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Abstract 
 

Video compression enables multimedia applications such as mobile video messaging 

and streaming, video conferencing and more recently online social video 

interactions to be possible. Since most multimedia applications are meant for the 

human observer, measuring perceived video quality during the designing and 

testing of these applications is important.  Performance of existing perceptual video 

quality measurement techniques is limited due to poor correlation with subjective 

quality and implementation complexity. Therefore, this thesis presents new 

techniques for measuring perceived quality of compressed multimedia video using 

computationally simple and efficient algorithms. 

 

A new full reference perceptual video quality metric called the MOSp metric for 

measuring subjective quality of multimedia video sequences compressed using 

block-based video coding algorithms is developed. The metric predicts subjective 

quality of compressed video using the mean squared error between original and 

compressed sequences, and video content. Factors which influence the visibility of 

compression-induced distortion such as spatial texture masking, temporal masking 

and cognition, are considered for quantifying video content. The MOSp metric is 

simple to implement and can be integrated into block-based video coding 

algorithms for real time quality estimations. Performance results presented for a 

variety of multimedia content compressed to a large range of bitrates show that the 

metric has high correlation with subjective quality and performs better than popular 

video quality metrics.  

 

As an application of the MOSp metric to perceptual video coding, a new MOSp-

based mode selection algorithm for a H264/AVC video encoder is developed. 

Results show that, by integrating the MOSp metric into the mode selection process, 

it is possible to make coding decisions based on estimated visual quality rather than 

mathematical error measures and to achieve visual quality gain in content that is 

identified as visually important by the MOSp metric. The novel algorithms 

developed in this research work are particularly useful for integrating into block 

based video encoders such as the H264/AVC standard for making real time visual 

quality estimations and coding decisions based on estimated visual quality rather 

than the currently used mathematical error measures.  
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1  Introduction 
 
1.1 The Research Problem 

The rapid increase in computing power and communication speed, coupled with the 

availability of computer storage facilities, has led to a new age of multimedia 

applications. Multimedia has its presence in many applications such as online video 

databases, surveillance, mobile messaging, IPTV, video conferencing, interactive 

multimedia and more recently in multimedia based online social interaction. These 

new growing applications require storage of high-quality data, easy access to 

multimedia content, reliable transmission and delivery. Digital video compression 

has played a significant part in the realisation of these applications by bridging the 

gap between the demand for quality, performance and limitations of available 

storage and transmission capabilities. 

 

The compression of digital video is accomplished by a video codec which consists of 

an encoder for compressing the original video signal into a suitable form for storage 

and transmission, and a decoder for reconstructing the compressed video signal for 

playback. In the past, video codecs were implemented on hardware platforms 

mostly due to the computational complexity of the process requiring a large amount 

of calculations. However, in recent years general purpose processors have 

significantly improved in performance, reliability and cost. Therefore, 

implementation of software only video codecs for real time applications such as 

video conferencing, video streaming and mobile video phones, has become feasible.   

 

Advanced video compression algorithms such as the H.264/AVC video compression 

algorithm [1] can deliver significantly improved compression efficiency compared 

with previous video coding algorithms (up to 50% more) [2] by providing higher 

quality video over a wide range of bitrate channels. Due to its improved 

compression efficiency, error resilience features and increased flexibility in 

transmitting the coded data, H.264/AVC has enabled new multimedia video services 

such as mobile video messaging and multimedia streaming over wireless networks 

[3] which require compressed video to be transmitted across low bitrate channels. 

However, the quality of compressed video at such low bitrates is poor due to 

compression-induced distortions. Therefore, there is a need for video quality 
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measurement techniques to be employed in the designing and testing of video 

compression algorithms.   

  

Visual quality is a key factor in the performance of multimedia video applications 

because they are meant for the human observer. Although subjective measurement 

of mean opinion score (MOS) [4] is an accurate method of measuring visual quality, 

it is very expensive to perform and impractical in real time applications [5,6]. 

Therefore objective assessment methods have been developed to predict the 

subjective results based on video content and the characteristics of the human 

visual system. The video quality experts group (VQEG) have performed several 

evaluation tests to benchmark the performance of these quality metrics in context 

to multimedia sequences [7]. This has resulted in the standardisation of a few video 

quality metrics in the ITU-T Recommendation J.247 [8]. These metrics have varying 

degrees of success in predicting the subjective test scores, with reported 

correlations of 70% to 84% between each objective metric and the measured 

subjective quality scores indicating that better approaches are required to provide a 

more accurate prediction of subjective quality. 

 

Although several objective measures have been developed in the literature, their 

application to real time video quality measurement of multimedia video sequences 

is limited due to implementation complexity and computational overload. Therefore 

there is a need for new video quality measurement methods which correlate well 

with subjective quality, are simple to implement and reasonably fast to run in real 

time multimedia video coding algorithms.  
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1.2 The Research Objective 

The aim of this research work is to develop novel algorithms for effectively 

measuring perceived quality of multimedia video sequences compressed using 

block-based video coding algorithms. These algorithms should be computationally 

simple to implement and enable video coding algorithms to make accurate 

estimation of visual quality within reasonable computation time.  

 

This research is particularly aimed at measuring visual quality of multimedia 

sequences with compression-induced artefacts because: (a) There is growing 

popularity for multimedia applications such as Internet and mobile video messaging 

and streaming, which require video compression for storage or transmission (b) 

Since these multimedia applications are meant for the human viewer, the visual 

quality of compressed video is an important factor when considering the 

performance of these applications. 

 

The research aim is achieved through the following objectives which are structured 

into four stages. Each stage is briefly summarised as follows: 

 

Stage 1: 

1. Study existing subjective and objective video quality measurement 

techniques available in the literature to gain theoretical knowledge and 

identify the limitations of these techniques. 

2. Evaluate video quality of compressed video sequences using these subjective 

and objective measurement techniques to investigate if there is a 

relationship between the two measurement techniques with a view to 

predicting subjective quality using objective measures. 

3. Develop a new video quality measurement technique for predicting subjective 

quality of compressed video from objective measures. 

 

Stage 2: 

4. Develop techniques to automatically estimate the parameters of the new 

video quality metric from video content. Evaluate the performance of the 

developed metric to investigate if the predicted quality is in close agreement 

with subjective quality and whether the metric is computational simple and 

can be easily integrated into video coding algorithms for making real time 

quality estimations. 
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Stage 3: 

5. Investigate other factors influencing visual quality of compressed video 

including cognition-based factors which attract viewer attention. Develop 

techniques to integrate these factors into the new video quality metric to 

further improve its prediction performance. Conduct experiments to 

investigate if the metric performance has improved. 

 

Stage 4: 

6. As an application of the developed video quality metric to perceptual video 

coding, develop a new mode selection algorithm for an H264/AVC encoder 

which will employ the metric in the mode selection process to improve the 

visual quality of compressed video sequences.   

  

 

1.3 Novel contributions and Published material 

This research aims to develop novel techniques for effectively measuring visual 

quality of multimedia video sequences compressed using block-based video coding 

algorithms.  Key contributions of this research work to perceptual video quality 

measurement and perceptual video coding are listed below: 

 

• Analysing the relationship between subjective quality (MOS) and objective 

quality (MSE) for a variety of multimedia content coded to a wide range of 

bitrates. Proposing the method of measuring MOS from MSE by exploiting the 

high correlation between the two measures. 

 

• Developing a new full reference perceptual video quality metric called the 

MOSp metric for measuring subjective quality of multimedia video sequences 

compressed using block-based video coding algorithms. This development 

has led to two journal publications [9,10] and two conference papers [11,12]. 

 

• Investigating methods to quantify video content based on the visibility of 

compression-induced distortion using spatial texture and temporal change 

information. 
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• Developing algorithms to automatically derive the MOSp metric from MSE 

and video content. These algorithms have been presented in [9, 11, 12].  

 

• Developing algorithms to extend the MOSp metric based on MSE and video 

content to incorporate cognition-based factors which attract viewer attention. 

This work has been published in [10] 

 

• As an application of the MOSp metric to perceptual video coding, developing 

a new MOSp metric based mode selection algorithm for a H264/AVC encoder.   

 

• Developing a new distortion measure based on the MOSp metric which can 

be used in other components of the video coding algorithm for making coding 

decisions. 

 

• Developing an adaptive model for the Lagrange multiplier as a function of 

quantisation parameter (QP) and video content. 

 

 

1.4 Organisation of this thesis 

The thesis is organised as follows: 
 
Chapters 2 and 3 are background chapters on the basic concepts of digital video 

coding and video quality measurement in context to multimedia applications. 

Chapter 4 explains the various experimental methods used in this research work. 

Chapters 5, 6 and 7 present algorithms for predicting visual quality of compressed 

video sequences using a new video quality metric called the MOSp metric. 

Application of the MOSp metric in perceptual video coding is investigated in chapter 

8. Chapters 9 and 10 are the discussion and conclusion chapters. A detailed 

overview of each chapter is as follows: 

  
Chapter 2 - Provides essential background knowledge on digital video 

representation and digital video compression with a particular focus on block-based 

video coding algorithms. Main functional blocks of a block-based video codec are 

briefly explained and the most widely used video coding standards including the 

H264/AVC coding standard are introduced.  
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Chapter 3 – Explores the basic concepts and approaches to measuring video 

quality. An overview of the various mechanisms involved in the processing of visual 

information and the limitations of human vision are presented. Approaches to 

objective video quality measurement are reviewed. Finally, the limitations of 

existing video quality measurement techniques and the need for a new video 

perceptual quality metric are discussed. 

 
Chapter 4 – Is the experimental methodology chapter and it outlines the test 

material, equipment, experimental methods and data analysis techniques used in 

this research project. 

 
Chapter 5 – Presents a video quality experiment conducted to investigate the 

relationship between subjective and objective video quality. Based on the 

experimental findings, a new full reference perceptual video quality metric called 

the MOSp metric is introduced. 

 
Chapter 6 – Investigates techniques for calculating the parameters of the new 

MOSp metric from video content. Performance evaluations conducted to compare 

the MOSp metric with popular video quality metrics are presented and discussed.    

 
Chapter 7 - Explores methods of extending the MOSp metric to incorporate 

cognition based factors which attract viewer attention with a view to further 

improve the metric performance. Experiments performed to investigate the metric 

performance are presented. 

 
Chapter 8 – Investigates an application of the MOSp metric to perceptual video 

coding. A new mode selection algorithm for the H264/AVC encoder which uses the 

MOSp metric in the mode selection process to make coding decisions based on 

estimated visual quality is described. An experiment to evaluate the performance of 

the MOSp-based mode selection algorithm in comparison with the reference 

H264/AVC encoder is presented in this chapter. 

 
Chapter 9 – Is the discussion chapter. A detailed summary of the main 

contributions of this research work is presented. The developed algorithms and 

experimental findings are critically analysed with emphasis to their benefits and 

limitations. The relevance of the main findings to addressing the research problem 

is also discussed in detail. Finally, possible directions for further developments and 

improvements in relation to the contributions of this research work are presented.  
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Chapter 10 – Is the conclusion chapter.   

 
Appendix A – Contains list of publications related to this research work. 
 
Appendix B – Contains training instructions given to viewers during subjective 
evaluations. 
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2 Digital Video Coding Fundamentals 
 

2.1 Introduction 

Digital representation of video signals requires large storage and transmission 

bandwidth. Multimedia video applications such as online broadcasting, mobile video 

streaming, internet video streaming and video on demand, require digital video in a 

form that is suitable for real-time transmission and storage. Therefore, video 

compression techniques are used to reduce the amount of data required to 

represent video in a digital form prior to transmission and storage. An overview of 

the basic concepts of digital video representation and video compression with a 

particular focus on block-based video coding algorithms is presented in sections 2.2 

to 2.5.  

 

The growing popularity in multimedia video applications has led academics and 

Industry to work together to standardise compression techniques in order to 

increase inter-operability between various applications and platforms. Several 

series of standards have been successfully developed by two organizations: 

International Organisation of Standardization, International Electro-technical 

Commission (ISO/IEC) and the International Telecommunications Union, 

Telecommunications Standardization Sector (ITU-T). These standards address a 

wide range of video applications in terms of bitrate, image quality, and complexity. 

A detailed summary of popular video coding standards is presented in section 2.6.  

 

Data reductions caused during video compression to achieve bitrate savings have 

an effect on the video quality. Therefore video coding algorithms have to consider 

the trade-off between quality and rate when choosing optimum coding options. This 

is achieved by using rate-distortion optimisation techniques which are discussed in 

section 2.7. Finally, section 2.8 gives an overall summary of this chapter 

highlighting the advantages and limitations of existing video coding techniques in 

context to multimedia video applications.  
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2.2 Properties of digital video 

Digital video is the visual representation of a real world scene in digital form, 

suitable for electronic storage and/or transmission. It is a 2-dimensional 

representation of the 3-dimensional real world scene. This section explains the 

main properties of digital video including resolution, frame rate, colour, video size, 

bitrate and frame representation. 

 

2.2.1 Resolution 

Video is captured using a camera and digitised into spatial and temporal samples. 

Spatial samples, often referred to as picture elements or pixels, are regularly 

spaced points on a 2-D rectangular grid to form a video frame as shown in Figure 

2-1. 

 

 
H

ei
gh

t 

 Temporal samples 
 

Figure 2-1: Video Sampling 
 
 

The resolution of a video frame is the number of pixels in the frame. A larger 

number of pixels will produce a smooth and detailed visual representation of the 

scene. Resolution is expressed in terms of the number of pixels in the horizontal 

(width W) and vertical (height H) axes as W x H. Commonly used video resolution 

formats along with their applications are presented in Table 2-1. 
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Table 2-1: Common video resolutions and their applications 
 

Format  Resolution  (width x height) Applications 
Sub-quarter common 

intermediate format (SQCIF) 
128x96 Mobile video 

Quarter common 
intermediate format (QCIF) 

176x144 Mobile video 

Common intermediate 
format (CIF) 

352x288 Multimedia applications and 
internet video streaming 

4-common intermediate 
format (4CIF) 

704x576 Standard definition 
television 

High definition (HD) 1280x720 
1920x1080 

High definition television 

  
 
2.2.2 Frame rate 

Video is a sequence of video frames that are temporally sampled at a constant rate 

as shown in Figure 2-1. The number of temporal samples captured per second is 

the frame rate. A higher frame rate gives smoother representation of moving 

objects in the scene. The range of frame rates commonly used in video applications 

for a reasonably smooth display of video is between 20 – 30 frames per second 

(fps). Lower frame rates (below 10 fps) cause jerky appearance of motion in the 

video sequence [13].     

 

2.2.3 Colour spaces 

Pixels in a video frame contain colour information and are digitally represented 

using bits. For example: each pixel represented using 8-bits can have up to 256 

(28) colour levels. More bits can represent more colour levels and hence more 

subtle variations in colour. There are two common colour spaces used for digital 

video representation: RGB (Red, green and blue) and YCbCr (Luminance, Red 

chrominance and Blue chrominance). In the RGB colour space, each pixel is 

represented by three numbers indicating the relative proportions of red, green and 

blue. Other colours of the visible light spectrum can be reproduced by combining 

varying proportions of the three primary colours. Typical RGB based video devices 

include television sets (LCD and plasma), mobile display screens, video projectors 

and digital video cameras. Although most video displays are driven by R, G and B 

signals, the RGB colour space is not the most efficient representation of video for 

storage and transmission because the R, G and B signals are correlated and cannot 

be separated into luminance and colour information. The human visual system is 

more sensitive to luminance information than colour information [4]. In colour 

images, detail perception is obtained from the luminance component of the pixels, 
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because the human vision system is not well suited to detect structures defined by 

varying chrominance values. Hence by separating the luminance and colour data, 

video can be processed into perceptually relevant information.  

 

The YCbCr colour space consists of the luminance component (Y) and two 

chrominance components (Cb and Cr). This colour space is popular in video 

processing algorithms such as video coding because the Y, Cb and Cr components 

are uncorrelated and therefore can be processed separately. The luminance 

component (Y) is a weighted average of red (R), green (G) and blue (B) and the 

chrominance components (Cb and Cr) are derived from Y, R and B [14] as shown 

below:  

                         

Y-BCb

Y-RCr 

0.114B0.587G0.299RY

=

=

++=

                    (1) 

 
 
The separation of luminance and chrominance components means they can be 

stored or transmitted at different resolutions resulting in improved compression 

efficiency. Since the human visual system is more sensitive to luminance than 

colour, the luminance component can be stored or transmitted at higher resolutions 

and the chrominance components (Cb and Cr) can be sub-sampled to lower 

resolutions. There are three popular formats for sampling YCbCr components: 

4:4:4, 4:2:2 and 4:2:0.  

 
Figure 2-2: YCbCr sampling formats 

In 4:4:4 format, the Y, Cb and Cr components are represented in the same 

resolution in both horizontal and vertical directions as shown in Figure 2-2. In 4:2:2 

Cr value 

Cb value 

Y value 

4:4:4 format 4:2:2 format 4:2:0 format 
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format, the Y component is represented in full resolution. However, the 

chrominance components (Cb and Cr) have the same vertical resolution but are 

sub-sampled to half the resolution as the Y component in the horizontal direction. 

4:2:0 format means that the chrominance components are sub-sampled to half the 

resolution of the Y component in both horizontal and vertical directions. Since 4:2:0 

video requires exactly half the number of samples as the 4:4:4 video, it is popular 

in video applications such as video conferencing and DVD storage.    

 
2.2.4 Coded bitrate and video size 

Coded bitrate, measured in bits per second (bps), is described as the average rate 

at which video data is transmitted in a given unit of time. When compressed video 

files are considered, bitrates may also be used to express the quality of video. 

Higher bitrate video has more bits to represent data and hence will have better 

quality compared to lower bitrate video. Coded video file size is the total number of 

bits used to store the video file and can be calculated as a product of coded bitrate 

and the duration of the video clip.  

 

2.2.5 Progressive scan and interlaced video 

There are two ways of rendering a video signal: interlaced scanning and 

progressive scanning. Interlaced scanning was developed for Cathode Ray tube 

(CRT) based television monitor displays and is used in most Standard Definition 

televisions (SDTV). Interlacing divides each video frame into odd and even lines 

stored and transmitted as two separate fields as shown in Figure 2-3. When 

displaying interlaced video, the display screen alternately refreshes the odd and 

even lines at 30 frames per second. This could sometimes lead to a “flickering” 

effect caused by delay in refresh rates between the two set of lines. Progressive 

scanning, as opposed to interlaced, scans the entire picture line by line from top to 

bottom and the video is transmitted as complete frames. This method is used in 

liquid crystal display screens (LCDS), plasma displays, DVDs and digital cameras. 

Since the frames are displayed at once, there is reduced flicker allowing for a 

greater range of motion for objects moving on screen. Video resolutions generally 

include “i” or “p”, such as 1080i and 720p, to denote either interlaced or 

progressive scanning. 
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             Video frame                          Top Field                           Bottom Field 
Figure 2-3: Progressive and interlaced scan. 

 

2.3 Block-based video CODECs 

Video is composed of a sequence of individual frames. In block-based video coding, 

video frames are broken down into individual blocks called macroblocks which 

contain 16x16 luminance samples and corresponding chrominance samples. For 

example, a picture from a video stream at CIF resolution (352x288) is divided into 

396 (22x18) macroblocks. This practice simplifies the processing which needs to be 

done at each stage of compression. The macroblocks are individually compressed 

using a video codec. A video codec consists of an encoder for removing redundant 

information from the video signal and a decoder for re-inserting it. In video signals, 

two types of data redundancy can be identified: 

• Spatial and temporal redundancy: Pixel values correlate with their 

neighbours both within the same frame and across frames. Therefore, pixel 

values may be predictable using the neighbouring pixel values. 

• Psychovisual redundancy: The human eye has a limited response to fine 

spatial detail [15], and is less sensitive to detail near object edges or around 

scene changes. Consequently, data reduction in these regions may not be 

visible to a human observer. 

 

The purpose and functioning of the encoder and decoder is discussed in the 

following two sections.   
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2.3.1 Video encoder 

Figure 2.4 shows the block diagram of a block-based video encoder. A video 

encoder compresses video data by reducing spatial, temporal and psychovisual data 

redundancies. The main components of an encoder include predictive coding, 

transformation, quantisation and entropy encoding. Each video frame is individually 

encoded. The video frame is first divided into macroblocks. Predictive coding is 

performed on each macroblock to identify and eliminate spatial redundancies within 

a frame (using intra prediction) and temporal redundancies that may exist between 

individual video frames (using inter prediction). The prediction result is subtracted 

from the original data to form the residual. The resulting residual undergoes 

transformation from the spatial domain to the frequency domain in order to identify 

spatially correlated samples and reduce spatial redundancies.  

 

The transformed coefficients are quantised to remove components that are 

unimportant to the visual presentation of the video frame leading to an irreversible 

data loss. The amount of compression can be controlled by varying the amount of 

quantisation. Entropy encoding is performed on the quantised transform coefficients 

to eliminate statistically redundant data. Entropy coded data also includes motion 

information. The encoded data forms the bit stream and is transmitted to the 

decoder through a transmission channel. Inverse quantisation and inverse 

transformation in the encoder perform the inverse operations of quantisation and 

transformation. The inverse operations are performed by the encoder to reconstruct 

the compressed video frames in order to facilitate motion estimation and 

compensation.  
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Figure 2-4: Block diagram of an encoder 
 

 

2.3.2 Video decoder 

Figure 2.5 shows the block diagram of a block-based video decoder which performs 

the inverse operation of the encoding process. The bit stream that is received at the 

decoder is entropy decoded, inverse quantised and inverse transformed to form the 

residual. The residual is added to the motion compensated prediction data of the 

previously decoded video frame to form the reconstructed frame. The reconstructed 

video frame at the decoder is not identical to the corresponding uncompressed 

frame at the encoder due to the permanent loss of data during the compression 

process (quantisation in particular).  
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Figure 2-5: Block diagram of a decoder 
 

  

2.4 Video structure 

Figure 2-6 illustrates the video structure in block based coding algorithms. The 

reference video is coded as a stream of individual pictures. The basic coding unit of 

a video picture is a macroblock which contains 16x16 luminance samples and the 

corresponding chrominance samples depending on the YCbCr video format. Each 

picture consists of one or more slices. A slice is a group of macroblocks. Each slice 

is coded independently of the other slices in a picture in order to minimise the 

impact of data loss during transmission.  

 

   
 
Figure 2-6: Video structure in block based video coding 
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2.5 Video coding techniques and tools 

This section describes the various video coding techniques employed by video 

encoders including predictive coding for exploiting data redundancies, transform 

coding for converting data to a compactable form for further efficient compression, 

quantisation for performing lossy compression and entropy coding to remove 

statistical redundancy. Video coding tools including the de-blocking filter, which 

improve compression performance, are also explained in this section. 

 

2.5.1 Predictive coding 

Video frames may contain spatially and temporally redundant information. Coding 

efficiency may be improved by predicting current data from previously coded data 

and encoding the difference between the predicted and actual value. Predictive 

coding involves producing a prediction block by exploiting the spatial and temporal 

correlation between samples in the current block and previously coded samples 

either in the same video frame (intra prediction) or in previously coded video frame 

(inter prediction).  

 

2.5.1.1 Intra Prediction 

Intra prediction eliminates spatial redundancies. Intra prediction involves predicting 

the current block from previously coded neighbouring samples in adjacent blocks 

using a defined set of different directions. Luminance and chrominance samples are 

intra predicted separately. While the luminance macroblocks undergo partitioning 

into sub-blocks (i.e., 16x16, 8x8 or 4x4), the chrominance macroblocks are intra 

predicted without partitioning (i.e., 8x8 for 4:2:0 resolution format).  

 

The purpose of using intra prediction is explained with the following example: 

Consider the intra prediction for a 4x4 block using three intra prediction techniques 

as shown in figure 2-7. Figure 2-7(a) illustrates intra prediction which uses the 

mean value of the neighbouring horizontal and vertical samples which have been 

previously coded. In figure 2-7(b), sample values of the 4x4 block are predicted 

using previously coded samples on the left of the block. In figure 2-7(c), the 

samples are predicted from previously coded upper neighbouring samples of the 

block. The difference between the predicted block and the actual block (i.e., the 

residual block) is then coded, which results in coding far fewer bits than would be 

the case for the original block. 
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Figure 2-7: Example of intra prediction for a 4x4 block 
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Intra prediction which is available in H.263 and H.264/MPEG-4 AVC coding 

standards achieves better compression in smoother regions which prominently have 

spatial redundancies. Different directions for intra prediction exist to exploit inter-

pixel redundancies within a video frame. Further details of the various directions for 

intra prediction are given in [16]. 

 

2.5.1.2 Inter Prediction 

Consecutive video frames are typically very similar to each other and the 

differences usually arise due to moving objects in the video scene. By identifying 

and eliminating temporal redundancies, it may be possible to achieve higher 

compression. Inter prediction involves predicting the current block from a 

previously coded and reconstructed video frame using motion estimation and 

compensation processes. Motion estimation involves searching the previously coded 

video frame to obtain a good match for the current block. The result of motion 

estimation is a motion vector which represents the displacement between the 

locations of the current block and its best match in the previously reconstructed 

video frame. Motion compensation follows motion estimation and it involves finding 

the difference between the resulting best match and the current block to produce 

the residual block which is then coded. The main features of inter prediction are: 

• Block matching to find the best match for the current block in a previously 

coded frame. 

• Variable block size for improved motion estimation. 

• Use of multiple reference frames to exploit re-occurring periodic motion. 

• Motion estimation from past and future frames for improved compression 

efficiency. 

• Sub-pixel motion estimation for increasing the precision of the motion 

vectors. 

These features are described in detail in this section. 

 

Block matching in motion estimation 

Motion estimation is performed by searching an area in a previously coded video 

frame (the reference frame) to find a best match for the current block. A search 

area in the reference frame which is centred on the current block position is 

searched and the region within the search area that minimises a matching criterion 

is chosen as the best match for the current block as shown in figure 2-8. Commonly 

used matching criteria include the sum of absolute error (SAE) and mean absolute 
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error (MAE) between the samples of the current block and the block-sized region in 

the search area of the reference frame as shown in equations (2) and (3). 
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where, C(x,y) and R(x,y) are samples of the current and reference NxN blocks. 

These measures are popularly used for their computational simplicity.  

 

 
Figure 2-8: Block matching in motion estimation 
 
Motion compensation follows motion estimation which involves obtaining the 

prediction block as the difference between the current block and its best matching 

block in the previously coded frame. The prediction block and the resulting motion 

vectors are coded and transmitted to the decoder. 

MV 
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Variable block size for improved motion estimation 
 
A macroblock is the basic coding unit in block-based video coding algorithms. It 

contains 16x16 luminance samples and 8x8 chrominance samples (i.e., for 4:2:0 

video format). To improve coding efficiency, video coding standards such as MPEG-

4 and H.26x series support smaller block size motion estimation wherein the 

macroblock is broken down into smaller blocks, as shown in Figure 2-9, in an 

attempt to contain and isolate the motion. The resulting motion vectors from 

previous and/or future pictures are used to predict the current macroblock. Using 

smaller block sizes for motion estimation enables more accurate isolation of 

temporal changes within the macroblock resulting in a better prediction result.  

 

 
Figure 2-9: Sub-block partitions for motion estimation 

 

The MPEG-2 coding standard supports only 16x16 block size leading to less 

accurate motion prediction but with fewer bits required to represent the motion 

data. MPEG-4 supports block sizes up to 8x8 offering moderate motion isolation. 

Advanced video coding standards such as H.264/MPEG-4 AVC introduce smaller 

block sizes (up to 4x4) for strong motion isolation, greater flexibility in block 

shapes, and greater precision in motion vectors in order to improve compression 

efficiency. However, the choice of predicting using 4x4 block size means an 

16 

16 

  8 

16 

16 

8 

8 

8 

  8 

8 8 

8 

8 

  8 

8 

4 4   8 

4 

4 

4 

4 

4 4 



 22 

increase in motion data that has to be transmitted to the decoder for block 

reconstruction. 

 
 
Use of multiple reference frames to exploit re-occurring periodic motion 
 
Earlier coding standards such as MPEG-2 and MPEG-4 supported motion estimation 

of the current block from the immediate previously coded frame enabling low delay 

and minimal storage requirements. Advanced video coding standards such as 

H.264/AVC make it possible to find the best match for the current block from any of 

the previously coded reference frames. This feature is useful for dealing with: 

1) Motion that is periodic in nature 

2) Translating motion and occlusions 

3) Alternating camera angles that switch back and forth between two different 

scenes 

Although the use of multiple reference frames improves compression efficiency, it 

comes at an expense of increased computational cost at the encoder and increased 

storage requirement due to the need for storing previously coded reference frames. 

 
 

Using I, P and B Macroblocks for improved compression efficiency 

There are three types of macroblocks: I-macroblock, P-macroblock and B-

macroblock as shown in Figure 2-10. An I-macroblock is coded using intra 

prediction, i.e. prediction from previously coded macroblocks in the same frame. A 

P-macroblock is inter predicted from a coded past picture and a B-macroblock is 

inter-predicted from two previously coded pictures which could be either from the 

past or future video frames. B-macroblocks give highest compression efficiency 

because motion data from past and future pictures are used in the prediction 

process but at a high computational expense.     
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Figure 2-10: I, P and B macroblock types 
 
 
Sub-pixel motion estimation 

Motion estimation is performed to find the best matching block for the current block 

in a previously coded frame. The resulting motion vectors indicate the displacement 

between the positions of the current and best matching blocks. The efficiency of 

motion estimation depends on the accuracy of the motion vectors. Motion vectors 

can be obtained from full-pixel and sub-pixel locations. Sub-pixel options supported 

by video coding standards include: half-pixel, quarter-pixel and one-eighth pixel 

locations as shown in Figure 2-11. In order to obtain motion vectors from half-pixel 

locations, the luminance samples of the video frame are interpolated. Quarter-pixel 

and one-eighth pixel locations are obtained by interpolating half-pixel positions and 

quarter-pixel locations respectively.     

 

H.264/AVC supports quarter-pixel motion estimation for luminance samples and 

one-eighth pixel motion estimation for chrominance. The motion vectors are coded 

and transmitted along with the prediction data to the decoder. At the decoder, the 

corresponding reference frames are interpolated according to the precision of the 

motion vectors in order to reconstruct the current block. 
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                                (a)                                                                      (b) 

 
                                 (c)                                                                      (d) 
 
Figure 2-11: Sub-pixel motion estimation. (a) Full-pixel motion vector (1,1), 
(b)Half-pixel motion vector (0.5,0.5), (c) Quarter-pixel motion vector (0.25, 0.25) 
and (d) one-eighth pixel motion vector (0.125, 0.125) for chrominance samples. 
 
 

2.5.2 Block-based transform coding 

The residual blocks from motion estimation and compensation are transformed from 

spatial domain into frequency domain using block transform coding techniques. The 

residual block is converted into a block of transform coefficients which represent the 

magnitudes of spatial frequency components that make up the original residual 

block. Transformation does not lead to data loss and the process is completely 

reversible using inverse transformation. Transformation from spatial domain to 

frequency domain is performed for better energy compaction using a smaller 

number of larger coefficients and to de-correlate data by reducing inter-

dependency. The human visual system is more sensitive to low/medium frequencies 

Full-pixel samples half-pixel samples 

quater-pixel samples One-eighth-pixel samples 
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than high frequencies [17]. By separating image data in terms of frequencies, it 

may be possible to discard the higher frequencies without affecting the visual 

quality of the image block.  

 

Discrete Cosine Transform (DCT) [17] is the most widely used block-based 

transform in video compression because it tends to concentrate the visually 

important contents of a block into a smaller number of coefficients for efficient 

encoding [18].  

 

The two-dimensional DCT of an NxN block with pixels represented as f(i,j) and 

transform coefficients as F(u,v) is calculated using the following formula [17]: 
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For an NxN block, the first DCT coefficient F(0,0) is called the ‘DC coefficient’ and is 

the average of all the samples in the block. It represents zero spatial frequency. 

The other DCT coefficients are called ‘AC coefficients’ which are arranged in order of 

increasing horizontal and vertical frequencies. The inverse DCT of an NxN block of 

coefficients will produce the original block in spatial domain with no data loss.  

 

Video coding standards such as MPEG-2 employ a true DCT 8x8 transform as 

previously described that operates on floating-point coefficients. Since the 

computation of DCT can be computationally expensive and involves floating point 

operations, advanced video coding standards such as H.264/MPEG-4 AVC use a 

DCT-like 4x4 integer transform. The smaller block size of H.264/MPEG-4 AVC 

reduces blocking and ringing artefacts.  
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Figure 2-12: Transform coding in various video coding standards 
 
 

2.5.3 Quantisation 

In video compression, quantisation involves scaling the transform coefficient values 

of a block using a quantisation step and rounding to the nearest integer value. 

Information is lost during the rounding process. The amount of compression can be 

controlled by varying the size of the quantisation step. A larger quantisation step 

leads to a bigger rounding error and hence increased compression because the 

resulting quantised coefficients will prominently have small and zero coefficients.   

Inverse quantisation performed at the decoder involves rescaling the quantised 

coefficients with the quantisation step. However the rounding error caused during 

the quantisation process is irreversible leading to permanent data loss. The 

quantisation process eliminates high frequency coefficients. Since higher frequency 

coefficients contribute to image detail, using a large quantisation step will lead to 

elimination of higher frequencies resulting in blurring and blocking artefacts in the 

reconstructed block. 
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Lower bit rates can be achieved by increasing the levels of quantisation but at the 

expense of loss in image quality. Quantisation is also used for constant bit rate 

applications where it is varied to control the output bit rate. Figure 2-13 shows the 

effect of quantisation on a 4x4 DCT coefficient block. As can be seen, increasing the 

quantisation step causes an increase in the difference between the original DCT 

coefficients and the inverse quantised coefficients. 

 

 
Original DCT coefficients 

569 -6.7354 36.5 -34.553 
85.949 -5.3406 4.0421 -17.489 

52.5 -39.063 -114 -43.351 
42.872 -139.49 -56.876 82.341 

 
Inverse Quantised DCT coefficients  

(Quantisation Step=10) 

570 -10 40 -30 
90 -10 0 -20 
50 -40 -110 -40 
40 -140 -60 80 

 
 

Inverse Quantised DCT coefficients  
(Quantisation Step=20) 

560 0 40 -40 
80 0 0 -20 
60 -40 -120 -40 
40 -140 -60 80 

 
 
 
 
 

Inverse Quantised DCT coefficients 
(Quantisation Step=30) 

570 0 30 -30 
90 0 0 -30 
60 -30 -120 -30 
30 -150 -60 90 

 
Figure 2-13: Inverse Quantisation of 4x4 DCT coefficients using various 
quantisation steps 
 
 
2.5.4 Entropy Coding 

Statistical redundancies within the quantised DCT coefficient data can be exploited 

to gain further compression. The quantised DCT coefficients in a block contain fewer 

non-zero coefficients and a large number of zero coefficients. Entropy coding is a 

lossless process of converting encoded data into codes by exploiting its statistical 

redundancy. Before entropy coding can take place, the 4x4 or 8x8 quantized 

coefficient blocks must be serialised. Depending on whether these coefficients 

belong to a frame block or a field block, a different scan pattern is selected to 

create the serialised stream as shown in Figure 2-14. The scan pattern orders the 

coefficients from low frequency to high frequency. Then, since higher frequency 

quantized coefficients tend to be zero, run-length encoding is used to group the 

trailing zeros, resulting in more efficient entropy coding.   
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Figure 2-14: Scanning order for a 4x4 block of quantised DCT coefficients 
 

The entropy coding involves converting the quanitsed DCT co-efficients, video 

header information and motion vectors into bits. Entropy coding improves coding 

efficiency by assigning a smaller number of bits to frequently used symbols and a 

greater number of bits to less frequently used symbols. 

 

There are three major types of entropy coding:  

A: Variable Length Coding (VLC) 

B: Context Adaptive Variable Length Coding (CAVLC)  

C: Context Adaptive Binary Arithmetic Coding (CABAC).  

 

Variable length coding involves assigning codes to the non-zero quantised DCT 

coefficients in a block based on the frequency of occurrence. Short codes are 
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Incoming 4x4 
quantised DCT 
coefficients block 

Starting point – quantised 
DC coefficient 
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assigned to more frequently occurring coefficients and longer codes are assigned to 

less frequently occurring values. The zero coefficients are encoded using run-length 

encoding which involves transmitting a number to represent the length of the 

current ‘run’ of zeros. VLC is used in MPEG-2 standard.   

 

Context Adaptive Variable Length Coding (CAVLC) offers superior coding 

efficiency compared to VLC. Context adaptive means that different code tables are 

used according to the content of local statistics of the block in order to achieve 

better coding efficiency. The disadvantage of CAVLC is that it can only encode 

residual coefficients context adaptively. This encoding technique is adopted by 

H.264/AVC.  

 

Context Adaptive Binary Arithmetic Coding offers superior coding efficiency 

over VLC and CAVLC by adapting to the changing probability distribution of 

symbols, by exploiting correlation between symbols, and by adaptively exploiting 

bit correlations using arithmetic coding. Unlike VLC and CAVLC, Arithmetic coding 

generates non-integer codes for higher efficiency. CABAC is not only limited to 

encoding residual coefficients but also syntax elements such as motion information, 

encoding parameter sets and header data. H.264/AVC supports CABAC encoding 

technique. 

 

H.264 also supports Context Adaptive Variable Length Coding (CAVLC) which offers 

superior entropy coding over VLC without the full cost of CABAC. However, CABAC 

has been reported to achieve 9%-14% higher compression efficiency compared to 

CAVLC [19].  

 
 
2.5.5 De-blocking filter 

Advanced video compression standards, such as H.264/MPEG-4 AVC have an in-

loop de-blocking filter that operates on both 16x16 macroblocks and 4x4 block 

boundaries. The aim of this filter is to smooth the blocking edges around the 

boundary of each macroblock without affecting the sharpness of the picture. The 

reconstructed pictures at the encoder are (optionally) filtered using the de-blocking 

filter before being used as reference pictures for inter prediction of future frames. 

In the case of macroblocks, the filter is intended to remove artefacts that may 

result from adjacent macroblocks having different estimation types (e.g. motion vs. 
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intra estimation), and/or different quantisation scales. In the case of blocks, the 

filter is intended to remove artefacts that may be caused by 

transformation/quantisation and from motion vector differences between adjacent 

blocks. The loop filter typically modifies the two pixels on either side of the 

macroblock/block boundary using a content adaptive non-linear filter. The filter 

strengths depend on the level of quantisation used. A detailed explanation of the 

de-blocking filter is given in [20].  

 

 

2.6 Video coding standards 

Standardising video coding techniques enables improved encoding and decoding 

strategies to be employed in a standard-compatible manner in order to encourage 

interoperability between video communication systems developed by different 

manufacturers. There are two international bodies that are responsible for 

standardising video codecs and helping shape the video communications Industry:  

 

A: Video Coding Experts Group (VCEG) formed by the Telecommunications 

sector of the International Telecommunications Union (ITU-T). 

B: Motion Pictures Experts Group (MPEG) formed by the International 

Standardisation Organisation (ISO)  

 

Each video coding standard specifies the syntax of the bit stream and the decoding 

process (example: use inverse discrete cosine transform (IDCT), but not how to 

implement IDCT) as shown in Figure 2-15. Standards do not specify the encoder or 

decoder specifications.  

 
Figure 2-15: Scope of standardisation  

 

ENCODER DECODER BIT STREAM 

Scope of standardisation 

(Decoding process) 
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The standards released by the ITU-T include the H.26x series and the ISO has 

released the MPEG series. This section gives an overview of popular video coding 

standards released to date including their features and applications.  

 

 

2.6.1 MPEG-1 [21] 

The draft MPEG-1 standard was released in 1993. The main features of this 

standard include support for progressively scanned video with bitrate up to 

1.5Mbps, support for flexible picture types such as I, P and B pictures to provide 

improved compression efficiency, half-pixel motion compensation and real-time 

playback. The standard was primarily developed for storage of video and audio on 

digital media such as CD-ROM. 

 

2.6.2 MPEG-2 [22] 

MPEG-2 is based on MPEG-1 and was developed in 1995 to support a wider range of 

resolutions and bitrate. It was aimed at applications including digital television, high 

definition television (HDTV) and satellite television broadcasting. Video coding tools 

in the standard include support for interlaced video and scalable video coding. This 

standard introduced the concept of “profiles and levels” to specify a set of tools and 

capabilities required by the decoder to support different applications, resolutions, 

and bitrate, and provide inter-operability between different decoders. 

 

2.6.3 H.261 [23] 

Released in 1990, this standard was aimed at low bitrate video coding applications 

including video conferencing and videophone over Integrated Services Digital 

Network (ISDN) channels. The standard utilises hybrid video coding which consists 

of block-based motion estimation and DCT transform coding, and supports only CIF 

and QCIF resolutions of non-interlaced video.  

 

2.6.4 H.263 [24] 

H.263 was standardised by ITU-T in 1993 for low bit rate video communication over 

Public Switched Telephone Network (PSTN) and mobile networks with transmission 

bitrates of around 10-24kbps or above. The core algorithm of H.263 is based on 

H.261 but it supports a bigger range of resolution formats and coding tools 

including: 
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• Half-pixel motion estimation where the motion vector accuracy is up to half 

a pixel. 

• Unrestricted motion vector mode where the motion vector is allowed to point 

outside the boundaries of the video frame. 

• Predictive coding of motion vectors where the current macroblock is 

predicted using previously coded macroblocks either in the same video 

frame or previous video frames. 

• Advanced prediction where a macroblock is divided into four 8x8 blocks and 

each block is individually motion compensated to yield four motion vectors 

for each macroblock. This method of prediction results in higher compression 

efficiency and flexibility as it is able to represent motion within a macroblock 

with better accuracy. 

 

 

2.6.5 H.264/MPEG-4 Part 10: Advanced Video Coding [1,25] 

The H.264/AVC standard was developed by the joint video team (JVT) for a variety 

of applications such as internet video streaming, mobile video, high definition 

television and DVD. The H.264/AVC is capable of achieving significantly improved 

compression performance and flexibility compared to previous video coding 

standards.  

 

The core algorithm is similar to H.263 but it includes improvements in coding 

techniques such as: 

• Enhanced motion estimation and compensation using varying block 

sizes from 16x16 pixel to 4x4 pixel sized macroblock sub-partitions. Smaller 

block sizes provide more accurate motion vectors and hence better motion 

compensation. H.264 also supports quarter pixel motion estimation and 

multiple reference frames to provide improved motion vector accuracy.  

• Unlike previous coding standards, H.264 uses a 4×4 integer block 

transform [26,27], which is based on the DCT transform, operating on 

every 4×4 residual blocks. Compared to the conventional DCT transform, the 

integer transform does not produce any loss of data as it is defined exactly 

by the integer arithmetic operation, so that inverse transform mismatch is 

avoided. 

• H.264 uses an improved in-loop deblocking filter [20,28] to smooth the 

blocking around the boundary of each macroblock without affecting the 
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sharpness of the picture. Therefore, subjective video quality is dramatically 

improved. Motion estimation predicted from filtered macroblocks has been 

shown to produce better results compared with non-filtered macroblocks. 

• H.264 supports two advanced entropy coding techniques, CABAC and 

CALVC, depending on the coding modes.  

 

The above mentioned features have enabled H.264/AVC to achieve an average 

bitrate saving of up to 50% compared to previous video standards [2]. The 

AVC/H.264 standard defines four different Profiles: Baseline, Main, Extended and 

High Profile to provide support for a variety of applications, bitrate and resolutions: 

• Baseline Profile: provides support for I and P frames, progressive video 

and CAVLC only entropy encoding. 

• Extended Profile: supports I, P, B, SP and SI frames, progressive video and 

CAVLC only entropy encoding 

•  Main Profile: supports I, P and B frames, progressive and interlaced video, 

and offers both CAVLC and CABAC. 

•  High Profile adds to the Main Profile: 8x8 intra prediction, lossless video 

coding, support for more video formats including 4:0:0, 4:2:0, 4:2:2 and 

4:4:4. 

 

2.6.6 Annex G of H.264/AVC: Scalable video coding [29] 

Video is currently used in increasingly diverse applications on many client devices 

from IPTV to mobile devices and the video streams for these devices are different in 

terms of resolutions, framerate and available bandwidth. To be made more 

compatible with a specific viewing device and channel bandwidth, the video stream 

must be encoded many times with different settings. Each combination of settings 

must yield a stream that targets the bandwidth of the channel carrying the stream 

to the consumer as well as the decoding capability of the viewing device.  

 

The scalable video coding extension to the H.264 standard (H.264 SVC) is designed 

to address this problem. It is based on the H.264 advanced video codec standard 

(H.264 AVC) but the encoded stream it generates is scalable spatially, temporally 

and in terms of video quality. Therefore, the decoded video can be rendered at 

different frame rates, resolutions, or quality levels to suit the requirements of the 

transmission channel and the viewing device. Unlike the original H.264/AVC, the 

SVC extension introduces layers within the encoded stream: 
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• A base layer containing the lowest temporal, spatial, and quality 

representation of the encoded video stream.  

• Enhancement layers containing additional information required to reconstruct 

higher quality, resolution, or temporal versions of the video during the 

decoding process. 

 

This layered approach allows the generation of an encoded stream that can be 

truncated to meet the computational requirements of the decoder. The decoder can 

simply extract the required layers from the encoded video stream with no additional 

processing on the stream. This process can even be performed "in the network". 

The video stream transitions from a high bandwidth to a lower bandwidth network 

could be made to suit the available bandwidth and the decode capabilities of the 

handheld device. Further information on the technicalities of the H.264/SVC can be 

found in [29].  

 

 

2.6.7 High Efficiency Video Coding / HEVC / H.265 [30] 

High efficiency video coding is a draft standard and a successor of the H.264/AVC. 

It is currently under development by the ISO/IEC Moving Picture Experts 

Group (MPEG) and ITU-T Video Coding Experts Group (VCEG). HEVC is aimed at 

improving the coding efficiency of the H.264/AVC high profile in terms of bitrate 

reductions, robustness to errors, computational complexity and processing delay 

time. HEVC targets next generation HDTV and support for a wide range of 

resolutions from QCIF to ultra high definition video (7680x4320). 

 

Main features of the draft standard include: 

• Extended block sizes for the coding unit from 8x8 to 64x64. 

• Larger transform block sizes which are non-square, quad-tree structured with 

sizes from 4x4 to 32x32 samples. 

• Larger number of Intra prediction directions (up to 34). 

• Adaptive motion vector prediction 

• Entropy coding using CABAC or low complexity entropy coding. 

• Advanced de-blocking loop filter (ALF). 

• High-accuracy interpolation using 6- or 12-tap interpolation filter. 
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Investigations are underway to evaluate the performance of these features and the 

final draft of this standard is expected to be completed in January 2013 [31].   

 

 

2.7 Rate-Distortion optimised video coding 

Rate distortion optimisation is the process of minimising distortion for a given 

bitrate. In video compression, rate distortion optimisation is a technique for 

selecting the best coding option to encode each coding unit that will minimise 

distortion for a target bitrate [32,33]. Research [33] has shown that by optimising 

this selection process, the overall performance of video coding increases. Advanced 

block-based video encoders such as the H.264/AVC offer a large number of coding 

modes to encode each coding unit to suit a variety of spatial and temporal content. 

For example, relatively dormant (stationary) regions of the video scene could 

simply be copied from previously decoded frames into the current frame using the 

SKIP mode. New areas in the video scene may be effectively coded directly using 

INTRA modes. On the other hand, key changing regions could be coded using 

block-based motion compensation followed by encoding of the prediction residual 

using INTER modes. Hence, it is a challenging task for the encoder to choose the 

best mode for each coding unit from a very large set of mode choices.  

 

Rate distortion optimization (RDO) can be applied in the video encoder for 

optimizing motion estimation, rate control and mode decision processes [34]. This 

section explores the practical implementations of these processes for the H264/AVC 

encoder.  

 

2.7.1 Rate Distortion optimised motion estimation  

Block-based motion estimation involves finding a motion vector which represents 

the displacement between the location of the current coding unit and its best match 

in the previously reconstructed frame. This is followed by obtaining the motion-

compensated residual block as the difference between the two blocks. Optimising 

the motion estimation process in the rate-distortion sense would ideally involve 

coding the residual data for each possible motion vector, decoding and 

reconstructing the macroblock in order to measure the corresponding bit usage and 

distortion. However, due to the very large number of possible motion vectors to 

choose from, the computational overload of coding every residual difference signal 

is very large in a practical video encoder. Hence, rate-distortion optimised motion 
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estimation involves finding a motion vector that minimises the motion vector cost 

mvJ  which is calculated as follows: 

          mvmotionDFDmv RDJ λ+=                      (5) 

 

Where DFDD  is the pixel differences between the current macroblock and the motion 

compensated (displaced) macroblock for the corresponding motion vector. It is 

usually measured as the sum of absolute differences (SAD) or the sum of squared 

differences (SSD). mvR  is the number of bits used to transmit the motion vector and 

motionλ  is the Lagrangian multiplier for the motion estimation process.   

 

It must be noted that in the context of video coding, rate-distortion optimisation 

usually involves rate and distortion measures obtained using the original 

macroblock and the reconstructed macroblock which is obtained as a result of 

coding and decoding process. However, DFDD  and mvR  measures used in equation 

(5) are estimations used instead of the ‘actual’ distortion and rate values of the 

macroblock. Therefore, optimisation of motion estimation involves minimising the 

block difference subject to a constraint on the motion vector bits rather than the 

actual rate-distortion optimisation process.    

 

  

2.7.2 Rate distortion optimised mode selection 

Motion estimation on a macroblock results in the selection of the most appropriate 

motion vector for each available inter prediction mode. This is followed by the mode 

selection process which involves choosing the best mode to encode a macroblock 

from the available modes. In case of H.264, the available modes include 7 different 

coding modes: SKIP, INTER 16x16, INTER 16x8, INTER 8X16, INTER 8X8, INTRA 

16X16 and INTRA 4X4 so that spatial and temporal detail in a macroblock can be 

best presented. 

 

The goal of the rate-distortion optimised mode selection algorithm is to find the 

best coding mode from a set of available modes that minimises the distortion for a 

rate constraint. The process involves encoding each macroblock using a certain 

mode followed by decoding and reconstruction to obtain the actual rate and 
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distortion measures. The optimisation is carried out by minimising the following 

mode selection cost function mdJ : 

              cecmd RDJ RemodRe λ+=                            (6) 

 

Where cDRe  is the actual distortion between the original and reconstructed 

macroblocks obtained by calculating the sum of squared difference (SSD) between 

the two macroblock pixels. cRRe  is the number of bits spent for coding the entire 

macroblock (including transformed residual coefficients and motion vectors) and 

emodλ  is the Lagrange multiplier for mode selection. Figure 2-16 shows the process 

of calculating the rate-distortion cost function during the mode selection process in 

the H.264 video encoder.  

 

 

 
 
 
 
 
 
 
 
 
 
  
 
 

 
Figure 2-16: The process of calculating mode selection Lagrangian cost in H.264 
 

 

2.7.3 Choice of λ for mode selection and motion estimation 

Lagrangian R-D optimisation involves finding a mode that minimises the rate-

distortion cost function for an appropriate Lagrange multiplier that satisfies a 

certain rate constraint. The quantisation parameter (QP), which controls the 

amount of compression, also plays a key role in achieving this rate target. Hence 

different QP values should also be evaluated along with the available macroblock 

modes for minimising the Lagrangian R-D cost function. 
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Finding an appropriate Lagrange multiplier for a certain rate constraint is an 

iterative process which involves: 

• Choosing a particular value for λ = λ* 

• Minimising the R-D cost function for all available QP and mode combinations. 

• Selecting the best mode and QP combination (QP*, mode*) for the given λ* 

value. 

 

The above iterative process, though optimal, is impractical for real-time video 

coding scenarios due to the large computational load. Hence, modelling the 

Lagrange multiplier is essential to determine the λ value prior to encoding the 

macroblock. 

 

Sullivan et al [33] conducted experiments to model the Lagrange multiplier using 

the H.263 test model [35]. Lagrangian optimisation of mode selection was 

performed on various sequences using different QP values along with available 

macroblock modes for a selected set of λ values. By plotting the emodλ  versus 

average macroblock QP values, they determined the approximation of the 

functional relationship between  emodλ  and average QP as: 

                               
2

mod *85.0 QPe =λ                                 (7) 

This equation is a one-to-one relationship between λ and QP which implies that for 

a certain emodλ  value, a specific QP can be selected. This relation also means that, if 

a certain QP is selected prior to encoding (by a rate control algorithm), the 

corresponding emodλ  value can be calculated using equation (7) to optimise the 

mode selection process. Sullivan et al also found that equation (7) holds for 

sequences with widely varying content indicating that sequence statistics have 

insignificant impact on the emodλ  - QP relationship. However, it must be noted that 

ignoring variations in sequence statistics may lead to sub-optimal solutions. 

 

The following Lagrange multiplier models for motion estimation were also proposed 

by Sullivan et al through experimental evaluations: 

 

1. When the distortion DFDD  is calculated using sum of squared differences 

(SSD), the Lagrange multiplier can be calculated as: 
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                           emotion modλλ =                                 (8) 

2. When the distortion DFDD  is calculated using sum of absolute differences 

(SAD), the Lagrange multiplier can be calculated as: 

                                             emotion modλλ =                               (9) 

It was shown by the Sullivan et al that the overall performance gain of the rate-

distortion optimised mode selection and motion estimation process was around 

10% reduction in bit rate and around 0.5dB in PSNR for fixed output picture quality. 

Therefore, this algorithm was adopted in the H.263 reference encoder TMN10 [36]. 

 

Following the experiments carried out in [33], Weigand et al presented a new 

model for the Lagrange multiplier as a function of QP for the H.264/AVC reference 

encoder [37].  Unlike the model described in [33], the Lagrange multiplier model 

for mode selection is selected based on the frame type.  

 

For I and P frames:  

                                  
3

,mod 2*85.0
QP

Pe =λ                            (10) 

For B frames: 

                   PeBe

QP
,mod,mod *

6
,4min,2max λλ 
















=              (11) 

 

The Lagrange multiplier for motion estimation is calculated as: 

                                         emotion modλλ =                                        (12) 

This is similar to H.263 (9) but the distortion DFDD  is calculated using sum of 

(transformed) absolute differences (SATD) as opposed to sum of absolute 

differences.  

 

A graphical interpretation of the Lagrange multiplier model for I and P frames is 

given in Figure 2-17. 
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Figure 2-17: Relationship between QP and the Lagrange multiplier in H264/AVC 

 
 

A large QP value will result in a large Lambda value λ and the Lagrangian cost 

J=D+λR weigh more on coded bits R making it a dominating factor in the mode 

selection process. Therefore, modes that produce lower coded bits will have a 

higher probability of being selected. Similarly, a smaller QP yields a smaller λ and 

the Lagrangian cost J=D+λR weigh more on the distortion parameter D making. 

Hence, modes (such as intra prediction) resulting in a lower distortion may then be 

chosen. 

 

In summary, the Lagrange multiplier models described above are very simple 

models which can be easily incorporated into any block-based encoder. The models 

are based on experimental results, assumptions and approximations. Since these 

models do not incorporate changing sequence statistics, the relative R-D 

performance gains may vary depending on the sequence under test. More details 

about the Lagrange multiplier models for H.264/AVC can be found in [38]. 

 

 

2.7.4 Rate Distortion optimisation and rate control 

The video encoder uses parameters such as quantisation parameter and motion 

estimation search area, to control the outcome of an encoding process. If these 

control parameters are kept constant, then the number of bits produced for each 

macroblock will change depending on its content, causing the bit rate of the 

encoder output (measured in bits per second) to vary. An encoder with constant 
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control parameters will typically produce more bits for high motion and/or detail 

content and fewer bits for low motion and/or detail. Figure 2-18 shows the variation 

of mean coded bitrate across consecutive frames in the Foreman CIF sequence 

compressed using H.264/AVC reference codec at fixed QP=26.  
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Figure 2-18: Variation of coded bits between consecutive frames of Foreman 
sequence when coded using fixed QP. 
 

This variation in bitrate can be a problem for practical video communication 

applications such as video transmission across a constant bit rate or a congested 

transmission channel. In these cases, it is necessary to adapt or control the bit rate 

produced by a video encoder to match the available bitrate. 

 

Rate control involves modifying the encoder control parameters in order to maintain 

a target bit rate. Rate control is not a part of video coding standards, but the 

standards group has issued non-normative guidance to aid in implementation. A 

common approach to rate control is to modify the quantisation parameter QP to 

achieve a target bit rate. Increasing QP reduces coded bitrate (at the expense of 

lower decoded quality) and decreasing QP increases coded bit rate. A rate control 

mechanism recommended for H.264/AVC is described in [38,39,40]. This 

mechanism makes use of a quantitative model that adapts to changing macroblock 

statistics in order to determine the relationship between QP and bit rate. Models are 

necessary to avoid iterative encoding using different QP values in order to achieve 

the target bit rate for the macroblock. However, models lead to approximate 
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results. Therefore the required rates may not be tightly achieved for each 

macroblock. In any case, multiple encoding is avoided to minimise the 

computational complexity and overall delay. 

 

2.8 Summary 

This chapter explained the fundamental concepts of digital video representation and 

video coding. These are summarised below:  

• The high bandwidth requirement of digital video means that digital video 

coding is a necessary part of multimedia video communication applications 

where transmission bandwidth and storage capacities are limited. 

• Block-based video coding algorithms employ various techniques including 

predictive coding for exploiting data redundancies, transform coding for 

converting data to a compactable form for efficient compression, quantisation 

for performing lossy compression, entropy coding to remove statistical 

redundancy and coding tools such as the de-blocking filter to improve the 

quality of compressed video. 

• In order to increase the inter-operability of video coding algorithms on 

various platforms and applications, video coding standards have been 

introduced. 

• H.264/AVC is the most efficient of all existing video coding standards in 

terms of bitrate reductions and flexibility. This high efficiency is achieved due 

to the use of advance coding tools and the efficient rate-distortion 

optimisation techniques discussed in this chapter. 

• However, with bit rate savings comes quality reduction and video quality is 

an important factor in multimedia applications. Therefore, maintaining good 

quality whilst achieving high compression efficiency is a challenge to existing 

video compression algorithms. The next chapter will look at various 

techniques for measuring and evaluating the quality of video sequences 

compressed using block-based video coding algorithms. 
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3 Video Quality Measurement 

3.1     Introduction 

Multimedia video data may be subjected to various forms of distortion during video 

capture, transmission and storage. Video capture devices may introduce distortion, 

such as aliasing, in the video during the digitisation process. Video coding 

algorithms used to reduce transmission bandwidth and storage requirements of 

video data may cause degradations in video quality during compression. Error-

prone communication networks such as the Internet may cause data loss or delay 

during video data transmission. All these imperfections may cause degradations in 

video quality. Therefore, video quality measurement techniques are necessary in 

multimedia video communication systems for evaluating and quantifying 

degradations in video quality so that they can be monitored, managed and possibly 

reduced.  

 

Video quality metrics can be employed in various stages of the video 

communication process. Video acquisition systems such as digital cameras may use 

quality metrics to monitor and automatically adjust their settings to acquire best 

quality video. These metrics may be embedded into video coding algorithms for 

optimising encoding parameters. Several video processing algorithms available for a 

specific task could be benchmarked using video quality metrics to determine the 

optimum choice. Network video servers can examine and control the quality of 

video transmitted through the network. 

 

This chapter will focus on the basic concepts and approaches of existing video 

quality assessment techniques in order to understand their advantages and 

limitations. Most multimedia video applications are meant for the human observer. 

Therefore understanding the various mechanisms involved in the processing of 

visual information by the human visual system is important. Section 3.2 gives an 

overview of these mechanisms including the limitations of human vision. In section 

3.3, various types of compressed-induced distortion are discussed. Approaches to 

measure video quality are reviewed in Section 3.4. Section 3.5 introduces the 

current status of objective video quality measurement research with emphasis on 

full reference objective metrics. In section 3.6, issues related to the validating and 
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standardising of objective video quality measurement techniques are discussed. 

Techniques for evaluating the performance of video quality metrics are mentioned 

in section 3.7. Finally, section 3.8 makes some concluding remarks highlighting the 

limitations of the existing video quality assessment techniques and the need for a 

new video perceptual quality metric. 

 

 

3.2     The Human Visual System (HVS) 

Video displays and video compression algorithms are evolving to meet the 

requirements demanded by the human visual system. Hence, there is a need to 

understand the fundamentals of human vision in order to determine what is 

essential to process and display video in a way that is relevant to the human 

observer. This understanding involves looking at the various components of the 

human visual system, the mechanisms of processing of visual information and the 

limitations of visual perception. 

 

3.2.1 Structure of the human eye 

 
Figure 3-1: Diagram showing the structure of the eye 

 

Figure 3-1 shows the main components of the human eye. Light coming from an 

object first encounters the eye at the cornea, the main refractive surface of the 

eye. The light then enters the eye through the pupil, the hole in the centre of the 

pigmented iris. The pupil is able to change its diameter in order to control the 

amount of light entering the eye, hence contributing to the eye’s ability to adapt to 

a wide range of illuminations. The light then passes through the lens of the eye, a 

transparent flexible structure that changes its shape to focus the image onto the 
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back of the eye. This flexible nature of the lens makes it possible to see near and 

distant objects. The fluids that fill the eye (vitreous and aqueous humour) help 

maintain its shape. 

 

When the eye is properly focused, light from an object is imaged onto the back of 

the eye. Lining the back of the eye is the retina where light sensitive neurons called 

photoreceptors work as transducers to convert light energy into electro-chemical 

signals used by the nervous system for interpretation of visual data. There are two 

classes of photoreceptors: rods and cones. Rods facilitate vision in low levels of 

illumination. They serve to give an overall picture of the field of view and do not 

contribute to colour vision. The cones operate at higher levels of illumination and 

contribute to colour vision. The fovea of the eye is the central region of the retina 

and has the highest concentration of cones for high resolution vision. There are 

three types of cones depending on the sensitivity to the various wavelengths of 

visible light (400nm - 700nm). These are the short wavelength sensitive cones (S-

cones), middle wavelength sensitive cones (M-cones) and long wavelength sensitive 

cones (L-cones). The three cone types are responsible for splitting the image 

projected onto the retina into three visual streams which can be thought of as the 

Red, Green and Blue colour components. The signals from the photoreceptors are 

transmitted from the eye to the brain through interconnecting nerve cells in the 

optic nerve called the ganglion cells. Further information on the structure of the 

human eye can be found in chapter 2 of [4].  

 

3.2.2 The Visual Pathway 

Visual pathway in the brain includes the eyes, the optical chiasms, the lateral 

geniculate nucleus (LGN) and the primary visual cortex [4]. Visual signals from the 

eye reach the brain for interpretation through the optic nerve. The optic nerves 

from both eyes meet and cross at the optic chiasm present at the base of the brain. 

This is where information coming from both eyes is combined and then distributed 

according to the visual field. The right half of the field of view is sent to the left side 

of the primary visual cortex and the left half of the field of view is sent to the right 

side of the primary visual cortex for processing. A small region in the centre of the 

field of view is processed redundantly by both halves of the primary visual cortex. 

The neurons in the visual cortex are known to be tuned to various aspects of the 

incoming visual streams such as spatial and temporal frequencies, orientation and 

motion. The visual streams undergo higher levels of processing in the brain for 
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interpretation of data input by the human visual system. The lateral geniculate 

nucleus is a “bent knee” like structure found in the thalamus of the brain and is 

present on both sides of the brain. It is the primary relay centre for visual 

information coming from the retina and relays this information to the primary visual 

cortex for further processing. 

 

3.2.3 Mechanisms of the Human Visual System 

Various mechanisms of the human visual system facilitate the processing of the 

visual information and correlate with perceptual image and video quality [41]. 

These mechanisms include: 

A: Light adaptation 

B: Contrast sensitivity  

C: Colour processing 

D: Masking effects  

E: Pooling of multi-channel information  

 

Light adaptation is the ability of the human visual system to adapt to a wide 

range of light intensities ranging from scotopic (very low light) vision to photopic 

(bright/daylight) vision. Light adaptation by the human visual system is possible 

due to the controlling of the amount of light entering the eye through the pupil and 

the adaptation mechanisms of the photoreceptors which increase or decrease the 

signal output of the photoreceptors depending on the changing light intensities. 

 

Contrast sensitivity is the sensitivity of the human visual system to relative 

variations in luminance over a wide range of background light intensity. The 

phenomenon that maintains contrast sensitivity over a wide range of intensities 

(ranging from faint lighting to daylight) due to the adaptation capabilities of the 

human visual system is called Weber-Fechner’s law.  

 

Colour processing by the human visual system is facilitated by the three types of 

cones in the retina: L-, M- and S- cones. Colour as perceived by the human visual 

system has five attributes: brightness - which is the intensity of the colour, 

lightness - which is relative to white colour, colourfulness - which is the 

chromaticity of the colour, chroma – which is chromaticity relative to white colour 

and hue – which is the attribute of a colour.   
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Masking is a phenomenon that explains why a stimulus which is visible by itself 

may not be visible in the presence of another stimulus. The masking effect reduces 

the visibility of the stimulus under test. Spatial masking occurs when a spatial 

component (such as texture or a strong edge) that is visible by itself may not be 

detected in the presence of another spatial component. Spatial masking is strongest 

when the image component under test and the surrounding image components 

have similar frequencies, colour and orientation. On the other hand, temporal 

masking is an elevation of visibility thresholds due to temporal changes in intensity. 

An increase in the amount of temporal change causes an increase in the masking 

effect.   

 

Pooling of multi-channel information involves the integration of various types 

of visual information such as colour, texture, contrast, motion, shape, orientation 

and masking effects in order to make an interpretation. It is not quite understood 

how the human visual system performs pooling but it is known to involve cognition.   

 

Apart from the above mentioned visual mechanisms, compression induced 

distortion also has influence on the visual quality of multimedia video sequences. 

This is described in the next section.  

 

 

3.3     Compression induced visual distortion in video 

Block-based compression algorithms rely on motion estimation and compensation, 

block-based Discrete Cosine Transform (DCT) and quantisation processes in order 

to compress video. In such coding schemes, visual distortions are mainly caused 

due to the quantisation of transform coefficients. Other factors contributing to 

visual distortion include motion prediction error and sampling of video data which 

causes aliasing. This section introduces prominent compression induced visual 

distortion such as blocking effect, blurring, colour bleeding, ringing, staircase effect, 

block motion prediction error induced artefacts, false edges and other temporal 

artefacts. A detailed description of compression induced distortion can be found in 

chapter 3 of [42].   
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3.3.1 Blocking effect 

Blocking effect or blockiness is the most prominent visual distortion in video 

compressed using block-based compression algorithms. It refers to the block 

pattern in compressed video characterised by discontinuities between adjacent 

blocks in a video frame. It is due to coarse quantisation of the DCT coefficients in 

individual blocks. The visibility of blockiness depends on the content of the blocks 

as well as the masking effects of the HVS. The blocking effect is usually prominent 

in smoothly textured regions and around moving objects as a result of poor motion 

compensation and block mismatch.  

 

3.3.2 Blurring 

Blurring in compressed video images occurs due to the loss of detail from moderate 

to high spatial activity regions such as roughly textured areas and around scene 

object edges. In intra-frame coded macroblocks, blurring is related to coarse 

quantisation of higher order AC DCT coefficients. In inter-frame coded macroblocks, 

blurring is mainly a consequence of the quantisation process and prediction from 

previously coded macroblocks which lack spatial detail. 

 

3.3.3 Colour bleeding 

Luminance and chrominance video data are processed separately in block-based 

compression algorithms. The loss of detail in luminance information results in 

blurring. The corresponding effect in chrominance information results in smearing of 

colours between areas of strongly contrasting chrominance due to coarse 

quantisation of higher order AC coefficients in the chrominance blocks.  

 

3.3.4 Ringing 

Ringing effects occur along high contrast edges in areas of generally smooth 

texture. It appears as a wave like transition or rippling moving outwards from the 

edges. The higher the contrast of the edge, the level of peaks and troughs of the 

rippling will be greater.  

 

3.3.5 Staircase effect 

The Staircase effect appears in diagonal edges that are represented within a string 

of blocks. Coarse quantisation of these blocks leads to discontinuities around block 

boundaries. Figure 3-2 shows the staircase effect along the edge of the building in 

the image. 
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3.3.6 Block MC mismatch induced artefacts 

Block motion compensated mismatch occurs when objects overlap in macroblocks. 

Subsequent motion compensation will be unable to find a satisfactory match for the 

overlapping objects resulting in high prediction errors. These errors are ineffectively 

coded due to quantisation leading to higher visibility of the mismatch. 

 

3.3.7 False edges 

False edges mainly occur in inter-frame coded macroblocks which have been 

predicted using macroblocks which contain blocking artefacts. These artefacts are 

more prominent in smooth areas and object boundaries.  

 

Figure 3-2 illustrates various compression induced distortions using the original and 

compressed video frames of the “Sign Irene” sequence. These include: false edges 

around the eyebrow area, ringing (or rippling effect) at object boundaries in the 

background, colour bleeding or smearing between the maroon and turquoise 

colours on the shirt, blurring of detail on the shirt area, staircase effect on the edge 

of the window and prominent block effect in the facial region.   

 

Other temporal artefacts include: jerkiness and temporal fluctuations in stationary 

areas resulting in flickering effect caused due to quantisation of prediction errors. 

Suppression of the compression induced visual distortions is a priority to video 

compression algorithms. Hence video quality assessment techniques have been 

extensively researched to develop and evaluate new techniques which can help 

identify and manage visual distortions. The following sections in this chapter will 

focus on the various state-of-the-art approaches to video quality measurement, 

their applications and limitations.   
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                                                           (a) 

         
                                                              (b) 

Figure 3-2: Compression artefacts. (a) Original frame (b) Compressed frame 
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3.4     Classification of video quality measurement techniques 

There are two approaches to measuring video quality: subjective assessment and 

objective measurement. Subjective assessment involves utilising human observers 

to assess video quality and express their opinion on a specific rating scale. The 

average quality of the degraded video is the mean opinion score (MOS). Subjective 

assessment is an accurate way of measuring perceived quality. However, it is 

expensive in terms of time and complexity, and cannot be easily implemented in 

real-time video applications.  

 

Hence objective measurement techniques have been developed to predict 

subjective quality without human input. These techniques are automatic and are 

based on the physical aspects of the video signal and characteristics of the HVS. 

The performance of an objective quality measure depends on how closely it 

correlates with subjective results. Although existing objective measures do not 

completely reproduce the subjective assessment result, they are widely employed 

in video communication systems due to their repeatability, speed and simplicity.  

 

3.4.1 Subjective quality measurement 

Subjective measurement involves evaluating, comparing and assessing the picture 

quality of a video sequence under test using human observers. The outcome of 

subjective quality tests depend on many factors such as: selection of test material, 

selection of participants, experimental setup and following standardised testing 

methods. 

 

Selection of test material is an important factor during subjective evaluation and is 

application specific depending on the video communication system under test. For 

example, if video sequences are being tested for a multimedia video communication 

system then the test video bit rate, frame rate and resolution should be within the 

range suitable for multimedia applications. Apart from video specifications, video 

content also plays an important role in the outcome of the subjective testing 

process and is dependent on the application. For testing videoconferencing 

systems, the test material would have sequences with “head and shoulder” shots 

and little motion. Similarly test material for assessing surveillance video systems 

will contain both indoor and outdoor video clips with changing backgrounds and 

large motion. The duration of each test video clip is also important. Since a number 

of test sequences are evaluated in a single test, the duration of each test sequence 
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must be long enough to rate overall quality and short enough to keep the time 

taken to complete the test within the limited time specified in the ITU-T 

Recommendation P.910 [6] for multimedia applications. Generally, the duration of 

video clips for subjective quality assessments is around 10 seconds.  

 

Participants for a subjective test could either be expert or non-expert. Experts in 

video communications have experience in designing and evaluating video 

communication systems. The advantage of using experts is the test process is 

quicker, they know what they are looking for and their feedback may be valuable in 

improving the video communication system under test. The disadvantage of using 

experts is the results may not be representative of the average consumer. Non-

experts, on the other hand, represent the general public or the average consumer 

with no pre-determined way of looking at a video sequence. The ideal number of 

participants for a subjective test depends on the standard deviation of the 

subjective ratings for each video sequence and the 95% confidence interval due to 

the fact that the video has been rated by a limited number of the population.     

  

Experimental setup includes environmental factors that need to be taken into 

account while conducting a subjective test. These include: the number of test 

sequences, duration of the test, the video display device and the test room 

conditions such as ambient noise and lighting. Standard environmental setup 

parameters have been defined in ITU-R Recommendation BT.500-11 [5] for 

subjective assessment of digital television pictures and in ITU-T Recommendation 

P.910 [6] for multimedia applications.  

 

There are several methodologies for conducting subjective assessment. 

Standardised methodologies [5,6] that are internationally accepted include: 

A: Single stimulus continuous quality evaluation (SSCQE) 

B: Double stimulus continuous quality scale (DSCQS) 

C: Double stimulus impairment scale (DSIS) 

D: Pair comparison (PC) 

 

Single stimulus continuous quality evaluation (SSCQE) method involves assessing 

the picture quality of video sequences independent of one other. The viewers rate 

each video sequence using a five grade rating scale: Excellent (=100), Good (=75), 

Fair (=50), Poor (=25) and Bad (=0). SSCQE is a continuous evaluation method 
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where video sequences are presented to the viewers one after the other as shown 

in Figure 3-3. The reference video is not shown. This method is used to assess 

quality of video sequences that are scene dependent and time-varying. The analysis 

is based on calculating the mean opinion score for the ratings of each test video 

sequence.  

 

 
                                         (a)                                                        (b) 
Figure 3-3: The SSCQE method: (a) Order of presenting and rating video.  (b) Five-
grade rating scale. 
 

 

In the Double stimulus continuous quality scale (DSCQS) method viewers are 

presented with the reference video and the video under test twice in an alternating 

fashion. The order of the two sequences is displayed randomly and picture quality is 

rated using a five-grade rating for each sequence separately as shown in Figure 3-

4. The analysis is based on the difference in rating for each pair. This method is 

preferred when the differences in picture quality of the reference and degraded 

video are small.  

 
                                        (a)                                                                   (b) 
Figure 3-4: The DSCQS method: (a) Order of presenting and rating video. Grey 
area represents delay in viewing  (b) Rating scale for videos A and B. 
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Double stimulus impairment scale (DSIS) involves presenting the reference video 

once followed by the test video sequence. Viewers rate the amount of impairment 

in the test video sequence in comparison with the reference video using a five 

grade rating scale as shown in Figure 3-5. 

 

 
                                         (a)                                                        (b) 

Figure 3-5: The DSIS method: (a) Order of presenting and rating video. Gray area 
represents delay in viewing  (b) Rating scale for test video. 
 

 

Pair comparison (PC) involves displaying the two video sequences under test at 

the same time on the same screen to make a preference judgement based on 

picture quality. This method is useful for when there is very fine discrimination 

between the two video clips. 

 

The analysis of the above mentioned subjective test ratings is performed by 

averaging the ratings from all observers for each test sequence into a mean opinion 

score (MOS) to represent the subjective quality of the corresponding test video. 

  

Limitations of subjective assessment methods: 

• The subjective results can vary significantly depending on the assessor and 

also on the video sequence under test. 

• Repetitions of sequences may lead to the viewers becoming familiar with the 

degradations and materials under test. 

• Longer sequences (over 30 seconds in duration) are more representative of 

the actual video broadcasting. Implementing the subjective assessment 

methods using longer sequences would be difficult and time consuming.  

• Subjective assessment gives an overall rating of the video sequence. Hence 

it is difficult to pinpoint severity of the impact of individual degradations. 
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• Subjective assessment results  may not be suitable for long sequences due to 

the recency effect which means that the judgement of the overall video 

quality may heavily depend on the last 5-10 seconds of the video sequence 

[43]. 

 

Subjective assessment is used to measure perceived video quality. However, the 

above mentioned limitations make it expensive in terms of time and resources, and 

not suitable for real-time video applications. Hence, objective quality measures 

have been developed to predict the subjective results automatically based on the 

video content and by modelling the characteristics of the human visual system. 

 

3.4.2 Objective quality measurement 

There are three approaches to objective measurement of perceived video quality 

depending on the availability of a reference video: full-reference, reduced reference 

and no reference. An overview of the approaches is provided in the remainder of 

this section.  

 

Full-reference video quality measurement makes an assessment of the quality 

of the degraded video sequence by making a comparison with the reference video 

sequence as shown in Figure 3-6. This approach provides the highest quality 

measurement accuracy amongst the objective measurement approaches because it 

has access to the reference data. Full reference quality measures are typically 

employed in designing and benchmarking new video communication algorithms 

where the availability of the reference video and computational complexity is not an 

issue. Several full reference models have been proposed in the literature. An 

overview of existing full reference models is given in section 3.5 of this chapter. 

 



 56 

 
Figure 3-6: Full reference video quality measurement 

 

In reduced reference video quality measurement, specific features are 

extracted from both the reference and processed video sequences as shown in 

Figure 3-7. These features could include spatial, temporal, blockiness and blurriness 

information. Features extracted from the reference video are transmitted to the 

receiving system through a side channel for quality estimation of the processed 

video sequence. Reduced reference approach is not as computationally expensive 

as the full reference approach. However, it requires a side-channel for transmission 

of reference feature information and this channel must be error-free.  

 

Several reduced reference techniques have been proposed in the literature. Wolf 

and Pinson [44] have developed a reduced reference model for in-service quality 

measurement of standard television video sequences. The model uses low-level 

features extracted from the spatio-temporal regions of the reference and degraded 

video sequences with region size based on the side-channel bandwidth and the 

accuracy requirement of the system under test. Spatial and temporal features 

based on the visibility and masking of artefacts are obtained from both the 

degraded and reference video sequences and processed through comparison 

functions in order to obtain an overall quality measure of the degraded video 

sequence.  
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In [45] a reduced reference quality assessment model for standard definition 

compressed video sequences is proposed. The model measures local harmonic 

gain/loss feature which is derived from image spatial gradients. The harmonic 

gain/loss feature is used to identify blockiness and blurriness in a video frame. If 

the gain/loss measure indicates energy gain then it represents blockiness and 

conversely, energy loss would indicate blurriness in the video frame. A motion 

correction factor has been incorporated into the harmonic gain/loss feature to deal 

with temporal changes in the video sequence.   

 

 
Figure 3-7: Reduced reference video quality measurement 

 

No-reference video quality measurement methods are employed in scenarios 

where access to the reference video sequence is not possible. The quality 

measurement is made based only on the analysis of content of the degraded video 

sequence as shown in Figure 3-8. The lack of reference video means that this 

measurement technique has prediction accuracy lower than the full-reference and 

reduced-reference approaches. No-reference methods are based on models of 

visual distortions built using training data sets. These methods are popularly used 

to measure the impact of transmission errors on video quality.  
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In [46], a no-reference metric for measuring blockiness in reconstructed video 

sequences caused due to packet loss is described. The metric is based on 

measuring the activity around block edges and counting the number of blocks that 

contribute to the overall perception of blockiness in the video image. Standard 

deviation and gradients are computed for each block to identify blockiness. 

Counting the number of blocks with blockiness artefacts enables the determination 

of the extent of packet loss per video frame.  

  

 

 
Figure 3-8: No reference video quality measurement 

 

3.5     Full reference objective quality measurement techniques – a review 

Video compression algorithms employ full reference measures such as MSE and 

PSNR to make optimum compression decisions. Several approaches to full reference 

quality measurement have been proposed in the literature. In this section, an 

overview of popular full reference video quality measures such as: pixel-based 

measures, HVS-based models, standardised full reference models and visual 

masking based models are presented.  

 

3.5.1 Pixel-based quality measures 

Pixel-based measures are based on a pixel-by-pixel comparison of two video 

sequences. Mean Squared Error (MSE) and Peak Signal to Noise Ratio (PSNR) 

Video Video 

reduced reference quality 
measurement 

   Compression and 
Transmission system 

Reference video Processed video 



 59 

between the reference and distorted video data are simplistic but widely used pixel-

based difference measures in video compression algorithms [32]. MSE is the mean 

of the squared differences between the samples of the reference video sequence (I) 

and degraded video sequence (Ic) with picture size MxN and T frames per sequence 

as follows: 
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While MSE measures the mean difference between two video sequences, PSNR 

gives a measure of fidelity i.e., how closely a video sequence resembles the 

reference video. PSNR is measured in decibels on a logarithmic scale using MSE 

between the reference and degraded video sequences and the square of the highest 

possible sample value in video image (i.e., 255 for an 8-bit image) [13]. PSNR is 

calculated for an n-bit image as: 
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The popularity of the two metrics is due to the fact that minimizing MSE and/or 

maximising PSNR is well understood from a mathematical point of view. Besides, 

the computational time for the calculation of MSE and PSNR is very small and their 

implementation is relatively simpler.   

 

 

Pixel-based measures such as MSE and PSNR make a comparison on a pixel-by-

pixel basis. Hence they may not have good correlation with the distortion perceived 

by the human observer and therefore are not accurate measures of perceived 

quality for compressed video sequences [47,48,49].  

 

Visibility of distortions depends on factors such as video content, task in hand and 

viewer interest. Therefore, perceived quality of two video images with very similar 

MSE or PSNR may be very different. This is illustrated in Figure 3-9 which shows 

video frames from two sequences: (a)Akiyo, with average frame MSE = 74.46 and 

(b)Deadline with average frame MSE = 74.61. It can be seen that although the 

average MSE of both video frames are similar, the visual quality of video frame (b) 
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may be ranked as better than video frame (a). The detail in the background of 

frame (b) and the facial features are better than frame (a).  

 

 

 

 

 

  

 

 

 

   

                               (a)                                                              (b) 

Figure 3-9: Video frames of two test sequences (a) Akiyo, average frame MSE = 
74.46 and (b) Deadline, average frame MSE = 74.61  
 

Hence the above example demonstrates that MSE does not necessarily correlate 

with perceived quality. Therefore, several full reference objective video quality 

measures have been proposed and analysed as alternatives to MSE and PSNR. 

These measures focus on modelling the known psycho-visual properties of the 

human visual system. To date, attempts to use these objective metrics to measure 

real-time video quality have been limited by their accuracy and computational 

complexity. 

 

3.5.2 Human visual system based models 

To overcome the limitations of pixel-based quality measures, several human visual 

system based models have been proposed. HVS-based metrics consider the 

distorted signal to be the sum of the reference signal and an error signal. A quality 

assessment of the degraded signal is made by evaluating the visibility of the error 

signal based on the physiological and psychophysical characteristics of the human 

visual system. The general framework of HVS-based metrics [50] is given in Figure 

3-10. 
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Figure 3-10: General Framework for HVS-based video quality metrics 

 

Pre-processing stage: 

Both the reference and degraded video sequences undergo pre-processing 

operations which may involve [51,52]: spatial and temporal alignment to align 

samples between the two video sequences, colour transformation to a colour space 

that conforms better with the human visual system (such as CIE L*a*b*), low pass 

filtering to simulate the point spread function of the eye and light adaptation to 

exploit the non-linear perception of luminance by the human visual system. 

 

Contrast sensitivity function filtering: 

An important characteristic of the HVS concerns the decreasing sensitivity to higher 

spatial and temporal frequencies. This phenomenon is parameterised by the 

contrast sensitivity function. Linear filters are generally used to approximate the 

spatial frequency response of the HVS while infinite impulse response (IIR) filters 

are used to model the temporal frequency responses [48,51,53]. Each colour 

channel resulting from the colour space conversion is separately processed using 

CSF filtering. 

 

Spatial and temporal decomposition: 

Spatial and temporal decomposition involves separating the various colour channels 

into different spatial and temporal frequencies (sub-bands). This may be 

accomplished using several methods such as: block-based discrete cosine transform 

(DCT) [50], Gaussian/Laplacian pyramids [51] to perform multi-scale band-pass 

decomposition and separable wavelet transforms [54] to decompose the signals 

into logarithmically spaced frequency bands. The wavelet and DCT decomposition 

models are shown in Figure 3-11.  
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                                        (a)                              (b) 

Figure 3-11: Examples of frequency decomposition models. (a)Wavelet [54] 
(b)Block-based DCT [8] 
 

Error normalisation and masking: 

The error signal is calculated as the difference between the decomposed channels 

of the reference and degraded video sequences and is calculated separately for 

each colour channel. The visibility of the error signal is determined by weighting 

using visibility thresholds which are calculated based on various masking factors 

such as contrast masking [51] and spatio-temporal masking mechanisms [52]. 

Masking is a phenomenon of the human visual system which affects the visibility of 

certain features in a video scene due to the presence of other features. 

 

Error pooling mechanisms: 

Error pooling involves combining error signals from various channels into a single 

value measure of quality of the degraded video sequence when compared with the 

reference video sequence. The most commonly used error pooling technique is the 

Minkowski error metric [55] calculated as shown: 
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Where referenceI  and radedI deg  are the multi-channel decompositions of the reference 

and degraded video sequences in terms of spatial locations x and y, scale l, 

temporal channel t and frames n. β  is the Minkowski exponent with value 

dependent on the number of dimensions across which  the quality measurement is 

made. 
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3.5.3 Standardised metrics 

In 2000 and 2003, the video quality experts group (VQEG) conducted independent 

tests to evaluate the performance of several full reference objective video quality 

metrics in the context of digital television broadcasting. Two large subjective tests 

were setup to compare the performance of these algorithms. These include the 

phase I and phase II tests on full reference television (FR-TV) video sequences 

[56,57]. Based on these studies, the International Telecommunication Union (ITU) 

has standardised the recommendations ITU-T J.144 [58] and ITU-R BT.1683 [59] 

for estimating the perceptual video quality in digital television video sequences 

when the original video sequence is available (full reference models). These include 

National telecommunication and information administration’s video quality metric 

(NTIA/ITS VQM) [60]. 

 

The NTIA/ITS VQM [60] algorithm uses five video quality models to extract different 

parameters from both the original and compressed video sequences optimised for 

specific applications based on resolution, frame rate and bit rate information. The 

five models are: (i) Television model – optimised for television video, (ii) 

Videoconferencing model – optimised for low bit rate, low resolution multimedia 

sequences, (iii) General model – optimised for a wide range of bit rates and 

resolutions, (iv) Developer model – optimised general model with added constraints 

for fast computation and (v) PSNR-based model – optimised for a wide range of bit 

rates and resolutions involving the use of a logistic function to estimate quality 

based on PSNR as given below: 

( )( )6675.25*1701.01

1
−+

=
PSNRe

VQM , 10 55≤≤ PSNR  

(16) 

 

The general block diagram of NTIA/VQM is given in Figure 3-12. The metric divides 

both the reference and processed video sequences into spatio-temporal regions, i.e. 

regions of pixels that are spatially and temporally adjacent to each other. Various 

image based features such as spatial gradients, chrominance, temporal and 

contrast information are extracted from these spatio-temporal regions before 

computing visual differences between the two video sequences using comparison 

functions which model the visual masking of spatio-temporal impairments. The 

parameters are then integrated into a quality measure of the degraded video 

sequence. 
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Figure 3-12: Block diagram of the NTIA/VQM model  

 

Multimedia video differs from digital TV video in terms of resolution and bandwidth 

requirements. This resolution typically ranges from Quarter Common Intermediate 

Format (QCIF) with 176x144 pixels to VGA resolution (640x480 pixels). In 2008, 

the VQEG conducted a large number of subjective experiments to benchmark the 

performance of several full reference objective video quality measurement 

techniques for multimedia scenarios [7]. Based on this VQEG work, four algorithms 

were standardised in the Recommendation ITU-T J.247 [8]. These algorithms 

include: 

• OPTICOM’s Video Quality Measure PEVQ 

• NTT’s full reference model 

• Psytechnics full-reference video quality assessment algorithm 

• Yonsei full reference method [61]  

The general framework for these four methods is presented in Figure 3-13. The 

reference and degraded video sequences are aligned spatially and temporally taking 

into account encoding factors such as frame skip, frame freeze and frame rate. The 

OPTICOM model also incorporates a pre-processing stage where video frame 

Video alignment 
 

• Spatial alignment 

• Temporal alignment 

• Spatio-temporal sub-region 
classification 

 
Integration of 

parameters 

   Reference video 
 

Distorted video 
 

VQM 
 

Perceptual feature extraction 
 

• Spatial gradients 

• Chrominance and contrast information 

• Absolution temporal information 

 
Computing visual differences using 
visual masking-based comparison 

functions 
 



 65 

borders are cropped to take advantage of the fact that distortions at image borders 

tend to be ignored by viewers. Next, each of the four metrics calculates a different 

set of visual distortion parameters based on spatial, temporal, luminance, contrast, 

chrominance and temporal masking properties of the human visual system. 

Distortions introduced by compression such as blocking, blurring and edge 

degradation are also taken into account. Finally, these parameters are integrated 

into a single value measure of estimated subjective quality.  

 

 

 

 

 

 

 

 

 

 

Figure 3-13: General framework of the video quality models from NTT, OPTICOM, 
Psytechnics and Yonsei University  
 
The Yonsei University metric [61] measures quality of video based on the 

degradation in spatial edge areas. The authors found that viewers gave lower 

quality ratings to video clips with noticeably degraded edge areas despite a 

relatively low overall mean squared error. Edge detection and thresholding are used 

to locate edge areas in both the original and degraded video sequences. 

Degradation in the edge areas is calculated by measuring the PSNR between the 

edge areas of the original and degraded video clips.  Post-adjustments were 

performed to obtain an estimation of the quality of the degraded video clip. 

 

The correlation between subjective (MOS) and estimated quality for the four 

metrics as reported in Recommendation J.247 range from 77% to 84% indicating 

that there is still scope for developing better full Reference objective quality 

metrics. 
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3.5.4 Metrics based on masking effects 

Masking is an important visual phenomenon which describes why similar artefacts 

are more visible in certain regions of a video frame while they are hardly noticeable 

in other regions.  Several factors influence the visibility of distortions in video 

sequences and these include: (a) Spatial texture masking – ability of textured 

regions to hide more distortions than smoother regions [62,63,64,65,66] (b) 

Luminance masking – the human visual system is more sensitive to higher 

luminance contrast than absolute luminance value [50,67,68] (c) Temporal 

masking – ability of regions undergoing large temporal changes to hide visible 

distortions [44,49] and (d) Cognition-based factors such as skin colour information 

– distortions in regions that are important to the viewer (such as human faces) are 

more visible than similar distortions occurring in other regions [69].  

 

The VSSIM metric [62] gives a measure of similarity between the reference and 

processed video sequences based on luminance, contrast and spatial texture 

masking characteristics of the human visual system. The luminance, contrast and 

structural components between the two sequences are measured and subjected to 

comparison functions at block-, frame- and sequence- levels before being pooled 

into an overall similarity measure. The metric has been demonstrated in [62] to 

perform better than the metrics reported in the VQEG phase I test on full reference 

television (FR-TV) video [56]. 

 

In [48], a perceptual quality metric for estimating perceived quality of compressed 

multimedia sequences taking into account compression induced artefacts such as 

blocking effects and HVS-based characteristics such as contrast, spatial texture, 

colour and temporal masking effects is presented. The metric measures quality 

using three frame-based parameters: distortion invisibility measure (D), block 

fidelity measure ( BFF
) and content richness fidelity measure ( RFF ) as shown below: 

RFBFmotion FFD **=λ  (17) 

 

The distortion invisibility measure (D) is based on spatial texture, colour and 

temporal masking effects of the HVS. The block fidelity measure BFF  estimates the 

distortion at block boundaries and is used to identify blocking artefacts. The content 

richness fidelity measure BFF  calculates the colourfulness and contrast of the video 
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scene to exploit the sensitivity of the HVS to brighter colour tones and increased 

contrast. The three parameters are measured at frame level and integrated across 

the video sequence to produce a single value measure of perceived quality. Results 

presented in [48] have shown that this metric produces 91.6% correlation with 

subjective test results. However, the computational cost for the quality 

measurement is not discussed and deriving the various parameters based on 

various masking and image-based factors make the metric impractical for real-time 

applications. 

 

In [70] a perceptual video quality metric based on three frame-based parameters: 

visual masking error, blurring distortion and contrast distortion is presented. The 

visual masking error is measured based on luminance and spatial texture masking. 

The blurring distortion parameter measures the amount of blurring in the degraded 

video frame and the contrast distortion measure attempts to measure the amount 

of structural distortion. The three parameters are measured at frame level and 

integrated using a simple linear combination method. The performance of the 

metric has been demonstrated in [56], on the VQEG test video sequences with 

digital TV resolution compressed at full TV frame rate and high bit rates. 

 

A perceptual sensitivity weighting scheme has been proposed in [34] for bit 

allocation in a rate control algorithm for videophone applications. The method 

extracts perceptual features using spatial masking factors such as luminance 

adaptation and texture masking, and cognitive-based factors such as skin colour 

information. These features are used to develop a perceptual sensitivity weight map 

for each video frame to indicate regions that are sensitive to visual distortions. The 

perceptual weights are used to determine the quantisation parameter of a rate 

control algorithm in order to achieve improvements in perceived quality for a 

videophone application. Although the authors claim that the technique produced 

perceptual gains, the technique is not a generalised perceptual weighting scheme 

as it has been built for a specific application (i.e., rate control for videophone 

applications) with human faces.    
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3.5.5 Increasing the prediction accuracy of objective measures: PSNRplus 

[71] 

Mean squared error (MSE) and peak signal to noise ratio (PSNR) is a popular full 

reference objective measure used in modern block-based video compression 

algorithms such as H264/AVC. It is employed by the Rate-Distortion Optimised 

(RDO) mode selection process as a quality measure for choosing the best 

compression option that gives an optimal trade-off between picture quality and data 

rate [32].  

 

Whilst a common approach is to use MSE to choose the best coding option, MSE is a 

mathematical error measure which does not consider the human visual system and 

has been found to be an inaccurate measure of perceived quality [9,47]. It may be 

possible to improve the subjective quality performance of a rate-constrained video 

codec by replacing MSE with a distortion metric that correlates more closely with 

subjective quality in the mode selection process. Previous work has found that 

although the overall correlation between MSE and MOS is poor [4], there is a higher 

correlation between these parameters for a single sequence coded at several bit 

rates with the same codec [71]. This correlation decreases with increasing number 

of different video sequences added to the test data set.  

 

 

 

Based on this hypothesis, the authors of [71] have developed a method (PSNRplus) 

for increasing the correlation between subjective and estimated video quality by 

estimating the parameters of the linear regression line for each video sequence as: 

 

( ) soPSNRPSNRplus /−=  (18) 

 

The regression parameters: slope (s) and offset (o), are determined using two 

additional instances of the original video: PSNR at high quality ( qualityhighPSNR _ ) and 

PSNR at low quality ( qualitylowPSNR _ ). Figure 3-14 gives a visual representation of the 

method.  
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Figure 3-14: Increasing prediction accuracy of PSNR [71] 

 

Although this method produces improved results compared to previous methods in 

the literature, it requires every sequence to be coded three times in order to obtain 

the two additional instances hence making this technique unsuitable for real time 

applications.  

 

3.6     Metric standardisation 

The video quality experts group is composed of experts in video quality assessment 

from Industry, Universities and other International organisations. The group was 

formed in 1997 to evaluate performance and develop recommendation for objective 

quality measurement systems using reliable subjective test results for a well-

defined set of test material. The main responsibilities of the VQEG are to: 

• select and solicit objective models to be included in the evaluation.  

• select test material 

• develop objective test plans for running selected objective models on the 

test video data 

• develop subjective test plans for conducting subjective tests in accordance 

to the ITU-R BT.500 recommendations [5] 

• conduct objective tests for evaluating the proposed models 

• conduct subjective tests for acquiring subjective data 

• analyse objective and subjective results using standard comparison metrics 

such as correlation. 
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qualitylowPSNR _  

qualityhighPSNR _  
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• present findings of the evaluations to the International Telecommunications 

Union (ITU) for standardisation 

 

In 2000 and 2003, the video quality experts group (VQEG) conducted independent 

tests to evaluate the performance of several full reference objective video quality 

metrics in the context of digital television broadcasting. Two large subjective tests 

were setup to compare the performance of these algorithms. These include the 

phase I and phase II tests on full reference television (FR-TV) video sequences 

[56,57]. Based on these studies, four models were recommended to the 

International Telecommunication Union (ITU). These include models from British 

Telecom (UK), Yonsei University (Korea), CPqD (Brazil) and NTIA/ITS (USA). On the 

basis of the VQEG evaluations, the International Telecommunication Union (ITU) 

has standardised the recommendations ITU-T J.144 [58] and ITU-R BT.1683 [59] 

for estimating the perceptual video quality in digital television video sequences 

when the original video sequence is available (full reference models). 

 

In 2008, the VQEG conducted a large number of subjective experiments to 

benchmark the performance of several full reference objective video quality 

measurement techniques for multimedia scenarios [7]. Based on this VQEG work, 

four algorithms were standardised in the Recommendation ITU-T J.247 [8]. These 

algorithms include models from OPTICOM, NTT, Psytechnics and Yonsei University. 

The VQEG is currently conducting [72]: (a) Phase II test on full reference video 

quality metrics for multimedia application and (b) Evaluation of reduced-reference 

and no-reference metrics for digital television video sequences.    

 

3.7     Metric performance evaluation 

Subjective ratings (MOS) acquired from a panel of human observers is the 

benchmark for evaluating the performance of an objective video quality metric 

depending on how well it correlates with MOS. There are several methods to 

compare the performance of quality metrics [4]. Three of these performance 

evaluation methods have been adopted by the video quality experts group (VQEG) 

[7,56,57] for evaluation and benchmarking of objective quality metric. These 

include: Pearson correlation to measure prediction accuracy, Spearman correlation 

to measure predict monotonicity and outliers ratio to measure prediction 

consistency.  
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Prediction accuracy is the ability of an objective quality metric to predict subjective 

ratings with minimum average error [4]. It is determined using the Pearson’s 

correlation coefficient between predicted results and subjective results. For a set of 

N data pairs ( )ii yx , , Pearson’s correlation ( Pr ) is defined using means x  and y as 

follows: 

 

 

 

 

 

 

This method makes a relative comparison between the two data sets assuming a 

linear relation between them. The Pearson correlation value ( pr ) ranges between 

[0,1] where 1 indicates perfect match between predicted measures and the 

subjective ratings and 0 indicates no correlation. 

 

Prediction monotonicity determines how well the estimated result reflects an 

increase or decrease in the actual subjective result regardless of the magnitude of 

increase or decrease [4]. Spearman rank-order correlation coefficient ( sr ) is 

generally used to measure prediction monotonicity. For a set of N data pairs with 

ranks, the Spearman correlation ( sr ) is defined using mid-ranks iX  and iY  as 

follows: 

 

 

 

 

 

Spearman correlation value ( sr ) also ranges between [0,1] where 1 indicates 

perfect match between predicted measures and the subjective ratings and 0 

indicates no correlation. An advantage of the Spearman rank-order correlation is 

that it is non-parametric; hence it makes no assumptions about the shape of the 

relationship between the predicted data and the subjective ratings [4].  
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The outliers ratio (OR) is a measure of prediction consistency. A data point is 

considered to be an outlier if the difference between the predicted value and the 

actual subjective value exceeds 2±  times the standard deviation of the subjective 

results. Outliers ratio is the ratio of the number of outlier ( OD ) to the total number 

of data points (N) as shown below: 

 

 

 

A lower outliers ratio indicates better prediction consistency. 

 

 

3.8    Discussion 

Video quality measurement is imperative for comparing, evaluating and 

benchmarking video communication systems. Subjective assessment remains the 

most accurate method of measuring perceived quality of compressed video 

sequences. However, it is expensive in terms of time and resources and cannot be 

easily embedded into real-time applications. Hence several objective assessment 

methods have been developed to predict the subjective results based on video 

content and the characteristics of the human visual system. The video quality 

expert group (VQEG) have performed several evaluation tests to benchmark the 

performances of these quality metrics which have resulted in the standardisation of 

a few in the ITU-T Recommendations. These metrics have varying degrees of 

success in predicting subjective (human) test scores, with reported correlations of 

between 70% and 84% between each objective metric and measured subjective 

quality scores indicating that there is still scope for developing better approaches to 

estimate subjective quality. Although several techniques have been proposed in the 

literature as alternatives to pixel-based approaches, MSE and PSNR still retain their 

popularity in video processing algorithms due to implementation simplicity and 

computation speed. Previous research has shown that the correlation between 

subjective results (MOS) and pixel-based methods such as MSE and PSNR, is high 

for a single sequence coded to various bit rates. By exploiting this correlation 

between subjective results and pixel-based measures, it may be possible to 

accurately predict the subjective results from pixel-based metrics such as MSE and 

PSNR.  

 

N
D

OR O=  
(21) 



 73 

 

 

 

 

 

 

 

 

 

 

 
 

 
Part 2: Experiment Work 

 
 
 
 
 
 
 
 



 74 

4 Experimental Methodology 
 

4.1     Introduction 

This chapter outlines the experimental methods used in this research project. 

Sections 4.2 and 4.3 give a description of the test material, test equipment and 

software used for conducting experiments. Subjective video quality evaluation 

methodology for obtaining mean opinion scores and comparing visual quality of 

different algorithms is given in section 4.4. Data analysis techniques used for data 

modelling purposes are mentioned in section 4.5 and performance testing 

procedures for evaluating the performance of developed algorithms is given in 

section 4.6.  

 

4.2    Test Material 

Video quality assessment depends on key factors such as the application and video 

content. Test video sequences used in the research work have been selected from 

video material which is widely used by the video coding community. The choice of 

test material used in this research work is based on the application, video format, 

resolution and video content. 

 

This project focuses on developing a new video quality measurement technique and 

improving the perceptual quality of compressed multimedia video sequences. 

Multimedia video applications include video conferencing, internet video streaming, 

mobile video messaging and surveillance. A commonly used video format in these 

applications is the 4:2:0 format which requires only half the resolution of the 

chrominance samples when compared to the luminance samples. Multimedia video 

typically includes the Common Intermediate Format (CIF) with 352x288 pixels and 

has been popularly used in video quality evaluation tests for benchmarking 

performance of video quality metrics in multimedia scenarios [7]. Hence, 

multimedia sequences of 4:2:0 CIF format have been used in this research work. 

The test dataset includes (a) 16 popularly used multimedia video sequences in the 

video coding research community obtained from the Xiph.org test media website 

[73] and (b) The VQEG multimedia data set [72] which was used by the video 

quality experts group to benchmark multimedia video quality metrics [7].  
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The selected test sequences may be broadly classified as:  

A: Video conferencing video 

B: Broadcasting type video 

C: Sign language video 

D: Natural scenes  

E: High speed vehicle tracking 

 

Video conferencing videos typically include ‘head and shoulder’ shots of person(s) 

speaking to the camera. The camera is usually static with fixed or changing 

backgrounds. The video usually contains medium level of spatial detail and motion 

with prominent facial and/or hand movements. Video conferencing type videos used 

in this project include: Foreman, Carphone, Mother and Daughter, Salesman and 

Deadline. Sample frames from Foreman and Mother and Daughter are given in 

Figure 4-1. 

 

                           
           Foreman                 Mother and Daughter 

Figure 4-1: Head and shoulder shots 

 

Examples of broadcasting type videos are news programs with one or two 

presenters reading the news. These video have frequent scene changes and the 

camera is usually static with fixed or changing background. There is medium detail 

with medium to high motion. Akiyo and News sequences shown in Figure 4-2 fall 

into this category. 
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                       News                         Akiyo 

Figure 4-2: Broadcasting type video sequences 

 

Sign language video clips such as Sign Irene and Silent (Figure 4-3) contain 

person(s) signing to the camera. The camera is usually stationary. Video clips 

falling into this category have prominent hand and facial movements.  

 

                       
                 Sign Irene                 Silent 

Figure 4-3: Sign language video  

 

Natural video sequences contain outdoor scenes from nature such as flora, 

waterfall, trees, etc. These video clips are usually filmed using hand held cameras 

with changing or moving backgrounds. There is high detail and motion due to 

swaying of trees, leaves, grasses, etc. Natural sequences in the test material 

include Tempete and Flowers as shown in Figure 4-4. 

 

                            
                    Tempete                 Flowers 

Figure 4-4: Natural scenes  
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Videos of fast travelling vehicles being tracked by the camera usually contain 

camera panning, zooming and translation. There is very high motion and spatial 

detail information with constantly changing foregrounds and backgrounds. 

Examples for high speed vehicle tracking include Container, Mobile, Coastguard and 

Bus sequences as shown in Figure 4-5.  

   

                               
                           Bus                       Coastguard 

Figure 4-5: High speed vehicle tracking scenes 

 

The duration of the video sequences used in the test material is around 10 seconds 

each and the playback frame rate was 25 fps.  

 

4.3 Test Equipment and Software 

Techniques and algorithms developed in the research work have been implemented 

and tested by software simulation using: 

A:  Testing platform 

B:  A software video codec called the JM software running on the personal computer 

C:  Programming software platforms  

 

 

4.3.1 Testing platform 

A computer with the following specifications is used as the test platform for 

developing and testing the algorithms, running the software video codec and 

conducting video quality evaluation tests: 
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4.3.2 Software video codec 

A software video codec has been used for implementing and testing the algorithms 

developed and for producing the compressed video sequences.  The H.264/AVC 

Reference software called the JM software (version 12.1) [74] is used as the 

reference video codec. The JM software is widely used in the video coding 

community for testing and implementing new algorithms. This software enables 

new algorithms to be compared and benchmarked with algorithms developed by 

other researchers. The software is free to download from [75]. The revised manual 

for the H.264/AVC reference software [76] gives a description of the usage of the 

reference software including software installation and compilation information.  

 

The JM software contains the source code for the encoder and the decoder along 

with their configuration files. Figure 4-6 shows the input and output files for the JM 

encoder. These include the input video sequence, the configuration file, H.264 bit 

stream, the reconstructed video sequence, the output log file and the trace file 

(optional).  

 

JM software supports popular formats of raw YCbCr video including the 4:2:0 

format. The output file will have the same format as the input file. The 

configuration files for the encoder and decoder provide the input parameters to the 

encoder and decoder respectively. The encoder configuration file parameters 

include: input/output video sequence parameters such as file name, file size and 

number of frames to be encoded, and encoder control parameters such as profile 

type (baseline/main/extended), quantisation parameters for I, P and B slices, frame 

skip, number of reference frames and intra and inter prediction search options.  

Processor:      Intel Pentium M Processor 730, 1.6   

                               GHz 

 

Memory:      512 MB 

 

Operating System:    Microsoft Windows XP Professional 

 

Display Screen:     14.1” XGA TFT LCD 
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Figure 4-6: Input/output files of the JM encoder 

      

The .264 bit stream is the encoded bit stream which is used for storage and 

transmission. The YUV reconstructed file is the decoded video sequence which has 

the same file size as the raw input video but with lower quality as it has been 

reconstructed after compression. The log file contains encoding statistics such as 

peak signal to noise ratio (PSNR) of luminance and chrominance components, 

encoding time and bitrate. The trace file contains the syntax elements used in the 

encoding process, their values (in decimal format) and number of bits used. The 

trace file is used for identifying and eliminating errors in the JM encoder and is 

often used during algorithm implementation for debugging purposes. 

 

4.3.3 Programming software platforms 

Software packages used in this research work include MATLAB (version 7.0) and 

Microsoft Visual C++ professional (version 6.0). MATLAB was used for off-line 

development, implementation and testing of new algorithms. Microsoft Visual C++ 

was used for reading, editing and compiling the JM codec. It was also used for 

modifying the JM software in order to incorporate the algorithms developed for 

testing and benchmarking purposes. 

 

4.4     Subjective Video Quality Evaluation  

Subjective quality measurement involves assessing the picture quality of video 

using a number of observers who rate the quality using a grading scale. The result 

of subjective video quality test is the mean opinion score (MOS) which is the 

average rating of each video sequence compressed to a certain level (fixed QP or 

bitrate). Subjective evaluations were conducted in this research work to: (a) 

determine the correlation between subjective and objective video quality 

 
 

JM Encoder 

Configuration file 

Input raw video 
  .264 bit stream 

 YUV reconstructed video 

  log file 

  trace file (optional) 

inputs outputs 
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measurement techniques, (b) compare the visual quality of compressed video 

sequences obtained using the reference codec and the algorithm under test.  

 

4.4.1 Test methodology 

The first step in subjective video quality evaluation is to design the test process. 

This involves choosing the appropriate: 

   A: subjective test method 

     B: grading scale for video quality rating 

   C: presentation of test sequences 

   D: environmental setup 

   E: test subjects 

 

Choice of subjective test method: 

The choice of test method depends on the application area and the quality level of 

the video sequences under test. The three main categories of subjective evaluation 

methods are double stimulus, single stimulus and pair comparison. A detailed 

description of these methods is given in Chapter 3, section 3.4.1. Double stimulus 

methods use an explicit reference, are thought to be less sensitive to contextual 

effects and are preferred when high quality video sequences are being evaluated 

[7,56,57]. In single stimulus methods, only the distorted video sequences are 

displayed. This method is appropriate if video sequences at comparably low bitrates 

are being evaluated because in showing the high quality reference, the distorted 

video sequences may be perceived as poor quality and no distinction between 

different levels of low quality may be made by the observers. The video sequences 

used in this research are multimedia sequences compressed to a wide range of 

bitrates from high quality (QP=6) to very low quality (QP=45). Hence, the single 

stimulus method has been used in the subjective video quality experiment for the 

estimation of mean opinion score of compressed sequences.  

 

Presentation of video sequences: 

In single stimulus subjective evaluation method, contextual effects occur when the 

subjective rating of a video sequence is influenced by the order of presentation and 

the nature of other video sequences in the same test session [77]. This effect is 

created when there are variations in the subjective rating of sequences based on 

the impairment present in the preceding video sequences. For example, a video 

sequence with moderate impairment that follows a set of sequences with weak 
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impairment may be judged lower in quality than if it followed sequences with strong 

impairment. A common method used to try and counterbalance the contextual 

effect is the randomization of the test trial presentation order across the different 

viewers [78].  

 

The presentation order of the video sequences in the single stimulus experiment 

was randomized between participants such that each participant viewed the 

sequences in a different presentation order that is, either with increasing magnitude 

of distortion or with decreasing magnitude of distortion. 

 

Choice of grading scale: 

The grading scale used to rate the quality of the video sequences should preferably 

be detailed enough to allow discrimination between small quality differences and be 

simple enough to be used in a meaningful way. The ITU-T Recommendation P.910 

[6] specifies that a five-point, nine-point or eleven-point grading scale may be used 

depending on the required discriminative power. In the single stimulus subjective 

video quality experiment, a discrete five-grade scale is used as shown in figure 4-7. 

The corresponding numerical values for the opinion scores are: Excellent = 1.0, 

Good = 0.75, Fair = 0.5, Poor = 0.25 and Bad = 0. 

 

 
Figure 4-7: Discrete five-grade rating scale. 

      

Environmental set up: 

Calibrated equipment and well-defined test environment deliver more accurate and 

reproducible subjective test results. Standard environmental set up parameters 

Excellent 

Good 

Fair 

Poor 

Bad 
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have been defined in ITU-T Recommendation P.910 [6] for multimedia applications. 

These include the video display device specifications, testing room conditions and 

viewing conditions.  

 

All subjective experiments in this research were conducted using a computer with 

14.1” LCD computer display set at a native resolution of 1280x1024 pixels. The 

choice of an LCD monitor was motivated by the fact that it is considered 

representative of target end-terminals (e.g. computer monitors and mobile 

devices). It is noted that screen size has an effect on the visibility of distortion. 

Distortion in smaller screen sizes such as mobile phones may look different on 

bigger screens such as computer monitors. The computer was setup in the Centre 

for Video Communications (CVC) research lab in the Robert Gordon University. The 

video files were stored locally on this test computer and presented to viewers using 

an in-house YUV video player called the ‘Imagicity Viewer’ software developed for 

playing uncompressed CIF and QCIF video sequences. The viewing distance 

between the observer and the monitor is specified based on the image resolution. 

Although minimum recommended viewing distances have been specified in the ITU-

T Recommendation J.247 [8], a free viewing distance was used in the subjective 

tests reported in this thesis. In other words, a fixed viewing distance was not 

enforced and the viewers were allowed to adjust to their most comfortable viewing 

distance in order to maintain real world scenarios of watching multimedia video 

sequences. The viewing device was adjusted to a preferred viewing condition. 

However, the viewers were instructed to adjust the chair according to their normal 

computer viewing distance and keep their back in contact with the chair as much as 

possible to avoid extreme variation of viewing distance during the experiment. 
 
 

Test subjects: 

In order to reach statistical significance, the recommended number of participants 

for a subjective video quality test ranges between 4 and 40 [5]. In this research 

work, for each subjective test, 30 non-expert participants were recruited from the 

Robert Gordon University. They were either members of staff or students. None of 

them had previously participated in a subjective evaluation and all of them reported 

to have normal vision.   
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4.4.2 Experimental procedure 

Each subjective evaluation experiment was broken down into three phases: the 

explanation phase, the training phase and the actual subjective test. In the 

explanation phase, an oral description of the test procedure was given to the test 

subjects. Details of the oral description given to the participants are in Appendix B. 

The training phase was aimed to make the test subjects familiar with the test 

procedure. The video sequences used for training were representative of the range 

of quality and the types of degradations included in the actual test. In this 

experiment, the ‘Silent’ CIF sequence was used for training purposes. The results of 

the training phase have been excluded in the data analysis.  

 

Once the training phase was complete, the actual subjective test was conducted on 

the test video sequences mentioned in section 4.2 which have been compressed at 

wide range of bitrates. In the case of the single stimulus method, each video 

sequence was presented one at a time and rated individually. After each video 

presentation, the viewers were asked to judge the overall picture quality. Voting 

period was not time-limited. The presentation order of the video data was 

randomised between viewers.  

 

4.4.3 MOS measurement and validity 

Subjective test results have been analysed according to the Recommendation ITU-R 

BT.500-11 [5]. The first step in the analysis of the subjective tests is the calculation 

of the mean opinion score. The mean opinion score is the mean value of the ratings 

from a number of observers for a test sequence with a certain test condition (such 

as a sequence encoded at a certain quantisation parameter or at a certain bitrate): 
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(22) 

 

where N is the number of observers and R is the rating from each observer which is 

based on a five-grade rating scale between 0 and 1 (0=Bad, 0.25=Poor, 0.5=Fair, 

0.75=Good and 1=Excellent). MOS is calculated for each test condition and each 

test sequence. 
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Since a limited number of observers are used to represent the entire population, 

the reliability of the subjective test must be calculated. This is performed using: 

   A: Standard Deviation 

   B: 95% Confidence Interval 

 

Standard deviation of a data set is a measure of variability of data from the mean 

value (i.e., MOS in case of subjective tests). It is calculated for N data points using 

the data point ix  and the mean value 
−
X  as: 
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(23) 

  

A low standard deviation indicates that data points are close to the mean value, 

whereas high standard deviation indicates that data points are spread out over a 

large range of values. In subjective evaluation, low standard deviation of the 

subjective ratings is preferred as it indicates high reliability of the subjective scores.    

 

Confidence interval (CI) is used to indicate the reliability of an estimate. The 

Recommendation ITU-R BT 500-11 proposes the use of 95% confidence interval for 

calculating the reliability of MOS scores derived from the standard deviation (SD) of 

the subjective ratings, the mean value x  and number of observers (N) as: 
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xCI 96.1,96.1%95  

 

(24) 

 

With a probability of 95%, the absolute value of the difference between the 

experimental (or estimated) mean score and the “true” mean score for a large 

number of observers is smaller than the 95% confidence interval, on the condition 

that the distribution of the individual scores is a normal distribution. The confidence 

interval is dependent on the number of observers. For the mean opinion score of 

[0,1] to be reliable, the 95%CI should ideally be below 0.05. It has been observed 

[5] that increasing the number of participants in a subjective test decreases the 

95% CI.  
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4.5     Data modelling techniques 

Data obtained from subjective evaluations and encoding tests are analysed for 

modelling and performance comparison purposes. Data modelling techniques used 

in the research work include exponential curve fitting, convex hull fit and linear 

regression analysis.  

 

4.5.1 Exponential curve fitting 

In this research work, exponential curve fitting has been used in: 

• the development of the perceptual video quality metric for automatic 

estimation of metric parameters from video sequences characteristics. 

• Calculating the Lagrange multiplier (λ ) as a function of the quantisation 

parameter (QP) in the mode selection algorithm. 

 

Exponential curve fitting involves constructing an exponential curve or exponential 

function that has the best fit to a set of data points.  

 

Exponential functions have the general form: 

 

( ) bxaxf =  
(25) 

 

where x is the data point, the amplitude of the exponential curve depends on ‘a’ 

and the shape of the exponential curve depends on whether b>0, b=0 or b<0 as 

shown using an example in Figure 4-8. The exponential curve fitting were 

performed using the ‘cftool’ feature in MATLAB programming package.  
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Figure 4-8: Exponential curves 

 

4.5.2 Convex hull fitting 

Convex hull of a set of data points is the minimal convex set containing the data 

points. Convex hull fitting is used to determine the parameters for the perceptually 

optimised mode selection algorithm. It is used to obtain the best achievable rate-

distortion points for a given source as shown below: 

 
Figure 4-9: Convex hull fitting to obtain best operating R-D points for a given 

coding condition 

 

Rate (R) 

Distortion 
(D) Set of operating points 

Convex hull of R-D operating points 
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The convex hull fitting were performed using the ‘cftool’ feature in MATLAB 

programming package.  

 

4.5.3 Linear regression modelling 

Linear regression modelling has been used in this research work to investigate the 

relationship between subjective and objective video quality measures such as MOS 

and MSE. Linear regression model attempts to explain the functional relationship 

between two variables (for example: x and y) using a straight line. This relationship 

may be expressed as: 

 

xy 10 ββ −=  
(26) 

 

where 0β  and 1β  are the regression coefficients. It is noted that the regression line 

in equation (26) is an estimated relationship between the predictor values (x) and 

the observed values (y). The ‘true’ regression line is usually never known. 

 

The coefficients 0β  and 1β  are estimated from the observed data set and can be 

calculated using the least square estimates method as: 
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xy 10 β̂β −=
)

 
(28) 

 

where 0β̂  and 1β̂  are the estimates of the regression coefficients 0β  and 1β . ix  and 

iy  are the predictor and observed values, and N is the number of observations used 

to fit the model. x and y  are the mean values of x and y respectively.  
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Once the estimated coefficients are known, the estimated (or fitted) regression line 

can be written as: 

 

xy 10
ˆˆˆ ββ +=  

(29) 

 

 

An example plot of fitted regression line for a set of data points is shown in Figure 

4-10. 

 

   
Figure 4-10: Sample data points fitted with a linear regression line  
  

The difference between the actual observed value iy  and the estimated observed 

value iŷ  obtained from equation (8) is called the residual iε  which is calculated as: 

iii yy ˆ−=ε  
(30) 

 

The goodness of the estimated (or fitted) regression line is assessed using two 

parameters:  

  A: Coefficient of determination (R-squared or R2)  

  B: Sum of square error (SSE). 

x1β0β y ˆˆˆ +=  
(fitted regression line) 
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Coefficient of determination (R2) is a key output of regression analysis. It is 

indicates the extent to which the estimated variable (i.e., ŷ ) can be correctly 

estimated from the predictor variable (i.e., x). It is calculated as: 
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(31) 

 

In equation (31), N is the number of observations,  x  and y  are the mean values 

of the predictor and estimated values ix  and iy .  xσ  and yσ  are the standard 

deviations of x and y. 

 

The coefficient of determination ranges from 0 to 1 with 0 indicating y cannot be 

estimated from x and 1 indicating that y is estimated from x without any errors. For 

example, R2 of 0.25 means that 25% of the variance in y can be estimated using x. 

R2 of 0.90 means that 90% of the variance in y can be estimated using x. Higher R2 

values indicate better the estimation result.  

 

Sum of square errors (SSE) of a regression line is a measure of the average 

amount by which the regression equation over- or under predicts. It is calculated 

from the residual iε  as: 
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(32) 

 

The higher the coefficient of determination, the lower the sum of square errors and 

the more accurate the estimates are likely to be. 
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4.6 Algorithm performance testing 

Algorithm performance testing involves comparing the performance of developed 

algorithms with existing techniques for benchmarking purposes. Section 4.6.1 

outlines the performance parameters used to evaluate the performance of the new 

perceptual video quality metric developed in this project with existing video quality 

metrics. Section 4.6.2 describes the various video coding parameters used to 

compare the performance of the perceptually optimised mode selection algorithm 

which was developed with the reference video codec.  

 

4.6.1 Video quality metric performance parameters  

The performance of objective quality metrics depends on how well it correlates with 

subjective ratings. Hence mean opinion score obtained from subjective tests is used 

to benchmark the performance of the developed quality metric. There are several 

methods to compare the performance of quality metrics [72]. Three of these 

performance evaluation methods have been adopted by the video quality experts 

group (VQEG) for evaluation and benchmarking of objective quality metric. These 

include: Pearson correlation to measure prediction accuracy, Spearman correlation 

to measure predict monotonicity and outliers ratio to measure prediction 

consistency. Brief descriptions of these parameters are given in Chapter 3, section 

3.7.   

 

4.6.2 Video coding performance parameters  

Coding parameters used to compare the performance between the reference JM 

encoder and the modified JM encoder are peak signal to noise ratio (PSNR), bitrate 

and encoding time. 

 

Peak signal to noise ratio (PSNR) 

PSNR is the most widely used objective video quality measure. It is a pixel-based 

measure calculated from mean squared error between the reference video and the 

video under test, and the square of the highest possible value in the video image 

(i.e., 255 for an 8-bit image) [13]. PSNR is calculated for an n-bit image as: 

( )
MSE

PSNR
n 2

10

12
log10

−
=  

 

(33) 
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PSNR measures how closely the video under test resembles the original video 

sequence. The higher the PSNR better the quality of video under test. 

 

Bitrate 

Bitrate is the average bits per second and is measured from the total number of 

bits, number of encoded frames and frame rate as: 

 

frames ofnumber 
rate frame x bits ofnumber  total  rate bit =  (34) 

 

Bitrate information is obtained from the log file produced by the JM encoder. 

Comparison of bitrate information between the reference JM encoder and the 

algorithm under test gives an idea of the bit consumption caused by the algorithm.    

 

Bitrate savings between the modified and reference JM codec is measured as the 

proportion of bits saved with respect to the reference JM codec bitrate and is 

calculated as: 

  

100 x 
bitrate codec reference

bitrate codec modified - bitrate codec reference  savings(%) rate Bit =  (35) 

 

Encoding time 

Encoding time is the time taken by the encoder to perform a specific task. This task 

could be encoding a specific number of frames or the execution of a certain process 

such as motion estimation or mode selection. Encoding time is usually used as a 

measure of computational complexity. A higher encoding time indicates higher 

computation complexity. In this research work encoding time for the reference JM 

encoder and the modified JM encoder is measured as the average time taken by 

each encoder to encode a specific number of frames. The average time is calculated 

using five repetitions of the encoder running under the same test conditions.    

 

The computational complexity (CC) of the developed algorithm is measured using 

the encoding times of the modified and reference JM codec as the proportion of 

increase (or decrease) in encoding time with respect to the reference JM codec and 

is calculated as: 
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100 x 
time codec reference

time codec modified - time codec reference  CC(%) =  (36) 

 

4.6.3 Algorithm testing scenario 

Figure 4-11 shows the algorithm testing scenario. The original JM encoder is the 

reference encoder and the algorithm under test is incorporated into the JM encoder 

to form the modified JM encoder. Each raw test sequence is processed using both 

the reference and modified encoders.  

 

Coding performance parameters such as PSNR, bitrate and computation time are 

measured from each encoder and compared. The encoded video is decoded to 

perform subjective evaluation to compare visual quality of the video sequences 

from the reference and modified JM encoders at similar bitrate. 

  

 
Figure 4-11: Algorithm testing scenario 

 

4.6.4 Algorithm performance analysis 

The video compression performance of the algorithms under test is assessed using 

codec output parameters such as video quality, bitrate and encoding time. The rate 

distortion plots are obtained by plotting video quality (PSNR or MOS) against 

bitrate. These plots are used to determine if there is a quality gain and bitrate 

savings as shown in figure 4-12. Quality gain is achieved if the algorithm under test 

produces better quality than the reference algorithm at same bitrate. Bitrate saving 
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is obtained if the algorithm which has been developed achieves a particular video 

quality (Q) with a smaller bitrate compared to the reference algorithm. 

 

 
Figure 4-12: rate distortion plots for performance analysis               

 

4.7 Summary 

This chapter gives a description of the experimental methods used in the research 

project. The algorithms developed during the project have been tested using 

software simulation. Software packages such as MATLAB and Microsoft Visual C++ 

have been used in developing and testing of algorithms. The H.264/AVC reference 

software codec is used as the reference video codec. Developed algorithms have 

been incorporated into the reference codec for performance comparison. Raw 

standard test sequences of YCbCr 4:2:0 common intermediate format (CIF) have 

been used for testing the performance of developed algorithms and conducting 

video quality tests. Data modelling techniques such as linear regression analysis 

have been used to analyse test data. Finally, the performance of developed 

algorithms is evaluated using as subjective and objective video quality tests and 

video compression output parameters such PSNR, bitrate and encoding time. 
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5 MOSp: A New Perceptual Video Quality 
Metric For Compressed Video 

 
5.1 Introduction – need for a new quality metric 

Video quality measurement is necessary for comparing, evaluating and 

benchmarking video compression systems. As it is typically the viewer who judges 

video quality, the subjective measurement of mean opinion score (MOS) [4] is 

considered to be an accurate way to determine the perceived video quality of 

compressed video [5,6]. However, evaluating MOS is expensive in terms of time 

and resources and cannot be calculated automatically within real-time video 

applications. Hence several objective assessment methods have been developed to 

automatically predict the subjective results based on video content and the 

characteristics of the human visual system. The video quality experts group (VQEG) 

have performed evaluation tests to benchmark the performance of a number of 

quality metrics in the context of multimedia sequences. This has resulted in the 

standardisation of a selection of video quality metrics in the ITU-T 

Recommendations. These metrics have varying degrees of success in predicting the 

subjective test scores, with reported correlations of 70% to 84% [7] between each 

objective metric and the measured subjective quality scores, indicating that there is 

a need for better approaches to estimate subjective quality. Although several 

techniques have been proposed in the literature as alternatives to pixel-based 

approaches, mean squared error (MSE) and peak signal to noise ratio (PSNR) still 

retain their popularity in video compression algorithms due to implementation 

simplicity and computation speed. Previous research has shown that the correlation 

between subjective results (MOS) and pixel-based methods such as MSE and PSNR 

is high for a single sequence coded to various bitrates [71]. By exploiting this high 

correlation between subjective results and pixel-based measures, it may be 

possible to accurately predict the subjective results from simple pixel-based metrics 

such as MSE and PSNR.  

 
 
This chapter presents a new full reference perceptual video quality metric called the 

MOSp metric. The metric predicts the mean opinion score of multimedia sequences 

compressed using block-based video coding schemes. The metric is based on: (i) 

the high correlation between MSE and MOS for a single sequence compressed at 

several bitrates and (ii) the visual masking of distortion in a video scene which 
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makes it possible for distortions to be visible in some areas of the video scene while 

they are unnoticed in other areas.  

 

The chapter is organised as follows: section 5.2 investigates the correlation 

between MOS and pixel-based measures such as MSE and PSNR. Based on the 

observations made from experiments in section 5.2, a new video quality metric 

called the MOSp metric is presented in section 5.3. The hypothesis behind the new 

metric is also described in this section. The various parameters used in the new 

metric are described in detail in section 5.4 along with possible methods to 

automatic calculations of these parameters. Finally, section 5.5 presents a 

summary of the chapter including highlights of the experimental findings which 

have led to the development of a new perceptual quality metric.   

 
 

5.2 Experiment: Quality measurement of compressed video 

The following video quality experiment has been conducted to investigate the 

correlation between subjective results (MOS) and pixel-based metrics such as mean 

squared error (MSE) and peak signal to ratio (PSNR) for a variety of multimedia 

video sequences compressed at a wide range of bitrates ranging from high bitrates 

to very low bitrates using the H.264/AVC video coding standard.   

 
5.2.1 Source Material  

The variation of MOS with MSE across various video data was determined using a 

training data set of eight different video sequences. The sequences were Carphone, 

Foreman, Deadline, Tempete, News, Bus, Paris and Akiyo. These sequences were 

chosen to represent a wide variety of video content and they are popularly used in 

the research community. The test sequences range from low motion and low detail 

‘head and shoulder’ scenes such as Akiyo and News to high motion and high detail 

scenes such as the Bus sequence. The sequences were in common intermediate 

format (CIF) resolution, 4:2:0 YCBCR format, 10 seconds in duration and were 

coded using the H264/AVC compression standard. Each test sequence was 

compressed at a wide range of bitrates using a fixed set of quantisation parameter 

(QP) values, QP = {6, 26, 34, 36, 38, 40, 42, 45}. There is a closer spacing 

between the chosen QP values in the range of QP=34 to QP=42, which translate 

into a ‘useful’ medium- to low-bitrate range for multimedia sequences. 
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5.2.2 Coding parameters 

This research is focused on video quality of compressed multimedia sequences. 

Hence, the choice of coding parameters was made in the context of multimedia 

applications. The test video sequences used in this experiment were compressed 

using the H.264/AVC JM reference software (version 12.1) available at 

http://iphome.hhi.de/suehring/tml/, with the following parameters: 

 

• Profile used is Main profile to allow performance enhancing features such as 

CABAC to be used. 

• Level setting is set 4.0 to accommodate higher resolution, frame rate 

(2,048×1,024@30.0) and bit rate (up to 80,000 kbps) 

• Frame Skip: no frames were skipped 

• Number of reference frames for Inter motion search is set to 5 after taking 

into account the increase in computation with increase in reference frames.   

• Number of B-pictures used: None used because the extra coding delay 

introduced by B-frames may not be suitable in certain real time multimedia 

applications. 

• Entropy coding method is set to CABAC to achieve better efficiency when 

compared to CAVLC. 

• RD-Optimisation: High complexity mode which uses exhaustive mode 

selection for improved compression performance.  

• Rate Control: DISABLED to allow the use of fixed QP. 

• Slice QP: QPISlice and QPPSlice parameters used and both set to the same 

value as the sequence QP. This is to keep the variation of parameters in the 

video codec to a minimum during encoding. 

 

H264/AVC supports up to 16 reference frames for inter motion search. 

More reference frames can increase compression quality; however it is also 

computationally intensive during encoding, and requires more memory during 

decoding. The choice of the number of reference frames also depends on the level 

settings and the input frame size [79]. Since level 4.0 is chosen and the input file 

format is CIF, the number of reference frames in this experiment is set to 5.  
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5.2.3 Methodology and Experimental procedure 

The subjective tests involved 30 non-expert evaluators and followed the guidelines 

in ITU-T Recommendation P.910 [6]. Each evaluator took less than 20 minutes to 

complete the test. The subjective test method used in this experiment is the single 

stimulus impairment scale (SSIS) evaluation method because a wide range of 

bitrates have been used in the test dataset ranging from very high bitrate (QP=6) 

to very low bitrate (QP=45). This method is appropriate when video sequences at 

comparably low bitrates are used because the reference video is not displayed. In 

showing the high quality reference video, the distorted video sequences may be 

perceived as poor quality and no distinction between different levels of low quality 

may be made by the observers. To counterbalance the influence of contextual 

effects of the SSIS method, the presentation order of the video sequences were 

randomized between participants such that each participant viewed the sequences 

in a different presentation order that is either with increasing or decreasing 

magnitude of distortion. 

 

A 5-grade discrete scale ranging from 0 to 1 was used to rate the quality of the test 

video sequences where 0=bad, 0.25=poor, 0.5=fair, 0.75=good and 1=excellent. 

Reliability of subjective test scores was tested using the 95% confidence interval 

measure. The average mean 95% confidence interval for the subjective ratings for 

all the test sequences was 0.0415 for the MOS scale of [0, 1] where 0=bad picture 

quality and 1=excellent picture quality.  

 

The MOS for a sequence was calculated as the average of all scores obtained for 

the sequence compressed at a certain QP. The sequence MSE was calculated as the 

mean of the sum of squared differences (SSD) between the luminance pixels of the 

original and the constructed compressed video sequence as given below: 
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MBSSD  is the sum of squared difference of each macroblock. Y and CY  are the 

luminance values of the original and reconstructed compressed frames. N is the 

number of macroblocks in each frame and T is the total number of frames in each 

sequence. Since CIF sequences of 4:2:0 YCbCr format are used in this work, every 

macroblock contains 16x16 luminance samples, 8x8 Cb samples and 8x8 Cr 

samples. 

 
5.2.3 Data Analysis 

The graphs of MSE versus MOS for all the eight test sequences are shown in Figures 

5-1 and 5-2. It can be observed from the graphs that there is high correlation 

between MOS and MSE values within each sequence compressed at various 

bitrates. The graphs show characteristic ‘hockey stick’ shaped curves. The curves 

are approximately linear from MOS = 1.0 down to MOS = 0.1 with a tail-off below 

MOS = 0.1. This tail-off occurs because at very low bit-rates (below MOS=0.1), the 

picture quality is very poor and the users tend to rate the video as ¨Bad¨ quality 

after a certain error threshold with little discrimination in picture quality. Hence a 

cut-off may be introduced at MOS=0.1 and data points above this cut-off may be 

used for modelling purposes. 
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Figure 5-1. Graph of MSE versus MOS for four training sequences: Carphone, Paris, 
Bus and News 

 

Figure 5-2. Graph of MSE versus MOS for four training sequences: Akiyo, Foreman, 
Deadline and Tempete. 
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5.2.4 Experimental observation 

The following observations can be made from the video quality experiment: 

• Subjective rating (MOS) decreases with increase in MSE. The rate of 

decrease varies between sequences as noted from the MSE versus MOS 

curves in Figures 5-1 and 5-2. 

 

• There is a high correlation between MSE and MOS for a single sequence 

compressed at various bitrates produced using the same video codec.  

 

• This high correlation can be approximated to a linear relationship when data 

points at very low bitrates (MOS<0.1) are not considered. 

 

• The high overall correlation between MSE and MOS decreases with increase 

in the number of different sequences added to the data set. 

 

• Finally, one of the key observations in the experiment is that for the same 

MSE value, the subjective quality varies significantly for different sequences 

depending on the video content. This is discussed in detail in section 5.3. 

 
Figure 5-3. Graph of MSE versus MOS for four training sequences: Akiyo, Foreman, 
Deadline and Tempete. For a fixed MSE (=50), the corresponding subjective 
ratings for the four sequences are Q1, Q2, Q3 and Q4. 
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5.3    The concept of predicting MOS from MSE 

Experimental results in Figures 5-1 and 5-2 show that for the same MSE value, the 

subjective quality varies for different sequences depending on the video content. 

This is illustrated in Figure 5-3. For the same MSE (=50), the four test sequences 

have different subjective quality. This indicates that sequence content may be one 

of the contributing factors to the visibility of distortion.   Sequence content could be 

image features, objects in the video scene that relate to task in hand and viewer 

interest. Therefore, perceived quality of two video images with very similar MSE 

may be very different. This is illustrated using video frames from two test 

sequences used in this experiment: (a) Akiyo, with average frame MSE = 74.46 and 

(b) Deadline with average frame MSE = 74.61. It can be seen that although the 

average MSE of both the video frames are similar, the visual quality of video frame 

(b) may be ranked as better than video frame (a). The background and facial 

features in frame (b) is much clearer than frame (a). 

 

 

 

 

 

  

 

 

                         (a)                                                                (b) 

Figure 5-4: Video frames of two test sequences (a) Akiyo, average frame MSE = 
74.46 and (b) Deadline, average frame MSE = 74.61  

Based on the experimental observations, it is evident that by exploiting the linear 

relationship between MSE and MOS, the subjective quality of compressed video 

may be predicted using: 

 

(i) the MSE between original and compressed video sequences 

(ii) the slope of the regression line between MSE and MOS.  
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This concept of predicting MOS using MSE is illustrated in Figure 5-5 for a video 

sequence with a known slope ‘K’. Based on this hypothesis, a new perceptual video 

quality metric called the MOSp metric is proposed in section 5.4. 

 

 
Figure 5-5. The concept of predicting MOS from MSE. 

 

5.4 MOSp: A new perceptual video quality metric 

The aim of the proposed MOSp metric is to: 

(a) Predict perceived video quality automatically,  

(b) Be in close agreement with MOS, 

(c) Maintain computational simplicity, with a view of incorporating the metric  

     into real-time block-based video coding algorithms.  

 

Based on the experimental observations obtained from investigating the 

relationship between MOS and MSE in section 5.2, as shown in Figures 5-1 to 5-5, 

the new perceptual metric is proposed as: 

 

 

The MOSp metric measures the predicted mean opinion score of a compressed 

sequence using the mean squared error (MSE) between the original and 

compressed video sequences, and the slope of the regression line ( sk ) which may 

be calculated from the original sequence content.  The range of the MOSp metric is 

MSEkMOS sP −= 1               
(41) 
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similar to that of MOS and it ranges between [0,1] where MOSp = 1 indicates 

highest quality video and MOSp = 0 indicates lowest quality video. Figures 5-6 

illustrates the proposed model which represents the linear relationship between 

MOS and MSE where the maximum perceived quality (MOS = 1) is observed when 

there are no pixel errors (MSE = 0).  

 

                                

Figure 5-6: Graphical representation of the MOSp metric. 

Figures 5-7 shows the proposed model (bold lines) fit to four test sequences used in 

the experiment. The data points used to obtain the straight line fit for each 

sequence were considered using the following two conditions: 

Condition 1: Include data point MOS = 1 for MSE = 0 for all sequences when 

calculating the straight line fit. This is done to make the line intercept the MOS axis 

at 1. The hypothesis behind this condition is that when there are no pixel errors 

(MSE = 0), the compressed video quality is mathematically identical to the 

reference video. Hence, no compression induced distortion exists in the processed 

video clip. In context to this research, which involves measuring perceptual quality 

of compressed video using a full reference metric, it means that the visual quality 

of the processed video sequence is identical to the reference video sequence. 

Hence, at MSE = 0, the subjective quality rating MOS is set to 1 for modelling 

purposes. It must be noted that in reality, obtaining mean opinion score of 1 is 

extremely rare as it would mean that every single viewer in the experiment has 

judged the video quality as ‘Excellent’. It can be observed from the subjective test 

1 

M
O
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p 
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results presented in figures 5-1 and 5-2 that the MSE versus MOS curves intercept 

the MOS axis at different points (usually > 0.96).  

Condition 2: Exclude data points below MOS < 0.1 during modelling of the straight 

line fit. This condition is imposed to ignore the ‘tail-off’ that occurs at very low MOS 

region, as noticed in Figure 5-7. Perceptual quality at very low bit rates is usually 

very poor and the viewers tend to rate the video quality as ‘Bad’ (MOS=0) after a 

certain error threshold with little discrimination in picture quality. From 

experimental results, it was observed that the standard deviation between test 

scores in the region between MOS = 0.1 and MOS = 0 was very high indicating that 

data points in this region may be unreliable. 

     

                           
Figure 5-7. Proposed (bold lines) curves for Carphone, Paris, Bus and News.. 
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5.5  MOSp metric parameters 

The MOSp metric, as described using equation (41), requires three parameters to 

measure quality of a compressed video: the mean squared error, the slope (Ks) of 

the regression line between MSE and MOS, and the y-axis intercept of the 

regression line (which is set to 1). These parameters are described in detail below. 

 
 
5.5.1 Metric parameter – Slope Ks 

The slope (ks) of the regression line is a key element in the MOSp metric and it acts 

as a weighting factor for MSE. The amount of weighting, as observed in figures 5-7, 

is dependent on the video content and varies between sequences. The slope 

parameter of the MOSp metric also determines the variation of MOS with MSE. A 

large slope will produce a steeper regression line on the MSE versus MOS graph 

when compared to a smaller slope. Sequences such as Carphone, Akiyo and 

Foreman, in Figure 5-7, have steeper regression lines compared to sequences such 

as Bus and Tempete. This indicates that in sequences with steeper regression lines, 

a small change in MSE leads to a large change in MOS when compared to 

sequences such as Bus for the same amount of change in MSE. This is illustrated in 

figure 5-8.  

 
 
 

 
Figure 5-8. Graph illustrating the impact of slope on MSE versus MOS variation. 
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As noted in section 5.2, video content may have an influence on the slope of the 

regression line between MSE and MOS. Video content could ‘hide’ or ‘enhance’ the 

visibility of distortion resulting in a shallower or a steeper slope. This could be 

objects in the video such as presence of humans, which attract viewer attention. 

Video sequence containing humans may have a steeper regression line when 

compared to a sequence containing random objects. On the other hand, image 

features such as texture and temporal change may also have influence on the slope 

of the regression line.  

 

Therefore, it may be possible to calculate the slope parameter of the MOSp metric 

using the video content information. This relationship between the slope parameter 

and video content is investigated in Chapters 6 and 7 of this thesis. 

 
 
5.5.2 Metric parameter – MSE 

The MSE parameter in the MOSp metric is measured as the mean squared error 

between the luminance frames of the original and compressed video sequences as 

explained in equations (37) to (40). The reference video sequence is required in the 

measurement of MSE thus making the MOSp metric is a full reference video quality 

metric. 

 
 
5.5.3 Metric parameter – y-axis intercept = 1 

The y-axis intercept of the regression line between MOS and MSE is set to 1 as 

explained in section 5.4. Therefore the predicted mean opinion score (MOSp) is 

equal to 1 when MSE = 0. This condition applied to all types of sequences with 

varying content.  
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5.6 Summary 

This chapter investigated the correlation between subjective quality (MOS) and 

objective quality (MSE) for compressed multimedia video sequences. It was found 

that there is high correlation between MSE and MOS for a single sequence 

compressed to several bit rates using the same coding scheme. Based on this 

observation, a new metric called the MOSp was proposed to predict MOS from MSE. 

The MOSp metric is designed to predict perceptual quality of compressed video with 

compression induced distortions. It was also observed that the regression line 

between MSE and MOS varies between sequences and may be dependent on video 

content. Video content may include image features (such as texture, colour and 

motion) and objects that attract viewer attention based on viewer interest and task 

in hand. Calculating the parameters of the metric (i.e. slope of the regression line) 

from video content could make the metric fully automatic. Therefore, the next two 

chapters investigate the relationship between video content and the parameters of 

the MSE versus MOS regression line. 
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6 MOSp Metric Based On MSE And Video 
Content 

 
6.1    Introduction 

Experiments in the previous chapter, conducted to investigate the correlation 

between subjective and objective measures, showed that there is high correlation 

between MSE and MOS for a sequence coded at several bit rates using the same 

coding algorithm. Based on this approximately linear relationship, a new video 

quality metric called the MOSp metric was proposed to predict mean opinion score 

from mean squared error and the slope of the regression line between MSE and 

MOS. It was also noted from the experiments that the slope of the regression line 

varies between sequences and may be dependent on video content.  

 

Video content may be contributing to the ‘hiding’ or ‘enhancing’ of visibility of 

distortions which in turn may produce a steeper or shallower slope on the MSE 

versus MOS graph. Video content could include image features such as spatial 

texture and temporal change. This chapter investigates the relationship between 

video content and the slope parameter of the regression line between MOS and MSE 

with a view to automatically estimate the slope parameter from video content and 

hence the MOSp metric itself. 

 
The chapter is organised as follows: section 6.2 gives a detailed description of the 

various features that may be used to quantify video content such as spatial texture 

and temporal change. Section 6.3 describes the experiment conducted to 

investigate the relationship between video content and the slope of the regression 

line. Based on this investigation, methods to automatically estimate the slope 

parameter from video content are given in section 6.4. Video quality measurement 

at macroblock, frame and sequence level using the MOSp metric is presented in 

section 6.5. Performance of the MOSp metric is evaluated in section 6.6 and finally, 

the performance results are discussed in section 6.7. 
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6.2    Quantifying video content 

The slope of the regression line between MSE and MOS varies with video content. 

Features in a video sequences may have an effect on the visibility of compression 

induced distortions which could in turn have effect on the steepness or shallowness 

of the regression line that relates MSE and MOS. Masking effect is an important 

visual phenomenon which describes why similar levels of distortion may be more 

visible in certain regions of a video frame while they are hardly noticeable in other 

regions [63]. As mentioned in Chapter 3 (section 3.2.3), factors contributing to 

visual masking include spatial texture masking and temporal masking. Features in 

the video scene such as texture and motion may contribute to the ‘hiding’ or 

‘enhancing’ of visible distortions. Hence spatial texture masking and temporal 

masking information are used to quantify sequence content in order to estimate the 

slope of the regression line ( sk ) for each video sequence.  

6.2.1 Spatial texture information 

Spatial texture masking occurs because regions in a video frame that are rich in 

texture can mask distortions more effectively than other regions [63]. Spatial edges 

give a good estimate of the amount of detail in a region and are related to object 

boundaries, surface crease and other important visual events. Considering this, the 

spatial edge strength can be used as a measure of spatial texture information.  

Sobel edge detecting filters [80] are popularly used to obtain edge information due 

to computational simplicity and robustness to noise.  

Hence, in this work the Sobel filters have been used to obtain edge information 

from the luminance component of the original uncompressed video frame. The 

horizontal edge image ( horizontalG ) and the vertical edge image ( VerticalG ) are 

separately computed using the Sobel filters, and the edge magnitude image is 

computed as follows: 

( ) ( ) ( )yxGyxGyxG verticalhorizontal ,,, +=  
(42) 

where, G is the edge magnitude image and (x,y) is the pixel location. Spatial edge 

strength is measured using local regions, hence the edge magnitude image is 
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divided into 16x16 non-overlapping blocks or macroblocks1, and the spatial-texture 

information of each macroblock  ( MBSTI ) is computed as the average edge strength 

of all the pixels in that macroblock. The average edge strength of a macroblock is 

used as a measure of its spatial texture because a highly textured macroblock will 

tend to have larger average edge strength due to the presence of strong edges and 

conversely, a smooth or low-textured macroblock will tend to have smaller average 

edge strength.  

The effect of spatial texture masking on the visibility of distortion can be explained 

using Figure 6-1. Consider two sequences: Foreman and Bus. The edge magnitude 

maps of the first frame from both sequences are shown. Figure 6-1 also shows the 

original frames and the corresponding reconstructed compressed frames. The mean 

squared error between the original and the compressed frames for both the 

sequences is similar (approximately = 92). However, the visual quality of the 

compressed Foreman frame shows more visible loss of detail, especially in the facial 

area and the boundary between the cap and the face, when compared to the 

original Foreman frame. For similar MSE, the compressed Bus frame has 

comparatively less visible loss of detail. From the edge magnitude maps, it can be 

noted that the Bus frame has large amount of texture in the video scene when 

compared with the Foreman sequence. Hence, due to the spatial texture masking 

effect, the distortion in the Bus frame is less visible than the distortion in the 

Foreman frame.   

 

 

 

 

 

 

                                                
1 Video content and MSE are calculated at macroblock level in order to facilitate incorporating the metric into block-based 

video coding algorithms. 
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           Foreman edge magnitude map                       Bus edge magnitude map                                                                                                                                                                                                
a   average frame edge magnitude = 35.24          average frame edge magnitude = 85.79   

 

                

           Foreman sequence, Original Frame           Compressed frame (MSE = 91.67) 

 

               

            Bus sequence, Original Frame                 Compressed frame (MSE = 92.29) 

Figure 6-1: Spatial texture masking and visibility of distortion.  
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6.2.2 Temporal change  

Temporal masking occurs because regions that undergo large temporal changes can 

mask or ‘hide’ distortions more effectively than other regions due to the limited 

cognitive and temporal response of the human viewer [81]. There are several 

approaches in the literature to measure temporal change in video [14]. These 

include image differencing and calculation of motion vectors. Although image 

differencing is computationally simple when compared to motion vector estimation, 

it is known to enhance image noise. In this research, the temporal change is 

calculated as the gradient magnitude of the absolute difference between the current 

luminance frame (Y
n

) and the previous luminance frame (Yn−1):  

 

where TIn  is the temporal gradient magnitude image of the current frame, 

),( yxhorizontalGT  and ),( yxverticalGT  are the horizontal and vertical Sobel gradient 

images of 
diff

Y  image.  

Equation (44) is used as a measure of temporal information because it is more 

robust to noise than simple image differencing [14]. Since equation (44) is also a 

measure of gradient magnitude, it may be comparable with the spatial edge 

magnitude measure described in equation (42). And most importantly, it gives an 

accurate measure of temporal change because a large temporal change between 

current and previous frame pixels will result in a large absolute difference value and 

hence a large gradient magnitude. This is explained using Figures 6-2 and 6-3. 

Figure 6-2 shows four original frames from the Foreman sequence. Figure 6-3 

shows the frame difference images between frames 1 and 2, frames 1 and 3 and 

frames 1 and 4. This combination of frame difference has been chosen to 

demonstrate the ability of the temporal edge magnitude measure to effectively 

reflect temporal change. The corresponding temporal gradient magnitude images 

are also given in figure 6-3. The average temporal edge magnitude of the difference 

Y
diff

= abs Yn −Yn−1( ) 
(43)

  

TIn = GT
horizontal

(x, y) + GT
vertical

(x, y)  
(44)
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image between frames 1 and 2 is 40.93. Similarly, the average temporal changes 

between frames 1 and 3 and frames 1 and 4 are 58.76 and 63.91 respectively. This 

indicates that with the increase in temporal difference, there is a corresponding 

increase in the average temporal edge magnitude. Hence this measure is an 

effective indicator of temporal change. The temporal information of each 

macroblock (TImb) is computed as the average temporal gradient strength of all the 

pixels in the macroblock. The temporal gradient strengths of all the macroblocks in 

a frame are averaged to obtain the measure for frame temporal change. 

 

      
                          Frame 1                                                      Frame 2 
 
 

        
                             Frame 3                                                      Frame 4 
 
Figure 6-2: Original frames from Foreman sequence 
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   Difference Image: Frame 1 – Frame 2           Corresponding Gradient Magnitude Image  
                                                                     Average frame temporal change = 40.93   
 
 

          
   Difference Image: Frame 1 – Frame 3           Corresponding Gradient Magnitude Image  
                                                                     Average frame temporal change = 58.76   
 
 
 

           
   Difference Image: Frame 1 – Frame 4          Corresponding Gradient Magnitude Image  
                                                                    Average frame temporal change = 63.91   
 
Figure 6-3: Difference images and the corresponding gradient magnitude image 
for the Foreman sequence 
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6.3     Sequence Activity measure 

Mean opinion score is a subjective score for the entire sequence. Therefore, video 

content of the whole sequence must be considered during slope parameter 

estimation. In this research work, the term ‘sequence activity’ is used to represent 

a measure of sensitivity of the sequence to visual distortion and is derived from 

sequence content based on visual masking information.  

 

The sequence activity measure will be used to estimate the slope ( sk ) of the 

regression line in the MOSp metric for each sequence. The sequence activity 

measure is a value between [0,1] and indicates the sensitiveness of the sequence 

to visible distortions. The activity measure is calculated at macroblock level first. 

The activity of a frame is calculated as the average of activities of all the 

macroblocks in the frame. The sequence activity Aseq is the average value of 

activities of all the frames and is given as: 

 

 

 

 

 

Where ‘i’ is the macroblock number and P is the total number of macroblocks in a 

video frame. ‘j’ is the frame number and T is the total number of frames in the 

video sequence.  

 
 
 
6.4    Slope estimation from video content 

From the video quality experiments in section 5.2, it has been noted that one of the 

main factors contributing to subjective quality is the sensitivity of video content to 

visible distortions. In section 6.3, methods of quantifying sequence content from 

spatial texture information and temporal change information were described. The 

visibility of distortions in video may depend on the individual contribution or a 

combined contribution of the above mentioned features. This section investigates 

that relationship. Therefore, this section presents the slope estimation for MOSp 

metric using the following video content measures: 

Aseq =
1

T
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1.) Spatial texture information 

2.) Combination of spatial texture and temporal change information  

 
These are described in detail in this section. 
 
 
6.4.1 Slope estimation using spatial texture 

The sensitivity of sequence content to the visibility of distortions may be measured 

using spatial texture masking. As explained in section 6.2.1, the spatial-texture 

information of each macroblock ( MBSTI ) is computed as the average edge strength 

of all the pixels in that macroblock. The average edge strength is used as a 

measure of sequence activity because it is hypothesised that highly textured 

regions with larger average edge strengths are more tolerant to visual distortions 

than smoother regions with lower average edge strengths due to the spatial texture 

masking effect. The sequence activity is calculated from the average edge strength 

of all the macroblocks in the sequence using equation (42). 

The relation between slope and the sequence activity is acquired using the eight 

training sequences mentioned in section 5.2. The ‘data points’ in Figure 6-4 are the 

slopes of the MSE versus MOS curves of these eight training sequences. The 

relation between slope and sequence activity is derived using the exponential fit as: 

 

 

sk  is the estimated slope and seqA  is activity of the sequence derived from its  

spatial texture information using equation (42).  

Equation (46) is the curve fit plotted as the dotted line in Figure 6-4. It is clear from 

the graph that (46) is a good prediction of slope sk . The goodness of this fit was 

measured using R-squared value as 96.2%.  

From Figure 6-4 it can be observed that low textured sequences such as the 

Carphone sequence with sequence activity of 30.72 produce steeper regression 

lines in the MSE versus MOS graph. Highly textured sequences such as the Mobile 

sequence with sequence activity of 111.49 have shallower regression lines. This 

indicates that in low-activity sequences, a small change in MSE leads to a larger 

)*02439.0exp(*03585.0
seq

A
s

k −=  (46) 
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change in MOS when compared to high-activity sequences for the same amount of 

change in MSE. 

 

 

Figure 6-4: Slope estimation from spatial texture information  

 
6.4.2 Slope estimation using spatial texture and temporal change 

The activity of a macroblock ( mbA ) may be obtained from the spatial-texture 

information and the temporal information of the macroblock as: 

 

 

where MBSTI  is the spatial texture information derived from equation (1), MBTI  is 

the temporal change information derived from equation (44).  

Equation (47) is used as a measure of macroblock activity because both spatial 

texture and temporal change contribute to the masking of distortions. Due to the 

complex nature of the human visual system, there is very little evidence in 

literature of the combined effect of spatial texture and temporal information on 

human perception. Also, it was observed from experiments that combining spatial-

texture measure (STImb ) and temporal change measure (TImb) into a single value 

( )MBMBmb TISTIA ,max=  
(47) 



 118 

may obscure the contribution of each element to masking the distortion. Hence the 

maximum of the two measures is considered as the activity of a macroblock. The 

relation between slope and the sequence activity is acquired using the eight training 

sequences mentioned in section 5.2. The ‘data points’ in Figure 6-5 are the slopes 

of the MSE versus MOS curves of these eight training sequences. We derive the 

relation between slope and sequence activity using the exponential fit as: 

 

 

sk  is the estimated slope and seqA  is activity of the sequence derived from its spatial 

and temporal masking information using equation (48).  Figure 6-5 shows the 

exponential curve fitted to the data points. R-squared is 91.27%.  From Figure 6-5 

it can be observed that low activity sequences which have low to medium amount 

of detail and motion such as the Carphone sequence with sequence activity of 

34.93 produce steeper regression lines in the MSE versus MOS graph. High activity 

sequences such as the Bus sequence with sequence activity of 123.92 have 

shallower regression lines.  

 

Figure 6-5. Graph showing relation between slope and sequence activity derived 
from spatial texture and temporal change information 
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6.5    Macroblock, frame and sequence level quality estimation using MOSp 

metric 

During subjective evaluation of video quality by human observers, a judgement is 

made based on the overall quality of the sequence under test. Video sequences 

compressed at low bit-rates may have good picture quality in some parts of the 

sequence while other parts may have poor picture quality. The overall sequence 

quality rating reflects the quality of the entire video sequence, at least for short 

sequences [43]. Hence the use of combined average of MOSp is proposed for all the 

macroblocks in a frame as the frame-level quality measure and the average of 

MOSp of all the frames in the sequence as the overall quality measure of the video 

sequence. 

Quality is first evaluated at macroblock-level, then combined into frame-level 

quality and finally averaged into a single valued sequence-level quality measure. 

The proposed metric computes the predicted subjective quality (MOSp) of each 

macroblock in the processed frame. The activity of every macroblock is calculated 

using methods described in section 6.2 in order to determine the slope kmb  using 

one of the approaches in section 6.4. The MSE between macroblocks of the original 

and reconstructed compressed macroblocks is computed using equations (37-40) in 

chapter 5. The MOSp for each macroblock is computed as:   

                                                           

 

Figures 6-6 and 6-7 give an illustration of the hypothesis behind: (i) the prediction 

of perceived quality using MOSp at macroblock-level and (ii) the weighting of MSE 

based on the visual sensitivity of the video content. Figures 6-6 and 6-7 are video 

frames from the Foreman and Bus sequences compressed at QP = 36. A region in 

each frame has been selected for analysis purposes. It is a group of 5x5 

macroblocks indicated by the red box in Figures 6-6 and 6-7. The corresponding 

MSE and MOSp values of these macroblocks are given. To compare the 

performance of the MOSp metric calculated using slope estimation methods 

described in sections 6.4.1 and 6.4.2, the MOSp values obtained using both the 

methods for the two 5x5 regions are presented. From the figures, the following 

observations can be made: 

MOSpmb =1− kmb(MSEmb) (49) 
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i. The MSE values of the 5x5 region in Bus sequence (Figure 6-7) are higher 

than those of the Foreman sequence (Figure 6-6). However, the visual 

quality of the 5x5 compressed region in the Foreman sequence is worse than 

that of the bus sequence. There is significant loss of detail and contrast in 

the facial region of the Foreman frame compared to the 5x5 uncompressed 

region of the Foreman frame.  

ii. The average MOSp value of the 5x5 macroblock region obtained using both 

the slope estimation methods are presented . The average MOSp values of 

the Foreman region obtained using both the methods are lower than the Bus 

region although the average MSE of the Bus region is higher. This is because 

the MOSp metric is designed to identify regions with low texture and motion 

as being more sensitive to visible distortions when compared to regions with 

high texture and motion. Therefore, the distortions in low texture and low 

motion areas, such as the facial regions in the Foreman frame, produce lower 

MOSp score to indicate lower perceived quality. High texture/high motion 

regions, such as Figure 6-7, are more tolerable to visible distortions. Hence 

the MOSp values are higher in the macroblock of Figure 6-7 although the 

MSE values are comparatively higher than Figure 6-6. 

This example demonstrates that the MOSp metric is a more effective predictor of 

subjective quality than MSE, for these selected 5x5 macroblock regions from the 

Foreman and Bus sequences. 
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0.6 0.54 0.65 0.68 0.64 

0.38 0.5 0.72 0.65 0.38 

0.49 0.66 0.65 0.64 0.58 

0.57 0.58 0.59 0.58 0.61 

0.66 0.59 0.49 0.61 0.42 

                  

 
22.29 17.06 4.33 8.07 13.9 

24.58 24.4 9.8 15.74 33.06 

29.29 18.42 9.31 17.25 23.98 

12.02 6.71 16.4 25.43 10.59 

4.32 9.95 26.68 23.85 21.77 

 
 
 
 

 
 
 
   
 
 
 
 
 

0.61 0.5 0.74 0.76 0.73 

0.42 0.56 0.81 0.62 0.44 

0.53 0.69 0.69 0.67 0.58 

0.67 0.6 0.71 0.59 0.64 

0.71 0.63 0.58 0.66 0.53 

Figure 6-6: Video frame from Foreman sequence compressed at QP = 36. Note: 
MOSp = [0,1] where 0 = bad and 1 = excellent picture quality. 

  Macroblock MSE values, average MSE = 17.18 

 Original region    Compressed region 

Macroblock MOSp values using spatial 
 texture only, average MOSp = 0.5784 Macroblock MOSp values using spatial 

 texture and temporal change, average 
MOSp = 0.6268 
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Figure 6-7: Video frames from Bus sequences compressed at QP = 36. Note: MOSp 
= [0,1] where 0 = bad and 1 = excellent picture quality. 

 
 
6.6     Metric performance evaluation 

Performance of an objective video quality metric depends on whether the metric is 

in close agreement with subjective results (MOS), whether it can be calculated 

automatically in real time and whether it has computational simplicity. In this 

section, the performance of the MOSp metric is evaluated based on its correlation 

with subjective test results and comparison with existing full reference objective 

video quality metrics. Section 6.6.1 describes a subjective experiment conducted to 

obtain subjective scores (MOS) for 32 multimedia video sequences of varying video 

content. The MOS scores are used for benchmarking the performance of the 

objective video quality metrics. Section 6.6.2 provides details of the subjective 

evaluation process conducted to obtain the subjective scores (MOS) for the test 
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Macroblock MSE values, average MSE = 117.84 



 123 

sequences. Following the performance evaluation methods adopted by the video 

quality experts group (VQEG), three evaluation metrics have been used to 

benchmark performance of the MOSp metric: Pearson Correlation, Spearman’s rank 

correlation and the outliers ratio. Details of the software implementations of these 

evaluation metrics and the correlation results of the MOSp and the five other 

metrics with respect to subjective results (MOS) are presented in section 6.6.3. 

Visual representation of the correlation between subjective quality and the 

predicted quality may be presented using ‘scatter plots’. Hence, scatter plots of 

MOSp and the other metrics are given in section 6.6.4. The processing time of 

video quality metrics is important in real time video applications. Hence, the 

processing times for the MOSp metric and other metrics are evaluated in section 

6.6.5. Section 6.6.6 gives performance comparison of the two methods for 

calculating the MOSp metric based on sequence content parameters described in 

section 6.2. This comparison is performed to investigate the advantages and 

limitations of the MOSp metric. 

 
6.6.1 Test Material 

For evaluating the performance of the metric, 32 multimedia video sequences of 

CIF resolution format were used in order to include a wide variety of video content. 

These include: 

• 8 training sequences used in modelling the MOSp metric. These sequences 

include: Carphone, Foreman, News, Bus, Coastguard, Deadline, Paris and 

Tempete. 

• 8 video sequences popularly used in the video compression research 

community. These include: Salesman, Mother and Daughter, Container, 

Grasses, Mobile, Husky, Akiyo and Sign Irene. 

• 16 video sequences from the VQEG data set of multimedia sequences [73]. 

 

These sequences were chosen to represent a wide variety of video content. The 

VQEG test data set is very widely used in the video quality measurement research 

community. The test sequences range from low motion and low detail ‘head and 

shoulder’ scenes such as Mother and Daughter to high motion and high detail 

scenes such as the Husky sequence. The sequences were in common intermediate 

format (CIF) resolution to represent multimedia sequences.  
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The sequences were in 4:2:0 YCbCr format, 10 seconds in duration and were coded 

using the H264/AVC compression standard. Each test sequence was compressed at 

a wide range of bitrates using a fixed set of quantisation parameter (QP) values, QP 

= {6, 26, 34, 36, 38, 40, 42, 45}. There is a closer spacing between the chosen QP 

values in the ‘useful’ medium- to low-bitrate range for multimedia sequences 

(QP=34 to QP =42). 

 

6.6.2 Coding parameters 

The test video sequences used in this experiment were compressed using the 

H.264/AVC JM reference software (version 12.1) available at 

http://iphome.hhi.de/suehring/tml/, with the following parameters: 

 

• Profile used is Main profile. 

• Level IDC setting is set 4.0 

• Frame Skip: no frames were skipped 

• Number of reference frames for Inter motion search is set to 5.   

• Number of B-pictures used = 0 

• Entropy coding method is set to CABAC. 

• RD-Optimisation: High complexity mode 

• Rate Control: DISABLED to allow the use of fixed QP. 

• Slice QP: QPISlice and QPPSlice parameters used and both set to the same 

value as the sequence QP.  

Note that the coding parameters used in the MOSp metric evaluation is identical to 

those used to produce the training sequences in section 5.2. 

 
6.6.3 Subjective evaluation 

The subjective evaluation process involved 30 non-expert evaluators and followed 

the guidelines in ITU-T P.910 Recommendation [6]. The single stimulus impairment 

scale (SSIS) evaluation method was used. A 5-grade scale from 0 to 1 was used to 

rate the quality of the test video sequences where 0=bad, 0.25=poor, 0.5=fair, 

0.75=good and 1=excellent. The experimental procedure was carried out as 

described in section 5.2. The MOS for a sequence was calculated as the average of 

all scores obtained for the sequence compressed at a certain QP. The mean 95% 

confidence interval for the whole data set was 0.0473. The sequence MSE was 

calculated as the mean of the sum of squared differences (SSD) between the 

luminance pixels of the original and the constructed compressed video sequence.  
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6.6.4 Performance comparison of MOSp with existing metrics 

Following the performance evaluation methods adopted by the video quality experts 

group (VQEG), three evaluation metrics have been used to benchmark performance 

of the MOSp metric: Pearson Correlation, Spearman’s rank correlation and the 

outliers ratio. The Pearson’s correlation coefficient is used to measure the prediction 

accuracy of the MOSp metric. The Spearman’s correlation is used to measure the 

prediction consistency of the MOSp metric. Both Pearson and Spearman correlation 

value range between [0,1] where 1 indicates very high correlation between 

predicted measures and the subjective ratings and 0 indicates no correlation. The 

correlation coefficients and outliers ratio between subjective score (MOS) and the 

corresponding objective measure were calculated as described in Chapter 3 (section 

3.7). Experimental results are illustrated in Table 6-1, Table 6-2 and Table 6-3. 

Tables 6-1 and 6-2 give the Pearson’s correlation between the estimated and actual 

perceptual quality for MOSp and the five popular metrics using the test sequences. 

It is noted that the non-training sequences have not been used in developing the 

proposed metric. For each sequence in the table, the highest correlation coefficient 

is highlighted in bold font. From the table, the following observations can be made: 

• The MOSp metric produces high correlation (>90%) with subjective ratings 

for a variety of video sequences ranging from low activity such as Akiyo and 

News, to high activity sequences such as Bus, Mobile and Coastguard. The 

metric also produces good results with sequences which are a combination 

of both low-activity and high-activity scenes such as Foreman and Tempete 

sequences. 

• The PSNRplus and NTIAVQM metrics also produce high correlations (>90%) 

with MOS for most sequences. However, PSNRplus has a very large 

computational cost due to the need for encoding each video sequence three 

times in order to make a quality estimation. This makes PSNRplus unsuitable 

for real time multimedia applications.  

• The MOSp metric has higher correlation with subjective ratings when 

compared to NTIAVQM for 28 out of the 32 test sequences. 

• The two methods of calculating MOSp from various video content are also 

presented in Table 6-1. It can be noted that the MOSp based on spatial 

texture produces higher correlation with MOS compared to the MOSp metric 

based on spatial texture and temporal information for 21 out of 32 

sequences. This could be because the slope estimation model based on 
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spatial texture is more accurate than the model which uses a combination of 

spatial texture and temporal change. 
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Table 6-1. Pearson Correlation between popular metrics and MOS for 16 test sequences 

Sequence PSNR VSSIM PSNRplus NTIAVQM Yonsei MOSp based on 
spatial texture  

MOSp based on 
spatial texture and 

temporal  
Training        
Foreman [73] 0.775 0.794 0.958 0.965 0.872 0.988 0.997 

Carphone[73] 0.672 0.849 0.957 0.933 0.868 0.943 0.968 

Bus [73] 0.719 0.838 0.856 0.962 0.896 0.988 0.989 

Deadline [73] 0.773 0.834 0.927 0.985 0.847 0.924 0.939 

News [73] 0.849 0.771 0.931 0.916 0.863 0.915 0.944 

Paris [73] 0.809 0.797 0.948 0.968 0.870 0.942 0.964 

Tempete [73] 0.712 0.785 0.890 0.975 0.917 0.97 0.964 

Akiyo [73] 0.752 0.811 0.932 0.908 0.939 0.901 0.986 
Non-training        
Husky [73] 0.702 0.775 0.901 0.961 0.841 0.925 0.921 

Salesman[73] 0.801 0.818 0.919 0.948 0.941 0.874 0.927 

Container[73] 0.795 0.825 0.953 0.976 0.876 0.975 0.989 

Grasses [73] 0.774 0.727 0.879 0.963 0.916 0.962 0.994 

Mobile [73] 0.697 0.713 0.919 0.949 0.884 0.947 0.984 

Sign Irene [73] 0.763 0.746 0.955 0.949 0.945 0.892 0.957 

Mother & 
daughter[73] 

0.725 0.764 0.924 0.935 0.869 0.93 0.952 

Coastguard [73] 0.762 0.724 0.883 0.969 0.866 0.991 0.995 
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Table 6-2. Pearson Correlation between popular metrics and MOS for 16 CIF VQEG Multimedia test dataset 

Sequence PSNR VSSIM PSNRplus NTIAVQM Yonsei MOSp based on 
spatial texture  

MOSp based on 
spatial texture and 

temporal  
ITU_SRC_MobileCalend
ar_cif [72] 

0.697 0.713 0.919 0.949 0.884 0.973 0.901 

ITU_SRC_Football_cif 
[72] 769 0.772 0.887 0.942 0.914 0.962 

0.945 

ITU_SRC_FlowerGarden
_cif [72] 0.72 0.867 0.892 0.945 0.942 0.96 

0.912 

ITU_SRC_Stephen_cif 
[72] 0.774 0.821 0.957 0.959 0.89 0.913 

0.875 

ANSI_SRC_Crew_cif 
[72] 0.703 0.729 0.856 0.975 0.857 0.93 

0.891 

ANSI_SRC_MissAmerica
_cif [72] 0.754 0.766 0.927 0.916 0.923 0.981 

0.915 

CBC_SRC_BetesPasBet
es_cif [72] 0.81 0.768 0.931 0.952 0.941 0.916 

0.904 

ANSI_SRC_washdc_cif 
[72] 0.683 0.722 0.948 0.949 0.927 0.955 

0.899 

ANSI_SRC_vtc2mp_cif 
[72] 0.762 0.819 0.89 0.918 0.872 0.917 

0.868 

ANSI_SRC_vtc1nw_cif 
[72] 0.775 0.827 0.861 0.905 0.861 0.932 

0.895 

ANSI_SRC_5row1_cif 
[72] 0.751 0.824 0.952 0.941 0.896 0.949 

0.939 

ITU_SRC_Cheerleade
rs_cif [72] 

0.724 0.816 0.947 0.952 0.847 0.957 0.944 

ANSI_SRC_boblec_cif 
[72] 

0.699 0.794 0.902 0.964 0.87 0.984 0.964 

CRC_SRC_Redflower
_cif [72] 

0.736 0.818 0.873 0.952 0.872 0.969 0.947 

ANSI_SRC_vtc2zm_c
if [72] 

0.71 0.829 0.925 0.928 0.907 0.895 0.919 

CBC_SRC_BetesPasB
etes_cif [72] 

0.752 0.801 0.937 0.931 0.893 0.951 0.906 
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Table 6-3 illustrates the overall performance of MOSp and the popular quality 

metrics when compared with the actual subjective results (MOS). The table 

consists of the Pearson correlation, Spearman correlation and outliers ratio for 

each metric when all the 32 test video sequences mentioned in Tables 6-1 and 6-

2 are included. 

Table 6-3. Overall Comparison of MOSp with popular metrics 

Metric Pearson  
Correlation 

Spearman 
Correlation 

Outliers Ratio 

PSNR 0.696 0.711 0.857 
VSSIM 0.723 0.779 0.797 

PSNRplus 0.886 0.959 0.596 
NTIA VQM 0.901 0.913 0.516 

Yonsei University 0.863 0.878 0.628 
MOSp based on spatial 

texture only 
0.942 0.948 0.410 

MOSp based on spatial 
texture and temporal 

change 

0.926 0.938 0.48 

 

The overall performance of objective quality metrics is important because it 

reflects the accuracy of prediction of perceived quality for a variety of sequences 

ranging from low activity sequences such as Akiyo to very high activity sequences 

such as Husky.  

Pearson correlation measures the ability of an objective quality metric to predict 

subjective ratings with minimum average error assuming a linear correlation 

between the two quality metrics. The overall Pearson correlation for MOSp based 

on spatial texture is 0.942, which are the highest amongst the metrics compared 

in Table 6-3. The closest metric to this performance is the MOSp metric based on 

spatial texture and temporal change with Pearson correlation of 0.926. 

Spearman correlation determines how well the estimated result reflects an 

increase or decrease in the actual subjective result regardless of the magnitude of 

increase or decrease. It also makes no assumptions about the shape of the 

relationship between the predicted data and the subjective ratings. From table 6-

3, it can be observed that PSNRplus produces the highest Spearman correlation 

with MOS compared to other metrics. The closest to this performance is the MOSp 
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metric based on spatial texture. Although PSNRplus produces improved results 

compared to MOSp, it requires every sequence to be coded three times in order to 

obtain the two additional instances for making quality estimation. Therefore, 

PSNRplus may have limited applications in real-time video quality estimation as 

explained further in section 6.6.5 when computation times of various metrics are 

compared. 

The outliers ratio (OR) measures prediction consistency and is a ratio of “false” 

scores to the total number of scores [82]. The "false" scores are the scores that 

lie outside the interval [MOS-2σ , MOS+2σ ]. A lower outliers ratio indicates 

better metric performance. The MOSp metric based on spatial texture has the 

lowest outliers ratio compared to other metrics in Table 6-3.   

MOSp metric based on spatial texture performs better than the MOSp metric 

based on spatial texture and temporal changes. This may be due the following two 

reasons:  

1. Spatial texture masking has more effect on the visibility of distortion when 

compared to temporal masking. 

2. The slope estimation model based on spatial texture only is more accurate 

compared to the model based on spatial texture and temporal change 

information.  

The overall performance of the MOSp metric demonstrates that it produces high 

correlation with MOS (>90%) for a variety of video content compressed to a wide 

range of bitrates. 
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6.6.4 Scatter plots 

Figures 6-8 and 6-9 show the scatter plots of subjective ratings (MOS) versus the 

proposed metric (MOSp) and other five popular metrics. The scatter plots contain 

all the 32 test sequences.  

 

  

                                 (a)                                                             (b) 

   

                                  (c)                                                             (d)     

Figure 6-8: Scatter of subjective ratings (MOS) versus (a)PSNR, (b)PSNRplus, 
(c)VSSIM and (d)NTIA VQM  for all the 32 CIF test sequences compressed using 
H264/AVC. 
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                                   (a)                                                             (b)            

 

 

                                      (c)                                                                       

                                        

Figure 6-9: Scatter plot of subjective ratings (MOS) versus (a)Yonsei University 
metric and (b)MOSp based on spatial information only, (c)MOSp based on spatial 
texture and temporal change information, for all the 32 CIF test sequences 
compressed using H264/AVC. 
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6.6.5 Processing time 

Processing time for quality measurement systems is important in real-time video 

applications. This section investigates the computational complexity of the various 

video quality metrics discussed in this chapter. Table 6-4 shows the percentage 

increase in coding time when compared to the coding time of the reference 

H.264/AVC software codec called the JM software [83]. All the quality metrics 

were implemented into the software codec for performance evaluation. The coding 

time is taken for JM software to encode the ‘Paris’ sequence of CIF resolution with 

150 frames. The implementations were carried out on a 1.5 GHz, 512 MB RAM 

desktop PC. The NTIA/ITS VQM algorithm is not included in the comparison of 

Table 6-3 because the software implementation of this metric [60] requires user 

input during the measurement process, whereas the software codec 

implementations of the metrics listed in the speed comparison Table 6-4 are fully 

automatic. It can be observed from the table that the PSNRplus metric consumes 

the most processing time due to the requirement of encoding each video 

sequence three times to make a quality estimation. The second most 

computationally expensive metric is the VSSIM metric which requires each video 

frame to be spatio-temporally aligned and perceptual features to be extracted 

from a large set of parameters in order to quantify video quality. The metric 

requiring least processing time is the PSNR metric but it produces poor correlation 

with MOS as noted from the evaluation results in Tabled 6-1 and 6-2. The second 

most efficient quality metric in terms of processing time is the Yonsei University 

metric which produces around 86% correlation with subjective results.  

The processing times for the MOSp metric derived from sequence content using 

the two different methods are presented in Table 6-3. The MOSp metric based on 

spatial texture information requires the least processing time (4.9%) which is less 

than the MOSp metric based on both spatial texture and temporal change. From 

Table 6-4 it is evident that MOSp is faster than VSSIM and PSNRplus but requires 

more processing time compared to PSNR and the Yonsei University metric. 

However, the MOSp metric gives improved correlation with subjective quality 

compared to other metrics evaluated in this work. 
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                Table 6-4. Running speed of MOSp and popular metrics 

Metric Increase in coding time 
(%)  

PSNR Negligible 
VSSIM 32.7% 

PSNRplus 200.18% 
Yonsei University 4.2% 

MOSp based on spatial texture  4.9% 
MOSp based on spatial texture and 

temporal change information 
7.7% 

The processing times for MOSp metric presented in Table 6-4 includes all the 

evaluation processes including spatial edge strength calculation and temporal 

change calculations performed on each frame. For the purposes of this research, 

the algorithms for all the metrics presented in Table 6-4 have been implemented 

in the C programming language. The coding time is the time taken by H264 

compression algorithm to process a video sequence. The percentage increase in 

coding time presented in Table 6-4 is calculated from the average coding times 

recorded using five repetitions.  

The MOSp metric predicts perceptual quality using MSE which is a widely used 

quality measure in video compression algorithms. The only additional requirement 

for MOSp calculation is the slope estimation using one of the two methods using 

spatial texture and temporal change information. From Table 6-4, it is can be 

observed that quality estimation using MOSp metric increases computation time 

by 4.9% to 7.7% depending on the method of slope estimation. Hence the choice 

of slope estimation for calculating MOSp metric will depend on the application, the 

required prediction accuracy and the available computational resources. 

 
6.7     Discussion 

The MOSp metric estimates the mean opinion score (MOS) of compressed 

multimedia sequences using: (i) MSE between the original and compressed video 

sequences and (ii) video content of the original video sequence which is measured 

using features such as spatial texture and temporal change. Two methods of 

estimating the slope of the regression in the MOSp metric have been proposed 

using spatial texture and temporal change. The performance evaluation results 

indicate that the MOSp metric produces high correlation with MOS (>90%) with 

an increase in coding time between 4.9% to 7.7%. The metric correlates with 
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subjective results better than popular metrics PSNR, PSNRplus, VSSIM, Yonsei 

and NTIAVQM metric.  

Video content which influences the visibility of distortions may also include objects 

in the video which attract human attention depending on viewer interest and task 

in hand. These aspects of video content may also influence the relationship  

between MSE and MOS. From experiments in sections 5.2, it can be observed that 

sequences containing human figures tend to have steeper slope when compared 

to sequences without humans. Hence investigations are carried out in the 

following chapter to see if the MOSp metric can be improved by incorporating 

cognition-based factors such as the presence of humans in video sequences.  
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7 MOSp Metric Based On MSE, Video 
Content And Cognition Factors 

 
7.1   Introduction 

The MOSp metric described in Chapters 5 and 6 is designed to predict the MOS of 

compressed video using MSE and video content.  It exploits the linear relationship 

between MSE and MOS for a sequence coded at several bitrates using the same 

coding algorithm. The slope of the regression line between MSE and MOS varies 

with video content. Masking effects mean that video content has an influence in 

‘enhancing’ or ‘hiding’ video compression artefacts. Based on this phenomenon, 

the slope parameter of the MOSp metric was derived from spatial texture and 

temporal change information in Chapter 6. Performance results show that the 

MOSp metric produces very high correlation (>90%) with MOS and performs 

better than other popular metrics for a test dataset containing a wide variety of 

multimedia sequences compressed to a large range of bit rates using the 

H264/AVC encoder. 

 

Video content such as objects in the video scene which attract human attention 

may also have effect on the visibility of distortions. These objects could relate to 

viewer interest, task in hand and prior knowledge [84]. Therefore, by considering 

these factors, it may be possible to extend the MOSp metric based on spatial 

texture and temporal change to incorporate cognition based factors which attract 

viewer attention. This chapter investigates the relationship between video content 

and the slope parameter of the regression line between MOS and MSE with a view 

to incorporate cognition factors into the existing MOSp metric. 

 

The chapter is organised as follows: section 7.2 gives a description of cognition 

factors which may have an effect on the visibility of distortion including the 

presence of humans in video. Section 7.3 describes the experiment conducted to 

investigate the relationship between video content and the slope of the regression 

line. Based on this investigation, methods to automatically estimate the slope 

parameter from video content are given in section 7.4. Video quality 

measurement at macroblock, frame and sequence level using the MOSp metric is 
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presented in section 7.5. Performance of the MOSp metric is evaluated in section 

7.6 and finally, the performance results are discussed in section 7.7. 

 
 
7.2   Cognition based factors affecting visual quality of video  

Cognition based factors that attract human attention while watching video may be 

used to classify video content into foreground and background regions. These 

factors include objects or patterns in the video scene that are ‘recognised’ by the 

viewer based on viewer interest, prior knowledge or task-in-hand. Research has 

shown that presence of humans and particularly human faces in a scene attract 

visual attention [85].  In certain applications such as sign language, hand 

movements are equally important. Hence in general, skin colour can be used as a 

cognitive-driven factor, as it is an indicator of the presence of humans and human 

faces. Previous studies on the effects of artefacts on perceived quality [69] have 

found that distortions in foreground areas such as human faces caused lower 

subjective ratings while similar artefacts in the background areas went unnoticed. 

Therefore, objects in the video scene which attract viewer attention may 

contribute to enhancing or masking of visible distortions in compressed video and 

have effect on the slope of the regression between MSE and MOS. 

 

Skin colour is a popular cognition-driven perceptual cue and has been proven to 

be an effective feature in many applications such as face detection and hand 

tracking [86,87]. Skin colour detection involves choosing an appropriate colour 

space and identifying a cluster associated with skin colour in this space. Pixels are 

then classified as skin if they belong to the skin cluster. YCbCr is a commonly 

used colour space for skin detection due to its ability to separate luminance and 

chrominance information and popularity in the image and video compression 

algorithms. Skin clusters are more compact in the YCbCr colour space compared 

to other colour spaces [88].  

In this research, Hsu’s nonlinear transform [89] of chroma in YCbCr colour space 

is used to classify pixels as skin. The transform exploits the nonlinear dependency 

of skin colour on luminance and hence overcomes the difficulty of detecting skin in 

changing lighting conditions. The transform converts the chroma components (Cb 

and Cr) of each pixel into functions of the luminance component (Y) as: ( )yCb

'  and 
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where cx=109.38, cy=152.02, θ=2.53 radians, cxe =1.60, cye =2.41, a=21.39 and 

b=14.03. A pixel is classified as skin if the '

bC  and '

rC values of the pixel lie on or 

with in the ellipse described above. The algorithm produces a rough segmentation 

of skin regions in a video frame.  

Although skin detection using colour is popularly used for its computational 

simplicity and efficiency, it is known to produce false positives which include 

regions in the image which have similar colour to skin tone. To overcome this 

problem, a general approach to reducing false positives is to perform 

morphological filtering operations such as erosion and dilation to the detected 

regions. These filtering methods are described in detail in [89].  

Figure 7-1 shows skin maps of four test sequences: Akiyo, Foreman, Sign Irene 

and Bus sequences. The maps represent macroblocks in the video frame which 

contain skin pixels. These frames have been produced after performing skin 

detection, erosion and dilation operations. Frames from Akiyo, Foreman and Sign 

Irene have approximately detected skin regions with no skin region in the Bus 

sequence. 
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                            (a)                                                           (b) 

 

                     

                            (c)                                                            (d) 

Figure 7-1: Skin maps of four test sequences. (a) Akiyo, (b) Foreman, (c) Sign 
Irene and (d) Bus  

 
7.3   Slope estimation from video content and cognition factors 

Video content can be quantified using spatial texture information, temporal 

change information and skin information. The visibility of distortions in video may 

depend on the individual contribution or a combined contribution of the above 

mentioned features. Hence, the sequence activity measure is calculated from the 

following feature combinations with a view to automatically estimate the slope 

parameter of the regression line from video content: 

• spatial texture masking and skin information 

• Spatial texture masking, temporal masking and skin information   
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7.3.1 Slope estimation using spatial texture and skin information 

Sequence activity is calculated as the combined average of all the macroblock 

activities in the sequence.  Macroblock activity obtained from the spatial-texture 

information and the skin colour information is calculated as: 

 

 

Macroblock activity ranges between [0, 1] where 0 indicates low activity, such 

that the macroblock has high tolerance to visual distortion and 1 indicates high 

activity, such that distortions in the macroblock may be visible. According to (52), 

a macroblock containing skin pixels will have the maximum activity value of 1 

indicating that it is most intolerable to distortion. For macroblocks which do not 

contain skin pixels, the activity is equal to 1- MBSTI  where MBSTI  is the average 

spatial edge strength of a macroblock with values ranging between 0 and 1 and is 

derived using equation (42) in chapter 6. A highly textured macroblock has a 

large MBSTI  and a small macroblock activity value (1- MBSTI ) due to its high 

tolerance to visual distortions. Conversely, a low textured macroblock will have a 

smaller MBSTI  and a large activity value due to its high sensitivity to visual 

distortions. 

In order to automatically calculate slope ( sk ) from the spatial texture and skin 

colour information of the video sequence, a relation between slope sk  and 

sequence activity must be found. This relation is acquired using the seven training 

sequences: Foreman, Akiyo, News, Deadline, Husky, Bus and Coastguard. The 

‘data points’ in Figure 7-2 are the slopes of the MSE versus MOS curves of seven 

training sequences. The relation between slope and sequence activity is derived 

using the exponential fit as: 

 

 

sk  is the estimated slope and seqA  is activity of the sequence derived from its 

spatial texture masking and skin information. Equation (53) is the curve fit plotted 





−
=

OtherwiseSTI

lockSkinMacrob
A

MB

mb
1

1
 

(52) 

( )seqs Ak *705.5exp*0001108.0=  (53) 
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as the dotted line in Figure 7-2. The goodness of the curve fit was measured using 

R-squared value as 98.74% indicating that equation (53) is a good estimation of 

the data points. From Figure 7-2, it can be observed that high-activity sequences 

such as the Akiyo sequence with sequence activity of 0.942 produce steeper 

regression lines in the MSE versus MOS graph. Low activity sequences such as 

Bus and Husky have shallower regression lines. This indicates that in high-activity 

sequences, a small change in MSE leads to a larger change in MOS when 

compared to low-activity sequences for the same amount of change in MSE. 

 

Figure 7-2. Graph showing relation between slope and sequence activity derived 
from spatial texture and skin information 
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7.3.2 Slope estimation using spatial texture, temporal change and  

          skin information. 

Macroblock activity may also be obtained from the spatial-texture, temporal 

change and the skin colour information of the macroblock as: 

Macroblock activity ranges between [0, 1] where 0 indicates the macroblock has 

high tolerance to visual distortion and 1 indicates that distortions in the 

macroblock may be visible. According to equation (54) a macroblock containing 

skin pixels will have the maximum activity value of 1 indicating that it is most 

intolerable to distortion. For macroblocks which do not contain skin pixels, the 

activity is equal to 1- ( )mbmb TISTI ,max  where mbSTI  is the average spatial edge 

strength of a macroblock with values ranging between 0 and 1 derived from 

equation (42) in chapter 6, mbTI is the temporal change information and is derived 

from equation (44) in chapter 6. A macroblock which is highly textured or 

undergoes larges temporal change has a large ( )mbmb TISTI ,max  value due to its 

high tolerance to visual distortions. Conversely, a macroblock with low detail or 

motion will have a smaller ( )mbmb TISTI ,max  value due to its high sensitivity to 

visual distortions.  

 

This relation is acquired using the eight training sequences mentioned in section 

6.4.1. The relation between slope and sequence activity is derived using the 

exponential fit as: 

 

 
sk  is the estimated slope and seqA  is activity of the sequence derived from its 

spatial texture masking and skin information.  
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7.4     Macroblock, frame and sequence level quality estimation using the 

MOSp metric 

As explained in section 6.5, MOS is a subjective score made while considering the 

overall quality of the sequence under test, at least for short sequences [43]. 

Hence the use of combined average of MOSp is proposed for all the macroblocks 

in a frame as the frame-level quality measure and the average of MOSp of all the 

frames in the sequence as the overall quality measure of the video sequence. 

Quality is first evaluated at macroblock-level, then combined into frame-level 

quality and finally averaged into a single valued sequence-level quality measure. 

MOSp for each macroblock is computed as:   

                                                           

 

Figures 7-4 and 7-5 present a macroblock-level analysis of quality estimation 

using the MOSp metric. The figures show video frames from Foreman and Bus 

sequences compressed at QP = 36. A region in each frame has been selected for 

analysis purposes. It is a group of 5x5 macroblocks indicated by the red box in 

Figures 7-4 and 7-5. The corresponding MSE and MOSp values of these 

macroblocks are given. To compare the performance of the MOSp metric 

calculated using the four different slope estimation methods based on spatial 

texture, temporal change and skin information, the MOSp values obtained using 

the four methods for the two 5x5 regions are presented. From the figures, the 

following observations can be made: 

i. The MSE values of the 5x5 region in Bus sequence (Figure 7-5) are higher 

than those of the Foreman sequence (Figure 7-4). However, the visual 

quality of the 5x5 compressed region in the Foreman sequence is worse 

than that of the Bus sequence. There is significant loss of detail and 

contrast in the facial region of the Foreman frame compared to the 5x5 

uncompressed region of the Foreman frame.  

ii. The average MOSp value of the 5x5 macroblock region obtained using the 

four different methods of slope estimation are presented . The average 

MOSp values of the Foreman region obtained using the four methods are 

lower than the Bus region although the average MSE of Bus region is 

higher. This is because the MOSp metric identifies regions with skin, low 

)(1 mbmbmb MSEkMOSp −=  
(56) 
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texture and low motion as being more sensitive to visible distortion when 

compared to regions with no skin, high texture and high motion. Therefore, 

the distortion in the facial regions in the Foreman frame, produce lower 

MOSp score to indicate lower perceived quality. High texture/high motion 

regions, such as Figure 7-5, are more tolerable to visible distortions. Hence 

the MOSp values are higher in the macroblock of Figure 7-5 although the 

MSE values are comparatively higher than Figure 7-4. 

iii. In Figure 7-4, there is a noticeable difference in the average MOSp values 

obtained from the four methods for the 5x5 region of the Foreman 

sequence. The average MOSp values calculated using skin information are 

significantly lower than the average MOSp values calculated without using 

skin information. This is because the MOSp metric which incorporates skin 

information classifies macroblocks in the skin regions as being sensitive to 

visible distortions compared to the MOSp metric which does not incorporate 

skin information. Therefore, for the same value of MSE, the MOSp metric 

based on skin information produces lower MOSp score when compared to 

the MOSp metric which is not based on skin information. 

iv. In Figure 7-5, the 5x5 region of the Bus sequence does not belong to skin 

region and the average MOSp values obtained using the four slope 

estimations methods are similar.  

This example demonstrates that: (a) the MOSp metric is a more effective 

predictor of subjective quality than MSE, for these selected 5x5 macroblock 

regions from the Foreman and Bus sequences. (b) In regions where skin pixels 

are present, the MOSp metric based on skin information produces significantly 

different results compared to the MOSp metric without skin information for the 

same value of MSE.  
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0.61 0.5 0.74 0.76 0.73 

0.42 0.56 0.81 0.62 0.44 

0.53 0.69 0.69 0.67 0.58 

0.67 0.6 0.71 0.59 0.64 

0.71 0.63 0.58 0.66 0.53 

0.08 0.3 0.82 0.67 0.43 
0 0 0.6 0.35 0 
0 0.24 0.62 0.29 0.01 

0.51 0.72 0.33 0 0.57 
0.82 0.59 0 0.02 0.11 

Figure 7-4: Video frame from Foreman sequence compressed at QP = 36. Note: 
MOSp = [0,1] where 0 = bad and 1 = excellent picture quality. 

 

 

  Macroblock MSE values, average MSE = 17.18 

Macroblock MOSp values using spatial         
texture and skin colour, average 
MOSp=0.433 

 Original region    Compressed region 

Macroblock MOSp values using spatial 
 texture only, average MOSp = 0.5784 Macroblock MOSp values using spatial 

 texture and temporal change, average 
MOSp = 0.6268 

Macroblock MOSp values using spatial         
texture, temporal change and skin colour, 
average MOSp=0.323 
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Figure 7-5: Video frames from Bus sequences compressed at QP = 36. Note: 
MOSp = [0,1] where 0 = bad and 1 = excellent picture quality. 
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    Macroblock MOSp values using spatial texture  
and temporal change, average MOSp = 0.904 

Macroblock MOSp values using spatial 
 texture only, average MOSp = 0.895 

Macroblock MSE values, average MSE = 117.84 

    Macroblock MOSp values using  
Spatial texture, temporal change and skin colour,  

average MOSp = 0.8910 

    Macroblock MOSp values using  
Spatial texture and skin colour,  

average MOSp = 0.8776 
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7.5   Metric performance evaluation 

Performance results of the MOSp metric based on spatial texture, temporal 

change and skin information are present in this section. Performance results 

include Pearson, Spearman correlation and Outlier’s Ratio between MOSp and 

MOS to investigate prediction accuracy and consistency, scatter plots for visual 

representation of the correlation between MOSp and MOS, and processing times. 

The aim of this evaluation is to investigate whether the integration of cognition 

factors such as skin information in to the existing MOSp metric which is based on 

spatial texture and temporal changes produces better MOS prediction results.  

 

7.5.1 Correlation coefficients and Outliers ratio 

Following the evaluation procedure presented in section 6.6 of Chapter 6 to 

evaluate the performance of MOSp metric based on spatial texture and temporal 

changes, experimental results are illustrated in Table 7-1, Table 7-2 and Table 7-

3. Tables 7-1 and 7-2 give the Pearson’s correlation between the estimated and 

actual perceptual quality for MOSp and the five popular metrics using the test 

sequences. For each sequence in the table, the highest correlation coefficient is 

highlighted in bold font. From the table, the following observations can be made: 

• The MOSp metric produces high correlation (>90%) with subjective ratings 

for a variety of video sequences ranging from low activity such as Akiyo 

and News, to high activity sequences such as Bus, Mobile and Coastguard. 

The metric also produces good results with sequences which are a 

combination of both low-activity and high-activity scenes such as Foreman 

and Tempete sequences. 

• The PSNRplus and NTIAVQM metrics also produce high correlations 

(>90%) with MOS. However, PSNRplus is computationally expensive to 

implement in real time multimedia applications. 

• The MOSp metric has higher correlation with subjective ratings when 

compared to NTIAVQM for 28 out of the 32 test sequences. 

• The four methods of calculating MOSp from various video content are also 

presented in Table 7-1. It can be noted that the MOSp based on spatial 

texture and skin information produces higher correlation with MOS 

compared to the other three methods of calculating MOSp. This high 

correlation may be due to higher correlation of skin information and spatial 
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texture with the visibility of distortion resulting in a more accurate slope 

estimation model as shown in section 7.3.1.  

• It can also be noted that the MOSp based on spatial texture and skin 

information has the highest correlation with MOS in sequences containing 

people. This indicates that the MOSp metric is a good predictor of 

perceived quality in sequences where humans are present. 

• In sequences which do not have the presence of people, the MOSp metric 

based on spatial texture has higher correlation with MOS.  
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Table 7-1. Pearson Correlation between popular metrics and MOS for 16 test sequences 

 

Sequence PSNR VSSIM PSNRplus NTIAVQM Yonsei MOSp based 
on texture  

MOSp 
(texture & 
temporal) 

MOSp 
(texture & 

skin)  

MOSp 
(texture 

temporal & 
skin)  

Training          
Foreman  0.775 0.794 0.958 0.965 0.872 0.988 0.997 0.998 0.991 

Carphone 0.672 0.849 0.957 0.933 0.868 0.943 0.968 0.980 0.972 

Bus  0.719 0.838 0.856 0.962 0.896 0.988 0.989 0.981 0.983 

Deadline  0.773 0.834 0.927 0.985 0.847 0.924 0.939 0.953 0.944 

News  0.849 0.771 0.931 0.916 0.863 0.915 0.944 0.989 0.962 

Paris  0.809 0.797 0.948 0.968 0.870 0.942 0.964 0.973 0.957 

Tempete  0.712 0.785 0.890 0.975 0.917 0.97 0.964 0.963 0.961 

Akiyo  0.752 0.811 0.932 0.908 0.939 0.901 0.986 0.994 0.990 
Non-
training 

         

Husky 0.702 0.775 0.901 0.961 0.841 0.925 0.921 0.912 0.917 

Salesman 0.801 0.818 0.919 0.948 0.941 0.874 0.927 0.981 0.935 

Container 0.795 0.825 0.953 0.976 0.876 0.975 0.989 0.969 0.972 

Grasses  0.774 0.727 0.879 0.963 0.916 0.962 0.994 0.955 0.919 

Mobile  0.697 0.713 0.919 0.949 0.884 0.947 0.984 0.976 0.947 

Sign Irene 0.763 0.746 0.955 0.949 0.945 0.892 0.957 0.985 0.963 

Mother & 
daughter 

0.725 0.764 0.924 0.935 0.869 0.93 0.952 0.979 0.955 

Coastguard  0.762 0.724 0.883 0.969 0.866 0.991 0.995 0.982 0.968 
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Table 7-2. Pearson Correlation between popular metrics and MOS for 16 CIF VQEG Multimedia test dataset 

Sequence PSNR VSSIM PSNRplus NTIAVQM Yonsei MOSp based 
on texture  

MOSp 
(texture & 
temporal) 

MOSp 
(texture & 

skin)  

MOSp (texture 
temporal & 

skin)  
ITU_SRC_MobileCa
lendar_cif  

0.697 0.713 0.919 0.949 0.884 0.973 0.901 0.976 0.917 

ITU_SRC_Football_
cif  769 0.772 0.887 0.942 0.914 0.962 

0.945 
0.959 

0.948 

ITU_SRC_FlowerGa
rden_cif 0.72 0.867 0.892 0.945 0.942 0.96 

0.912 
0.972 

0.953 

ITU_SRC_Stephen
_cif  0.774 0.821 0.957 0.959 0.89 0.913 

0.875 
0.98 

0.916 

ANSI_SRC_Crew_c
if  0.703 0.729 0.856 0.975 0.857 0.93 

0.891 
0.979 

0.912 

ANSI_SRC_MissAm
erica_cif  0.754 0.766 0.927 0.916 0.923 0.981 

0.915 
0.973 

0.894 

CBC_SRC_BetesPa
sBetes_cif  0.81 0.768 0.931 0.952 0.941 0.916 

0.904 
0.891 

0.907 

ANSI_SRC_washdc
_cif  0.683 0.722 0.948 0.949 0.927 0.955 

0.899 
0.943 

0.990 

ANSI_SRC_vtc2mp
_cif  0.762 0.819 0.89 0.918 0.872 0.917 

0.868 
0.989 

0.932 

ANSI_SRC_vtc1nw
_cif  0.775 0.827 0.861 0.905 0.861 0.932 

0.895 
0.981 

0.919 

ANSI_SRC_5row1_
cif  0.751 0.824 0.952 0.941 0.896 0.949 

0.939 
0.973 

0.942 

ITU_SRC_Cheerl
eaders_cif  

0.724 0.816 0.947 0.952 0.847 0.957 0.944 0.969 0.928 

ANSI_SRC_boble
c_cif  

0.699 0.794 0.902 0.964 0.87 0.984 0.964 0.918 0.964 

CRC_SRC_Redflo
wer_cif  

0.736 0.818 0.873 0.952 0.872 0.969 0.947 0.894 0.951 

ANSI_SRC_vtc2z
m_cif  

0.71 0.829 0.925 0.928 0.907 0.895 0.919 0.928 0.925 

CBC_SRC_Betes
PasBetes_cif  

0.752 0.801 0.937 0.931 0.893 0.951 0.906 0.895 0.898 
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Table 7-3 illustrates the overall performance of MOSp and the popular quality 

metrics when compared with the actual subjective results (MOS). The table 

consists of the Pearson correlation, Spearman correlation and outliers ratio of 

MOSp and five popular quality metrics when all the 32 test video sequences 

mentioned in Table 7-1 and 7-2 are included. 

Table 7-3. Comparison of MOSp with popular metrics including all training and 
non-training sequences 

Metric Pearson  
Correlation 

Spearman 
Correlation 

Outliers Ratio 

PSNR 0.696 0.711 0.857 
VSSIM 0.723 0.779 0.797 

PSNRplus 0.886 0.959 0.596 
NTIA VQM 0.901 0.913 0.516 

Yonsei University 0.863 0.878 0.628 
MOSp based on spatial 

texture only 
0.942 0.948 0.410 

MOSp based on spatial 
texture and temporal 

change 

0.926 0.938 0.48 

MOSp based on spatial 
texture and skin 

colour 

0.954 0.961 0.402 

MOSp based on spatial 
texture, temporal 
change and skin 

information 

0.946 0.949 0.415 

The overall performance of objective quality metrics represents prediction 

accuracy the quality metric across a variety of video content. The overall 

Pearson and Spearman correlation values for MOSp based on spatial texture and 

skin colour are 0.954 and 0.961 respectively, which are the highest amongst the 

metrics compared in Table 7-3. The outliers ratio for this metric is 0.402, which 

is the lowest in all the metrics. The closest metric to this performance is the 

MOSp metric based on spatial texture, temporal change and skin information 

with Pearson and Spearman correlation values of 0.946 and 0.953 and outliers 

ratio of 0.415. The high correlation of the MOSp metric based on spatial texture 

and skin information may be due to a better prediction results for video 

sequences containing people as indicated in Tables 7-1 and 7-2. The overall 

performance of the MOSp metric is that it produces better correlation with MOS 

compared to the five objective quality measures: PSNR, VSSIM, PSNRplus, 

NTIA/ITS VQM and Yonsei University metric for a variety of video scenes 

compressed to a wide range of bitrates. 
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7.6.2 Scatter plots 

Figures 7-6 and 7-7 show the scatter plots of subjective ratings (MOS) versus 

the proposed metric (MOSp) and other five popular metrics. The scatter plots 

contain all the 32 test sequences.  

 

                                 (a)                                                             (b) 

   

                                  (c)                                                             (d)     

Figure 7-6: Scatter of subjective ratings (MOS) versus (a)PSNR, (b)PSNRplus, 
(c)VSSIM and (d)NTIA VQM  for all the 32 CIF test sequences compressed 
using H264/AVC. 
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                                   (a)                                                             (b)            

          
                                  (c)                                                             (d)            

                                        

                                                                   (e)           

Figure 7-7: Scatter plot of subjective ratings (MOS) versus (a)Yonsei University 
metric, (b)MOSp based on texture only, (c)MOSp based on texture and 
temporal change, (d) MOSp based on texture and skin (e) MOSp based on 
texture, temporal change and skin for all the 32 CIF test sequences 
compressed using H264/AVC. 
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From the scatter plots it can be observed that the data points of the PSNRplus 

metric (Figure 7-6(b)) and MOSp metric based on spatial texture and skin 

information (Figure 7-7(d)) are most concentrated when compared to the other 

scatter plots. This is reflected in the high Spearman rank correlation for the two 

metrics with respect to MOS in Table 7-3 (PSNRplus=0.959 and MOSp based on 

spatial texture and skin=0.961).  

 
 
7.5.3 Processing time 

Following the procedure used in section 6.6.5 in chapter 6, Table 7-4 shows the 

percentage increase in coding time when compared to the coding time of the 

reference H.264/AVC software codec called the JM software [75]. The coding 

time is taken for JM software to encode the ‘Paris’ sequence of CIF resolution 

with 150 frames. The processing times for the MOSp metric derived from 

sequence content using the four different methods are presented in Table 7-4. 

Compared to the four methods, the MOSp metric based on spatial texture 

information requires the least processing time (4.9%). The MOSp metric based 

on both spatial texture and skin information increases coding time to process a 

CIF sequence with 150 frames by 8.2%. This increase is nearly double the time 

required by MOSp based on texture only because of the skin detection 

algorithm. From Table 7-4 it is evident that MOSp is faster than VSSIM and 

PSNRplus but requires more processing time compared to PSNR and the Yonsei 

University metric. However, MOSp based on both spatial texture and skin 

information gives improved correlation with subjective quality compared to other 

metrics evaluated in this work. 

Table 7-4. Running speed of MOSp and popular metrics 

Metric Increase in coding time 
(%)  

PSNR Negligible 
VSSIM 32.7% 

PSNRplus 200.18% 
Yonsei University 4.2% 

MOSp based on spatial texture  4.9% 
MOSp based on spatial texture and 

temporal change information 
7.7% 

MOSp based on spatial texture and 
skin colour 

8.2% 

MOSp based on spatial texture, 
temporal change and skin information 

11.6% 
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The processing times for MOSp metric presented in Table 7-4 includes all the 

evaluation processes including spatial edge strength calculation, temporal 

change estimation and skin detection performed on each frame. The coding time 

is the time taken by the H264 compression algorithm to process a video 

sequence. The percentage increase in coding time presented in Table 7-4 is 

calculated from the average coding times recorded using five repetitions.  

The MOSp metric predicts perceptual quality automatically using MSE which is a 

widely used quality measure in video compression algorithms. The only 

additional requirement for MOSp calculation is the slope estimation using one of 

the four methods using spatial texture, temporal change and skin information. 

From Table 7-4, it is can be observed that quality estimation using MOSp metric 

increases computation time by 4.9% to 11.6% depending on the method of 

slope estimation. Hence the choice of slope estimation for calculating MOSp 

metric will depend on the application, the required prediction accuracy and the 

available computational resources. 

 
7.6 Summary 

This chapter presented two methods for integrating cognition-based factors such 

as skin information in to the MOSp metric in order to increase its correlation 

subjective quality. The performance evaluation results show that the MOSp 

metric produces high correlation with MOS (>90%) with 4.9% to 11.6% 

increase in coding time. Results also show that the MOSp metric produces higher 

correlation with subjective results when compared to popular metrics such as 

PSNR, PSNRplus, VSSIM, Yonsei and NTIAVQM metric.  

Performance comparison between the four methods of calculating MOSp from 

video content show that the MOSp metric based on spatial texture and skin 

information produces highest correlation with MOS (95.4%). This high 

correlation may be due to the following reasons: 

i. The combination of spatial texture masking and cognition factors has 

impact on the visibility of distortion in video.  

ii. The slope variation between different video content has better correlation 

with spatial texture and skin information. This results in a more accurate 

slope estimation model for calculating the slope parameter of the MOSp 
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metric and hence a better performing MOSp metric which produces 

higher prediction accuracy. 

The MOSp metric is a full reference objective video quality metric designed to 

predict MOS of compressed video automatically from MSE and video content 

within reasonable computation time. Since all the parameters of the metric are 

calculated at macroblock level, it can be easily incorporated into block-based 

video coding algorithms for making real time quality estimations. Apart from 

estimating video quality, the MOSp metric may also be used to replace 

mathematical error measures which are generally employed by the video 

encoder to make coding decisions. This application of the MOSp metric to 

perceptual video coding is investigated in the following chapter.  
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8 Application Of The MOSp Metric To 
Perceptual Video Coding 

 
8.1 Introduction  

A new full reference video quality metric called the MOSp metric for predicting 

MOS of compressed video from MSE and video content was presented in earlier 

chapters. Performance results of the MOSp metric have shown that the metric 

has very high correlation with MOS compared to other popular metrics. The 

MOSp metric is designed to predict MOS automatically with reasonable 

computation time. Since all parameters are calculated at macroblock level, the 

MOSp metric can be readily incorporated in to block-based video coding 

algorithms. 

 

Apart from measuring video quality of compressed video, the MOSp metric may 

also be used in perceptual video coding where coding decisions are made by 

incorporating a perceptual quality metric into the decision making process. 

Previous research has shown that perceptual quality based video coding can be 

achieved by employing quality metrics in motion estimation, mode selection 

process and rate control processes. Amongst popular objective quality metrics, 

the structural similarity (SSIM) index [90] has been preferred in perceptual 

video coding algorithms due to its simplicity and efficiency. It has been 

incorporated into motion estimation [91], mode selection [92] and rate control 

[93] processes in hybrid video coding algorithms. In [91] and [92], a SSIM-

based distortion measure was used in the RD optimised framework. However, a 

single Lagrange multiplier model was derived without considering input 

sequence characteristics. In [93], an SSIM motivated rate control scheme was 

proposed on an approximate RD curve, while the properties of the SSIM index 

were not fully exploited. In [94], the authors define a reduced reference SSIM-

based distortion model and develop a perceptual RDO scheme for mode 

selection. The results showed bit rate savings for same level of SSIM quality 

value.      

 

Although several perceptual quality metrics exist in the literature, the 

application of these metrics to real time perceptual video coding is limited due to 

computational complexity and speed issues. Hence, this chapter investigates 

ways of integrating the MOSp metric into the H264/AVC encoder in order to 
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improve perceptual quality of compressed video by making coding decisions 

based on a MOSp-based distortion measure rather than mathematical distortion 

measures such as sum of squared difference (SSD) and sum of absolute 

difference (SAD). 

 

Advanced video coding schemes such as H264/AVC use motion estimation and 

mode selection processes to find the best coding option for each macroblock. 

The motion estimation process employs the rate-distortion optimised search 

method to find the best matching block for the current block. SAD between a 

search block and current block pixels is used as the distortion measure and it 

represents pixel differences between the blocks. On the other hand, the mode 

selection process is used to select the best mode to encode a macroblock. It is 

also rate-distortion optimised as described in chapter 2. The distortion measure 

used is SSD between original block and the reconstructed block.  

 

Since the MOSp metric is based on the mean squared error between the original 

and reconstructed video sequences, it is suitable for integration into mode 

selection rather than motion estimation. This chapter presents a new MOSp-

based mode selection algorithm for H264/AVC encoder which employs the MOSp 

metric in making mode decisions for each macroblock.   

 

The chapter is organised as follows: section 8.2 presents the hypothesis behind 

MOSp based video coding. A new MOSp-based mode selection model is 

described in section 8.3. The parameters used in the model such as MOSp-based 

distortion measure and the Lagrange multiplier are also derived in this section. 

The new MOSp-based mode selection algorithm for a H264/AVC encoder is 

presented in section 8.4. Section 8.5 describes an experiment conducted to 

investigate if the MOSp-based mode selection algorithm gives better visual 

quality compared to the reference H264/AVC encoder for similar bitrate. 

Analysis of the experimental findings is discussed in section 8.6 and finally in 

section 8.7, the main experimental observations are summarised. 
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8.2 Hypothesis  

Popular objective measures such as sum of squared difference (SSD) and sum of 

absolute difference (SAD) are used in modern block-based video compression 

algorithms such as H264/AVC [16]. These measures are employed by the rate–

distortion optimised mode selection process as quality measures for choosing 

the best compression option that gives an optimal trade-off between picture 

quality and data rate [32]. The RD optimised mode selection process involves 

minimising the rate–distortion cost J=D+ λ R where λ  is the Lagrange multiplier, 

R is the rate and D is the SSD between original and reconstructed video data.  

 

While the general approach is to use SSD to choose the best coding option, it is 

a mathematical error measure which does not consider the human visual system 

and is therefore not an accurate measure of perceived quality for compressed 

video sequences. It may be possible to improve the subjective quality 

performance of a rate-constrained video codec by replacing SSD with a MOSp-

based distortion metric that correlates more closely with subjective quality in the 

mode selection process. Hence this chapter presents a MOSp-based mode 

selection algorithm where the distortion measure is calculated from the MOSp 

metric.  

 
 

8.3 MOSp-based mode selection 

The mode selection process in block-based video encoders involves minimising 

the rate-distortion cost function J=D+λ R where λ  is the Lagrange multiplier, R 

is the rate and D is the SSD between original and reconstructed video data. 

MOSp-based mode selection would involve integrating the MOSp metric into the 

RD cost function to make the mode selection and choosing the best mode which 

minimises this cost function. A new MOSp-based mode selection model is 

presented in this section. 
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8.3.1 MOSp-based mode selection model 

The rate-distortion cost function used in the reference H264/AVC is: 

 

                                  RDJ λ+=                                    (60) 

 

where λ  is the Lagrange multiplier, R is the rate and D is the SSD between 

original and reconstructed video data. Integrating the MOSp metric into equation 

(44) involves defining a new MOSp-based distortion measure and a new 

Langrange multiplier. The new MOSp-based rate-distortion cost function model 

is given as: 

                          RDJ mospmosp λ+=                            (61) 

 

where mospD  is MOSp-based distortion measure which replaces the SSD measure 

and mospλ  is the ‘new’ Lagrange multiplier which must to be re-modelled. The 

Lagrange multiplier in the reference H264/AVC is calculated as a function of the 

Quantisation Parameter (QP) [32, 95] and has been modelled for SSD as the 

distortion metric. Therefore, changing SSD to mospD  will require re-modelling of 

the Lagrange multiplier to obtain mospλ . R is the total bits for coding a 

macroblock using the mode under test. The parameters for the MOSp-based 

mode selection model are detailed in sections 8.3.2 to 8.3.4 

 

8.3.2 Model parameter estimation: mospD  

The MOSp metric measures perceived video quality from MSE and video content. 

It has values between [0,1] with 0 indicating ‘very poor’ visual quality and 1 

indicating ‘Excellent’ visual quality. A distortion measure derived from the MOSp 

metric must be inversely related to the MOSp measure. Therefore, the MOSp-

based distortion measure, mospD  is given as: 

                              MOSpDmosp −= 1                            (62) 
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As presented in Chapter 5 section 5.4, the MOSp metric is calculated from MSE 

and the slope parameter (Ks) as: 

 

                              MSEkMOSp s−= 1                              (63) 

 

Substituting (4) in (3) gives: 

 

                                MSEkD smosp +−= 11                      (64) 

                                  MSEkD smosp =                              (65) 

 

Equation (65) is used as the new MOSp-based distortion measure in the mode 

selection algorithm and is measured as the product of the slope parameter (Ks) 

and the MSE. Slope Ks will be derived from macroblock activity and MSE is the 

mean squared error between the original and the reconstructed macroblocks. 

Since MOSp values range from [0,1], mospD  will also have values ranging from 

[0,1] where 0 indicates no visible distortion and 1 indicates maximum visible 

distortion. From equation (65), mospD  is derived as the product of slope Ks and 

MSE. The slope Ks is dependent on content and has larger value for content 

which are sensitive to visible distortions and smaller value for content which can 

‘mask’ visibility of compression-related distortions. Hence, multiplying Ks with 

MSE will make Ks a ‘weighting factor’ for MSE and would ‘magnify’ or ‘minimise’ 

MSE based on the content in the macroblock. This weighting will have impact on 

the resulting rate distortion cost function which strives to keep a balance 

between distortion and rate.  

 
 
8.3.3 Model parameter: mospλ  

The Lagrange multiplier in the rate-distortion optimised mode selection acts as a 

balancing parameter between rate and distortion. The Lagrange multiplier 

defined in the reference H264/AVC encoder has been derived experimentally 

using SSD as the distortion metric. Since the distortion metric is changed from 

SSD to mospD  in the MOSp-based mode selection model, a new Lagrange 
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multiplier mospλ  must be modelled using similar experiments. This is presented in 

section 8.4. 

 
 
8.3.4 Model parameter: Rate (R) 

The rate parameter in the mode selection model is the total bits required to 

encode a macroblock using the mode under test. The number of coded bits 

depends on the type of content in the macroblock. High detail and high motion 

macroblocks with changing content may require larger number of coded bits. 

Higher rates generally mean better picture quality. Hence the aim of integrating 

the MOSp metric into the mode selection process is to allocate modes with 

higher rates to visually ‘important’ macroblocks in order to improve the overall 

visual quality of compressed video.  

 
 
 
8.4 Modelling the Lagrange multiplier mospλ  

The Lagrange multiplier for mode selection in the reference H264/AVC has been 

experimentally modelled as a function of the Quantisation Parameter (QP) 

[32,111] using SSD as the distortion metric. Following the experiments detailed 

in [32], mospλ is modelled as described in this section.  

 

Six multimedia CIF sequences of 4:2:0 format were used for modelling mospλ . 

The sequences were 50 frames in duration and have a wide variety of content 

from ‘head and shoulder’ shots to high detail and high motion vehicle tracking. 

These sequences are Foreman, Akiyo, News, Bus, Coastguard and Husky. The 

test video sequences were compressed using main profile of the reference 

H.264/AVC JM reference software (version 12.1) to a range of QP values. Each 

test sequence was encoded several times at a certain QP by incrementing the 

lambda ( mospλ ) value by small amounts and recording the corresponding average 

bitrate and average mospD  values. The rate-distortion curve for each test 

sequence was obtained by plotting the average bitrate versus average  mospD  

recorded for all the QP values and using a convex hull fitting tool to obtain the 

R- mospD  curve. The QP and lambda ( mospλ ) values corresponding to the points on 

the  R- mospD  curve were used to derive the  mospλ  - QP relationship for the test 
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sequence under test. This process was repeated for all the six test sequences 

and the mospλ  -  QP plots for these sequences are presented in Figure 8.1. From 

Figure 8.1, it is observed that mospλ  varies exponentially with respect to QP and 

this variation is different for different video content.  
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Figure 8-1: Lambda versus QP plots for six test sequences 

 

Based on the QP - mospλ  models for the six test sequences, the generalised 

model for calculating the Lagrange multiplier mospλ  for the MOSp-based mode 

selection algorithm QP and video content is given as: 

 

                                     ( )QPBAmosp *exp*=λ                          (66) 

where A and B are parameters of the exponential curve derived from sequence 

activity as: 

 

               A = (9.413E-009*Activity) + 1.152E-006           (67) 

                  B = (-0.0003292*Activity) + 0.2685               (68) 

 

where ‘Activity’ is the sequence activity derived from spatial texture and skin 

information as given in Chapter 7, equation (56). Therefore, the Lagrange 
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multiplier mospλ  value will vary depending on QP and video content and can be 

automatically calculated using equations (66), (67) and (68). 

 

8.5 MOSp-based mode selection algorithm 

The MOSp-based mode selection algorithm is summarised below: 

1. For each macroblock, calculate the activity and slope using equations (55) 

and (56).  

2. Calculate the Largrange multiplier mospλ  using equations (66), (67) and 

(68). 

3. Select a macroblock mode 

4. Encode the macroblock and calculate mospD  = Ks * MSE 

5. Compute RD cost function J= mospD + mospλ R 

6. Check if J < Jmin, where J min = minimum RDcost for all modes. 

7. If J<Jmin, check if all modes have been evaluated. If NO, then update 

Jmin = J and go to step 2. If YES, then current mode is the  best mode 

for encoding the macroblock. 

 

8.6 Experiment: Performance evaluation of the MOSp-based mode 

selection algorithm   

The aim of this experiment is to investigate whether MOSp-based mode 

selection improves visual quality of compressed video when compared to the 

reference video encoder for similar bit rate. The experiment involves 

performance comparison between two coding algorithms: the reference 

H264/AVC encoder and the reference H264/AVC encoder with MOSp-based 

mode selection algorithm. The following sections describe the experiment in 

detail, including test material, coding parameters, subjective evaluation 

conducted to obtain MOS scores for sequences compressed using both the 

coding algorithms, data analysis of obtained results and discussion based on the 

experiment results and observations.  

 

8.6.1 Test Material 

12 multimedia CIF sequences of 4:2:0 format were used in this experiment, 

each of 10 seconds in duration. The sequences include:  

• Training sequences which were used to obtain the General Lambda 

model: Foreman, Bus, News, Husky, Akiyo and Coastguard 
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• Non-training sequences: Carphone, Crew, Football, Miss. America, 

Stephen and City sequences. 

 

These sequences were chose to represent a wide variety of content and are 

popularly used in the video compression research community. 

 

8.6.2 Coding Parameters: 

The test video sequences used in this experiment were compressed using the 

H.264/AVC JM reference software (version 12.1) available at 

http://iphome.hhi.de/suehring/tml/, with the following parameters: 

 

• Profile used is Main profile. 

• Level IDC setting is set 4.0 

• Frame Skip: no frames were skipped 

• Number of reference frames for Inter motion search is set to 5.   

• Number of B-pictures used = 0 

• Entropy coding method is set to CABAC. 

• RD-Optimisation: High complexity mode 

• Rate Control: DISABLED to allow the use of fixed QP. 

• Slice QP: QPISlice and QPPSlice parameters used and both set to the 

same value as the sequence QP.  

Note that the coding parameters used in the MOSp metric evaluation is identical 

to those used to produce the training sequences in section 6.2. 

• QP values = {24, 26, 28, 30, 32, 34, 36, 38} 

 

Coding algorithms used in the experiment: 

Codec A:   Reference H264/AVC JM encoder with no changes made to the mode 

selection process, full mode selection used to include all the available 

coding modes. 

 

Codec B:  H264/AVC JM encoder with MOSp-based mode selection algorithm. 

Full mode selection is used. Note that the Lagrange multiplier has 

been calculated as a function of QP and acitivity as explained in 

section 9.4 using the General model. The mode selection algorithm 

was implemented as detailed in section 8.5. 
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8.6.3 Subjective evaluation  

The subjective tests involved 30 non-expert evaluators and followed the 

guidelines in ITU-T P.910 Recommendation [6]. Each evaluator took 19 to 22 

minutes to complete the test. The subjective test method used in this 

experiment is the single stimulus impairment scale (SSIS) evaluation method. 

Since the visual quality of Codec A is being compared with Codec B, each viewer 

was shown sequences coded with both the codecs A and B. Considering the time 

limitations for conducting subjective evaluations [6], each viewer was shown 

four sets of sequences containing two different video clips compressed using the 

two codecs A and B. In total, each viewer evaluated 4x8=32 video sequences. 

The sequences were presented in a randomised presentation order with either 

increasing or decreasing magnitude of distortion. This was done to 

counterbalance the influence contextual effects of the SSIS method [78]. 

 

A 5-grade discrete scale ranging from 0 to 1 was used to rate the quality of each 

of the test video sequences where 0=bad, 0.25=poor, 0.5=fair, 0.75=good and 

1=excellent. Reliability of subjective test scores was tested using the 95% 

confidence interval measure. The average mean 95% confidence interval for the 

subjective ratings for all the test sequences was 0.0447 for the MOS scale of [0, 

1] where 0=bad picture quality and 1=excellent picture quality. The MOS for a 

sequence was calculated as the average of all scores obtained for the sequence 

compressed at a certain QP. 

 

8.6.4 Experiment Results  

To investigate if there is a gain in MOS using MOSp-based mode selection 

algorithm when compared with the reference H264 encoder, the results are 

presented as bitrate versus MOS graphs for each of the 12 test sequence. Each 

graph has two curves, one for each codec. These bitrate versus MOS graphs are 

presented in: 

• Figures 8-2 and 8-3 for training sequences.  

• Figures 8-4 and 8-5 for non-training sequences. 

 

Table 8-1 compares the coding performance of the two codecs and includes the 

following information:  

1. Percentage gain (or loss) in visual quality for each sequence which is 

calculated as: 
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            CodecACodecB MOSMOSMOS −=∆                      (69) 

 

2. Percentage gain (or loss) in bit rate for each sequence calculated as: 

  

 100(%) X
Bitrate

BitrateBitrate
Bitrate

CodecA

CodecACodecB −
=∆            (70) 

 

3. Percentage gain (or loss) in PSNR for each sequence calculated as: 

 

              100(%) X
PSNR

PSNRPSNR
PSNR

CodecA

CodecACodecB −
=∆         (71) 

 
Gain in quality, PSNR and bitrate is represented by a ‘+’ sign and a loss is 

represented by a ‘-‘ sign. The overall range of the above three measures is given 

in Table 8-1. Table 8-2 lists the maximum improvements in quality and bitrate 

for each test sequence. 
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(c) 

Figure 8-2: Bit rate versus MOS graphs for training sequences   
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Bus Sequence
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Husky Sequence
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Coastguard Sequence
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(c) 

Figure 8-3: Bit rate versus MOS graphs for Training sequences  
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Carphone Sequence
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Crew Sequence
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Miss America Sequence
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(c)  
Figure 8-4: Bit rate versus MOS graphs for non-training sequences  
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Stephen Sequence
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City Sequence
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Football Sequence
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(c) 
Figure 8-5: Bit rate versus MOS graphs for non-training sequences  
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Table 8-1: Performance comparison of codec with MOSp-based mode selection 
compared to the Reference H264/AVC encoder 

 
 
 
 
Table 8-2: Maximum improvements from Codec with MOSp-based mode selection 
compared to the Reference H264/AVC encoder 
 

Sequence Maximum improvements obtained 

Foreman ∆ MOS = 0.225 for ∆ Bitrate = 0.83% and ∆ PSNR = -0.79% 

Akiyo ∆ MOS = 0.2 for ∆ Bitrate = 1.11% and ∆ PSNR = -0.28% 

News ∆ MOS = 0.15 for ∆ Bitrate = 1.09% and ∆ PSNR = -0.31% 

Bus ∆ Bitrate = -11.92% for ∆ MOS =-0.01  and ∆ PSNR=-1.65% 

Husky ∆ Bitrate = -25.8% for ∆ MOS =-0.04 and ∆ PSNR=-1.90% 

Coastguard ∆ Bitrate = -26.22% for ∆ MOS =-0.06 and ∆ PSNR=-1.94% 

Carphone ∆ MOS = 0.23 for ∆ Bitrate = 0.72% and ∆ PSNR = -0.62% 

Crew ∆ MOS = 0.11 for ∆ Bitrate = 0.34% and ∆ PSNR = –0.56% 

Miss America ∆ MOS = 0.18 for ∆ Bitrate = 1.04% and ∆ PSNR=–0.56% 

Stephen ∆ Bitrate = -4.45% for ∆ MOS = -0.01 and ∆ PSNR=-0.97% 

City ∆ Bitrate = -12.7% for ∆ MOS =-0.008 and ∆ PSNR=-1.72 % 

Football ∆ Bitrate = -3.47% for ∆ MOS =-0.005 and ∆ PSNR = -0.44% 

 
 
 
 

Sequence ∆ Bitrate (%) ∆ PSNR (%) ∆ MOS 

Foreman 0.06 to 0.83 -0.79 to -0.05 -0.015 to 0.225 

Akiyo 0.25 to 1.11 -0.28 to -0.094 0 to 0.2 

News 0.01 to 1.09 -0.31 to -0.02 0.03 to 0.15 

Bus -8.6 to -11.92 -1.65 to -0.46 -0.01 to 0.04 

Husky -3.47 to -25.8 -1.90 to -0.83 -0.04 to 0.02 

Coastguard -3.09 to -26.22 -1.94 to -0.72 -0.06 to +0.025 

Carphone 0.07 to 0.72 -0.62 to -0.38 0.02 to 0.23 

Crew -0.012 to 0.34 –0.56 to -0.14 -0.01 to 0.11 

Miss America 0.48 to 1.04 -0.41 to -0.16 0.01 to 0.18 

Stephen -0.01 to -4.45 -0.97 to -0.3 -0.01 to 0.04 

City -6.3 to -12.7 -1.64 to -0.39 -0.008 to 0.01 

Football -3.47 to 0.04 -0.44 to -0.098 -0.005 to 0.055 
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The following observations can be made from these results:  

 

From Figures 8-2, 8-3, 8-4 and 8-5, it can be noted that at high bitrates, the gap 

between the two curves is very small indicating that the gain in visual quality at 

high bitrates is negligible. The gap between the two curves (reference and MOSP-

based) increases with decrease in bitrate. This gap is more prominent in some 

sequences when compared to other sequences. This variation in MOS gain with 

bitrates may be negligible because at high bitrate, the variation in MOSp for 

different macroblock modes may be small. Hence switching between different 

macroblock modes using the MOSp-based mode selection may not result in a 

significant gain in overall visual quality of the sequence. On the other hand, at 

lower bitrates, the variation of MOSp for different macroblock modes may be larger 

and hence switching between modes based on the MOSp-based mode selection may 

result in a significant overall gain in visual quality of the compressed sequence. A 

macroblock-level analysis is required to further investigate this observation. This 

analysis is presented in section 8.6.5. 

  

In sequences which contain human faces, such as Foreman, Akiyo, News, 

Carphone, Crew and Miss. America, the codec with MOS-based mode selection 

produces higher gain in visual quality at lower bitrates compared to the reference 

codec. There is a gain in MOS of 0.23 in Carphone sequence with 0.72% increase in 

bitrate and 0.62% decrease in PSNR when compared to the Reference codec. In 

Foreman sequence, there is a gain in MOS of 0.225 with 0.83% increase in bitrate 

and 0.79%. The MOSp metric is designed to identify macroblocks in the video scene 

which belong to skin and low texture as visually important macroblocks. The MOSp-

based distortion measure mospD  is a product of slope (Ks) and MSE. Therefore, the 

slope (Ks) acts as a ‘weighting factor’ to MSE. Slope (Ks) is derived from content 

and has a larger value for skin and low texture content when compared to non-skin, 

high-texture content. A macroblock classified as ‘skin macroblock’ will have a large 

slope and hence a larger mospD  when compared to a ‘non-skin macroblock’ with 

same MSE value. This magnification of MSE based on the slope parameter will have 

impact on the rate-distortion cost function (J=D+λ R) because higher distortion 

would mean higher RD cost function resulting in higher quality modes being 

selected for encoding the macroblock. Hence, sequences where human faces are 



 174 

present have better visual quality when coded with the MOSp-based mode selection 

algorithm when compared to the Reference codec for similar bitrates.  

 

In Sequences which don’t contain humans, such as Bus, Husky, Coastguard and 

City, the gain in MOS for codec using the MOSp-based mode selection is very low 

(around 0.05) even at low bit rates. This indicates that the quality of video 

produced using both the codecs for sequences without humans very similar. 

However, it is noted from Table 8-1 that there is a gain in bitrate for similar quality 

in these sequences at low bit rate. Coastguard and Husky sequences have 

approximately 26% gain in bitrate with nearly 2% drop in PSNR but the difference 

in visual quality between the two codecs is insignificant (around 0.02%). This 

insignificant gain in visual quality and significant gain in bitrate may be because the 

MOSp metric is designed to classify high texture, non-skin macroblocks as ‘visually 

unimportant’ macroblocks with high resistance to visible distortion. Therefore the 

slope (Ks) would have a smaller value compared to skin/low texture macroblocks 

resulting in a smaller mospD  compared to a skin/low texture macroblock with same 

MSE. This scaling of mospD  will have impact on the RD cost function ((J=D+λ R) 

because lower distortion would mean lower RD cost function resulting in lower 

quality/bitrate modes being selected for encoding the macroblock. Hence, in 

sequences where humans are absent, the MOSp-based mode selection algorithm 

gives a gain in bitrate for similar visual quality when compared with the reference 

encoder.  

 

It has also been noted that in sequences such as Football and Stephen, although 

humans are present, gain in visual quality and bitrate is very small when compared 

to the Reference codec. Stephen and football sequences categorise as sports video 

and the video content include very high motion, camera panning and high detail. 

Although humans are present, the focus of viewer attention in sport video may not 

be limited to human faces and the attention may be more focused on other things 

such as tracking the football or tennis ball, looking out for goals, etc. Since the 

MOSp metric incorporates spatial texture and skin information, it is limited to 

identifying human faces and low textured objects in the video scene as being 

visually important.     
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8.6.5 Macroblock level Analysis 

Performance results presented in section 8.6.4 showed that the MOSp-based mode 

selection algorithm produces a gain in visual quality for sequences where humans 

are present. In sequences where humans are absent, there is a gain in bitrate for 

very similar visual quality compared to the reference codec. It was also observed 

that the gain in visual quality is very low at high bitrates and it increases with 

decrease in bit rate. This section gives a macroblock level analysis in support of 

these findings. Figures 8-6 and 8-7 are video frames from Foreman and Coastguard 

sequences compressed at QP = 36. Two regions in each frame have been selected 

for analysis purposes. They are a group of 4x4 macroblocks indicated by the red 

box in Figures 8-6 and 8-7. The corresponding MOSp values obtained from using 

the MOSp-based codec and the Reference codec are given. From the figures, the 

following observations can be made: 

i. The MOSp values of the 4x4 regions in both Foreman and coastguard 

sequence show that MOSp-based mode selection algorithm produces higher 

average MOSp compared to the reference codec. This indicates that making 

mode decisions based on the MOSp metric can improve visual quality at 

macroblock level.   

ii. In the foreman sequence, the gain in average MOSp is higher in the face 

region (nearly double) when compared to the non-face region indicating that 

MOSp-based mode selection produces higher gain in visually sensitive 

regions such as the human face when compared to other regions in the video 

scene. 



 176 

 
ROI 1: Non-face region: 
 
 
 
 
 
 
 
 
 
 
 
           MOSp values (Reference Codec)      MOSp values (MOSp-based Codec)                  
                   Average MOSp = 0.54                   Average MOSp =0.58 
 
 
ROI 2: Face region: 
 
 
 
 
 
 
 
 
 
 
 
           MOSp values (Reference Codec)      MOSp values (MOSp-based Codec)                  
                  Average MOSp = 0.2                   Average MOSp =0.41 
 
Figure 8-6: MB-level analysis for Foreman CIF sequence, QP=36, frame 37  
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ROI 1: Backgound: 
 
 
 
 
 
 
 
 
 
 
 
           MOSp values (Reference Codec)      MOSp values (MOSp-based Codec)                  
                   Average MOSp = 0.616                 Average MOSp =0.623 
 
ROI 2: foreground: 
 
 
 
 
 
 
 
 
 
 
 
           MOSp values (Reference Codec)      MOSp values (MOSp-based Codec)                  
                  Average MOSp = 0.605                  Average MOSp =0.628 
 
Figure 8-7: MB-level analysis for Coastguard CIF sequence, QP=36, frame 29  
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Figures 8.8 and 8.9 present QP versus MOSp plots for fives sample macroblocks 

taken from the Foreman and Coastguard regions shown in figure 8.6 and 8.7. These 

plots show the variations in MOSp for different modes for each QP value. It can be 

observed that in non-face macroblocks, the variation of MOSp between modes is 

less compared to face macroblocks. Therefore, switching between modes in a non-

face macroblock may not produce a significant gain in visual quality. However in 

face macroblocks, since the variation in MOSp between modes for each QP is 

higher, switching the mode selection may produce a significant change in visual 

quality of the macroblock.  

 

The amount of variation in MOSp for different modes is dependent on the slope 

parameter of the MOSp metric. The slope of the regression line can be steeper or 

shallower depending on content. Face macroblocks are assigned the steepest slope 

value due to high sensitivity to visible distortions and therefore have large 

variations in MOSp values when compared to macroblocks with shallower slopes.  It 

can also be observed that the variation in MOSp between modes increases with 

increase in QP. This is more prominent in face macroblocks. This may explain the 

low gain in visual quality at high bitrates and increase in visual quality gain with 

decrease in bitrate.   
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Figure 8-8: MB-level analysis using QP versus MOSp plots for various MB modes 
 

 



 180 

 

 
Figure 8-9: MB-level analysis using QP versus MOSp plots for various MB modes 
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8.7 Summary 

This chapter presented a new MOSp-based mode selection algorithm developed to 

make coding decisions based on visual quality rather than mathematical error 

measures such as SSD. The MOSp-based rate-distortion model consists of a MOSp-

based distortion measure and a new Lagrange multiplier which is derived from QP 

and activity. The MOSp-based mode selection algorithm was implemented in the 

H264 JM reference encoder. The performance of MOSp-based mode selection was 

evaluated using subjective evaluation to investigate whether visual quality gain can 

be achieved compared to the reference codec for similar bit rate. 

 

Following is the performance summary of evaluating the MOSp-based mode 

selection algorithm: 

• In sequences where humans are present, the MOSp-based mode selection 

algorithm produces a gain in visual quality (up to MOS = 0.2 on a scale of 

[0,1]) when compared to the reference codec for similar bitrates. 

• In sequences where humans are not present, the MOSp-based mode 

selection algorithm produces bitrate savings (of up to 26%) when compared 

to the reference codec for similar visual quality. 

• The gap in bitrate-quality performance between the MOSp-based codec and 

the reference codec is insignificant at higher bitrates. This gap increases with 

decrease in bitrate.  

 

Based on these observations, it is evident that by incorporating the MOSp-metric 

into the reference h264/AVC encoder, coding decisions can be made based on 

visual quality rather than mathematical measures such as SSD and SAD. The 

results have shown that visual quality gain can be achieved particularly in regions 

that are sensitive to visible distortions, such as human faces.  
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9 Discussion And Future Work 
 
9.1 Introduction 

This chapter presents a detailed summary of the main contributions of this work. 

The developed algorithms and experimental findings are critically analysed with 

emphasis to their benefits and limitations. The relevance of the main findings to 

addressing the research problem is also discussed. Finally, possible directions for 

further developments and improvements in relation to the contributions of this work 

are presented.  

 

9.2 Main contributions and critical evaluation of results 

The aim of this work has been to develop a new perceptual quality metric for 

compressed video and incorporate it into block-based video coding algorithms so 

that visual quality estimations can be made in real time video coding algorithms. 

The main contributions of this work include: 

1. Developing a novel perceptual quality metric called the MOSp metric for 

measuring subjective quality of compressed video. 

2. Developing methods to quantify video content using spatial texture, temporal 

change. 

3. Deriving the MOSp metric from MSE and video content. 

4. Extending the MOSp metric based on MSE and video content to incorporate 

cognition-based factors. 

5. As an application of the MOSp metric to perceptual video coding, developing 

a new MOSp metric based mode selection algorithm for a H264/AVC encoder.   

 

A detailed summary of these contributions along with a critical review of the 

experimental findings are presented in sections 9.2.1 to 9.2.4. 
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9.2.1 Developing of a novel perceptual quality metric called the MOSp 

metric 

In chapter 5, an experiment on video quality measurement was conducted to 

investigate the relationship between subjective and objective measures in context 

to multimedia video sequences compressed using block-based video coding. The 

results confirm experimentally that there is high correlation between MOS and MSE 

for a sequence coded to several bitrates using the same coding algorithm. These 

experimental findings form the foundation of further research in this work and have 

resulted in the development of a new perceptual quality metric for compressed 

video. Based on this linear relationship between MSE and MOS, the MOSp metric 

has been developed for video with compression-induced distortion. The MOSp 

metric predicts MOS from MSE and the slope of the regression line between MSE 

and MOS. It was also noted from the video quality experiment that video content 

may have an influence on the slope of the regression line between MSE and MOS. 

Video content may include image features (such as texture, colour and motion) and 

objects that attract viewer attention based on viewer interest and task in hand. 

Therefore, calculating the parameters of the metric (i.e. slope of the regression 

line) from video content would make the metric fully automatic. Therefore, the 

following stages of this work investigated this relationship between video content 

and the slope parameter of the MOSp metric.  

 

Advantages:  

1. Advantages of predicting subjective quality using the MOSp metric include 

saving time and resources when compared to conducting subjective 

evaluations to measure video quality of compressed video.  

2. The MOSp metric is based on MSE which is a popular video quality metric 

employed in block-based video coding algorithms. The only additional 

requirement for MOSp calculation is the slope estimation from video content. 

Therefore, the MOSp metric would be very useful for integrating into block-

based video encoders for making real-time quality estimation. 

Limitations: 

1. Impairments in compressed video could include compression-induced 

distortion and transmission-induced distortion. The sequences used to model 

the MOSp metric contained only compression-induced distortion in 
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multimedia sequences. Therefore the MOSp metric is limited to assessing 

quality of video with compression-induced artefacts.  

2. Visibility of distortion in video may also be dependent on factors such as 

viewing distance, frame resolution and frame rate. Since the MOSp metric 

has been developed using multimedia video sequences, metric parameters 

such as the slope, may require remodelling for higher resolution video 

sequences.  

 

9.2.2 Deriving the MOSp metric from MSE and video content 

Video quality experiments in Chapter 5 showed that the slope of the regression line 

varies between sequences and may be dependent on video content. Video content 

may be contributing to the ‘hiding’ or ‘enhancing’ of visibility of distortions which in 

turn may produce a steeper or shallower slope on the MSE versus MOS graph. This 

part of the research work, presented in Chapter 6, investigated the relationship 

between video content and the slope of the regression line between MSE and MOS 

with a view to automatically estimating the slope parameter for each video 

sequence.  

 

Video content such as spatial texture and temporal change may contribute to the 

visibility of distortions. Spatial texture and temporal change may be quantified 

using spatial edge strength and temporal edge strength measures. Hence, the 

relationship between these measures and the slope parameter of the regression line 

between MSE and MOS was investigated in Chapter 6 and two methods for slope 

estimation have been proposed.  

The performance evaluation of the MOSp metric based on these two methods 

indicate that the MOSp metric produces high correlation with MOS (>90%) with an 

increase in coding time between 4.9% to 7.7%. The metric also produces higher 

correlation with subjective results compared to popular metrics such as PSNR, 

PSNRplus, VSSIM, Yonsei and the NTIAVQM metric.  

Other factors influencing the visibility of distortion may include objects in the video 

scene which attract viewer attention. Hence investigations were carried out in the 

next stage of this work to see if the MOSp metric could incorporate cognition-based 
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factors such as presence of human in video with a view to further increase its 

correlation with MOS. 

9.2.3 Extending the MOSp metric based on MSE and video content to 

incorporate cognition-based factors. 

Cognition based factors that attract human attention while watching video may be 

used to classify video content into foreground and background regions. These 

factors include objects or patterns in the video scene that are ‘recognised’ by the 

viewer based on viewer interest, prior knowledge or task-in-hand. Previous 

research has shown that presence of humans, particularly human faces, in a scene 

attract visual attention and distortions in these areas caused lower subjective 

ratings while similar distortion in other areas went unnoticed. Therefore, objects in 

the video scene which attract viewer attention may contribute to enhancing or 

masking of visible distortions in compressed video and have effect on the slope of 

the regression between MSE and MOS. This phenomenon was noticed in the MSE 

versus MOS graphs in chapter 5. Sequences with human faces, such as Foreman, 

Akiyo and News have steeper slopes compared to sequences without human faces, 

such as Bus and Coastguard. Skin colour is a popular cognition-driven perceptual 

cue and has been proven to be an effective feature in many applications such as 

face detection and hand tracking.  

Hence, in Chapter 7, two methods for integrating skin information in to the MOSp 

metric were proposed in order to increase its correlation subjective quality: 

1. Spatial texture and skin information 

2. Spatial texture, temporal change and skin information. 

 

The performance evaluation results show that the MOSp metric produces high 

correlation with MOS (>90%) with 4.9% to 11.6% increase in coding time and it 

has higher prediction accuracy compared to popular metrics such as PSNR, 

PSNRplus, VSSIM, Yonsei and NTIAVQM metric.  

 

Performance comparison between the four methods of calculating MOSp from video 

content and cognition factors show that the MOSp metric based on spatial texture 
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and skin information produces highest correlation with MOS (95.4%). This high 

correlation may be due to the following reasons: 

(i) The combination of Spatial texture masking and cognition factors has higher 

influence on the visibility of distortion in video.  

(ii) The slope variation between different video content has better correlation with 

spatial texture and skin information. This results in a more accurate slope 

estimation model for calculating the slope parameter of the MOSp metric and hence 

a better performing MOSp metric which produces higher prediction accuracy. 

Performance results have shown that the MOSp metric has high prediction accuracy 

with MOS for a variety of video content. Hence, this proves that the initial 

hypothesis of predicting MOS by exploiting the linear relationship between MSE and 

MOS holds for a variety of video content compressed using block-based coding 

scheme.  

Advantages: 

1. The MOSp metric has high prediction accuracy with subjective quality. 

2. Unlike existing perceptual quality metric which are based on complex models 

of the human visual system, the MOSp metric is simple to implement and 

requires reasonable computing time for video quality estimation.  

3. Since all the parameters of the MOSp metric are calculated at macroblock 

level, it can be easily integrated into block-based video coding algorithms for 

real-time quality estimation. 

Limitations: 

1. The accuracy of MOSp measurement depends on the slope parameter 

estimation which is estimated using features in the video that have influence 

on the visibility of distortion. Therefore, the choice of features used to 

quantify video content for slope estimation is important and has impact on 

the prediction accuracy of the MOSp metric. 

2. The MOSp metric uses spatial texture and temporal change to quantify video 

content; it is limited to identifying these regions as being visually important. 

Other image features such as colour, brightness and contrast may also have 
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influence on the visibility of distortion. Therefore, incorporating these factors 

into the MOSp metric may make the metric more robust for different types of 

video content.  

3. The skin detection algorithm used in this work to identify skin regions is 

based on skin colour detection. Although this method is popularly used for its 

simplicity and efficiency, it is known to produce false positives. This may 

have impact on the overall accuracy of the MOSp metric because falsely 

detected regions in the video scene will have inaccurate MOSp values.  

4. In sequences such as sports video, the viewer attention may not be limited 

to humans in the video scene and the attention may be more focused on 

other things such as tracking the football or tennis ball, looking out for goals, 

etc. Incorporating these factors into the MOSp metric may make the metric 

more robust for different types of video content.  

 

9.2.4 As an application of the MOSp metric to perceptual video coding, 

developing a new MOSp metric based mode selection algorithm for a 

H264/AVC encoder.   

A new MOSp-based mode selection algorithm for the H264/AVC encoder which 

employs the MOSp metric in making macroblock mode decisions is presented in 

Chapter 8. The MOSp metric based on spatial texture and skin information is used 

for this application due to high prediction accuracy compared to the other three 

methods of MOSp estimation. The MOSp-based rate-distortion model consists of a 

MOSp-based distortion measure and a new Lagrange multiplier which is derived 

from QP and video content. The MOSp-based mode selection algorithm was 

implemented in the H264 JM reference encoder. Performance of MOSp-based mode 

selection was evaluated using subjective evaluation to investigate if visual quality 

gain can be achieved compared to the reference codec for similar bit rate. 

 

 

Advantages: 

1. Performance results show that by integrating the MOSp metric into the mode 

selection algorithm, coding decisions can be made based on visual quality 

rather than mathematical measures such as SSD and SAD. 
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2. In sequences where humans are present, the MOSp-based mode selection 

algorithm produces a gain in visual quality (up to MOS = 0.2) when 

compared to the reference codec for similar bitrate. This indicates that 

incorporating the MOSp metric into the mode selection process produces 

visual quality gain in content that are identified as visually important by the 

MOSp metric. Therefore, the MOSp-based mode selection algorithm may be 

useful in video conferencing and broadcasting applications where 

improvement in visual quality is more important than bitrate savings.  

3. In sequences where humans are absent, the MOSp-based mode selection 

algorithm produces bitrate savings (of up to 26%) when compared to the 

reference codec for similar visual quality. The MOSp metric is designed to 

identify high texture and non skin regions as visually unimportant and hence 

the mode selection process allocates modes that produce lower bits resulting 

in overall bitrate savings. Hence, this algorithm may be suitable in 

applications where bitrate savings are necessary whilst maintaining a certain 

level of visual quality. 

4. The results also showed that the gap in bitrate-quality performance between 

the MOSp-based codec and the reference codec is insignificant at higher 

bitrates and increases with decrease in bitrate. Therefore, the MOSp-based 

mode selection algorithm is more useful in lower bitrate applications such as 

video communications on mobile platforms. 

 

Limitations: 

The MOSp metric integrated into the mode selection algorithm is based on spatial 

texture and skin information. Therefore, it is limited to identifying human faces and 

low textured objects in the video scene as being visually important.  In sequences 

such as sports video where the focus of viewer attention may not be limited to 

these features, the MOSp-based mode selection algorithm does not produce a 

significant gain in visual quality or bitrate. This limitation may be overcome by 

incorporating more features into the MOSp metric for indentifying visually important 

regions in the video scene.  
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9.3 Suggestions for Future Work 

The algorithms developed in this research work were summarised and critically 

evaluated in the earlier sections. This section presents some suggestions for further 

research, mainly focused on addressing the limitations of the above algorithms in 

order to achieve better performance and flexibility.  

 

1. The MOSp metric was built using multimedia video sequences compressed 

using H264/AVC video coding algorithm. Therefore, the parameters of the 

MOSp metric have been modelled for multimedia video. In order to develop a 

generalised MOSp metric, further experimental work is required to 

investigate the relationship between MSE and MOS for different resolutions, 

frame rate and video coding schemes.  

2. The slope parameter of the MOSp metric is estimated from spatial texture 

and temporal changes. Including other image features such as colour, 

brightness and contrast, to identify visually important regions in the video 

scene may improve performance and flexibility of the MOSp metric. Further 

experimental work is required to investigate the relationship between these 

features and the slope of the regression line between MSE and MOS.  

3. The robustness of the skin detection algorithm used in this research may be 

further improved by including other algorithms such as facial feature 

detection and/or face tracking.   

4. The MOSp metric is limited to identifying skin regions as important regions in 

the video scene which attract human attention. Therefore, more experiments 

are required to include other application-dependent object detection methods 

such as vehicle tracking in surveillance video. 

5. Experiments to evaluate the MOSp-based mode selection algorithm have 

shown that integrating the MOSp-metric into the mode selection process 

improves visual quality in visually important regions such as human faces. 

Developing a rate control algorithm based the MOSp metric could be a 

possibility for further research. The MOSp metric may be used for better bit 

allocation by classifying macroblocks based on the sensitivity to visible 

distortion and allocating higher bits to visually important regions in the video. 

6. The MOSp metric may also be used in low complexity video coding  

algorithms in order to produce high perceptual quality at reduced processing 

resource conditions.  
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10 Conclusion  
 
Video quality measurement is necessary for developing, evaluating and 

benchmarking video coding algorithms. The subjective measurement of mean 

opinion score is an accurate method to determine the perceived video quality of 

compressed video. However, it is expensive in terms of time and resources and 

cannot be easily embedded into real-time video applications. Hence several 

objective assessment methods have been developed to predict the subjective 

results based on video content and the characteristics of the human visual system. 

The performance of these measures is often limited due to computational 

complexity and poor correlation with MOS, indicating that there is still scope for 

developing better approaches to estimate subjective quality. The objective of this 

research work was to develop novel algorithms to measure perceived video quality 

of compressed video with a view of improving perceptual quality of compressed 

video by making coding decisions based on accurately estimated perceptual quality. 

 

The research project was structured into four stages as presented in the Chapter 1 

and each stage has been completed successfully. Below is a brief summary of each 

stage: 

 

Stage 1: Video quality evaluation of compressed video and development of 

the MOSp metric. 

Stage 1 of the project involved conducting a literature review on existing subjective 

and objective video quality measurement techniques to gain a strong theoretical 

background and identify limitations of existing techniques. This review is presented 

in chapters 2 and 3. This stage also involved evaluating video quality of sequences 

compressed using block-based coding algorithm and investigating the relationship 

between subjective and objective video quality measures. The results (presented in 

Chapter 5) proved experimentally that there is high correlation between MSE and 

MOS for a sequence coded to several bitrates using the same coding algorithm. 

Based on this linear relationship between MSE and MOS, a new video quality metric 

called the MOSp metric was developed to predict MOS from MSE and the slope of 

the regression line between MOS and MSE.  
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Stage 2: Deriving the MOSp metric from MSE and video content 

Experiments conducted in stage 1 to investigate the relationship between MSE and 

MOS also showed that the slope of the regression line between MSE and MOS varies 

for different content. Therefore, stage 2 of the project investigated the relationship 

between video content and the slope parameter of the MOSp metric. Based on 

these investigations, two methods for estimating slope from spatial texture and 

temporal change information have been developed. Performance results of the 

MOSp metric, presented in chapter 6, show that the MOSp metric produces high 

correlation with MOS (>90%) with an increase in coding time between 4.9% to 

7.7%. The metric also produces higher correlation with subjective results compared 

to popular objective metrics evaluated in the experiment. 

  

Stage 3: Incorporating cognition based factors into the MOSp metric 

Factors affecting visual quality of compressed video may include objects in the 

video scene that attract viewer attention. Therefore, these factors may have 

influence on the slope of the regression between MSE and MOS. Stage 3 of the 

project investigated methods of integrating cognition based features such as skin 

information into the MOSp metric in order to further improve its prediction 

performance. Based on these investigations as detailed in chapter 8, two methods 

for estimating the slope parameter of the MOSp metric from spatial texture, 

temporal change and skin information were developed. Performance results of the 

MOSp metric show that the MOSp metric based on spatial texture and skin 

information produces highest correlation with MOS (95.4%) with 8.2% increase in 

coding time. Hence this metric was used in stage 4 to investigate whether making 

coding decision based on the MOSp metric improves visual quality of compressed 

video. 

 

Stage 4: Development of the MOSp-based mode selection algorithm. 

In stage 4 of the project, investigates methods to apply the MOSp metric to 

perceptual video coding. A new MOSp-based mode selection algorithm for the 

H264/AVC encoder which employs the MOSp metric in making macroblock mode 

decisions was developed. The MOSp-based rate-distortion model consists of a 

MOSp-based distortion measure and a new Lagrange multiplier which is derived 

from QP and video content. The MOSp-based mode selection algorithm was 

implemented in the H264 JM reference encoder. Performance of MOSp-based mode 
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selection was evaluated using subjective evaluation to investigate if visual quality 

gain can be achieved compared to the reference codec for similar bit rate. 

Performance results, presented in chapter 8, show that by integrating the MOSp 

metric into the mode selection process, it is possible to make coding decision based 

on estimated visual quality rather than mathematical error measures such as SSD. 

In sequences where humans are present, the MOSp-based mode selection 

algorithm produced a gain in visual quality (up to MOS = 0.2) when compared to 

the reference codec for similar bitrate. In sequences where humans are absent, the 

MOSp-based mode selection algorithm produced bitrate savings (of up to 26%) 

when compared to the reference codec for similar visual quality. 

 

 

This work achieves the main objective of the research project which is to develop a 

novel technique of measuring perceived video quality of multimedia sequences 

compressed using block-based coding algorithm. The application of the developed 

quality metric to perceptual video coding was also investigated. The main 

contributions of this work include: 

• Development of a novel video quality metric called the MOSp metric to 

predict perceived quality of video sequences compressed using block-based 

video coding algorithms. 

• Development of techniques of automatically calculating parameters of the 

MOSp metric from MSE and video content. 

• Development of techniques to incorporate cognition based factors into the 

MOSp metric in order to further improve its prediction accuracy. 

• Development of a new MOSp-based mode selection algorithm which employs 

the MOSp metric in making mode selection in order to achieve better visual 

quality compared to the reference video encoder for similar bitrate. 

 

In comparison with other published work, the main contributions of this work are 

based on firm theoretical foundations and experimental proof with minimal use of 

empirically obtained thresholds. The parameters used in the algorithms are 

adaptive to changing video content. Unlike other perceptual quality metrics, the 

MOSp metric is computationally simple to implement and requires reasonable 

running time. Since all the metric parameters are automatically calculated at 

macroblock level, it can be very easily integrated in to video coding algorithms. 
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Novel contributions of this work may be used in applications such as video 

conferencing, multimedia video communications, surveillance and mobile video 

communications, for automatic perceptual quality estimation in real time. In 

conclusion, the novel algorithms developed in this research work are particularly 

useful for integrating into block based video encoders such as H264/AVC in order to 

make coding decisions based on estimated visual quality rather than the currently 

used mathematical error measures.  
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Appendix B 
 
Training instructions given to viewers during subjective evaluations: 
 
“In this experiment you will be shown short video sequences on the screen one at a 
time. Each time a sequence is shown, you should judge its picture quality by 
choosing a five-point scale.” 
 
(i)Excellent: if the content in the video sequence has no noticeable distortion. 
 
(ii)Good: at least one noticeable distortion is detected in the entire sequence. 
 
(iii)Fair: several noticeable distortion are detected, spread all over the sequence. 
 
(iv)Poor: many noticeable distortion which destroy the scene structure or create 
new patterns in some parts of the sequence, are detected. 
 
(v)Bad: very strong noticeable detected which destroy the scene structure or create 
new patterns in the major part of the sequence. 
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