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Abstract 

Gas permeation of hydrogen (H2) and nitrogen (N2) were obtained from 30 and 6000 nm pore 
diameter tubular commercial alumina ceramic membranes at 0.05 to 1.00 bar and 298 K. Flow rates 
of up to 3.279 and 2.296 l/min were obtained for H2 and N2 respectively. The ratio of H2/N2 flow rates 
were used to calculate H2/N2 selectivity. The experimental H2/N2 selectivities obtained were 1.85 and 
1.43 for the 30 and 6000 nm respectively.  

Introduction 

Almost 80 percent of the global energy demand comes from fossil fuels such as natural gas, coal 
among others. Unlike using fossil fuels, hydrogen when combusted produces only water as byproduct 
[1]. The world energy consumption is forecasted to rise by 56 percent from 2010 to 2040 mainly from 
coal and natural gas [2]. Therefore, it is advantageous to substitute hydrogen with the current fossil 
fuels because it is widely accepted as a clean energy carrier in for instance fuel cell systems. These 
could help to address the problems linked to energy security which includes air pollution and global 
climate change. The need for hydrogen as a source of renewable energy will be enhanced in the 
coming years due to its demand for raw material processing in the chemical industry as well as home 
heating [3]. The state of the art membrane technology has emerged as an attractive substitute in the 
chemical industry, particularly for hydrogen separation from process 
streams.  

Membranes can be classified into inorganic and organic/inorganic (hybrid) systems. The organic ones 
are further divided into biological and polymeric constituents, while the inorganic membranes can be 
divided into metallic and ceramic (porous and non-porous) membranes [4]. The applications of 
inorganic membranes have received considerable attention during the past three decades in a wide 
array of industrial operations for gas separation due to their thermal, chemical and mechanical stability 
when compared with polymeric membranes. This includes hydrogen separation/recovery for fuel cell 
application to generate electricity [5], carbon dioxide separation from fuel gas [6], hydrogen sulphide 
separation from natural gas [7] and recovery of methane from bio-gas [5]. Inorganic membranes are 
environmentally benign, cost-effective and energy efficient. 

According to the International Union of Pure and Applied Chemistry (IUPAC), porous membranes 
are classified as; Micropores 0.5 - 2 nm where separation is based on molecular sieving mechanism, 
mesopores 2 - 50 nm where Knudsen flow mechanism is the dominant flow but multilayer flow and/or 
capillary condensation and viscous flow can also take place, and macropores > 50 nm where there is 
no separation and the flow mechanism is basically influenced by viscous flow [8-10]. In all cases, 
some considerations on productivity and separation selectivity, mechanical integrity, and membrane’s 
durability at the operating conditions needs to be taken into account against cost issues [4], because 
the importance of each of these requirements differs with their applications. Permeability and 
selectivity are the main basic properties of a membrane.  



The main aim of the present paper is to report experiments undertaken using a tubular commercial 
alumina membrane to understand the transport through inorganic membranes for hydrogen separation 
from natural gas.  

Experimental 

Commercially available γ-alumina mesoporous ceramic membranes (77% alumina and 23% TiO2) 

tubes 368 mm long with 7 and 10 mm internal and outer diameter where obtained from Ceramiques 
Techniques et Industrielles (CTI SA) France. The ceramic membranes had a 30 and 6000 nm pore 
diameter.   

Figure 1 shows the permeation system. Each membrane was sealed in a stainless-steel reactor by 
graphite O-rings which are high temperature resistant. The feed pressure used was between 0.05 to 
1.0 bar and was measured by a pressure transducer. At the permeate, the permeation flux was 
measured using a flowmeter, and a thermometer to record the required temperature. The permeate 
side was fully opened to the atmosphere. The temperature was maintained at 298 K. The permeate 
pressure was always the atmospheric one.   
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Figure 1: Permeation test experimental system. 

Results and discussion 

Figure 2 shows the H2 and N2 single gas flow rates as a function of feed pressure through a 30 and 
6000 nm commercial alumina membrane was studied at 298 K. H2 flow rates on 6000 nm permeated 
faster than that of 30 nm, and a similar trend can be seen for N2 flow rates (Figure 3). This result 
indicates that the higher the pore size, the higher the permeation rate.    

 

Figure 2. H2 flow rate as a function of feed pressure for 30 and 6000 nm at 298 K. 
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Figure 3. N2 flow rate as a function of feed pressure for 30 and 6000 nm at 298 K. 

Figure 4 shows a comparison of the H2 and N2 flow rates as a function of feed pressure for the 30 nm 
pore membrane. It can be seen that hydrogen had the higher flow rate due to its lower molecular 
weight compared with nitrogen which indicates knudsen flow contribution. Table 1 shows H2 and N2 
flow rates and H2/N2 selectivities from 30 and 6000 nm commercial alumina membrane at 1 bar and 
298 K. Experimental gas selectivities were calculated as the ratio of H2 and N2 flow rates. The 
experimental H2/N2 selectivities obtained were 1.85 and 1.43 from 30 and 6000 nm respectively. An 
increase in selectivity was obtained from 30 nm pore diameter membrane. This is a clear indication 
that the smaller the pore diameter, the higher the selectivity that would be achieved. Consequently, 
microporous membranes can be employed in order to enhance higher selectivities than those of 
knudsen.    

 

Figure 4. H2 and N2 flow rate as a function of feed pressure for 30 nm at 298 K. 

Table 1. Hydrogen and nitrogen flow rates and ⍺ H2/N2 at 1 bar and 298 K 

Membrane 
pore diameter 

(nm) 

Flow rate (l/min) Selectivity, ⍺ (H2/N2) 

H2 N2 Theoretical Experimental 

30 2.554 1.384 3.74 1.85 

6000 3.279 2.296 3.74 1.43 
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Coclusions 

A simple but effective system using commercial alumuna mesoporous membrane has been designed 
to measure and compare the permeation of single gases (H2 and N2) at 0.05 to 1.0 bar feed pressure 
and 298 K. Higher flow rates were obtained for H2 and N2. The ratio of H2 and N2 flow rates used to 
calculate H2/N2 selectivity.  
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