Pd membranes using vycor glass supports with 

skin layer pore size of about 4 nm. The authors have concluded that the use of osmosis 

allows for the preparation of a thinner and dense Pd films in a shorter period of time. The 

plating time is shown by the authors to have reduced from 8 hours (for conventional 

plating) to 3.5 hours with the use of 9M sucrose solution. The authors argued that the 

metal penetrates much deeper into the pores of the support during electroless plating 

under osmosis compared to the conventional plating, thus enhancing interaction between 

film and support. 

 

The authors also successfully reduce the amount of plating time by coupling the osmosis 

technique with electroless plating. However, the use of salt will sometime present 

another set of problem during drying of the membrane. During osmosis, some salt will 

eventually occupied the pinholes of the membrane and it would have been very difficult 

to remove all the salt solution before drying it. Therefore, the trapped salt can cause 

additional stresses during the evaporation of water, which will eventually crack the Pd 

layer 

 

Mardilovch et. al. [79-80] studied the permeation characteristics of electroless plated Pd 

composite membranes prepared using 316 L sintered stainless steel supports with the 

average skin layer pore size of about 100, 200 and 500 nm respectively. Mercury 

intrusion experiments were conducted by the authors to evaluate the actual pore size 

distribution of these supports. It was observed that the maximum pore size of the 

supports were about 4 – 5 microns (100 nm skin layer), 6 – 7 microns (200 nm skin 

layer) and 11 – 12 microns (500 nm skin layer).  

 

From their research findings, the authors concluded that the thickness of the palladium 

film should be at least three times the maximum pore size of the supports in order to 

exhibit hydrogen permeation according to Sieverts law (suggesting the formation of a 

dense palladium film). However, no selectivity values have been presented with respect 

to permeation of other gases in these research findings.  
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Roa et. al. [81] have fabricated Pd-Cu composite membranes on different types of 

supports with the average skin layer pore size of about 200 nm (symmetric alumina), 50 

nm (asymmetric zirconia) and 5 nm (asymmetric alumina). The composition of PdCl2 

electroless bath was about 5.45 g/l and copper bath was about 6.225 g/l CuSO4.5H2O. 

The plating time was not provided by the authors. The authors obtain the following set of 

permeation characterstics: 

 

Membrane Support H2/N2 Selectivity 

27.6 µm thick Pd(72%)-Cu 200 nm symmetric alumina 14 at 723 K, 6.895 bar 

pressure differential 

11 µm thick Pd(80%)-Cu 200 nm symmetric alumina 270 at 723 K, 3.447 bar 

pressure differential 

12 µm thick Pd(91%)-Cu 50 nm asymmetric zirconia 1400 at 723 K, 3.447 bar 

pressure differential 

1.5 µm thick Pd(70%)-Cu 50 nm asymmetric zirconia 47 at 723 K, 3.447 bar 

pressure differential 

10 µm thick Pd film 5 nm asymmetric alumina Very high N2 flow rate, 

even at room temperature 

Table 2.8: Permeation results and membrane characteristics obtained by the authors 

[81]. 

 

The authors finally concluded that asymmetric supports with smaller skin layer pore sizes 

(between 5 – 50 nm) were ideal for deposition of thin palladium films that can offer 

membranes with good selectivity at high temperatures. 
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Huang et al. [82] fabricated Pd membranes on alumina supports with an average skin 

layer pore size of about 190 nm and 10 nm. The authors used a PdCl2 composition of 

0.297 g/l with a plating surface area factor of about 60 cm2/l and conducted the plating at 

333 K. The thickness of the Pd-Ag metal deposited after 8 hours is evaluated to be about 

20 microns. The H2/N2 separation factor is evaluated and varied from 30 – 178 for a 

temperature variation of about 473 – 616 K and pressure differential of about 0.8 – 2.5 

bar. The authors concluded that the membrane has some pinholes on the skin layer and 

thus, provided a low selectivity. 

 

D. A. P. Tanaka et al. [83] fabricated Pd-alloy membrane on a porous tube by 

simultaneous deposition of Pd and Ag (silver) using electroless plating. The authors used 

a 99.99% pure α-alumina tube with the average pore size of 150 nm and outer diameter 

of 2.0 mm and internal diameter of 1.6 mm. Electroless plating is then carried out (with 

plating solution containing a 9:1 ratio of Pd acetate to silver nitrate) and the solution 

stirred magnetically to homogenize the solution. The membrane produced is then heat 

treated with flowing hydrogen at 500 0C for 4 hours resulting in the formation of a Pd-Ag 

layer with a thickness of 5.12 µm. 

 

From the permeation tests and analysis conducted, the authors concluded that the use of 

palladium acetate in the plating solution instead of the more commonly used palladium 

chloride can eliminate tin contamination during the activation stage and simultaneously 

also enhance the plating rate of Pd. Besides that, careful control of the chemical 

composition of the plating solution against the given amount of Pd and Ag can realize the 

simultaneous deposition of the two metals. 
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P. M. Thoen et al. [84] fabricated Pd-Cu composite membrane using sequential 

electroless plating of Pd and Cu on a 20 nm pore sizes zirconia coated α-alumina tubes. 

The thickness of the Pd-Cu layer is reported to be about 1.3 µm consisting of 95% Pd and 

5% Cu. The thin membrane layer translate to a significant step change in mass transfer 

reduction and cost saving. This was done by modifying the chemical composition of the 

plating solution. The authors removed EDTA (Disodium salt hydrate) from the plating 

solution in order to reduce or eliminate carbon contamination during plating, and 

concluded that the membrane fabricated using the new plating solution exhibit higher 

hydrogen permeability than those fabricated using conventional plating solution 

containing EDTA. They have concluded that membrane fabricated using the new plating 

solution exhibit higher hydrogen permeability than those fabricated using conventional 

plating solution containing EDTA 

 

Yan Huang et al. [85] studied the effect of coating thin composite palladium membranes 

on supports with rough surfaces. The supports used were made of SS310L with an outer 

diameter of 10 mm and inner diameter of 6 mm with average top layer pore size of 500 

nm (asymmetric structure with finer pores on the outside surface). The supports are then 

coated with a porous layer of yttria-stabilized zirconia (YSZ) to serve as a layer to 

prevent against intermetallic diffusion. Three membranes were then produced using: 

• Magnetron sputtering – did not manage to produce a dense film 

• Atmospheric plasma spraying – produce a relatively thick film but contain 

pinholes 

• Electroless plating – produce the densest layer but a rather thick layer was 

required to reduce the defects 

 

The authors concluded that a defect free thin membrane layer can be produced by 

modifying the activation method, instead of using the conventional sensitization and 

activation pre-treatment of supports. The activation can be performed by using metal 

organic chemical vapour deposition of palladium. The resulting membrane showed a 

significantly higher selectivity but at the same time, it lowers the hydrogen permeability. 

However, the authors did point out that further researches are still required to confirm the 

effects of modification. 
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D. Pizzi et al. [86] received a Pd-Cu membrane (Cu 20 wt%) on an asymmetric porous 

ceramic support from NGK Insulators Ltd., Nagoya, Japan for their work. The support 

used is alumina with average top layer pore sizes of 100 nm and the Pd-Cu layer is 

reported to be about 2.5 µm thick. Pd was deposited by electroless plating onto the 

support, and then Ag (silver) is layered on by electroplating using the Pd layer as 

electrode. The membrane is then subjected to permeation tests at 300, 400 and 500 0C 

with trans-membrane pressure of between 0.2 – 6 bars using: 

• Pure H2 and N2 

• H2/N2 mixture 

• H2/CO mixture 

 

The membranes showed high selectivity for H2 with respect to N2 and CO, which 

indicate that the alloy layer formed is free from pin holes and is also defect free. The 

authors also reported that a significant decrease in permeability was observed when 

nitrogen mixture were used and concluded that was due to the non-negligible transport 

resistances in the gas phase. Furthermore, CO poisoning was also observed with feed gas 

containing 12% CO with the significant decrease in H2 permeability, 75% lower than the 

value observed using N2 mixture. However, the effect of poisoning was found to be 

reversible after flowing air at 400 0C. 
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3.0 Experimental Work 

 

Following the findings from literatures review, the experimental work for this study was 

structured to fill in the gap in the production of pure hydrogen for fuel cell application. 

The experiments were designed in order to study the effects of: 

 

• Type of Pd precursor used for plating (nitrate or chloride based) 

• Effect of composition of the plating solution 

• Effect of the number of plating deposition 

• Pore size of the ceramic support used 

 

After that, the subsequent set of experiments was designed in order to fabricate a dense 

pinhole free membrane using the advanced electroless plating (ELP) technique: 

 

• ELP under osmosis 

• ELP with water circulation 

• ELP under partial vacuum 

• ELP under total suction 

• ELP under partial suction 

 

These effects and results obtained are further discussed in chapter 4. 
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3.1 Apparatus/Experimental Set-up 

 

The experimental set-up use for this work consists of three major sections, which are: 

a) Feed delivery system 

b) Membrane reactor 

c) Analytical system 

 

The simplified schematic diagram of the whole experimental set-up is shown in figure 3.1. 

 

 

Figure 3.1: Simplified schematic diagram of the experimental set-up. 

 

3.1.1 Feed Delivery System 

 

The feed delivery system comprises a gas cylinder and the corresponding pressure 

regulator, both supplied by BOC Limited. The delivered pressure from the cylinder is kept 

constant and monitored using the pressure regulator. The pressure and flow rate of the 

feed gas entering the reactor is then fine-tuned using the needle valve. The differential 

pressures across the membrane are monitored by using the digital pressure gauge (by 

measuring the membrane shell inlet and membrane bore outlet pressure). 
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3.1.2 Membrane Reactor 

 

The membrane reactor used for this work was constructed in-house (technical department 

of the university) using stainless steel 316L and the schematic of the reactor layout is 

shown in figure 3.2 below.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.2: Schematic diagram of the membrane reactor without (left) and with heating 

(right) system. 

 

 

The reactor assembly consists of a stainless steel shell with two inlets and two outlets. The 

membrane is placed in the centre of the shell and sealed at both ends using graphite seal. 

The reactor is designed to seal and hold the membrane in place by compressing the 

graphite seal around the membrane when the top and bottom bolt of the reactor is 

tightened.  
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Thermocouples are then placed on strategic locations for the entire length of the exterior 

of the shell to provide readings of the reactor temperature. A heating tape is then used to 

wound around the shell and the shell assembly is subsequently insulated to minimise heat 

losses and to maintain a uniform temperature along the reactor. The heating tape is 

connected to an adjustable temperature controller, thermocouple selector and digital 

thermometer to provide the temperature reading for each section (see figure 3.3). 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.3: Picture showing the membrane reactor assembly. 
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3.1.3 Analytical System (Gas Chromatograph) 

 

The gas chromatograph (GC) is the single most important analytical equipment for his 

work and is used to identify and quantify the gas compositions going in and coming out 

from the membrane reactor. In general, chromatography is a method for the separation of a 

mixture of compounds into their separate individual components. By separating into 

components, it is therefore easier to identify and measure their relative amount. 

 

The GC used for analysing the feed and product for this work is a Varian, Inc. Model 

CP3800 (see figure 3.4).This GC model is capable of supporting up to four columns and 

two detectors. However, there are only two columns and a TCD detector installed on this 

GC. Both are packed columns and are connected to the TCD detector. The specifications 

for the columns are: 

• Molecular sieve 5A, 60-80 mesh, 2m x 1/8” x 2mm stainless steel column 

• Haysep Q, 80-100 mesh, 2m x 1/8” x 2mm stainless steel column 

 

The GC is operated with two gases, Argon or Helium gas (depending on the test sample) 

is used as carrier gas and a cylinder of air is used to activate (open) the sampling valves 

during injection. 

 

However, in order to verify the reproducibility of the result and to ensure that the result 

obtained were accurate, a second GC was utilised. The second GC (see figure 3.5) used is 

a compact Varian Micro-GC model 4900 (modular system, where the column and oven is 

built into a single unit) and is equipped with two capillary columns connected to the TCD 

detector: 

 

• Molecular sieve 5A, 20m (CP740129) 

• PoraPlot Q, 10 m (CP740124) 
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 Figure 3.4: Picture of the GC used including view of the two columns inside the 

GC oven. 
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Figure 3.5: Picture of the second GC used including the inside view showing the modular 

unit containing the oven and column. 
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3.2 Materials  

 

A list of materials used for this project includes gases, chemicals and ceramic supports. 

However, the majority of the project cost is on the palladium metal, which is why the 

main target of this work is to produce a thin but dense palladium membrane to reduce the 

cost of membrane fabrication. 

 

 

3.2.1 Gases 

 

All the gases used in this work are supplied by BOC-Gases, which comprised of the gas 

cylinders, their corresponding pressure regulators and delivery hoses. The gases used 

include: 

 

i. Argon Cylinder 

ii. Compressed Air Cylinder 

iii. Nitrogen Cylinder 

iv. Helium Cylinder 

v. Hydrogen Cylinder 

vi. Cylinders of Mixed Gas (containing Hydrogen, Nitrogen, Methane, Carbon 

Monoxide and Carbon Dioxide) 

 

 

3.2.2 Chemicals 

 

The chemicals used for this work include: 

 

i. Palladium Chloride (PdCl2) (99.9+ %) 

CAS 7647-10-1 

ii. EDTA Disodium Salt Dihydrate (99 %) 

C10H14N2O8Na2.2H2O 

CAS 6381-92-6 
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iii. Ammonia Solution SG 0.91 (25 %) 

NH3 

CAS 1336-21-6 

iv. Hydrochloric Acid 

HCl 

CAS 7647-01-0 

v. Stannous Chloride (99 %) 

SnCl2 

CAS 7772-99-8 

vi. Hydrazine Hydrate (35 %) 

H4N2.H2O 

CAS 10217-52-4 

 

3.2.3 Ceramic Support 

 

The ceramic supports used for the project are obtained from CTI SA (Ceramiques 

Techniques & Industrielles SA, France). 

 

 

3.2.3.1 Description 

 

All support used in this work have a base material of α-alumina with titania wash coat. 

Their average pore size ranges from 30, 80, 200, and 6000 nm respectively. The supports 

are in tubular configuration and the dimensions are as follows: 

 

Outer diameter: 10 mm 

Inner diameter: 7.6 mm 

Wall thickness: 1.2 mm 

Length: 37 mm (20 mm glazed at each end for membrane seal incorporation and handling 

purpose). 

 

An example of the support used is shown in figure 3.6. 
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Figure 3.6: Pictures showing the full support (top), glazed end (left) and internal support 

structure (right). 
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3.2.3.2 Support Characterization 

 

For characterization purpose, one of the supports of each pore size is broken into small 

pieces and analysed by scanning electron microscopy. The equipment used is the Leo 

model S430 scanning electron microscope and an example of the cross-section image 

taken is shown in figure 3.7. Images of the inner and outer surfaces are also shown. 

 

From all the images taken, it could be seen that the supports are asymmetric. An example 

would be the 30 nm pore size membrane, whereby the outer layer is 30 nm with a 

thickness of about 30 µm deposited on a layer of 6000 nm (figure 3.7). Therefore, it is 

concluded that the pore size quoted by the ceramic supplier are actually the pore size of 

the outer layer (titania wash coat layer) which is supported by the 6000 nm α-alumina 

layer. The only exception would be the 6000 nm pore size supports which symmetric. 

 

The SEM machine is also linked with electron dispersive X-ray (EDXA). Therefore it was 

utilised to determine the composition (elements) of each of the support surface. Results 

obtained for the 30nm support surface shows the presence of titania and also other 

different elements and is summarises in table 3.1. An example of the results generated by 

an EDXA analysis can be seen in appendix B. 

 

 

Element Composition (%) 

Al 5.0104 

Si 2.1938 

P 0.76 

Ca 0.3632 

Ti 91.673 

 

Table 3.1: EDXA analysis of the 30 nm support 
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Figure 3.7: SEM images for a 30 nm support (2000X magnification).
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3.3 Health and Safety 

 

Safety is paramount when working inside the lab with high pressure gas cylinders and 

chemicals, therefore COSHH and risk assessments were conducted for all the materials 

used for this project which included gases, chemicals, coated ceramic supports and the 

safe operation of membrane reactor. A brief description of the safety characteristics of 

some of the materials used is discussed. 

 

 

3.3.1 Gases 

 

Safety characteristics of Argon* 

• Inert under most conditions and it is colourless, odourless, tasteless and non-

toxic. In high concentration will cause asphyxiation by depleting/displacing 

oxygen. 

 

Safety characteristic of Compressed air* 

• Not classified as dangerous 

 

Safety characteristics of Nitrogen* 

• Non-toxic and non-reactive except at high temperature. In high concentration will 

cause asphyxiation. 

 

Safety characteristics of Helium* 

• Inert gas and in high concentration will cause asphyxiation, however due to its 

low density it will rise upward and dissipate rapidly. Therefore lessening the 

danger. 

 

Safety characteristics of Hydrogen* 

• Non-toxic, colourless, odourless, tasteless and lighter than air, so it will dissipate 

rapidly when released or leak. It’s highly flammable and has lower ignition 

energy than natural gas. Thus it can ignite easily and burns with an almost 

invisible flame. 
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Safety characteristics of Carbon Dioxide* 

• Non-flammable, colourless, odourless, tasteless and heavier than air, thus the risk 

of asphyxiation is higher. 

 

(*Safety information and data sheet about gases can be found on the supplier’s (BOC) 

website: http://www1.boc.com/uk/sds/) 

 

 

3.3.2 Chemicals 

 

i. Palladium Chloride† (PdCl2) (99.9+ %) 

Hazard Risk  Safety 

Very toxic • Toxic if swallowed 

• Cause burns 

• May cause 

sensitisation by skin 

contact 

• If contact with eye, 

rinse immediately with 

water and seek medical 

advice 

• Wear suitable PPE’s 

(personal protective 

equipment) 

 

ii. EDTA Disodium Salt Dihydrate† (99 %) 

Hazard Risk  Safety 

Irritant • Irritating to eyes and 

skin 

• If contact with eye, 

rinse immediately with 

water and seek medical 

advice 

• Wear suitable PPE’s 
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iii. Ammonia Solution† SG 0.91 (25 %) 

Hazard Risk  Safety 

Corrosive and 

dangerous for 

the environment 

• Cause burns 

• Very toxic to aquatic 

organisms 

• If contact with eye, 

rinse immediately with 

water and seek medical 

advice 

• Wear suitable PPE’s 

• Avoid release to 

environment 

 

iv. Hydrochloric Acid† 

Hazard Risk  Safety 

Corrosive • Cause burns 

• Irritating to 

respiratory system 

• If contact with eye, 

rinse immediately with 

water and seek medical 

advice 

• Wear suitable PPE’s 

 

v. Stannous Chloride† (99 %) 

Hazard Risk  Safety 

Corrosive • Harmful if swallowed 

• Cause burns 

• May cause 

sensitisation by skin 

contact 

• If contact with eye, 

rinse immediately with 

water and seek medical 

advice 

• Wear suitable PPE’s 
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vi. Hydrazine Hydrate† (35 %) 

Hazard Risk  Safety 

Toxic and 

dangerous for 

the environment 

• May cause cancer 

• Toxic by inhalation, 

in contact with skin or 

swallowed 

• May cause 

sensitisation by skin 

contact 

• Very toxic to aquatic 

organisms 

• Avoid exposure and 

obtain special 

instructions before use 

• In case of accident or 

feeling unwell, seek 

medical advice 

immediately 

• Avoid release to 

environment 

• Material and container 

must be disposed of as 

hazardous waste 

 

(†
Safety information’s are obtained from the supplier’s website: http://www.acros.com by 

entering the CAS number in to the search function) 
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3.4 Membrane Fabrication 

 

Electroless plating (ELP) is the method chosen for this work for membrane fabrication 

and it is also one of the most commonly used methods. As mentioned earlier, several 

methods have been proposed and developed for the preparation of Palladium (Pd) based 

membranes, including magnetron sputtering, electroless plating and chemical vapour 

deposition.  

 

However, in general the ELP technique is by far the simplest and more effective method 

of membrane fabrication. In comparison with other methods, a number of advantages 

exist for electroless plating technique such as the uniformity of deposits on complex 

shapes, adherence of deposits, low cost and very simple equipment set-up. One of the 

most important advantages of this technique is its ability to handle huge surface areas for 

plating; therefore the process is easy to scale up for commercialisation purpose. 

 

However, the main reason for using ELP method within the university is due to its 

equally effective and relatively inexpensive process compared to other preparation 

methods; whereby the equipment or plating setups required are not complex compared to 

other methods. These features are very attractive for the development of the experimental 

setup, equipments and expertise (how to produce/coat other metallic layer using 

electroless plating) in the metallic coating/plating field within the university’s Centre for 

Process Integration and Membrane Technology (CPIMT). 
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3.4.1 Conventional Electroless Plating Technique 

 

The conventional electroless plating technique comprises two main stages; namely 

sensitisation plus activation, and then metal deposition. 

 

a) Sensitisation and Activation 

 

During conventional ELP process, the initial step is to seed the ceramic support surface 

with Pd nuclei, which will then initiate the autocatalytic reaction of the palladium 

complex in the subsequent plating step. Therefore, a surface activation process is carried 

out, consisting of successive immersion in an acidic SnCl2 (stannous chloride) bath 

(sensitizing) followed by an acidic Pd bath. After immersing the support in the SnCl2 

bath, a gentle rinsing with deionised water is then performed. During this rinsing step, 

partial hydrolysis of Sn+2 takes place to form little (poorly) soluble product 

Sn(OH)1.5Cl0.5 and other more complicated hydroxy-chlorides [1].  

 

Tin hydroxy-chlorides is strongly attached to the surface of the support as a layer with a 

thickness of a thousandth-tenth of a micron. The support is then immersed in the acidic 

Pd bath, and excess Sn+2 is then displaced and replaced by Pd+2. After that, a gentle 

rinsing with deionised water is performed to remove any excess Pd+2 that has not 

attached to the surface of the support.  

 

The distribution of Pd nuclei during this seeding process has to be dense and uniform. To 

achieve this goal, the two step immersion sequence in SnCl2 and Pd solutions is generally 

repeated 4 – 8 times, depending on the intensity of the activation. A perfectly activated 

layer has a smooth surface with a uniform dark brown colour.  
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The thickness of the activated layer is observed to be about 1.5 – 2 microns after about 

10 cycles. A thicker activated layer results in a higher density of Pd nuclei on the support 

surface, but will lower the adhesion of further additional Pd layers during plating to the 

support surface. In many cases, the thickness of the activated layer will depend on the 

composition of the activation solution and the amount of repeated cycles. Figure 3.8 

shows the schematic diagram of the simplified plating procedure and figure 3.9 shows 

the picture showing the different stages of the support during plating process. 

 

b) Metal deposition 

 

The pre-seeded Pd nuclei from activation stage will then initiate the autocatalytic process 

for the Pd metal deposition. The metal plating step is carried out at 60 oC in a plating 

bath containing a Pd precursor as palladium source, hydrazine as reducer and EDTA 

(disodium salt dehydrate) as stabilising agent for a set amount of time (exp. half an hour 

or 1 hour coating). After immersion in the plating solution, a gentle rinsing with 

deionized water is then performed to remove any Pd metals that has not attached to the 

surface before the next plating.  

 

Simultaneously, a new plating solution is prepared for the second plating step. New 

solutions are prepared for each coating due to the mass transfer resistance for the 

deposition, as over time the amount of Pd metal available in the solution will be the same 

as the amount of Pd deposited on the ceramic support. Therefore, no further deposition 

will occur. The thickness and density of the membrane produced will depend on the 

amount of Pd used in the solution and the amount of plating steps used. This can be 

measured by using gas permeation test (for density) and SEM analysis (for thickness). 
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Figure 3.8: Schematic diagram showing the simplified electroless plating procedure.  
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Figure 3.9: Picture showing the different stages of the ceramic support during plating 

process. 
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3.4.2 Advanced Electroless Plating Technique 

 

As mentioned in previous subchapter 2.3.3.3, there are some drawbacks associated with 

the original ELP technique. These drawbacks are the metal deposition rate is slower 

compared to other techniques and most importantly, the inability to control the 

deposition rate as well. However, it is still the most cost effective and by far the simplest 

technique compare to sputtering and vapour deposition. Therefore, the technique has to 

be modified in order to be a feasible membrane fabrication method. 

 

Initial experimental result has also showed the evidence of these drawbacks where the 

original technique would require 16 hours to produce a Pd membrane, while the modified 

method would only require half that amount of time and Pd metal used. There were also 

signs of Pd metal peeling off from the membrane layer, which in turn indicates that the 

reaction is rate is now too high. These issues were addressed by further modification to 

the technique and coupling it with a peristaltic pump to generate a slight pressure drop. 

The reasons and benefits of using this advanced technique are further discussed in the 

detail in chapter 4. 

 

 

3.5 References: 

 

1. PETER P. MARDILOVICH, YING SHE, YI HUA MA, MIN-HON REI, 2004. 

Defect-Free Palladium Membranes on Porous Stainless-Steel Support, AIChE 

Journal, 44 (2), pg. 310-322. 
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4.0 Results 

 

4.1 Initial Investigation 

 

A significant part of this research project involves experimental work and analysis of 

results, therefore the procedure for coating, composition of bath solution and the type of 

support used to fabricate the membrane is extremely crucial. As a result, the initial 

approach to this work is to identify the suitable type of ceramic support and also to 

determine the plating procedure.  

 

Due to the high cost of Pd, all the membranes fabricated at this stage were of shorter 

length (of around 6 cm long). The reason for doing this is to reduce the amount of Pd used 

for coating, thus reducing the cost. Besides that, once the coating process and procedure 

have been determined and verified, it can then be scaled-up. At the same time, it was 

useful to determine if the process is feasible before scaling-up to a longer membrane (37 

cm long). 

 

For the initial investigation, the membrane leak tests (gas permeation test) were conducted 

using Helium (He) and Nitrogen (N2) to examine if there are any pinholes present on the 

membrane layer. The stainless steel reactor was originally constructed for use with the 

long ceramic support (which is 37 cm). Therefore, for the purpose of leak tests, a new 

permeation cell has been designed for use with shorter membrane length and at room 

temperature. Figure 4.1 shows the picture of the Perspex cell used for leak tests. The 

Perspex cell is pressure rated to 0.5 bars. 
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Figure 4.1: Picture of the perspex permeator cell. 

 

 

4.1.1 Preliminary Experimental Work 

 

In the early stage of this work, 6000 nm supports were used for coatings as these are 

readily available in the lab at the time. A brief description of the experiment conducted is 

as follow: 

 

• A 6000 nm support were prepared for the experiment  

• The electroless plating are conducted using nitrate precursor (tetraamonium 

palladium nitrate 10% in water) 

• The plating bath composition used (table 6.1) is taken from Keuler et. al. [1999] 

• The supports are coated only once in the solution for 4 hours 
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From the initial observation, the support does not show a metallic surface finish which 

was the expected indication for successful deposition of Pd metal. In addition, the 

performance of the membrane is extremely poor based on the leak test results obtained 

(the presence of pinholes due to the high flow rate of N2 gas passing through the 

membrane). Therefore, results from the experiment have led to the following observations: 

 

a) The plating time (dipping time) and the amount of plating solution used need to be 

varied and studied in order to obtain a better surface finish. 

b) A different Pd precursor which can offer a higher concentration has to be 

investigated. 

c) Developing a suitable plating procedure.  

d) Varying the pore size of the support used, as the 6000 nm pore size might be too 

high. 

 

With the above observations, the next phase of the experimental work was strictly devoted 

to the successful fabrication of a membrane with uniform metallic surface finish. In order 

to do that, a method developed by Collins and Way [1993] was adapted and applied. The 

reason in doing so is that the authors gave detailed information of the plating procedure 

with respect to support cleaning, plating process, composition of the solution used and 

membrane drying process. 

 

Therefore, four sets of systematic experiments were then carefully executed for the 

purpose of understanding the whole plating process, which includes: 

 

1. Type of Pd precursor used for plating 

2. Effect of composition of the plating solution 

3. Effect of the number of plating deposition 

4. Pore size of the ceramic support used 
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4.1.1.1 Type of Pd Precursor Used 

 

In order to study the effect of using different Pd precursors, two plating compositions were 

taken from literature for experimentation (table 4.1). The plating procedure used is briefly 

described as follows: 

 

• Two 6000 nm supports were used for comparison purposes 

• One of the supports is electroless plated using nitrate precursor while the second 

uses chloride precursor. 

• Both are coated for one hour for 16 times and new solutions are prepared for each 

coating. 

• The composition of the plating bath used is shown in table 4.1: 

 

Nitrate Precursor [Keuler et. al. 1999] Chloride Precursor [Collins & Way 1993] 

27.5 g of 10 % (NH3)4Pd(NO3)2 solution 5.4 g PdCl2 

200 ml of 25 % ammonia solution 440 ml of 25 % ammonia solution 

137 g of Na2EDTA 70 g Na2EDTA 

345 ml of 0.02 M N2H4  10 ml of 1 M N2H4 

100 ml of Buffer (pH = 11)  

 

Table 4.1: Plating bath composition per litre of solution for nitrate and chloride 

precursor. 

 

The membranes obtained with both the nitrate and chloride precursors are shown in Figure 

4.2 and 4.3 respectively. It can be observed from those figures that the palladium 

deposition has been much better with the chloride precursor as it provides a more silvery 

finish (indicating the presence of Pd metal) as opposed to the brown finish provided by the 

nitrate precursor. The reason stems from the fact that the chloride bath offers a higher Pd 

concentration in the plating solution (0.6 g of Pd metal from 1 g of PdCl2) than the nitrate 

precursor (0.035 g of Pd per 1 g of solution used), thus offering a significant mass transfer 

of Pd to the membrane surface. 
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The palladium film thickness is estimated to be about 8.5 microns (µm) for nitrate 

precursor and 12.0 microns for the chloride precursor based on the estimated weight gain 

measurements (sample of weight gain calculation can be seen in appendix D). The 

variation in the metal film thickness also confirms that a higher solution concentration of 

Pd allows for a thicker and denser film of Pd to be deposited. 

 

 

 

 

 

 

 

 

 

Figure 4.2: Membrane prepared using the nitrate precursor. 

 

 

 

 

 

 

 

 

 

Figure 4.3: Membrane prepared using the chloride precursor. 
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Although the chloride precursor provides the metallic surface finish required, the surface 

finish is non-uniform and rough. This is due to the very high reaction rate during plating 

which causes the Pd metal to be deposited at a very high rate. Figure 4.4 shows the He gas 

leak test results for the support before coating and after coating for the membrane prepared 

using chloride precursor. The result shows that the He gas fluxes through the Pd deposited 

composite (membrane) are much lower than the support due to the successful deposition 

of a thin Pd film on the support surface.  

 

Figure 4.4: Helium fluxes for the support and membrane with average pressure across 

membrane. 

 

The main observations from these membranes are as follows: 

� The membrane produced using the chloride precursor shows a metallic surface 

finish while the membrane produced using the nitrate precursor does not.  

� The number of steps required for the nitrate precursor to develop a Pd membrane 

would be significantly higher due to its lower Pd metal concentration in solution. 

� The surface texture of the chloride based membrane is rough and has pinholes. 

This is due to the high reaction rate of the solution; therefore modification to the 

solution composition is required. 

� The α-alumina support is suitable to be used for Pd deposition. 
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Hence, the next stage of the experimental work was focused on producing a membrane 

with a smoother surface finish and with little or no pinholes by using the chloride 

precursor but with a modified composition to control the rate of deposition. 

 

 

4.1.1.2 Composition of the Plating Solution 

 

From the previous result obtained, it is known that the reaction rate was too fast and the 

glass cylinder used for plating is also coated with some Pd metal. Therefore, the 

composition of the bath solution need to be modified. The amount of PdCl2 and hydrazine 

used is then halved for this set of test. 

 

 

 

 
 
 
 
 
 
 
 

Table 4.2: New plating bath composition (using chloride precursor). 
 

The plating procedure used is exactly the same as previous test whereby it was also coated 

16 times for one hour each coat. The surface of the membrane is now smoother (see figure 

4.5) and the reaction rate is more controllable as compared to the previous membrane, and 

the thickness is estimated to be at 12.3 microns.  

 

This experimental set has resulted in the understanding of the effect on changing the 

compositions of solution on the rate of deposition, which will eventually influence the 

membrane thickness and surface texture. The leak test result obtained is then used for 

further comparison with the next set of experiment planned, which entail the effect of 

number of plating steps. 

 

Chloride Precursor (taken from Collins & Way 

[1993] and modified) 

2.7 g PdCl2 

440 ml of 25 % ammonia solution 

70 g Na2EDTA 

5 ml of 1 M N2H4 
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Figure 4.5: Picture showing the membrane produced using the new plating bath 

composition. 

 

 

4.1.1.3 Numbers of Plating Steps 

 

The main objective for this set of experiment is to confirm the impact of the numbers of 

depositions on the membrane performance. Thus, another membrane was produced using 

the same method as the membrane produced previously (subchapter 4.1.1.2) but with a 

lower amount of steps (9 plating steps) for comparison. 

 

The Pd film thickness estimated from the weight gain measurements is about 8.3 microns 

for 9 plating steps compared to 12.3 microns for the 16 plating steps (see page 139 & 176 

for thickness calculation estimated by weight gained and the associate accuracy/error with 

this process).  

 

Figure 4.6 presents the helium leak tests of the membranes prepared using nine and 16 

successive one hour plating steps. It can be observed at the pressure of 20,000 Pa, the 

helium permeance reduced from a value of 9.1 x 10-7 mol/m2.s.Pa to 7.6 x 10-7 

mol/m2.s.Pa. This corresponds to a reduction of 16.4 % for an additional seven plating 

steps. 

Surface is smoother  
(Compared to fig. 4.3) 
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Figure 4.6: Helium permeances of palladium membranes prepared using 9 and 16 

successive plating steps. 

 

The result shows that higher number of plating steps is required to improve the 

performance (reducing the amount of pinholes present). However, one of the main 

objectives of this project is to reduce the thickness of the Pd film thus reducing the amount 

of Pd use. Hence, more experimental work was performed in order to evaluate the 

underlying phenomena which can reduce the pinholes successfully. 
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4.1.1.4 Pore Sizes of Support 

 

Since by increasing the amount of plating steps does not necessary produce a denser 

membrane, it was necessary and important to verify the posibility that a smaller pore size 

support would require a lower number of plating steps to produce a dense membrane film.  

 

Beside that, the new ceramic supports with the pore size of 30, 80, and 200 nm were now 

available. Hence, a support with the lowest pore size of 30 nm and support with the 

highest pore size of 6000 nm were used for plating. The plating procedure was maintained 

so that the two new membranes produced could be compared to the membrane produced 

in subchapter 4.1.1.2 (6000 nm – 16 plating steps). A total of three membranes are used 

for comparison and a brief description of these is presented in table 4.3: 

 

Membrane Pore size of support Number of plating steps 

1 6000 nm 16 

2 6000 nm 32 

3 30 nm 16 

 

Table 4.3: Membranes used for comparison purpose. 
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Figure 4.7: Helium leak tests of the 3 membranes compared with differential pressure 

across membrane. 

 

Figure 4.7 shows the helium gas leak test for the three membranes for comparison. 

Although it uses the same or less number of plating steps, it can be seen clearly that the He 

leak for the 30 nm support membrane is lower than that both of the 6000 nm support 

membranes. Therefore, it can be concluded that the 6000 nm support pore size is definitely 

not suitable for the development of cost effective palladium membranes as more Pd metal 

is required to coat the bigger pores.  

 

This is because in order to form a dense film on the 6000 nm support, the large pores have 

to be filled first and this entails large penetration of palladium in the support matrix. Even 

then, densification cannot be achieved at the similar number of coatings as the 30 nm pore 

size support. 
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4.2 Pinhole Reduction Methodologies 

 

As discussed in the previous subchapter, from all the preliminary work conducted, the 

most important investigation still un-attempted is modifying the ELP method. It would be 

more beneficial to attempt to develop/optimise the current process as it has the potential 

for improvement since other researchers in this area has tried the same approach and 

managed to obtain some good result (see literature review in subchapter 2.3.4). Thus, one 

idea that came to mind involves the application of different types of pressures (suction, 

osmosis, etc.) under different conditions during plating.  

 

This is because while ELP occurs on the membrane surface, the suction pressures will be 

applied along the bore side of the ceramic support. This will then create a pressure 

difference between the bore and tube side of the support. The pressure in the bore side will 

be slightly lower than the tube side and this will eventually encourage mass transfer of the 

solution carrying the Pd metal to travel from the solution to the support and eventually 

depositing the metal on the support surface as it travels across the support wall. 

 

A set of advanced experiments were then designed and executed by utilising the 

equipment and materials already available in the lab (such as the peristaltic pump). Figure 

4.8 shows a picture of the peristaltic pump in use. All the membrane produced in this 

section will then be compared against the membrane produced using the conventional 

method in subchapter 4.1.1.2. 
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4.2.1 Electroless Plating under Osmosis (ELP under osmosis) 

 

The objective of these of experiments is to obtain a dense pinhole free membrane using 

electroless plating in conjunction with osmosis. The underlying principle of osmosis 

involves the circulation of salt solution through the bore side of the tube to allow the 

transport of water from the pinholes on the external surface of the support thus exposing 

the surface pinholes to reaction solution for densification. The exact procedure is as 

follows: 

 

a. The membrane is initially subjected to eight depositions without osmosis using the 

procedure presented earlier (see subchapter 4.1.1.2). 

b. Subsequently, eight more successive depositions are performed by circulating 3M 

NaCl solution through the bore side of the membrane tube. Total of 16 depositions. 

c. The membranes are thoroughly washed in hot water after the final plating step. 

d. The membranes are finally dried in the oven at 110 oC overnight. 

 

The palladium composite membrane prepared using ELP under osmosis conditions is 

presented in figure 4.9. It can be observed that the membrane surface is rough with further 

membrane peeling effects. This is attributed by the fact that salt eventually occupied the 

pinholes of the membrane and it would have been very difficult to remove the salt solution 

before drying. Consequently, this caused additional stresses during the evaporation of 

water and the peeling of the membrane.  

 

Given that the membrane clearly shows the peeling effects and does not provide the 

surface finish as required, a further gas leak test was not considered necessary and was 

therefore not carried out.  
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Figure 4.8: Experimental set-up for electroless plating under osmosis. 

 

 

 

 

Figure 4.9: Membrane produced using ELP under osmosis. 
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4.2.2 Electroless Plating with Water Circulation (ELP with water circulation) 

 

The hypothesis for water circulation comes from the presumption that the circulation of 

water would provide agitation on the bore side of the membrane, thereby increasing the 

ionic concentration gradient (concentration difference between both sides) across the 

membrane wall. This can then assist the reaction rate for densification. The experimental 

set up for the membrane fabrication is similar to that presented in subchapter 6.3.1.  The 

procedures for membrane fabrication using electroless plating coupled with water 

circulation are presented as follows: 

 

a. The initial deposition of a membrane with conventional electroless plating for 

eight successive plating steps using the procedure summarised earlier. 

b. The membrane is then subjected to electroless plating under similar bath and 

operating conditions for eight more consecutive one hour plating steps with water 

circulated through the bore of the tube at a flow rate of about 30 ml/min. A total of 

16 depositions were carried out. 

c. The final composite membrane obtained is then cleaned and dried. The membrane 

gas leak tests are then measured in a permeation cell. 

 

The composite membrane obtained after ELP with water circulation is presented in figure 

4.10. The thickness of the Pd film estimated from the weight gain measurement is about 

11.6 microns. The membrane surface appears to be silvery, which indicates successful 

deposition of Pd. However, the membrane surface is rough. Leak test results obtained is 

shown in figure 4.11. 

 

 

Figure 4.10: Membrane produced using ELP with water circulation. 
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Figure 4.11: Graph showing the Helium leak test for the membrane produced using ELP 

with water circulation in comparison with membrane produced using conventional ELP 

process. 

 

Figure 4.11 shows the helium leak for the membrane prepared with and without water 

circulation technique. The membrane without water circulation used for comparison 

purpose was the membrane produced previously in subchapter 4.1.1.2. From the plot, it is 

observed that the water circulation technique did not perform well, as the He gas leak is 

higher. Furthermore, the rate of Pd metal deposition is also lower in comparison to the 

membrane produced in subchapter 4.1.1.2. In other words, the water circulation technique 

has not solved the problem of densifying the membrane. Instead, the greater turbulence 

possibly hinders or obstructs the deposition of Pd film. Hence, it is also considered as a 

non-viable technique. 
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4.2.3 Electroless Plating under Partial Vacuum 

 

The main objective of this test is to successfully fabricate a dense membrane using the 

partial vacuum application during ELP. The partial vacuum application involves the 

suction of air from the bore of the membrane (the tube is exposed to atmosphere via a 

small aperture using a T joint, as shown in figure 4.12). The application of partial vacuum 

was planned with the hypothesis that, partial vacuum can provide additional suction 

effects which can then pull the reaction solution into the membrane pinholes. It involves 

the bottom end of the T joint connected to the membrane bore and one of the side ends 

connected to the peristaltic pump, while the other connected to an aperture for controlled 

suction of air. 

 

The experimental procedure for the fabrication is presented as follows: 

 

a. The initial deposition of a membrane with conventional ELP for eight successive 

plating steps and then eight more plating steps under partial vacuum application 

(with a suction flow rate of 30 ml/min of air). 

b. The final composite membrane obtained is then cleaned and dried. The membrane 

gas permeances are then measured in a permeation cell. 

 

The Pd composite membrane prepared from this method is presented in figure 4.13. From 

visual observation, the membrane surface is found to be rough and did not display the 

silvery finish, which indicates the lack of deposited Pd metal. Therefore, in this case there 

was no formation of Pd film on the support. Hence, gas leak test was not carried out as it 

was considered unnecessary since there is no formation of Pd film and the membrane will 

have significant amount of pinholes. 

 

 

 

 

 

 



Chapter 4 – Results  
 

Chee Chong, CHEN                                                                                                  - 112 - 
 

 

 

Figure 4.12: Experimental set-up for ELP under partial vacuum. 

 

 

 

 

Figure 4.13: Membrane produced using ELP under partial vacuum. 
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4.2.4 Electroless Plating under Total Suction 

 

The experimental set-up for this section involves the blocking of one end of the ceramic 

support while the other end is connected to the peristaltic pump. The hypothesis involved 

is the same as other modified methods; the suction created by the pump will drive the 

reaction solution through the membrane wall and fill up the pores with Pd metal in the 

process, thus reducing the amount of pinholes. The steps involved in the total suction 

technique are as follows: 

 

a. The initial deposition of a membrane with conventional electroless plating for eight 

successive plating steps. 

b. Then subjected to eight more plating steps with the top end of the membrane 

connected to the peristaltic pump and the flow rate set to 10 ml/min. The bottom 

end of the membrane is blocked using a plastic cap. 

c. The final composite membrane obtained is then cleaned and dried. The membrane 

gas leak is then measured in a permeation cell. 

 

The membrane obtained is shown in figure 4.14. The silvery appearance on the support 

surface conveys the successful deposition of Pd layer. The thickness of the palladium film 

evaluated from the estimated weight gain calculations to be 4 microns, which is extremely 

low compared to previous membranes. The surface deposition is also observed to be not as 

rough as previous membranes. 

 

 

 

Figure 4.14: Membrane produced using ELP under total suction. 
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Figure 4.15 compares the He gas leak of the membrane fabricated under total suction with 

the conventional plated membrane, and it can be observed that the helium leak is higher 

than the conventional membrane. This indicates that there are pinholes still present. 
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Figure 4.15: Graph showing the Helium gas permeance for the membrane produced using 

ELP under total suction in comparison with membrane produced using conventional ELP 

process. 

 

The modified method did not provide the desired result due to the removal or peeling of 

the deposited Pd observed during plating. The pressure generated from suction not only 

acted on the membrane pinhole, but also on the stable Pd film and meta-stable Pd film 

forming on the surface. The effect of pressures has lead to the removal of palladium from 

the surface due to interfacial stresses.  
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The setback associated with the concept of total suction is the ability to provide a suction 

flow rate that is suitable during the course of deposition. During the initial stage of 

deposition, higher suction flow rates can encourage more deposition when there are still 

many uncoated pores available. Subsequently, the suction flow rate has to be reduced in 

order to relieve the stresses applied across the deposited palladium film for the 

densification process to work properly. 

 

Therefore, it is felt that some improvement can still be sought in this technique by 

reducing the pressure effect on the membrane layer (by using partial suction instead). By 

doing so, the suction force applied will be split between the surface pores and membrane 

bore. The interfacial stresses would therefore not be too significant at later stages when Pd 

film is formed. Thus, the final set of test is conducted to verify this hypothesis. 

 

 

4.2.5 Electroless Plating under Partial Suction 

 

The experimental set-up here is exactly the same as total suction. The only difference this 

time is the bottom end of the bore side of the support tube is not completely blocked. A 

small apparture is made through the plastic cap using a needle. The procedure used is as 

follow: 

 

a. The initial deposition with conventional ELP for eight successive plating steps. 

b. Then subjected to eight more plating steps under partial suction with the flow rate 

of the peristaltic pump set to 30 ml/min. 

c. The final composite membrane obtained is then cleaned and dried. The membrane 

gas permeances are then measured in a permeation cell. 

 

Figure 4.16 shows the membrane under partial suction. The surface finish of the 

membrane is silvery (which conveys the successful deposition of Pd layer) and the texture 

of the surface is smoother than previously produced membranes. The thickness of the Pd 

film is estimated to be 16 microns. 
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Figure 4.16: Membrane produced using ELP under partial suction. 

 

The result obtained from the He gas leak test of the membrane is shown in figure 4.17. It 

can be observed that the permeances is at a much lower value of 10-9 mol/m2.s.Pa as 

opposed to the value of about 10-7 mol/m2.s.Pa for the conventional fabricated membrane. 
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Figure 4.17: Graph showing the Helium gas leak for the membrane produced using ELP 

under partial suction in comparison with membrane produced using conventional ELP 

process. 
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However, during plating some Pd metal was observed to have fallen off from the 

membrane surface toward the fourth plating step under partial suction (plating step 10). 

This has indicated that the pressure acting on the membrane surface after the 9th step might 

be too high. These results obtained are extremely encouraging and it shows that the theory 

of modifying the conventional method does work. The following discussions were 

generated from the results obtained: 

 

a. The partial suction allows the natural distribution of suction forces along the 

surface pinholes and through the bore side of the membrane simultaneously. In 

other words, additional interfacial stresses on the deposited layer are eliminated. 

 

b. The circulation of the solution enhances the reaction rate and increases the rate of 

palladium deposition. 

 

c. The Pd peeling effect at later stages during plating is also likely due to the high 

deposition rate provided by the partial suction whereby the Pd metal are being 

quickly formed and do not have sufficient time to adhere to the surface. 

 

d. As each deposition leads to membrane densification, the suction effect has to be 

lowered gradually by reducing the pump flow rate in order to reduce the stresses 

induced. 

 

e. The partial suction technique might have eliminated the entrapped air in the 

pinholes which is not possible with any other methods other than total suction 

technique. However, in total suction method there is a possibility of re-introducing 

pinholes due to subsequent higher vacuum application. Partial suction involves 

distribution of vacuum effects on the membrane surface and bore, thus bringing 

wider application of suction force. 
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f. The partial suction technique involves the subtle distribution of vacuum in the 

membrane bore as opposed to the gross distribution of vacuum with total suction 

technique. Besides that, the method used still has sufficient room for process 

optimisation by varying the pump flow rates. 

 

 

4.3 Further Investigation 

 

This stage of the project has identified the suitable fabrication procedure, composition of 

plating solution, and finally a suitable pore size of supports. Subsequent stages involve the 

scale up of the fabrication of membranes. In previous sub-chapters, membranes having the 

length of 6 cm while the length of the ceramic support used were 8 cm (1 cm from each 

ends are not plated for handling purposes). However, the actual length of the ceramic 

support obtained from the manufacturer is 37 cm, therefore the aim is to be able to 

produce a Pd membrane of this length.  

 

Besides that, the membranes produced previously were not tested with H2 gas. This is due 

to the fact that H2 embrittlement will occur on Pd membranes at room temperature. The 

shorter membranes produced could not be tested at temperature. Therefore, in order to test 

the membrane at high temperature, the stainless steel reactor has to be utilised since it was 

designed to only accommodate the full length support. Producing a long Pd membrane 

would enable tests for H2 permeability and selectivity to be carried out at high 

temperature. 

 

Furthermore, it will be interesting if the method used to produce the shorter membrane can 

be utilised for scaling-up. Besides that, it will also be attractive for future 

commercialization purpose as more gas can be separated (higher output) with the large 

surface area of the longer membranes. 
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4.3.1 Experimental Work for 368 mm Long Membrane 

 

From previous investigations, it is known that smaller pore size supports are more suitable 

for the separation process and henceforth the support used will be 30 nm. The main 

objective of this stage is to validate that the plating process finalised in previous chapter is 

still applicable for scaling up purposes. Hence, the first long membrane was produced 

using ELP with partial suction technique mentioned in subchapter 4.2.5 with the same 

flow rate of 30ml\min. Figure 4.20 shows the set-ups for the plating of the longer support. 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.18: Picture showing the set-up for ELP with partial suction. 

 

After cleaning and drying, the membrane is then subjected to permeation test at 400 0C 

using N2 and H2 gas. The result obtained from the gas permeability test was then 

summarised in table 4.4, figure 4.19 and 4.20.  
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Pressure 

Differential 

(bar) 

Hydrogen Gas Nitrogen Gas 

Flow rate 

(ml\min) 

Permeance 

(mol\m2.s.Pa) 

Flow rate 

(ml\min) 

Permeance 

(mol\m2.s.Pa) 

0.1 720.5 4.60E-06 25.7 1.6E-07 

0.2 1390.0 4.68E-06 56.1 1.8E-07 

0.25 1581.1 4.04E-06 86.9 1.8E-07 

0.3 1882.8 4.01E-06 120.0 1.9E-07 

0.5 3599.4 4.60E-06 155.0 2.0E-07 

 

Table 4.4: Membrane permeation result at 400 
0
C. 
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Figure 4.19: Graph showing flow rate of H2 and N2 gas at 400 
0
C with the pressure 

differential across membrane. 
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Visual inspection of the membrane produced showed a uniform coating of Pd metal for the 

entire length and the thickness estimated from weight gain measurements is about 20.1 

microns. However, the surface is not as smooth as the shorter membrane produced 

previously, indicating a possibility of the membrane surface having high amount of 

pinholes. This was then reflected in the permeation results obtained, where N2 gas was 

present in the product stream. 

 

Nevertheless, from figure 4.19 it can be seen that the flow rate of H2 gas for the similar 

pressure differential is significantly higher compared to N2 gas. This is due to the 

properties of Pd metal, as once it is activated at temperature, only H2 gas is allowed to 

pass through the membrane while N2 gas can only pass through the pinholes or through 

the leaks from the membrane seal.  
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Figure 4.20: Graph showing the permeance of H2 and N2 gas at 400 
0
C with pressure 

differential across membrane. 

 

The H2/N2 selectivity of the membrane is low, only 23 at 0.5 bars. Therefore, from the 

understandings gained from previous work on shorter membranes, the next step is to 

modify the fabrication method further in order to make it suitable for the production of a 

long membrane with a lesser amount of pinholes and a smoother surface finish.  
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4.3.2 Modification of 368 mm Long Membrane 

 

It was known from the conclusion drawn in subchapter 4.2.6 that the plating procedure has 

a significant impact on the quality of the Pd layer produced. The membrane layer 

produced by the original ELP under partial suction for the shorter membrane tends to be 

thicker but less dense. Thus, the plating process has to be refined to make it more 

applicable for the deposition on the longer support. Besides that, the flow rate of the 

peristaltic pump has to be controlled such that the Pd metal deposited during plating can 

be compressed onto the formed layer by the pressure applied to provide a denser layer.  

 

For the ease of identification and comparison purpose, the first long membrane produced 

(see section 4.3.1) is named as membrane A. It was produced using 16 plating steps 

consisting of eight conventional platings followed by eight steps with partial suction (with 

the flow rate of 30ml/min). However, the results obtained shows a poor membrane 

performance with high presence of N2 gas.  

 

The plating steps have therefore been reduced this time and the ceramic support plated 

only for a total of eight steps instead of the usual 16. Besides that, all eight plating steps 

are conducted under partial suction. A brief description of the procedure used is as 

follows: 

 

1. Composition of the plating solution used will remain the same 

2. Plating time remains the same, at one hour for each plating step 

3. Pd deposition using ELP under partial suction for eight successive steps with the 

flow rate of 30 ml\min. 

4. The membrane is eventually cleaned in hot water and then dried overnight in the 

oven. 

5. The weight of the membrane was taken before it is subjected to permeation test at 

400 0C using N2 and H2 gas. 
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The membrane (named as membrane B) display a smoother surface finish and the results 

obtained from the permeation tests are summarised in table 4.5. The H2 gas permeance is 

almost the same as membrane A but the N2 gas permeance is lower. Therefore, the 

average selectivity of the membrane for H2/N2 is moderately better at ~82.39 and the 

membrane thickness estimated from weight gain measurements is about 12.6 microns.  

 

A major breakthrough has been achieved. This time, the Pd layer produced is thinner and 

has lesser amount of pinholes compared to membrane A. Furthermore, the membrane was 

produced using eight plating steps instead of 16, thus reducing considerably the time and 

amount of Pd metal used for membrane fabrication.  

 

Pressure 

Differential (bar) 

Hydrogen Gas Nitrogen Gas 

Flow rate 

(ml\min) 

Permeance 

(mol\m2.s.Pa) 

Flow rate 

(ml\min) 

Permeance 

(mol\m2.s.Pa) 

0.05 338.16 5.4024E-06 5.43 6.9398E-08 

0.10 720.50 4.6041E-06 7.96 5.0866E-08 

0.15 1207.75 5.1452E-06 12.60 5.3678E-08 

0.20 1390.05 4.6751E-06 16.80 5.3678E-08 

0.25 1581.14 4.0415E-06 20.53 5.2476E-08 

0.30 2200.89 4.6881E-06 25.60 5.453E-08 
 

Table 4.5: Membrane permeation result at 400 
0
C (membrane B). 

 

While the amount of plating steps has been successfully reduced, the membrane 

performance still has to be improved. Therefore, the plating procedure has to be further 

refined to reduce the presence of pinholes. 
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4.3.3 Membrane Optimisation 

 

Membrane B was produced using eight plating steps under partial suction at 30 ml\min 

flow for each step. The flow rate used for partial suction is crucial as it controls the 

pressure applied on the membrane layer, thus controlling the reaction rate as well. Hence, 

in order to produce a dense Pd layer, the flow rate used has to be varied for each of the 

plating steps.  

 

The reason being that the flow rate of 30 ml/min during initial plating (1st and 2nd plating 

step) is deemed too high, and therefore the Pd deposition rate was too fast as observed 

from the intensity of the reaction during plating. Thus, the deposited Pd does not have 

enough time to adhere and densify onto the support. In addition, some small amount of Pd 

metal was observed to have coated onto the glass beaker instead of the ceramic support. 

Therefore, it was concluded that deposition rate has to be controlled by varying the flow 

rate of the pump. 

 

After some trial and error and observing the reaction rate, the membrane was finally 

produced using the following procedure: 

 

1. Composition of the plating solution used will remain the same 

2. Plating time remains the same 

3. Deposition using EP under partial suction for eight successive steps, with the 

following flow rate: 

Plating steps Suction flow rate 

1 & 2 10 ml/min 

3 & 4 15 ml/min 

5 & 6 20 ml/min 

7 & 8 30 ml/min 

4. The membrane is eventually cleaned in hot water and then dried overnight in the 

oven. 

5. The weight of the membrane was taken before it is subjected to permeation test at 

400 0C using N2 and H2 gas. 
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The membrane (named as membrane C) produced exhibit a Pd layer with smooth surface 

finish and the results obtained from the permeation tests are summarised in table 4.6. The 

estimated membrane thickness from weight gain is about 8.67 microns, which is the 

lowest as compared to membrane A and B (see table 4.7 & figure 4.21). The nitrogen 

permeance obtained is also lower than membrane B, which is a good indication that the 

amount of pinholes has been reduced. 

 

Pressure 

Differential 

(bar) 

Hydrogen Gas Nitrogen Gas 

Flow rate 

(ml\min) 

Permeance 

(mol\m2.s.Pa) 

Flow rate 

(ml\min) 

Permeance 

(mol\m2.s.Pa) 

0.05 247.65 3.1567E-06 1.96 2.5049E-08 

0.1 414.34 2.6455E-06 3.78 2.415E-08 

0.15 538.29 2.2919E-06 6.89 2.9352E-08 

0.2 680.77 2.1726E-06 8.47 2.7062E-08 

0.3 - - 12.00 2.5560E-08 

0.4 - - 15.80 2.5241E-08 
 

Table 4.6: Membrane permeation result at 400 
0
C (membrane C). 
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Figure 4.21: Graph showing the comparison of nitrogen permeance for all 3 membranes. 
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Membrane Procedure Used Thickness (µm) 

Membrane A 8 EP conventional step + 8 EP with partial 

suction at 30 ml\min 

20.10 

Membrane B 8 EP with partial suction at 30 ml\min 12.60 

Membrane C 8 EP with partial suction at variable flow rate 8.67 

 

Table 4.7: Procedure used for membrane fabrication and their thickness. 

 

However, at one point during the permeation test with H2 gas when the differential 

pressure was slowly increased to 0.3 bar, the membrane suddenly failed and there was a 

huge amount of H2 coming out from the reactor. The experiment was immediately stopped 

and the reactor was left cooling down before taken apart the next day for investigation. 

That is why there was no values obatined for H2 permeance after differential pressure of 

0.2 bar.Upon removing the membrane, it was confirmed that hydrogen embrittlement had 

cause the failure (see figure 4.24). 

 

 
 

 
 

 

Figure 4.22: Picture of membrane C removed from the reactor. 
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The reason for embrittlement occurring at that particular part of the membrane is due the 

location of the entrance of feed gas. The high flow rate of feed gas flowing into the reactor 

is actually cooling down that part of the membrane. Therefore, the actual temperature for 

that particular zone will be significantly lower than the 400 OC set for the reactor and was 

also made worse with the lower thickness of Pd layer this time. As a result, the entrance of 

feed gas was modified in order to protect the membrane. 

 

 

4.3.4 Reactor Modification 

 

The membrane reactor design was modified to allow the feed gas to enter the reactor hot. 

Therefore, a pre-heater capable of heating the feed gas was incorporated to the reactor. 

This was done using a 1/8” stainless steel 316L tube with the length of 1m coiled around 

the reactor (see figure 4.25) and the whole structure was then wrapped up with heating 

tape and insulated. This improvisation then allowed the feed gas and the membrane reactor 

to be heated up to the same operating temperature by using the same heating jacket and 

controller, thus saving space and cost. 

 

 

Figure 4.23: Picture showing the new membrane reactor incorporating the pre-heater for 

the feed gas. 

 

1/8” SS 
tubing 

Reactor shell 

Feed gas 
entrance 

Feed gas entering the 
reactor 



Chapter 4 – Results  
 

Chee Chong, CHEN                                                                                                  - 128 - 
 

4.4 Final Investigation and Analysis 

 

As the previous membrane produced (membrane C) was damaged by hydrogen 

embrittlement, a new membrane has to be produced in order to be tested in the new reactor 

design. Hence, another membrane (membrane 8.0) was produced using the exact same 

procedure used for membrane C. The estimated membrane thickness obtained this time 

was about 8.25 microns as compared to 8.67 microns for membrane C. The membrane 

also exhibits a smooth and silvery surface finish as its predecessor. The ability to produce 

the membrane with almost the same thickness was encouraging as it shows the 

reproducibility of the plating method. 

 

As most of the exploratory works has already been conducted, the plan of work this time 

will concentrate on the effects of: 

 

1. Varying the operating temperature of the membrane reactor. 

2. Varying the differential pressure across the membrane. 

3. Gas permeation test and GC analysis using: 

a. Nitrogen gas. 

b. Hydrogen gas 

c. H2 Mixture: 67% hydrogen (H2), 32% carbon dioxide (CO2), 0.1% carbon 

monoxide (CO) and 0.9% of methane (CH4). 

4. SEM analysis of the Pd membrane layer. 
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4.4.1 Experimental Plan 

 

Initially, the membrane was subjected to N2 gas permeation test with the reactor operating 

at 250 0C and the pressure slowly increased from 0.1 to 0.8 bar. The experiment was then 

repeated with the reactor operating at 300 and 400 0C, and by using pure H2 and H2 

mixture as feed gas respectively. Figure 4.24 shows the diagram of the experimental work 

executed. The product was then measured by the flow-meter to obtain the total permeate 

flow-rate before being analysed by the GC.  

 

However, due to the high concentration of H2 in the product gas, the GC was not able to 

provide an accurate reading for H2 concentration since it was not originally configured for 

high purity gas analysis. Therefore the percentage of H2 was obtained by residual gas 

analysis (i.e. by subtracting the present of other gases instead). Besides that, the GC is 

more accurate in quantifying smaller concentration of gases. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The experimental matrix were then repeated for 300 and 400 
0
C 

 

Figure 4.24: Diagram showing the matrix of experimental works planned and conducted. 
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4.4.2 Gas Permeation with Pure Nitrogen and Hydrogen 

 

In theory, a defect free Pd membrane are impermeable to other gases, so the presence of 

N2 flux through the membrane is an indication that the membrane layer might contain 

pinholes or a possibility of a leak with the membrane sealing. Nonetheless, the average 

H2/N2 selectivity of the membrane is about 140 (at 400 0C), which is the highest obtained 

in this study so far. While the estimated thickness calculated from weight gain is ~ 8.23 

microns as compared to membrane C at ~ 8.67 microns. The results obtained showed that 

this is the best membrane produced so far in this work. For the ease of analysis and 

comparison purpose, the results obtained from experiments are summarises in table 4.8 

and the data’s were used to plot figure 4.25 to 4.29. 

 

Figure 4.25 shows the pure N2 and H2 flux and depict their dependence on differential 

pressure and temperature for the composite membrane. An increase in the operating 

temperature and pressure difference will lead to an increase of the H2 flux. However, the 

nitrogen flux is also increasing with increasing pressure due to the present of pinholes or 

leakage within the graphite sealing system (the leak reduces when the reactor seals were 

tightened harder as the seal will then be further compressed). 
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Gas 

Feed 

Permeate Temp 
o
C 

Pressure Drop (bar) 

0.10 0.15 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.80 

 
Pure H2 

 
H2 flux 

(mol\m2.s) 

400 0.016397 0.030406 0.044609 0.058230 0.073573 0.100966 0.128984 0.153644 0.176885 0.203999 
300 0.014396 0.025500 0.037249 0.046093 0.058553 0.080696 0.105873 0.124594 0.144607 0.167201 
250 0.014009 0.023563 0.029373 0.039057 0.046158 0.064557 0.080696 0.098771 0.118138 0.131050 

 
Pure N2 
 

 
N2 flux 

(mol\m2.s) 

400 0.000082 0.000113 0.000145 0.000171 0.000210 0.000298 0.000382 0.000472 0.000554 0.00630 
300 0.000115 0.000168 0.000216 0.000281 0.000337 0.000469 0.000588 0.000720 0.000845 0.000980 
250 0.000132 0.000180 0.000252 0.000318 0.000394 0.000521 0.000665 0.000807 0.000980 0.001110 

 
 
H2/CO2 
(67/33) 
 

 
H2 flux 

(mol\m2.s) 

400 0.000566 0.000994 0.001749 0.002350 0.003822 0.008328 0.015364 0.023628 0.033892 0.046222 
300 0.000614 0.001143 0.001834 0.002524 0.003802 0.007876 0.013815 0.020271 0.028469 0.036991 
250 0.000598 0.001033 0.001833 0.002526 0.003880 0.006972 0.011233 0.015752 0.020335 0.024854 

 
H2 Purity 

(%) 

400 77.813 81.268 84.760 86.681 89.639 93.193 95.447 96.465 97.003 97.306 
300 75.244 78.102 81.414 83.959 87.156 91.742 94.298 95.450 96.103 96.477 
250 73.740 76.123 80.214 83.139 86.351 90.016 92.365 93.484 94.022 94.338 

 

Table 4.8: Gas permeation results obtained with varying temperature and pressure drop for pure N2, pure H2 and H2 mixtures. 
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Flux of Pure N2 and Pure H2 Gas with Pressure and Temperature
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Figure 4.25: Graph showing the fluxes of pure H2 and N2 gas in Log scale with 

temperature and pressure drop. 

 

On the other hand once Pd metal is activated at temperature, in theory only H2 gas is 

allowed to pass through it while N2 gas molecules can only pass through pinholes or 

leaks from the graphite seal. Thus, the N2 fluxes will drop with increasing temperature 

but will increase with increasing pressure. This is due to more molecules of N2 are forced 

through the pinholes or leaks by increasing the pressure but not by increasing 

temperature. 
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Selectivity of Membrane (H2/N2) With Pressure and Temperature
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Figure 4.26: Graph showing the selectivity (H2/N2) of the membrane with temperature 

and pressure drop. 

 

Figure 4.26 shows the H2/N2 selectivity of the membrane in relation with pressure and 

temperature. The results show that the selectivity of the membrane increases with 

increasing temperature but remains almost constant with increasing pressure due to the 

same reasons mentioned above. In theory, the selectivity of dense Pd membrane to H2/N2 

is infinity as it only permeable to H2 gas. However, in practice the Pd film deposited is 

not perfect and there are always pinholes present and thus there is a finite number for 

selectivity. 

 

The fluctuation of the selectivity at lower pressures shown in the graph is due to the 

structural changes induced by the atomic re-odering/re-crystallization between the Pd 

film and the titania layer when the feed gases are introduced, and will become stable after 

that a period of time. This trend can be seen in all the graphs plot at lower pressures drop 

region of 0.1 – 0.5 bar. 
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4.4.3 Gas Permeation for Using H2 Mixtures  

 

Similar experiments of varying pressure and temperature were repeated by using mixed 

gases as feed and the results obtained are then summarized in figure 4.27 to 4.29 and 

table 4.8 to 4.9. 

 

Flow Rate of Pure N2 and Mixture Gas with Pressure and Temperature
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Figure 4.27: Graph showing the flowrate of N2 and product gases of H2 mixture in Log 

scale with temperature and pressure. 

 

It is known that the hydrogen flux/permeation is dependent on the trans-membrane 

pressure difference, and hydrogen diffusivity through the Pd metal. Therefore, as 

expected from figure 4.27, the hydrogen flow/permeation data shows a strong 

dependence on pressure and temperature, as seen from previous results obtained. Figure 

4.28 show their comparison with pure H2 feed gas while figure 4.29 shows the 

concentration of H2 gas in the permeate stream. 
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Fluxes of Different Feed Gas at 400 
0
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Figure 4.28: Graph showing the comparison of fluxes for pure N2, pure H2 and H2 

mixture as feed gases. 

 

Hydrogen Purity Vs Pressure
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Figure 4.29: Graph showing the purity of H2 in the product stream using the H2 mixture 

as feeds at temperature and pressure. 
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The non-linearity of H2 flux shown in figure 4.28 is due to the presence of other gases 

within the mixture that will certainly obstruct the adsorption of H2 molecules (boundary 

layer effect), thus lowering the H2 flux across the membrane. The results also suggest the 

existence of a concentration profile across the membrane which leads to a decrease of the 

hydrogen concentration in the upstream side of the membrane, and thus reduces the 

actual permeation driving force. 

 

As H2 gas starts to permeate across the membrane, the concentration of H2 in the 

downstream side will also increase. Meanwhile, the concentration of H2 in the upstream 

(retentate) side will remain the same as it is constantly being supplied from the cylinder 

bottle. As a result, the partial pressure of H2 in the downstream (permeate) side will 

slowly increase and will eventually reduce the permeation driving force due to 

equilibrium in mass transfer.  

 

The actual partial pressure of H2 across the membrane would be low and the operating 

pressure has to be set higher to compensate for this. An example would be a mixed gas 

containing 50% H2 and 50% N2 and in order to attain a hydrogen partial pressure of 0.8 

bar across the membrane, the operating pressure has to be set to 1.6 bar.  

 

The hydrogen purity plot (figure 4.29) also shows the same trend of strong dependence 

on pressure and temperature but it is apparent from the results obtained that the purity of 

H2 increases significantly at the beginning but then the increase eventually levelled off 

with increasing pressure. This is because the increasing H2 purity will lead to a reduction 

of driving force across the membrane as it will increase the partial pressure of H2 in the 

downstream side. Hence, in order to obtain a higher purity, the operating pressures have 

to be set higher.  

 

Unfortunately, the reactor was only pressure tested up to 3 bars at atmospheric 

temperature. Therefore, for safety reasons the experiments were not conducted higher 

than 1.6 bar at 400 0C. However, the purity of the H2 gas obtained is sufficient to run a 

fuel cell (see table 4.8 & 4.9). 
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Partial Pressure 

of H2 Upstream 

(bar) 

Purity of H2 @ 

400 0C 

(Downstream) 

(%) 

Purity of H2 @ 

300 0C 

(Downstream) 

(%) 

Purity of H2 @ 

250 0C 

(Downstream) 

(%) 

0.10 77.81 75.24 73.74 

0.15 81.27 78.10 76.123 

0.20 84.76 81.41 80.21 

0.25 86.68 83.96 83.14 

0.30 89.64 87.16 86.35 

0.40 93.19 91.74 90.01 

0.50 95.45 94.30 92.36 

0.60 96.465 95.45 93.49 

0.70 97.00 96.10 94.02 

0.80 97.31 96.48 94.34 

 

Table 4.9: Table showing the purity of H2 gas in the product stream at different 

temperature and pressure using H2 mixture as feed. 
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4.4.4 SEM Analysis 

 

For SEM analysis, the membrane was broken into small pieces for SEM imaging. Images 

obtained from the SEM are shown in figure 4.30 to 4.32. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.30: SEM image of the Pd membrane surface at 1000X magnification. 

 

SEM micrographs obtained show that the films produced by this modified technique are 

dense and uniform in cross-section. Figure 4.30 shows the surface of the membrane and 

it shows a rough texture with many features larger than 10µm in diameter. The high 

surface roughness might be an advantage as it will help to increase the surface area for 

which the hydrogen dissociation reaction may take place. 

 

The image in figure 4.32 shows that the thickness of the membrane layer is abut 6 

microns (µm), which is slightly lower then the estimated thickness from weight gain of 

8.25 µm, calculated by assuming a dense film, and then extrapolating from the weight 

and area of the sample. The discrepancy in weight is due to the fact the SEM analysis 

does not take into consideration that some Pd metals would have been deposited into the 

support pores during plating.  
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Figure 4.31: SEM cross-section image of the membrane at 1000 X magnification. 

 

 

Figure 4.32: SEM image of the membrane layer at 10,000X magnification. 
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5.0 Discussions 

 

Electroless plating of Pd membranes have been carried out on the surface and within the 

pores of a γ-Al2O3 layer elaborating a thin film. The thickness of the film was estimated 

by weight gain. The film growth rate depicts a maximum, a common feature of ELP of 

Pd and is attributed to a combination of an increasing mass transfer of Pd from the 

membrane surface to the of bath ingredients.  

The initial rate of Pd transfer to the support is determined by the coverage of Pd nuclei. 

As more nascent crystallites of Pd are deposited an increase in the hydrazine oxidation 

rate is enhanced, thereby corresponding to an increase in the Pd growth rate. Eventually 

the entire substrate is completely covered with Pd. The weight Pd loading enables an 

estimate of the “equivalent Pd membrane thickness’’. The permeation measurements for 

the several membrane types have a linear dependence of the H2 flow on ∆pH2  

 

5.1 Discussions on Fabrication Methods 

 

5.1.1 Discussions for Initial Investigation 

 

At this stage, a number of different experiments have been conducted in order to gain the 

fundamental knowledge of the ELP process and to better understand the effects of 

variables such: 

1. Type of Pd precursor used for plating 

2. Effect of composition of the plating solution 

3. Effect of the number of plating deposition 

4. Pore size of the ceramic support used 
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These experiments were designed to relate the effect of the ceramic support and plating 

solution used. Although the membranes produced show a metallic surface finish, they 

still have a large number of pinholes on them as evidenced by the leak test. Therefore, it 

was essential to modify the procedure for electroless plating, or the plating process itself. 

Nonetheless, the knowledge obtained by doing all these experiments is extremely 

encouraging and constructive. The following conclusions were drawn from conducting 

these preliminary tests: 

 

a. The chloride precursor is more suitable as it contained higher concentration of Pd 

metal than nitrate precursor, thus offering more metal for transfer during each 

plating step. Apart from that, it reduces the amount of plating steps required to 

produce a thin Pd film. This will then lead to the reduction in time and cost of 

fabrication. 

 

b. The composition of the plating solution is an important factor in order to provide 

a stable plating environment for the support. From the tests conducted, it can be 

observed that plating with an electroless bath with higher Pd composition will 

definitely increase the thickness of the palladium film. However, it will also 

affect the film stability, formation of a dense layer and membrane. The deposition 

rate of the solution is observed to be extremely high, as the solution also started to 

coat the wall of the glass cylinder vessel used. The test has also indicated that the 

rate of reaction/plating can be controlled by varying the amount of reducing agent 

(hydrazine) and the amount of Pd metal added to the solution. 

 

c. The pore size of the ceramic support also plays a crucial role. The lower pore size 

allows the support to form a dense Pd film at a shorter time and performs better in 

leak tests than the higher pore size support. The reason is that at higher pore size, 

the Pd metal will get deposited deeper into the layer of the support to fill up the 

big pore instead of being deposited on top of each another to form a dense layer. 

Therefore, higher pore size supports are certainly not suitable for this application. 

Hence, all the membrane fabrication from this point onward will be coated/plated 

on 30 nm supports. 
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d. The Pd film thickness will undoubtedly increase with the number of plating steps. 

However, it does not necessary follow that a denser layer can be produced as 

there are other variables, such as the one mentioned above. Beside that, the ELP 

process has mass transfer limitation too. For example, as the amount of Pd metal 

deposited on the support approaches the amount of Pd available in the solution, 

an equilibrium state is attained and the metal transfer will tend to go from the 

membrane to the solution instead. Therefore, the fundamentals involved in the 

pinhole reduction are going to be elucidated and more tests carried out in the next 

set of experiments that are designed to address these issues 

 

 

5.1.2 Discussions for Pinhole Reduction Methodologies 

 

The following discussions and conclusions are presented for the Pd membranes prepared 

using different methodologies targeted for pinhole reduction: 

 

a. ELP under Osmosis involved the damage to the Pd film due to the subsequent 

locking up of salt solution in the micropores which eventually caused interfacial 

stresses during membrane drying. 

 

b.  ELP with water circulation and partial vacuum has not materialised to provide 

the type of surface finish and results desired. 

 

c. ELP with total suction provided intermediate results with a surface smoothness 

improvement from the roughness observed with conventional methods. The 

membrane permeances is still high, which means that the technique still unable to 

reduce the amount of pinholes. 
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d. ELP with partial suction was identified as the breakthrough in this work with the 

desired finish on the membrane surface (which indicates the present of Pd film). 

However, there is still room for improvement with wide range of flow rate 

available in peristaltic pump (7 – 700 ml/min) to control the amount of pressure 

acting on the membrane surface.  

 

e. The developed technique is believed to be suitable and applicable for supports 

with wide variety of pore size (ranging from 30 nm – 6000 nm pore size) by 

varying the parameters (varying the pump flow rate) during deposition. In other 

words, the novelty of the technology is not constrained to the support but to the 

process itself. 

 

 

Figure 5.1: Schematic diagram of ELP with partial suction. 

 

f. Figure 5.1 shows the schematic diagram of deposition during ELP with partial 

suction. The membrane produced also displays a smoother surface finish due to 

the densification of deposited palladium owing to the pressure applied. 

 

g. ELP with partial suction also allows for a quicker deposition of Pd metal and the 

silvery surface finish appear much sooner than the conventional method. Figure 

5.2 shows the comparison of the membrane surface finish for the conventional 

and optimised plating process. 
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h. The future work shall look forward to the development of a longer palladium 

membrane that can be tested using the stainless steel membrane reactors to obtain 

the membrane selectivity, stability and performance at higher temperature. 

 

 

 

Figure 5.2: Picture showing the evidence of a faster deposition using the optimised 

method.  
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5.1.3 Discussion for Further Investigation (Longer Membrane) 

 

Findings from the experiments conducted for this subchapter is presented as follows: 

 

i. Fabrication of the 1st longer membrane was successful using the original ELP 

under partial suction method without any modification for 16 consecutive steps 

for one hour each (the same parameters used for the shorter membrane produced 

with EP under partial suction). However, the permeation result obtained for the 

membrane revealed the present of a significant amount of pinholes. 

 

ii. The procedure for ELP under partial suction method has to be modified in order 

to reduce the amount of pinholes present and to increase the density of the Pd 

layer. 

 

iii. The first modification involves the reduction of the number of plating steps. From 

observation, the ELP under partial suction has a high metal deposition rate, as 

some peeling effect could be seen at later plating steps during plating. Therefore, 

it is deemed unnecessary to have the eight conventional ELP plating steps as it is 

time consuming and the metal deposition rate is slow. Besides that, it is easier to 

control the rate of metal deposition by adjusting the flow rate on the peristaltic 

pump. 

 

iv. The thickness of the Pd layer produced this time is thinner and also denser than 

the 1st membrane. Although, the results obtained are better, it still shows the 

presence of pinholes. Therefore, better control on how the Pd layer is formed will 

be crucial.  
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v. Hence, the next modification involves varying the flow rate of the peristaltic 

pump for each plating steps in order to have a better control of the deposition rate. 

The reaction rate was adjusted slower for the initial stages of plating so that the 

Pd metal can formed slower and have enough time to adhere on to the support 

surface. Then, increasing the flow rate of the pump for the later stages of plating 

to provide enough pressure for the Pd metal formed to be compressed on to the 

already formed layer to give a final dense Pd layer. 

 

vi. The Pd layer produced was much thinner and the N2 permeance was also lower, 

which suggested that the hypothesis for the modification has work. Unfortunately, 

the membrane has undergone H2 embrittlement before any more meaningful 

result was extracted from it. Therefore, the reactor has to be modified before 

anymore test can be conducted. 

 

 

5.1.4 Discussions for Final Investigation (Validation for Reproducibility) 

 

The successful fabrication of an additional long membrane validated the reproducibility 

of the modified ELP under partial suction method. The membrane produced exhibit the 

same surface properties as membrane C, which has a smooth and uniform silvery surface 

finish. However, a higher magnification of the surface (figure 4.30) using SEM analysis 

showed a rough surface texture with many Pd particles larger than 10µm in diameter.  

 

Nonetheless, it is still too early to judge whether the surface roughness would have any 

significant influence in its performance as another membrane with a finer Pd particles at 

the same thickness would have to be produced for comparison. But in order to do so, the 

EP method would have to be modified again so that the Pd metal contained in the plating 

solution can dissolve better and thus creating a much finer Pd grain. Consequently, more 

research work is still required in order to verify this hypothesis. 

 

 

 



Chapter 5 – Discussions 

 
Chee Chong, CHEN                                                                                                    - 149 - 

The membrane produced in this chapter still contains pinholes as indicated by the 

presence of N2 gas in the permeate stream. Nonetheless from works done in previous 

subchapters, it is known that the amount of pinholes can be reduce or eliminate by 

adjusting the flow rate of the partial suction technique and plating steps required either 

by slowing or increasing the metal deposition rate and pressure applied. 

 

Results obtained show the hydrogen flux/permeation data have a strong dependence on 

pressure and temperature. The permeation rate of H2 increases significantly once the 

membrane is activated at temperature and the permeation will also increase with 

increasing pressure, and will display an opposite trend for other gases, as Pd metal is 

only permeable to H2.  

 

In an ideal situation, the permeation rate of N2 should decrease with increasing 

temperature and pressure. However, it can be clearly seen from the results that the 

permeation rate of N2 is increasing with increasing pressure. This is because the 

increasing differential pressure across the membrane will force the N2 molecules through 

the pinholes or leaks with the graphite seal. 

 

Previous experiments conducted have also showed that the fluxes of N2 gas are 

significantly reduced by simply replacing the graphite seal. This in turn has showed the 

possibility of gas leak through the graphite sealing system, therefore the membrane seal 

has to be improved by either replacing the type of material used or designing a new 

reactor with a better sealing system. In any case, either option would still require a 

significant amount of research time and cost. 

 

Despite all these, the performance of the membrane produced this time is by far the best 

compared to its predecessors. This indicated that all the modifications to the plating 

technique and reactor design does improve its performance. Embrittlement which occurs 

at the top part of membrane C (entrance of feed gas) had been eliminated as the feed gas 

is now preheated to the reactor temperature. 
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5.1.5 Advanced Electroless Plating 

 

At the Centre for Process Integration & Membrane Technology, I have successfully 

applied an advanced electroless plating technique to deposit thin Pd films on 30 nm pore 

ceramic supports. In this patent pending process, a controlled sustained partial vacuum 

process has been developed and applied to assist uniform densification of the palladium 

film and simultaneously prevent mass transfer from the film back into the solution, which 

is the major problem with conventional electroless plating techniques. 

 

SEM photographs showing the cross-section of Pd/ -Al2O3 membrane with a 6 micron 

thick Pd layer membrane obtained by the advanced electroless plating technique are 

illustrated in figure 5.3. It clearly shows the composite structure with Pd top layer, and 

base -Al2O3 support (which is also shown in page 140). 

 

 

Figure 5.3: Cross-section Scanning Electron Micrograph (SEM) showing the thickness 

of the Pd film. 

 

 

Figure 5.4: Photograph of a 365 mm long by 10 mm OD membrane coated with 

palladium using the advanced electroless plating technique. 
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5.2 Discussion of The Results Obtained From Gas Permeation Test 

 

 

5.2.1 The Mechanism of Hydrogen Transport in Palladium Membranes 

 

The mechanism of hydrogen transport (figure 5.5) involves a series of steps which 

include the mechanism of hydrogen involves a series of steps: 

 

1) adsorption 

2) dissociation 

3) ionization 

4) diffusion 

5) re-association 

6) desorption 

 

When H2 molecules contact the Pd metal, adsorption will occur at the metal surface. 

Within the metal, hydrogen will lose its electron to the palladium structure and diffuses 

through the membrane as an ion (or proton). At the exit surface the reverse process 

occurs. Only hydrogen appears to possess the ability to diffuse through palladium or 

palladium alloys.  Assuming no pinholes or micro-cracks, the hydrogen issuing from the 

low-pressure side of a membrane may be looked upon as a standard of absolute purity. 

Attempts to detect the presence of impurities show only traces in the parts-per-billion 

range. These trace impurities, if indeed there are any; probably reflect either mechanical 

defects or incomplete out-gassing of the walls of the downstream of parts of the system 

itself. 
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Figure 5.5: Principle of hydrogen separation through metal membrane [21]. 
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5.2.2 Hydrogen Flux 

 

Thin membranes (~2 µm thick) give a moderate flux of the order of ~0.1 mol/m2s, but at 

the expense of selectivity towards H2.and comparatively thick membranes (10-15 µm) 

gives high selectivity (>1000) but poor H2 flux of the order of 10-2mol/m2s [1-17]. The 

described example, if viewed from the theory of limits, implies that the thinner a 

membrane can be made; the more cost-effective it will be in terms of performance and 

materials. While theoretically true, there are limits on the physical material properties for 

a given set of operational conditions that will define how thin a membrane can be 

manufactured and still maintain its integrity. 

 

Membrane performance is a function of the quality of the film and, in particular, the 

presence of defects in the film. As the scientists attempt to produce ultra-thin membranes 

over larger areas, surface contaminants and particulates, even in the sub-micron range, 

become problematic. The final thickness of the membrane material incorporated into a 

design is also influenced by the design and choice of materials for components directly 

associated with the membrane material. 

 

Uemiya [1] reported that the thickness of palladium layer strongly depended on the 

supports quality, such as narrow pore size distribution and the amount of defects on the 

surface. The suggested relations between the thickness of Pd layer and pore size were 

13µm in thickness versus 0.3µm in pore size, 4.5µm versus 0.2µm, 2.2µm versus 0.1µm 

and 0.8µm versus 5nm. Mardilovich et al. [2 & 3] showed that the minimum thickness of 

palladium required to achieve a dense layer by electroless plating was approximately 

three times the diameter of the largest pores in the support. 
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5.2.3 Hydrogen Permeation 

 

The hydrogen permeation through palladium-based membranes is described by Equation 

(1), [4] & [5]: 

 

J = QH (Phigh
n - Plow 

n
)   ........................................................................................... (Eq 1) 

 

Where J is the gas flux, QH is temperature dependent constant, n is a constant power of 

the pressure, Phigh and Plow are respectively the hydrogen partial pressure on feed and 

permeate sides. The value of n indicates the rate-limiting step of H2 permeation through 

Pd membranes. If the bulk diffusion of atomic hydrogen is the rate-determining step, n 

equals to 0.5. When surface process involving the H2 dissociative adsorption on Pd 

membrane and/or atomic H recombination and desorption at the permeate side controls 

the H2 permeation, n is 1. When both the surface process and bulk diffusion are 

responsible for determining H2 permeation rate, n will vary between 0.5 and 1. 

 

Our observed value of 1.0 for n (figure 5.6) implies that surface process involving the H2 

dissociative adsorption on Pd membrane and/or atomic H recombination and desorption 

at the permeate side controls the H2 permeation. 

 

The measured hydrogen fluxes through palladium-based membranes at different 

temperatures enabled an estimate of the activation energy as described by an Arrhenius 

law as follows: 

 

QH = Qo exp (-EA/RT)   ............................................................................................. (Eq 2) 
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Figure 5.6: Hydrogen flux versus partial pressure difference for pure hydrogen feed 

(lines: predictions, points: measurements). 

 

Where Qo is the pre-exponential factor, EA is the activation energy, T the permeation 

temperature and R the ideal gas constant (8.3144 JK−1mol−1 in SI units). Figure 5.7 

shows the plot of Ln (QH) against 1/T and the regression of the hydrogen permeance at 

different reciprocal temperatures with the Arrhenius equation. From the slope it was 

possible to calculate that the activation energy is 8.43 KJ/mol. This value is in good 

agreement with literature data for different Pd-based membranes as shown in Table 5.1.  

 

For electroless plated Pd membranes or cold rolling Pd disks, the activation energy lies 

between 8–15 kJ/mol if bulk diffusion is a rate-limiting step, or both bulk diffusion and 

surface process are responsible for determining the whole permeation process [6,7–9].  
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Figure 5.7: Arrhenius plot of pure hydrogen permeation (lines: predictions, points: 

measurements). 
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Membrane Preparation 

Method 

Pore Size 

of 

The 

Support 

Pd 

Thickness 

(µm) 

Activation 

Energy 

(kJ/mol) 

n-value Ref. 

Self Supporting 

Pd Disk Cold rolling Not 

applicable 

27-154 11.9 0.68 7 

Pd Disc Cold rolling Not 

applicable 

50 11.4 n/a 8 

P75Ag25 

Disc 

* Not 

applicable 

198 6.2 0.5 13 

P75Ag25 

Tube 

** Not 

applicable 

124 6.6 0.5 14 

Composite 

P77Ag23/Al2O3 ELP 150 nm 8.6 8.22 0.5 9 

Pd/Al2O3 ELP 10-200 nm 11.4 8.88 0.58 6 

P77Ag23 

/γ-Al2O3 

Sputtering 3-6 nm 0.35 23.0 n/a 12 

P75Ag25 

/γ-Al2O3 

Sputtering 3-6 nm 0.1 – 1.5 27.9 – 32.0 n/a 15 

Pd/316L 

stainless steel 

ELP 200 nm 0.3 – 0.4 n/a n/a 16 

Pd/porous 

silver 

ELP 200 nm 5 6.6 0.5 5 

P75Ag25/ 

porous 

stainless steel 

ELP 500 nm 24 9 0.5 18 

This Work Advanced 

ELP 

30 nm 6 8.43 1.0  

 

Table 5.1: Comparison of activation energy for hydrogen transport through Pd-based 

membranes based on available literatures (* Disc supplied by KfK Karlsruhe; **The 

tube was supplied by Engelhard Industries) 
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5.2.4 Hydrogen Flux and Purity (Permeate) 

 

In order to better understand the nature of the perm-selectivity losses in the Pd-composite 

membranes, experiments were carried out to quantify single gas H2 and N2 (both 

99.999%) permeation tests and the WGS-shifted dry reformate mixture (ca.67% H2, 32% 

CO2, 0.1% CO, and 0.9% CH4) were undertaken for comparison at 250OC, 300OC, and 

400OC respectively. Permeation through the palladium membrane with a reformate 

(H2+Y) having a hydrogen concentration at 67% hydrogen shows that above a partial 

pressure drop of 0.3 bar hydrogen, there was substantial deviation from linearity 

indicating distortion due to component Y. 

 

With a molecular type impurity diffusing through the lattice structure, the normal atomic 

type hydrogen permeation is expected to be disturbed from the normal mode of 

transportation. Such perturbation is expected to become more severe as the concentration 

of the second gas increases. The linear coordination between hydrogen flux and pressure 

would then deviate further from a linear coordination as the concentration of Y gas 

increase. This was indeed observed when the concentration of carbon dioxide in 

hydrogen mixture increased as shown in Fig 5.8 and Fig 5.9. When hydrogen and carbon 

dioxide was only 25%, the hydrogen permeate was almost negligible unless the upstream 

pressure increased to a high value. 

 

Based on theory of palladium relaxation, Lewis and Schirber and Morosin calculated the 

atomic distance between Pd atoms increase from 3.890Å to 4.025Å when chemisorbed. 

H/Pd ratio increases from 0.06 to 0.6, following a relationship of ∆v= 2.9 Å3 and ∆ L/L = 

0.198 for each additional chemisorption of hydrogen atom to the lattice [18, 19]. Since 

the kinetic diameter of N2, CO, CO2, H2 and CH4 [20] is 3.64, 3.69, 3.30, 2.89 and 3.80 Å 

respectively are slightly smaller than the lattice opening, these gas molecules can 

conceivably penetrate through the expanded cubic structure if the membrane is getting 

thinner. Without hydrogen chemisorption on the palladium, the lattice structure is tighter 

and thus seals better for these gases molecule to penetrate through and show a 

satisfactory leak proof when the test was conducted with a single gas. 
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Figure 5.8: Flowrate of pure H2 and pure N2 in comparison to that of the WGS-shifted 

dry reformate (ca 67% H2, 32% CO2, 0.1% CO, and 0.9% CH4) versus partial pressure 

drop at 250
O
C, 300

O
C, and 400

O
C respectively. 

 

Very minor N2 permeation could be detected at temperatures of 250OC, 300OC, and 

400OC. The N2 flux was found to be almost constant at 2 x 10 -8 mol/m2-s-Pa. The 

magnitude of the N2 leak was comparable to those reported by Ma et al. (2005). 

Moreover, the N2 permeance is nearly independent of the pressure. The results, however, 

does not support N2 diffusing interstitially just like H2 through Pd. When the permeation 

source gas was a 100% H2, the hydrogen flux is generally linear and shows marked 

temperature dependence. Of the reduction, carbon dioxide is thought to cause the most 

severe reduction than others in the WGS dry reformate mixture; this was attributed to the 

poisoning effect of carbon monoxide brought about by the reduction of carbon dioxide. 

Such a plot provides some information about the nature of the non-selective transport 

through membrane defects. 
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Figure 5.9: Graph showing the  permeate component obtained by the membrane, 

simulating concentration from a feed-stream consisting of WGS dry reformate mixture 

(ca.67% H2, 32% CO2, 0.1% CO, 0.9% CH4) at 250
O
C, 300

O
C, and 400

O
C respectively. 
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6.0 Conclusions and Recommendations for Future Work 

 

The future of Palladium membranes to a large extent will depend on its ability to become 

widely recognised as a suitable alternative to other conventional hydrogen separation 

technologies. In order to be economically feasible to compete with other separation 

technologies, the cost of membrane fabrication and amount of Pd metal used is extremely 

crucial. Its success will depend on the formation of thin and dense layer of Pd metal. 

 

 

6.1 Conclusions 

 

The research work conducted here has yielded some very interesting and new results. 

Most importantly, all the objectives initially set out have been achieved. With the results 

and information obtained from this work, it can be concluded that 

 

1. Although the most cost effective way of producing a composite Palladium 

membrane would be the electroless plating technique, the partial vacuum has 

enhanced the method compared to other available techniques due to it’s relatively 

ease of fabrication setup, and most importantly the degree of freedom provided for 

future modification and coupling with other techniques. 

 

2. The investigated technique is applicable for supports with wide variety of pore 

sizes ranging from 30 nm – 6000 nm pore size and can handle longer supports. In 

other words, the novelty of the technology is not constrained to the support but to 

the optimisation process itself. 

 

3. The investigation has revealed that the ELP under partial suction is the best way 

forward for membrane fabrication. This modified method is extremely versatile for 

variation and process optimisation studies. It can easily be adjusted to control the 

metal deposition rate, which will eventually determine the thickness and density of 

the Pd membrane layer. 
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4.  The improved method has also resulted in the reduction of the amount of time and 

material required, thus significantly reducing the cost of membrane fabrication. 

 

5. This work also showed the ability of the method in scaling up the membrane 

process/size as different lengths of Pd membrane varying from 6 – 32cm have been 

successfully produced  

 

6. The final membrane produced has also proved its capability in purifying H2 gas  

using a reformate gas mixtures containing 67% of H2, up to the value of 97.3% 

pure H2 in a single stage pass at 400 0C at low pressure differentials. 

 

7. It should be noted that the membrane is capable of purifying H2 gas to a higher 

value than the one obtained if it is operated at a higher operating pressure and 

temperature. This is because the membrane performance shows a strong 

dependence on pressure and temperature from the results obtained. Unfortunately, 

there was no suitable equipment available at the time to do the test at higher 

pressure and temperature safely 
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6.2 Recommendations for Future Work 

 

Although a great deal of experimental work has been conducted for this project, the author 

feels that there is still room for further improvement. The main focus of the future work 

should look toward: 

 

• The use of an even larger and longer ceramic support in order to validate whether 

the new ELP method is capable of coating supports with a wide range of sizes. 

 

• To design a new reactor that is capable of operating at a much higher pressure and 

temperature of about 5 bars at 400 0C (pressure tested and certified). This is crucial 

for generating more results at high operating pressure and temperature. 

 

• To investigate the stability of the Pd membrane layer or possible deactivation of 

the membrane by performing long term stability test for a period of up to 1 or 3 

months. This will certainly require the development of a fully automated 

experimental rig where real time on-line measurement/analysis of the permeate gas 

are achieved via computer controls of temperature, mass flow-meter, digital 

pressure gauges, control valves, pressure relief valves, automated shutdown and 

alarm systems. This facility would then allow the test to be conducted safely and 

will eventually free-up the researcher to perform other experiments or 

investigation. 

 

• An investigation into the overall mass transfer resistance (boundary layer effect) of 

the membrane through a systematic evaluation of the porous support, permeation 

rate, thickness of membrane, alloying with other metals, pressure and temperature. 

Information obtained can then be used to develop a model to predict the 

performance of membrane and minimising resistance to H2 transport. 

 

• Studying the dependence on the pressure applied by the different flow rate used to 

create the partial suction in order to gain more understanding on the deposition 

reaction during plating and how it can actually affect the metal deposition. 



Chapter 6 – Conclusion and Future Works  
 

 
Chee Chong, CHEN                                                                                                    - 167 - 

 

• Finally, the continuing development and advancing of the ELP under partial 

suction method by exploring the use of alloying Pd with other metals to produce a 

multi-metallic/Pd-alloy membrane. The benefit of these types of membrane is to 

reduce the amount of Pd needed without compromising its performance and thus 

reducing the cost of membrane production. Besides that, Pd-alloy membranes are 

capable of operating at a lower temperature therefore reducing the chances of 

hydrogen embrittlement occurring and membrane poisoning caused by impurities 

with the feed gas. 

 

The list of recommendations provided here is drawn up to evaluate and facilitate the 

suitability of the ELP process for scale-ups and the stability of Pd membranes in long-term 

operations. Besides that, the proposed development of a model can then be used to predict 

the performance, understanding and improving the overall membrane process. Knowledge 

gained here will eventually provide essential information required for future 

commercialization purposes. 
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Appendix A: Sample of GC Chromatogram and Result 

 

As mentioned earlier, the original GC used (CP-3800) was not configured to measure 

high purity H2 gas. Hence, it was instead used to measure the presence of N2 gas and 

subtracting it to give the H2 value. The result obtained was then verified by the use of 2nd 

GC (Micro-GC). Figure A1 show the value obtained from using CP-3800 and figure A2 

shows the value obtained from Micro-GC. The value for N2 obtained using Micro-GC is 

slightly higher but the total percentage is more than 100%. Therefore after normalizing, 

the actual value for N2 is only 17.1428 %, which close to the value of 17.2644% obtained 

from CP-3800 

 

 

 

Figure A1: A scan copy showing the result obtained from Varian GC model CP-3800 

(using mixture of H2/N2 gas as feed at 400 
0
C and 1.0 bar pressure differential) 
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Figure A2: A scan copy showing the result obtained from Varian Micro-GC (using 

mixture of H2/N2 gas as feed at 400 
0
C and 1.0 bar pressure differential) 
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Figure A3: A scan copy of the gas chromatogram (Micro-GC) showing the presence of 

N2 gas peak. 
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Appendix B: A Sample of EDXA Graph and Result 

 

 

 

Figure B1: A scan copy of the EDXA graph obtained for a 200 nm ceramic support 

(outer layer) 
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Figure B2: A scan copy showing the composition (88% titania) of the outer layer of the 

200 nm ceramic support. 
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Appendix C: Sample Calculation of Membrane Permeances 

 

Permeation experiment refers to the measurement of permeation flow rates at different 

trans-membrane pressure differentials. Usually, the permeate stream (outlet from 

membrane tube) is left open to atmosphere and hence, zero gauge pressure. The gas 

stream that enters the permeation cell shell offers a pressure higher than atmosphere 

pressure and has values above 0.0 gauge pressure. The permeation experiments are then 

conducted at specified gauge pressure.  

 

The following presents a sample calculation of how the measured values from using 

Helium gas as feed are transformed to membrane permeances: 

 

 

Measured Values: 

 

Pressure Differential set: = 0.08bar = 8000 pa 

Temperature: = 23 0C = 296 K 

Membrane Length: = 5.9 cm  

Membrane Diameter: = 1.0 cm  

Helium flow rate: = 20.4 ml\min = 20.4 x 10-3 L\min 

 

 

Calculations: 

 

Flux = Gas Flow (mol\s) / Area (m
2
) 

 

Gas Flow = )\(00034.0)\(
60

104.20 3

sLsL =
×

−

 

 = )\(00001399.0
)\)(

273

296
(4.22

)\(00034.0
smol

molL

sL
=  
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Area = )(001853.0)(538.18)(9.51142.3 222 mcmcmld ==××=××π  

 

Therefore, flux = ).\(007556.0
)(001853.0

)\(00001399.0 2
2

smmol
m

smol
=  

 

Permeances = Flux (mol\m
2
.s)/ Pressure Differential (Pa) 

)..\(104456.9

)(8000

).\(007556.0

27

2

Pasmmol

Pa

smmol

−
×=

=
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Appendix D: Sample Calculation of Membrane Thickness from Weight 

Gain Measurement 

 

The following present the steps involved for a sample calculation of an estimated 

palladium film thickness based on weight gain. In order for the equation to be valid, the 

coating is assumed to be distributed uniformly on the membrane surface. 

 

Weight of the support before deposition = 13.08 g 

 

Weight of the support after deposition (membrane) 

(after cleaning and drying) 

 

= 13.54 g 

 

Weight gained = 13.54 – 13.08 

= 0.46 g 

 

Support length for deposition = 6.1 cm 

 

Diameter of the support = 1.05 cm 

 

Support surface area = 3.142 x 1.05 x 6.1 

= 20.1117 cm2 

 

Palladium metal density = 12 g/cm3 

 

Palladium film volume (weight/density) = 0.46/12 

= 0.03833 cm3 

 

Palladium film thickness  

(Pd film volume/surface area) 

= 0.03833/20.1117 

= 0.001906 cm 

= 19.06 µm 
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