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Abstract. Multiple sensor modalities provide more accurate Human
Activity Recognition (HAR) compared to using a single modality, yet
the latter is more convenient and less intrusive. It is advantages to create
a model which learns from all available sensors; although it is challeng-
ing to deploy such model in an environment with fewer sensors, while
maintaining reliable performance levels. We address this challenge with
Neural Translator, capable of generating missing modalities from avail-
able modalities. These can be used to generate missing or “privileged”
modalities at deployment to improve HAR. We evaluate the translator
with k-NN classifiers on the SelfBACK HAR dataset and achieve up-to
4.28% performance improvements with generated modalities. This sug-
gests that non-intrusive modalities suited for deployment benefit from
translators that generate missing modalities at deployment.

Keywords: Human Activity Recognition · Machine Learning · Privi-
leged Learning

1 Introduction

Reasoning with multi-modal sensor data is an active area of research with
applications fielded in multiple domains, including Human Activity Recogni-
tion(HAR), Robotics and Interactive Natural Interfaces. Typically HAR appli-
cations are related to tracking or monitoring movements such as ambulatory
activities [5], activities of daily living [1] or exercises [6]. Inertial sensors and
ambient sensors are mainly used in such applications to track user activity. For
HAR, having multiple modalities is advantageous as it captures contextually
richer representations. However access to all sensor modalities at deployment
can be restricted due to ease of use or erroneous behaviours. This poses an inter-
esting challenge of effectively deploying reasoning models with fewer modalities,
compared to the number of modalities used in training.

We address this challenge as a Privileged Learning (PL) [8] problem. PL
defines an additional feature space (Privileged Information) that improves clas-
sification performance, but is only available during training. It resembles how
humans learn better with a teacher. In HAR we recognise this additional fea-
ture space as “Privileged Sensor Modalities”, that are available during training
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but not after deployment. Our initial evaluations suggested that, simply ignor-
ing privileged modalities result in poor performance. Therefore we recognise the
need for estimating privileged sensor modalities at deployment. We also learnt
that there is no significant linear correlation between sensor modalities, eliminat-
ing the possibility of using a simpler estimation method such as linear regression
to generate the missing data. Accordingly we implementing a generative neural
networks inspired translator that can learn non-linear mapping between modal-
ities.

Recent literature suggest the use of generative models in image/video cap-
tioning [9], language translation [7] and time-series forecasting [3] with Recurrent
Neural Networks (RNNs). We did not observe any advantage of using RNN as
a translator given that our data has no significant temporal dependencies. Gen-
erative Adversarial Networks (GANs) is another upcoming generative model,
applied successfully in image generation from random noise [2]. Yet GANs fail
to generate an output influenced by the input sensor data and the class. Our
architecture closely resembles Auto-encoders, which are successfully applied in
audio and video reconstruction [4]. The goal of Auto-encoders is to build an
abstract feature representation of given data. In contrast we focus on learning
mappings between different sensor data in order to transform one to another.

We will introduce Privileged Learning for HAR and our Neural Translator in
Section 2. Successive sections will present the SelfBACK Dataset, Experiment
Design and Results. Finally we will discuss future improvements in Conclusion.

2 Privileged Learning with Neural Translator

We illustrate Privileged Learning (PL) for HAR referring to the two modalities of
the SelfBACK dataset 1; Wrist (W) and Thigh (T). Let XW and XT represent
input modalities. We select XT as the privileged sensor modality due to its
intrusiveness in real life and comparatively better performance in HAR.

Figure 1 A refers to the training stage of the classification model where both
sensors’ data is available. Figure 1 C illustrates deployment of the classification
model where only XW is present. If we only use XW to recognise an activity at
deployment, the model performance is highly penalised. Accordingly we train a
translator which learns the mapping between two sensor data streams XW and
XT ; which is done in parallel to the training of the classification model. More
generally, this mapping can be between any number of sensor modalities. The
input layer consists of features representing modalities that are present at test
time and the output estimates the missing modalities.

Figure 1 B illustrates the Neural Translator in detail, which uses the wrist
modality XW to estimate the thigh modality X �

T . We use a fully connected
neural network to estimate privileged modality, where it learns a neural mapping
between its input and output layers. A single hidden layer is introduced to learn

1 The SelfBACK project is funded by European Union’s H2020 research
and innovation programme under grant agreement No. 689043. More de-
tails available: http://www.selfback.eu. The dataset is publicly accessible from
https://github.com/selfback/activity-recognition
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Fig. 1. Training Classification Model with Privileged Sensor Data

the feature mapping from input to the output units. During training, given an
input, the network learns to generate a representation of the output modality
that is as close to the actual values. This is enforced by using a loss function of
Mean Squared Error (MSE) between predicted output X �

T and expected output
XT . We will refer to the Neural Translator as TN .

3 SelfBACK Dataset

SelfBACK Dataset is compiled with two tri-axial accelerometer data streams,
belonging to 6 activity classes. Accelerometers were mounted on the right-hand
wrist and thigh of each subject (thus forming 2 modalities). The data was
recorded at 100Hz sampling rate with 34 individuals. We perform three pre-
processing steps on the dataset to prepare it for the translator and the classifier.
First we use a sliding window size of 3 seconds with no overlap to create instances.
Next we convert three-dimensional raw data instances into single dimension Dis-
crete Cosine Transform (DCT) feature vectors of size 180. It conveniently simpli-
fies the task of the translator where the mapping is learnt between two abstract
feature representations instead of raw data. Finally data is normalised to ensure
that the k-NN classifiers are unaffected by scalar differences between different
modalities.

4 Experiment Design

We use k-NN as the classifier which provides interpretable results compared to
a neural network. We apply Leave-One-Person-Out (LOPO) cross validation for
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the classifier and the translator. We use three configurations with no privileged
modalities as the baseline; and use accuracy of classification to study the con-
tribution of the translator in the performance gains of HAR.

We experiment on different number of hidden units, while maintaining the
number of hidden layers to one. We confirm that a narrow hidden layer sup-
ports learning better mappings between sensors by discarding arbitrary noise.
In addition we observe that the translator is over-fitting to training data when
increasing the number of hidden layers (thus increasing number of trainable pa-
rameters). Accordingly we identify the most optimal architecture for TN as 1
hidden layer of 96 units.

We follow naming convention f(Xi/Xj) to indicate a classification model
trained with set of modalities Xi; and Xj are privileged modalities. Here Xj = ∅
indicates that none of the modalities were considered as privileged after deploy-
ment. Xj = T indicates that thigh is a privileged modality, and at deployment it
will be estimated with Neural Translator TN (W/T ) which estimates thigh data
from original wrist data.

5 Results

We present baseline results of classification with no privileged modalities on
Figure 2. Baseline results confirm that thigh is clearly the privileged sensor
modality for the SelfBACK dataset.
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Fig. 3. Classification with TN

Figure 3 shows classification results with TN (W/T ). Here each bar shows
the lower and upper bounds set by the baselines. Upper bound uses the actual
data instead of the estimated after deployment; whilst the lower bound is when
the privileged modality is not used for HAR. Ideally we want the translator to
improve upon the lower bound to get closer to the upper.

The first bar shows that we can achieve 1.84% improvement over f(W/∅)
using estimated thigh on a model trained with original thigh data (f(T/T )).
The second bar shows that the Neural Translator has significantly improved
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the performance by 4.28% over f(W/∅) using estimated thigh data on a model
trained with original wrist and thigh data (f(W,T/T )); brining it closer to the
upper bound set by f(W,T/∅).

These results suggest that a classifier trained with multiple modalities, can be
used with a single or smaller subset of modalities in deployment. It is not only
possible but improves performance significantly. The Neural Translator learns
the non-linear correlations between input and output modalities, discarding am-
biguities and noise of the source modalities. As a result the estimated modalities
improve performance of the HAR classification at deployment.

6 Conclusion

We introduced the Neural Translator to improve HAR by augmenting missing
modalities with estimated data. Our results show significant improvement of
performance with estimated sensor data in k-NN classification. In addition to
estimating privileged modalities, this versatile method can be used to augment
incomplete data due to noise or technical faults. We believe there is further
opportunity to improve Neural Translator with other deep learning techniques,
which we plan to address in future. Finally this work demonstrates that trans-
lators can minimise sensors at deployment while improving performance which
contributes towards an sustainable HAR solution.
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