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Abstract

Sentiment analysis is the computational study of opinionated
text and is becoming increasing important to online com-
mercial applications. However, the majority of current ap-
proaches determine sentiment by attempting to detect the
overall polarity of a sentence, paragraph, or text window,
but without any knowledge about the entities mentioned (e.g.
restaurant) and their aspects (e.g. price). Aspect-level senti-
ment analysis of customer feedback data when done accu-
rately can be leveraged to understand strong and weak per-
formance points of businesses and services; and can also sup-
port formulation of critical action steps to improve perfor-
mance. In this paper we focus on aspect-level sentiment clas-
sification, studying the role of opinion context extraction for
a given aspect and the extent to which traditional and neural
sentiment classifiers benefit when trained using the opinion
context text. We propose four methods to aspect context ex-
traction using lexical, syntactic and sentiment co-occurrence
knowledge. Further, we evaluate the usefulness of the opinion
contexts for aspect-sentiment analysis. Our experiments on
benchmark data sets from SemEval and a real-world dataset
from the insurance domain suggests that extracting the right
opinion context is effective in improving classification per-
formance. Specifically c ombining s yntactical f eatures with
sentiment co-occurrence knowledge leads to the best aspect-
sentiment classification performance.

1 Introduction

Sentiment Analysis (SA) is critical for an increasing num-
ber of applications and industries, due to the vast amounts
of opinionated content generated on social media about the
products and services they offer. Recent statistics suggests
that on average in a given minute, over 400,000 Twitter posts
are shared, about 300,000 Facebook statuses updated, about
25,000 items purchased from Amazon!.

Sentence level analysis of opinionated content is com-
mon but these ignore sentence structure and semantic con-
structs (Mohammad, Kiritchenko, and Zhu 2013; Joulin et
al. 2016). Increasingly, more granular analysis is needed to
better understand the target of the opinion, referred to as the
aspect, as well as the context within which that sentiment
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is being expressed (Laddha and Mukherjee 2016). Indeed
the ability to analyze opinionated content beyond just the
surface level is crucial to discover meaningful business in-
sights for companies. For instance given the food was amaz-
ing but the service could have been better, we can observe
that although the overall sentence polarity can be viewed as
being positive, there is to some degree a level of negative
polarity also being expressed towards aspect, service, when
sentence context, the service could have been better, is in-
spected more closely.

In this paper our focus is on aspect context extraction
also called Opinion Context Extraction (OCE). Accordingly,
we present results from a comparative study of alternative
OCE methods for aspect sentiment analysis using two Se-
mEval datasets (Pontiki et al. 2016) and a real-world busi-
ness data set of customer reviews for the insurance domain.
Specifically, we introduce a syntactic windowing method
to OCE, which unlike the popular lexical windowing ap-
proaches (Bing 2012), exploits sentence structure and de-
pendencies to extract the sub components of a sentence that
are considered most relevant to an aspect for sentiment com-
putation. Further, we also introduce an OCE method that
combines knowledge of the syntactic dependencies in text
with sentiment co-occurrence statistics between aspects and
sentiment words found in a high coverage sentiment lexi-
con. Whilst both supervised and unsupervised approaches
to SA stand to benefit from OCE, in this paper we fo-
cus on supervised models (Kim 2014; Socher et al. 2013;
Kiritchenko et al. 2014), whereby the extracted context of
an aspect, is used by a classifier to assign a sentiment polar-
ity label for the aspect.

2 Related Work
2.1 Aspect Extraction

One approach is to extract all the different nouns and noun
phrases from the text and consider them as candidate aspect
terms (Hu and Liu 2004). Schouten develop a co-occurrence
based method for category discovery using a dictionary-
based sentiment classification algorithm through which as-
pects can be identified by an annotation process (Schouten
and de Jong. 2014). Alternatively, aspect extraction can be
modeled as a sequential labeling task with features extracted
for CRF training (Zhigiang and Wenting. 2014), (Malhotra



et al. 2014), (Brychcn and Steinberger. 2014).

In this work we extract aspects using the knowledge of do-
main experts and focus on evaluating different approaches
for extracting the context associated with each aspect and
also the impact of such contexts on different sentiment clas-
sifiers to predict aspect level sentiment.

2.2 Opinion Context Extraction

Subjective expression extraction has traditionally used se-
quence models, such as CRFs (Choi et al. 2005). An al-
ternative approach is to employ a Hidden Markov Model
(HMM) over words, and model the latent topics as states in
the HMM to discover the product properties (often aspects)
and the associated attributes (such as pos/neg polarities) sep-
arately (Sauper, Haghighi, and Barzilay. 2011). Yang and
Cardie. (2012, 2014) use a semi-CRF based approach which
allows sequence labeling at segment level and (Yang and
Cardie. 2014) is employed for opinion expression intensity
and polarity classification. However, the above works fo-
cus on generic subjective expressions as opposed to aspect
specific opinion-sentiment phrases. Our work also takes ad-
vantage of dependency parsers and sentiment co-occurrence
statistics to extract candidate opinion phrases for aspect-
sentiment analysis.

2.3 Sentiment Analysis

The state-of-the-art in sentiment analysis includes diverse
techniques, such as rule-bases, lexicons (Alec Go and Huang
2009), machine learning (Mohammad, Kiritchenko, and Zhu
2013; Nakagawa, Inui, and Kurohashi 2010; Arora et al.
2010) and deep learning (Ribeiro et al. 2016), (Joulin et al.
2016), (Kim 2014; Socher et al. 2013).

In this work we do not propose a new sentiment classifier,
however we evaluate the effectiveness of different state-of-
the-art sentiment analyzers trained using the text generated
from the proposed opinion context extraction methods for
predicting aspect-level sentiment.

3 Opinion Context Extraction Approaches

In this section we formalize the different opinion context ex-
traction approaches.

3.1 Sentence level context

The baseline strategy for context extraction is to simply use
the entire sentence as containing the relevant context for any
given aspect, a, in that sentence. Sentiment classification is
applied to the entire sentence bearing a and the correspond-
ing prediction assigned to a:

sentiment_classi fier(a,sentence(a)) €))

Where sentiment_classifier() is a function that predicts
the sentiment expressed, in relation to the aspect as positive,
negative or neutral. This context extraction approach is rea-
sonable if the sentence contains only a single aspect and the
sentiment words in the sentence are used to express opin-
ion towards that aspect. However it is less effective when
the sentence contains multiple aspects with contrasting sen-
timent expressed towards each of them.

3.2 Lexical window of context

In this approach we identify a window of k£ words around an
aspect as the context window from which to extract text for
sentiment analysis. The size of the window is chosen empir-
ically to be 3. More formally, let a sentence be denoted as
S = {ws,...,w,}. Assuming w, € S as the aspect a, the
lexical window of context for w,, is extracted as follows:

[Wy—k : Wetk] ifx<n —kand x>k
Contexties(wy) = < (w1 @ weik] ifr <k
[We—p & wp] ifr+k>n
2
This approach assumes that the opinion words targeting
an aspect occur close by, in the window of k£ words from
the aspect, and that extracting the words within that window
gives a useful bag-of-words for analyzing the sentiment of
the aspect.
Sentiment classification is applied using the lexical con-
text associated with the aspect a and the corresponding pre-
diction is assigned to a as follows:

sentiment_classifier(a,Context;q.(a)) 3)

3.3 Syntactical window of context

With complex sentences involving multiple aspects one can-
not rely solely on adjacency of text as a cue to context iden-
tification.

In the syntactically-informed windowing approach, we
study the dependency relationships within a sentence to ex-
tract the window of k£ words to form an aspect’s context.
Unlike the lexical window which ignores the syntactic re-
lationships between words, this approach incrementally tra-
verses the dependency parse tree, starting from the aspect
(node) in either direction to arrive at the context text for sen-
timent analysis. The standard tool used in natural language
processing for learning the syntactic structure of sentences is
a dependency parser. In this work we use trees constructed
through Spacy” to extract the relevant text window.

More formally, let a sentence be denoted as S =
{wy,...,wy}. Let T = {t1,...,t,} be the dependency
tree corresponding to S, where each t; € T is a triplet
(wy, parent(w;), children(w;)) where parent(w;) € S
and children(w;) € S.

Once the context text is extracted sentiment classification
is applied using the discovered syntatic context associated
with the aspect a and the corresponding prediction is as-
signed to a as follows:

sentiment_classi fier(a,Contextsyni(a)) )

3.4 Syntactical sentiment weighted co-occurrence
window of context

A sentiment-rich corpus of text can be used to learn how
often a list of sentiment words and aspects co-occur. Fur-
thermore, this knowledge can be used to guide the traversal
of the dependency tree to collect the words that influence
the aspect unlike the previous approach which uses distance

“https://spacy.io/



between words within the tree. Unlike 3.3, here we are able
to commit to the most promising sub-tree thereby disregard-
ing neighboring sub-trees that are less promising in terms of
aspect sentiment relatedness.

More formally, let a sentence be denoted as S =
{w1,...,wy}. Let T be the dependency tree corresponding
to S and T* be a subtree of 7. Let A be the set of aspects
identified for a corpus of reviews. Sentiment classification
is applied using the discovered context associated with the
aspect a and the corresponding prediction is assigned to a as
follows:

sentiment_classi fier(a,Contextsynt senti(@))  (5)

4 Sentiment Classifier

In this section we briefly describe the sentiment classifiers
used in this work for evaluating the quality of the opin-
ion context extraction approaches for aspect-level sentiment
analysis. We selected a diverse set of sentiment classifiers
ranging from feature engineering-based (e.g. NRC senti-
ment) (Kiritchenko et al. 2014) to shallow neural networks
(e.g. fastText) (Joulin et al. 2016) to deep neural networks
(e.g.convolutional neural network (CNN)) (Kim 2014).

5 Evaluation

The aim of the evaluation is to validate the usefulness of the
proposed opinion context extraction methods for effective
aspect-sentiment analysis. Our evaluation is a comparative
study of the performance of the different opinion context ex-
traction methods using aspect sentiment analysis.

5.1 Datasets

We used three different data sets (customer reviews) from
the domains of restaurants and insurance for our evalua-
tion. The restaurant data sets are official benchmark data sets
from the SemEval competition for 2015° and 2016*. The
data set for the insurance domain is a commercial data set.

5.2 Results and Analysis

In this section we present the results obtained for different
opinion context extraction approaches in aspect-sentiment
classification task.

Aspect sentiment classification Here we use sentiment
classification as a means to find out how effective each ex-
traction method is for aspect-level sentiment prediction. Ta-
ble 1 shows the aspect level sentiment prediction results
(best results highlighted in bold) for SemEval and the insur-
ance data sets. It was observed that using sentence text as the
context for aspect sentiment analysis is a strong competition
for the other methods which use only a span of text within
the sentence as context text for aspect sentiment prediction.
We believe this is due to the presence of single aspect bear-
ing sentences, where the entire sentence is a description
about one aspect and its sentiment. However context-aware
methods outperform the sentence based method suggesting

3http://alt.qcri.org/semeval2015/task 12/
*http://alt.qcri.org/semeval2016/task5/

Table 1: Aspect Sentiment Analysis Results on SemEval-
2015, SemEval-2016 and Insurance Data

Sentence Lexical Synt Synt_Senti
(k=4)
FastText on SemEval-2015 data
F_score 61.98 57.90 66.21 67.32
Accuracy  65.28 58.45 68.24 69.45
NRC Sentiment on SemEval-2015 data
F_score 68.42 69.78 66.56 72.34
Accuracy  69.76 72.81 69.37 75.24
CNN on SemEval-2015 data
F_score 63.23 59.56 68.34 70.38
Accuracy 67.14 60.45 70.42 72.26
FastText on SemEval-2016 data
F_score 72.69 64.73 76.33 77.85
Accuracy  73.29 62.72 76.44 77.15
NRC Sentiment on SemEval-2016 data
F_score 74.36 77.12 78.55 78.12
Accuracy  74.68 77.83 79.72 78.67
CNN on SemEval-2016 data
F_score 72.14 65.68 75.26 76.12
Accuracy 72.86 63.24 75.89 76.68
FastText on Insurance data
F_score 74.42 61.96 70.44 77.35
Accuracy  75.72 62.85 70.09 77.45
NRC Sentiment on Insurance data
F_score 77.56 78.34 80.46 80.78
Accuracy  78.74 80.05 82.73 82.87
CNN on Insurance data
F_score 75.67 63.00 73.49 77.48
Accuracy  76.12 64.12 74.57 78.67

that extracting the right window of text around the aspect is
useful for aspect sentiment classification. Further amongst
the opinion context methods in general the lexical context
based approach has the weakest performance. This could be
due to the ineffectiveness of the lexical window in capturing
the relevant sentiment words that target the aspects.

For the syntactic context approach the best performance
of sentiment analysis is when value of k is 4. This sug-
gests that having longer context which include immediate
as well as distant syntactic dependents for the aspect is more
effective to capture the relevant opinion words that target
the aspects thereby boosting the sentiment classifier perfor-
mance. Further the approach which combines the syntactic
dependency information with the sentiment co-occurrence
information to extract the opinion context surrounding an
aspect either records the best performance (SemEval-2015,
insurance) or is comparable with the performance of the
approach which uses only the syntactic context (SemEval-
2016). Overall these results suggests that the sentiment co-
occurrence guided sub-tree selection heuristic for disam-
biguating aspect contexts, is specifically beneficial for multi-
aspect sentence analysis.

Amongst the different sentiment learners used, NRC sen-
timent classifier performs best consistently outperforming



its neural counterparts. Amongst the neural methods CNN
performs better than fastText. This suggests that with more
depth in the neural network there is scope for learning better
predictive models. We believe that NRC sentiment classifier
learns features that are complementary and are collectively
effective in predicting the sentiment at the aspect level. Fur-
ther in the case of NRC since it uses both the sentence level
text and opinion context within the sentence for feature ex-
traction we found it to be having an advantage over the neu-
ral classifiers which consider only the opinion context text
as input.

6 Conclusions

In this paper we investigate the role of opinion context ex-
traction for aspect-level sentiment classification with an aim
to evaluate the extent to which traditional and neural senti-
ment classifiers benefit when trained using the opinion con-
text text. We propose four methods to extract opinion con-
texts surrounding aspects using lexical, syntactic and sen-
timent co-occurrence knowledge through standard aspect-
sentiment classification tasks. Our experiments on bench-
mark data sets from SemEval and a real-world dataset from
the insurance domain suggests that extracting the right opin-
ion context is effective in improving classification perfor-
mance. Specifically our heuristic which combines syntacti-
cal features with sentiment co-occurrence knowledge leads
to the best aspect-sentiment classification performance.
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