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Thesis Abstract 

It is argued that a significant feature which acts as a disincen­

tive against the adoption of CAAD systems by small private architectural 

practices, is the awkwardness of communicating with computers when 

canpared with traditional drawing board techniques. This consideration, 

although not perhaps the daninant feature, may be mitigated by the 

development of systems in which the onus of communicating is placed on 

the machine, through the medium of an archi tect 's sketch plan drawing. 

In reaching this conclusion, a design morphology is suggested, in 

which the creative generation of building designs is set in the context 

of the development of a 'data-base' of information which completely and 

consistently describes the architect's hypothetical building solution. 

This thesis describes research carried out by the author between 

September 1981 and September 1984, in order to produce a FORTRAN 

catpUter program to capture, enhance, decode and interpret an arChitect's 

sketch plan drawing, and subsequently reformat the data so aquired, such 

that it may be fed directly into existing CAAD programs, (in particular 

BIBLE and GOAL, developed by the ABACUS Unit of the University Of 

Strathclyde). A video recording which accompanies this thesis demonstrates 

this program, (ENIGMA), in use. 

Methods of describing the geometries of real world polyhedral 

objects are examined, as are the data stn.lCtures necessary to hold these 

descriptions in a machine compatible fonn. 

Four existing catp.lter programs which deal with geometrical descr­

iptions of polyhedral objects are reviewed in respect of their data 

structures, and the limitations consequently imposed upon the program 

users. 

The maj or part of the work undertaken, !,elates to the development 

and coding of algorithms to undertake the processes of the ENIGMA 

system, and the basic logic of the various sub-systems is described.. 

The significance of the ENIGMA system to the development of 

'Knowledge Engineering' CAAD programs is suggested, as are areas for 

future work to expand and inprove the ENIGMA program. 
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Foreword 

"A classical understanding sees the world 
primarily as underlying fonn itself. A 
ranantic understanding sees it primarily 
in terms of inmediate appearance. 

The ranantic mode is pr~ily 
inspirational, tmaginative, creative, 
intuitive. Feelings rather than facts 
predaninate. "Art" when it is opposed to 
"Science" is often ranantic. It does not 
proceed by reason or laws. The classic 
mode, by contrast, proceeds by reason and 
by laws - which are themselves underlying 
forms of thought and behaviour. 

Two kinds of logic are U$ed - in­
ductive and deductive. Inductive infer­
ences start with observations and arrive 
at general conclusions ... deductive 
inferences do the reverse. They start 
wi th general knowledge and. predict a 
specific observation. 

What we have is a conflict of visions 
of reality. The world as you see it right 
here, right now, is reality regardless of 
what the scientists say it might be. But 
the world as revealed. by scientific 
discoveries is also reality, regardless of 
how it may appear. What you've got here, 
really, are two realities, one of inmediate 
artistic appearance and one of underlying 
scientific explanation, and they da1' t 
match and they don't fit and they don't 
really have rruch of anything to do with 
one another." 

Robert Pirsig. 
Zen .And The Art Of Motorcycle Maintenance. 

The resolution of this artificial dichot~ between "inmediate 

artistic appearance" and ''underlying scientific explanation" is a 

matter of inmediate concern if we are to have a technology working 

for all people. 

Technology itself is inert, and m8¥ be used for good or ill. 

All to often it is the latter, because the means have becane ends 

in themselves. Specialism, which the fantastic rush of technological 

progress has tended to pranote, has meant the the 'priests' of the 

new technologies view the world throogh spectacles tinted. by the 
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colCUI' of their own pet specialism, which puts their view of the 

rest of the world into a false light. As John F . Kennedy said, 

"Man's scientific capability has a.ltl'Ul1 his spiritual capability: 

We have guided missiles and misguided men.". 

Archi tecture is pertlaps the last of "tAe truly liberal arts: 

Its study encaJ1)8Sses all disciplines, and there are few' areas 

which do not bear a direct relevence to the study of man and his 

habi tat. Architects, basing their designs upon both artistic and 

scientific considerations, are therefore in a position to mediate 

between technological progress on the one hand. and its sociological 

iq:>lications on the other. In short, architects ought to be the 

promoters of Appropriate Technology, to which this thesis is 

devoted. 

In sane small measure, this work repays the debt I CNle to 

James Freeney, who shCNied me what technology couldn't do, Lamond 

Laing who showed me what it could, Robert Pirsig for shCNling that 

the two views could be reconciled, and the BootIe family for 

shCNling that the reconciliation was necessary. 

Dave Leifer May 1984 



1 

2 

3 

4 

5 

Chapter 1 

Archi tects And Ca!p.lters 

Introduction 1.1 

Structure Of The Architectural Profession 1.1 

Why Small Practices? 

Adoption Of CMD Aids By Practice 

Strt.1Cture Of 1he Thesis 

References 

1 

1.2 

1.3 

1.5 

1.6 

2 

2 

3 

4 

6 

7 



1.1 

CHAPTER 1 

1 Introduction 

This thesis is concerned with the description and :::reation 

of algorithms which could lead to the establishment of an inter­

face between architect and currently available computer equipment, 

concentrating upon the manipulation of plan drawings. This inter­

face being involved as the archi teet is in the process of 

developing his initial ideas about potential building form through 

sketch drawings; An interface more congenial to the architect, 

thus acting as an incentive for the adoption of CAN) aids and 

overcome the prevailing reticence evident through sections of the 

profession - particularly the small private architectural practices. 

The adoption of CAAD aids facilitates the more thorough 

examination of deSign proposals before far reaching decisions are 

taken, hence improving the quality of the architects I finished 

product. 

2 Structure Of The Architectural Profession 

" 1here are about 26 000 architects in this 
country (the UK.). But of this I"D.JI1i:)er over 
half are ' salaried' - mainly on the payroll 
of local authorities or Government depart­
ments. The rest are divided between about 
5 000 finns. A few of these are large, with 
branch offices dotted about the country and 
abroad, but most eq:>loy fewer than 20 
people. An amazingly large nurrber have 
retained the int~ of private practice; 
over half the finns listed ••• have five or 
less architects on the staff." 1 

In actual fact, eighty-five percent of all registered 

architects work in practices employing 10 or less full-time 

architectural staff. 2 From the above figures it would seem that 

sane 11 000 architects are employed by about 4 500 practices; an 

average of between two and three architects per firm or office. 

The predominance of small private practices goes a long way 

to explain why CAM) aids have not made the inroads into the 
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1.2 

profession in comparison with others in building and construction 

industry: they sirrply do not have the investment capital to bear 

both capital and running costs that such systems entail. 

3 Why Small Practices? 

Four reasons may be offered to explain the proliferation of 

small architects practices; 

a Until relatively recently, ar~hitects have tended to 

think of themselves as 'artists'. Trained in studios, the 

concept of 'the architect' under a clients' patronage has 

been perpetuated. It is only relatively recently that the 

profession has turned its attention to professionalism and 

technological competen~e. 

Simul taneously, the pattern of patronage for larger 

projects has changed; the former individual client has 

largely been replaced by client committees who keep a much 

closer watch on the architects perfonmance. This change 

appears to have slowed down the rate of establishment of 

new practices, but as yet, many finns, established after 

the Second World War have not been affected. 

b Following fran the above, it was the requirement for 

c 

reconstruction following the Second World War that induced 

many architects to establish their own practices, confident 

in the contiI'Uli ty of workload. 

The 'stop-go' poliCies of Government investment 

policies since the mid 1960's has had an adverse effect on 

architects confidence, and the present recession makes the 

establishment of a new practice precarious indeed. 

However, it is still comparativ~ly inexpensive for an 

archi tect to set up his own practice. Many have done so on 

the strength of the expected incane fran just one project. 

d Perhaps more than any other reason, the pattern of 

architectural practices seems to mirror the pattern of the 

cost of construction projects. The bulk of money spent 

annually.on building construction is small scale. 
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The above observations are based upon the writers experience 

as a second generation architect, experience of working in such a 

small private practice, and through discussion with peers. 

It is inevitable that the pattern will change with prevailing 

circumstances, but there is generally an appreciable time-lag 

between cause and effect. 

4 The Adoption Of CAAD Aids By Practice 

The anticipated adoption of CAAD aids by the architectural 

profession has not happened to the extent predicted, even though 

such aids have been in development since the mid 1960's. Many 

multidisciplinary practices, who have engineering expertise, have 

adopted systems, but these firms are in the minority. The Table 

below shows the take-up nationally and worldwide of commercially 

available draughting systems by the construction industry. 

System Supplier System Name Nunt>er of Installations Launch 
UKci UK EUR WOR TOT Date 

Applicon Image 7 51 200 1200 1400 
Autotrol GS-1ooo 10 20 350 400 
ARC Ltd GDS 20 23 3 23 49 1980 
AdneI/Bt"LU'ling Easidraf2 3 3 125 150 81/82 
Cadam Inc Cadam 5 20 60 200 300 71/78 
CalcaJ1) IGS 500 3 4 25 90 120 1969 
Carbs Ltd Garbs 11 13 1 2 16 1973 
Calma Cadec 60 20 900 1000 71/72 
CIS Medusa 4 28 53 29 130 1980 
Catp,ltervision CAE 7 100 600 2400 3000 1973 
Genesys* Gable 6 8 2 10 1981 
Intergraph IGDS 10 40 90 350 500 73/81 
GMW Carplters Rucaps 46 46 9 12 67 1977 
M=Auto Unigraphics 1 17 18 170 200 1978 
Oasys Ltd Cadraw 4 6 6 80/81 
Olivetti IGS 3 15 60 30 100 1980 
PAFEC Ltd Dogs 3 27 7 34 1980 
Sunmagraphics Datagrid 6 10 15 120 150 79/80 
Scott Wilson K Gipsys 1 1 1 1979 

Approximate Totals 140 500 1200 6000 7700 

Table 1. 1 CICA Swvey Of Ccmnercially Available Oraughting Systems. 
Key: UKci construction industry installatia'lS in the UK 

UK total installations in the UK 
EUR remaining installations in Europe excluding UK 
\¥OR remaining installations worldwide excluding Europe 
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Table 1.1 is reproduced from CICA Bulletin, Mar 82.
2 

Note that GABLE is an integrated CAAD system with a draughting . 
element to it. 

Whilst the figures in Table 1.1 refer to draughting systems 

specifically, they do give an indication of the up-take of canputers 

generally, and also show the proportion of the total number of 

installations used by the UK construction industry. 

Against these figures, the AJ Canputer Club published a 

survey of the computer ownership of their first 100 members. This 
3 

is shown in Table 1.2· 

Cooplters No. of CCIJ1)Uters No. of 
owners ownwers 

Apple 28 Nasccm 1 
Aztech 1 Pet 19 
BBC 7 Rlilips word processor 1 
DEC minicomputer 2 Research Machines 1 
Diablo 1 Sinclair ZX80 1 
Equinnox 1 Sinclair ZX81 . 2 
Hewlett Packard 4 Sharp 1 
IBM 3031 1 Superbrain 4 
IBM Displaywriter 1 Tandy 5 
ICL 2956 1 Vector grcq::hics 1 
Interdata 1 Video Genie 1 
Microtan 1 Wang word processor 2 

Draughting Systems 

Applicon 1 GDS 2 
ARK II 1 Intergrcq::h 1 
Calcaq) 2 RUCAPS 4 
Gable 1 

Table 1.2 AJ Camputing Club Camputer Ownership Of The First 
100 Ment>ers. 

Most of the first 100 ment>ers are in the UK. 
The rest are in Belgium, Holland, Hong Kong, 
Malaysia and the Gulf States. 

Obviously the tenor of the AJ Computing Club places an 

errphasis on microcanputers. Heavily carmi tted organisations are 

more likely to be members of the CICA (Construction Industry 

Canputer Association). The above figures do show that canputers 

are being used by architects, if only in a more managerial or 
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support role. 

5 Structure Of Thesis 

Chapter 2 examines what it is that architects actually do 

and the service that they normally offer to clients. It enlarges 

upon the importance of decisions made at the early design stages, 

and the normal 'effort' distribution through the design process. 

In the light of this distribution the range of computer aids is 

considered. 

Finally, a design morphology is proposed and discussed. 

Chapter 3 discusses factors which act as disincentives to 

archi tects against the adoption of CAM) aids. This follows a 

consideration of the current state of computer hardware, software, 

and interface technologies. 

Chapter 4 examines the characteristics of geometric descrip­

tions, and the three possible mathematical description methods. 

The effects of these alternative descriptions on the data structures 

necessary to· hold these descriptions is considered. 

Chapter 5 briefly examines the way in which four existing 

graphic handling suites of computer software deal with geometric 

description and data structuring. The first of these is a seminal 

draughting coding whose f\mdemental ideas are central to many 

more recent draughting systems. The second is an exarrple of a 

component based building method. The third is an exarrple of an 

integrated CAAD system designed for implementation on a small desk­

top computer. The final example takes the graphic handling element 

fram a system designed for a number of applications, implemented 

upon a large mainframe computer. 

Chapter 6 summarises the arguments propounded in the previous 

chapters. It defines the problem central to the mis-match between 

CAM) systems and traditional design techniques in terms of the 

man-machine interface. HUNCH, a computer program conceived to 
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just this problem, is then critically examined. There follows a 

description of algorithms proposed to emulate many of the ideas 

contained in HUNCH ,whilst rejecting others. These algorithms 

deal with the enhancement of crude architectural sketch plans, 

and their subsequent interpretation into enclosed shapes. 

Included in this chapter is a description of identification 

using prime numbers. 

Chapter 7 describes a suite of programs which utilise the 

algorithms described in the preceding chapter. This suite of 

programs are designed as a flexible interfacing system for use by 

architects at the early design stage to generate data necessary 

for more detailed future analysis and appraisal. 

Chapter 8 summarises what has been achieved, and discusses 

the possibilities of using this interface system to automatically 

derive a higher level vocabulary as is used in the interrogation of 
4 expert systems. 

Finally, chapter 9 presents further extensions to the inter­

face, principally the inclusion of editing functions. 
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2.1 

CHAPTER 2 

1 Introduction 

This chapter is divided into three sections: The first 

describes the extent of the service which architects offer to the 

client and the resource distribution required to realise this 

design service; the second summarises those areas in which a 

canputer can provide 'aid' to the architect; whilst the third 

describes the processes by which the architect arrives at a 

building design. 

2 The Architectural Service 

In its Public Relations literature, the RIBA states that; 

"the architects function is to translate 
the client's needs into a building that 
will serve his purpose in every way ••• It 
is the architects' aim to find for each 
the solution that will best serve his 
client's purpose while delighting the 
eye." 1 

It is, therefore, the architect's :function to conceptualise 

and communicate a hypothetical building form which satisfies the 

design criteria, both explicit in the brief, and implicit in the 

design problem. In deciding the priorities of the often contra­

dictory design parameters, he is usually the arbiter. 

2.1 RIBA WORK STAGES 

The RIBA analyses the services provided to clients by 

archi tects by reference to 'work stages'. 'J1lese work stages, 

enumerated A to L, split the design process into a number of 

discrete sub-processes. These are: 

''Work Stage A: Inception 

1 Discuss the client's requirements including 
timescale am any financial limits; assess 
these and give general advice on how to 
proceed; agree the architect's services. 
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2 Obtain from the client infonnation on 
ownership and any lessors and lessees of 
the site, any existing buildings on the 
si te, boundary fences and other enclosures 
and any known easements, encroachments, 
underground services, rights of way, 
rights of support and other relevant 
matters. 

3 Visi t the site and carry cut an initial 
appraisal. 

4 Advise on the need for other consultants' 
services and on the scope of these 
services. 

5 Advise on the need for s~ecialist contra­
ctors, sub-contractors and suppliers to 
design and execute part of the works to 
carply with the architects requirements. 

6 Advise on the need for site staff. 

7 Prepare where required an cutline time­
table and fee basis for further services 
for the client's approval. 

Work Stage B: Feasibility 

2.2 

8 Carry cut such studies as may be necessary 
to detenmine the feasibility of the client's 
requirements; review with the client 
al temati ve design and. construction 
approaches and cost ~lications, advise 
on the need to obtain planning permissions, 
approvals under the building acts or reg­
ulations, and other similar statuto ry 
requirements. 

Work Stage c: <Altline Proposals 

9 Wi th other consultants where appointed, 
analyse the client's requirements; prepare 
cutline proposals and an approximation oaf 
the construction cost for the client's 
preliminary approval. 

Work Stage D: Scheme Design 

10 With other consultants where appointed, 
develop a scheme design fran the cutline 
proposals taking into account amenanents 
requested by the client; prepare a cost 
estimate; where applicable give an indic­
ation of possible start and completion 
dates for the building contract. The 
scheme design will illustrate the size and 

10 



character of the proj ect in sufficient 
detail to enable the client to agree the 
spatial arrangements, materials and 
appearance. 

11 Wi th other consultants where appointed, 
advise the client of the implications of 
any subsequent changes on the cost of the 
proj ect and the overall progranme. 

12 Make where required application for plan­
ning permission. The permission itself is 
beyond. the architect's control and no 
guarantee that it will be granted can be 
given. 

Work Stage E: Detail Design 

13 Wi th other consultants where appointed, 
develop the scheme design; obtain the 
client's approval of the type of const­
ruction, quality of materials and stand­
ard. of wcrkmanship, co-ordinate any 
design work done by consultants, special­
ist contractors, sub-contractors and 
suppliers; obtain quotations and other 
infonnation in connection with specialist 
work. 

14 With other consultants where appointed, 
carry out cost checks as necessary; advise 
the client of the consequences of any 
subsequent changes on the cost and 
progranme. 

15 Make and. negotiate where required, 
applications for approvals l.U1.Cler building 
acts, regulations or other statutory 
requirements. 

Work Stages F and. G: Production Imormation 
and Bills of Quantities. 

16 With other consultants where appointed, 
prepare production imonnation including 
drawings, schedules and. specificatioo of 
materials and. workmanship; provide 
infonnation for bills of quantities, if 
any, to be prepared.: all inf'onnation 
cooplete in sufficient detail to enable 
contractor to prepare a tender. 

Work Stage H: Tender Action 

2.3 

17 Arrange where relevant, for other cootracts 
to be let prior to the contractor 
coomencing work. 

11 



18 Advise on, and obtain the client's 
approval to, a list of tenderers. 

19 Invite tenders from approved contractors; 
appraise and advise on tenders· sutmitted. 
Alternatively, arrange for a price to be 
negotiated with a contractor. 

) 

Work Stage J: Proj ect Planning 

20 Advise the contractor on the appointment 
of the contractor and on the responsibil­
ities of the client under the terms of 
the building cootract; where required 
prepare the building contract and arrange 
for it to be signed by the client and 
contractor; provide production infonnation 
as required by the building contract. 

Work Stage K: Operation on Site 

21 Administer the terms of the build.i.ng 
contract during operations on site. 

22 Visit the site as appropriate to inspect 
generally the progress and quality of the 
work. 

2.4 

23 Wi th other consultants where appointed, 
make where required periodic financial 
reports to the client including the effect 
of any variations on the construction cost. 

Work Stage L: Completion 

24 Administer the ~enms of the building 
cootract relating to the coopletion of the 
works. 

25 Give general advice on maintenance. 

26 Provide the client with a set of drawings 
showing the building and the main lines of 
drainage; arrange for drawings of the 
services installations to be provided." 2 

Fran the frequent references to liason with both client and 

other members of the desfgn~and construction team, an erJl)hasis- is 

placed upon communication. The subject being communicated is the 

building description which is steadily evolved under the guidance 

of the architect throuBn design stages C to F. It will be noted 

the major determinants of both the cost and time-scale of the 

project are initiated by the decisions made during work stage C, 

that of the outline proposals. 
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2.5 

2.2 WORK STAGE C 

Since the major content of the architects' workload is the 

follow through fram the decisions made during the formation of 

the outline design proposals, it would seem that this particular 

process would entail the major part of the archi tects design 

resources. This does not appear to be the case; 

"crucially inportant ini tial design stages 
go relatively unresearched and the first 
proposal which appears to work is all too 
often seized upon." 3 

This observation is illustrated by a coroborating diagram 
4 produced by Kraal , which relates the usual deployment of the 

designers resources to the importance of design decisions through 

the work stages 

\ 
\ 
\ 
\ 
\ 

\ 
\ , 

RIBA Work Stages* 

Tradi tional resource deployment 

Relative inportance of design decisions 

* A nurri>er of RIBA sources surmarise the architects 
service as eight work stages, A to H. 

Figure 2.1 Schematic Diagran Relating The 
Deployment of Resources To The 
Inportance of Design Decisions. 4 
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2.3 EFFORT DISTRIBUTION THROUGH WORK STAGES 

"Few attempts have been made to study the 
archi tectural design process ... , moni tor­
ing design at the sinplest level (which) 
entails observing the activities of 
design: hOW' nu.ch time is spent thinking, 
drawing, looking for infonnation." 5 

2.6 

Of these few, one such study undertaken using the technique 

of 'time-lapse' photography, records the distribution of time 

between the various tasks carried out by designers during their 

design process. 6 The pilot study compared the time distributions 

at an early and advanced stage in formulation of a design. These 

results are tabulated below in Table 2.1 below. 

Early Design Stage 

Task Description 

writing and annotating 
drawirw; 
reviewirw; 
measurirw; 
other 

Advanced. Design Stage 

referencing 
writing and annotating 
drawing 
measuring 
anrnendment 
reviewing 
other 

Time Spent As 
~e Of Whole 

2 
56 
14 

5 
23 

100 

23 
14 
17 

4 
3 

18 
21 

100 

These results tend to illustrate that the time spent in 

reviewing, measuring and other activities stay fairly constant, 

whereas the major effort devoted to drawing during the early 

design stage gives way to the increasing requirement for referen­

cing and annotation as the design progresses. 

The diminution of the drawing effort would appear to be an 

argument against the adoption of computer aided draughting 
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systems, since the major draughting effort occurs at the formative 

design stage (56%), the stage at which it is notori~sly awkward to 

describe a building to a computer with any degree of precision. 

3 The CAD Spectrum 

Lansdowr/ classifies the range of computer aided design aids 

to architects in a machine-centred manner. His validation of this 

classification method runs as follows: 

I 'Because of the diverse and. frag)nented 
nature of the industry, its cooputing 
needs have necessarily been met by a wide 
variety of different program types, such 
as prqgrammes for: 

management, payroll and accounting; 
quantities and stock control; 
time scheduling and. manpower 
allocation; 
design; and. 
draughting . 
Al thcugh all such programs perfonn 

sane calculation, in many cases this is 
not their ma00r function, and it is useful 
to sub-divide the prqgrams into five broad 
but perhaps overlapping categories: 

1 Programs in which calculatiCX1 plays 
a maj or role. 
eg. dynamic thermal performance. 
beam, slab and colurm design. 

2 Programs in which manip..ll.ation of 
text plays a ma00r role. 
eg. word-processing. 

specificatiCX1 writing. 

3 Programs in which graphical manipu­
latiCX1 plays a major role. 
ego draughting. 

perspective drawing. 

4 Programs in which database creation 
and. infonnation retrieval plays a 
maj or· role. 
ego design. 

draughting . 
stock control and quantities. 

5 Programs in which logical operations 
play a maj or role. 
ego design. 

management and. control. " 7 
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This analysis makes clear the difference in the adoption by 

the architectural profession between microprocessors and integrated 

CAAD systems; whereas microprocessors* can support those tasks in 

calculation, manipulation, and increasingly database manipulation 

predominates, they perform poorly with software for processing 

graphic and logical operations. Certainly the progress of techno­

logy will eliminate this difference in due course. 

As will be shown in chapter 4, considerations of the problem 

inherent in the description of graphic representations of form 

means that, with the current state of the technology, computer 

graphics have to be dealt with as a data-structuring problem. 

Davison8 categorises the types of computer aids available 

to designers in a more 'task' oriented manner. These categories 

are: 

"1 Design Generators 

The purpose of design generators is 
to synthesise design solutions from state­
ments of the design problem •.• The design 
process generally involves a large number 
of, often conflicting, requirements which 
define an extensive set of solutions, 
from within which a solution of best fit 
nust be coaxed. 

2 Appraisal 

Instead of looking to the carputer 
to generate solutions, the calculating 
and information retrieval power (is) 
applied to appraising design solutions 
generated by the architect. Based upon 
the results of the appraisal the experien­
ced designer ~d seem to amend his 
previous solution and. sul:mi t the scheme 
again to the canputer for re-appraisal 
and. caq>arison against the previous 
solution. 

* 'Microprocessor'is used. by the writer to mean 8-bit word length 
carputer processors, with an internal clock cycle of less than 
10 000 cycles per second.. 
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3 Visualisation 

Al though conventional manual methods 
empl~ geometric constructions, the problems 
of proj ecti ve drawing are inherently those of 
coordinate geanetry mathematics, and. as 
su.ch lend themselves directly to the calc­
ulating power of caJ1)Uters. 

4 Office Management 

5 Draughting." 8 

Davison goes on to argue that any activity carried out by a 

computer which increases the attention which the designer is able 

to devote to the creative process of design, constitutes a tool 

of CANJ. Whilst this is an alluring view, it ought to be tempered 

by considerations of appropriate technology which are presented in 

chapter 3. 

Moreover, tasks such as payroll, accounting and word-proces-:_ 

sing are well tried and tested techniques which have a peripheral 

bearing on the problem of design per-se. 

4 The Design Process 

In the preceeding section the 'architectural process' as a 

client service was described. It is unfortunately confusing that 

the tenn 'design process' is used ambiguously to describe both 

the architectural process including peripheral tasks, and the 

actual process of the derivation and description of a hypothetical 

building fonn proposed as a solution to the design brief. 

In the remainder of this thesis, the latter interpretation 

is used. 

In an effort to rationalise this 'ethereal' process, early 

design method researchers looked to Cperations Research methods 

in an attempt to derive an acceptable design morphology. These 

methods tended to relegate the role of the designers' creative 

input, since they tended to concentrate upon techniques of optim­

isation applied to defined goals. Such a view of deSign was 

unpopular with practising designers who rejected such a mechanistic 
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With the benefit of hindsight, design methodologists are 

generally agreed that the 'architectural design process' is not 

sequential, having neither a discrete beginning or end, but is 

more in the nature of' a continuum; that it can be indefinitely 

recursive and iteratively modifying; and that a learning cycle is 

initiated which increases the designer's understanding of the 

bl 10,11,12 pro em. 
Moreover, design methodologists have to overcame a historical 

antipathy to their approach because, 

"the design process was influenced. by the 
behaviour of the designer who often placed. 
himself under the aurole of the artist and 
therefore was not amenable to the systematic 
approaches to design problems or to a 
scientific analysis of the design process." 13 

Nevertheless, a great deal of investigation has been carried 

out along these lines. 14 The two design taxonanies currently 

proposed are reviewed in the following sections. These merit 

attention since they can be viewed in terms of 'the design of a 

design process'. The reader is directed elsewhere for details of 

historic design taxonomy descriptions. 9 ,15 

4.1 THE MARKUS/MAVER MODEL OF DESIGN ACTIVITY 

The Markushiaver model of design activity has been used to 

explain the role of appraisal in the design process. 16 

The sequence of the design process is illustrated in Figure 

2.2 overpage, and represents the flow of activity through the 

various RIBA Work Stages. Each work stage is represented as a 

localised activity flow comprising of analysis, synthesiS and 

appraisal followed by a decision. The salient feature of these 

local activity flows, are the feedback loops between syntheSis 

and appraisal. 

1 Analysis 

The 'analYSis' stage consists of the collection 
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DESIGN PROCESS (ACTIVITY) 

outline 
proposal 
RIBA Stage C 

I ANALYSIS f,I SYNTHESIS~APPRAISALf,lDECISION I 
I I I 

...c 
scheme 
design 
RIBA Stage D 

I ANALYSIS f,I SYNnIESIS ~APPRAISALfliDECISION I 
,I I I 

"" detail 
design 
RIBA Stage E 

I ANALYSIS f1/ SYNTHESIS ~APPRAISAL~DECISION I 
I I I 

~ 
production 
information 
RIBA Stages F and G 

Figure 2.2 Schematic Representation Of The Markus/Maver 
Model Of The Design Process 16 

of the salient design parameters and 

associated data pertaining to the design problem as 

it is construed at the current work stage by the 

designer. 

2 Synthesis 

In this phase, the various contending parameters 

are associated and given priorities by the designer. 

Having thus defined the problem, the designer post­

ulates a design solution which he hypotheses will 

satisfy the criteria now set. 

3 Appraisal 

The postulated solution is tested to see if it 

fulfils the designers expectations and actually does 

satisfy the criteria set. The appraisal is not 

restricted to quantifiable parameters alone, but the 

designer also has to exercise subjective assessments 

too. 
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4 Decision 

The schematic representation shown in Figure 2.2 

would indicate that the decision following the 

satisfactory completion of the appraisal loop is 

whether to proceed to the next stage or not. It is 

likely that it is intended to show that following the 

appraisal loop, a decision has to be made whether or 

not the result of the appraisal is satisfactory or 

not. If the result is unsatisfactory, then the proposal 

rrust be modified and re-submi tted for appraisal. Only 

when the predicted performance is satisfactory does the 

designer move on to the next work stage. 

The essential characteristic of the model is the effect of 

the appraisal. An unsatisfactory solution identifies the deficiencies 

in the proposed design. Not only does this give rise to alterations, 

but can also identify where knowledge is lacking, where further 

data is required, and also sub-problems which will require solution 

prior to proceeding with the further work stages. 

Another salient feature to be recognised is that an unsatis­

factory appraisal at any one work stage can lead to backtracking 

through preceeding work stages, which although inplici t is not 

directly shown in the schematic diagram. 

Recognising pernaps the oversimplification of this design 

mOI1)hology, the coauthor of the description is careful to put the 

emphasis on appraisal; 

"'The crucial issue in the use of such a 
methodology is ••• the nature of the evalua­
ti ve acti vi ty and ho.v the cutcane of the 
evaluation influences modifications of the 
design hypothesis. At the finish, and by 
definition, design decision making involves 
subj ecti ve value judgement. Having squarely 
ackno.vledged this fact it is in1x>rtant to 
state that subjective value judgement, by 
whansoever, nust be made fran the best 
possible explicit and objective infonnation 
base." 17 
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There is also the warning that methods and tools can be 

misused, no matter how sophisticated they might be. This is 

particularly true of computer aids in architecture and should be 

bourne in mind in the ensuing pages. 

4.2 POPPER'S CONJECTURE AND REFUTATION 

"The emerging third. generation view (of 
design morpholo~es) is that inputs frOm 
the designer to the design process cannot 
be avoided, and are a necessary part of 
any design methcx:i. This view is usually 
justified. by reference to Popper's 
, conj ectures and refutations' model of 
scientific methcx:i. 

Translated. to the design field, this 
model is attractive because it fits in 
well with what designers already do in 
practice." 18 

In a translation of Popper's 'Conjectures and Refutations,19 

the architect hypothesises a conjectural solution of built form 

as a potential answer to the criteria set in the design problem. 

This hypothesised solution invites criticisms in order to refute 

that this is so. The attempted refutation can draw on sources 

beyond those specified in the brief itself, and make reference to 

subjective, as well as purely objective, analyses. Moreover, 

refutations and cri ticisms fran laymen are just as valid as those 

fran architects. 

The proceedure is always open ended, since a satisfactory 

design solution is always open to refutations founded on knowledge 

not available at the time of conjecture. All solutions are the 

best that could be envisaged at the time. 

To paraphrase Popper by substituting 'design method' for 

'scientific method', Popper enumerates several observations of a 

general nature relating to the growth of a 'design solution': 

"1 There are no ultimate sources of 
design. Every source, every suggestion is 
welcome; and every source, every suggestion 
is open to critical examdnation. 
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2 The proper question is not one of 
sources; rather we ask whether the solution 
suggested is true. We try to find. this out 
as well as we can by examining or testing 
the solution itself; either in a direct way, 
or by examining or testing its consequences. 

3 In connection wi th this examination, 
all kinds of arguements may be relevent. A 
typical proceec:iure is to examine whether 
OW" theories are consistent with our 
observations. 

4 Quantitatively and. qualitatively by 
far the most in1:>ortant S<X.1I'Ce of our 
design - apart fran inborn flair - is 
tradition. Most things we know we have 
learnt by exarrple, by being told, by 
learning how to criticise, how to take 
and. accept criticism, how to respect 
truth. 

S Every bit of our traditional know-
ledge •.• is open to critical examination 
and. may be overthrown. 

6 Design cannot start fran nothing. 
The advance of design consists mainly, in 
the modification of earlier designs. 

7 Every solution to a problem raises 
new lU1sol ved problems; the more so the 
deeper the original problem and. 
the bolder its solution." 19 

Accepting the substitution of 'design' for 'knowledge' in 

the above quotation, we have a widely acceptable description of 

what indeed happens in practice. The designer can proceed fran 

any point which he considers usefUl; the major determinant of a 

proposed solution is whether or not it works; does it work 

consistently well ; and design solutions can never be universally 

valid since the criteria we use to judge it is lirrdted by our 

current knowledge. It follows then, that design is indeterminate, 

in which the 'solution space' is continually curtailed by the 

efficiency with which the solution 'works'. 

Despite criticism, 

"Popper's accamt of scientific method. has 
proved astonishingly popular with lay 
audiences, and seems to have been largely 
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accepted as 'the picture' of what science 
is about." 20 

4.3 A HELICAL MODEL 

~ .. .:- -,. .. 
, .... .I ....... , ,........... ... , : ...... 

NTHESIS 
jec1ured 

solutions ) 

7 a 

Figure 2.3 A Helical Model Of Design Activi~ 
CadJinirw; Both The Markus/Maver, 
And Popper Mcxiels. 
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Both the Markus/Maver and Popper models of design activity 

can be accounted for by using the analogy of an inverted helical 

cone, as illustrated in Figure 2.3 on the preceeding page. 

Underlying this analogy is the following rationale: 

''Each project can be vie.red as proceeding 
by the performance of various functions, 
each marking the achievement of sane . 
identifiable goal. Performance of each 
function requires the execution of sane 
design procedure which requires certain 
data as input, produces certain data as 
output, and consl..Ulles certain resources. 
As a design project progresses, the out­
puts fran the procedures accurrulate, and 
an extensive, cCJ1lllex proj ect database is 
built up. 

'The proj ect is caqJlete when this 
database contains a sufficiently caqJlete, 
consistent and detailed description of the 
proposed building to form a basis for a 
contract for actual construction work." 21 

Whilst in practice the 'various functions' referred to are 

rarely discrete, as the above would suggest, two fundemental 

concepts have been introduced; first, that the prosecution of the 

design process generates a database, and second, that the process 

is canpleted when the database holds adequate detail fran which 

the real building can be described in detail comprehensive enough 

to actually be realised by third parties. '!he detail contained in 

the data base rmlst pre-elTlJt all of the awkward problems likely to 

be encountered by these third parties, whether these problems be 

in the actual construction, or whether the building might suffer 

from condensation. 

Returning to Figure 2.3, the design process is depicted as 

stenrning fran the deSign brief (1), which is a synopsiS of the 

client's requirements which forms the starting data of the project 

database. Along with the stated requirements are a rmll ti tude of 

irrplici t requirements; ego structural stability, statutory 

confonnity, aesthetic acceptance etc. 

Fran consideration of what is known, (site conditions etc.), 
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and of the problems posed by the design brief, the designer at 

sane stage envisages an 'ethereal' form of a potential building 

which he conjectures as a solution (2). No matter how 'fuzzy' the 

conceived form might be, it adds, speculatively, to the content 

of the database (3) which is slowly evolving. At this stage the 

design is 'general', relating to the project as a whole, and 

decisions fixed at this point have serious knock-on effects upon 

subsequent development. This drawing together of the disperate 

parameters which form the 'design decision space', represents the 

analysis of the problem. 

The designer can begin to speculate on the likely inter­

relationships between the parameters, assigning them relative 

priori ties. Having thus specified the subordinate problems wi thin 

the overall, using the data resident in the database and including 

new infonmation from without, he is able to subject his proposed 

design solution to testing (4). Whilst many parameters can be 

tested on a binary basis, eg. planning requirements and building 

regulation canpliance, many of the parameters appraised will 

indicate perfcrmance ranges. This is in part due to the 'fuzziness' 

of the building description with which he is working, as well as 

the absence of detailed information which he has yet to provide. 

The external data drawn in, in order to ~arry out the tests, 

as well as the results, all add to the database. Additionally, the 

testing procedures also indicate the deficienCies in the data­

base to the designer. This synthesis leads to an increased 

awareness of the design problem on the part of the designer, as 

well as verifying which of the design parameters are critical (5). 

Consideration of the resul ts of the appraisal lead to 

modifications of the design hypothesis, as well as the extension 

of the data to encanpass new areas of analysis (6). The modified 

design solution is then resubjected to the appraisals (4) in the 

attempt to pin-point the deficiencies in the design. This results 

in increasingly accurate predictions of performance, and if the 

design process is progressing positively, performance ranges 

satisfying those specified in the design brief. 
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Eventually the perfonnance range of the predictions prove 

satisfacto~. At this point, the design hypothesis from which the 

perfonmance characteristics were derived, is said to be fUlly 

complete and consistent. (7). All that remains is to ensure that 

the des~ription is adequate to describe the building to the third 

parties who will be involved in the construction. 

Note that the architects fUnction is to create the project 

data base in its entirety. The constant synthesis-appraisal loop 

allows the work and infonmation flowing from other members of the 

design team to be integrated in an orderly fashion, and indeed, 

these specialist conSUltants work could be described as specific 

analysis-synthesis-appraisal loops 'orbiting' around those of the 

architect. 

4.4 SUMMARY 

The architects' fUnction is to conceptualise and communicate 

a hypothetical building design. 

The design is arrri ved at through a process of proposing 

potential solutions, and then trying to demonstrate that they fail 

to satisfy the design problem. 

As the design process continues, general and strategic 

problems become more specific and tactical. 

The designers' solution space is increasingly constrained 

as the database is enlarged. 

Appraisal is both objective and subjective. The solution 

eventually decided upon will be the compromise between the various 

contending design parameters, which resul ts in the best predicted 

performance. 

The quality of a design will irTl>rove with the rigour, range 

and depth of the tests to which it is subjected during its 

creation. 
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CHAPTER 3 

1 Introduction 

There are many suggested reasons proffered to explain the 

reluctance of architects in small private practices to adopt CAAD 

aids, and this chapter discusses same of the more general state­

of-the-art factors which act as dis-incentives. 

The first section looks at those factors which have a direct 

bearing upon architects' practices. These include, obviously, the 

straightforward resource requirements coupled wi th the pauci ty of 

cost/benefit information with which to assess a systems viability, 

and the less obvious changes which occur in offices which employ 

such aids. 

The second section reviews the limitations inherent in the 

current state of computer equipment; this includes the hardware 

devices through which architects communicate with graphic data, 

the rigidi ty of software systems, and the mismatch of the 

interface through which the hardware and software are linked 

between the desires of the user and the needs of the machine, in 

order to implement the systems. 

Finally, these factors are summarised, and conclusions 

drawn. 

2 Resource Requirements For CAAD Systems 

2.1 FINANCE 

Currently, CAAD systems are beyond the means of most small 

architects practices. Chapter 1 described the composition of the 

architectural profession, and it was seen that the majority of 

private practices employ two to three architectural staff with 

little available investment capital. Computer draughting is 

probably the most widely utilised computer aid which manipulates 

graphic information. Al though these systems tend to be expensive, 

it is relatively easy to balance the required expenditure against 

probable savings in draughtsmens salaries. Indeed, it has been 
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known for a finn of architects to purchase a CAD ~stem on the 

strength of one particular comrrdsion.
1 

For CAAD ~stems, as opposed to ccmputer aided draughting, 

an investment figure of around £40. CXXl is typically ci ted for the 

purchase of a system callJrising of processor, input and output 

devices and the system software*, added to which is an average of 

10% of the capi tal cost necessary for maintenance, as an annual 

overtlead. Al though options of hire, lease, hire-purchase and 

lease purchase are available, the financial viability of acquiring 

a system is difficult to assess, particularly when a case has to 

be presented in order to borrow the finance from institutions. 2 

Moreover, 

''payback periods are very difficult to 
specify, but might average abalt 3 or 4 
years; periods fran 2 to 10 have been 
quoted." 3 

In assessing the cost-effectiveness of a ~stem, the usage 

that is made of the ~stem will be a major detenninant, and as we 

have seen in chapter 1, the continuity of the workload of most 

small practices would make such predictions tenuous. Many projects 

handled by small practices might be better dealt with by convent­

ional methods, yet the pressure once having invested in a system 

to use it continuously, can induce practices to mount unprofitable 

projects on the machine. Projects incorporating a high proportion 

of repeats are more amenable to efficient computer usage than 

those that are 'one-offs'. Similarly, those on 'green-field' or 

, open-desert' si tes can be more easily deal t wi th on computer 

than those on infill sites. 

As yet there is little practical experience of CAAD usage 

by small architects practices, consequently there have been few 

published studies through which architects can accurately assess 

the financial viabili ty of adopting a CAAD system. A salutary 

* The GABLE system; cooprising of a Tektronix 4907 File Manager, 
Tektronix 4662 A2 sized plotter, Tektra1ix 4051 desk-top graphic 
processor with joystick cursor control, and applications progrBIl. 
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statement on the cost effectiveness of computer systems is given 

by one user: 

"recovery of developnent costs is dependent 
upon a high value being attached to 
inl:>roved design." 4 

2 • 2 EFFECTS OF CAN) UPON WORK PRACTICE 

Currently all CAIill systems represent part solutions to the 

design problem. These systems carry out specific tasks for which 

a set minimum of consistent input information must be made 

available in order to produce the output information, which is set 

in content and format. It might not produce the output in the form 

most convenient to the designer. This rigidity is out of accord 

with the flexibility offered by existing design practices, although 

it must be noted that such aids permit potential design solutions 

to be appraised to a depth and scope hitherto tmpractical. Systems 

tend to predetermine the mental processes the designer takes; 

"the creative and subjective nature of 
design means that there is no 'right' or 
detenninate answers to design problems. 
The needs of one designer are not often 
met by the tools which meet the needs of 
another designer, or even the same 
designer in a different situation or a 
different occasion. The more sqilisticated 
the system, the more this is so." 5 

Thus there is a tendency for systems to impose a set 

approach to design problems whenever the use of CAIill aids are 

contemplated. Whilst this tmposed organisation rrdght be beneficial 

in some cases, it might equally prove counterproductive in others. 

The pressure to utilise a system once the investment has 

been made has already been noted. This pressure can result in an 

unhealthy emphasis being placed upon those tasks that the computer 

can perform to the prejudice of the importance attributed to those 

it cannot. Almost inscrutably the f\mctions that the system can 

perform can become an end in themselves, rather than a means. The 
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consequent distortion can qisturb the way in which the practice is 

run, particularly when people begin to see their role change from 

designers to that of 'machine feeders'. The smaller the office, 

the more pronounced this distortion is likely to be. 

2.3 STAFFING AND EXPERTISE 

Computer systems are rarely understandable to the end users 

who tend to consider them as 'black boxes'. This is understandable 

since, 
"conventional progranming techniques in use 
for CAAD can be described as i.rrperati ve or 
prescriptive. Every step that the machine 
has to take has to be spelled. out in 
stupifying detail." 6 

Thus the writing of CAN) programs has in the past been under­

taken by computing professionals who rarelY,have an appreCiation 

of the architects problems. Their expertise lies in the areas of 

coding and systems analysis. 

"The days when carputers were used. exclu­
sively by an elite band of scientists have 
long gone. Unfortunately many carplter 
specialists still do not realise this and 
still write programs that can only be run 
by users in the 'knOW", who can cope with 
the idiosyncracies of conventional 
programs." 7 

In consequence, 

"to operate these software tools, specialist 
staff are required. When progranming CAAD 
applications hOW'ever, other specialist 
skills are also required based. on knowledge 
of design practices. It is difficu1 t to get 
both skills to bear on CAAD problems satis­
factorily; not least is the difficulty of 
avoiding interdiSCiplinary conflicts anong 
staff concerned. with their separate status 
and career prospects." 6 

This also holds true within design practices themselves, 

where the situation is exacerbated by the salary differential 

between computer literate, and non-computer literate staff, who 
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primarily produce the same end results, albeit through differing 

processes. 

It is difficult for the small practice lacking the necessary 

resident skills to 'buy-in' specialised and experienced computer 

literate personnel. In addition to the potential hostilities 

aroused, the consequent dependence upon these key personnel once 

employed pose a threat to the career structure of other designers. 

The capital investment in machinery in relation to the practices' 

turnover, give the canputing staff undue sway in practice decisions 

if the principals lack sufficient understanding to be able to 

discuss the caJ1)uting needs of the office on a pari ty wi th the 

operatives. This feeling of dependence upon the specialist staff 

can lead to a feeling of loss of control of the practice on the 

part of the prinCipal and others; a feeling that their control is 

being usurped by technologists upon whose work the practice 

depends, and whose j argon they don't understand. Furthermore, 

there is a latent hostility to the computers 'objectivity' by 

designers trained with an emphasis on subjective assessment. 

Staff turnover can be unusually disruptive to a small 

practice. Replacement staff have long lead-in times if they are 

required to familiarise themselves with new systems. 

" Use (of CAMJ systems) is most effectively 
acc~lished by a specialist group of 
users. However, vulnerabili ty to the turn­
over of key staff is such that adequate 
cover is essential." 4 

The inference of the statement of a system manager is cleart 

The investment in specialist staff has to be sufficient to provide 

depth. 

Due to the small number of CAAD systems in use, there is a 

lack of experienced personnel available. '!here is a consequent 

tendency to poach staff from existing CAAD using practices, which 

enhances the vulnerability of practices to the lose of staff. 

This applies to managerial staff as well as computer operating 

staff. A system badly managed can be dramaticallyexpensd:ve_for-the 

practice. 
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2.4 OBJECTIVITY OF SYSTEMS 

Computers may be described as machines that can, 

"perform logical (mathematical) operations 
on given information without questioning 
the validity of the operations. The 
quali ty that puts the modem cCJ11)Uter in 

3.6 

a class by itself is its automatic 
operation. Consequently it is able to 
operate by itself; it can perform a long 
sequence of related operations with the 
original information without the need for 
human intervention or assistance. Moreover, 
if so instructed by the 'program', the 
computer can select fram alternative 
courses of action on a logical basis, ie. 
they simply compute the implications of 
the gi. ven data and. instructions according 
to a fixed set of rules." 8 

The alienation of the lay public fran canputers is a well 

known phenanenon. The fa~t that the machine questions neither the 

validity of data nor processes is ~ontrary to human behaviour, 

hence it is disturbing. Without knowing what is going on in the 

'black-box', the user is expected to have faith in the subjective 

overview which the programmer has encapsulated in the program. In 

the face of the aura projected by these machines, there is a 

reluctance for users to question the basis by which the results 

are produced by the system. Similarly, there is a reluctance to 

al ter data which has been painstakingly fed into the system in 

the light of adverse results, leading to minor alterations to 

existing solutions, rather than a radical rethink. 

''Many large systems now in use have been 
built up cumulatively, so that no-one 
knows all the rules by which they are 
operating. 'Decisions' may be made by 
computers whose prograrrmes ~ can any 
longer take responsibility for." 9 

As yet there has been no legal precedent set over who might 

be responsible in the event of decisions being taken as a result 

of erroneous programmes. Indeed, even well established programs 

used by practice for some years, still act in ways unforseen by 
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the program author. 

The lack of confidence on the part of the lay user is, if 

lamentable, at least understandable. This is particularly so 

where designers, trained to extract the best subjective balance 

from a host of competing objective considerations, are concerned. 

In this particular environment, 

"the test of the machine is the satisfaction 
it gives you. There isn't any other test. 
If the machine produces tranquili~ it's 
right. If it disturbs you it's wrong t.U1til 
either the machine or your mind is changed." 10 

2.5 THE ROLE OF DRAWING 

The visualisation processes which take place in the designers 

mind as the various design parameters coalesce to give rise to an 

initial design solution, have been claimed to be the province of 

perceptual psychology. However, it is apparent from studies of 

the design activity that a large proportion of a designers time 

during the early design stage is involved wi th drawing, ( see 

Chapter 2, section 2.3). Conventionally then, designers use 

drawings to manipulate their vague ideas about building layout and 

fonm. Drawings begin to establish limits and boundaries to these 

tentative ideas, and enable the designer to test how the various 

design parameters interact. In this light, a drawing can convey 

a weal th of posi tional, spatial and locational information 

sUnultaneously, and at many levels of significance .. 

Drawings also have fUrther fUnctions not related to the 

designers creation of designs. They have other major roles: 

''We are of the view that in organisations 
(typical of which is cur own), drawings in 
conventional form will, for nany years yet 
continue to perform three vi tal functions: 

a defining the custaner' s requirements 
by means of layout drawings; 

b defining the details of what is to 
be made to the various sources of 
manufacture ; 
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c defining the manner in which detailed 
parts are assenbled." 11 

Drawings are used for record purposes, contract documents, 

and concise means of description, hence of continuing importance 

to architectural practices. 

During the early design stages, drawings tend to be in the 
12 form of sketches; crude representations, generally of plan forms 

are manipulated and modified. 

2.6 DRAUGHTING SYSTEMS 

Draughting systems differ from integrated CAAD systems in 

that the former model drawings, whilst the latter model to sane 

extent the buildings which the drawings represent. 

"In conventional draughting a drawing is 
built up as a collection of lines and 
points, each line being drawn separately 
by the draughtsman. A minor exception to 
this being the use of (dry transfer) 
lettering or similar techniques... 1hus 
one maj or problem in trying to get to grips 
wi th catp.lter draughtirw; is the lack of 
match between traditional methods of 
drawing and the solutions offered by 
catp.lters." 12 

Draughting systems are orientated to a very sp.ecifi9 task, 

although recent versions of the more widely used ctraugnting 

systems now offer the capabilities of carrying out sane appraisals. 

Component based systems have always offered the facili~ of auto­

mated scheduling. The speCific task refered to above, is that of 

recording the position of lines and instances of objects in a 

coordinate space. In respect of this overview, these systems may 

be termed 'dumb' in that they merely record sirrple data, and do 

not associate it into more sophisticated structures which could 

then be manipulated by the user at a higher level. Dumb drawing 

systems 
"produce drawings by following instructions 
fran a user on where to place lines on 

37 



paper. Intelligent (CAAD) systems are, 
in addition, able to gather information 
from the arrangement of the lines to 
describe the real-world objects which are 
depicted in the drawings.. Drawing systems 
generally operate by aggregating detailed 
bi ts of drawing into carpleted whole 
drawings. This is evident in the use of 
libraries of symbols, sub-pictures or 
carponents to assenble drawings." 5 

3.9 

Dumb drawing systems are awkward to use for generating 

designs upon, unless the design is being built up fran a catalogue 

of standardised components existent in the systems' libraries. 

They tend to be used 'post facto' to the outline design stage 

when the most far reaching decisions have already been taken. 

The use of these systems does not lead to a greater understanding 

of the design problem on the part of the designer, nor do they 

appear to contribute to improved quality of design. Intelligent 

systems on the other hand, do. For this reason, this thesis is 

concerned with graphics used by designers to describe buildings 

to intelligent systems, since it is only through increased aware­

ness of the design problem that better qualitative design will be 

achieved. 

3 The Current State Of CAAD Technology 

The central issue for intelligent CAAD systems is the 

description of buildings to computers through the medium of 

drawings.13 'Pencil and paper' techniques evolved to cope with 

the subtle complexities of the design problem, and are tools for 

the manipulation of spatial, proportional and relational ideas 

pertaining to an embryonic evolving building fonn. These 

techniques are regarded as the vehicle for allowing the designer 

a wide range of possible approaches to the design problem by 

presenting simultaneously a range of visual cues to complex 

relationships14, where simple symbols possess many levels of 

significant information to the deSigner, where they encode a 

building fonn into manageable pieces of information1~, and where 

sketchiness of a drawing contains important information about the 
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designers train of thought16 . Significantly for intelligent systems, 

"such a drawing cannot be easily decoded 
by anyone other than the designer." 14 

3 .1 RECENT DEVELOPMENTS IN CCMPUTER TECHNOLOGY 

It is only relatively recently that applications software 

utilising logical programming techniques have become available. 

These applications programs are limited in the CAAD field, and 

al though first reported in the mid 1970' s, it was only wi th the 

advent of seeLog17 that the beginnings of a graphice interface 

using the PROLOG language180became available. These systems, 

generally known as 'expert systems', or 'knowledge engineering' 

systems, are in their infancy. As yet, those applications programs 

that do exist would appear to answer questions about the data 

resident in the computer, but still relies on data being manually 

entered through the carputer keyboard. Consequently, until these 

systems can be approached through a graphics interface, their 

relevence to CAAD is limited. SeeLog became operational in August 

1982, and is implemented on a VAX carputer with the UNIX operating 

system. These facilities are unavailable at the Scott Sutherland 

School of Architecture. Moreover, 

"SeeLog is at an early stage of developnent 
and relies on the rather inadequate 
message passing facilities of Berkley 4.1 
UNIX. Mysterious disasters are known to 
have occured.' I 17 

Another recent development has been the construction of 

parallel processors, able to manage sane 800 megaflops (million 

floating point operations per second). This carputing power has 

only recently been applied to graphical applications, using linked 

registers to take note of what is happening to an adjacent pixel, 

which affects the current state of the pixel under scrut1ny.19,20 

Doubtlessly, when parallel processors are used in conjunction with 

logical programming techniques, a new direction in many aspects of 

carputing will be reached, as indeed recognised by the Japanese 

'Fifth Generation' computing development programme. 
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4 Cav1PUTER HARDWARE 

Electronic canputers are in the process of becaning smaller, 

faster, cheaper and even more reliable than at present; the rate 

of improvement would appear to be exponential. 

The actual canputer processors available today do not bear 

scrutiny wi thin this thesis; it is assumed that the reader knows 

basically what a canputer is, and has a rudimentary knowledge 

about how they work. What is fUndamental to this study, however, 

is the range and variety of hardware devices through which the 

user is able to carm..micate graphic data with the ma~hine. '!he 

first consideration is of display screen types through which the 

user actually views the data. '!he second is the types of graphic 

data input devices, covering keys, cursor drivers and digitizers. 

Finally, the use of physical models to input geometriC data is 

considered. 

4.1 Display Screens 

'!here are two types of display screen, vector and raster. 

'!he first type 'generates' lines and arcs between pOints as 

defined by the user, by means of an analogue generator linked to 

the deflection plates of the electron gun of the cathode ~ tube. 

A raster display works like a normal television screen. '!he screen 

is traversed by the cathode ray fifty times per second, over the 

625 striations into which the screen is laterally divided. The 

electron beams intensity gives tonal variation to the spot over 

which it passes. In computer implementations of raster technology 

the screen is divided into pixels, ie. atomic cellular subdivsions 

each of which may be addressed by the electron beam. '!his results 

in a granular appearance to a displayed picture. 

All multi-colour display screens are based upon raster 

technology, although 'sim..llated' colour may be achieved by nul ti­

coated phosphor layers used in vector displays. 

'!he duration of the flourescence of the phosphor once it has 

been excited by the electron beam gives rise to storage and refresh 
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screens. In the former, the flourescence is of long duration, 

consequently the picture does not need to be overdrawn as often 

as the latter. However, it does mean that alterations to a picture 

either have to be overdrawn, or if possible, deleted lines 

'undrawn'. Pictures undergoing alteration soon end up a mess. 

The shorter duration phosphors have the advantage of permi tting 

instant moval of lines as a picture is altered. However, due to 

the speed of fading of the linage, there is a maximum length of 

line which one can project upon a refresh screen before encount­

ering 'flicker'. 

"Raster screens at an equivalent price to 
ei ther refresh 01" storage screens ••• do not 
offer an acceptable line quali~ ••• This 
problem is particularly noticeable on 
CUI"Ves . " 21 

It is not only curves, but also sloping lines which are 

stepped on raster screens; the effect being more pronounced the 

nearer the lines are to the horizontal or vertical directions. To 

sane extent these effects can be ameliorated by a technique known 

as 'aliasing', where the intensi ty of the line segments near to 

the step are varigated. This is illustrated in Figure 3.1 below. 

a) sloping line of raster pixels 
~r-~,.".,,-~II'JIJl-~--WAlI!PJl-

b) aliased line of raster pixels 

c=J one raster pixel 

~ varigated tonal intesi ~, 0 to full. 

Figure 3.1 Illustration Of Aliasing Technique For 
Enhancing Raster Displayed. Images. 
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In this manner, when viewed from a distance, the visual 

disruption is attenuated, and raster images enhanced. 

4.2 Graphic Input Devices 

4.2.1 Input via the QWERTY keyboard 

Most if not all computer termdnals are provided with a 

keyboard with a QWERTY character set. Besides entering text, 

Cartesian coordinates may be entered directly using the numeral 

keys. The obvious disadvantage of this method is that the user 

must actually compile the coordinates that he intends to input by 

manual methods. This means that a sketch rrust already exist. Not 

only does this entail a duplication of effort, but the process is 

painstakingly slow and prone to errors, both in converting the 

sketch to coordinates, but also in the process of typing them in. 

Mistakes once made are notoriously difficult to locate.and 

correct. 

The device is nevertheless cheap, and reliable. 

4.2.2 Stepping keys 

Most cOlTputer terminals are equipped with keys which control 

either an alpha-numeric or cross-hair cursor. Four keys control 

the movement of the cursor to the left, right, up and down 

directions. Having located the cursor in the desired position 

upon the screen, the pressing of a predefined key will cause the 

current x,y screen coordinates to be registered by the carputer. 

Whilst more convenient than a QNERTY keyboard, the speed of 

movement of the cursor can be annoyingly slow. In many of the less 

sophisticated termdnals the cursor is incremented one pixel at a 

time. 

To overcane this speed problem, more sophisticated terminals 

introduce 'fast' keys which enable the cursor position to be 

incremented in multiple jt.Jr!l)s. Al temati vely, the user might be 

limited to a grid. 

These devices are accurate to one pixel. It is not all that easy 
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to locate the ~ursor at a desired point, and frequently the user 

has to track back and forth before positioning it correctly. The 

sensitivity of such devices requires a fair level of coordination 

between hand and eye. 

These devices are usually fitted as standard to most 

graphics capable terminals, are cheap and robust. 

4.2.3 Thumbwheels 

These operate in the same fashion as stepping keys. The 

difference being that two wheels are used to control the movement 

along the principal axes of the screen. These wheels are mounted 

at right angles, which means that effectively only one direction 

may be manipulated at a time. A second difference is that the 

thumbwheels are analogue devices whereas stepping keys are 

digital. 

The sensitivity of thumbwheels depends upon their physical 

diameter, and their gearing ratio. They are pertlaps more 'natural' 

to use than stepping keys. 

Being analogue, the cursor responds more rapidly than 

stepping keys. The problems of over-run still apply. 

Having placed the cursor, coordinate positions are again 

recorded by hitting a predefined hard key. These devices are also 

relatively cheap and robust, usually fitted, where 'provided, on 

the terminals' keyboard console. 

4.2.4 Joystick 

The joystick is an improvement on the thumbwheel principle. 

This device, generally seperate fram the terminal, consists of a 

lever mounted on a universal or ball joint, and is used in much 

the same way as an aircraft's control column. It is a much more 

acceptable device than those previously mentioned, since it has 

the merit of being analogue, hence quick response time, and more­

over, can operate along the two axes sirrultaneously. It also 

simplifies coordination between the users hand and eye. 
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The user still has the problem of tracking and overrun, and 

the devices sensitivity will depend on the friction of the device. 

The joystick has a finite limit to its movement due to the const­

ruction of the device, but is reasonably robust. 

4.2.5 Trackerball 

This device consists of a ball mounted in a socket, and can 

be thought of as a leverless joystick. Its advantage is that there 

are no limits to its movement. 

Al though there is a more natural 'feel' to its use than the 

former, it can cause confusion if the user loses the reference 

position of the ball and the cross hair cursor goes off screen. 

It is probably more sensi ti ve than the joystick for ergonanic 

reasons, although. subject to personal preferen~e. 

4.2.6 The 'Mouse' 

This is another variant of the thumbwheels principle. Here 

the thumbwheels are mounted on the underside of a small hand held 

carriage so that the movement of the mouse across a surface is 

picked up by the rotation of the wheels. Its accuracy is prone to 

errors induced by rotations of the mouse, but these errors are 

like ly to be small. Whilst the sensi ti vi ty to movement is good., 

the bulk of the mouse obscures the surface on which it is being 

moved. 

one advantage of the device is that it can be used to 

digitise any size of drawing, subject to the length of the flex 

connecting it wi th the terminal. 

4.2.7 Flat Bed Digitiser/Plotter 

Same flat bed plotters may be used as digitisers by allowing 

the user to manually position the drawing head, and then to send 

coordinate data to the terminal. The positioning of the head may 

be achieved by thumbwheels or joystick mounted on the plotter 

itself. 
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This is a most awkward and time consurrdng method of digit­

isation, and like all devices which require the positioning of a 

small cross hair eyepiece over a drawing, introduces the potential 

problem of parallax. Plotters tend to be expensive. 

4.2.8 Touch Sensitive Screen 

The touch sensitive screen is a laminated transparent 

membrane fitted in front of the display screen. When the membrane 

is subjected to pressure at a pOint, the electrical resistance 

between the two laminates breaks down and a current is passed 

which is then registered. The coordinate position of the point of 

contact being sent to the tenminal. 

Given the area of a fingertip in relation to that of the 

screen, the accuracy of the device would appear poor, although 

claims of reasonable preCision have been made for it. 22 Also, the 

problem of surface obscuration applies. 

Overall, it would appear to be a poor device for graphiC 

input purposes. 

4.2.9 Light Pen 

The light pen projects a small spot of light onto the 

flourescent coating of the terminal screen, the presence of which 

is then registered and the coordinate posi tion recorded. A similar 

. scheme uses a magnetiC pen which causes a small disruption in the 

electronic field of the screen coating. 

Al though the light stylus is less bulky than a fingertip, 

the light pen obscures the irrmediate area upon which the user wants 

to concentrate, so that accuracy is detrimentally effected. Unless 

the terminal screen is angled, it is both diffL~ul t and tiring to 

draw upon a vertical surface. 

The light pen is a more natural device to use than those 

previously mentioned. 
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4.2.10 A~oustic Pen 

Like the light pen, the acoustic pen consists of a stylus 

like transponder which erni ts an acoustic signal. The signal is 

picked up by a mesh of fine wires embedded in a secondary screen 

infront of that of the terminal. The sty.lus head is generally 

smaller than the equivalent light pen, so obscures less of the 

. screen surface. 

4.2.11 Digitising Tablet 

The digitising tablet consists of a surface on which to 

mount drawings or plain paper, and can take drawings of up to AO 

size, (1.0 x 0.75 meters approx). Below the surface is a fine 

mesh of wire through which is pulsed signals in both the 'x' and 

'y' directions. A hand held stylus picks up these signals, and by 

measuring the time interval between the emission and reception of 

the two pulses the position of the stylus relative to the tablets' 

origin may be determined knowing the speed at which the signals 

travel. The stylus's position can be determined to an accuracy of 

half a mesh square which in practice is less than 0 . 125mn. 

The tablet is an attractive input device because of its 

resemblance to tradi tional draughting methods. 

"1he similarity between larger tablets and 
digi tisers, and the conventional drawi~ 
board causes many architects and engineers 
to feel that they will only be able to use 
caIplters via such a device." 21 

M ink stylus is available which means that graphic data 

may be stored as it is created. The tablets sensi ti vi ty closely 

resembles that of pencil and paper techniques. 

A digitising tablet may be used in two modes of operation; 

Point mode or Continuous mode. 

a) Point Mode 

In point mode, the tablet records the coordinate 

pOSition of the single point indicated when the user presses 

the stylus onto the digitising surface. 
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In conjunction with some further ~ontrol system, 

either hardware push buttons or software generated menus, 

detailed infonmation pertaining to the point digitised can 

be specified. This is particularly useful for draughting 

systems and component based CAAD systems, as well as for 

digitising existing drawings. 

The disadvantage of point digitisation for drawing 

creation is, obviously that only the node points are recorded. 

This means that the designer is reliant upon the image of his 

drawing echoed upon the terminal screen, and in this circum­

stance the separation of hand and eye is a disadvantage. 

"The current methods of man-machine coom­
W1ication, (principally typed coomands, 
screen or tablet based menues and fW1ction 
keys) are felt to have shortccmings. The 
use of dual screens often provides a 
partial solution." 21 

Nevertheless, with the combination of point digitisation 

and menus, drawing editing and manipulation is possible, 

although it destroys the concept of 'up-to-date' hardcopy of 

the current design situation. Such a system is very useful 

in transferring existing drawings onto computer. 

b) Continuous Mode 

In continuous mode the position of the stylus is 

tracked all the while that it is within pick-up range of the 

tablet surface. Each time a pulsed signal is received by the 

stylus, the coq~inate position is sent to the terminal, and 

this has the effect of sarrpling the coordinates over which 

the stylus passes. My freehand line drawn, as represented 

by the sample of coordinates, can be reproduced as a series 

of short vectors. The sampling rate will depend upon the 

frequency to which the pulsed signal is set. Although rates 

of 200 cycles per second have been reported, this would 

generate too much data, and typically a rate of between 5 

and 10 coordinate 'triads' produces manageable quantities of 

data. 
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The coordinate triad returned by the tablet consists 

of a 'header' character, followed by the 'x' and 'y' coord­

inates. The header character has one of four possible 

intentional values, these being 29,26,31, and 53. A header 

value of 29 indicates that the stylus has been brought into 
) 

contact with the tablet surface and pressure has been applied. 

Thus the coordinate value following indicates that it is the 

first point preceeding a stream of data; it is the start 

point of a new line sequence. 

The header value 26 refers to an intermediate 

coordinate point, following after a newline (29) coordinate. 

A header character value of 31 indicates that at the 

coordinate point following, the pressure holding the stylus 

to the tablet surface has been released, thus indicating 

the end of a line coordinate data stream. 

Finally, a header character of 53 indicates that 

al though the stylus is still picking up the pulsed signals 

in the underlying mesh, there is no pressure on the stylus, 

thus no drawing is taking place. 

Occasionally spurious header character values are 

encountered. A value of 81 appears to indicate the coordinate 

position at which the stylus leaves the presence of tablet 

surface, and no longer picks up the pulsed signals. 

Other spurious triads have been encountered in practice. 

Due to the length of wiring beneath the tablet surface, the 

registration of data can be corrupted by electro-magnetic 

interference. Where this has happened, it would appear to 

be caused by the flicker of flourescent strip lights in the 

vicinity of the tablet. 

A second source of interference can be caused by local 

fluctuations in the magnetiC field in the close proximdty of 

the tablet surface. To reduce this occurence, the tablet 

requires periodic 're-biasing' to reset the tablets magnetic 

field. This is done by passing a long bar magnet over the 

tablet surface in a prescribed manner. This is required at 

48 



3.20 

roughly six monthly intervals. 
Because the wires of the mesh are relatively close to 

the digitising surface, they are vulnerable to having their 

cross-section mis-shapen . This could upset the wires 

physical properties and thereby upset the wires attenuation 

of the pulsed signals. Similarly, it is possible for a wire 

to jump from its track and interfere with one adjacent. 

In continuous digitisation mode the stylus traverses 

many nodes, and is therefore more liable to encounter a 

disruption than with point digitisation. 

Disruption is seen when a corrupted data point produces 

, spikes' on the drawing when the data is redrawn on the 

tenninal screen. 

Disruption due to any of the above hazards is less 

likely to occur than loss of data due to system buffering 

problems. Corruption of data is a nuisance, but not 

necessarily catastrophic to the data set, since some of the 

errors may be trapped by data validation software. 

4.3 PHYSICAL MODELS 

In complete contrast to the data input methods outlined 

above, a physical model input system comprises of a set of 

'building blocks', inside of which are minaturised electronic 

circuits which contain geometriC and topological descriptions of 

the containing block. The designer assembles a three-dimensional 

model of his design, which then has a built in description of 

itself which can be interrogated via the computer to which it is 

subsequently linked. One of the components contains a mercury 

switch which can distinguish the 'z' dimension of the user space. 

Deceptively simple, this data input method is nevertheless 

subject to criticisms. Despite the building blocks being un­

scaled, the range of blocks necessary to facilitate the full 

range of a designers' potential dialogue would be very large. 

In its favour, this system offers immediate visualisation, 
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and can be used by literally anyone, of any age. It offers a 

great incentive for participation of non-designers in the design 

process~3and is ideal for system building by the use of standard 

components which could be modelled to absolute scale and detail. 

It is surprising that this input method has not proved more 

popular than it has. 

4.4 Surrrnary 

The methods and devices described above through which 

designers can describe building geometries to ~omputers have 

associated levels of efficacy. All methods generate two-dimensional 

coordinates in space, and this is an alien way for designers to 

perceive drawings. 

Pemaps the major determinant is the separation between hand 

and eye which these input devices entail. The digitising tablet, 

resembling in operation traditional drawing board draughting 

methods, provides the best opportuni ty for the smooth transi tion 

to computer aided design systems. Indeed, all devices where the 

drawing stylus, hand held, is used to draw directly mimic pencil 

and paper. 

Devices which move a cursor involve the separation of the 

hand, operating the cursor moving controls, and eye, \\/hich is 

providing the feedback fran what is actually being drawn. 'n1is is 

awkward, and is more convenient in terms of the machine than for 

the user. This does not mean to say that in course of time, 

cursor driven devices will not displace traditional drawing 

methods. 

Manual digitisation requires that a drawing has already been 

created in order for the user to convert it to a coordinate system. 

This can be a tedious process, particularly where three dimensional 

descriptions are involved. 

One factor which cannot be overlooked, is that the designer 

can derive a great deal of pleasure fran the traditional drawing 

process, and possible distruption caused by the introduction of 

new drawing methods might well prove detrimental to' the design 
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process as a whole. 

5 CCMPUTER SOF'IWARE 

A detailed discussion on the lirrdtations inherent in the 

current state of corrputer software will be better understood in 

the light of an understanding of graphic data and data bases which 

are described in Chapter 4 following. 

The following sections of this chapter discuss the more 

general constraints of conventional prog~ng techniques, with 

particular emphasis on integrated CAAD systems. 'Dumb' draughting 

systems model drawings j they do not lead to an increased under­

standing of the design problem on the part of the designer, and 

consequently draughting system software will be largely ignored 

except to illustrate problems in common with CAAD systems. 

All CAPJ) software is the resul t of a trade-off between the 

memory storage requirement, the amount of computation involved, 

the ease with which the data can be accessed from storage in the 

format required, and the restraints, lirrdtations, impositions, 

sequences and conventions to which the user has to confonn in 

order to use the system. 

The amount of corrputation that a carputer is required to do 

is largely implicit in the application for which the program is 

written. The amount of computation will be proportional to the 

amount of data which it has to process. Similarly the storage 

requirement will also depend on the amount of data held. However, 

whilst the data to be manipulated may be held in secondary 

storage, the program itself, and the data undergoing calculation 

have to be held in core memory. The larger the program, the less 

storage available for the data, whilst the roore carplex the 

calculation, the more data has to be reserved for data. generated 

during the calculation process. 

If data is held in secondary storage, there is a time overhead 

invol ved in its retrieval. Where ITllch secondary storage and 

retrieval is involved, the time penalty rrdght becane severe. 
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The balancing factor to mitigate these conflicting memory 

storage requirements, is to impose limitations on the amount or 

type of data that the system will accept. TI1e more limi tations 

imposed, the less flexible and usefUl the system becomes. 

Since the above factors are coded into the software systems, 

it is through usage that they are experienced. Obviously these 

programs are based upon the prediction by the prograrrmer of what 

the user will want to do. Being 'post hoc', 

"the programs always lag behind the aspir­
ations of the users. A CAAD system cannot 
be viewed as a finished product. Building 
Regulations change, in-haJSe policy 
changes, the needs met by the organisation 
change. Changes in specification occur 
frequently, even before the system first 
goes into production use." 6 

A system is at best a part solution to anyone designer's 

problems. TI1ere is always the frustration that the machine doesn't 

qui te do what you want to do, or doesn't quite do it in the way in 

which you would like it done. Since the programmer's idea of 'how' 

operations ought to be done are those that become encoded, the 

user has to follow the resulting sequences precisely. 

''Usually there is ally <ne correct sequence 
for each function arxi an experienced user 
has to memorise many specific operations. 
(These systems are) built on very partic­
ular anticipations of what the user will 
want to do arxl, subsequently, prescribe 
to users what they may do." 5 

It is not suprising therefore, that 

"the user cannot normally expect to exploit 
the full potential of the cCDplter, but 
only the potential of the prograrmers' 
knowledge of the carputer. The need. for 
the progranmer as interpreter is a synptan 
of the sheer difficulty of getting 
cCDplters to do things, of the current 
primitive state of software technology." 24 

Where systems embody many specific operations which the 

user has to memorise, the operation of the system becomes a 
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distraction from the designers primary task; that of designing. 

The means toward a solution become an obfuscation: 

"1hat means have a tendency to becane ends 
is a well known phenanenon in all walks of 
life. We cane to believe that the caq:uter 
has all the answers and can relieve us of 
effort of thinking, whereas in fact it can 
only answer our potentially silly questions 
in a way which we have taught it. The 
responsibili ty for our actions I'EIl1Bins with 
us; we are, and rrust remain the masters." 25 

As Sir Ove Arup warns us, there is a tendency among users 

to regard the computer as an intricate 'black-box', who's 

prognostications are absolute. They have to be either accepted or 

rejected. In view of the resources commitment that CAAD systems 

represent, there is an insidious pressure to accept the 'advice' 

which the machine offers as demonstrated fact. 

For many senior architects in whose hands rests the decision 

whether or not to adopt CAAD systems, the resultant adverse 

feeling of impotence 1n the face of this technology is a factor 

often underrated by CAAD advocates. 

Once a carmi trnent has been made to adopt a CAAD system, 

despi te frequent updates to the software, there is a limi t to the 

arrmendments that the system can sustain in order to keep pace with 

the evolution of design practices. 

"Addi tions becane more and more difficult to 
integrate satisfactorily into existing code, 
whilst ensuring that these 'patches' do not 
introdu.ce errors into the program. Depend­
ence on the program author I s 'local know­
ledge' of the code increases at an alarming 
rate. 

Sooner or later sane change will be 
required which the strained and rrutilated 
programs sirrply cannot StJR)Ort. The remedy 
in theory is very sirq:>le - replace the 
system as one wa.lld replace any obsolete 
office resource. In practice I however, 
this implies a recognition of a l~ted 
life-span of the system such that a repla­
cement system wa.lld have to be in develop­
ment alongside the one in use. Such a 
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lifespan is not easy in the light of the 
software investment that is cannonly 
involved.. " 6 
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The rate of 'obsolescence' of software is accentuated by 

that of canputer hardware. Accordingly there is a hesi tation on 

the part of architects to opt for CAAD systems whilst the current 

state of the art in CAAD technology is so fluid. 

Where modifications are successfully incorporated into CAAD 

systems, they generally involve increasingly complex command 

sequences, and hence involve the user in a time consuming familiar­

isation process. 

Many systems attempt to mitigate the problems caused by the 

conflicting demands of ease of use and efficient husbandry of 

machine resources by limiting the user to orthogonal building 

geometries. Unfortunately, 

"a major part of the current and forseeable 
archi tectural workload is concerned with 
either the infilling of urban sites or the 
refurbistment and extension of existing 
buildings. 1his is in sharp contrast to 
the 'green-field' or ' open-desert' problems 
of large scale developments of the last 
two decades. 1his clearly implies that a 
rectilinear grid planning approach based. 
on a system building is not sufficiently 
general. If CAAD systems are designed 
around these assu rtptions of regul.ari ty of 
fonn they will contiru.e to be inapplicable 
to a maj or part of the workload of the 
smaller and medium sizes of office." 12 

The llnposition of restraints upon the designer is not simply 

a syrrptan of the machine resource conflict, but also demonstrates 

that many systems are machine, rather than user, centred. Systems 

will not become readily acceptable whilst architects have to Xbihk 

of design in terms of the machine perceptions rather than his own. 

The translation of human to machine perceptions of graphic data is 

achieved through the man-machine interface. 
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6 THE MAN-MACHINE INTERFACE 

With respect to computer usage by architects, 

"there is clear evidence that the greatest 
source of inhibition and frustration is 
right at the starting post; getting the 

3.26 

data into the machine in the first place." 26 

The computer is merely a collection of registers which, with 

the exception of parallel processors, can only deal with one item 

of data at a time, and the frustrations of communication occur as 

a result of the requirement to reduce the designers understanding 

to the simple level with which the machine can deal. It is perhaps 

not so much the lack of variety of input devices which the designer 

can use which deter, but the crudity and banality of the level at 

which the man-machine communication has to take place in order to 

describe to the machine that which is self-evident to the designer. 

This case has been previously argued. 27 

"The man-cOO1JUter interface is the space of 
contact, the boundary layer, in which 
camunication between human and carputer 
takes place. This envirorment defines the 
'form' ,(how) and the context (external 
cordi tions) with respect to the camuni­
cation." 28 

The 'how' side of the interface is dependent upon the hard­

ware devices through which the communication is to be effected, 

and the carmand language available by which to do it. 'l11e 'external 

condi tions' embrace not only the users understanding of the 

cOl1'puter system, but also his conc.ep.tion of the data which he is 

trying to irrpart to the machine. 

Newman and Sproull define the interface as comprising of 

four components: 29 

1 The User Model 

'!his is the conceptual model formed by the user 

about the system: about the information he manipulates 

and the processes he applies to this information. 
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2 The Coomand Language 

This is the accumulated set of command vocabulary 

at the users' disposal with which to cormunicate with 

the machine. 

3 Feedback 

This is the infonmation generated by the computer 

as the camunication takes place to provide acknow­

ledgements, cues, advice on how to proceed, and upon 

the effectiveness of the users' instructions. 

4 Information Display 

This is the re-presentation of the current state 

of the data as a resul t of the users' instructions. 

The user model is largely subjective, and may be modified as 

the user becanes more familiar with the system. The problem created 

here is to produce a system which is siITple enough for novices to 

use whilst he has a crude user model concept, yet not too simplistic 

for users wi th an advanced concept. 

The command language has to be consistent with the natural 

vocabulary that the architect generally uses. Where words are 

outwi th the carmand language, they lTUst be trapped before they 

cause an error, and the user given the opportuni ty to define the 

unknown word in terms of words known. 'Ihis is extraordinarily 

diffi'cul t to achieve with conventional prograrrrning techniques, but 

explains why logical prograrrrning techniques hold the pranise of 

more powerful ccmnand lang.Iages. This is discussed later in 

Chapter 8. 

Feedback is much a case of 'negative control,30. In many 

implementations it is used 'interactively' to inform the user of 

the extent to which the data is currently short of his desired 

goal, and what he should do in order to rectify it. Al though feed­

back is an essential part of a system, the problem remains that the 

feedback information pertains to the machines perception of the data 

and goals, and not necessarily that of the user. Moreover, it is 

still a prescribed set of rectifying actions that he is offered. 

Indeed, 
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"the word. interactive is widely used. wi thin 
the coop.1ting fraternity, rut it is used. 
nuch too freely in describing many programs. 
Sane people seem to believe that a program 
is interactive provided. it allows the user 
to answer questions posed by the program 
whilst it is running. To be truly inter­
active the program nust have a degree of 
intelligence to decide whether it can use 
the replies supplied. by the user and, if 
not, to inter act with the user in such a 
way as to find a solution to any problem 
that has arisen. Interaction should permit 
a user to present information to a program 
and call for operations to be perfonneci on 
the information in any sequence which 
appears relevent to the user, wi thin the 
b<x.1nds of the application encoopassed 
wi thin the program." 31 

This is not sirrply a call for programs with an anticipatory 

element to them, but one for flexible strategies. One method for 

attempting to achieve this, is to use the processing power of the 

computer to abstract from the data possible modes of progress 

which the user might wish to take. This direction is very rruch in 

the fields of artificial intelligence and pattern recognition. 

"In an obvious sense any device for data 
input involves pattern recognition of a 
sort, since ' reading' fran a punched. card. 
for instance, involves ' recognising' the 
pattern of card perforatia1S and their 
translation into machine language. The 
class of problems of interest is that 
which involves non-specific inputs - that 
is, to tolerate changes in position, size, 
orientation or sloppiness in the to be 
recognised patterns •. , and, what trans­
formations should be perfonneci on a very 
large ensermle of potential input patterns 
to reduce them to a specifiable set of 
categories. " 32 

Indeed, it is uncertitude which characterises the early 

stages of the design process, when the archi teet 1s working toward 

a defineable geometric description. 

'~ilst these characteristics are the 
anathema of algori thns, they are the 
essence of design." 33 
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The fundemental problem underlying computer pattern recog­

nition is that conventionally, 

"cc::np1ter systems •.• use a laborialS approach. 
In general they have worked. on a step by 
step, trial and error comparative basis 
which sequentially rejects or confirms each 
of a series of variables set up for examdn­
ation." 34 

From the foregoing, it would appear that conventional 

computing techniques offer little hope of significant developments 

in computer pattern recognition of architects drawings. 

The user model can be enhanced by more easily assimilable 

systems, perhaps by the automatic generation of higher level 

corrmand languages. 

There is a strong argunent for archi tects to adjust their 

working methods in the light of the emergence of the new 

technologies. Conversely there is a good case for resisting the 

implementation of processes whose results have not yet been seen 

to produce better architecture as a result of their implementation. 

It should perhaps be reiterated that, 

7 SUMMARY 

"qui te apart fran the unfamiliarity that 
most designers feel when caU'ronted. with 
an electronic drawing device, what rrust 
not be overlooked. is that most architects 
actually enjoy drawing and are understand­
ably reluctant to see this particularly 
self -satisfying part of the process being 
taken aJ!i8¥ fran them." 26 

Some of the factors acting as disincentives to architects 

from adopting computer aided design systems are the problems of 

finance, disruption to traditional working methods, specialist 

staffing, the imposition of objectivi~ onto a process traditionally 

regarded as being essentially subjective, and the difficul~ of 

communication of drawiOis between man and machine. 

Despi te technological innovations currently being developed, 
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the present state of the CAIill art is limited by the physical 

restrictions imposed by computer hardware, software and the inter­

face through which users communicate with the machine. 

8 CONCLUSION 

The problem to be overcome to make CAIill more acceptable to 

the small private architectural practice may be stated thus: 

1 A suitable system must allow the architect to pursue 

his design activities in the sequence he wishes to 

adopt. 

2 The user interface must be sympathetic to the vocab­

ulary normally used by architects, based on the medium 

of drawings. 

3 The system should not intrude upon the design process. 

4 The system should emulate existing design techniques. 

5 A suitable system must be directed towards practical 

architectural problems. 

6 Such a system should not be based upon a priori 

assumptions about what is being designed, but should 

proceed fran what is being designed as represented by 

the architects drawings. 

The following chapter examines four existing suites of 

computer software, wri tten around differing applications, in an 

attempt to determine how they have resolved the above problem. 
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CHAPTER 4 

1 Graphic Data 

The previous chapter concluded by describing the architects' 

role as that of conceiving of, and communicating the description 

of a hypothetical building. A design morphology was described, 

whose central feature is the derivation of a database by testing 

and expanding upon a building form arising from the architects' 

imagination. The medium of communication pertaining to these 

ideas of form, is almost universally that of drawings, hereafter 

referred to as 'graphics'. 

This chapter describes pictoral graphiCS, and then goes on 

to examine the various methods for describing the geometries of 

real objects, as are depicted by graphical representations. 

Following this, the subject of data structures wi th which 

to store such geometric descriptions, is reviewed. 

Finally, observations concerning two and three-dimensional 

objects are made. 

2 Pictoral Data 

2.1 CHARACTERISTICS 

Boreham and Edmonds1 distinguish four categories of pictoral 

characteristics of images of real objects. These are: 

1 Physical 

"These are lind ted to the unani:>i,guous feat­
ures which result directly fran an analysis 
of the physical properties of the image. 
They consist of tonal value and location 
of an atanic element in two-dimensional 
space, together with the features fCA.1I1d 
by caq:>arison of atanic elements." 1 

In terms of the computer, the presence or absence of a mark 

on a piece of paper or a device is an 'atomic element' of info­

rmation. Since there a very large number of combinations of 

atomic elements possible even in the stmplest of drawings, the 
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"features found by cOOlparison of atomic elements" appears rather 

doubtful. Unless the system knows what it is looking for in any 

particular picture, all possible combinations of atanic elements 

have equal potential significance. No relationship between any 

combination of marks on a sheet of paper can be deduced without 

some precognitive expectation, or rules, which would necessarily 

have had to be defined, or indeed implicit, in the cOOlputer. 

For the ensuing discussion, 'atanic elements' will be taken 

to mean the presence of an 'event' 2 against a null background 

being described to the machine. 

2 Noetic 

"These are structural inter-relationships 
apprehended by the user, based on the 
internal organisation of the ~e. 
, Internal' relationships are those which 
can be ascertained fran the physical 
characteristics without reference to the 
properties or appearance of real three­
dimensional objects. They are similar to 
mathematical relationships, and include 
same of the 'principles of or,ganisation' 
such as proximity and similarity." 1 

These 'noetic' characteristics are explained with reference 

to Figure 4.1 below. 

a) b)~ ____ __ 

c) d) '--___ .I 

Figure 4.1 Illustration Of Noetic Characteristics 
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Figure 4.1 a) shows a real three-dimensional object depicted 

by line drawings b), c) and d). The physical characteristics are 

those tonal distinctions which define the presence or absence of 

lines. The representation in b) actually comprises of three two­

dimensional quadrahedra, but they are imputed by the human 

observer to represent a geometry shown in c). Moreover, b) and d) 

illustrate two different representational techniques, perspective 

and orthographic respectively. 

Thus Figure 4.1b) is the purely two-dimensional analysis of 

the picture presented by the view of the three-dimensional object 

in a). 

3 Imputed 

"These are derived fran the attributes of 
physical three-dimensional objects, whilst 
not actually representing particular 
features of W1ique objects, They include 
the conceptions of overlay and. transparency 
which are attributes of physical planes 
in three-dimensional space, but which are 
not necessarily perceived as representing 
the appearance of real obj ects ." 1 

As was instanced in Figure 4 .lc), our experience of real 

objects leads us to conclude that the object represented possesses 

three hidden faces in ad~ition to the three shapes existent in b). 

The progression from a purely geometric analysis of a represen­

tation of an object to an interpretation of it as a set of inter­

secting planes, is not always possible, as Figure 4.2 below 

illustrates. 

o 
a) "'--_____ _ b) 

Figure 4.2 Ambiguous ]mputed Characteristics 
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Figure 4.2a) shows the Necker Cube. The ambiguity demon­

strated is the difficulty of determining whether the circle is on 

the fore or rearward surface of the cube. Simi lar ly, Figure 4. 2b) 

shows a figure which, whilst noetically consistent, would be;impos­

sible to realise as a solid three-dimensional object. 

4 Representational 

"These depict features of real three­
dimensional objects, usually by a two­
dimensional projection of their apparent 
quali ties when viewed monocularly. Thus 
they either refer to a conceptual 
defini tion of an obj ect feature, an obj ect , 
or a class of objects, or employ features 
of monocularly viewed objects as graphic 
conventions." 1 

One example already cited, is that between Figures 4.1b) and 

4.1d). In the case of the former, the cube is drawn in single point 

perspective, whilst the latter is in parallel projection. 

An example of a 'graphic convention' may be given by the 

example where a non-existent three-dimensional object, such as a 

mathematical surface may be depicted. 

These characteristics of pictoral data are not as discrete 

as the above paragraphs would suggest. They are of course related 

through rrutual reinforcement, nor can one think of representational 

characteristics existent without the noetic, for example. 

The theoretical analysis of drawn infonnation might well be 

useful for discussion in terms of 'machine perception', but become 

less relevent when considered from the point of human perception. 

2.2 HUMAN PERCEPTION 

By some unknown process the image of a drawing falling onto 

the retina of the human eye is converted into a perception. The 

physiological processes invol yed up to the point where the image 

is transmitted to the brain by electrical impulses, and has been 
3 well documented. However, we are at a loss to explain how this 
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train of pulses are recognised. 

"The most fundemental problem concerns the 
lu.unan tendency to perceive images as 
'wholes' rather than as a stun of the parts. 

There is a clear distinction between 
(the) two stages (of) registration of the 
data, and the interpretation of the data. 
Where only one interpretation is possible, 
we may regard. the data upon which it is 
based as having unani:>iguous properties, 
but wherever more than one interpretation 
is possible, the data can be said to hav~ 
ambiguous properties. In the latter case, 
the percept will result fran one inter­
pretation being selected from the 
possibilities." 3 

That is, that visual perception cannot be explained by the 

simple 'one-to-one' mapping of the environment onto the receptor 

of the perceiving organism. It is suggested that a 'perceptual 

hierarchy' must be involved wherein, 

"the inp.1t of the receptor ... is more and 
more 'de-particularised', stripped. of 
irrelevencies during its ascent (fran 
stinulus to percept). The outp.1t hier­
archy concretises, the input hierarchy 
abstracts. The former operates by means 
of triggering devices, the latter by 
means of filtering or scanning devices. 
Triggers release carplex outp.lts by means 
of a siJq:>le coded signal. Scanners work 
the opposite way: they convert carplex 
inputs into a siJq:>le coded signal." 4 

"In order to identify the input, the brain 
must activate same sort of memo~ trace. 
Sane ve~ carplex scanning process must 
be involved which first identifies 
characteristic siJq:>ler features in the 
carplex whole (visual holons like loops, 
triangles etc.); then abstracts the 
relations between the features; and then 
the relations between the relations." 5 

In a computer system, the base-holons (or atomic elements) 

of information are easily defined, whereas the 'abstracting' 

hierarchy is far more teruous. Whilst we cannot define an open 
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ended system which could ~ater for all eventuaU Ii es, by pro­

!:5cribing various options we might at least achieve a sy:-:;tem which 

is manageable if closed. 

An example of this would be the process of recognising 

en::losed polygonal shapes fran a pi::ture canposed of lines. Arcs 

would have to be proscribed, and the rule that all shapes have to 

be enclosed spaces enforced. However, this will be de~::ribed more 

fully in due course. 

Figure 4.3 below illustrates a schematic representation of 

a perception hierarchy. 

----

Figure 4.3 A Schematic Representation Of A 
Perception Hierarchy 

At the lowest level n are the physical 
characteristics, (marks on the paper). 
These are associated into discernable 
lines which are associated into shapes, 
(the noetic characteristics), and so on 
up the hierarchy, culminating in the 
precept. 

level 1 

level 2 

level n-2 

level n-l 

level n 

Fran the top down, the node at level 1 represents the 

percept of the drawing. This is achieved through the indefinite 

number of intermediate levels, involving the synthesis of the four 

pictorial characteristics described above. 

The illustration would seem to suggest that each percept may 

be definitively mapped, but this is not so. Only by rigoruus and 

canprehensive definition of the trigger and filtering mechanisms 

can the crudest of machine pattern recognition systems be evolved. 
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This thesis deals with the abstraction of some noetic 

characteristics of pictures from the physical; that is, those 

mathematical relationships and principles of organisation deduct­

able from the drawing. However, chapter 8 describes some potential 

processes by which a limited range of 'fuzzy' principles of 

organisation, ego generic similarity, may be ascertained. 

Before proceeding to the algorithms and processes to achieve 

this low level interpretation of line drawings by computer, it is 

necessary to examine the different ways in which one can describe 

solid geometries, (ergo line drawings), to a computer, and the 

effects these descriptions have on methods of computer data 

storage. 

3 Geometric Description Methods 

Ultimately the purpose of a geometric description of a real 

object is to record the presence or absence of materials at 

locations in space. 

There are three methods for describing geometries. These 

are; 

1 The Point Set Method, 

2 The Boundary Description Method, and 

3 The Boolean Method. 6 

3.1 THE POINT SET METHOD 

With the point set method, ~ ,space is described by means of 

a three-dimensional matrix of contiguous orthogonal ~ells, each 

of which mayor may not contain material, (see Figure 4.4 over­

page) . 

Resolution 

The finest resolution which may be achieved by this 

method of description is one cell unit. A doubling of the 

resolution requires an eightfold increase in the nuni>er of 

cells involved. 

One method of reducing this exponential increase in 
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b) Object resolved in a c) Obj ect resolved in an 
5 x 4 x 4 cell universe 10 x 8 x 8 cell universe 

n=1 1 1 1 1 1 n=2 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 
0 0 0 1 1 0 0 0 1 1 
0 0 0 1 1 0 0 0 1 1 

n=3 0 0 0 0 0 n=4 0 0 0 0 0 
1 1 1 1 1 0 0 0 0 0 
0 0 0 1 1 0 0 0 0 0 
0 0 0 1 1 0 0 0 1 1 

d) Storage array (1 x m x n), containing coded description 
of obj ect resolved in b) 

Figure 4.4 The Point Set Method Of Encoding Shape 
Description. 
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storage requirement is the utilisation of a variegated cell 

structure as shown in Figure 4.5 below. 

~ No. 

t-t pt' II I I I A-~ 
f- ~ f-P 
17 ~ 

f- ~ 
I\" 

l- I-

l- I-
r1 
"I-

l-

~ 
~ H7 
+ ~ II I I I 6J.o FF 

Figure 4.5 A Variegated Cell Structure 

Economy of storage is achieved at the expense of more 

complex mapping functions. In the above example, each axis 

would have to be located by a five-bit coordinate description 

in order to keep track of the cell divisions. 

Computation 

Wi th this method of geanetry description it is very 

easy to check whether a point in object space lies within a 

described object by interogation of the cell within which the 

point lies, hence clash checking is easily accomplished. 

However, the description is very basic, and it is not so 

straightforward to generate shapes fran their algebraic 

defini tion, and in most cases requires converting to other 

description systems. 

Application 

Whilst this method of modelling is of great value in 

73 



4.10 

applications where a solid is to be reduced from a homo­

genous material, ego the automatic control of machine tools, 

the typical CAAD object is not only of far greater physical 

size than an engineering component, but is also composed of 

a variety of different materials. In addi tion, the CAAD 

user is equally concerned with the spaces wi thin the object, 

as with the fabric of the object itself. Consequently this 

method is not often used for CAAD applications. 

3.2 . THE BOUNDARY DESCRIPTION METHOD 

With this method of geometry description, the lines bounding 

the edges of the surfaces of an object are described exactly by 

their mathematical algebraic definitions. As illustrated in 

Figure 4.6 below, the object is construed as filling the object 

a) Object to be described in Cartesian Space 

Surface Ld General Equation Values 

1 l 1x + m
1
y + n

1
z = c 1 

1
1

, m
1

, n
1

, c
1 

2 12" + m-il + n2z = c 2 
1

2
, m

2
, n

2
, c

2 
3 13x + ~y + n3z = c3 

1
3

, m
3

, n
3

, c
3 

" " " " " " " " 
a laX + rRaY + naz = ca l S ' ~, na , c

a 

b) Data storage scheme for planar boundary description. 

Figure 4.6 The BaJndary Description Method Of 
Encoding Shape Geanetries 
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space described by the 'wire-frame' construction obtained by 

instantiating values into the equations describing the boundaries. 

Resolution 

This description method is accurate to the lDnit of 

the size of number capable of being held in the computer, 

since equations can be reduced to infinitesimal increments. 

All surfaces can be reduced to a set of small surface 

elements which may be accurately defined as a 'B-spline' 

curve in three dimensional space. 

Storage 

The storage requirement is rruch less than for the 

equi valent point set, al though it requires a more complex 

data structure to do so. Only the coordinate positions of 

the nodal pOints are stored, along with records of which 

nodes connect which lines, and which lines caIl>rise which 

surfaces. Fairly sophisticated database management systems 

are needed to keep track of these related sets of data. 

Computation 

Most operations performed using this description 

method entail large amounts of computation of coordinate 

geometry. As mentiored above, since al terations to the 

de9cription can lead to catastrophiC inconsistencies 

corrupting the database, a fair amount of computation has 

also to be carried out to validate the data. 

Application 

Nearly all existing CAAD systems utilise this fonm of 

geometry description method. Topological relationships can 

be derived from the description, and consistency checking 

can be accall>lished by application of Euler's formulation, 

v + S - ( E + 2 ) = 0 
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where for a polygon; 

V is the number of vertices, 

S is the number of surfaces, and 

E is the number of Edges. 

This method also accords well with the data format 

required to drive drawing devices. 

3.3 THE BOOLEAN DESCRIPTION METHOD 

"The Boolean method ••. is in essence similar 
to the point set method except 
it is the directed boundaries between point 
sets that are stored; shapes are then 
defined. by performing the logical operations 
of union, intersection and difference on the 
point sets." 6 

One implementation of Boolean shape description has been 

evolved by Giraud
7 

"Today's 3D wireframe systems ... exhibit sane 
serious deficiencies: they are not valid 
because they tolerate 'nonsense' obj ects 
wi th missing edges; they are ani:>iguous in 
that different obj ects may have the same 
representation. " 7 

As an alternative, two Boolean based methods have been tried; 

"CSG (constructive solid geanetry) and the 
boundary representation. In CSG 3D obj ects 
are considered as the union, intersection 
and/or difference of elementary volumes. 
In the boundary representation 3D obj ects 
are represented by their faces. 

What is needed is a representation 
scheme which is valid and unani:>iguous like 
CSG, which has uniqueness like the ba.u1ci­
ary representation and from which one can 
concei ve interfaces to satisfy all design­
ers' needs, in time and. effort which are 
not prchibitive." 8 

For a full description of the "Presque Half Space" Boolean 

geanetry description method, the reader is refered to references 

number 7 and 8. 
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Resolution 

As with the boundary description method, the descrip­

tion is accurate to the limit of the number capable of being 

held in the host computer. 

Storage 

Sirrdlar in content and context to the boundary descrip­

hon:method. 

Computation 

It is only relatively recently with the advent of 

SeeLog, a PROLOG language based system, that a general 

purpose logic based Boolean graphics interface has been 

written. 

The computation is carried out by interogating the 

database to see which facts fit the rules and conditions set 

by the problem. A great deal of data searching takes place 

as opposed to direct calculation, and consequently the 

processing time increases with the amount of data stored in 

an exponential progression. Currently the response time of 

Boolean systems leaves much to be desired, but it is likely 

that the application of these systems on parallel processors 

might overcane this time overhead. 

Application 

As yet general purpose Boolean systems are still under 

investigation and development. As mentioned above, SeeLog9 is 

in its infancy, but its potential in conjunction with 

'knowledge engineering' systems holds great pranise. 

4 Data Structures 

The terms 'database' and 'data structure' tend to be used 

synonymously in CAAD literature. For the purposes of this thesis 

these two terms will be defined as follows: 

Data Structure - The organisational arrangement for storing 
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data in the computer memories for subsequent use by 

application programs. 

Database - The total aggregation of explicit knowledge resident 

in a data structure. * 

Whilst the data structure employed will depend upon the 

application for which the program is written, the geometric 

description method employed will also have a very direct bearing. 

Other relevent factors include the amount of core storage available 

in the host computer, and the amount and speed of access available 

as secondary storage. 

Most CAAD aplication programs facilitate some degree of 

geometric modelling. This model is described through an interactive 
10 

graphics input medium in the general case. Williams identifies four 

categorip.s of problem pertaining to graphic data structures: 

"First there isa representation problem. 
Graphical data, diagrams etc. are two­
dimensional but catplter storage is one 
dimensional. Consequently there is a mis­
match and the two-dimensional data nust be 
mapped into a one-dimensional store. 
Furthennore there are many ifr1:>lici t relat­
ionships in a two-dimensional plane that 
nust be preserved in a catplter represen­
tation. 

Secondly there is a corrputational 
problem. Catpltation proceeds serially in 
one dimension and so there is a problem of 
converting essentially two-dimensional 
operations into sequences of processing 
steps. 

Thirdly, problem solving and. caq:>­
uteI' aided design with graphics is an 
environment where highly complex inter­
actions take place. This is a problem 
because it is very difficult to manage 
dynamic data structures. 

Finally there are data presentation 
problems. In roost applications users want 

* Where in the following text quotatioDSoccur, the terms 'database' 
and I data structure' will be replaced as necessary, to conform to 
the definitions so made. 
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to work at different levels of detail 
and they also want to vary the scope of 
the data presentation at each level. 
Therefore it is ~rtant to be able to 
define data subsets and selectively 
alter the detail associated with such a 
subset. Conversely, it must be possible 

4.15 

to combine or ~te data fram differ­
ent sources into a displayable entity. In 
both cases an ability to ~lore and peruse 
the data is desirable." 10 

The four problems identified are thus, 

1 mapping the data into storage, 

2 extracting the data in the form wanted by the 

user, 

3 associated problems effecting the ease of editing 

and manipulating the data structure, and 

4 ease of access to the database. 

These four facets of data structuring are causally related, 

and are manifested in the implementation of the methods of geometry 

descriptions. 

4.1 POINT SET METHOD 

As seen from the preceeding description in section 3.1, an 

object described as a point set is reduced to a matrix of cells 

ei ther containing material or null. 

Mapping 

Mapping is fairly easily achieved, particularly with 

the use of high level languages which have macros for dealing with 

subscripted multi-dimensional arrays. The users perception of the 

data structure exactly matches that of the object, although not 

identical to the storage sequence in the machine. In lieu of array 

handling macros, mapping functions may be irrplemented. A typical 

mapping function for converting three dimensional arrays into a 

list is shown in Figure 4.7 overpage. 
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Figure 4.7 Parameters Of Three-Dimensional 
Description For Mapping To One 
Dimensional Data List. 

4.16 

The cell at coordinate position (p,q,r) in a volume of 

A x B x C cells, is ~ven as a position in a list by 

the function 

f = (A x B) x (r - 1) + A x (q - 1) + p 

Extraction 

The actual data bit held in storage can hold infonn­

ation both of the material specification of the cells content, and 

pointers to adjacent cell locations. depending upon the user 

programs application. Data is extracted by calling for infonnation 

from the list by use of the mapping fUnction. 

Derivation of topological relationships could require the 

cOOl>arison of each cell to every other, although surface and edge 

condi tions may be found directly as explained in due course. 

Manipulation 

Changing or amending the geometric description 
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involves producing algorithms whose variables are transformed via 

the mapping functions, which inevitably involve a large amount of 

calculation, although not a significant time overhead. The situa­

tion becomes more complex when non-orthogonal planes are involved, 

as these manipulations require the stepping effects to be resolved. 

Cells constituting corners, edges and surfaces can be ident­

ified quite easily. Figure 4.8 below shows a simple solid described 

in a 4x3x4 object space. 

a) Object to be described. 
4 

4 

3 

2 

1 

b) Obj ect in 4x3x4 obj ect space. 

Figure 4.8 Solid Obj ect To Be Coded By Point Set Methcx:i 
To Demonstrate Identification Of Surface, 
Eqge And Corner Cells 
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If for each cell we record the presence or absence of 

material in adjacent cells in contact with each of it's six faces, 

the total number of surfaces in contact indicates surface, edge 

and corner cells. The data set for Figure 4.8 is shown in Table 4.1 

below. 

M3ppi~ Coordinates ValUe 1here is an adjacent cell to the: Total 
function p q r 

1 1 1 1 
2 2 1 1 
3 3 1 1 
4 4 1 1 
5 1 2 1 
6 2 2 1 
7 3 2 1 
8 4 2 1 
9 1 3 1 

10 2 3 1 
11 3 3 1 
12 4 3 1 
13 1 1 2 
14 2 1 2 
15 3 1 2 
16 4 1 2 
17 1 2 2 
18 2 2 2 
19 3 2 2 
20 4 2 2 
21 1 3 2 
22 2 3 2 
23 3 3 2 
24 4 3 2 
25 1 1 3 
26 2 1 3 
27 3 1 3 
28 4 1 3 
29 1 2 3 
30 2 2 3 
31 3 2 3 
32 4 2 3 
33 1 3 3 
34 2 3 3 
35 3 3 3 
36 4 3 3 
37 1 1 4 
38 2 1 4 
39 3 1 4 
40 4 1 4 
41 1 2 4 
42 2 2 4 
43 3 2 4 
44 4 2 4 
45 1 3 4 
46 2 3 4 
47 3 3 4 
48 4 3 4 

Table 4.1 

left rlgM above below fore behind 

0 
1 0 1 1 0 0 1 3 corner 
1 1 1 1 0 0 1 4~ 
1 1 0 1 0 0 1 3 corner 
0 
1 0 1 1 0 1 1 4 ed.qe 
1 1 1 1 0 1 1 5 surface 
1 1 0 1 0 1 1 4 edge 
0 
1 0 1 1 0 1 0 3 COlTler 
1 1 1 1 0 1 0 4 edge 
1 1 0 1 0 1 0 3 corner 
0 
1 0 1 1 1 0 1 4 edge 
1 1 1 1 1 0 1 5 ~ace 
1 1 0 1 1 0 1 4 edge 
0 
1 0 1 1 1 1 1 5 surface 
1 1 1 1 1 1 1 6 intelTlBl 
1 1 0 1 1 1 1 5 surface 
0 
1 0 1 1 1 1 0 4 qe 
1 1 1 1 1 1 0 5 surface 
1 1 0 1 1 1 0 4 edge 
0 
1 0 1 0 1 0 1 3 corner 
1 1 1 0 1 0 1 4qe 
1 1 0 0 1 0 1 3 corner 
0 
1 0 1 1 1 1 1 5 IIUl'face 
1 1 1 1 1 1 1 6 internal 
1 1 0 0 1 1 1 4 edge 
0 
1 0 1 0 1 1 0 3 corner 
1 1 1 0 1 1 0 4 edge 
1 1 0 0 1 1 0 3 corner 
0 
0 
0 
0 
1 0 1 0 0 0 0 1 
1 1 1 0 1 0 0 J /llBlt)rane 

1 1 0 0 1 0 0 2 
0 
0 
0 
0 
0 

Point Set For Object In Fig.4.S, Including 
Registration Of Adjacent Positive Cells 
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From consideration of the total number of surfaces of any 

one cell in contact with other filled cells (physical character­

istiCS11 ), the following noetic characteristics may be be defined: 

No. of Surfaces Noetic Characteristic 
in contact 

6 

5 

4 

3 

2 

1 

o 

The cell under consideration is 
internal, and will only be seen 
in a section through the solid. 

The cell lies on a surface. 

If the two free faces of the cell 
are opposite, the cell is part of 
a membrane: Otherwise it lies on 
an edge. 

The cell is ei the I" the edge of a 
membrane or a comer. 

If the two connected faces are 
opposite, the cell is part of ,a 
, rod': Otherwise it is at the 
junction of such a rod. 

The cell is the termination of a 
rod. 

The cell is independent. 

Particular surfaces and edges may be detenmined by examining 

which of the three coordinate values each edge or surface cell 

hold in ccmnon. 

Distinguishing surfaces facing a particular orientation may 

be effected by examining which of the faces of any particular 

surface cell is null, ie. left, right etc. However, the situation 

becomes exceedingly complex when analysis of pitched surfaces is 

required. 

4.2 BOUNDARY DESCRIPTION METHOD 

"Clearly, the most direct method. of describ­
ing a polyhedral form to a cooplter is by 
listing the three-dimensional coordinates 
of each point and then specifying which 
points are connected. by edges." 12 

Systems based on the entities of faces, edges and vertices 

are known as 'graph based' systems. 
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"These and. the links between them, (points, 
faces and edges), may be included into the 
the data structure directly. This allows 
the user to proceed. in a lU1ified. manner 
down beyond the part as a primdtive lU1it 
to examine its constituent geometry and 
topology." 13 

This is consistently so because; 

"any shape may be considered. a polyhedron. 
The faces of a polyhedron may be planar or 
curved.. The complete description of any 
polygon consists of a topology of the 
adjacency relations between its consti t­
uent parts and a geometry specifying the 
dimensional aspects of the shape. Without 
both aspects, a shape description is 
incomplete and. some operations on it are 
not possible. In most data structures, 
these two aspects are not distinguished." 14 

Graph bASed systems assume that bOlU1daries are described in 

their algebraic form, with the physical coordinates of the vertices 

acting as delimiters or alternatively calculated from the inter­

action of the algebraic descriptions dictated by the stored 

topology. 

The general equation for a surface enjoys three degrees of 

freedom. Constrained in one degree it describes an edge, and in 

two, a point. 

Mapping 

Unlike the point set, mapping data into the canputer 

cannot take place on a one-to-one basis, and indeed the advantage 

of the boundary description is that it condenses the amount of 

data to be stored, virtually irrespective of resolution. HgweY.:er, 

this economy is achieved at the loss of simplicity, since a 

hierarchical structure is needed. 

The canplete mapping of a polygonal solid requires the 

inclusion of the coordinate positions of the vertices, a specif­

ication of which vertex pairs describe which boundary line, and 

which bOlU1~lines contain which surfaces. At the next higher 

level might be a description of which surfaces fonn which solid. 
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Such a data set is shown in Figure 4.9 below. 

5 

~. 
~3 

k(' 
~ 
6 

Vertex Edges Faces 
coordinates vertex nos. eclge nos. 

I x1'Yl.zl 112 1 4,10, 5, 9 

2 x2 ,y2 ,z2 233 2 1,11, 6,10 

3 x3 ,y3 ,:l3 334 3 2,12, 7,11 

4 x4 ,y4 ,z4 441 4 3, 9, 8,12 

5 ~'Y5,L5 556 5 5, 6, 7, 8 
6 x

6
,y

6
,L

6 667 6 1, 2, 3, 4 

7 ~'Y7,z7 778 

8 x ,Y ,z 
888 

8 B 5 

945 

10 1 6 

11 2 7 

12 3 8 

Figure 4.9 Data Set Describing Topological 
Relationships Of The Boundary 
Description Of A Polygonal Solid, 
Wi th Reference To Coordinate Values 
For Instantiation Into Algebraic 
Equations 
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Extraction 

This is achieved by a process passing through the 

levels of the data hierarchy. Top down, vertices are extracted 

from the surfaces or superior levels, whilst bottom up, surfaces 

are referenced from the vertices. These related data lists 

effectively cross reference storage addresses of the vertex data 

items, and is indeed known as a I relational data structure I • 

Manipulation 

As has" been seen, instantiation of coordinate values 

into the general algebraic equations gives precise data for 

application calculations. 

There is an underlying assumption, unless all solids are 

described in their triangulated fonm, that all vertices on a 

surface lie in the same plane. Consequently problems arise when 

the user moves a vertex during editing or manipulation. Either 

the whole plane is moved, or it is tilted. In both cases other 

vertices related to the transient point have also to be moved. The 

algorithms necessary to monitor these changes can become very 

complex, particularly where a plane so moved is cammon to more 

than one data set. Similarly additions and deletions effect the 

relational data structure. Unless solids interact at their vertices, 

calculation intensive routines (clash checking) have to be invoked 

to ensure data conSistency. 

Access 

Access can be effected from any level of the data 

hierarchy. 

The data structure presented in Figure 4.9 , comprising of 

related lists is perhaps the simplest implementation. M alter­

nati ve approach is the tree structure, also heirarchical in effect, 

but where each level of data forms a subset of that at the superior 

level. Such a heirarchical tree structure is illustrated in 

Figure 4.10 overpage. 
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Figure 4.10 Tree Structure For Encoding Boundary Description Of Object (inset) 
Fran Figure 4.9 
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I 'Hierarchical data structures may be 
represented by directed graph structures. 
Blocks of data (records) are represented 
by directed arcs between the nodes. A 
list then is a chain of nodes and arcs. 
A ring is a closed chain of nodes and arcs 
called a cirelli t. A tree structure corre­
sponds to a directed graph which has no 
circui ts and which can, therefore, be 
redrawn to exhibit the levels in the tree. 
A hierarchical organisation corresponds to 
a general directed graph which does not 
contain circuits. As a result each 
structure may be classified as a sub-class 
or special case of the next more general 
structure." 15 

4.24 

In Figure 4.10, for example, each node of the tree has links 

to both superior and inferior nodes. The data recorded can have 

pointers to both 'parent' and 'daughter' nodes, thereby allowing 

changes to one node to be followed down through the hierarchy 

into the bottom level of the tree. However, the effects a change 

to a node has on the higher levels of the hierarchy might invalidate 

definitions of the superior nodes themselves, ego the alteration in 

position of a vertex might move it out of the plane of the surface 

under which it is 'filed' in the tree structure. 

At the price of greater cooplexi ty ring structures can be 

incorporated into daughter subsets of the tree hierarchy at the 

same level. Moreover, these can be extended to include pointers 

both fONard and backward. This is illustrated in Figure 4.11 

overpage, where pointers have been added to companion files to the 

data set accompanying Figure 4.9 on page 4.21. 

However, 

"a database on a given subject is a collec­
tiDn of data on that subject that obeys 
three criteria; completeness, non­
redundancy, and. appropriate structure. II 16 

By these criteria, consistency is achieved at the cost of 

non-redundancy. Even so, there is no guarentee that consistency at 

one level of the hierarchy will ensure consistency at superior 

levels. 
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Conncctions 

lilteral forward Inter;) 1 

2 4 6 1 1 4 10 1 ;! 1 2 6 10 5 9 4 1 4 5 2 6 
137 2 1 2 11 2 3 2 3 6 11 6 10 1 2 1 5 3 6 
2 4 B 3 2 3 12 3 4 ,146 12 7 11 2 :l 2 546 
135 4 3 4 9 4 1 .. 1 6 9 8 12 3 4 :1 'j 1 6 
4 6 B 5 5 8 9 5 6 5 1 5 5 6 7 8 5 2 J 4 1 
1 5 7 6 5 6 10 6 7 625 1 2 3 4 6 1 'l 3 2 
2 6 Ii 7 6 7 11 7 8 735 
357 8 7 8 12 8 5 845 

4 5 9 I 4 
1 6 1U 1 :! 
., -- ( 11 2 ,1 
3 8 12 3 4 

vf"r lex S,1t I; If 'fl' 

t t 
VF.HTEX VF.IlTEX-EDGF. <t-+VEIHEX-EDGE ElJGE-Sl'RFACE+-+IIDGE-Sl'HFACE SI'fIF""F 

ver'tex SIU''';'' '" 

Figure 4.11 Further Data Structure Incorporating 
Lateral, Forward And Backward Pointers. 

(Refer to Figure 4.9) 

Once a ring structure has been incorporated into a data 

structure, a structured data aquisition system is imposed, either 

upon the user directly, or by routines to ensure that data is 

passed into the data structure in the correct sequence. Where for 

example, a shape is to be drawn into the data structure, most 

CAN) software requires that the user trace out each shape ending 

the input sequence at the point Where he started. However, once 

shapes start aggregating, shapes which may be relevent to the 

picture might be formed by the composition of the other declared 

shapes. Tracing over these shapes now involves the repetition of 

line data, which may cause failure in subsequent computation. 

"One may conclude that, although si.nple 
data organizations can be designed qui te 
easily on a basis of searching and updating 
times, cCXl1)lex data structures cannot. This 
is because flexible, versatile data struc­
tures are tediously intricate and may grow 
unpredictably in any direction. 

Data structures are dependent upon 
the machines characteristics and, IOOre 
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importantly, on the applications for which 
they are to be used." 15 

4.3 BOOLEAN DESCRIPTION METHOD 

Unlike either of the previous two methods, data is not 

mapped as such into the computer storage, other than as lists. 

Each list is treated as a subset of variables with related attri­

butes as defined by an embracing label. A data type, given as a 

general clause defines the 'arity' of the data type that follows; 

ego in the PROLOG language, the statement 

point(X,Y,Z) 

defines a variable type, 'point', 

which has associated with it three values. These values may 

themselves be labels refering to further data types. Consequently, 

the label line(Point,Point) 

when invoked will cause the 

system to begin a process of instantiation to find all instances 

of 'point' which satisfies the conditions set by the statement in 

which 'line' appears. 

The data itself has no meaning other than that its label 

declares. The machine itself maintains track of the various data 

sets. 

4.4 CONCLUSIONS TO DATA STRUCTURES 

There are three methods of geanetry description, each having 

a significant effect on the data structure that may be used. 

The point set method involves a one-to-one mapping of the 

occupancy of cells into a storage list. The larger the object 

space and the greater the resolution, the greater the storage 

requirement. Data storage by this method has great sirrplici ty 

since data is held at only one level. However, its usefulness is 

limited, and it is rarely used for CAAD applications. 

There are a range of data structures which can be used with 

the boundary description method. The more robust the data 
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structure, the increasingly caJ'l)lex the database manage­

ment system in order to maintain data consistency. The data is 

held in a hierarchy of at least three levels, unless user geometries 

are restricted to predefined forms. Data storage tends to be more 

efficient than with the point set, and application programs of 

great sophistication can be supported. Boundary descriptions are 

almost universally used for CAAD applications, hence the pre­

dominance of relational hierarchical data structures. Such a data 

structure also accords well with the structure required to drive 

vector graphic display units and incremental plotters. 

The data structures appropriate to Boolean descriptions are 

still the subject of investigation. CAAD applications in which 

such descriptions are used, tend currently not to involve 

mathematical calculation. 

A data structure may be described as, 

"a collection of interrelated data stored. 
together with controlled redundancy to 
serve one or more applications in an 
optimal fashion; the data are stored 
independent of programnes which use the 
data; a coomon controlled approach is used 
in adding new data and. modifying and. 
retrieving existing data wi thin the data 
base." 17 

5 TWo And Three Dimension 

Real objects exist in three dimensions; drawings are two­

dimensional representations of them. 

The discussion of geometry description methods and the 

resul ting data structures have dealt with three dimensional models. 

However, with one notable exception (see Chapter 3. section 4.3). 

all graphics input devices are two-dimensional. Therefore, input 

data has to be translated into three dimensional form if solids 

are to be modelled. 

Programs which .. recPi~ a three dimensional description at 

input, ego GRAMP (see Chapter 5, section 5), either restrict the 

forms which the user may describe to orthogonal and prismatic 

forms, thereby treating the solid as an extrusion of its plan form, 
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or demands painstaking attention by the user.to specify the height 

coordinate of each vertex in turn, ego RODIN (see Chapter 5, 

section 4). 

Fortunately for most CAAD applications, buildings tend to be 

extrusions of their plan fonms between a floor and ceiling level. 

An alternative approach to translating from two to three 

dimensional input data consists of the simultaneous interpretation 

of three orthogonal projections of a solid. This approach is known 

as ~. Although such systems are known to exist, there is doubt 

about their ability to handle canplex polyhedra, and it is likely 

that these systems only handle solids on the basis that they have 

vertical sides. 

Almost all draughting systems use two dimensional descriptions. 

Consequently they do not model solid bodies, only their two­

dimensional aspects. 

In summary+.the vast majority of CAAD systems use the 

boundary description method for encoding solid geometry, treating 

objects as extrusions of the plan fonms. Apart fran the advantages 

outlined above, the restriction decreases the amount of calculation 

that would otherwise be required to process irregular polyhedra. 
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5.1 

CHAPTER 5 

1 Introduction 

Chapters 2 and 3 discussed the problems and concepts 

pertaining to the practice of architecture and the process of 

building design. Chapter 4 introduced the problems of describing 

building geometries to computers, and the various consequent 

approaches to geometric data storage. 

In this chapter, four existing suites of computer programs 

dealing with graphic data will be examined, to see how they have 

handled the problems previously described. 

The four programs examined are: 

1 SKETCHP PJ) , 

2 OXSYS/BDS, 

3 GABLE, and 

4 GRAMP. 

The first of these, SKETCHPPJ) , is probably the oldest 

interactive computer graphics program developed as a Ph.D thesis 

in 1963. 

''Many of the basic ideas that the catpJ.ter 
graphics industry nCM relies upon were in 
(SKETCHPAD), Ivan Sutherland's original 
thesis. What has been developed since is 
the capability to ,deal with cCJll)lexi ty, 
and making images that are believable to 
the eye. 

The kind of data structure he used 
for representing the object was very 
different fran what had been used before. 
It was a structure based on the topology 
of the subject, describing the relation­
ships between the parts of the obj ect ." 1 

SKETCHPPJ)' is the seminal work on computer draughting, yet wi th 

a data structure in advance of many used by ePJ) systems today. 

The second suite of computer programs involves the suite GDS. 

''During the sixties Oxford Regional Health 
Authori ty carmenced the development of a 
'building system', utilising a limited 
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number of components based on a steel 
structural system. The objectives, carmon 
to other systems of the era, were the use 

5.2 

of prefabrication to increase the efficiency 
of site operations." 2 

Having acLieved a standardised canponent based system, the 

creators built an integrated CAAD system around the Building 

Description System (BDS), pioneered by ARC Ltd, Cambridge, and 

has been in use since 1974. 

The third, GABLE is a CAAD design and appraisal package 

developed for implementation on a small desk-top canputer. It is 

an interesting suite of prograrrmes since the problems inherent in 

CAAD systems are exacerbated by the 'shortage' of machine resources. 

Finally, GRAMP is the geometric data handling core used in 

the SPACES and BIBLE programs for building evaluation and visual­

isation developed by the ABACUS unit at Strathclyde University. 

2 SKETCHPAD 

"The primary idea ••• was that cCJJ1)Uters were 
sirrulators. Such sinulators can be used by 
people who are doing design to replace real 
obj ects on occasions when a sinulation can 
be built more cheaply than the physical 
model. You can make changes more easily, 
and. the advantages of a sinulator are very 
strong. We did graphics first because we 
thought they were an essential link between 
the human user and. the sinulation." 1 

SKETCHPAD was written in 1963 as a Ph.D thesis by an 

electrical engineer. At the time, canputer processors were still 

under development, and SKETCHPAD was run on the then experimental 

TX-2 mainframe computer via a time sharing graphics terrndnal. 

SKETCHPAD is a two-dimensional graphics drawing and manip­

ulation package, although later versions were used as the nucleus 

of pattern recogni tion software such as HUNCH (see chapter 6), by 

the Architecture Machine Group at the Massachusetts Institute of 

97 
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Technology. The basic format of the data structure used in 

SKETCHPAD is still in use in some draughting systems ego SORCE*. 

Although not a 'dumb drawing system' by Bijl's definition
3 

it is not far removed from one. Whilst storing data from which to 

reproduce drawings, it also keeps track of the topological 

relationships of the lines constituting shapes, which can be 

modified without disrupting the database. 

It is machine centred insomuch that the user, 

2 .1 Operation 

'will (have to) issue specific commands 
with a set of push buttons, turn functions 
on and off with switches, indicate 
position infonnation and point to existing 
parts of the drawing with the light pen, 
rotate and magnify picture parts by turn­
ing knobs, and observe the drawing on the 
display system." 4 

Drawings are entered as a set of geometric entities such as 

lines, arcs or predefined shapes. Each new entry has to be pre­

ceeded by specifying to the system which entity is about to be 

input by means of a hard key. Once specified, the coordinate data 

anticipated by the system has then to be entered in the correct 

sequence. Figure 5.1 overpage shows part of the SKETCHPAD data 

structure . 

The geometric data is stored in a series of lists. At the 

apex of the hierarchical structure is a list of records holding 

a shape type descriptor, and a storage address of the start of 

a list of data pertaining to that shape. In Figure 5.1 the 

address A refers to a block holding fUrther addresses of the 

storage locations of the tenminal coordinates of the line A. In 

addition, this block has storage address locations of the line 

data for the lines adjoining at both ends, ie. The line list holds 

firstly the address of the lines start point, secondly its stop 

point, thirdly the storage address of the line list pertaining to 

* SORCE, written by Norie Hill Ltd, Landon, for ~lementation on 
Hewlett Packard 9600 series desk-top computers. 
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the line which meets line A at the start coordinate, and finally 

the storage address of the line list pertaining to that line 

which meets line A at the stop coordinate. 

The interesting feature of this storage regime, is that the 

line lists are cross referenced to each other when they fonn a 

closed shape. Such a contained relational structure is defined 

as a 'ring'. These rings were designed to facilitate the ease of 

data editing, since lines can be inserted or deleted by simply 

removing a link in the ring, and then connecting together the two 

lose ends. 

Similarly. the lists of the end coordinates of the lines are 

also connected by a ring data structure; each point also recording 

the storage reference addresses of both the pro and pre-ceeding 

points connected by the two lines intersecting at that point. 

The lists have slightly differing capacities in order to 

accomodate the differing line types, ie. lines or arcs. Enclosed 

shapes, once defined in its own ring structure :an be manipulated 
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as one entity. Merging nor splitting of shapes so defined can be 

carried out with this system. 

2.2 Criticisms 

Understandably, in view of its age, SKETCHPAD has attracted 

a fair amount of cri ticism. 

"Sutherland, in his thesis on cc:.np.1ter 
graphics introduced a method. for dealing 
wi th the variable shape of J:flysical (two­
dimensional) elements at the level of 
their autanatic generation. His thesis 
relied on closed curves to depict the 
boundaries of physical elements. Each 
point on the perimeter of an element was 
considered a variable to be manipulated. 
Sutherland defined the desired shape of 
an element as algebraic equations. A 
feasible solution is any set of perimeter 
points that satisfy these equations." 5 

Thus the data structure, whilst effective for recording and 

manipulating drawings, requires more complex algorithms ar.d data 

structures in order to process the dat&i the system is thereby a 

typical dumb draughting system, good at recording line drawings, 

permitting drawing ammendments, but awkward for feeding in to 

calculation proceedures. 

"The seeming limitations of this approach 
are that many elements require an undef­
ined rn.mi:>er of points to describe their 
periphery. Variable shape generation 
should be able to determine the nl..urDer of 
points and add or £tubtract them as needed. 
No effective procedure :for doing this has 
been proposed in Sutherland's scheme. 
Spatial overlaps, cormectivi ty between 
elements of irregular shape and other 
Unportant criteria seem computationally 
expensive by this approach. Whilst the 
shortcanings may be resolvable, a further 
reason for not following this approach is 
that the point vector has not been a 
carmon representation for space planning." 5 

On this point, even Sutherland I s coworkers are forced to 
concur: 

"To think in terms of vectors is an archaic 
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way of thinking about graphics. We only 
think about lines because we have hands, 
and with pencil and hand IOOvements we 
draw lines. 

Seeing surface intersections as 
lines is the wrong approach and is counter 
productive . •. A lot of people are interes­
ted in geometrical roodelling in terms of 
surfaces and solids." 6 

5.6 

The desire to wri te-off vector graphics seem premature, 

since vectors are most compatible with the majority of graphic 

output devices. Pending the development of logical language graphic 

systems, no serious alternative has yet been demonstrated. Yet 

understandably the prevalence of raster graphic display systems 

would appear to be a great stirrulus for change. 

Sutherland himself states in his thesis that, 

"every system which is devised for program­
ing on computers has little problem areas 
which give ht.mans IOOre trouble than other 
parts; it took IOOnths before all the 
nuances of these problems were learned." 4 

Perhaps the most salutory criticism comes from Sutherland 

as he concludes, 

3 OX~:)'YS ISDS 

"It is only worthwhile to make drawings on 
the canputer if you get something IOOre out 
of the drawing than just a drawing." 4 

Hospital design entails a number of accentuated problems 

atypical of most other architectural design projects. The sheer 

size of such problems led to the development of a design system by 

the Oxford Regional Health Authority, which was subsequently 

transfered in part to computer some ten years after the systems 

introduction. At the core of the computer design system is the 

Building DeSCription System (SDS) developed by Applied Research of 

Cambridge, which is currently carmercially available. The current 

system runs on a minicomputer time sharing between a number of 
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dedicated graphics workstations. The system was first implemented 

in 1974. 

"The Oxford Method. of Building has been 
developed. over sane twelve years and is 
intended. to cover a range of health 
prograrrme buildings. The method. ES1"ploys a 
structural steel frame, a well defined. 
set of caq::>Onents, a modular planning grid 
and a high degree of modular coordination." 7 

"The fundemantal framework of both the 
building and CAD systems is the overall 
geanetry which acts as both a coordinating 
discipline and a referencing system. 

The carplter system consists of 
essentially three main elements - a Codex 
which is a file of all the parts of the 
building and engineering systems and. 
their properties, a building file which is 
a description of the building being 
mcxielled., and an extensive range of applic­
ation prograrrmes which, thraJgh ccmnands, 
act upon the building description wi thcut 
the need. for further extensive input." 8 

The facilities provided by the system include programs for 

the description and analysis of: 

a Building Organisation - input grids, bay dimensions, 

levels, vertical sections, zone perimeters. 

b Codex - create/edit a codex, create/edit components 

and component data, create/edit component properties. 

c Site Description - input site data, locate/rotate a 

building, create/edit a site obstruction, draw site. 

d Roam Data And Schedules - create/edit zone and zone 

data, output zone or bay parts. 

e Component Selection and Location - general purpose 

component selection, location and deletion; selection, 

location and deletion for internal partitions, 

internal doors, steelwork, precast floor slabs, roof­

lights and cladding. 

f Structural Steel Design - design a beam, load analysis, 

update structure. 

g Interactive Production Drawing - Tektronix and plotter 
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output, productiun drawing funnaL and llULput. 

h Evaluation - element ~ost, sunlighL and heat lu~~. 

j Services - ll)w terrperarure hot water design. 

In addtion tu the corrponent building system and the CANJ 

system, a third part of the OXSYS design method i~ a proje~t 

management programme not yet on the 80S computer system. 

3.1 Data Stru~ture 

The 80S data structure as it appears to be implemented in 

OXSYS, is in the fonn uf a four level index to a list of ~omponents 

as s~hematically depicted in Figure S.2 below. 

()XSy~ 

I Si t~ 

IIJu i ld i I1g 

IlOlIC 

::'X~)<~ IL'l1t List 

CClITp<" M'flt type 
CoonlllVlte of 
refen!l1ce point 

I h h 

Cal1>011('f1 t type 
coor'l.1\nate of 

:> 
Cal1>Oncnt lJuta 

Enclosing spnc:e 
1 b h 

d<,~er'ipUon 1 istinq 
0(' gr.ornclries of 
inch vicia.'\l c~lt'nt~ 
018 iI~scrrbly of bn~ic 
g('omc t I Y sh:,,)t. ~ 

I ~lO!ling spACe 

1 b h 

Figure 5.2 Schematic Representation Of' OXSYS 
Data Structure 

At the top of the hierarchy is a three dimensional des~rip­

tion of the site upon which are buildings. These buildings are 

located relative to the origin of the site. Tne building is in 

assembly of zones, and the zones are defined as areas contai.1ing 

the aggregation of c<J1l)(Jnents therein. 

Components are refered to by identifying type labels, each 

component being unique but capable of being dupli:ated. Thes~ 

caJl)onents reside in an en~losing box, so that in the first instance 
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zones are modelled as a collection of cuboids. This is in order 

to facilitate economy of calculation when the system undertakes 

clash checking. Unless the containing cuboids intersect, there is 

no reason to proceed and check for interaction between the poten­

tially more complex items contained within them. The component 

identifying labels also refer to associated attribute files which 

contain physical data about each item which is required when the 

evaluation programs are run; eg. information such as weight and 

thermal properties. 

The component list can be thought of as a series of overlays, 

each one of which records the positions of each instance of an 

item. These overlays can be organised to sui te any user required 

indexing fonmat, including the CI/Sfb system. 

Zones share a common environment, thus the heating loads are 

calculated on the enclosing surfaces of the zone. This may run 

counter to zones described in terms of usage. 

3.2 User Restrictions And Further Features 

The use of this simple data structure is possible because of 

the limitations accepted by the system users. The most onerous of 

these is the restriction of building geometries to a planning grid 

and the imposition of rectangular geometries. 

Only certain classes of zone may overlap. nus might prove 

awkward in practice, but seems trivial as a limitation. 

Implicit in the data structure is the principle of contain­

ment. Sub-zones rust always be contained wi thin their superior 

zone, which presumably means that amendTlents to the database ITllst 

be monitored at two levels Simultaneously. 

Functional relationships between members of zone classes and 

between zone and zone components are again implicit in the zone 

hierarchy. 

Some components may have an 'adjacency code' which will limit 

the types of other component with which it may form a junction, 

thus limi ting the designers choice of canbinations of component. 
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3. 3 Criticism 

Although a number of the limitations outlined above are 

trivial, in practice an overall assessment reveals that whilst 

the OXSYS system solves sane of the problems of hospi tal design 

for ORHA, component based systems are not relevent to the require­

ments of most architectural practices. How mu8h is attributable to 

the paucity of component based systems, and how much to the 

computer system remains speculative. 

The practical disincentives militating against the wider 

adoption of the OXSYS system may be summarised as follows: 

4 GABLE 

"a The OXSYS rationale (resource dist-
ribution and shared image) does not 
take adequate accc:x.mt of the limitations 
of traditional techniques and of design. 
team attitudes. (Lmplementation) remains 
an objective rather than an accomplish­
ment. 

b OXSYS/BDS is restrictive in the 
system concepts, Unplementation tools 
and user interface design. erJ1)loyed, but 
the system is powerful and shows Unprov­
ement upon tradi tional techniques. 

c Choice of implementation tools is 
crucial. 

d System support for the content (as 
opposed to the fabric) is better due to 
the lack of relational complex.i ty • 

e The system facilities provided for 
high level input and data consistency 
are unusual and rruch needed, but current 
facilities are inadequate in practice. 

f Detailed design systems associated 
wi th the fabric are generally not robust 
enough to withstand building system 
development." 

GABLE is the acronym for a General Aid to Building Layout - - - -
and §,valuation, and is an integrated CAM) system developed at the 

University of Sheffield and commercially available since 1981. 

The most significant feature of the system is that it is designed 

to run on an 'inexpensive' desk-top cooputer. 

The GABLE software consists of nine separate application 
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programme modules interacting with a common database. Each appli­

ation programme is held on a separately loadable magnetic tape. 

Ignoring the draughting program module, the GABLE software 

is in three basic sections; data input, data interpretation and 

appraisal, and data output. 

4.1 Hardware Configuration 

GABLE is designed to be irr;>lernented on the Tektronix 4050 

series graphics tenninals; ie. the 4051, 4052 or 4054. The 

Tektronix 4907 file manager system and disk drive unit is also 

needed. Data input is effected, in the Tektronix 4054 option by 

the built in thumb wheels, or joystick in the case of the others. 

Hardcopy graphic output is created via a Tektronix 4663 A2 sized 

flatbed plotter. 

The total purchase cost of the system described above is 

less than forty thousand pounds at 1983 prices, which includes the 

GABLE software. 

4.2 Operation 

The system is structured to penni t the user to design at the 

canputer terminal. The building geanetry is entered in two parts; 

roofs are entered as a set of pi tched surfaces, whilst the remain­

der of the geometry is treated as an extrusion of the floor plans. 

The requiSite tape is loaded into the computer, which enables access 

to the relevent geometry creation program. Seperate tapes exist for 

the description of external walls, internal partitions, doors and 

windows. Doors and Windows are speCified wi th reference to a 

moderate canponents library. 

4.3 Data Structure - Floors 

Al though precise details of the data structures used by 

coomercially available software is unavailable, fran the operation 

of the system one can Slrmise the approximate features, and these 

are illustrated schematically in Figure 5.3 overpage. 
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Figure 5.3 Schematic Representation Of GABLE 
Data Structure For Recording Walls 

... 

The schematic data structure depicted above shows two basic 

lists containing locational data for the end coordinates of lines 

depicting internal and external walls. each wall having a type 

code which defines its thickness and materials of construction 

with associated physical properties by reference to an attribute 

file. 

In actual operation, hard function keys are used to specifY 

the type of cCXJ1)onent that the user is about to input. In the 

case of external walls, the system will chain the input lines by 

defaul t until such time as the user indicates that the chain is 

complete by entering a point instead of a length of wall. Although 
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it is possible to break away fran this convention, interpretation 

of floor plans cannot be carried out until the external envelope 

is canpleted. 

The software has the facility for deducing the presence of 

courtyards, and sets up the necessary data structures to hold this 

additional external wall information. 

Internal partitions are held in a structure which holds the 

coordinates of the line vector by which the partition is represen­

ted on the screen, and also its associated specification identif­

ier label. A limitation is imposed by the system that in order to 

keep calculation of internal roam enclosures down to a manageable 

level, only three internal partitions may meet at anyone junction. 

This suggests that the data structure for internal partitions is 

organised i.n a ri~ structure once the plan has been interpreted. 

Windows and doors are selected fran a user defineable 

library of up to twenty-six item types. Once specified, the scale 

symbol is superimposed on the wall outline. All windows and doors 

have to be located on walls and partitions already described to 

the system, and the user cannot specify a free standing aperture. 

Consequently, during editing routines, doors and windows are 

moved with their 'host' wall surface. 

The geometry creation is carried out in two-<iimensions, as 

indeed is the data structure depicted in Figure 5.3. On interpret­

ation, or consigning a floor plan to the plan chest, floor and 

ceiling levels are specified by the user. In addition, localised 

raised areas within a floor can be specified. 

ISAAC, the sub-routine for interpreting the geometry descrip­

tion of the building storeys, is described elsewhere. 10 

4.4 Data Structure - Roofs 

Whilst the storeys of a building design are treated as an 

extrusion of the floor plans, the treatment of roof geometries is 

dealt with as a collection of pitched planes. The user specifies 

the edges of each plane in tum as either a hip, valley, gable or 
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an eaves. The roof geometry interpretation program, RODINll , runs 

concurrently keeping track of the input and warning the user of 

data inconsistencies. The system permjts the user to ir~ut the 

boundaries of the roof planes by the spot heights of the nodal 

points as an alternative to assigning roof pitches. The data 
,I 

structure used is schematically depicted in Figu~ 5.4 below. 
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Figure 5.4 Schematic Representation Of GABLE 
Data Structure For Recording Roofs 
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4.5 Criticism 

GABLE represents a significant achievement in applying micro­

computer technology to the problems of integrated CAAD programs, 

which tend naturally to require large amounts of caJ1)uter resources. 

GABLE is available at the Scott Sutherland School Of Architecture, 

and the following criticisms are levelled from the writerls lhands­

on l experience of using the system. 

The imposed division of the geometric data input system into 

individual components intrudes upon the normal flexibility available 

with traditional pencil and paper techniques. The user has to start 

with the external envelope and work inwards. Frequently, the 

generation of a design happens 'in the converse manner, working from 

the inside out. 

The necessity for swapping the different program tapes :an 

become a significant nuisance. disruptive to the userls train of 

thought. 
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The geometry input system is (necessarily) contrived, and 

can become frustrating for the user. Al though a novice can start 

producing results from the system in a very short while, the 

quali ty of the graphic results produced leaves rTD.lch to be desired. 

Drawings can be enhanced by titilating the design drawing by the 

use of the draughting package program tape, making arrmendments to 

the enhanced drawing is painstakingly awkward, as the drawing 

enhancements are independent of the design drawing database. 

The design system is based upon small load bearing brick­

work buildings. There is little provision for fvamed constructions. 

Nevertheless, GABLE remains a usable low cost CAAD system 

which would appeal to non-expert users. perhaps as an example of 

'appropriate technology I • 

5 GRAMP 

GRAMP is the .acronym the ~hical ~ipulation fackage 

which accepts and manipulates graphic data used for geometry input 

in SPACES and GOAL programs; the former a planning efficiency 

evaluation aid, and the latter a general appraisal package. All 

three of the above mentioned programmes were written and developed 

by the ABACUS Unit of the Uni versi ty of Strathclyde. 

5.1 Limitations 

GRAMP restricts the permissable geometries to building forms 

which may be described by the combination of eight volume types 

illustrated in Figure 5.5 overpage. The common feature of the 

volumes is their orthogonality; all are right-angular prisms. 

Subsequently, all geometries are restricted to orthogonal building 

forms. 

The data input files can be created ei ther by manual digi t­

isation, or created at the graphics termdnal by use of menus and 

cross-hair cursor. The GRAMP qystem is llnplemented on a DEClO 

mainframe caTq)uter, using the Tektronix 4010 graphics terminal. 

There is also the facility for digi tising existing plan drawings 
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Figure 5.5 Penmdssible Volume Types For Use 
With GRAMP 

5.2 Data Structure 

5.16 

The use of volume types enables the necessary data needed 

to describe a building volume to be minimised. The volume types 

. themselves need only four bits of data to describe them precisely; 

the type code, and its length breadth and height. In addi tion to 

these three attributes, four variable values are required to 

enable complicated volumes to be described; the relative displace­

ments along the three principle axes of the object space, and the 

rotation of the volume. 

The volume types are assumed to have their reference point 

at thEE-bottan left hand comer as the shapes appear in Figure 5.5 

above, and lie coaxially to the object space. Rotation is taken 

by convention to be anticlockwise. 

Two additional data bits are added to identifY each volume 

which may be aggregated to a zone. 
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The GRAMP data structure is surrmarised in Figure 5.6 below. 

volume type 
zone reference no. 
space reference no. 

o 

a) Illustration Of Attributes and Variables for 
G~~ geometry description 

zone space volume angle 
reference reference type of 

nuni:>er rn..JrIi>er orientation 

coordinates 
of origin ler@:h breadth height 

x y z 

b) Forma.t of input data for each volume 

Figure 5.6 Schematic illustration of GRAM? Data 
Structure 

A complete data file comprises of a list of data blocks as 

shown in Figure 5. 6b) • 

Editing and manipulation is carried out on the plan project­

ions of the volumes; shapes may be added, deleted, moved, stretched, 

and repeated. Volumes are dealt with as discrete enti ties, and 

editing of individual lines is not possible. There is ho data 

consistency monitoring, and the user is infonmed of data file 

errors at run time. The user is informed which aberrant volume 

description caused the failure, but he then has to locate and 

manually rectify the erron by direct edit or graphical interaction. 
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5.3 Criticism 

Both GOAL and SPACES program suites are available at the 

Scott Sutherland School of Architecture, and the ensuing criticisms 

raised stem from the writer's 'hands-on' experience. However, a 

fuller critique of GOALs' use for a large construction project 
12 may be found elsewhere. 

The primary criticisms of GRAMPs' data aquisition and manip­

ulation facilities relate to the restriction to orthogonal building 

fonns, and the aggregation of a limited range of primary shapes into 

larger aggregate complex volumes. It is often difficult for the 

archi tect to construe his design in these terms. 

The potential GRAMP user has to have a fairly well advanced 

concept of his building before he can describe it to the system, 

and therefore design generation at the keyboard compares 

unfavourably with traditional pencil and paper techniques. The 

effort expended in generating the input data often acts as a 

disincentive for the user to make subsequent alterations, although 

this is not directly attributable to the computer program. 

GRAMP is nevertheless a simple, if stylised, graphic data 

handling system, which is easily understood. It perhaps works 

better in theory than in practice. 

6 Surrmary 

In this chapter the data structuring systems of four graphics 

based systems have been briefly described insofar as source code of 

carmercially available software is available. 

All of the systems described impose either limitations on 

the user's building geometries, or drawing conventions. They 

represent a trade-off between simplicity and generality. 
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6.1 

CHAPTER 6 

1 Review 

The structure and nature of the UK archi tectural profession 

has been noted and a description of the architectural design 

process advanced. 

The problems inherent in describing geometries to computers 

have been examined, as have the follow-on effects of these 

descriptions to the data structures required to hold the descript­

ions for CAAD applications. 

Examples of the data structures of existing graphic handling 

~omputer programmes have been reviewed to illustrate the inter­

relationship between data structures and user limitations. 

It has been noted in chapter 1, that the uptake of CAAD 

systems by architects has not been as rapid as that of other 

members of the building industry. Of the many reasons advanced to 

explain this reticence, the following factors may be given pre­

dominance: 

1 The relative cost of CAAD systems in comparison 

to the turnover of the majority of architectural 

practices. 

2 The mismatch between CAAD processes and the 

architects' traditional manner of undertaking his 

design work, and 

3 the inherent difficulty of describing geometry 

to the computer, which requires the architect to think 

of building description in unfamiliar ways; terms 

which become clear after the most far-reaching 

decisions have already been taken. 

Whilst there is little that architects can do to influence 

the cost of computer systems, there is scope for mitigating these 

latter two disadvantages. 
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2 Definition Of The Problem 

To be an aid to architects, a 80mputer system must offer 

the following features: 

1 It must make available reliable appraisals of 

2 

potential design solutions at the stage at which the 

archi tect requires them, acting on the information 

which he has at hand. 

It should not involve the architect in unfamiliar 

descriptions of building form. 

3 Operation of the computer system should not 

distract the architect from his primary task; design. 

4 It should allow for the evolutionary expansion 

5 

of the design data base, and above all 

The computer aids must be appropriate to the 

architects needs. 

The problem then, is to produce a system which fUlfils the 

above requirements. 

Several attempts have been made to address these problems, 

most notably, GABLE, (described in chapter 5), and HUNCH. As will 

be suggested, these two computer programs are part-solutions. 

2.1 GABLE 

The GABLE suite of programs satisfies the first of the above 

criteria; the integrated data base permits the user to carry out 

relatively sophisticated performance appraisals with very little 

additional effort to that of creating the input geometry data. 

It is in the latter area that the system is most cpen to 

criticism. Users are limited to creating geometries on the graphics 

terminal screen through crosshair cursor. 

The operation of the system requires constant attendance on 

the machine which inevitably detracts the designer from the task 

of designing. 

The interstorey interpretation program, ISAAC, is an 
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excellent and practical concept, if perhaps requiring a too 

structured data input procedure. The roof interpreting program is 

even more constrained. 

GABLE would be enhanced by a data input system more in line 

with traditional drawing techniques, such as are described in the 

remaining chapters of this thesis. 

2.2 HUNCH 

The problem of advahced forms of graphic data input was 

investigated by the Massachusetts Institute of Technology, and in 

1971 produced HUNCH1,2,3,4,5, which penmits graphical input through 

the continuous digitisation of sketch drawings. The overall 

intention was to get the computer to make usefUl interpretations 

of sketches without employing a knowledge of the subject being 

drawn; ie. to generate an understanding from the limited data 

created by the process of digitisation. 

The programs monitor the coordinate posi tions of ei ther a 

light pen on a cathode ray tube, or an ink pen on a digi tising 

tablet, and the pressure with which the stylus is pressed against 

the drawing surface. Further facilities display and allow the 

manipulation of the data base at various stages in the interpret­

ation process. 

The digitising tablet or screen can be adjusted to send 

coordinate positions at a fixed rate which can vary between 16 and 

200 points per second. Consequently the speed of the stylus between 

each coordinate pair is determined. Monitoring the vp.locity of the 

stylus enables corners to be deduced on the assumption that the 

minima of the velocity time graph of the stylus accords with a 

change of direction as illustrated in Figure 6.1 overpage. 

Having interpolated the point in time at which the turning 

points are passed through, the coordinate pairs separated by two 

such corners can be subjected to a line of closest fit algorithm 

and straight lines superimposed on the sketch drawing. 

119 



...... . . . . 
: · 

· · •• 1· • • • • • • . .. . . . . 

........ 
· · 

· · · . . ••• s 

6.4 

a) Coordinate points monitored by the digitiser 

time 

b) Velocity/time plot of the stylus during digitisation 

Figure 6.1 Stylus Monitoring During Continuous 
Digitisation Of Sketches By HL~CH 

However, to take account of curves, the path of the stylus 

is also monitored for 'bentness'. Bentness is defined in Figure 6.2 

below. 

• 

B 
t 

A 
Bentness = B 

Figure 6.2 Definition Of Bentness In HUNCH 

Where supposed comers coincide with a high degree of 

bentness, or bentness greater than a preset critical value, changes 

in direction are confinned. However, the number of points in the 

base line (B) used in the bentness calculation will have a signi­

ficant effect upon the nature of the curve which the system will 
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act upon; the greater the base line the more severe will be the 

curvature necessary to confirm a change of dire~tion. Consequently, 

the number of points is a parameter whose value has to be set to 

sui t the users 'fist'. Clearly the HUNCH system is construed as 

dealing with linear drawings, and the identification of slow arcs 

seems tenuous. Slightly overlapping lines and line ends in close 

proximity are made to join at their intersections. Again a user 

entered tolerance factor determines how small a separation will be 

before this enhancement is enacted. 

The other feature of the drawing monitoring, is the pressure 

applied to the stylus, and the overscoring of lines. In the first 

case, a high pen pressure indicates greater importance being 

attatched to the line by the user than those drawn with a lesser 

pressure. Similarly, overscored lines are allocated greater impor­

tance than single lines. 

The enhanced line drawings are processed to produce enclosed 

spaces, and the data is held in a hierarchical data structure at 

four levels; object, space, enclosing lines, and node points. 

2.3 CRITICISM 

Both GABLE and HUNCH attempt to interpret two-dimensional 

representations of three-dimensional objects. GABLE overtly treats 

solids as extrusion of their plan forms, whilst the later versions 

of HUNCH relied on the user to supply additional information to 

the system interactively to enable the computer to decode the 

drawing database. 

"The next question to be asked is 'What 
balance can be struck between an intellig­
ent but unwieldy system, and a tiresane 
but practical one?'" 5 

ie. between HUNCH and GABLE. 

Whilst it is recognised that a total building description 

is an end in itself so far as the architect is concerned, the 

derivation of the description requires ~t specified attributes 
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'indexed' by the geometric description: The spe8ification defines 

'what' a thing is, and the geometric description describes 'where' 

it is, and how 'it' relates to all of the other things in the data 

base. Later implementations of' HUNCH incorporated a logical data 

structure based upon the CONNIVER logical language, which atterrpted 

to permit the simultaneous top-down decorrposi tion of' the data and 

the bottom-up association of graphic drawing data, and perhaps this 

later development influenced the earlier interpretation system. In 

the event, the concern with intent and emphasis of lines in a 

drawing would appear to make HUNCH inappropriate for practical 

applications . 

GABLE is a closed system. The data aquisition serves the 

needs of its embodied appraisal and other applications programs. 

As such it is a success, but it would be a great advantage if the 

geometric description were 'portable' for implementation in other 

systems, and there seems to be no reason why this should not be 

done. The shortcoming of' the GABLE system is in it's fixed method 

of' data entry which does not accord well with traditional techn­

iques. There is no reason to co~ider tradi tional techniques 

sacrosanct, but nevertheless, the problem identified is the need 

to encourage the use of CAAD by architects. 

The idea of contextural data structures, as embodied in the 

more recent versions of HUNCH are still experimental. Whilst not 

invalid, there is the danger that the context becomes rigid, as 

for ex~le, the context in GABLE which although unstated, limits 

building descriptions to loadbearing wall structures. 

2.4 PROPOSED SOLUTION 

In order to satisfy the problem stated on page 118 , the 

approach of HUNCH is accepted insofar as the interpretation of 

sketch data. The circuitous methods by which HUNCH does so are 

rejected in favour of straightforward geometriC testing. 1he 

delineation between inner and outer enclosures used in GABLE are 

also rejected in favour of automatic detenmination. 

Such an interpretation system would help encourage 
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the adoption of computer aids by; 

a permitting the description of building form to 

the computer at the earliest stages of the design 

process, thus permitting access to appraisal aids at 

the point at which they can provide the most benefit. 

b exactly matching the architects' traditional 

pencil and paper techniques, al though providing him 

with the option of alternative forms of data entry if 

he so wishes. 

c in the case of continuous digitisation of 

sketches, not distracting the designer from his design 

task, and 

d allowing for the open ended expansion of the 

buildings geometric description. 

3 Resource Limitations 

All projects are necessarily constrained by the resources 

available for their realisation. For projects involving computer 

graphiCS, the limitations fall under the headings of hardware, 

firmware and software. 

3.1 HARDWARE 

Although there are three types of computer processor in the 

Scott_Sutherland School of Architecture, ( a range of small a-bit 

microcomputers, a range of Tektronix 4050 series desk-top computers, 

and a DEC20 36-bit mainframe computer installation located 

at a central RGIT facility ), selection of the computer system was 

dictated by an external consideration. The digitising tablet, (a 

Tektronix 4954,AO size), is controlled by a circuit board resident 

in a Tektronix 4010 graphics terminal. The terminal has no local 

processing capacity, thus the user is constrained to use the DEC20 
mainframe computer accessed by modem. 

The resulting hardware configuration is illustrated in 

Figure 6.3 overpage. 

123 



6.8 

Key: 
1 Tektronix 4954 digi tising tablet 
2 pen/tablet link. unit 
3 Tektronix 4010 vector graphics termdnal 
4 Gandalf Modem 
5 DEC20 mainframe computer processor and 

secondary data storage. 

Figure 6.3 ENIGMA Hardware Configuration 

3.2 FIRMWARE 

The DEC20 canputer is operated by the TOPS20 operating 

system. It also has canpilers for most high level programming 

languages, and also machine code facilities. The operating system 

also pennits access to public access subroutine libraries. 

Several hundred remote terminals distributed throughout all 

RGIT sites are linked to the DEC20 by an intelligent modem, 

GANDALF. 

3.3 SOF'IWARE 

As previously stated, the DEC20 supports most high level 

languages. However, although the digitising tablet may be used to 

draw on the Tektronix 4010 tenninal off-line as a dumb drawing 

system, when used on-line it is driven and accessed by calling 

routines written in FORTRAN. 
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Figure 6.4 below illustrates the interdependence of the 

FORTRAN 
user program 

J 

• J, 

UTIL subroutine TEKLIB subroutine 
library library 

(ABACUS) (ABACUS) 

Tektronix High Level 
PLOT 10 routines ...--. 
on public access 

TEKPAK 

1 
Tektronix low level 

macro routines I--
in mainframe 

1 
Tektronix finmvare 

in terminal 
I 

~ 1 
TektronixVDU Tektronix tablet 

operating macros operating macros 

Figure 6.4 ENIGMA Software Configuration 

various sources of coding. A users graphic application program 

may draw on existent routines in public access libraries. In this 

case, there are two sources of FORTRAN subroutines written by the 

ABACUS Unit of the Uni versi ty Of Strathclyde, UTIL and TEKLIB. 

The former contains subroutines which carry out such functions as 

the setting up of control parameters to initiate the correct 

presets for the various hardware devices in the configuration, 

opening secondary files and setting the communication baud rate. 

These functions have to be invoked only once in the program. The 

latter library contains routines such as drawing arcs, chained 

lines etc. However, some TEKLIB routines call upon routines from 

UTIL. Both of these libraries routines call upon a further library 

of routines resident in the system. These are the Tektronix PLOT 10 
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high level language graphics routines. However, sane UTIL and 

TEKLIB routines are written directly into machine code or similar 

low level language. 

On compilation the body of user code and subroutine libraries 

are interpreted into machine code, which will concatenate those 

subroutines already in machine code. The machine code sequences, or 

macros, correspond with the pulsed signals which communicate with 

the terminal. 

The terminals finnware decodes these sequences into device 

operating instructions, and opens channels to other devices as and 

when called. 

Other libraries of subroutines are available. However, those 

in GING-F and PICASSO are designed more for application to draught­

ing systems. They require more complex information, eg. line 

thickness and type etc. whilst limiting access to peripheral 

devices. 

4 ENIGMA 

Using the resources outlined above, computer programs have 

been developed as a step towards overcoming the problems which 

discourage architects from adopting CAAD aids. 

The suite of catputer programs is called by its acronym 

ENIGMA; an Enhanced lnterpret~ve Qraphics ~odule for Architects. 

It interprets raw graphic sketch data created by the designer 

either at the digitising tablet or on a graphiCS terminal, and 

compiles a hierarchical data structure which is transportable 

between differing application programs. GraphiC data may be drawn 

in any order prior to the interpretation taking place. Building 

geometries are treated as extrusions of their plan forms. 

The logic of the program is explained in the remainder of 

this chapter. The processes described fall into four sequential 

procedures; data capture, line identification, picture enhancement, 

and shape identification. 
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4.1 DATA CAPTURE 

This section of software, written as a subroutine, operates 

the tablet through the use of subroutine libraries as previously 

described. 

A sketch is a freehand line drawing on a two-dimensional 

surface. Lines may be drawn in any order, with any degree of 

curvature. Moreover, several lines may be drawn continuously 

without lifting the pen from the paper. Individual lines may cross, 

almost meet, or be totally independent cf one another. 

In the context of an architects drawing carried out by the 

continuous digitisation of points, we may make three assumptions; 

a all freehand sketched lines can be described as a 

sequence of small straight line segments joining each 

pair of sequentially recorded pOints, 

b lines which almost intersect are intended by the 

drawer to intersect, and 

c all lines which cross leaving a short tab protruding 

are intended by the drawer to meet exactly. 

The significance of these assumptions will become apparent 

in due course. 

The Tektronix 4954 digitising tablet has a sensitised surface 

measuring approximately 1 000 x 750 mm. Beneath a protective top 

surface is a mesh of wires which divide the surface into a grid of 

4096 x 3072 squares, ie. roughly four wires per millimeter. This 

provides a resolutionto half a grid square; just less than ! 0.125 

of a millimeter. In the 'continuous model of operation, the tablet 

returns a three part locational record at an approximate mte of 

five positions per second. 

The three parts of the locational record consist of a 

I header I character, followed by an lX' and a Iyl coordinate 

relative to the bottom left hand corner of the digitising surface. 

The coordinate values are given as integers. 

Figure 6.5 overpage illustrates the fUnction of the header 

characters. 

127 



1 

6.12 

• 7 Point Header Coordinate 
No. Character Values 

6 x y 

1 29 2014 1507 
2 26 2017 1508 
3 26 2022 1511 
4 26 2029 1515 
5 26 2041 1523 
6 31 2050 1530 
7 53 2059 1536 

Figure 6.5 Data Output Fran Tablet In Continuous 
Digitisation Mode 

Here, the typical output produced by the digitisation of the 

line shown on the left, is presented in the table on the right, 

(enclosed by the heavy line). 

The header character value 29 indicates that the stylus has 

just been bought into contact with the digitising surface and 

pressure has been applied; ie. the first point in a sequence. The 

value of 26 indicates intennediate points along the line. The value 

31 indicates that pressure has been released al though the stylus is 

still in contact with the surface; ie. the last point in a line. 

The value 53 indicates that the stylus is still being tracked by 

the tablet, but it is not in contact with the surface. 

As described in chapter 3, section 4.2.11b) on page 47,­

this data triad can become corrupted due to several causes. 

Consequently, a data validation routine has been included in the 

data capture program to mitigate the occurance of corrupted data. 

This is done by filtering out all header characters with their 

associated coordinate data other than those with the values of 29 

and 26. This means that separate lines are distinguished by the 

occurance of a 'new line' header in the data list. 

A second feature which requires same controlling action is 

the rate at which data can be generated by the tablet, too much of 

which might rapidly fill the available data storage, and moreover 

increase the amount of carputation required for the analysis of the 

data. Furthennore , small incremental changes in position due to 
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a high frequency rate is more likely to induce logic errors in 

the line identification routine. The slower the stylus travels 

across the drawing surface, given a fixed rate of data sampling, 

the smaller the space intervals between sampled points. At the 

start of a line when the stylus is being accelerated, and again at 

the end when it is decelerated, the intervals between the sampled 

points decreases accordingly. Moreover at these periods the users 

hand might be shaking, and the lateral movements become significant 

in relation to the interval. The sensitivity of the gradient of a 

line to the ratio of lateral movement and base length is demons­

trated in Figure 6.6 below. 

~ ~I~ '. ax 

ed direction of drawn vector 

lateral 
stylus 
error 

Figure 6.6 Illustration Of Sensitivity Of Gradient To 
Stylus Error In Relation To Interval Length 

Without rectification, the ends of a line would be less 

reliable than its middle. However, in practice the nodal points of 

the lines are generally more significant than their centres. 

To eliminate this source of potential error, a minimum base 

length interval is introduced into the algorithm. Unless the 

interval between the last recorded point and that currently 

monitored is greater than 10 tablet units (2.5mm approximately), 

the current point is ignored. This ensures that recorded points 

do not bunch up at the start and end of a line. 

Figure 6.7 overpage shows the logi: flow diagram for the 

subroutine 'TABLIT' which controls the data capture system, 

eliminates spurious header characters and imposes the minimum 

interval. The algorithm also draws the picture as it is digi tised 

onto the terminal screen so that the user can check that the 

picture has been correctly captured. 
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Subroutine 
TABLIT 

lift pen 
re-arm 
tablet 

Write Point 
to File 1 

Tablet off 
Close File 1 

Write point 
to File 1 

draw to point 
on screen 

Figure 6.7 TABLIT - Data Capture And Validation 
Algorithm 

6.14 

Once the stylus has been taken out of 'presence', ie. the 

stylus breaks contact with the digitiser, the tablet has to be 

re-initiated before fUrther digitisation can begin. This involves 

a small time delay, and the user has to watch the 'ready' light on 

the tablet link box before he can proceed. 
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One problem yet to be overcome is the occasional loss of 

the last buffer of data returned to the the sequential access data 

file. The data is buffered in the graphics terminal until the DEC20 

canputer is ready to re~eive and process the data, (as is the case 

wi th all time-sharing canputers). It is not yet clear whether this 

problem resides with the Tektronix 4010 terminal, the TOPS20 

operating system, or the GANDALF modem. This problem has only been 

experienced since additional core memory was added to the DEC20 in 

December 1983. This loss of data is awkward, requiring the picture 

to be redrawn until it is successfully captured. Current work is 

being carried out to overcome the problem by permitting the picture 

to be overdrawn. 

4.2 LINE IDENTIFICATION 

Following the digitisation process, the triad coordinate 

data are stored in a list on a sequential access file in the form 

illustrated in Figure 6.8 below. 

FILE TBDAT:DAT 
(start header for 1st line)- 29 850 

26 849 
26 848 

(intermediate headers of 
1st line) 

26 846 . 
26 
26 

start header for 2nd line)-.29 

intermediate headers of f;~ 
2nd line) : . 

1122 
1123 
831 
848 
873 

1439 
1422 
1394 
1368 

966 
949 
958 
953 
948 

('x' coordinates) --~. 
('y' coordinates) 

Figure 6.8 Data Fonmat As Output From 
Subroutine TABLIT 

It will be seen that all coordinate values are positive, 

integer and have values between 0 and 4096 (on the 'x' axis), and 

3072 (on the 'y'). 
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It is unlikely that an architect would draw to a scale of 

more than 1 to 2500, (the scale of an Ordinance Survey map). '!hus 

the maxDmum numerical values of distances represented on the 

digi tising tablet will be no greater than 2560.000 meters, ie. 

the width of the tablet being 1.024 meters at a scale of 2.5 m 

per millimeter to a scale of 1:2500). Consequently, when values 

are converted from integer to real, a FORTRAN data format of F9. 3 

will be adequate. 

'!he picture as recorded is in the form of a great number of 

small line segments which represent a fewer number of straight 

lines. '!he segments are combined into these larger straight lines 

by the subroutine LINEID, whose logic flow diagram is shown in 

Figure 6.9 overpage. 

Each line segment has its gradient calculated and compared 

to that of the segment preceeding. If the two gradients, expressed 

as an angle are equal to within a user specified tolerance value, 

the two segments are concatenated, and the line of closest fit 

through the points calculated, whose gradient is then taken as 

the test for the next segment. This will be explained more fully 

in due course. '!he tolerance value between the gradients within 

which concatenation takes place has a default value of !5°, 

although an experienced user may adjust this value to suit ,his 

'fist' . 

In actual fact the gradient calculation is not straight­

forward.. Vertical lines produce an infinite Tangent value, and 

therefore have to be filtered out for special treatment. Any 

occurance of a zero interval on the 'x' axis indicates a vertical 

line, and by examining the direction of the 'y' interval, +900 

and _900 are easily deduced. 

A second problem which has to be overcame occurs because 

Tangent fUnctions do not distinguish between the first and third, 

and second and fourth quadrants, which is a potential problem 

when comparing the gradients of the line segments. '!he problem is 

overcome by the introduction of a stmple test. The angles which 

the two segments make with the horizontal are multiplied together 
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Wri te to File 2 
X1,Yl,X2,Y2j 
X1=X3,Yl=Y3 

Subroutine 
LlNEID 

read 1st point 
fran File 1, 
convert to real 

Hl Xl Yl 

read next point 
convert to real 

H2 X2 Y2 

read next point 
convert to real 

H3 X3 Y3 
00 EOFexit 

Write to File 2 
Xl,Yl,X2,Y2j 

Grad A = Grad.9 
X1=X2,Y1=Y2 

6.17 

X2=X3,Y2=Y3 

Wri te to File 2 
Xl, Y1,X2 ,Y2 

Delete File 1 
Close File 2 

Figure 6.9 LlNEID - Flowchart Of The Algorithm For 
Seperating Distinct Lines From Sketch Data. 
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and, if the produ~t is negative, then the segments are in 

adjacent quadrants and their angles are added to give their 

angular deviation, otherwise they are subtracted. 

Figure 6.9 therefore gives a highly slinplified illustration 

of the calculation involved, and the calculation of the segments 

slope is a subprogram in its own right. 

Further problems involve the treatment of arcs, and 

sequential curvature. These relate to the difficulty of deciding 

when a slow curve should be interpreted as a straight line and 

visa versa. The category of problem is illustrated in Figure 6.10 

below. 

a -------------

Figure 6.10 Illustration Of Sequential Curvature 

Here the differences in gradient between any sequence of two 

cojoined line segments is sufficiently small as to be interpreted 

as being members of the same straight line, thus the series abcdef 

is interpreted instead as the line vector af. 

To mitigate the effects of sequential curvature in the line 

identification algorithm, the LOLS (line of least squares through 

the previous points on the straight line was incorporated. 'lh.is 

has the effect of attenuating curvature, thus increasing the 

sensitivity of the algorithm to changes of direction. 

The Line Of Least Squares' gradient, (m), is given by the 

equation -

m = 
!XxY x N - I'XxIy 

Ix2 x N - ( IX) 2 

Where X and Y are the numerical coordinate values of 
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line graph, and N the number of points upon it. 

It will be noted that when encoded into a calculation routine 

there are occasional instances of misleading results being gener­

ated. This may be verified by the test program whose coding is 

listed below, and the input data fed to, and the 

by it, are presented in Figure 6.11 overpage. * 
DE].().FOR 
OPEN (UNIT=20,FILE= 'PLAN01 ') 
FD=1 
FORMAT(31) 
FORMAT ( 21, 1F) 
READ (20,15) IH,IX,IY 

results generated 

0100 
0200 
0300 15:: 
0400 35 
0500 
0600 
0700 30 
0800 

SX=IX jSY=IY jSX2=SX*sx. 
READ (20,15,END=10) IH,IX,IY 
IF (IH.eq.29) GO TO 10 

jSXY=SX*SY 

0900 
1000 
1100 
1200 
1300 
1400 25 
1500 
1600 C 
1700 20 
1800 C 
1900 10 
2000 

SX=SX+IX ;SY=SY+IY ; SX2=SX2+IX*IX 
SXY=SXY+IX*IY jFD=FD+1 
CC=SXY*FD-SX*SY jDD=SX2*FD-SX*SX 
IF (DD.EQ.O) GO TO 20 
GD=ATAN(CC/DD)*57.2957805 
WRITE (5,35) IX, IY ,GO 
GO TO 30 

GD=90.0 jGO TO 25 

CLOSE (UNIT=20,FILE='PLAN01') 
STOP iEND 

Listing Of Line Of Least Squares Demonstration Program 

The graph of the input data shown in Figure 6.11 shows what is 

clearly a'vertical' freehand line, whilst the line of least sq~s 

calculation produces , over the first eight data points, angles which 

fail to describe the line. One possible reason for this ananaly is 

the diminishing confidence wi th which the 'x' values may be placed 

upon a line as it approaches the vertical, which may lead to 

ambiguous cases being encountered. Al though this is not a frequently 

occuring problem, the possibility of these ambiguities exist, and 

for ·that reason it is necessary to errploy both the precedingly 

described tests in sequence, in order to deal with arcs. 

Of the two tests of line continuity, the one by comparison of 

the consecutive changes in the segments' gradient, and the other 

by comparison of a segments gradient to that of the LOLS thrrugh 

* A fuller discusion is presented in Appendix 2, page 238. 
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INPUT DATA GRAPHICAL OUTPUT DATA 
REPRESENTATION 

@EXE DEM). REL 
Coordinate ~ . I + i ~! LINK : Loading I ~ I ; 

Values 
; J I 

(LNKXCT DEM) execution) 
i I , .. 0 29 424 2177 ! I I X Y gradient in 

26 422 2173 ' , 
422 2173 63.43495 2100 .. 

26 421 2161 ~ 

i! 421 2161 78.36637 
26 422 2147 I 422 2147 80.53768 · , 
26 423 2133 I 423 2133 61.55707 
26 423 2116 : ! 

· .. 
423 2116 -64.44004 

26 422 2103 2000 422 2103 57.99462 
26 422 2088 · , ~ 422 2088 79.00914 
26 422 2072 422 2072 83.41806 
26 422 2055 ~ i ! ';" 422 2055 85.31911 
26 422 2039 1 

. 1 
422 2039 86.36367 : 

26 423 2023 1900 423 2023 79.50852 
26 425 2005 425 2005 -86.48982 
26 426 1988 · , , 

426 1988 -87.56896 
26 425 1969 · . I 

425 1969 -87.99547 i 1 i .. 
26 426 1952 426 1952 -88.20434 
26 424 1935 1800 ~ t---. 424 1935 -88.32988 
26 423 1914 h: ""; -- -..... 423 1914 -88.29580 
26 · . 1;-', 

424 1893 .. 424 1893 -88.42555 
26 423 1870 : ~ .. -- 423 1870 -88.38298 , · . ' 

26 422 1848 1700 
: , I 422 1848 -88.01156 

26 422 1826 422 1826 -87.46401 
26 422 1802 

· ~. 422 1802 -86.55998 
26 423 1776 423 1776 -86.51142 
26 423 1750 423 1750 -86.46065 
26 424 1729 1600 424 1729 -87.32326 
26 428 1705 · .. 428 1705 -88.29218 
26 429 1680 · . , 429 1680 -88.53589 
26 430 1657 , I 430 1657 -88.61378 
26 428 1631 428 1631 -88.72911 
26 429 1606 1500 429 1606 -88.80231 , 
26 ' . 

-88.87598 428 1577 , 428 1577 , 
26 428 

, 
1546 428 1546 -88.93996 

26 · . 426 1517 I 426 1517 -88.98362 
26 426 1484 1400 

j, , , 426 1484 -89.02479 
26 424 1449 I 424 1449 -89.01319 
26 424 1413 ! ! i 424 1413 -89.00104 
26 422 1377 

t I 422 1377 -88.88032 
26 419 1340 ' ' 419 1340 -88.38110 ! 
26 418 1306 1300 

! • · ~ 418 1306 -87.13562 
26 418 1279 I 418 1279 -82.94859 I 

26 419 1254 : ! : 419 1254 -1.32234 
26 420 1232 420 1232 79.95088 
26 420 1212 420 1212 84.73996 
26 418 1197 1200 418 1197 86.77346 I I 

400 500 STOP 
END OF EXECUTION 
CPU TIME: 0.48 

Figure 6.11 DEM) Program Input And Output 

136 



6.21 

the preceeding points, the fonner is more sensitive to changes in 

direction than the latter. This can be demonstrated by reference 

to Figure 6.12 below. 

a~ ____ --=b~ 

a) Canparison of segment gradients cd & de e 

--a. ______ -. ___ --__ ~9-~--

b) C~ison of gradient de to gradient of 
the line of least squares 

Figure 6.12 Comparison Of The Sensitivities To 
Changes In Direction By C~ing 
Gradients Between Segments And LOLS. 

e 

The deviation to produce a significant swing in the LOLS 

by a segment will have to be sufficiently large such that it 

would have already failed the test by canparison of segments. 'rhus 

any test by b) in which a swing greater than the declared tolerance 

value is detected must necessarily also be detected by method a). 

Therefore, by applying both tests in the line identification 

algorithm, spurious gradients produced by the LOLS process will be 

apprehended, and its effect attenuated. 

When a change of direction is discovered to occur, the 

coordinates of the start of the line fonned by the concatenation of 

the line segments recognised as continuities, and the coordinates 

of the point at which the change of direction occurs are written 

away to a sequential access file as the start and stop points of 

the discovered line. Unless a new line header is the next value to 

be encountered, the stop point of the last line becomes the start 

point of the next. 

Similarly, when a new line header is encountered, the prior 

coordinates become the end point of the last line irrespective, and 

the new line point becomes the start coordinates of the next. 
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If neither a new line header is encountered, nor is a change 

of direction determined, then the point is accounted a continui~ 

of the existing line and the segment concatenated to it. 

The algorithm also compiles a companion file which stores 

additional infonnation about each discovered line. The data stored 

at this juncture is shown in Figure 6.13 below. 

position 
in 

sequential 

1 
2 
3 
4 

n 

LINE DATA 

coordinate data 
start stop 
point point 
x y x y 

xal Yal xa2 Ya2 
Xa2 Ya2 Xb2 Yb2 
Xb2 Yb2 Xc2 Yc2 
Xcl Ycl Xc2 Yc2 
· · · · · · · · · · · · · · · · Xnl Ynl Xn2 Yn2 

COMPANION FILE 

flag I1\.II1i)er Line of Least Squares 
setting of Data 
1,2,3,4 points gradient constant of 

intersection 

1 A ml kl 
2 B m2 k2 
3 C m3 k3 
1 D m4 k4 
· · · · · · · · · · · · · · · · 3 N on kn 

Figure 6.13 Output Data Format From Subroutine LlNEID 

The 'flag' setting indicates one of four possibilities; the 

line is the first in a chained sequence, it is intermediate in a 

sequence, it is the end of a sequence, or it is independent of any 

sequence. This information is necessary for enhancing comers of 

line intersections as will be described in the next section. 

Also recorded are the number of points lying on each identi­

fied line. This reflects the confidence with which each lines 

existence is asserted, and is also necessary for use in the 

enhancement routines, as are the values for the general equations 

of the LOLS. 

It will be noted that this scheme records arcs as a series of 

line segments. Slow curves will be described as longer lines fonming 

a polygonal shape, whilst sharp curves, particularly over substant­

ial arcs, might well be lost. 
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4.3 CORNER ENHANCEMENT 

Because in continuous digitisation mode the tablet is 

sampling the mesh nodes tr~versed by the stylus, there is a high 

probability that junctions between two lines will become rounded 

or lost as illustrated in Figure 6.14 below. 

a) as drawn 

b) as digitised. 

c) as intended 

Figure 6.14 Corners Lost As A Consequence Of 
Continuous Digitisation 

When the coordinate data has been analysed be the LINEID 

subroutine, these 'lost' corners will be represented by a small 

number of line segnents with only two or three pOints along their 

lengths, (including those at their ends). Additionally, they have 

a flag value of 2, ie. they are in a sequence or chain of lines, 

in the companion file. 

It is assumed that where a couple of such lines exist in 

between two longer lines having significantly more data points 

along their lengths, the intention of the user was that the two 

longer lines were to meet at their intersection, and that the inter­

vening segnents are due to the digi tisation error. If, however, 

there is a chain of more than three small three point segments, it 
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is assumed that these represent an intended arc. These assumptions 

are reasonable, since the length of these segments are short in 

comparison to the concatenated vectors between which they lie. The 

number of segments, and number of points thereon, may be specified 

by the user to suit his 'fist' so that the corner enhancement 

subroutine can filter out these segments, and reconstruct the 

comers. 

Where a lost corner is detected, the point of intersection 

given by the interaction of the two lines of least squares, whose 

constant values are held in the Gompanion file, is ~alculated. The list 

of lines in the sequential store are rewri tten to a second line fi le, 

inserting the new line end coordinates and skipping the intenned­

iate segments. The logic flow diagram for the subroutine, CORNER, 

which rebuilds lost corners is given in Figure 6.16 overpage. 

Merging Near Points 

Originally it was assumed that it would be adequate at this 

stage of the process, to enhance the drawing simply by moving the 

end points_of the recorded lines to the intersection points given 

by their line of least square equations, thereby replacing the 

inexactitude of a freehand sketch with the preCiSion of its line 

drawing equivalent. The first implementation of an algorithm to 

achieve this revealed a class of problem that required solution. 

This condition is illustrated in Figure 6.15 below. 

a 

c 

e 

user defined 
tolerance zone 

Figure 6.15 Line Intersections Involving Near 
Parallel Lines 
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WI'i te to File 
record ~ 

Subroutine 
CORNER 

Read records 
xayaxbyb 
£'1 nl ml kl 

Read records 
xc yc xd yd 
f2 n2 m2 k2 

on EOF 

Read records 
xe ye xf yf 
f3 n3 m3 k3 

on EOF 

Write records 1 
to file 

Record. l=recoro 2 
record 2=recoro 3 

6.25 

Swap record. 2 
for record. 3 

intersection 
point of lines 

1 & 3 (X Y) 

Figure 6.16 CORNER - Flowchart Showing The Cornel' 
Replacement Algorithm. 
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Suppose that the least squares analyses describe the three 

lines ab, bc, and de as shown in in Figure 6.15 (page 6.24). 

point:_£bas been reconstructed, and the calculations give the 

points of intersection between ab and de as P, and bc and de as 

Q. If the interval bQ is small, we may conclude that the user .J 

intended all three lines to meet at a pOint. Projecting all the 

lines to their intersection pOints would produce a spurious 

addition to the triangle PQb. On the other hand, taking the cent­

roid of the triangle as the junction of the three lines would 

produce serious distortions to the picture. 

The problem is resolved by a subroutine, MERGE, which reads 

through the line data list, taking one line at a time, looking 

for end coordinates 'near' to those of the line under consideration. 

'Near' in this case is specified by the user, otherwise a default 

value proportional to the scale at which the drawing is being 

carried out is used. Once all the near points have been identified, 

they are averaged out, and the new values overwritten in the line 

data list. 

Should any near points be encountered, then the line of least 

squares description of the lines involved are made void. Inevitably 

the implementation of the MERGE subroutine introduces some distort­

ion to the drawing. However, it is less than would be produced by 

the straightforward implementation of the al ternative. TIlere is a 

possibility that if too large a tolerance value is selected, 

serious distortion can arise, since distant points might be 'dragged' 

in to the mergeing sequence. In practice it would seem that the 

advantage of dealing with the interaction of near parallel lines, 

a situation frequently encountered in architectural plan sketch 

drawings, outweighs the potential disadvantages. 

If, however, near points lie outside the tolerance zone, the 

lines will remain unaltered. 

The logic flowchart of the MERGE subroutine is given in 

Figure 6.17 overpage. 
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Open T~rary 
File 

Read Line A Data 
fran File 2 
a(Px,~),b(Qx,Qy) 

On EOF 1----+---1 

6.27 

Read Line B Data r------------~---------__, 
fran File 2 
c(cx,cy),d(dx,dy) 

Calculate 
mean X and Y 

Rewind Temp 
File 

Read Line 
record f.ran 
terrp file 

On EOF 

OVerwrite 
new X,Y to 
Line no & 
end. given by 

ternp file 
readi 

On EOF 

and end no. in 
Tenp>rary File 

Figure 6. 17 MERGE - Flowchart Showing The Near Point 
Merging Algori tho. 
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4.4 SHAPE IDENTIFICATION 

At the early design stage, many of the appraisals which the 

archi tect might want to carry out involve processing data relating 

to the individual spaces as represented by enclosed shapes on a 

plan drawing. However, the data as stored by the system is unlikely 

to be in a form from which shapes can be extracted until a further 

series of manipulations are carried out upon it. 

First the lines have to be dissociated. The lines of the 

drawing might cross and intersect one another, and these lines 

have to be split into discrete line elements. 

Second, lines not forming part of a shape have to be sorted; 

ie. lines connected at only one end. These lines will be refered to 

hereafter as 'tabs'. 

Thirdly, shapes have to be traced. This process itself 

entails four sub-processes; 

a a trace navigation system based upon a heading 

calculation, 

b the generation and management of a secondary data file, 

c a checking system to determine when a shape has been 

circumnavigated by the trace, and 

d a cheCking and elimination system to ensure that a 

shape is discovered only once. 

Finally, the areas of each shape is determined in order to 

identify the enclosing drawing outline, ie. the shape with the 

greatest area. 

Line Dissociation Algorithm 

The principle behind the trace logic is to select any start 

line and then detenmine the lines which join it at its far end. 

The line which forms the least, (or greatest), angle between the 

pair is selected, and the trace moves on to the far end of the 

line and repeats the process until the trace arrives back at its 

starting point. 

There are six possible relationships between any pair of 
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lines held in the data set so far described, and these are shown 

in Figure 6.18 below. 

b (x,y) 

d. 

a) ab parallel to cd b) ab and. cd meet at an end 

(x,y) 
\'"""" 
\ 

\d 
c) intersection on ab, not cd d) intersection on cd, not ab 

-1 (x,y) 
\ 
\ 

a \ d 

e) intersection on ab and cd f) ab and cd intersect remotely 

Figure 6.18 Intersection Possibilities Between 
Any Two Vectors 

Of these possible relationships, only cases a), b) and e) 

are of direct interest to the tracing algorithm.* Parallel lines 

have to be noted since they will not intersect, and must be 

prevented from being accessed by the point of intersection 

calculation, thereby causing a program failure. Case b) can be 

determined simply by comparing end point coordinates. 

* Gases of indirect intersection c), d) and f) will be of interest if 
the system is extended to take account of drawing construction lines. 
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The intersection determination subroutine, INTEREX, takes 

each line in tum, and then carpares it sequentially with every 

other line. Only if the two lines under consideration intersect 

either at a cammon end, or along their lengths is any fUrther 

action taken. In this situation, the number of nodes which lie 

along the premier line under consideration are tallied, (noting 

each nodes (x,y) coordinate positions). These nodes are then 

checked to ensure no duplications, and rank ordered from their 

minimum (x,y) values up. If there are more than two nodes, ie. 

one at each end, after this ordering process, the line is then 

split into its constituent elements. The original line is 

rewri tten as the line connecting the first and second. nodes in the 
\ 

list, and the additional line elements are given an identifier 

number and appended to the back of the line data list. This 

process effectively nullifies the sequence in which the lines were 

originally drawn. 

The logic flow diagram for the section of the INTERX sub­

routine dealing with intersections within the length of both lines 

is shown in Figure 6.1g oveq>age, and the sub-subroutine for 

splitting disected lines in Figure 6.20 on page 6.32. 

Tab Elimination 

During the course of the above process, it is possible to 

encounter lines with only one, or no, lines connected to it. In 

the former case the line is identified as a I tab I, and in the 

latter as an independent line. 

In both these cases a label is attached to the line in a 

companion file so that when the tracing routine is envoked, lines 

bearing either a tab or independent label are skipped, thus 

reducing the amount of calculation time involved. Should the tab 

have a length smaller than the user declared tolerance value, it 

may be eliminated completely, since it represents an overshoot 

where two lines cross. 
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~------------~.II 
Read Data of 

ab 

Read Data of 
Next Line cd 

On EOF 

Write Line ab 
~---l id no and end 

Calculate 
intersection 
point (x, ) 

point (x,y) 
to T~ File 

T~ File 

Line Intersection 
id no. Coordinates 

ab ax. ay 
ab bx by 

n ox ny . 
m rmc my 

b) Structure Of 
Tenporary File 
Holding The List Of 
All Intersections 
On Line abo 

Figure 6. 19 Flow Diagram Of Algorithm To Identify All 
Disected Lines And Direct Data To Splitting 
Routine. 
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Sort intersections 
in order of 

magni tude of x 

Delete repeated 
intersection 
points on ab 

refer to Line 
Data File 2 

Line ab now 
between pt a & 
intersection 1 

II 

6.32 

Sort intersections 
in order of 

magni tude of y 

Figure 6.20 Flow Diagram Of Routine To Split Bisected 
Lines, In ConUunction With INTERX. 

Tracing Algorithm 

a) Trace Navigation System 

The trace follows the path around a shape by arriving at a 

node and determining the least (or greatest) angle between the 

edge and possible routes fran it. On the first pass through the 

data, the trace takes the smallest angle, and on the second, the 

greatest, thus ensuring that all possible enclosed spa~es are 

covered. 

The process involves several major nested loops. 

There are 68 possible geometric relationships between two 

lines, as shown in Figure 6.21 overpage when considered in terms 
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dxa=O dxa-ve dxa-ve dxa=O dxa+ve dxa+ve dxa+ve dxa+ve 
dya-v .... dya-ve dya=O dya+ve dya+ve dya+ve dya=O dya--ve 

L 
it a a 

+ 
a a a 

U L ~ ~ ~ ~ c c 

JLt .!!& 4 -r ~ ~ c 

b,4: ~ -~ 
b -1/1 

a a a 

a b c b c L _L ILL ~ , c b c I V- a r c 
~ a a a 

-Lu 4-~ W. b b a b 

~ 
_~ a 

~ ~ "l-~ c 
;!l c 

~ -~ a c _. c a c c 
a 

a 

T + b a b b 

l r I ~ ~ ~ c 
c c c c c c 

a a V i>-~ ~ 
b b a b 

b a~ ~ 
c. 

~y yo 
V c ,. a 

c a 

a a 

--.L .. ~ b c b c b V c A ca I I V J a • Ib 

C b (' 

a a 

~ 
a c 

~ ~ e.,,~ ~ -II'f'..b a ~ b Lit:J1 _~b :.Il 
b b a a A a 

Figure 6.21 68 Possible Relationships Between Two 
Joined. Lines In Tenns Of 1heir Horizootal 
And Vertical Increments 
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of the relative heading between them, as described by their resp­

ective horizontal and vertical increments. This matrix discounts 

the other seventeen possibilities when either line has both of its 

increments of zero value, since this possibility has been filtered 

out of the data during the validation process. The matrix includes 

four ambiguous cases where the heading determination depends upon 

the relative magnitudes of the lines gradients. 

Analysis of the 68 conditions leads to the derivation of a 

matrix showing the fUnction of both lines gradients which gives 

the relative heading of the second line relative to the first. 

The angle is expressed in the sense of a caq:>ass heading, and the 

base line is facing south. This matrix is shown in Figure 6.22 below. 

dxb=O 
dyb+ve 

dxb+ve 
dyb+ve 

dxb+ve 
dyb=O 

dxb+ve 
dyb-ve 

dxb=O 
dyb-ve 

dxb-ve 
dyb-ve 

dxb-ve 
dyb=O 

dxb-ve 
dyb+ve 

dxa=O dxa-ve dxa-ve dxa-ve dxa=O dxa+ve dxa+ve 
dya-ve dya-ve dya=O dya+ve dya+ve dya+ve dya=O 

a+b 360+a-b 360+a-b 360+a-b a+b a+b a+b 

180+a-b a-b 360+a-b 360+a-b 180+a-b 180+a-b 180+a-b 360+a-b 

180+a-b a-b a-b 360+a-b 180+a-b 180+a-b 180+a-b 

180+a-b a-b a-b a-b 180+a-b 180+a-b 180+a-b 360+a-b 

-a-b a-b a-b a-b -a-b 180+a-b 180+a-b 

360+a+b 180+a-b 180+a-b 180+a-b a-b a-b 
360+a-b 360+a-b 

360+a-b 180+a-b 180+a-b 180+a-b a-b a-b a-b 

360+a-b 180+a-b 180+a-b 180+a-b a-b a-b a-b 

Figure 6.22 Matrix Of Possible Relationships Between 
Angles a And b To Calculate The Heading 
Of Line be With Respect To Line ab. 
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Fortunately, many of the heading descriptions are duplicated. 

Consequently a logic gate was written which, by simply comparing 

the arities of the axial intervals, determines the value of the 

heading by the sum ordifference of their gradient angles relative 

to the compass, ego if both the increments in the 'x' and 'y' 

directions are both positive, and those of the second line both 

negative, then the value of the'heading is given by the angular 

gradient of the second subtracted from the first. 

Once the relative headings of all the lines meeting at a 

junction have been assessed, the trace navigation system selects 

which route to take and moves up to the next junction having first 

checked to see whether it has completed a circuit. 

To reduce the amount of calculation involved in this trace, 

use is made of the fact that one line element can occur as a 

boundary to only two shapes. Therefore, whenever a shape is traced 

around, a counter for each line set at an initial value of 2, is 

decremented by 1. Thus once it has been identified twice, the 

lines counter value is decremented to zero, and may not be used 

in subsequent trace attempts. A second feature is that at the 

termination of the trace algorithm, the remaining data list will 

contain a number of lines with a counter value of 1. These lines 

must be those forming the external boundary or silhouette of the 

piCture. Note that tabs and independent lines were preset to a 

zero value, so that they too are ignored by the trace routine. 

b) Secondary Data Management 

c) Enclosure Check 

d) Duplication Detection 

These three systems, although having discrete functions, 

are highly interrelated and consequently have to be described as 

one system. Figure 6.23 shows schematically the interaction between 

the four parts of the trace program. overpage. '!he logic flow 

diagram for the whole tracing system is shown in Figure 6.24 a), 

b), and c) on pages 6.37-39. 
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Subrcutine 
TRACE 

Line and C 

Write start and stop 
points to File B 

Find next line in 
chain. Write line to 

File B 

no 

no 

Write chain to files 
PRIMDT and. NODEDT. 
Decrement lines in 
C~ File by 1 

6.36 

2 

1 

3 

-:- Figure 6. 23 Schematic Flow Diagram Of Tracing Algorithm 
Showing Constituent Routines. 

Key: 
1 Secondary Data Manager 
2 Trace Navigator 
3 Enclosure Check 
4 Duplication Detection And Output 
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continued 
in 

Figure 6.24B 
overpage. 

Subroutine 
TRACE 

Read Next Line Data 
A(a,b) 
On EOF 

es 

Write to Temp File A(a) 
Write to Temp File A(b) 

countl = count2 = 2 

Read Next Line Data 
B(c,d) 
On EOF 

yes 

6.37 

B 

call GATE 
yes Wri te B (d) & heading 

to Temp File 

call GATE 
yes Wri te B ( c) & heading 

')....:::......-...... -~ to Temp File 
couht2 =camt2 + 1 

no 

First Section Of Flow Diagram 
Of Tracing Algori ttrn. 
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Shell sort Temp File 
between camtl & co..mt2 
in descending magni tude 

of headi 

camtl = camtl + 1 
count2 = countl 

es 

6.38 

A 

Rewind. Line Data 
)"-----1_---1 New end e = b ....... ~ 

for k=l to countl-3 
r------I Read line no. & end 

coordinate fran Temp 
File. 

Figure 6.24B 

On end. 

shape enclosed 

continued 
in 

Figure 6.24C 
overpage. 

Second Section Of Flow Diagram 
Of Tracing Algorithm. 

154 



Fran Figure 6. 24B 
overpage 

K2=eount2-count1+1 
L2=K2 

) 

Read next PRIMDT entry 
K1=L1=Mn-Nn+1 

no 

Read Nnth record fran 
NODEDT. 

on end (Nn=Mi) 

6.39 

in 
Figure 6.26 
on page 6.43 

Nn:::oNn+1 

Traced. shape al~ 
found. 

B 
See Figure 

6.24A 

where: 

Nn is the start address of shape 
already recorded. in PRIMDT 

Mn is the stop address of shape 
in PRIK>T 

Inode is the ide no. of the line 
in mth record of NODEDT 

IterJ1) is the ide no. of the 
current line in TerJ1) file 

Figure 6.24C Third Section Of Flow Diagram 
Of Tracing Algori ttrn. 
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When the trace algorithm startswith a line from the line 

data file, the end point is examined for connections by comparison 

of coordinates with all the other lines in the file. When a 

connection is discovered, the heading is calculated and two bits 

of infonmation are written off to a temporary file, the connected 

line identification number, (its position in the file) and the 

heading. A counter (which we will call concount) is incremented by 

1. Having processed all lines in the file, the temporary file is 

re-examined and the line with the least heading overwritten in 

the first available list position, and a second counter ( which 

we will call sidecount) incremented by 1. The first line selected 

will be placed in the first location. Cancount is now made equal 

to sidecount. The end coordinates of the attached line are 

substituted for those of the starting line, and the algorithm 

reinvoked. Concount minus sidecount gives the number of possible 

routes from the end of the line under consideration, of which the 

one with the least heading is selected etcetera, etcetera. 

On~e the first three lines surrounding the shape under dete~tion 

have been identified, it is ne~essaryfvr the newly arrived-at end 

poi nt to be ~ompared wi th the others al ready in the, temporary fi le 

list, to determine whether the shape has been en~losed; the minimal 

shape being a triangle. 

If the closure check reveals that the current point held by 

the trace process is the same as the start' point from which the 

trace began, the sequence of edge line identification numbers held 

in the temporary file are compared with any other previously 

determined shapes. It will be appreciated that anyone shape might 

be traced starting with any of its sides. If it is found to be 

different to those already detected, it is stored. If not it is 

ignored, and the temporary file cleared in readiness for the 

commencement of the next trace. This comparison of sequences is 

handled by the duplication detection algorithm. 

Before proceeding to describe the operation of the shape 

duplication procedure, it is necessary to describe the data 

storage structure in which the shape data is held. Figure 6.25 
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The end point coordinates of the line elements following the 

line dissociation subroutine are held in a random access file, 

called LINEDT. Each line is identified by its record position in 

the file. 

Shape data are accessed through a file, PRIMDT, which may 

be thought of as an index holding addresses of the shape data held 

in a third file, NODEDT. NODEDT holds a list of the coordinates 

which define the lines sequentially surrounding a particular 

space. The space is itself identified by the position of its 

index record in PRIMDT. Additionally, PRIMDT also holds a reference 

coordinate by which the shape is positioned on the drawing. It is 

incidentally also the same as the last point traced by the 

algorithm when the shape was being identified. This has the addit­

ional advantage that when a shape is to be drawn by a plotter, for 

example, the pen head can be instructed to move to the reference 

point, and then do a draw sequence between all of the points 

specified as enclosing the shape. The two addresses held in PRIMDT 

are those of the first and last coordinates in the sequence ~ held 

in NODEDT. 

Significantly, the data in LINEDT is capable of sustaining 

modification by editing. Any al terations which effect the 

topological arrangement of the picture and relations between the 

spaces will corrupt the data in NODEDT. 

The sequence of line identification numbers, (ie. their 

LINEDT record positions) for two polygons will be chained; that is 

that they end at their start point. However, two sequences of line 

numbers surrounding the same polygon will be out of phase since 

the search starts from a different point each time. The duplication 

detection algori ttun therefore looks first for ~ns having the 

same number of sides as. the polygon just traced. If such a equal 

faced shape is encountered, two. counters are set equal to the 

number of sides of both polygons. The line identification numbers 

in the newly traced sequence are checked against those of the 

existent shape, and if similar, the traced shape counter is 
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decremented by one, until one or both of the counters are equal to 

zero. All polygons have to be compared since it is possible for 

one shape to be enclosed by another with adissimilar description, 

ego a circle contained within a figure of eight. 

Once it is established that the newly traced shape is not a 

duplication, it is written away to the files PRIMDT and NODEDT. 

The logic flow diagram below illustrates the subroutine to do 

this. Itshouldbe read in conjunction with ngure 6.24, pages 

6.37-39 

B 
see 

Read record n01 
in Temp file 
(Ln,nx,ny) 

Figure 6.24C 
page 6.39 

Write to record 
Ll in PRIMDT 
(L2,L2+Cl,nx,ny) 

where: 

Read next record. 
fran TE!I'f\J file 

(Ln,mK,my) 

Write to record 
L2 in NODEDT 
(Ln,mK,my) 

Ll is the next free record address in PRIrvDT 
L2 is the next free record address in NOOEDT 
Cl is the number of records in the temporary file. 

Figure 6.26 Routine for Appending Newly Validated Shape 
Data To Data Structure. 
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In the course of the investigations into methods, alternative 

methods for shape duplication discovery were evolved. These methods 

are superior to the one described, but await improvements in the 

word lengths of available computers before they can be implemented. 

The first method is based upon the use of prime m.unbers, and can 

detect both duplicated and imbedded shapes; the second, using 

binary numbers can detect only duplications. 

a Prime Nunber Method 

Instead of asSigning line numbers on the basis of a 

lines position in the ,LINEDT data store, each line is assigned a 

prime number sequentially, so that each is unique. Consequently, 

when a shape has been traced, the line identification numbers, 

primes, are multiplied together. This produces a unique product. 

My oltlher shape producing the same product must be 

identical. Moreover, if the division of two products results 

in a whole number, the shape represented by the denominator must 

be embedded in the shape represented by the numerator. 

The problem preventing the application of this method, is 

that the ,product obtained by the multiplication of the first 

fourteen primes, (starting with 3), produces a figure in excess 

of 64 digits, which is too large to be held in the computer without 

recourse to scientific notation; exponents of base 10. This defeats 

the object of using prime numbers in the first place. 

b Binary Nunber Method 

Here, the line identifiers are assigned in the decllnal 

form of binary powers, ie. 1,2,4,8,16 ..... Instead of multiplying 

the line identification numbers, the binary forms are added. This 

produces a unique binary pattern of a list of l's and O's which is 

unique to that particular shape. If the subtraction of the binary 

totals for any two shapes results in a zero answer, then the two 

shapes are identical. 

The problem with this method is that again, only a lirni ted 

number of line identifiers can be accamodated because of the 
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canputers word length. Although with a double precision variable, 

this scheme would cope with drawings containing no more than 64 

lines, (canpared with the prime methods' 13), it is still too 

limi ting for most CAN) applications. Moreover, this method cannot 

deal with embedded shapes. 

Area Calculation 

It has already been described how, at the end of the trace 

process, lines will be indicated in the canpanion file as bordering 

only one shape. These lines constitute the silhouette of the 

picture. 

It is possible, however, that the external boundary might be 

picked up by the trace algorithm. In this case it is necessary to 

distinguish it fram the other recognised shapes. This is done by 

calculating the areas of all the shapes by integration of the 

part areas subtended by each line of the boundary, one shape at a 

time. The total area of a shape may be positive or negative, 

depending on the direction in which the trace algorithm 'moved'. 

The integrals modulus is taken. The external envelope is then 

defined as the shape with the largest area, and to cross check, it 

should be equal to the sum of the areas of the other shapes. 

Figure 6.27 o~erpage shows the logic flow diagram for the 

AREAS algorithm which does the calculation. 

Figure 6 .. 28 overpage demonstrates that irrespective of 

direction, whether the nodes are followed in a clockwise or anti­

clockwise direction, the absolute integral gives the magnitude of 

the area. 

The area data is esseat1a.:t. to many CAN) applications. 

5 Surrmary 

This chapter began by defining the problems which detract 

fram the uptake of CAN) systems by architects. 

Examples of systems designed to overcame these problems were 

described and discussed. A system was proposed to extend the 
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Subrcutine 
AREAS 

Area = 0 
.Amax = 0 

Read. next record (R) 
fran PRIr.I>T 

(Ai,A2 ,ax,ay) 
on EOF 

Read. record Ai fran 
NODEDT 

(L,bx,by) 

Ar=(ay-by)x(ax-bx)/2 
Area = Area + Ar 

Ai = Ai + 1 

no 

Figure 6 .,Z\' Flow Diagram Of Subroutine AREAS. 

c 

x 
ex ax dx bx ex 

6.46 

Figure 6. 2~ ~le Of Area Calculation For M Enclosed 
Polygon. 
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With Reference To Figure 6.28: 

Area Of Polygon a,b,c,d,e = Area (ex,e,d,c,cx) - Area (ex,e,a,b,c,cx) 

A StaE!ting at randan point d in a clockwise direction 

Area(d,c,cx,dx) = dy+ey + 
2 (dx-cx) (result -ve) 

Area(c,b,bx,cx) = ~+b~ 2 + (cx-bx) (result +ve) 

Area(b,a,ax,bx) = b~+a~ 2 + (bx-ax) (result +ve) 

Area(a,e,ex,ax) = a~+ey 2 + (ax-ex) (result +ve) 

Area(e ,d,dx,ex) = ~+dy 2 + (ex-dx) (result -vel 

Area(ex,e,d,c,cx) = Areas(ex,e,d,dx) + (dx,d,c,cx) 

Area(ex,e,a,b,c,cx) = Areas(ex,e,a,ax) + (ax,a,b,bx) + (bx,b,c,cx) 

Therefore; 

Total Area = Area( e ,d,c ,cx,ex) + 
(-ve) 

= Area(abcde) (-ve) 

Area(e,a,b,c,cx,ex) 
( +ve) 

8 Starting at randan point d in an anti-clockwise direction 

Area(d,e,ex,dx) = dy+e~ 2 + (dx-ex) (result +ve) 

Area(e,a,ax,ex) ~+a~ = 2 + (ex-ax) (result -ve) 

Area(a,b,bx,ax) a~+b~ = 2 + (ax-bx) (result -ve) 

Area(b,c,cx,bx) - qy+ey + 
- 2 (bx-cx) (result -ve) 

Area(c ,d,dx,cx) = ~+d~ 2 + (cx-dx) (result +ve) 

Area(ex,e,d,c,cx) = Areas(ex,e,d,dx) + (dx,d,c,cx) 

Area(ex,e,a,b,c,cx) = Areas(ex,e,a,ax) + (ax,a,b,bx) + (bx,b,c,cx) 

Therefore; 

Total Area = Area(e,d,c,cx,ex) + 
(+ve) 

=Area(abcde) (+ve) 

Area(e,a,b,c,cx,ex) 
(-ve) 

Proof Of Area Calculation Shown In Figure 6.28 
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principles upon which these programs were based to provide an 

easily used, general and transportable CAAD data structure for use 

in disparate CAAD applications. 

The remainder of this chapter described in same detail how 

the proposed algorithms operate. 

The following chapter will describe how these algorithms 

have been applied, and the ENIGMA suite of programmes are 

presented. 
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7.1 

CHAPTER 7 

1 Introduction 

The algorithms comprising the 'intelligent' routines in the 

ENIGMA suite of programs has been described in chapter 6. This 

chapter looks at the ENIGMA suite of programs as a whole. 

The structure of ENIGMA is shown in Figure 7.1 overpage. The 

overall structure may be considered in three sections; 

a Geometry data file creation and manipulation, 

b selection of, and access to geometry ~reation devices, 

and, 

c selection of output modules. 

2 Geometry Data File Management 

lID architect, when :lrrplementing the ENIGMA system, might 

wish to create a new geometry data file, or to amend an existing 

geometry description created in a previous invocation. 

At the time of writing, the editing functions and routines 

for ENIGMA are being developed independently as part of a Ph.D 

thesis by a colleague*in the Scott Sutherland School of Architecture. 

These routines exist independently of ENIGMA, and are discussed 

in Chapter 8. Consequently, edi ting functions in the current ENIGMA 

implementation are restricted to either adding additional data to 

a drawing, or scrubbing the picture entirely :in order to restart. 

A user might have an existing ENIGMA, GOAL or BIBLE File 

which, ~reated during a previous ENIGMA session, he wishes to 

amend. In the first case, the data will be held in a line data 

file, (LINEDT). On the new run, the LINEDT file is copied to the 

ENIGMA system file, and left open in append mode. This procedure 

removes the end-of-file (EOF) marker from the end of the file, 

and leaves the pointer at the next free record. 

Work is currently being done to establish both BIBLE and 

GOAL file interpretation procedures. Here, each shape specified 

is described in terms of the individual lines surrounding the 

* SERe Funded Research Project No.82301583 (see acknOlriledgements). 
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7.3 

plan forms of each space. These lines are written to a transitory 

line data file, from which duplicated lines are eliminated. 

Methods are being considered to write data directly to the shape 

data files, thereby eliminating the need for the implementation of 

the ENIGMA interpretation routines. Because these routines are not 

yet fully operational, they are shown as dotted in the logic flow 

diagram of the file management system shown in Figure 7.2 over­

page. 

Essentially, existing files are copied, so that the original 

is not lost should the user wish to revert to a former version, and 

then with the additional or amended infonnation, the line data 

file is subjected to the ENIGMA interpretation routines. The 

consequent application of editing routines, (when they become fully 

integrated), particularly the deletion of lines and shapes, will 

necessi tate the removal and compaction of null records fran the data 

structure and the consequent renumbering of the remaining records 

in the final output files. These sequences are discussed in 

Chapter 8. 

3 Geometry Creation Devices 

Three geometry input devices or modes are available to the 

ENIGMA user. The digitiser may be used in point or continuous mode, 

or the drawing may be effected through the use of the Tektronix 

4010 graphiCS terminal using crosshair cursor and thumbwheels. 

The major reason for including the graphics terminal as an input 

medium is the anticipation of the editing capabilities. Clearly, a 

sketch done in ink on paper cannot be easily changed. Once the 

enhanced sketch has been echoed upon the terminal screen, using the 

manipulation functions through the terminal, an updated picture 

may be created. However, the new picture bears little relation to 

that still shown on the tablet, and the tablet ceases to be the 

input medium. 

Figure 7.3 on page 7.5 shows the flow chart for the selection 

of geometry input devices. It will be noted that all routes to any 

particular device entails the definition of scale and default 
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>--_--1 Reopen LlNEDT 
in append mod.e 

Figure 7.3 Flow Chart For Geanetry Input Device 
Selection. 
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values which will be required first in the conversion of tablet or 

screen units to user units of measurement, and secondly during the 

interpretation process. The two main values to be settled are the 

scaling factor appropriate to each parti~ular device, and secondly 

the tolerance value specifYing how close two points are to be 

before the system can assume that they are joined together. Other 

options include the specification of the angle of deviation between 

a pair of line segments recorded on the tablet in continuous mode 

within which the latter is to be considered a continuation of the 

former, the number of short arcs to be exceeded before an "intent­

ional arc is recognised, and the number of points thereon. Whilst 

these latter values are necessary for the freehand sketch mode, 

for brevity the same routine is used on all device preset routines. 

3.1 TABLET IN CONTINUOUS DIGITISATION MODE 

The algorithm which drives the tablet in continuous point 

digitisation mode has been described in Chapter 6, section 4.1. 

The output produced by this routine is in the form of a 

line data file as depicted in LINEDT shown in Figure 6.25 on page 

6.41, for subsequent processing. 

3.2 TABLET IN ORTHOGONAL MODE 

Some application software programs, (most notably GOAL), 

restrict the permissible geometry descriptions to orthogonal forms. 

In this case nuch of the calculations carried out by the inter­

pretation calculations becomes superfluous, since obviously the 

line gradients encountered will either be horizontal or vertical. 

Consequently, the data input procedure need only concern itself 

with these two classes of line. 

Usually, such rectilinear geometries are created on a computer 

system by point digi tisation. However, in the ENIGMA system it was 

considered important to retain the freehand sketch capabil i ty of 

the data generation system. 

From the continuous digitisation of a freehand sketch in the 

case of rectilinear geometries, we are interested 
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only in the start and stop pOints of each line, since these will 

define along which axis the line lies. In freehand sketches the 

lines of the drawing are almost certain to have small gradients 

due to the drawing error, unless the digitising tablet is fitted 

with some form of parallel motion device. 

In lieu, or anticipation of the availability of such a 

draughting device, it is assumed that the user will input each 

straight line individually. In this case, where the stylus is still 

being monitored in continuous digitisation mode, we are interested 

only in the start and stop points; ie. those characterised by a 

header value of either 29 or 31. Between these two points, within 

a small margin of error, either a horizontal or vertical line 

exists. The relative magnitude of the 'x' interval to the 'y' will 

define to which axis any line is collinear. The line is then 

reproduced as that vertical or horizontal line passing through the 

midpoint of that drawn. Although this will introduce a small error 

at the node points of the lines, as illustrated in Figure 7.4 below, 

, 
a' (ax,ay) 

b ,b' 
(bx,by) , 

Interpretation: 

ab is the line 

ax+bx ax+bx « 2 ), ay) , « 2 ) ,by) 

(cx,cy) 

Key 

----------line as drawn on tablet 
_____ line as interpreted by 

algorittm. 

cd is the line 

«cx, (c
y;&» ,(dx, (cy;ty» 

Figure 7.4 Resolution Of Freehand Lines Into 
Orthogonal equivalents. 
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where, for example, the point ~ is moved laterally to point ~', in 

practice these displacements will be small, and will in fact be 

eliminated by the tolerance interaction on interpretation. 

If the gradient of a line is calculated to be greater than 

1, it is assumed vertical; if less than 1, horizontal; and if equal 

to one, an error message is displayed to the user. 

The adjusted end point coordinates are then written direct to 

the line data file for subsequent dissociation prior to inter­

pretation. 

The logic flow diagram of the orthogonalised sketch data 

input subroutine is shown in Figure 7.5 overpage. 

3.3 TEKTRONIX 4010 GRAPHICS TERMINAL 

Wi th this mode of graphic data input, the user can create 

geometries using predefined shape primitives, ie. rectangles, 

triangles and lines. Since rectangles are always coaxial, only two 

coordinate points need be input; those defining a diagonal. Lines 

occuring individually are rectified, if necessary during the input 

procedure by the process outlined above if an orthogonal piCture is 

required. In this case, of course, the use of the triangle drawing 

routine would be prohibited. The logic flow diagram of the terminal 

driving subroutine is shown in Figure 7.6 on page 7.10. 

Once created, there is a potential problem with the geanetry 

data which has to be resolved. When a picture is produced by the 

aggregation of shape primitives, there is the probability that 

several shapes may share a cammon edge as depicted in Figure 7.7 

on page 7 .11. Such occurances would resul t in the ccrrmon line data 

being recorded several times, which would cause confusion and 

failure in the following interpretation process. 

Before any two lines can interact in the manner illustrated, 

they must both have the same general equation; ie. gradient and 

constant of intersection. Thus during the digi tisation process, 

each line has its values calculated and stored in a companion file. 

If the line is vertical, its 'x' axis intercept is recorded, 

otherwise its 'y ~. Each newly described line is carpared with 

those already existing in the line data file. If the two lines 
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n-= n + 1 
Xl=Ix,Yl=IY 

flag=2 

no 

Y=DY/2 

X2= 
DX= 

Wri te to recorat-~--<.. 
n in LINEDT 

Xl,Y,X2,Y 

Tablet 
n = 0 

-no 

=IY 
Yl-Y2 

7.9 

no X=D 2 
>-~~-~write to reco 

n in LINEDT 
X, Yl ,X, Y2 

Figure 7.S Flow Di~am Of The Subroutine To Drive 
The Tablet In Orthogonal DigitisationMode. 

175 



Get corners 
a(ax,ay),b(bx,by) 
Line1=(ax,ay,bx,ay)rectan 

2=(bx,ay,bx,by) 
3=(bx,by,ax,by) 
4=(ax,by,ax,ay) 

line 

Get end points 
a(ax,ay),b(bx,by) 

yes 

7.10 

Get corner points 
a(ax,ay),b(bx,by), 

c(cx,cy) 
Line1=(ax,ay,bx,by) 

2=(bx,by,cx,cy) 
3=(cx,cy,ax,ay) 

~~--~ modify data 

Write line data 
to LINEDT 

Figure 7.6 Flow Diagram Of The Terminal Operating 
Routine. 
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f b eL-----~~~------_,b 
e 

a 
a 

a) d~ __________ ~c b) 
d~------------c 

Figure 7.7 Two Cases Of Superimposed Lines 

are collinear, then the line's end points are fed through 

a 'logic gate' to determine if they interfere with one 

another, and if so, modify the data accordingly. In the 

above figure for example, the two lines ab and ef inter­

fere. In the first case, assuming that abcd is already 

described in the LINEDT file, the line ab needs to be 

changed to the line eb, and line ef discarded. In the latter 

case, line ab remains unchanged, but still line ef needs to 

be discarded. 

This logic gate operates by first testing whether the 

two lines under consideration are described in the same 

direction, ie. whether ex-fx, and ax-bx are both negative 

or positive. Vertical lines are considered similarly in terms 

of their 'y' coordinates. Following this, the end points of 

the most recent line (line ef) is tested to see whether they 

lie between-the end pOints of the stored line. If both ends 

of ef lie between the end points of ab, then the most recent 

line is discarded. If the lines meet at an end, or they 

slightly overlap, the data held in store is modified, and 

the recent line discarded. The logi:al de:isions are listed 

in Figure 7.8 overpage. 
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For two non-vertical lines, AS «ax,ay), (bx,by» and CD 
«cx,cy), (dx,dy», which are colinear and have the same 
constant of intersection on the 'y' axis, then; 

If (ax-bx) -ve and (cx-dx) -ve, then p=ax, q=bx, r=cx, s=dx 

If (ax-bx) -ve and (cx-dx) +ve, then p=ax, q=bx, r=dx, s=cx 

If (ax-bx) +ve and (cx-dx) +ve, then p=bx, q=ax, r=dx, s=cx 

Otherwise 

Moreover, 

If (r~p) and (S(q) 

If (p)r) and (q(s) 

If (p ( r (,q) 

If (p (. s (q) 

p=bx, q=ax, r=cx, s=dx 

then line CD lies wi thin AB • or 

then line AB lies wi thin CD • or 

then line E9. = line given by (p, s) ,or 

then line E9. = line given by (r. q) , 

Otherwise the lines do not interact. 

Figure 7.8 Logic Gate For Testing The Interaction 
Between Two Co-linear Lines 

Al though the above logic gate can 'recognise' and rectify 

two overlapping collinear lines, in certain circumstances, more than 

two interacting collinear lines would cause a failure. Such an 

example is shown in figure 7.9 below, where a third shape 'bridges' 

two already existing. 

a~ ______ ~e~~~ __ " __ ~ ________ -'d 

Figure 7.9 Shape Configuration Producing An 
Error On Over lap Decoding 
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7.13 

These errors could be removed by subjecting the whole 

content of the line data file to comparison on completion of the 

drawing sequence by gathering all colinear lines together, rank 

ordering their least 'x' or 'y' coordinates of their end pOints, 

and then sequentially dealing with each pair of lines. This clearly 

involves much calculation. 

4 CUtput Options 

There are four modes of output which the user can select 

from; the creation of a GOAL formatted output data file for direct 

input into the geanetry description of the GOAL sui te of appraisal 

programmes; the creation of a BIBLE fonmatte~ output data file for 

direct implementation into the BIBLE visualisation program; a 

rudimentary isometric visualisation program; and a rudimentary 

building performance appraisal routine based upon the external 

envelope of the building plan. 

All output options require the line data to undergo the 

interpretation prograrrme, and for the user to input floor and 

ceiling heights for the storey or space. 

At the tennination of either the GOAL or BIBLE output options, 

the ENIGMA program tenninates: '!his is based upon the asS\..ITPtion 

that the user will want to implement his created geanetry files in 

these programmes immediately. At the termination of the other 

options, control is returned to the output selection should the" 

user wish to specify further output choices, or indeed, to amend 

his geanetry data. 

4.1 BIBLE OUTPUT 

The structure of a BIBLE geanetry data file has been described 

in Chapter 5, section 5. In the ENIGMA programme, all objects for 

a BIBLE description are treated as 'regular' bodies. By the defin­

ition in the BIBLE user manual, 

"a general body is a vertical prism, ie. a 
body with exactly two horizontal surfaces, 
a floor and a roof, which are parallel and. 
equal polygons, and. the remaining faces of 
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being vertical and joining corresponding 
edges of the floor and roof. Data for a 
regular body consists of:-

a line whose first three characters 
are REG 
a line containing the (integer) 
nunt>er (L) of sides of the floor 
(and. roof), and the (real) Z-co­
ordinate of the floor, and the 
( real) Z-coordinate of the roof. 
a list of pairs of the (real) x­
and V-coordinates of the (L) verti­
ces of the floor (and. roof) in 
clockwise order as viewed fran 
above. II 

7.14 

In ENIGMA, a space is treated as an extrusion of its plan 

form through a base to ceiling height. If the user fails to 

specify these levels, the floor is taken to be at a level of 0.000 

meters, and the ceiling at 3.000 meters by default. 

Consequently, each space detected by the interpretation 

subroutines are checked to see whether they are recorded in a 

clockwise or anticlockwise direction, and the number of sides for 

each space assessed. Having written to file a line containing the 

'REG' tag, number of sides (given by the difference between the 

stop and start addresses held in the PRIMDT file), and the upper 

and lower surface levels, it then remains to write the sequence of 

node coordinate pairs fran the start to stop address in NOOEDT if 

the shape has been traced clockwise, or from stop to start address 

if anti-clockwise. 

Each shape so translated is concatenated into a list of 

data, and the list given a file name, BIBOUT.OAT by default. 

The data format for each encoded shape is shown in Figure 

7.10 below. 

REG 
L,Zf,Zc 
ax,ay,bx,by,cx,cy ••••• Lx,Ly 

Figure 7.10 Format Of Interpretatial Of 
ENIGMA Data To BIBLE Data By 
Subrcutine BIBOUT 
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7.15 

The logic flow diagram of the subroutine which translates 

the geometry data fran its ENIGMA form to BIBLE form, is shown in 

Figure 7.11 overpage. 

4.2 GOAL OUTPUT 

It will be seen from Chapter 5, section 5, that GOAL geom­

etry data files are those compiled by the GRAMP graphic handling 

system, which constrains the user to pi~tures ~onsisting of the 

aggregation of simple shape primitives. Several shapes may be 

aggregated to describe one zone of up to 65 seperate shapes, and 

some two dozen different zone types may be specified. The shapes 

may be entered with an angle of rotation relative to the 'east' of 

the drawing device. 

In the current implementation, ENIGMA assumes that shapes 

are drawn coaxially, ie. the shapes are oriented north-south, and 

are exclusively rectangular. 

GOAL allows the user to describe multlstorey building 

geometries by assigning a floor index to each element. The current 

implementation of ENIGMA does not allow the direct entry of more 

than one storey at a time, and to encode multistorey building 

forms, the user is required to describe each storey in tum, and 

then to append each resulting data file into a master by use of 

the TOPS20 file editing system outwi th the ENIGMA programne. 

After entering the storey index which will relate to the 

entire picture currently held in the ENIGMA picture, each shape in 

tum is read fran the PRIMDT file, and drawn in outline on the 

screen by reference to the NODEDT file. If there are more than 4 

edges to a shape, an error message is displayed to the user, and 

that particular shape is ignored. Otherwise, the comer of the 

rectangle nearest to the origin is abstracted. 

The shape's area, held in the cC1l1>anion file is divided by 

the shapes width. This is done in antiCipation of routines to be 

written to enable non-rectilinear pictures to be 'orthogonalised' 

at sane point in the future. For each shape drawn upon the terminal 

screen, the user is required to enter; first the zone's function 
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Subroutine 
BlooUT 

Read next record (n) 
fran PRIMDT 

(Al,A2,XI',yr) 
on EOF 

Write to BlBOUT 
'GEN',2x(A2-Al),A2-Al+2 

Input floor height zl 
Input ceiling height z2 

for K=Al to A2 
read Kth record 

fran NODEDT 
Write Kx.,Ky,z 

to BIBOUT 
Next K 

for K=Al to A2 
read Kth record 

fran NODEDT 
Write Kx.,Ky,z 

to BIBOUT 
Next K 

7.16 

for I=A2 to Al write no 
I,I+l,N+I+l,I+N 

to BlooUT 
Next I 

>-y_e .. s_-ffor I=Al to A2 write 
I,I-l.N+I-l.N+I 

to BlBOUT 
Next I 

Figure 7.11 Flow Diagram For BIBLE File Creating Routine 
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7.17 

type; second, the shape reference number within the specified 

zone, third, the floor level, and finally, the ceiling/roof level. 

In assigning zone types, the user is fami liar wi th' or has the 

GOAL operating manual to hand. 

The data so accrued is then formatted into GOAL compatible 

form, and written to a file, named GOALDT.DAT on default. 

The logic flow diagram for the subroutine which translates 

fran the ENIGMA data structure to that of GOAL, is illustrated in 

Figure 7 .12 overpage. 

4 .3 CRUDE APPRAISAL 

Utilising the data contained in the ENIGMA database, crude 

appraisals may be undertaken. These appraisals are not intended 

to be accurate perfonnance predictions, but enable relative comp­

arisons to be made between alternative solutions, giving an 

indication of which of the alternatives is likely to perform 

better, not to define how much better. 

The appraisals undertaken test: : 

a the compactness ratio of the building form, 

b the relative elemental costs, and 

c the rnaxirrun heat demand to maintain an internal 
o temperature at a defined minimum temperature of 0 C. 

The Compactness Ratio is defined as the ratio between the 

external surface area of the proposed building, (excluding the 

area of the floor), to the surface area of a hemisphere which 

contains an equal volume. 

Assuming a uniform storey height, the external exposed 

surface area of the proposed building may be calculated, and the 

equivalent surface area of an equal volume enclosing hemisphere 

deduced. 

The elemental costs are based upon cost indices, which will 

have to be estimated by reference to current cost 

data. The progranme measures the areas of roof, floor, opaque wall 

and window, (based upon the maximum permitted glazing ratios 

penni tted by the statutory regulations), and a foundation assumed to 
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enter 

Read I next record 
fran PRIMDT 

for K=Al to A2 
Read Kth record fran 
NODEDT L,xk,yk 

on end 

Enter function no.Nl 
Enter element no. N2 
Enter floor heigntzl 
Enter roof heignt z2 

Wri te to GOALDT 
N1,N2,Sl,O 

Wri te to GOALDT 
xr,yr,zl,x,y,(z2-z1) 

7.18 

Read Alst record' 
fran NODEDT 

k,xk,yk 

Figure 7.12 Flow Diagram Of Routine To Refonmat ENIGMA File 
To A GOAL Data File. 
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be a strip footing 1 meter deep. 

Similarly, the heat demand for a design day also assumes 

glazing ratios and 'U-values' as specified in the statutory 

regulations, the glazing being evenly distributed on all four 

facades. The calculations are carried out simultaneously with the 

cost appraisal, since they both require the same elemental break­

down. 

4.4 CRUDE VISUALISATION 

The data held in the ENIGMA database may be re-presented in 

the form of a sirrple wireframe isometric projection. 

The viewpoint is automatically taken to be from the south­

west of the building, looking towards the north-east. The picture 

has to be scaled to fit wi thin the terminal view 'window', hence 

the maximum and minimum plan coordinate points are abstracted 

from the line data file. When tilted, the picture has to be 

scaled by roughly one half in order to ensure that it fi ts on 

screen. Once the user has specified the floor and ceiling heights, 

a scaling factor (s) is calculated. 

The coordinates of the external boundary shape of the building 

are then transformed to describe the two-dimensional projection of 

the three-dimensional solid by the following transform functions: 

For converting 3D to 2D in the 'x' direction; 

f(x) = s.cos30o x ( X - Y ), 

for the 'y' direction; 

f(y) = s ( sin300 x ( X + Y ) + Z ). 

These sirrplify to; 

f(x) = 0.7071 x s x ( X - Y ), and 

f(y) = s x ( 0.5 x ( X + Y ) + Z ), 

where s is the scaling factor, 

X, Y, and. Z are the three dimensional coordinates of 
of a point on the building model. 

These functions are then applied to the drawing routine 

which will plot the two-dimensional picture on the terminal screen. 
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5 Resume 

The ENIGMA prograrrme is intended primarily to 'front-end' 

to other applications software programmes. However. the data held 

in the ENIGMA data structure can be used for crude appraisal and 

visualisation with little additional information requi ring to be 

added to the database. 

In order to be ccrcpatible wi th programmes requiring ortho­

gonal geometry descriptions. ENIGMA requires that the user work 

within that regime; non-orthogonal geometries will fail if such 

an application prograrrme is attempted. Similarly it is assumed 

that all three dimensional geometries can be described as an 

extrusion of their plan forms. 

The inclusion of the draughting option using the Tektronix 

4010 tenminal is in anticipation of the inclusion of the editing 

and manipulation routines currently under development. 

The abili~ to interpret geometry descriptions from one 

data structure is due to ENIGMA's power to decode drawings. There 

is li ttle reason to prevent ENIGMA being used to front-end further 

applications programmes. 
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8.1 

CHAPTER 8 

1 Review 

In the preceding-chapters of this thesis, the structure and 

and distribution of the architectural profession has been described, 

noting the predominance of a large number of small practices. It was 

also noted that few architectural practices have adopted computer 

aids. 

From the range of services which architects offer to clients, 

the actual design function was singled out as being the most 

awkward aspect in which to incorporate corr:puter aids. A design 

morphology was described in which the design fUnction was analysed. 

The inherent difficulties in attempting to describe geometry 

descriptions of buildings to computers was examined with particular 

reference to the mismatch between the human's and machine's 'percept­

ion' of graphic data, and methods of geometry description. The effe~ts 

of the various methods of geometry description upon the data 

structures necessary to hold graphic data so generated were 

examined. It was noted that drawings are two-dimensional represen­

tation of three-dimensional objects, and that this could cause 

difficulties describing real objects to computers. 

Having isolated the factors which produce the mis-match 

between computer systems and the architects traditional methods of 

working, four examples of existing graphic handling programs were 

described in order to ascertain how they dealt with them. 

Following this survey, algorithms were described which 

together enable traditionally drawn architectural plan sketches to 

be refined and enhanced, and then translated into a general 

hierarchical data structure without the need for fUrther operator 

intervention. 

A suite of computer programmes which utilise these picture 

translation techniques was subsequently introduced and described. 
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2 Assertion 

The algorithms described in Chapter 6 which, carried out at 

the earliest stages in the design process utilising traditional 

pencil and paper techniques, would interpret line drawings into 

a general data structure would have the following advantages: 

1 Such a system would be in keeping with architect's 

traditional working practices, thus reducing the 

impact of 'technological alienation'. 

2 It would penmit the computer to be consulted at the 

earliest design stages when performance predictions 
would be of greatest benefit. 

3 Eliminate the need for painstaking manual digitisation 

methods currently required in the use of most CAAD 

software. 

4 It would allow the designer to concentrate upon design 

rather than upon the operation of the computer. 

S It would produce a database which could be tapped by 

other CAAD programmes requiring a geometric description 

of the proposed building. 

6 It would be easy'for inexperienced users to master, and 

7 ,'Would require minimal interaction on the users part, thus 

reducing the possibili ty of the introduction of errors. 

3 Conclusion 

In order to realise the above advantages, a graphics inter­

face system has been developed as described in Chapters 6 and 7. 

The system, ENIGMA, is the acronym standing for an ENhanced 

Interpretive Qraphics ~odule for ~hitects. The system conceptually 

imposes few limi tatations on the user, working with sketch drawings. 

The system requires greater interaction should the user wish to 

generate geometries through the use of the Tektronix 4010 graphics 

terminal. The major reason for the inclusion of this option is the 

anticipation of the editing and data manipulation routines, which 

cannot be sensibly carried out on the digitising tablet. 
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8.3 

CAAD systems interpreting building plans using the graphics 

terminal to create the geometry data are frustrating to the user, 

whilst those 'v'klich allow the user freedom of input methods, 

including for the continuous digitisation of sketch drawings, 

either generate inflexible data structures, or have failed to 

apply their data structures to usefUl purposes so far as architects 

are concerned. 

ENIGMA also offers an orthogonal mode of operation, antici­

pating that the user will be using the digitiser as a drawing 

board, complete with parallel motion devices, in order to draw 

orthogonal plan drawings. However, ENIGMA can cope wi th freehand 

sketches which are near orthogonal provided that each line is 

drawn separately in enulation of drawing with' T' and set-square. 

The various parameters effecting the clarity and extent of 

the drawing enhancement and inteq>retation of the drawings can be 

altered to suit the individual user's drawing style and fist. 

The particular value of the ENIGMA system,. is its ability 

to cope with drawings produced at the very formative stages in the 

design process, 'v'klen the architect is beginning to formulate a 

building form as a potential solution to the design problem. As 

with traditional techniques the architect is encouraged to 

manipulate ideas through the mediun of rough sketches, discarding 

unpromising solutions and amending those which show potential. 

Because the generation of the building model is automatic, there 

is no penalty for rejecting models which would otherwise involve 

a great deal of time and effort to produce. 

Once a promising idea has been roughed out, the designer can 

very quickly get a refined and enhanced straight line interpret­

ation of his tentative design solution, and receive from the 

appraisal routines an indication of this solutions perfonnance. 

Moreover, the data reformatting capabilities of ENIGMA enables him 

to quickly subject his design proposal to more stringent and 

detailed appraisals, by recourse to other software application 

progranmes. 
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8.4 

Unlike other CAAD graphic interfaces, the ENIGMA system 

permits the user to subdivide shapes. This is illustrated in Figure 

8.1 oveq>age, where for exarrple, two rectangles, defined perhaps as 

shape primitives, are made to overlap. Generally, such a picture 

would result by defining two rectangles, and would be recorded as 

such in the consequent data structure. If the user then wanted to 

refer to the common area bounded by the overlap, he would be unable 

to do so. The interpretation capability of ENIGMA dissociates the 

drawing into its constituent shapes, irrespective of the manner in 

which they were defined when drawn. This means that the designer 

can create his building designs by ei ther dividing spaces, as wi th 

for example, an infill site, or by aggregating together individual 

spaces. These strategies which designers often use simultaneously 

are not catered for by the CAAD systems so far examined. 

The resul t of the interpretation of the picture shown in 

Figure 8.1 is shown in Figure 8.2. The resulting interpretation 

means that each individual space is uniquely identified, not as a 

fixed shape type, but as a description which is open to re­

inteq>retation with each modification. 

'!he ENIGMA system is intended as a graphics handling inter­

face, and not as a self contained set of programmes as a finished, 

and complete product. Its purpose is to allow the designer to draw 

naturally, and to automatically develop a wider communication 

language than that with which existed on data input. This means 

that the system I knows I significantly more about the data than the 

designer has given it; this knowledge being irrplici t in the data 

structure. 

As an interface, the intent is to extend the range of dialogue 

between the man and machine by placing the onus of interpretation 

upon the machine. '!he communication language could possibly be 

extended further by more automatic procedures, same of which are 

discussed below. 

4 Derivation Of Vocabulary 

Fran the ENIGMA database as described in Chapter 6, page 6.41, 
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a(ax,ay) 

Description: 

Space 1 
Space 2 

2 
b(bx,by) 

c(cx,cy) 

1 

ax,ay, bx,ay, bx,by, ax,by 
cx,ey, dx,ey, dx,dy, ex,dy 

8.5 

d(dx,dy) 

Figure 8.1 Generated Geanetry Description 1hroogh Hardware 

Description: 

Space 1 
Space 2 
Space 3 

3 

2 

1 

ax,ay, -bx,ay, bx,ey, ex,ey, ex,by, ax,by 
ex,ey, bx,cy, bx,by, ex,by 
bx,cy, dx,ey, dx,dy, ex.dy, ex,by, bx,by 

Figure 8.2 Interpreted Geanetry Description By ENIGMA 
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it will be seen that fran crude line sketch drawings, the user 

vocabulary has been extended to include noetic characteristic 

descriptions of shapes, and the abili~ to abstract the surrounding 

silhouette of the plan fonm. 

Although the concept of 'shape' is ambiguous, since we cannot 

deal with the 'shapeness' involved in the distinction between for 

exarrple, those between a rectangle and square as the rectangl.e 

approaches a state of 'nearly square', the concept of outline or 

silhouette is exact. (It is of interest to note that the human can 

only distinguish between nearly square rectangles and squares only 

by mensuration). Consequently, the user can refer to outline in a 

machine cognisable sense. 

Extending these concepts further, any two shapes which have 

a line as a common boundary are adjacent: If any two shapes have 

an equal number of sides, the sides having respectively equal 

lengths and subtending equal internal angles, and enclosing equal 

areas, then the two shapes are congruent: If an inversion about the 

'x' axis of one shape produces a congruent version of another, then 

one shape is an inversion of the other: Similarly, if an inversion 

of one shape about the 'y' axis produces a congruent version of 

another, then one shape is a handed version of the other. 

There are further propositions which may be postulated to 

deduce a class of 'fUzzy' or inexact relationships which may, with 

an associated level of certitude, be defined: Two shapes are 

'generically similar'if they have the same number of sides which 

subtend the same angles as illustrated in Figure 8.3 overpage. Two 

spaces are exactly similar if in addition to being generically 

similar, the ratios of their respective edges remains constant. 

One shape may be said to lie to the right or left of another 

by consideration of their respective maximum and minimum 'x' 

coordinates, or indeed by consideration or their respective 

centroids. Similarly, by consideration of their coordinates 

relative to the 'y' axis, we may perceive an appreciation of the 

ideas of ~ and down with respect to the page on which the picture 
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Two shapes of equal nurri::>er of sides where; 
al =bl, a2=b2, a3=b3, a4=b4, a5=bS, and a6=b6 

Figure 8.3 Definition Of Generic Simdlari~ 
Between Two Shapes 

is drawn. 

8.7 

The rationale outlined above holds the possibility of the 

automatic derivation of an interface system which would include 

in its user vocabulary the adjectives and nouns underscored above. 

Not only does this extended range of vocabulary permit a 

wider and more general range of discourse between man and machine, 

but it would appear to resemble the type of exchange in use wi th 

some knowledge engineered systems. If this seeming compatibility 

is indeed real, then ENIGMA might prove to be a good interface 

to front-end onto a logic based system to handle the graphic 

data capture. More interestingly, it would also seem to bridge 

between the calculation power of conventional prescriptive 

prograrrming techniques and the data interogation power of the 

descriptive logical language based systems. 

5 Caveats 

The ENIGMA system described in the forgoing chapters of this 

thesis is currently a prototype. It is recognised that only through 

observation of its use in practice will the hypothesis that it will 

make CAAD systems more accessible to architectural practitioners, 

be confirmed or refuted. 
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8.8 

'!he fundemental research work contained in this thesis was 

devoted to the automatic data capture and interpretation routines 

described in Chapter 6. Consequently, and in view of the time 

constraints of the project, it is recognised that parts of the 

ENIGMA sui te of prograrrmes could be much improved. 

'!he following chapter describes those areas where more wolk . 

is needed, particularly in the editing routines, despite the fact 

that many of the algorithms have already been considered as part 

of another research project within the Scott Sutherland School of 

Architcture, (SERe Funded Research Project No.82301583). 

Addi tionally, ENIGMA is capable of expansion in order to 

do some functions in a better and more efficient manner, and to 

include procedures to increase its versatility. 
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9.1 

CHAPTER 9 

1 Introduction 

ENIGMA, as previously described is a prototype graphics 

interface system, and consequently is capable of' being much inp­

roved. The incol1)oration of these improvements, and the extension 

of the system to handle more tasks and becane more flexible as a 

resul t, has not proved possible wi thin the time constraints 

within which this project was carried out. 

Apart fran the removal of local idiosyncracies and quirks 

inherent in any new computer software, the most linmediate requir­

ement for inclusion into the body of the code are the routines 

necessary f'or the editing and manipulation of the database once 

captured. 

Secondly, the ENIGMA. ~stem might be expanded to cater for 

the description of multi-storey buildings. 

Thirdly, there is great scope for irrproving the crude 

appraisals which ENIGMA carries out. However, since the ENIGMA 

system has ~been devised as a front end for use wi th other applic­

ations programmes, it would be preferable if translation routines 

were developed such that data files could be created for direct 

input into already existent appraisal programmes, thus avoiding 

the duplication of' effort. 

These improvements and extensions, when included, might 

resul t in a system as depicted in Figure 9.1 overpage, which for 

example makes reference to two further appraisal progranmes, ESP, 

an ~vironmental .§ystems::!:er!OIiDar;lee, and GABLE which has already 

been described in Chapter 5, section 4. 

2 Editing Functions 

The creation of geanetry data through the use of the tablet 

in continuous digitisation mode with an ink stylus precludes the 

implementation of editing or manipulation fUnctions direct upon 

the digitiser. The sketch drawing represents the current state of 

the drawing data, and unless an erase function can be devised 
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which could simultaneously clear the data refered to from the 

data structure, and remove the inked line from the paper, any 

amendments will cause confusion on the ink drawing. Consequently, 

edi ting functions would have to be carried out on the Tektronix 

4010 graphics tenminal. 

Reference has already been made to a current research 

project part of which deals with editing algorithms which could 

be utilised to manipulate the ENIGMA database. The algorithms 

devised have been developed for use upon a Tektronix 4054 graphics 

terminal to take advantage of the dynamic graphics which this 

piece of equipment offers. The Tektronix 4054 has its local 

processor, and has been developed for use in stand alone mode. 

The system as envisaged requires that ENIGMA data files be 

sent through the DEC20 system and loaded into the Tektronix 4054 

local tape drives. The 4054 is then disconnected from the DEC20 

system, and the editing and manipulation fUnctions could then be 

enacted off-line. Moreover. these editing and manipulation routines 

are written in BASIC, as opposed to ENIGMA's FORTRAN. and also 

relies on firmware functions not available on the TOPS20 system. 

One consequence of the relatively limited storage capacity 

of the 4054 1.3 that the user is penni tted a maximum of six junctions 

wi th anyone line. This may not be adequate for all architectural 

pJran drawings. 

An atterrpt was made to link the Tektronix 4054 directly with 

the 4010, such that the latter would act as a host carputer to the 

former tenminal and so control the digi tising tablet. This attempt 

was unsuccessful although the manufacturers believe it possible. 

The functions covered in this Tektronix 4054 coding permits 

the user fo: 

a create and~store pictures in a plan chest, 

b locate a line, 

c locate a shape, 

d add a line, 

e delete a line, 
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f delete a shape, 

g move a line, 

h stretch a shape, and 

i repeat a line. 

However, the 4054 editing and manipulation routines convert 

the ENIGMA data files into an entirely different data structure, 

and it would be useful if these routines were rewritten to operate 

directly with that of ENIGMA. The following section discusses .some 

of the problems and strategies involved in doing so. 

2.1 ADDING A LINE 

The ability to add a line already exists in the current 

irrplementation of ENIGMA. This is effected on the digi tising tablet 

directly. However, to ensure data consistency, the overlap check, 

(see Chapter 7, section 3.3), would have to be irrplemented, and 

overcome the potential problem of I bridging I • 

2.2 ADDING A SHAPE 

If the digi tising tablet is being used, shapes may be added 

as a series of lines as described above. 

If, however, the 4010 terminal is being used, it is first 

necessary to specify which shape primi ti ve the user wishes to add. 

Again, those shapes not amongst the op.tions offered by the terminal 

may be drawn as a series of lines, as with the digitiser. 

Once specified, and coordinate values entered by use of the 

thumbwheel driven cross-hair cursor, it is necessary to ensure teat 

any overlaps, should they occur, are resolved. The newly added 

lines are appended to the line data list, and on completion of the 

addi tion, further shape and line addi tions may be made. 

All of the following routines are assumed to operate through 

the use of the Tektronix 4010 graphics terminal. 
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2.3 REPEATING A SHAPE 

The first necessi~ in this instance is to identify which 

existing shape the user wishes to repeat. It is assumed that the 

original picture has undergone the interpretation process, other­

wise the ENIGMA data base will have no shape data to refer to. 

Having informed the system that the user is about to point 

to an existent shape, he positions the cursor inside the shape he 

is attempting to identify for the computer. 

A scheme for identifying the selected shape is illustrated 

in Figure 9.2 below. 

a r:::::-----__ ar==:::::::-____ ....! 

d ~--------------~ c d~------------J 

Point p declared. by the user. 

a) Point inside abed b) Point outside abed 

stun of angles 
a apb + bpc + cpd + dpa. = 360 

sum of angles 
apb + bpc + cpd + dpa. < 360

0 

Figure 9.2 Scheme For Deten¢ning Whether A 
Point Lies Inside A Shape 

p 

The shape data held in the ENIGMA files NODEDT and PRIMDT 

are a chained path of node points defining the periphery of each 

shape. If the ang~es sub tended between the edges of the shape and 

a given point are summed, then the total angle turned through, 

given that a negative line direction will return a negative angle 

sub tended , will be a complete revolution, ie. 360°, if the point 

is within the shape, despite concavities. Any point outside will 

return a total angle of less than one revolution. This process 

would not determine which shape has been pointed to if shapes are 
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nested. The process would however, stop as soon as the first shape 

is encountered wi thin which the point lies, so the user could 

instruct the computer to continue the search until it arrives at 

the correct shape, should its most recent choice be wrong. 

Having specified which shape the user wants repeated, he 

would then have to relocation the reference point, (held in the 

latter two data bits of the located shapes PRIMDT record), to 

where he wants to place the repeated shape. The modifications 

which must take place in the ENIGMA database to contend with the 

al terations so wrought are shown in Figure 9.3 overpage. 

If, for example, the user wishes to reproduce shape number 2 

(as recorded in the data structure shown in the figure), at a new 

location given by the new reference point coordinates (50,50), then 

the differences between the new and old reference point coordinates 

are carried through all of the node pOints held in NODEDT an appended 

at the end of the file as new shape data, with the requisite index 

record appended to PRIMDT. 

The above schema demonstrates the principle of shape repetition 

which assumes that the repeated shape does not interact with any 

existing shapes in the database. Should this happen, then first, 

the new line must be checked for overlapping, secondly the entire 

line data list would have to be subjected to the line dissociation 

routine, and the interpretation process re-invoked in order to 

clarify the new shape subdivisions. 

Since in the following descriptions we will be refering to 

the effects various editing and manipulation processes have upon 

the database shown in Figure 9.3, the picture to which this data 

refers is shown in Figure 9.4 on page 9.8. 

2.4 DELETING A SHAPE 

Deletion of a shape from the database will introduce records 

containing null values as the data is erased, and these voids have 

to be removed. Additionally, removing a shape mi~ t well effect the 

topology of the remaining shapes in the picture, which means that 
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10 
11 
12 
13 

1 
2 
3 
4 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 

LINEDT 

Start Pt 
xl yl 
580 3000 
580 3000 

1550 3000 
1060 1650 
580 2320 

1060 1650 
5&.1 1640 

1550 2320 
580 1640 

1060 2320 

50 50 
540 60 
540 20 

PRlrvtDT 

Address 
first last 

1 5 
6 9 

10 13 

14 17 

NODEDT 

Stop Pt 
x2 y2 
580 2320 

1550 3000 
1550 2320 
1550 1660 
1060 2320 
1060 2320 
580 2320 

1550 1660 
1060 1650 
1550 2320 

540 60 
540 520 

50 520 

50 50 

End Node 
linei.d x 

1 2320 
5 2320 

10 2320 
3 3000 
2 
4 
8 

10 
6 
5 
6 
9 
7 

11 540 60 
12 540 520 
.1.3 50 520 
14 jO :lO 

9.7 

new lines generated 
by repeating a shape. 

shape 2 repeated as 4 
produces a difference 
of -1010 on the X-axis, 
and -1600 on the y 

+ dx of -1010 and 
dy of -1600. 
produces the node 
coordinates·stored 
in locations 14-17. 

Figure 9.3 The Effect Of Repeating An Existing Shape On 
The ENIGMA Data Structure. 
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7 
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Figure 9.4 

9.8 

2 

CD ~ 

10 

6 

CD 
8 

4 

Figure Described By The Data Base 
Described In Figure 9.3. 

the picture which remains following the deletion will have to be 

reinteI'?reted. It is possible, therefore, that a shape totally 

surrounded by others, can never be deleted, since on reinterpretation, 

that shape will be traced out anew. 

In actual fact, only the null records in the line data need 

be removed. This is made apparent in Figure 9.5 overpage, where an 

example of shape deletion is given. 

A further problem arises, since those lines comman to another 

shape, besides that to be deleted, must nevertheless be preserved 

in the line data list. 

Several shapes can be deleted in sequence wi thout the need 

for re-inteI'?retation, provided the data consistency of the line 

data list is preserved. 

2.5 DELETING A LINE 

Prior to modifying the database by the deletion of a line, 

the computer must be told which line is the subject of scrutiny. 
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8 
9 

10 

1 
2 
3 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

LINEDT 

Start Pt 
xl yl 
580 3000 
580 3000 

1550 3000 
1060 1650 
580 2320 

1060 1650 
5SU 1640 

1550 2320 
580 1640 

1060 2320 
.-

PRIMDT 
Address 

Stop Pt 
x2. y2 
580' 2320 

1550 3000 
1550 2320 
1550 1660 
1060 2320 
1060 2320 
580 2320 

1550 1660 
1060 1650 
1550 2320 

Location 

becanes 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

9.9 

LINEDT 

Start Pt Stop Pt 
xl yl x2. y2 
580 3000 580· 2320 
580 3000 1550 3000 

1550 3000 1550 2320 

580 2320 1060 2320 
1060 1650 1060 2320 
5SU 1640 580 2320 

580 1640 1060 1650 
1060 2320 1550 2320 

PRIMDT 

Address Location 
first last x ref vref first last x ref vref 

1 5 580 3000 
6 9 1060 1650 

10 13 580 2320 
becanes 

NODEDT 
End Node 

line i.d x y 
1 580 2320 
5 1060 2320 

® 1550 2320 
3 1550 3000 
2 580 3000 becanes 
4 1550 1660 
8 1550 2320 

$ 1060 2320 
1060 1650 

5 1060 2320 

® 1060 1650 
9 580 1640 
7 580 2320 

1 
2 
3 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

1 5 

10 13 

NOD EDT 

linei.d 
1 
5 

10 
3 
2 

5 
6 
9 
7 

580 3000 

sao 2320 

End Node 
x y 
580 2320 

1060 2320 
1550 2320 
1550 3000 
sao 3000 

1060 2320 
1060 16S0 
580 1640 
5ao 2320 

Figure 9.5 The ,Effect of Shape Deletion On The ENIGMA 
Data Base. 

Note that lines common to two shapes must 
be preserved in LINEDT despite deletion of 
a shape to which it is a boundary. 
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This specification may be achieved by calculating the tangential 

distance between a point placed by the user manipulating the cursor, 

near to the line in question. The line data list is then read in 

sequence, and the perpendicular length to all lines calculated. 

The line nearest to the point is identified as that for deletion. 

Further possibilities arise, in that should the perpendicular 

strike the line in question near to one of its ends, then the 

system could construe that the user wishes to edi t that end; if in 

the middle, that the user wishes to manipulate the entire line. 

Figure 9.6 illustrates the principle of line selection. 

b(bl,b2) 

q(ql,q2 -- \ 
- -' - -~P(x,y) 

c(c1,c2) 

p1 = (y-a2) + (x+a1).(a2-b2) 
(a1-b1) 

p2 = Y + x.(a2-b2) p1.(al-bl) 
(a1-b1) - (a2-b2) 

ql = (y-a2) + (x+al).(a2-c2) 
(al-cl) 

q2 = y + x.(a2-c2) q2.(al-cl) 
(al-c1) - (a2-c2) 

2 2 (a2-b2) + (a1-b1) 
(a1-bl) • (a2-b2) 

2 2 (a2-c2) + (al-cl) 
(al-c1) . (a2-c2) 

If (a1-b1)!(p1-a1) 4 reference is to end point ~ or 

If (a1-b1)!(p1-a1) 1.33 reference is to line ab 

Else reference is to end point ~. 

Figure 9.6 Scheme For Specifying A Line 
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Reference to an end point might be used should the user wish 

to 'drag' an end point to a new position. This would introduce 

fUrther problems, since it would effect all shapes which held the 

point to be moved in cornmon, as will be discussed in due course. 

The deletion of a line from the LINEDT data list may well ,) 

produce 'knock-on' effects upon the consistency of the data held 

in both PRIMOT and NODEDT, since it is likely that a line deleted 

is cornmon to two shapes. Unlike the case of deletion of an entire 

shape, the remaining boundaries of the two formerly adjacent 

shapes now descri1::eone new shape by virtue of the removal of the 

seperating line. Several line deletions may be done in sequence, 

but the line data list would have to be cleared of the void 

records before attempting a re-interpretation of the amended 

picture . 

2.6 MOVING A POINT 

As demonstrated above, the user can point with the cursor 

to a node which he wants to move to a new position. 

Once the lines describing a drawing have been split into 

discrete line elements, ,(see Chapter 6, section 4.4), data cons­

istency may be maintained in LINEDT when a point fixing the end 

position of a line (or lines) is moved. When the point has been 

specified and the new point position defined by means of the new 

position of the cross-hair cursor, the old coordinates of each 

occurance of the old point are substituted by_the new. However, 

there are si tuations in which the overall topology is seriously 

disrupted. Such a situation is illustrated in Figure 9.7 overpage. 

In this example, the point Q has been moved such that the 

lines ab and ad now intersect several existing lines, creating 

a number of additional new shapes. It is also possible that the 

point moved is the reference point held in PRIMDT. 

To ensure that these possible consequences are filtered out, 

the data newly created in LINEDT would have to be reinterpreted. 

If no additional line segments are generated, the system might be 

able to modify the corresponding changes throughout the rest of 

the data structure. 
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c b. _________ . _________ __ c 
t- - - - - - .:---------. 
I 

c{).-----",------ a~~--'·---... "I 
--------------

~b' 
Figure g.7 Topological Disruption Caused By 

Moving A Point 

2.7 MOVING A LINE 

This operation is similar to the previous point moving 

process, but here, obviously, two points are moved simultaneously. 
The line to be moved is specified as describC'd previuusly,. and the 

new point selected. The line will be kept at the same length, and 

moved to a position parallel to its old, but passing through the 

specified pOi0t. Those line connected to the old lines end points 

are extended to the new positions. There is a likelihood of far 

greater topological disruption to the data base than with a single 

point move. 

To over come these problems, the line overlay check must be 

carried out on all altered lines in case the side lines to that 

moved have regressed. The line data set would subsequently have to 

be reinterpreted. 

Should these effects not occur, then Figure 9.8 on the 

following page illustrates the effect of a line movement 

upon the database. In the exarrple shown, line number 10 is to be 

moved. However, from NODEDT it is seen ~t line 10 is connected 

to lines number 3 I 5 I 6 I and 8, and any change to the coordinate 

positions of line 10 will need to be followed through to these 

other lines. The maintenance of the topology of the picture 
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2 
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4 
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6 
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LINEDT 

Start Pt 
xl yl 
580 3000 
580 3000 

1550 3000 
1060 1650 
580 2320 

1060 1650 
5SU 1640 

1550 2320 

Stop pt 
x2. y2 
580. 2320 

1550 3000 
1550 2320 
1550 1660 
1060 2320 becanes 
1060 2320 
580 2320 

1550 1660 

9.13 

LINEDT 

Start Pt Stop pt 
xl yl x2. y2 
580 3000 5801 2320 
580 3000 1550 3000 

1550 3000 1590 2350 
1060 1650 1550 1660 
580 2320 1100 2350 

1060 1650 
1~ iii,° 5SU 1640 

1590 2350 1550 1660 

® 
580 1640 1060 

1060 2320 1550 
1650 
2320 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
580 1640 1060 1650 

1100 ~50 1590 235tJ 

1 
2 
3 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

PRIMDT 

Address Location 
first last x ref yref 

1 5 580 3000 
6 9 1060 1650 

10 13 580 2320 

NODEDT 

End Node 
linei.d x y-

1 580 2320 

CD 1060 2320 
1550 2320 
1550 3000 

2 !580 3000 
4 1550 1660 

CD 1550 2320 
1060 2320 
1060 1650 

5 1060 2320 
6 1060 1650 
9 580 1640 
7 580 2320 

becanes 

becanes 

1 
2 
3 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

PRIMDT 

Address Location 
first last x ref y ref 

1 5 580 3000 
6 9 1060 1650 

10 13 580 2320 

NODEDT 

End Node 
linei.d x y 

1 580 2320 
5 1100 2350 

10 1590 2350 
3 1550 3000 
2 580 3000 
4 1550 1660 
8 1590 2350 

10 .i.lOC a350 
6 1060 1650 
5 *'1.QO aaso 
6 1060 1650 
9 580 1640 
7 580 2320 

Figure 9. 8 The Effects Of Moving A Line On The ENIGMA 
Data Base. 
Line 10 is to be moved. 

causes distortions to be induced as illustrated in Figure 9.9 

overpage. 

2.8 MOVING A SHAPE 

There are two possible ilTplementations for moving a shape. 

The first is illustrated in Figure 9.10 overpage. Here. the shape 
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Figure 9.9 The Alteration To A Picture Througn Moving A Line 

1 
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7 Q) 

9 

Figure 9.10 

2 

CD 3 

10 

10 

6 6 CD 8 

4 

Duplication Of Common Lines Prior 
To A Move Shape Operation 
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to be moved is 'detached' from the picture, and cammon lines 

duplicated in the LINEDT list. The shape can then be moved as a 

canplete unit. 

The second option would maintain the original topological 

links, such that when the shape was moved, the adjoining lines 

would be dragged with it, as with the line move process. All nodes 

connected with the moved shape would be moved through a similar 

'x' and 'y' increment, dictated by the difference between the 
J 

reference point and the newly specified position. 

The first option requires rather more calculation than the 

second. Detatching a shape from the remainder of the picture 

involves alterations to all three ENIGMA data lists. Additionally, 

there is a potential problem where the shape is moved adjacent to 

two existing shapes. The line overlap checking routine has to be 

invoked, before subjecting the line data file with the new data 

to the interpretation routine. 

These problems will also apply where an existing shape is to 

be duplicated. 

3 Other Editing Functions 

The editing and manipulation fUnctions so far considered are 

those which effect parts of the data structure, and whose application 

is intended to make marginal adjustments to the picture. There are, 

however, a set of desirable data manipulation processes which are 

of a higher order. Those which might be considered in this 

category are the processes to orthogonalise a non-orthogonal picture, 

those to hand or invert individual shapes, and perhaps those to 

reproduce aggregations of individual shapes. Similarly, rotations 

applied to shapes, and of cpurse, the treatment of arcs and circles . 

. These latter operations have not been considered to any 

depth. However, the process for orthoganalisation is considered a 

very worthwhile addition to ENIGMA, although the problems associated 

with its implementation are particularly onerous. 
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3.1 ORTHOGONALISATION 

Many CAAD applications programmes process rectilinear 

geometry descriptions, ie. all lines drawn parallel to the two 

axes. By virtue of the inaccuracies inherent in freehand sketching, 

it is unlikely that true vertical and horizontal lines will be 

drawn, despite the ENIGMA enhancing routines. It would also be of 

use to be able to convert nonorthogonal drawings into their 

rectilinear equivalents, so that programmes limited to this=geometry 

discipline could be run using the approximated graphic data. 

In order to make a line coaxial it must be rotated about a 

fixed point along its length to bring it parallel to either the 

'x' or 'y' axis. This necessarily will displace at least one end 

point of a pitched line. Figure 9.11 demonstrates the effect 

orthogonalisation would have on the topology of a drawing caused 

by rotating its constituent lines about their mid-points. 

JL '. _ ~. _=-.---=~. ::::-:-.-= j 
ilL,...: 

Key: 

original sketch 

orthogonalised sketch 

x axis 

Figure 9. 11 Topological Discontinuity Caused 
By Orthogonalisation 

Several consequences will be noted: Firstly, unless the 

gradients of the lines are small, the junctions became separated 

beyond the point which the ENIGMA tolerance values can rectify 

the separations. Secondly, some lines have became stepped. This 
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results in, thirdly, simple shapes becoming more complex, with the 

introduction of many more sides to fonnerly sDnple figures. 

If as in the GRAMP graphic regime, only rectangular figures 

are penni tted, there is the further problem of reducing these more 

complex shapes to an aggregation of constituent rectangles. 

4 Interpretation Of Multi-Storey BUildings 

Provided that each storey is treated as a separate drawing, 

the resulting interpretation in ENIGMA can be built up by 

concatenating the output files by use of the TOPS20 file editing 

routines, although this has to be done, currently, independently 

of the ENIGMA system. It would therefore, be more convenient if 

these facilities were included within the body of the main 

program. The first requirement is for a planchest in whL::h to 

store the different drawings in an organised manner. 

The planchest would treat a building description as a set of 

overlays which could be superimposed, yet each drawing refering to 

a specific level. However, the major problem remains where a space 

extends through more than one level, or is not a simple extrusion 

of its (lowest) plan fonn throughout its height. 

Potential problems exist where the various storey plans have 

differing silhouettes. This problem relates to overhangs. There is 

also the potential problem where a plan includes unconnected shapes, 

such that there is a multipart silhouette. 

5 Extensions To ENIGMA 

One method to deal with many of the possibilities outlined 

above could be circumvented by looking to other existent programs 

which already cope with the eventualities described. Indeed, the 

intention behind the ENIGMA system is the desire to create geometry 

data files for a range of such programmes. 

The translation of the ENIGMA database into input files for 

both the GOAL and BIBLE programs has been described previously in 

Chapter 7. 1m. examination of the GABLE data structure, (insofar as 
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it is possible to get access to commercially available source 

code), would suggest that the data required exists in the ENIGMA 

data structure. Consequently it should be possible to produce a 

translation program, such that access is gained to GABLE's multi­

storey shape interpretation routines, planchest, and appraisal 

modules. 

Similarly, a cursory inspection of ESP, (~vironmental 

§ystems f,erformance), and VISTA, <:Y:isual .!frlpact §.irrulation 

!echnical ~d), fran the ABACUS Uni t, Uni versi ty of Strathc lyde , 

suggest that it might be possible to produce similar interpretation 

modules for these prograrrmes. This is particularly true of VISTA 

which uses an advanced form of the data structure utilised by 

BIBLE. 

6 Conclusion 

The ENIGMA system so far described is deficient in graphics 

editing and manipulation facilities. The most pressing fUture 

work on ENIGMA should be aimed at making good this deficiency. 

A usefUl extension to the system would be produced by the 

inclusion of an orthogonalisation programme. 

Perhaps the most fruitfUl development would be the inclusion 

of fUrther translation routines to enable access to other applicat­

ion prograrrmes. This would have the great advantage of avoiding the 

duplication of effort involved in reconstructing existent software. 
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The author is a Registered Architect havinq; beE"n enplovErl in private 
practice in London. His introduction to computers came throu~ thennal 
modelling whilst a student at the Welsh School Of Archi tecture. and he 
is currently undertakinq; an SERC funded ~esearch ~ at the Scott 
Sutherland School Of Architecture in Abenjeen under the direction o~ 
Dr L. W. W. Lain.o: , looking at aspects of data- inputtin~ for CMf) svstetTlS. 

Man Before The Machine : An Issue In CAAD 
" The test of the machine is t~e satisfaction it ~ives 
you. There isn't any other tes~. If the machine produces 
tranquili ty it's ri.$t. If it disturbs YOU it's wronq 
until either the machine or vour mind is chanq;ed. 0' 

R.Pirsig 

Zen And TIle Art Of :'v1otorcycle '.laintenance. 

INTRODrCTIO:"J 

Inc'advance of any other life form man is able to predict his 1 
future circumstances an~ take action to mitiqate future contin~encip.s. 
These endov.ments have enabled him to develoo tools, to mcY.ii f'v his 
environment thr~qh the buildinq of habitations and to develoo tech­
nologies. The ability involved in these endeavours is mans ability to 
desi,q;n. 

The design of cities, buildings or ;rnact "anv edifice on a 
scale large enough to house human activity"- goes under the q;eneric 
term of 'Architecture'. 'I'hat same creative force 'that gave rise to 
architecture also gave rise to the design and construction of the 
digital electronic computer. 

Although applications can be found for3computer aids in the 
practice of architecture as a business !Jrocess "carputinq is less in 
evidence in the work of architects ~~ in any other sector of the 
(building) industry. There could be Ra"lY reasons for this, includin<t 
cost, lack of suitable input and outpu~ devices and a feelinq that 
canputers can only deal with a small ~t of the architects ~orkload·.4 

Aspiration : The Days Of Optimism 

When the pioneering CAAD work ~as undertaken it was generally 
imagined that the end product would be a svstem where the archi teet 
would specify the problem to the compu~er and then select his pr.efered 
solution fram a number automatically ~enerated by the machine f 
solutions incorporating his spec ialist$, advice and the automatic 
'optamisation' of the various contradictory design parameters. 

This optimism was in part a co~sequence of the enthusiasm for 
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Operations Research methods ( developed to compensate for manpower 
shortages during the early 1940's ) which were subsequently applied to 
the 'design process'. With the benefit of hindsiq;ht desi~ method­
ologists are generally agreed that architectural desiq;n is t:>g gcmolex 
to be described by a process having a 'beg;inin~' and an 'end' , ; that 
it can be infinitely recursive ; and that a learninq process is init­
iated which inc~ases 6~7 designers understandin.q of the problem as 
the process cont1nues. 

Actuality: Design As A Continuum As Opposed To A Sequence 

However it is phrased, the goal of architectural endeavour is 
the conception and communication of a hypothesised buildinq model. The 
strategy invoked, on a s~listic level, is the recursive cycle of 
'analysis-synthesis-appraisal' 'Sproceeding from the general to the 
specific as described by Markus • This model is compatible with the 
theory of the developTlf~nt of sc~entific knO'o~lg.ige l?y the method of 
conj ecture and refutat10n descrlobed by Popper . ThloS leads to a 
helical model of the design process sumnarised in Fiq 1. 

The process then, may be see.'1 as a developin,q; description of' 
the evolving building model which may, at any point in time, include 
incomplete and inconsistent data. The ~oal of the process is to arrivp. 
at a C~oete and ~ho~gh data 7et pertaininq to the hvpothetical 
building; frem wtuch lot can ultunately be constructed. The self 
evidence of this is noteworthy since the process that is envoked is 
nothing less than the creation of a data base by the utilisation of 
parts of itself to test, regulate and exoand and modify itself: It is 
thereby a system in which each data set is ~lici tly related to each 
and every other, and. although there are many wa.ys of crossreferencinq 
the data, the catmOn feature interrelating it all is the buildinq 
geanetry to which the data applies. It is this feature which pervades 
the entire data-base and explains why architects manipulate their 
ideas by means of graphic representations. Significantly it is this 
feature which currently has the weakest input/out put support in CAAD 
systems". 

coommication : Talking Down To Machines 

A computer may be described as a high speed moron ; and 
perhaps it is not so nuch the lack of variety of buildinq; qecmetry 
input/output devices which deter architects fron CA.~ svstems. but the 
crudi ty and banality of' the level at \\nich the man 'machine interaction 
has to take place. This 'blandness' is manifes~ in those areas of 
architecture where consideration of qualitative aspects - which indeed 
many practitioners feel are the esser.ce of architecture"- which 
require channels of c~ication, lansuages a~d interfaces currently 
unavailible to computers . ~reover, \\nere machines are proqrarnmed to 
handle 'qualities' , we find that thevare actuallv transposed to 
quanti ties, ie. coefficients of 'good."ess' arrived at by sub.i ec'!=-i ve 
assessment. Vnder these circumstances it is often hard to see ~ether 
a canputer aid might not infact, be an obfuscation. 
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THESIS 
je C.t.u red 

S9k1flons, ) : .. 

7 a I 

.. .. 

Diagram 1. A Model Of The Design Process 

An initial analysis of the desiW1 problen results in a Desig;n 
Brief (l).A hypothetical 'building' is conceived by the architect (~) 
which 'spins off' information to the Project Data Structure (3). This 
hypothesised solution is then appraised in part or full as a solution 
to the brief (4). Again this adds to the data structure. AnalVSis (5) 
of the appraisal leads to thesynthesis of new or modified' solutions (6). 
This cycle of analysis - synthesis - appraisal is contirued until the 
appraisal no longer 'refutes' the 'conj ectured' design solution and 
the Project Data Structure is sufficiently detailed to communicate the 
design in fu1l.(7) 

A significant feature of this model is that the process i~ seen 
to proceed from qeneral to specific problems and statements. 
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Evolution : Traditional Methods 

Lmplicitly then, the central issue for CAAD systems is that 
it is necessary "to describe buildings to ccmputers •.• before architects 
•.• can use ccmputers to ~rform any task related. to the desi,qn and 
production of buildings" and to do so throu.$ an interface that is 
attractive to the user. 'Pencil and paper' techniques evolved. to cepe 
wi th the subtle canplexi ties of the design problem. Thev are tools 'for 
the manipulation of spatial, proportional and relational ideas ~ Pencil 
and paper are regarded. as ~he vehicle for allowino; the desio;ner a wide 
range of possible approaches to the problem by I?;esentin.q sinultaneouslv 
a range of visual cues to canplex relationships -; where simple svrnbols 
possess many levels of significant=-information ; whTse they encode a 
building form into manageable pieces of information ; ahd where 
sketchiness of a drawing cgntains inportant information about the 
designers train of thought . Significantly "such y"?drawing cannot be 
easily decoded. by anyone other than the desi,qner" -

Specification : A Desirable Interface 

The developnent of CAAD systens, if they are to becane less 
incongruous to their potential users, oust be endowed with qualities 
that enable them to assist tAeEiesigAerto "i'irid entry paints to the 
design problem ; assist him in generatinq possible desiW\ solutions 
fran which he can select ; and. to assist him to manipulate buildinQ; 
form. The attributes such a system should possess include the 
abili ty to focus on form ; the ability to allow the designer to select 
areas to examine and proceed. with operations in the order he chooses : 
the capacity to deal with a large nurrber of variables ; the abilitY to 
keep the designer in close contact with the problem solvin.o; p~ess ~ 
and finally it should canpliment the strengths of the designer . 

A machine must therefore possess a hi~ degree of intelliQ;ence 
'and sophistication. Only by doing so can a:eomputer syst~2offer the 
designer the freed.an ,enjoyed. using traditional techniques ~ 

Peroration : Technologjcal Indigestion 

It is not clear just how long man has been designinq buildin~ 
and monuments, but during this time it is evident that thOse desiqn 
techniques that evolved. were a direct consequence of' both the knowled.qe 
and the scale of human abilities prevalent at the time the desi~ers 
li ved and. worked. 

In contrast the development of the di~tal computer ann its 
associated applications technolo~ has been so rapid that in onlv a f~~ 
fields of human endeavour has a body of user experience been accumulat­
ed. The impact of this technology and its associated11eaminq curve has 
been too abrupt to have been canfortably assimilated ~ Jud.v.n<;t by the 
antagonisms generated by the ~ct 'of CAAD into the architectural 
profession, for example, there is good reason to believe that the 
professions metabolism is insufficiently developed to do thr4.i~ ~ 
until it is we are sufferinq from tech.9)olo~ical indigestion '.' . 

Argueably, the rate of hardware development has been so raPid 
that it will take a long time for soft\are applications to catch up 
with the hardware's potential abilities, and a longer time.still before 
sufficient user experience exists for the profession to undertake a 
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critical qualitative assessment of CAAD benefits. In this context we 
rrust think in terms of decades pending a software revolution. 

Perhaps the most unfortunate legacy of the carputers oricrins 
in the fields of scientific application has been the emphasis on 
numeracy in the design process - strengthened. perhaps in the buildirW; 
industry by the typically 'numeric' input fran the architects special 
consul tants. This has tended to obscure the fact that the archi tects 
final design solution is. itself an opt~isation of both qualitative 
and quantitative parameters. The emphasis on 'quality; ~eably 
differentiates 'Architecture' fran ''mere engineerin~'-. 

Surrmation : The Last Word 

The controversy wi thin the archi tectural profession has moved 
on from whether computers have anything to offer them : Computers are 
here and there is no precedent to suggest that a technology once 
invented can be uninvented. 

The issue upon which architects non have to set their minds 
is whether to reformulate design problems and proceedures to make the 
most cost effective use of those computer-aids which exist ; or to 
exert pressure to develop computer eq~pment more sympathetic to the 
existing design process and so preserve for the designer the pleasure 
of design. 

Dave Leifer 

Aberdeen 

Feb 1983 
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A Graphics Interface to complement 
Traditional Techniques 

ABSTRACT 

Noting the reluctance of architects in small private practices to 
adopt CAAD aids, the crudity of existing graphic interfaces is ident­
ified as an inhibiting factor. 

A suite of ccmputer progranmes currentlY under deve10pnent are 
describerl which are designed to penni t the input of geanetric plan forms 
by traditional pencil and. paper techniques, whilst utilising the 
ccmputers processing power to edit and manipulate the data so ' captured' • 

INTRODUCTION 

Many reasons have been offered to explain why ~i tects have failed 
to utilise ccmputers more fully than they have done • Despite the pranise 
of the micro-chip revolution, most architects' design work is still carried 
out by manual methods; catpJ.ter aids being viewed as a specialised adjW'lCt 
applicable to a few atypical proj ects. This is perhaps understandable in 
a profession where sane 85~ of all regis;ered architects work in practices 
~loying 10 or less architectural stafr, and where the stability of 
work1oc;w. i3 sufficiently uncertain to make large capital investment 
precarl.OUS • 

To most architectural practitioners who are accustaned to, and. 
moreover enj oy using, drawing board and set-square, canputers represent 
an alien teclu1010gy requiring unfamiliar and sanetimes inappropriate 
languages and working methods. The relative magni tude of the capi tal 
investment that computers represent to the small architectural practice 
requires extremely efficient and close management of the system to 
ensure that it is run cost-effectively. Not only is this expertise 
expensive, but it is at present rarely available. More insidiou.!A1y·, 
principals in small practices may feel a potential loss of overall 
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control posed by the inherent canplexi ty of such systems. Such f'ears 
cannot be easily allayed. . 

It has been argued elsewhere that one of the most positve ways 
wi th which to pranote CAAD would be to utilise the carp.1ters processin9; 
power to take on more of the burden of man-machine communication4 . The 
machines rrust becane more approachable by the non-catplter literate 
user, leaving him free to devote his energies to designin.~ rather than 
on communicating with, ~ operating the system. 

THE ARCHITECTS ROLE 

The archi teets task may be construed as the conception and ccmn­
unication of a hypothetical building model. Infact, the desi,W1 process 
is one in which the designer cOOl'iles ever increasingly accurate data 
pertaining to the hypothetical model until such time as it is sufficiently 
canplete and consistent to allow the client to 'experience' it and the 
builder to build it. ( This pragmatic description does not belittle the 
~mPl±cit importance attached to the role of the archi teet as an 
aesthete ). The carmon feature underlying all of the various archi teet 

generated data sets is the building models geanetry; whilst the material 
specifications state 'what' it is and the perfonmance specifications 
state what 'it' is to do, the drawings state where all of this other 
information is to apply, and how it is interrelated. 

The corollary to this process is constant appraisal to ensure that 
the sub-systems do what they are supposed to, be it the adequacy of the 
structural system or that the project may be built within burlq;~t. 

DATA MANIPULATION 

The magni tude and canplexi ty of the data generated for any O"1e 
building project, not least of. which is the project drawings, can o~y 
be' guesstimated' in advance. 'Ihi.s puts extraordinary demands on any 
canputer system which would handle such a large and various data-set. 
Although s~ data-basing systems have been evolved and. utilised by the 
profession , none have been sufficiently effective for machine ~lemen­
tation. Perhaps one of the most significant developnents in data­
manipulating techniques ~ been the developnent of logical programning 
la.nguages such as PROLOG which offer a powerful means for interogating 
large data-structures. The application of these7l~es to graphic 
data is currently under investigation elsewhere • 

COMPUTER GRAPHICS 

Wi thin the overall CAAD context, one area of concern is the machines 
data-aquisition rather than its data-manipulation. This is particularly 
relevent to drawn infonmation, since it is at this level that ar.chitects 
'experience' canputer systems. Current systems require inhibi til1<t . 
draughting conventions and crude levels of communication. 

Drawings represent simultaneously many different levels o~ signif- . ... 
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cance to the the user8. Each level is ~.distilled' fran it's contextural 
relationship to other parts of the drawing. Thus the fundemental problem 
wi th canputer graphics is the radical difference between mans and 
machines perception of drawings. Whilst the human can relate parts of a 
'picture' to the whole, the machine is sinply a collection of registers 
which can only cope with one data item at a time. The only 'context' 
the machine has for construing a drawi.n~ is the artificial one ~licit 
in the structure of the <¥ita-base. To illustrate this, consider the 
example belOW'. 

a) Picture to be created 

~ 
LD 

b) ASSOCiation of Graphic Primitives 

. c) Primitives 
-

Primitive A 8 C 
scale factor So Sb Sc 
reference point x Xa xb xe -

Y Yo Yb Ye 

d) Input Data 
move pen to (xa,ya) (xb, yb) (xc.ye) 
draw line to (xa+Sa,rc> (xb+Sb,yb) (xe+Sc,~) 
draw line to (xo+So,ya+. a) (Xb+Sb,bb+Sb) (xe+Sc,yc+Sc) 
draw line to (xa,ya + So) (xb,y +Sb) (xc,yc+Sc) 
draw line to (xa,yo) (xb,yb) (xc,ye) 

e) Machine Draughting Commands 

Diagram 1 Example Of A Data Structure 
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Consider a simple CAM) graphics input system where drawings are 
created as canbinations of squares. The user wishes to input a picture 
shown in la. The picture canprises of three squares A, B and C. I.csnoring 
the interelationship of the squares with each other, the machine rrust 
be given sufficient infonmation ~t each geometric primdtive not only 
to carry out the calculations that might be required in the subsequent 
applications progranme, but sin'ply to draw them on the screen. In the 
case illustrated the necessary input data includes the coordinate 
posi tion of a point of reference for each square ( here taken as the 
lower left-hand corner ), and a scaling factor for each square. ( This 
input data is shown in the table, Diagram Id.). In order to draw these 
squares, the machine RUSt convert this input data such that the drawing 
routines may be enacted. ( These drawing routines are shown in Dia.qram 
Ie. ) 

It will be seen that in such a system it is necessary to refer to 
the lower levels of the data-structure if the user wants to address any 
particular line. This level is of course different to the 'vocabulary' 
used to create the picture in the first place. This C\JrTi)erscme method 
of dealing with drawings does not bear carparison to the ease of paper 
and pencil techniques. 

THE PROPOSED GRAPHICS INTERFACE 

To overccme the disincentive outlined above, an opposite route mav 
be considered. Accepting the premise that architects generally desiqn 
in the initial stages by 'toying' with freehand sketches, it is le¢timate 
to place the onus on the computer to derive higher levels of si~ificance 
( ie. recognition of graphic primitives ), from the lowest level of input 
data ( ie. the continuous dig! tisation of archi tects sketches ); in ef£ect 
to deduce the data-structure fran the act of drawing. 

The system being developed is surrmarised in Diaqram ~. Architectural 
sketches are digitised on a graphics tablet (Tektronix 4954 ) which is 
connected via a Tektronix 4010 interface to a micro-camputer with graphics 
display screen (Tektronix 4054) . 

Sketch ~t 

Diagram 2 

Dyna mic Editing 
and Manipulation 

Applications 
software. 

Configuration Of Proposed Interface 
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SYSTEM DESCRIPTION 

The proposed system operates in five sections. 

1. As described the designer sketches his intentions on the 
digi tising tablet, an example of which is shown in Dia~am 3. The 
rate of data capture by the machine will depend upon the speed at 
which the user draws and the cycle time of the di,~ tiser. 

Diagram 3 Sketch As Drawn On Tablet 

The drawing is echoed on the screen of theo:raphics tenninal 
to confinn to the user that the drawing has been captured. The 
echo on the screen resultinq fram the sketch shown in Dia~am 3, 
and the format that the digitised data takes is shown in Dia.~am 4. 

. , • , 
.. ...." 

.. ,. 

• .. 
~ .. .. .... 

III 
'\ AI 

...... ., 

.. 
"" • .. .. ... ---• 
• .. .. 
· 

.. 
• • 
• • 

• 

• 

point data 
coordinates 
idno, x 

1 
2 
3 

Diagram' 4 Digitised Information Echoed On Screen 

2. The digitised tablet data is processed, and the data is sort-
ed into discrete lines by comparing the gradient of each successive 
line element to the line of closest fit through the preceedin~ data 
points. If the deviation is greater than a user defined tolerance 
a new line is deemed to have been encountered. 

Moreover the 'Lmaqe' is enhanced: Not only are freehand lines 
straightened, but overlapping lines are removed, clipped copners 
reconstructed, and almost touching lines made to touch. The'irifo­
mation about the lines canposing the drawin~ are storE'd. in an array 
for further ·processing, and the eT".hanced ima.~e displayed on the 
screen as shown in Diagram 5. 

5 
234 



5 lil'le' data 

1 
8 

line start stop 
i.d . t 

P.9i~~ no. ~nvl x2 

3 2 
7 

6 ~ 
3 

. 7 
8 

4 

DiagramS Computer Interpretation Of lines 

3. The user may wish to edit the interpretation the ccmputer has 
generated. Using the dynamic graphic facilities or the terminal, 
he may delete or add lines by means of the cross-hail" cursor, or 
indeed add infonnation via the tablet. 

Manipulation via the terminal has the advantage that the user 
can, if he wishes, make the drawing orthogonal, or place the lines 
in a range of sectors (ie. 0,15,30,45,60,75 or 90 degrees). With 
this editing process via the tenminal, the dynamic feedback tech­
nique mentioned earlier is available to ensure the accurate placin~ 
of lines on the screen. 

4. The line data generated at the completion of the above editin~ 
process is then dissasociated into discrete single line sections. 
Thus a line disected by another is split into two individual lines. 
The result of this dissasociation in shown in Dia.~am 6. 

5 

1 8 B 
2\ 

6 

7 12 
3 A 

9 C 11 

4 10 

Diagram 6 line Disassociatoo And Primitive identifICation 

By envokif\q a search algorithm, the perimeter of each enclosed 
space is traced and the line identifiers for the boundaries stored 
in an array. The system has thus abstracted. .q:eanetric primi ti ves 
fran the data in a form which may be used directly by the advanced 
graphics capabilities of the graphics terminal. 

Utilising the terminals capabilities, the user can maQl~ate 
canplete primitives. He may repeat, move, mirror, rotate, and 
scale. An indication of these facilities is demOnstrated in 
Diagram 7. 

... 
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I 
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A' 

Diagram 7 Graphic M:1nipulction Option Utilising Dynamic 
Graphics Offering hstant Feedback And 
Rubber Banding 

5. The final step for the system is to refonnat the ~aphic data 
into structures suitable for input into other applications proqrams. 
Since most applications software deal :: with polyhedralqeanetries 
the data-structure produced by the above system contains the 
necessary infonnation for transmutation to other forms. 

SLMvtARy 

The developnent proj ect described above is intended to ease the 
carrnunication of drawings between the architectural user and the machine 
in the following ways : 

1 • By placing the onus of inte1"?retation on the machine, the 
designer can devote his time more fully to the task of desi~in~. 
2. By autanating the interpreta!:ion system the machine is made 
accessible to the non-computer literate user. 
3. Such a system supplements the existing drawin9: board techniques 
generally used by the architectural profession at present, and can 
make the new technology less obtrusive. 
4. - Such a system frees the designer fran th~ constraints of 
draughting conventions common wit~ many existinqqraphics handlin~ 
applications programmes. 
5. Appraisal programs may be instigated nuch earlier in the 
design process, which can maximise the benefit of the advice thus 
rendered. Moreover there is less overhead involved in the time 
consuming task of 'digi tising' dr&rin~ done in advance by manual 
methods. 
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Appendix 2 

Line Of Least Squares Test 

238 



APPENDIX 2 

It was noted in section 6, page 219, that the least squares 

line describing the line of closest fit through a spread of data 

coordinate points, is capable of producing misleading results. 

" The least square line approximating 
the set of points (Xl,Y1), (X2,Y2), .... , 
(XN , YN) has the equation 

Y = aO + a1.X 

where the constants aO and a1 are detennined 
by solving sinultaneously the equations 

Y = aO.N + al. X 
2 XX ::: aO. X + al. X 

which are called the 'normal equations for 
the least square line'. 

The constants ao and a1 can, if desired, 
be foand fran the fornulas 

aO = 

a1 = 

( y)( X2) _ ( X)( XX) 

N X2 _ ( X>2 

N XX - ( X) ( Y) 

N X2 _ ( X)2 

, and 

" 

"Schaums Outline Series: Theory And Problems 
Of Statistics." 
Murray.R.Spiegel 
McGraw Hill 1961 p.220 

The input and output data which was used and produced by the 

line of least squares program, (the listing of which is presented 

on page 135 ), clearly shows that the gradient of the closest line 

wavers, when as in this exan:ple, the data points indicate a line 

close to the vertical. Suspecting that the algorithm was at fault, 

The first seven data points were fed into a regression analysis 

available on the Stat Pack cooputer programne run on the DEC 20 

mainframe canputer. This process confirmed the results generated 

by the DEMO program. The results ef the STATPK carputer run 1s 
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INPL'T DATA GRAPHICAL OUTPl'T DATA 
REPRESENTATION @EXE DEM).REL 

Coordinate LINK : Loading 
Values 

· . · . -, . 
(LNKXCT OEM) execution) 

29 424 2177 gradient i n 
0 

· . · . x y 
26 422 2173 · . 422 2173 63.43495 2100 · . 
26 421 2161 '- · . 421 21 6 1 78 . 3663 7 · . · . 
26 422 2147 · . .. . . 422 2147 80 . 53768 
26 423 2133 423 2133 61 . 55707 
26 423 2116 - · . 423 2116 - 64 .44004 
26 422 2 103 2000 422 2103 57 . 99462 
2 6 4 22 2088 

f ' 422 2088 79 . 00914 · - ~ -

2 6 
- I..-

422 2072 422 2072 83.41806 
2 6 4 22 2055 · .. - - 422 2055 85 . 31911 
2 6 422 2039 . f- . 422 2039 86 . 36367 
2 6 423 2023 1900 423 2023 79 . 50852 - -. 1----
2 6 425 2005 425 2005 - 86.48982 
2 6 4 26 1988 · . 426 1988 -87. 56896 
2 6 425 1969 

· .. . 
425 1969 -87. 99547 I' 

2 6 426 1952 426 1952 -88. 20434 
2 6 424 1935 1800 424 1935 -88 . 32988 
2 6 1914 

/- .... -
423 1914 423 · +_. - 88 . 29580 

2 6 424 1893 · . 424 1893 -88 . 42555 
2 6 4 23 1870 · - - 423 1870 - 88 . 38298 · . 
2 6 422 1848 1700 422 1848 -88 . 01156 
2 6 422 1826 422 1826 - 87 . 46401 
2 6 422 1802 , 422 1802 -86 . 55998 
2 6 4 23 1776 423 1776 -86 . 51142 
2 6 423 1750 423 1750 -86 .46065 
2 6 4 24 1729 1600 424 1729 -87 . 3 2326 
2 6 428 1705 428 1705 -88 . 29218 
2 6 429 1680 429 1680 -88 . 53589 
2 6 430 1657 .. -',. 430 1657 -88 . 61378 
26 428 1631 428 1631 -88 . 72911 
2 6 429 1606 1500 429 1606 -88 . 80231 .. · . 
26 428 1577 428 1577 -88 . 87598 
26 428 154 6 428 1546 - 88 . 93996 
26 426 1517 426 1517 -88 . 98362 
26 426 1484 1400 426 1484 -89 . 02479 
2 6 424 1449 424 1449 -89 . 01319 
26 424 14 13 I 424 1413 -89 . 00104 

I I 

26 422 1377 422 1377 -88 . 88032 
26 419 1340 · . 419 1340 - 88 . 38110 ; . · .. ' 
26 418 1306 1300 

... 418 1306 -87 . 13562 
26 418 1279 

.. \: . 
418 1279 -82 . 94859 

26 4 19 1254 419 - 1254 -1 . 32234 
26 420 1232 · . 

Ii 
420 1232 79 . 95088 

26 4 20 1212 : I 420 1212 84 . 73996 
26 418 1197 1200 I 

418 1197 86 . 77346 I I i I I 

400 500 STOP 
~~ OF EXECUTION 
CPU TI ME : 0 .48 

Figure 1 DEM) Pr ogram Input And Output 
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shown in Figure 2 on overpage. 

In the course of further investigation, the data was fed in 

to the STATPK program in reverse order, which produced identical 

results as shown in Figure 3 on page 243. Omitting the first 

reading, however, produces a markedly different result, as shown 

in Figure 4 on page 244. 

Having identified this 'aberant' situation, which would 

appear to arise due to the ini tial data values of 'x' and 'y', the 

area imnediately around this first point was 'mapped', ie, lines 

of least squares were calculated for data sets where the first 

coordinate point was moved by a value of 1 to its eight surrounding 

cells. These STATPK calculation runs are shown in Figures 5 to 12 

on pages 245 to 252 respectively. The results are summarised in the 

matrix below. 

423 424 425 

2178 -81°27' 
84°18' 61°57' 86°12' 77°36' 86° 

-87°33' _84°54' -79°12' 

2177 -81°42' 84°03' 58° 86°20' 76°57' 85°57' 
-87°33' _85° -79°36' 

2176 -81°57' 83°50' 53°03' 86° 76°09' 85°48' 
-87°36' -85°03' _80° 

The figures underlined are the gradients of the lines of 

least squares, whilst the accanpanying two figures show the upper 

and lower angular limits respectively, for each line of least 

squares gradient. The 'x' and 'y' coordinate values for the .calcu­

lations first data point are given along the top, and down the 

left hand side respectively. 

It will be noted that the values calculated under the 423, 

and 425 columns show a fair degree of stability, whilst those in 

the central column fluctuate markedly. Also, the sign changes fran 

negative to positive between the 423 and 424 columns. 

Throughout, the upper and lower limits wi thin which the line 

of least squares is 'confidently' predicted to occur remain stable 
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RUN PlJB:STATPK 

WHICH COCVMAND? 

HOW MANY INPUT VARIABLE~'? 

ENTER INPUT DATA 

424,2177, 
422,2173, 
421,2161, 
422,2147, 
423,2133, 
423,2116, 
422,2103, 

WHICH CO~,? 
VAR I? 
VAR 2? 

DATA 

2 

NAME 
EX 
WY 

WHICH CCMv1AND? REGR 

ENTER OPTIONS SEPERATED BY C(JrvrvtAS RESID 
WHICH VARIABLES ABE THE RElDlJALS TO BE STORED UNDER? 3 

LIST THE INDEPENDENT VAR I!\B[ .ES '? EX 

WHICH IS TIlE DEPENDENT VAlUABLE? \'Iy 

*-1:*-1(* MULTIPLE LlNEAI~ REGRESSION ***** 
SAMPLE SIZE: 7 
DEPENDENT VARIABLE: \VY 
INDEPENDENT VARIABLE: EX 
COEFFICIENT OF DETER'vUNATIUN: 0.00304 
MULTIPLE CORRECTION COl':FFTCTENT: 0.05513 
ESTIMATED CONSTANT TERM: 1468.4000 
STANDARD ERROR OF ESTI1I-tA.TE: 30.979994 

ANALYSIS OF VARIANCE FOn THE (U':GRESSION: 
SOURCE OF VARIATION DF S. SO M.S. F PROB 

REGRESSION 1 14.6285 14.6285 • 1524E-01 0.9066 
HESTDUALS 5 4798.80 959.760 
TOTAL 6 4813.43 

REGHESSION 
VAR. COEFFICIENT 
EX 1.600000 

I 

Gradient= 58° 

S. E. IW 
Rf£G. CllEF. 
12.96 

F-VALUE 
Ill" (1, 5 ) PROB 
• 1524E-01 0.9066 

+ve limit= 
-ve limit= 

CORR. COEF. 
WITH WY 
0.0551 

Figure 2 STATPK Line Of Least Squares Calculation 
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RUN PUB:STATPK 

WHICH COMv1AND'? 

HOW MANY INPUT VARIABLES? 

ENTER INPUT DATA 

422,2103, 
423,2116, 
423,2133, 
422,2147, 
421,2161, 
422,2173, 
424,2177, 

WHICH C()vfv1AND'? 
VAR 1? 
VAR 2? 

DATA 

.) .... 

NAME 
EX 
WY 

WHICH CatMAND? I1EGR 
ENTER OPTIONS SEPERATED BY CO'v1V1AS HESID 
WHICH VARIABLES AHE TI-IE I1EJDLJALS TO fiE STORED UNDER? 3 

LIST 1HE INDEPENDENT VAH I AS! .ES? EX 

WHICH IS TI-fE DEPENDENT VAI11ABIE'? WY 

****~'( MULTIPI.E L fNEAI1 REGRESSION -::**** 

SAMPLE SIZE: 7 
DEPENDENT V.~IABLE: WY 
INDEPENDENT VARIABLE: EX 
COEFFICIENT OF DETER~llNAT\llN: 0.00304 
MULTIPLE CORRECTION COI~Ff'ICIENT: 0.05513 
ESTIMATED CONSTANT TERM: 1468.4000 
STANDARD ERROR OF ESTIMATE: 30.979994 

ANALYSTS OF VAfHANCE FI II/ 

SOURCE OF VARIATION OF 
REGRESSION 1 
RESIDUALS 5 
TOTAL 6 

'1'111< I il':' a U·:S:-) I 'IN: 
S. SO M.S. 

14.6285 14.6285 
4798.80 959.760 
4813.43 

REGRESSION 
VAH. COEFFICIENT 
EX 1.600000 

S. E. uF 
III'Ji. (:111<(0'. 

12.96 

F-VAI.UE 
DF (1, 5) 
• 1524E-01 

I 

Gradient= 58° +ve limit= 
-ve limit= 

F PROB 
• 1524E-01 0.9066 

CORR. COEF. 
PIlUB WITH WY 
0.9066 0.0551 

Figure 3 STATPKCalculation - Data Entered In Reverse 
Order 
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RUN PUB:STATPK 

WHICH CQM.1AND? DATA 

HOW MANY INPUT VARIABLES? 2 

ENTER INPUT DATA 

422,2173, 
421,2161, 
422,2147, 
423,2133, 
423,2116, 
422,2103, 

WHICH CCMv1AND? 
VAR 1? 
VAR 2? 

NAME 
EX 
WY 

WHICH CCMv1AND? REGR 
ENTER OPTIONS SEPERATED BY CQ\t.fAS RESID 
WHICH VARIABLES ARE 1HE REIDUALS TO BE STORED UNDER? 3 

LIST 1HE INDEPENDENT VARIABLES? EX 

WHICH IS mE DEPENDENT VARIABLE? WY 

***** MULTIPLE LINEAR REGRESSION ***** 

~SI~: 6 
DEPENDENT VARIABLE: WY 
INDEPENDENT VARIABLE: EX 
COEFFICIENT OF DETERMINATION: 0.25585 
MULTIPLE CORRECTION COEFFICIENT: 0.50581 
ESTIMATED CONSTANT TERM: 9713.0001 
STANDARD ERROR OF ESTIMATE: 25.751975 

ANALYSIS OF VARIANCE FOR 1HE REGRESSION: 
SOURCE OF VARIATION DF S. sa M.S. 

REGRESSION 1 912.010 912.010 
RESIDUALS 4 2652.66 663.164 
TOTAL 5 3564.67 

REGRESSION F-VALUE 

F 
1.375 

PROB 

0.3060 

V AR. COEFFICIENT 
EX -17.94118 

S. E. OF 
REG. COEF. 

15.30 
DF (l, 4) PROB 

CORR. COEF. 
WI1H WY 

Gradient= -86°48' 

Figure 4 

1.375 0.3060 

+ve limit= 
-ve limit= 

-0 .. 5058 

STATPK calculation - First Data Point Omitted. 
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RUN PUB:STATPK 

WHICH Cor.MAND? 

HOW MANY INPUT VARIABLES? 

ENTER INPUT DATA 

423,2178, 
422,2173, 
421,2161, 
422,2147, 
423,2133, 
423,2116, 
422,2103, 

WHICH COMv1AND? 
VAR 1? 
VAR 2? 

DATA 

2 

NAME 
EX 
WY 

WHICH CCXvMAND? REGR 
ENTER OPTIONS SEPERATED BY C(~S RESID 
WHICH VARIABLES ARE TI-IE REIDlIALS TO BE STORED UNDER? 3 

LIST THE INDEPENDENT VARIABLES? EX 

WHICH IS 1HE DEPENDENT VAHIABLE? WY 

*~'dr*~'c MULTIPLE LINEAR REGRESSION -/(**** 

SAMPLE SIZE: 7 
DEPENDENT VARIABLE: WY 
INDEPENDENT VARIABLE: EX 
COEFFICIENT OF DETERMINATfON: 0.03123 
MULTIPLE CORRECTION COEFFIC mNT: 0.17671 
ESTIMATED CONSTANT TERM: 4959.6666 
STANDARD ERROR OF ESTIMATE: 30.748442 

ANALYSIS OF VARIANCE FOI1 '1111': BHiRESS Il IN : 
SOUHCE UF VARIATION IW S. S(J . ,M.S. 

REGRESSION 1 152.381 152.381 
RESIDUALS 5 4727.33 954.467 

. TOTAL 6 4879.71 

S. E. of F-VALUE 

F 
.1612 

REGRESSION 
VAR. COEFFICIENT 
EX -6.6~6667 

m:li. eor-:F. m' (1, 5) POOB 

• I 
, 0 

Gradient= -81 27' 

16.61 .1612 0.7047 

+ve limi t= 
-ve limit= 

PROB 
0.7047 

CORR. COEF. 
wrlll WY 

-0.1767 

" Figure 5 First Data Point Moved. One Point To The NW 
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RUN PUB:STATPK 

WHICH CQ\fv1AND? DATA 

I-KM MANY INPUT VAR[ABLES? 2 

ENTER INPUT DATA 

424,2178, 
422,2173, 
421,2161, 
422,2147, 
423,2133, 
423,2116, 
422,2103, 

WHICH CCMv1AND'? 
VAR 1? 
VAR 2? 

NAME 
EX 
WY 

WHICH CCMv1AND? REGR 
ENTER OPfIONS SEPERATED BY CQ\fvfAS RESID 
WHICH VARIABLES ARE 1HE REIDlJALS TO BE STORED UNDER? 3 

LIST TI-fE INDEPENDENT VARr ABLES'? EX 

WHICH IS TIre DEPENDENT VArUABL.E? WY 

***** MULTIPLE LINEAR REGRESSION ***** 

SAMPLE SIZE: 7 
DEPENDENT VARIABLE: WY 
INDEPENDENT VARIABLE: EX 
COEFFICIENT OF DETERMINATION: 0.00412 
l\tJL TIPLE CORRECTION COEFFICIENT: 0.06416 
ESTIMATED CONSTANT TERM: 1352.3750 
STANDARD ERROR OF ESTIMATE: 31.175711 

ANALYSIS OF VARIANCE FOR mE III~GRESS roN: 
SOURCE OF VARIATION DF S. SO M.S. F PROS 

REGRESSION 1 20.0893 20.0893 .2067E-01 0.8913 
RESIDUALS 5 4859.62 971.925 
TOTAL 6 4879.71 

REGRESSION 
VAH. COEFFICIENT 
EX 1.&75000 

I 

o 
Gradient=61 57' 

S. E. UF 
REG. COEF. 

13.04 

F-VALUE 
OF (1, 5) PROB 

.2067E-01 0.8913 

+ve limit= 
-ve limit= 

CORR. COEF. 
Willi 'IN 
0.0642 

Figure 6 First Data Point Moved One Point To The North 
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RUN PUB:STATPK 

WHICH CCNMND? 

HOW MANY INPUT VARIABLES? 

ENTER INPUT DATA 

425,i:h78, 
422,2173, 
421,2161, 
422,2147, 
423,2133, 
423,2116, 
422,2103, 

WHIm cor.MANIJ'? 
VAR 1? 
VAR 2? 

DATA 

2 

NAME 
EX 
WY 

WHICH Cor.MAND? REGR 
ENTER OPTIONS SEPERATED BY C(~S RESID 
WHIm VARIABLES ARE THE REIDUALS TO BE STORED UNDER? 3 

LIST THE INDEPENDENT VARIABLES? EX 

WHICH IS THE DEPENDENT VAlUABLE'? WY 

***** MULTIPLE LINEAR REGRESSION ***** 

SAMPLE SIZE: 7 
DEPENDENT VARIABLE: WY 
INDEPENDENT VARIABLE: EX 
COEFFICIENT OF DETERMINATION: 0.04137 
MULTIPLE CORRECTION COEFFICI ENT : 0.20340 
ESTIMATED CONSTANT TERM: 217.99998 
STANDARD ERROR OF ESTIMATE: 30.587003 

ANALYSIS OF VARIANCE FOR 'mE BEGRESSroN: 
SOURCE OF VARIATION 1)(' S. SU M. S • 

REGRESSION 1 201.891 201.891 
RESIDUALS 5 4677.82 935.565 

'TOTAL 6 4879.71 

S. E. UF F-VALUE 

F 
.2158 

REGRESSION 
VAR. COEFFICIENT 
EX 4.q58824 

REli. rOEI'. OF (1, 5) PROB 

• I ° Gradient= 177 36' 

9.814 .2158 0.6618 

+ve limit= +86° 
-ve limi t= - 79°12' 

PROS 
0.6618 

CORR. COEF. 
wrrn wy 

0.2034 

Figure 7 First Data Point Moved. One Point To The NE 
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RUN PUB:STATPK 

WHICH COtvMAND'? 

HOW MANY INPUT VARIABLES? 

ENTER INPUT DATA 

423,2177, 
422,2173, 
421,2161, 
422,2147, 
423,2133, 
423,2116, 
42~,2103, 

WHICH CQ\fv1AND'? 
VAR 1? 
VAR 2? 

UATA 

2 

NN"lE 
EX 
WY 

WHICH CavMAND? REGR 
ENTER OPTIONS SEPERATED BY COMMAS RESID 
WHICH VARIABLES ARE TIlE RE T DUALS TO BE STORED UNDER? 3 

LIST TIiE INDEPENDENT VARIABl.ES? EX 

WHICH IS TIiE DEPENDENT VAHIABLE'? \t{\( 

***** MULTIPLE LJNEAH REGRESSION ***** 

SAMPLE SIZE: 7 
DEPENDENT VARIABLE: WY 
INDEPENDENT VARIABLE: EX 
COEFFICIENT OF DETERMINATION: 0.03367 
MULTIPLE CORRECTION COEFFICIENT: 0.18349 
ESTIMATED CONSTANT TERM: -5047.50000 
STANDARD ERROR OF ESTTMATE: 30.50041 

ANALYSIS OF VARIANCE FOR 11m 
SOURCE OF VARIATlON DF 

BEGRESS£ON: 
S. SU M.S. 

REGRESSION 1 162.054 162.054 
RESIDUALS 5 4651.38 930.275 
TOTAL 6 4813.43 

S. E. UF F-VALUE 

F 
.1742 

PROS 
0.6937 

REGRESSION 
VAR. COEFFICIENT 
EX -6.~75000 

REG. ( :t lEF . OF (1, 5) PROB 
CORR. COEF. 
WITH WY 
-0.1835 

• I 
Gradient= '-81°42' 

16.47 .1742 0.6937 

+ve limit= 
-ve limit= 

Figure 8 First Data Point Moved One Point To The West 
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RUN PUB:STATPK 

WHICH COMv1AND? 

HOW MANY INPUT VARIABLES? 

ENTER INPUT DATA 

425,2177, 
422,2173, 
421,2161, 
422,2147, 
423,2133, 
423,2116, 
422,2103, 

WHICH C<Nv1AND'? 
VAR 1? 
VAR 2? 

DATA 

2 

NAME 
EX 
WY 

WHICH CQ\MAND? REGR 
ENTER OP1'IONS SEPERATED BY C()j\1\1AS HESID 
WHICH VARIABLES ARE THE REIDlJALS TO BE STORED UNDER? 3 

LIST THE INDEPENDENT VART ABI.ES '? EX 

WHICH IS 1HE DEPENDENT V.'\R [ABLE'? WY 

****,'r MULTIPLE L fNEAR R"':GRESSION ***** 

SAMPLE SIZE: 7 
DEPENDENT VARIABLE: WY 
INDEPENDENT VARIABLE: 
COEFFICIENT OF DETERMINATION: 

EX 
0.03747 
0.19357 
323.49998 
30.440347 

MULTIPLE CORRECTION COEFFICIENT: 
ESTIMATED CONSTANT TERM: 
STANDARD ERROR OF ESTIMATE: 

ANALYSIS OF VARIANCE FOB 1111': HI~Gm·:ss I()N: 
SOURCE OF VARIATION IW ~}. SU M.S. F 

REGRESSION 1 180.355 180.355 .1946 
RESIDUALS 5 4633.07 926.615 

. TOTAL 6 4813.43 

REGHESSION 
VAR. COEFFICTENT 
EX 4.308824 , 
Gradient= 76°57' 

S. I~;. UF F -VALUE 
RE(;. Cor-:F. OF (1, 5) PROB 

9.767 .1946 0.6775 

+ve limit= 
-ve limit= 

PROB 
0.6775 

CORR. COEF. 
WITH WY 
0.1936 

Figure 9 First Data Point Moved One Point To The East 
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RUN PUB:STATPK 

WHICH C~? 

HOW MANY INPUT VARIABLES? 

ENTER INPUT DATA 

423,2176, 
422,2173, 
421,2161, 
422,2147, 
423,2133, 
423,2116, 
422,2103, 

WHICH COtvMAND'? 
VAR 1? 
VAR 2? 

DATA 

2 

NAME 
EX 
'WY 

WHICH COtvMAND? REGR 
ENTER OPTIONS SEPERATED BY COt\MAS RESID 
WHICH VARIABLES ABE 11 IE 1U::JDlIAI.S TO BE STORED UNDER'? 3 

LIST 11£ INDEPENDENT VAHIABl.ES? EX 

WHICH IS THE DEPENDENT VAHIABLE? WY 

***** MULTIPLE LINEAR REGRESSION ***** 

SAMPLE SIZE: 7 
DEPENDENT VARIABLE: WY 
INDEPENDENT VARIABLE: EX 
COEFFICIENT OF DETERMINATWN: 0.03622 
MULTIPLE CORRECTION COEFFICIENT: 0.19033 
ESTIMATED CONSTANT TERM: 5135.3333 
STANDARD ERROR OF ESTIMATE: 30.250027 

ANALYSIS OF VARIANCE F<>n '1111': HI'XmESSION: 
SOURCE OF VARIATION OF S. SO M.S. 

RFJGRESSTON 1 172.024 172.024 
RESIDUALS 5 4576.83 915.367 

. TOTAL 6 4748 .86 

S. E. l)F F-VALUE 

F 
.1879 

REGRESSION 
VAR. COEFFICIENT REG. CUEF'. OF (1, 5) PROS 
EX -7: Cf33333 

I 0 
Gradient= -81 57' 

16.34 .1879 0.6879 

+ve limit= 
-ve limit= 

PROS 
0.6827 

CORR. COEF. 
WIlli WY 
-0.1903 

Figure 10 First Data Point Moved One Point To The SW 
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RUN PUB:STATPK 

WHICH COM'4AND? 

HOW MANY INPUT VARIABLES? 

ENTER INPUT DATA 

4,24,2176, 
422,2173, 
421,2161, 
422,2147, 
423,2133, 
423,2116, 
422,2103, 

WHICH CotJMAND? 
VAR I? 
VAR 2? 

DATA 

2 

NMU~ 

EX 
WY 

WHICH COfvt.1AND? REGR 
ENTER OPTIONS SEPERATED BY COMMAS RESID 
\VHICH VARIABLES ARE 'Il1E REIDlJALS TO BE STORED UNDER? 3 

LIST THE INDEPENDENT VARIABLES'? EX 

WHICH IS mE DEPENDENT VARIABLE'? WY 

***-1:* MULTIPI.E LTN[~AH REGRESSION "i:**** 

SAMPLE SIZE: 7 
DEPENDENT VARIABLE: WY 
INDEPENDENT VARIABLE: EX 
COEFFICIENT OF DETERMITNATION: 0.00211 
MULTIPLE CORRECTION COEFFIClENT: 0.04596 
ESTIMATED CONSTANT TERM: 1584.4250 
STANDARD ERROR OF" ESTIMATE: 30.785792 

ANALYSIS OF VARIANCE Fon THE 
SOlJlK:E OF VAHTATION DF 

nEGR(~SS ION: 
S. SO M.S. F PROB 

REGRESSION 1 10.0321 10.0321 .1059E-Ol 0.9221 
RES lDUALS 5 4738.82 947.765 

"TOTAL 6 4748.86 

REGRESSION 
VAR. COEFFTCTENT 
EX 1.~5000 

I 

s. L~:. uF F-VALUE 

I 

m·:(~. COEF. OF (1. 5 ) PnOB 
12.88 .1059E-Ol 0.9221 

+ve lirni t= 
-ve limit= 

CORR. COEF. 
wrnl WY 
0.0460 

Figure 11 First Data Point Moved One Point To The South 
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RUN PUB: STATPK 

WHICH C0Mv1AND1 

HOW MANY INPUT VARIABLES? 

ENTER INPUT DATA 

425,21,76, 
422,2173, 
421,2161, 
422,2147, 
423,2133, 
423,2116, 
422,2103, 

WHICH COl'VMAND'? 
VAR 11 
VAR 2? 

DATA 

2 

NMIE 
EX 
WY 

WHICH COtvMAND? REGR 
ENTER OPTIONS SEPERATED BY COMMAS RESID 
WHICH VARIABLES ARE TIlE flETDllALS TO BE STORED UNDER? 3 

LIST 1HE INDEPENDENT VART ABLES? EX 

WHICH IS mE DEPENDENT VARIABLE? WY 

***** MULTIPLE LINEAR REGRESSION ***** 

SAMPLE SIZE: 
DEPENDENT VARIABLE: 
INDEPENDENT VARIABLE: 
COEFFICIENT OF DETERMINATION: 
MULTIPLE CORREctION COEFFICIENT: 
ESTIMATED CONSTANT TERM: 
STANDARD ERROR OF ESTIMATE: 

7 
WY 
EX 
0.03370 
0.18357 

428.99998 
30.294631 

ANALYSIS OF VARIANCE FOil THE HEGRESSION: 
SOURCE OF VARIATION OF S. SU M.S. 

REGRESSION 1 160.034 160.034 
RESIDUALS 5 4588.82 917.765 

. TOTAL 6 4748.46 

S. Eo uF F-VALUE 

F 
.1744 

REGRESSION 
VAR. COEFFICIENT HEl.. C( IEF • Dr' (1 t 5) PROS 
EX 4.p58824 

i 
Gradient= ~76009' 

9.720 .1744 0.6936 

+ve limit= 
-ve limit= 

PROB 
0.6936 

CORR. COEF. 
WITH WY 
0.1836 

Figure 12 First Data Point Moved One Point To The SE 
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al though the total range of angle these limits represent is only 

a few degrees short of the entire compass. 

Despite the constancy of the limits or gradient, the simple 

fact is that the gradient predicted is wrong. This is clearly shown 

in Figure 13 overpage. The actual gradient is, by visual inspection, 

greater than even the upper limit of the calculation. 

One explanation offered for this phenanenon, is the increaSing 

difficulty of predicting the 'y' coordinates on a near vertical line 

fran the 'x' s. This would not appear to accord with the preceding 

observations, for, as the gradient was increased by moving the 'x' 

coordinate of the first data point to the left, the predicted 

gradient became increasingly vertical, contrary to the result to 

be expected if that explanation were true. 

The preceding observations seem to demonstrate that in certain 

localised spots, the gradient prediction reaches some point of 

inflexion which causes a disturbance. It remains in the province 

of the mathematician or statistitian to produce an explanation. 

The reason why this phenomenon does not cause problems with 

the ENIGMA line interpretation routine, apart fram the rarity of 

encountering such a disturbance, is the two-part test which has 

been explained in section 6. To illustrate this in practice, with 

reference to Fj,.gure 1 on page 240, a change of direction is noted 

only if a) the difference between a line segments gradient and that 

of the preceding line of least squares is greater than a given 

value, and b), the _.line segJTlents gradient rrust also differ fram 

the gradient of the preceeding segJTlent by more than the same value. 

Finally, Figure 14 on page 255 shows the actual results of 

applying the line identification routine to a series of curves. 
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Figure 13 Illustration of the results of the STATPK 
Line Of Least Squares Calculation listed. 
on Page 242. 
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Appendix 3 

ENIGMA User's Manual 

NOTE: 

Contirued developnent of the software 
will iJq>ly further expansion and alteration 
of the notes contained wi thin this marual. 

Last Revision July 1984 
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APPENDIX A 

ENIGMA User's Manual 

May 1984 

1 Introduction 

ENIGMA stands for an ENhanced Interpretive Qraphics ~odule 

for Archi tects . 

It has been designed to be used for two purposes: 

1 To serve as a graphics interface for the 

2 

compilation of geometry data files for input into 

applications programmes available in the Scott 

Sutherland School Of Archi tecture, .and 

To penni t geometry data files to be created 

by the interpretation of freehand sketches carried 

out with an ink pen on a digitising tablet. This 

system is intended to match the architects' 

traditional pencil and paper techniques. 

2 Hardware Configuration 

2 

Key: 

I I 

_____ 1 

1 Tektronix 4954 digi ti:5ing tclJlt2t 
:2 pen/tablet link uni t 
3 Tektronix 4010 vC!ctor grnphics teJmin.:ll 
4 Gandal f :V1odem 

5 DEC20 m..'1inframc canpuler pnxt:'::';':=0r ~id 
secondrtry dAr;'! ~r-'~Ir.:\gc. 
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The ENIGMA suite of programs has been written to run on a 

DEC20 host canputer, using a Tektronix 4010 graphics tenninal, and 

a 4954 AD size digitising tablet. 

The program calls for pwr 10 graphics library routines, and 

also requires the Tektronix TEKPAK library to operate the table~. 

Additionally, UTIL and TEKLIB routine libraries from the ABACUS 

Unit, University of Strathclyde are required. 

3 Software Assunptions 

Underlying the design of the ENIGMA software is the assumption 

that the user wishes to create building geanetries by freehand 

sketches, without rruch ini tial idea of the fonn the building design 

is likely to take. Unsatisfacto~ sketches which are drawn should 

be consigned to the bin, and only those attempts which hold 

pranise should be persued in order to minimise machine overheads. 

The user wishing to create GOAL data files is expected to be 

familiar with that programs conventions; ie restricting user 

geometries to an assembly of coaxial rectangles, and the zone and 

space numbering systems. 

The ENIGMA system carries out four fUnctions: 

1) Data Capture, 

2) Data Enhancement, 

3) Interpretation, and 

4) Data Output. 

'!'his seperation will not ~·apm-;t t~e user. 
'------_., 

4 Starting The System 

After logging in to the DEC 20 canputer system, type 

EXE ENIGMA,UTIL/LIB,TEKLIB/LIB,TEKPAK 

followed by a carriage return. This will produce the following 

introduction: 
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x 
x 
x 
x 

x x 
x x 

x x xx x xx xx xx xx xx xx xx 
x x x x x x x x x x x x x x x x x 
x x xxxx x x x x x x x xxxx x x x 
x x X :) X X X X X X X X X X X X 

xx xx xxx x xx xx x x x xxx x xx 

XXXXX xx xx xx XXXXX xxx xxx xx 
xx xxx xx xx xx xx xx xx xx xx x 
xx xx x xx xx xx xx xx xx xx xx x 
xx xx xxx xx xx xx xx xx xx x 
xxxx xx xx xx xx xx xx xx xx x 
xx xx xx xx xx xxx xx xx xx xx x 
xx xx xx xx xx xx xx xx xx xxxxxxxx 
xx xx xx xx xx xx xx xx xx xx x 
xxxxx xx xx xx xxxxx xx xx xx xx X 

IF YOU HAVE AN EXISTING DATA FILE TO WORK ON, 
PLEASE ENTER IT'S (6 CHARACTER MAX) NAME. 

It is possible that you will have an ENIGMA data file dating fran 

a previous session, or perhaps an existing GOAL or BIBLE file upon which 

you want to work. In this case, the user is requested to enter the file's 

name. When a name is entered, the system will respond by asking; 

IS IT A BIBLE, GOAL OR ENIGMA FILE? 
(ENTER -1, 0 OR 1 RESPECTIVELY) 

In the case of either a BmLE or GOAL file, the system will then 

interpret your file into an ENIGMA file, called PLAN03 . OAT , which will be 

opened in 'append' mode, such that any addition of data will be added to 

the back of the file. The original file will remain in your user area 

undisturbed. 

1m existing ENIGMA file will simply be copied into PLAN03, and the 

same conditions will apply as with the preceding cases. 

Following this, or following a carriage return should you not have 

an existing file upon which you wish to work, the system will Pr<l'11Jt; 

WHAT SCALE 00 YOU WISH TO DRAW TO? (1 TO ?) 
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The user then types in the integer value of the scale, ie. 

50 (as in 1:50), 100 (as in 1:100) etc. 

The system will respond by asking; 

00 YOU WISH TO DEFINE A TOLERANCE VALUE? 

This value is important, since it defines how close two lines 

may be drawn before the canputer considers them to meet. This is 

illustrated below. 

c d b 

b 

b 

A) B) C) 

In these instances, the Tolerance Value defines a circular 

area around the end 'a' of the line ab. In the first instance, A), 

because line cd passes through the zone, the system will recognise 

that line ab is intended t9 meet the line cd. In example B), because 

the end 'c' of line cd does not lie in the tolerance zone, the system 

will not recognise that the two lines ab and .s9. are intended to 

meet. In the final exarnple, C), the point 'd' of line cd does lie 

within the tolerance zone. Consequently, their point of intersection 

is recognised as being the tenninal point of both lines. 

The tolerance value is entered as a real number to scale, ie. 

a value of 0.5 at a scale of 1:50 will represent a tolerance radius 

of 50cm, or in real terms, lQrm on the drawing board. Should you 

not wish to specify a tolerance value, the system will create a 

value for you, which will be 5rrrn in real tenns on the drawing board. 

If you do not wish to select a tolerance value, simply type NO, 

followed by a carriage return. 
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The system will then prompt, 

00 YOU WISH TO ENTER A CONTINUITY ANGLE? 

This value is also important, since the continuity angle 

defines the zone in which the pen must move, relative to the 

line being drawn, in order for the computer to detenmine an inten­

tional change of direction. This is illustrated below. 

c 
a 

a--------------~~ " 

A) B) 

In the first example, A), point 'e' lies within the cone 

defined by the continuity value eN, and consequently line abc is 

treated as one straight line. In the second case, B), the point 

falls outwi th the cone, and the system recognises the existence 

of two seperate lines, ab and cd. 

If the user does not wish to specify a value, the machine 

will assume a value by default of So, on the instance of the user 

typing NO follwed by a carriage return. 

NOTE 

The majority of system failures encountered. by 

users will be the result of inc~tible values for 

defining the Tolerance, and the Contirui ty Angle. 

Users might be required. to experiment with 

various values until they find. the coobination of 

values which suit their drawing style. 

Finally. the system will prCl1lJt, 

00 YOU WISH TO DRAW IN ORIHOGONAL K>DE? 

This requires a sirTple yes/no response depending on whether 

you wish to generate rectilinear drawings or not. 
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NOTE 

It is essential to respond YES to this PI'OO1>t 

if you wish to generate GOAL data files as cutput. In 

this case, you MUST restrict ycur building geanetries 

to an assembly of rectangles. (Refer if neces~ to 

the GOAL users' manual). 

The system will then respond with; 

START DRAWING - TYPE 'X' TO EXIT 

The terminal screen will then clear, and the READY light on 

the Tablet control box will cane on. 

5 Data Capture 

The Tablet control box has three red lights on its face in 

addition to a green indicator neon as shown below. 

1 Ensure that the pen is connected to the control box. 

2 Ensure that the Tablet and Terminal are connected to the 

control box. 

3 Ensure that the green power indicator neon is on before 

starting the drawing. 

As soon as the pen nib canes close to the tablet surface, the 

red 'Ready' light will go out, and the 'Data' light will flicker as 

the pens position is sent back to the tenminal. The pen should be 

held upright like a Rapidograph in order to ensure the best contact 

Tablet and stylus. Although the pen is being tracked, no data will 

be recorded by the cooputer until the pen is pressed against the 
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paper mounted on the tablet. It is important that the pen is 

pressed positively, but not too firmly against the tablet surface 

all the while during the drawing process. When the pen is pressed 

down on the paper, the red 'Pen' light will cane on, and the 'Data' 

light will flicker as the coordinate data is transmitted to the 

terminal. The picture being recorded will be echoed upon the 

terminal screen. As soon as the pen is taken away fran the tablet, 

or the pressure on the'pen reduced, the 'Pen' light will go out 

and the data transmission cease. When this happens, you rrust wait 

until the 'Ready' light canes on again before you can proceed with 

the drawing. 

Regularly check the monitor echo to ensure that the data has 

been correcly captured. If the echo is incorrect, press 

Control and C simul taneously , 

followed by 

STA (return), 

which will rerun the programme necessitating the redrawing of 

the sketch plan. 

NOTE 

Do not go over lines twice. This will result in 

a garbled interpretation of the drawing at a later stage. 

If in daJbt, restart the drawing process by the above 

procedure. 

When the drawing echo on the monitor has been recorded to 

your satisfaction and you have no additions to make press the 'X' 

key on the terminal to exit. 

6 Enhancement 

Following the exit fran the data capture sequence the screen 

of the monitor will clear. The system will request fran you 

TERMINAL TYPE) to which the response is 1, and 

LINE SPEED} to whioh the response 1s 1200. 

The system will then redraw upon the terminal moni tor the 

straight line version of the freehand drawing, followed by the query 
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IS THE PICTURE O.K.? 

This query currently exists in antiGipation of editing routines 

to be made available following further development. At present, if 

the line drawing is incorrect, then you will have to restart the 

prograrrme. Following an affirmative response, the system will spli t 

any bisected lines. It is in this routine that system generated errors, 

if any, are likely to occur. Consequently the system will redraw the 

new interpretation of the picture on the terminal screen following 

the response to the TERMINAL TYPE and LINE SPEED requests. This is 

again followed by the pranpt 

IS THE PICTURE O.K.? 

7 Interpretation 

The interpretation sequence is entered automatically on 

a posi ti ve response to the last pranpt. On cCJTl)letion the system 

will go on to the output sequence. 

8 O-ltput 

The system will display the following message on the terminal 

screen: 

YOU NON HAVE THE FOLLCMING OUTPUT OPTIONS: 
SELECTION EFFECT 

1 BIBLE CREATES A BIBLE DATA FILE. 

2 

3 

4 

5 

6 

GOAL 

APPRAISAL 

DRAWOUT 

PRINTOUT 

STOP 

CREATES A GOAL DATA FILE. 

PROVIDES CRUDE RELATIVE 
PERFORMANCE DATA ON THE 
CURRENT DESIGN. 

DRAWS A SIMPLE ISOMETRIC 
PROJECTION. 

LISTS 'mE CONTENTS OF THE 
CURRENT ENIGMA FILES. 

HALTS ENIGMA. 

CONTROL 
TERMINATES ENIGMA. 

TERMINATES ENIGMA. 

REnJRNS TO OUTPUT 
OPTIONS. 

RETURNS TO OUTPUT 
OPTIONS. 

RETURNS TO OUTPUT 
OPTIONS 

TERMINATES ENIGMA. 

You are now expected to enter a value of 1 to 5 corresponding 

to the output option of your choice. /my other runber will terminate 

ENIGMA, saving the current files. 'lhese saved files will be stored 

in your user areas under the names LINEDT • nAT , NODEDT • nAT , PRIMlT. 

DAT, and FM::G1P • nAT • These files contain the list of lines carprising 
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the picture, the list of points defining the individual spaces, 

the index to the preceding point list, and the areas of the spaces 

listed in the preceding file, respectively. 

8.1 BIBLE 

On the selection of BIBLE, a BIBLE geometry data file will 

be created. When the file has been created, ENIGMA will end, and 

you may commence running BIBLE by entering the instruction, 

RUN PUB:BIBLE 

'!he BIBLE data file for input will be in your area under the 

name and extension - BIBLE.DAT. 

In ENIGMA, after selecting BIBLE as the output option, each 

individual space will be drawn on the terminal screen in tum. When 

each space is drawn, the prarpt 

Zl=?,Z2=? 

will appear in the centre. To this 

you respond with the floor and ceiling heights (in meters), separated 

by a comma. When this has been done for all of the discovered 

enclosed spaces, ENIGMA will stop. 

8.2 GOAL 

On the selection of GOAL, a GOAL geometry data file will, where 

possible be created. On coopletion, ENIGMA will stop permitting you 

to directly run GOAL by entering the instruction, 

RUN PUB:GOAL 

'!he GOAL data file for input will be in your user area under 

the name and extension - GOAL.DAT. 

In ENIGMA, after selecting GOAL as the output option, the 

system will prarpt, 

WHICH STOREY? 

You are required to enter the storey reference nuni:>er of the 

plan upon which you are working. 
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The system will then ask, 

ARE 1HE FLOOR AND CEILING LEVELS CCMvDN 1liROUGHOUT? 

to which you are required to respond 

YES or NO. It will save time and effort if the floor and ceiling 

heights are common, but each space can be entered separately if not. 

If your response has been YES to the previous question, the system 

will pranpt, 

ENTER FLOOR AND CEILING LEVELS 

to which you respond with 

the floor and ceiling levels (in meters) seperated by a comma 

If your previous response was NO, then each detected enclosed 

space will be drawn out on the terminal screen separately, and the 

pranpt 

Zl=?,Z2=? 

will appear in the centre of the shape 

after it is drawn. The floor and ceilings levels of that particular 

roan should be entered in the same format as above. Consequently 

this will be followed by the prompt 

CCMP & ID. NOS? 

This requires the USE TYPE reference 

and ELEMENT numbers. (Refer to the GOAL User Handout or Manual if 

these concepts are unfamdliar). 

When all the data has been collected for all the recorded 

spaces, ENIGMA will stop. 

NOTE 

Should the system encounter a non rectangular or non­

four sided. space the following message will be printed on 

the terminal screen: 

I'VE ENCOUNTERED A NON-RECTANGULAR SPACE. 
I'M RETURNING CONTROL TO 1HE OUTPUT OPTIONS. 

In this version of ENIGMA, due to the absence of the editing 

routines, control will retum to the data capture routines, and the 

sketch redrawn. 
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8.3 Appraisal 

Using crude cost data, selection of the Appraisal output 

option will allow you to make relative comparisons between your 

various design schemes. The appraisal will print out 

* 
* 

* 

the Compactness Ratio, 

The maximum heating energy requirement based upon the 

following assumptions: 

1 a temperature difference of 200 C between internal 

and external ~onditions. 

2 a fabric 'U-value' of 0.6 Wm2/ OC, 

3 single glazing distributed evenly around all four 

facades, in ratios given in the Building Regulations, 

The construction costs in terms of the following elements: 

1 Wall construction (assumed cavity brickwork), 

2 Glazing (assumed single glazing in timber frames), 

3 Floor (assumed to be concrete), 

4 Roof (assumed flat construction), and 

5 Foundation (assumed to be a 1m deep strip footing). 

The system will ask you to 

ENTER FLOOR LEVEL (IN METERS) t followed by 

ENTER ROOF /CEILI.NG LEVEL (IN METERS) . 

The following output will then be printed upon the te~nal 

screen: 

CQ\1PACTNESS RATIO = 
ENERGY REQUIREMENT = 

ASSUMING * 
* 
* 
* 
* 

THE COST OF 
THE COST OF 
TIlE COST OF 
niE COST OF 
niE COST OF 

IS TIlE COST PER METER SQUARE OF WALL 
IS TIlE COST PER METER SQUARE OF GLAZING 
IS TIlE COST PER METER SQUARE OF FLOOR 
IS TIlE COST PER METER SQUARE OF ROOF 
IS TIlE COST PER METER SQUARE OF FOUNDATION 

METERS OF WALL IS 
METERS OF GLAZING IS 
METERS OF FLOOR IS 
METERS OF ROOF IS 
METERS OF FOUNDATION IS 

TOTAL 
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The system will then rewrite the list of output options, 

enabling you to extract fUrther information fram ENIGMA. 

8.4 Drawout 

Selection of the Drawout option will produce an isometric 

projection of your enhanced sketch upon the tenminal screen, after 

you have entered the floor and roof/ceiling levels. 

The system will assume that these levels are canmon to all 

the spaces, and will take as the base of the projection the comer 

on plan nearest the origin of the tablet, ie. the bottom left hand 

comer. 

The image will remain on the terminal screen until you press 

the return key, following which the output option list will be 

redrawn upon the screen ready for your next carrnand. 

8.5 Printout 

The Printout option will list the information known about 

your sketch space by space. 
The output fonnat will be displayed in a list under the 

following heading; 

AREA REFERENCE LINE START POrNT STOP POINT AREA IN LENGnf 
ID POINT 10 SQUARE OF 

XR YR Xl Yl X2 Y2 METERS EDGE 

Finally, the output will list 

EXTERNAL ENVELOPE 

AREA REFERENCE LINE START POINT STOP POINT AREA IN LENGnf 
10 POINT 10 SQUARE OF 

XR YR Xl Yl X2 Y2 METERS EDGE 

The list of output options will then be listed. 

268 


	coversheetTheses
	abstract_Page2
	LEIFER 1984 The machine refinement of raw graphic

	OA Logo: 
	AUTHOR: LEIFER, D.M.
	TITLE: The machine refinement of raw graphic data for translation into a low level data base for computer aided architectural design (CAAD).
	YEAR: 1984
	OpenAIR citation: LEIFER, D.M. 1984. The machine refinement of raw graphic data for translation into a low level data base for computer aided architectural design (CAAD). Robert Gordon's Institute of Technology, PhD thesis. Held on OpenAIR [online]. Available from: https://openair.rgu.ac.uk/
	Degree: Doctor of Philosophy, Scott Sutherland School of Architecture
	License: BY-NC 4.0
	License URL: https://creativecommons.org/licenses/by-nc/4.0
	CC Logo: 
		2017-09-01T17:38:07+0100
	OpenAIR at RGU




