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Abstract. On the one hand, classification applications modelled by
structural pattern recognition, in which elements are represented as strings,
trees or graphs, have been used for the last thirty years. In these mod-
els, structural distances are modelled as the correspondence (also called
matching or labelling) between all the local elements (for instance nodes
or edges) that generates the minimum sum of local distances. On the
other hand, the generalised median is a well-known concept used to ob-
tain a reliable prototype of data such as strings, graphs and data clusters.
Recently, the structural distance and the generalised median has been
put together to define a generalise median of matchings to solve some
classification and learning applications. In this paper, we present an im-
provement in which the Correspondence edit distance is used instead of
the classical Hamming distance. Experimental validation shows that the
new approach obtains better results in reasonable runtime compared to
other median calculation strategies.

Keywords: Generalised Median, Edit distance, Optimisation, Weighted Mean.

1 Introduction

A correspondence is defined as the result of a bijective function which designates
a set of one-to-one mappings between elements representing the local information
of two structures i.e. sets of points, strings, trees, graphs or data clusters. Each
element (a point for sets of points; a character for strings, or a node and its edges
for trees or graphs) has a set of attributes that contain specific information.
Correspondences are usually generated, either manually or automatically, with
the purpose of finding the similarity or a distance between two structures. In the
case that correspondences are deduced through an automatic method, this is
most commonly done through an optimisation process called matching. Several
matching methods have been proposed for set of points [32], strings [25], trees
and graphs [29].

Correspondences are used in various frameworks such as measuring the ac-
curacy of different graph matching algorithms [4], [31], improving the quality
of other correspondences [5], learning edit costs for matching algorithms [6],
estimating the pose of a fleet of robots [7], performing classification [17] or cal-
culating the consensus of a set of correspondences [21], [19], [18], [20]. While



most of these methods use the classical Hamming distance (HD) to calculate
the dissimilarity between a pair of correspondences, in [23] authors have shown
that this distance does not always reflect the dissimilarity between a pair of
correspondences, and thus, a new distance called Correspondence Edit Distance
(CED) was defined.

The median of a set of structures is roughly defined as a sample that achieves
the minimum sum of distances (SOD) to all members of such set. This concept
has been largely considered as a suitable representative prototype of a set [13]
because of its robustness. For the case of strings [3], graphs [2], and data clusters
[11], computing the median is an NP -complete problem. Thus, some suboptimal
methods have been presented to calculate an approximation to the median. For
instance, an embedding approach has been presented for strings [14], graphs [8]
and data clusters [10]. Likewise, a strategy known as the evolutionary method for
strings [9] and correspondences [22] has proven to obtain fair approximations to
the median in reasonable time. Moreover, [22] presented a minimisation method
which obtains the median using optimisation functions based on the HD. This
work proved that it is possible to obtain the exact median for a set of correspon-
dences using this framework, provided that the distance considered between the
correspondences is the HD. In this paper our work is devoted towards revisiting
the median calculation frameworks presented in [22], this time using the CED.

The rest of the paper is structured as follows. Section 2 establishes the basic
definitions. Afterwards, in Section 3 we present the method to calculate the
generalised median based on the CED. Then, Section 4 provides an experimental
validation of the method. Finally, Section 5 is reserved for the conclusions and
further work.

2 Basic Definitions

2.1 Distance between structures

Consider a structure G = (Σ,µ), where vi ∈ Σ denotes the elements (i.e. local
information) and µ is a function that assigns a set of attributes to each element.
This structure may contain null elements which have a set of attributes that
differentiate them from the rest. We refer onwards to these null elements of G
as Σ̂ ⊆ Σ. Moreover, given G = (Σ,µ) and G′ = (Σ′, µ′) of the same order n
(naturally or due to the aforementioned null element presence), we define the
set of all possible correspondences T , such that each correspondence in T maps
all elements of G to elements of G′, f : Σ → Σ′ in a bijective manner.

For structures such as strings [30], trees [1] and graphs [26], [12], [28], one of
the most widely used frameworks to calculate the distance is the edit distance.
The edit distance is defined as the minimum amount of required operations that
transform one object into the other. To this end, several distortions or edit oper-
ations, consisting of insertion, deletion and substitution of elements are defined.
Edit cost functions are introduced to quantitatively evaluate the edit operations.
The basic idea is to assign a penalty cost to each edit operation considering the



amount of distortion that it introduces in the transformation. Substitutions sim-
ply indicate element-to-element mappings. Deletions are transformed to assign-
ments of a non-null element of the first structure to a null element of the second
structure. Insertions are transformed to assignments of a non-null element of the
second structure to a null element of the first structure. Given G and G′ and a
correspondence f between them, the edit distance is obtained as follows:

EditCost(G,G′, f) =
∑

vi∈Σ−Σ̂
v′j∈Σ

′−Σ̂′

d(vi, v
′
j) +

∑
vi∈Σ−Σ̂
v′j∈Σ̂

′

K +
∑
vi∈Σ̂

v′j∈Σ−Σ̂

K (1)

where f(vi) = v′j and function d is a distance function between the mapped
elements. Moreover,K is a penalty cost for the insertion and deletion of elements.
Thus, the edit distance ED is defined as the minimum cost under any bijection
in T :

ED(G,G′) = min
f∈T

EditCost(G,G′, f) (2)

2.2 Mean, Weighted Mean and Median

In its most general form, the mean of two structures G and G′ is defined as a
structure Ḡ such that:

Dist(G, Ḡ) = Dist(Ḡ,G′) and Dist(G,G′) = Dist(G, Ḡ) +Dist(Ḡ,G′) (3)

where Dist is any distance metric defined on the domain of these structures.
Moreover, the concept of weighted mean is used to gauge the importance or the
contribution of the involved structures in the mean calculation. The weighted
mean between two structures is defined as:

Dist(G, Ḡ) = λ and Dist(G,G′) = λ+Dist(Ḡ,G′) (4)

where λ is a constant that controls the contribution of the structures and
holds 0 ≤ λ ≤ Dist(G,G′). G and G′ satisfy this condition, and therefore are
also weighted means of themselves.

From the definition of the median, two different approaches are identified:
the set median (SM) or the generalised median (GM). The first one is defined as
the structure within the set which has the minimum SOD. Conversely, the GM
is the structure out of any element in the set which obtains the minimum SOD.

2.3 Distance Between Correspondences

Given structures G and G′ and two correspondences f1 and f2 between them,
we proceed to define the HD and the CED.



Hamming Distance The HD is defined as:

HD(f1, f2) =

n∑
i=1

(1− δ(v′a, v′b)) (5)

where a and b such that f1(vi) = v′a and f2(vi) = v′b, and δ being the Kronecker
Delta function:

δ(x, y) =

{
1 if x = y

0 otherwise
(6)

Correspondence Edit Distance The CED is defined, in a similar way to
Equations 1 and 2, as:

CED(f1, f2) = min
h∈H

Corr EditCost(f1, f2, h) (7)

where

Corr EditCost(f1, f2, h) =
∑

m1
i∈M

1−M̂1

m2
k∈M

2−M̂2

d(m1
i ,m

2
k) +

∑
m1

i∈M
1−M̂1

m2
k∈M̂2

K

+
∑

m1
i∈M̂1

m2
k∈M

2−M̂2

K
(8)

where M1 and M2 are the sets of all possible mappings, M̂1 and M̂2 are the
sets of null mappings.

The distance between mappings, d(m1
i ,m

2
k) was defined using Equation 9 as:

d(m1
i ,m

2
k) = dn(vi, vk) + dn(f1(vi), f

2(vk)) (9)

where dn is a distance between the local parts of the structures, which is appli-
cation dependent.

Notice that the elements used by CED are the mappings within f1 and
f2. More formally, correspondences f1 and f2 are defined as sets of mappings
f1 = m1

1, ...,m
1
i , ...,m

1
n and f2 = m2

1, ...,m
2
k, ...,m

2
n, where m1

i = (vi, f
1(vi)) and

m2
k = (vk, f

2(vk)).

2.4 Generalised Median Correspondence based on the Hamming
Distance

In [22], authors presented a method to calculate the exact GM f̂ of a set of
correspondences based on the HD. Such method is based on converting a set of
correspondences f1, ..., f i, ..., fm into correspondence matrices F 1, ..., F i, ..., Fm.



Afterwards, a linear solver [16], [24], [15] is applied to the sum of these matrices
as follows:

f̂ = argmin

n∑
i=1

(C ◦ F i[x, y]) (10)

where [x, y] is a specific cell and C is the following matrix:

C =

m∑
i=1

(1− F i[x, y]) (11)

where

F i[x, y] =

{
1 if f i(vx) = viy

0 otherwise
(12)

The idea is that by introducing a value of either 0 or a 1 in the correspondence
matrix, the HD is being considered and thus minimised by the method.

3 Methodology

The aim of this paper is to model the GM of a set of correspondences through
the CED. As commented in the introduction, it only has been modelled through
the HD and we supposed that through the CED, much more interesting or useful
median could be generated from an application point of view. Therefore, we only
want to redefine matrix C in Equation 11 since the current one makes the median
to be generated through the HD. Equation 13 shows our proposal:

C =

n∑
i=1

Bi[x, y] (13)

where

Bi[x, y] = Dist(vx, f
i−1(v′y)) +Dist(v′y, f

i(vx)) (14)

Suppose that m is the mapping m = {vx, v′y}. Then, Bi[x, y] is defined as the
distance between this supposed mapping f(vx) = v′y and the mappings imposed

by correspondence f i that relates elements vx and v′y. That is,

Bi[x, y] = d(m,mi
x) + d(m,mi

p) (15)

As the distance between two mappings becomes higher, so does the value
of Bi[x, y]. Likewise, the value of (1 − F i[x, y]) in Equation 11 is higher for
mappings that are not present in any correspondence of the set. As a result,
matrix C in Equation 13 is a generalisation of matrix C in Equation 11.

Finally, considering Equations 9 and 15, we arrive to Equation 14. Figure 1
graphically shows the computation of Bi[x, y]:



Fig. 1. ◦ →: Mappings in correspondences. →: Computation of the distance.

Notice that the first part of the expression is similar to how the bijective
function h is calculated in Equation 7, in the sense that it only computes the
distance between mappings that have the same element on the output structure
G. Moreover, notice that according to the Dist measure used, null elements (and
thus null mappings) are considered accordingly. Finally, matrix C is minimised
in the same way as in Equation 10.

4 Validation

The experimental validation was carried out as follows. We have generated two
repositories S5 (with graphs/correspondences of a cardinality of 5 nodes/mappings)
and S30 (with graphs/correspondences of a cardinality of 30 nodes/mappings),
with the attributes of the nodes being real numbers, and edges being unattributed
and conformed through the Delaunay triangulation. Each repository is inte-
grated by 3 datasets consisting of 60 8-tuples s1 = {G1, G

′
1, f

1
1 , ..., f

6
1 }, .., si =

{Gi, G′i, f1i , ..., f6i }, ..., s60 = {G60, G
′
60, f

1
60, ..., f

6
60}. All correspondences for each

dataset are obtained through the following three correspondence generation sce-
narios:

– Completely at random: Six bijective correspondences are randomly generated
for each tuple.

– Evenly distributed: From a ”seed” bijective correspondence generated us-
ing [27], two mappings are swapped randomly and a new correspondence is
created. This process is repeated six times for each tuple. The seed corre-
spondence is not included in the tuple.

– Unevenly distributed: From a ”seed” bijective correspondence generated us-
ing [27], pairs of mappings are swapped a random number of times and a
new correspondence is created. This process is repeated six times for each
tuple. Due to the randomness of the swaps, the seed correspondence may be
included in the tuple.



The median was calculated for HD and CED by using the following methods:

1. SM as the correspondence in the set with the lowest SOD (A* method).
2. Evolutionary method for GM correspondence approximation presented in

[22] (EVOL1).
3. Evolutionary method for GM correspondence approximation presented in

[22] using a modified weighted mean search strategy (EVOL2).
4. Minimisation method (Min-GM). Method presented in [22] for HD and the

method presented in this paper for CED.

Tables 1 to 3 shows the average SOD of the mean with respect to the set
(SODAVG), the reduction percentage of SOD of methods 2, 3 and 4 with respect
to 1 (RED) and the average runtime in seconds (RUN) for the three datasets in
the two repositories. Notice that since the HD and the CED are distances which
exist in different spaces, a comparison of SODAVG results between HD and CED
methods is not viable. Moreover, RED scores are mostly meant to illustrate the
improvement of each method with respect to the SM in its own distance space,
since the increment of HD is linear while CED depends on the attributes of the
graphs.

For the ”Completely at random” datasets, Table 1 shows lower SODAVG

values for Min-GM than for the rest of methods on both S5 and S30. Moreover,
it can be observed that Min-GM achieves a 10% RED on the dataset in the
S30 repository. However, this case is also the one that takes the most time to
be computed. In contrast, although RED is not that considerable for Min-GM
in the HD case, the runtime for this method is always comparable to the SM
calculation. Finally, it can be noticed that EVOL1 never outperforms the SM,
while EVOL2 does for the dataset in S30. Both EVOL1 and EVOL2 have similar
runtimes.

Table 1. Average SOD (SODAVG), reduction percentage of average SOD with
respect to SM (RED) and runtime (RUN) using the ”Completely at random”
scenario.

Completely at random
S5 S30

SODAV G RED RUN SODAV G RED RUN

HD

SM 19 - 0.0009 141 - 0.01
MIN-GM 18 6 0.002 137 3 0.008
EVOL1 19 0 0.004 141 0 0.1
EVOL2 19 0 0.009 139 1.5 0.2

CED

SM 62000 - 0.01 642000 - 4.4
MIN-GM 60000 4 0.02 580000 10 9.3
EVOL1 62000 0 0.014 642000 0 4.7
EVOL2 62000 0 0.007 628000 3 4.8

In the ”Evenly distributed” datasets shown in Table 2, the best SODAVG

and RED results are obtained by Min-GM. In fact, this experiment proves that



Table 2. Average SOD (SODAVG), reduction percentage of average SOD with
respect to SM (RED) and runtime (RUN) using the ”Evenly distributed” sce-
nario.

Evenly distributed
S5 S30

SODAV G RED RUN SODAV G RED RUN

HD

SM 13 - 0.006 19 - 0.01
Min-GM 12 8 0.002 12 37 0.003
EVOL1 13 0 0.003 15 22 0.004
EVOL2 13 0 0.007 14 27 0.02

CED

SM 18400 - 0.02 63100 - 4.1
Min-GM 18100 2 0.03 49300 22 9
EVOL1 18400 0 0.003 63100 0 3.5
EVOL2 18400 0 0.007 59000 7 3.5

Min-GM always obtains the exact GM, given that the median calculated for
S5 and S30 always has a SOD of 12 towards the correspondences in the set.
This value results from multiplying the number of correspondences (six) times
the mappings swapped from the seed correspondence (two), which is known in
advance to be the GM. Given the attribute dependant nature of the CED, this
rule is not visible for the SODAVG and thus RED scores of Min-GM using CED
appear to be lower compared to Min-GM using HD.

Finally, Table 3 shows the results for the ”Unevenly distributed” datasets,
where although the GM may be included in the set, larger SODAVG values are
obtained compared to the previous two scenarios. In this case, it is observed that
RED is larger for Min-GM using CED than for HD. Nonetheless, the compu-
tation of Min-GM using CED for the S30 dataset conveys the largest runtime.
Meanwhile, EVOL1 and EVOL2 maintain a similar trend to the previous two
scenarios.

Table 3. Average SOD (SODAVG), reduction percentage of average SOD with
respect to SM (RED) and runtime (RUN) using the ”Unevenly distributed”
scenario.

Unevenly distributed
S5 S30

SODAV G RED RUN SODAV G RED RUN

HD

SM 17 - 0.006 66 - 0.001
MIN-GM 16 6 0.002 53 20 0.003
EVOL1 17 0 0.003 65 22 0.006
EVOL2 17 0 0.007 64 27 0.02

CED

SM 76500 - 0.005 839000 - 4.9
MIN-GM 69100 10 0.002 669000 21 9.9
EVOL1 76500 0 0.006 839000 0 5.3
EVOL2 765000 0 0.01 779000 8 5.3



The following conclusions can be drawn from these experiments. If the cor-
respondences have a low number of mappings or high precision is required, then
Min-GM with CED is the best option. In contrast, HD has a better accuracy
to runtime trade-off for correspondences with a high mapping order. It is also
interesting to notice that the evolutionary methods, regardless of the weighted
mean strategy, only outperformed the SM approach on the S30 repository, since
the low amount of mappings in S5 did not allow an effective weighted mean
computation.

5 Conclusions and Further Work

In this paper, we presented a method for computing the GM correspondence
based on an edit distance for correspondences called CED, which is a generali-
sation of a method based on the HD. Experimental validation shows that this
approach is the best option to find the exact GM in three different correspon-
dence scenarios, considering that by using the CED, a better represented GM
is obtained at the cost of a larger computational complexity, especially as the
number of mappings in correspondences increases. As future work, we are in-
terested in comparing our method with more options for the GM calculation,
putting particular emphasis in embedding approaches. It is also necessary to
perform more experiments on real life repositories which contain structures and
correspondences.
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5. X. Cortés, C. F. Moreno-Garćıa, and F. Serratosa. Improving the Correspondence
Establishment Based on Interactive Homography Estimation. In CAIP, pages 457–
465, 2013.

6. X. Cortés and F. Serratosa. Learning Graph Matching Substitution Weights Based
on the Ground Truth Node Correspondence. International Journal of Pattern
Recognition and Artificial Intelligence, 30(02):1650005, 2016.

7. X. Cortés, F. Serratosa, and C. F. Moreno-Garćıa. Semi-automatic pose estimation
of a fleet of robots with embedded stereoscopic cameras. In Emerging Technologies
and Factory Automation, 2016.



8. M. Ferrer, E. Valveny, F. Serratosa, K. Riesen, and H. Bunke. Generalized me-
dian graph computation by means of graph embedding in vector spaces. Pattern
Recognition, 43(4):1642–1655, 2010.

9. L. Franek and X. Jiang. Evolutionary Weighted Mean Based Framework for Gen-
eralized Median Computation with Application to Strings. In SSPR & SPR, pages
70–78, 2012.

10. L. Franek and X. Jiang. Ensemble clustering by means of clustering embedding in
vector spaces. Pattern Recognition, 47(2):833–842, 2014.

11. L. Franek, X. Jiang, and C. He. Weighted mean of a pair of clusterings. Pattern
Analysis and Applications, 17(1):153–166, 2014.

12. X. Gao, B. Xiao, D. Tao, and X. Li. A survey of graph edit distance. Pattern
Analysis and Applications, 13(1):113–129, 2010.

13. X. Jiang and H. Bunke. Learning by generalized median concept. In Patrick
Shen-Pei Wang, editor, Pattern Recognition and Machine Vision, chapter 15, pages
231–246. River Publishers, 2010.

14. X. Jiang, J. Wentker, and M. Ferrer. Generalized median string computation
by means of string embedding in vector spaces. Pattern Recognition Letters,
33(7):842–852, 2012.

15. R. Jonker and A. Volgenant. A shortest augmenting path algorithm for dense and
sparse linear assignment problems. Computing, 38(4):325–340, 1987.

16. H. W. Kuhn. The Hungarian method for the assignment problem. Naval Research
Logistics Quarterly, 2:83–97, 1955.
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28. A. Solé-Ribalta, F. Serratosa, and A. Sanfeliu. On the graph edit distance cost:
properties and applications. International Journal of Pattern Recognition and Ar-
tificial Intelligence, 26(05):1260004, 2012.

29. M. Vento. A long trip in the charming world of graphs for pattern recognition.
Pattern Recognition, 48(2):291–301, 2015.

30. R. A. Wagner and M. J. Fischer. The string-to-string correction problem. Journal
of the ACM, 21(1):168–173, 1974.

31. F. Zhou and F. De La Torre. Factorized graph matching. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 38(9):1774–1789, 2016.
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