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Abstract 

Exfoliated graphene oxide (GO) and Mg-Al  layered double hydroxides (LDHs) nanostructures 

(LDHs@GO) filled ethylene vinyl acetate (EVA) based hybrid nanocomposites were prepared by 

solution reflux technique followed by injection molding. The physico-mechanical (including 

morphological, thermal and mechanical) properties of LDHs@GO based layered nanostructures and 

EVA/LDHs@GO (0-1 wt. %) based hybrid nanocomposites were analyzed by field emission 

scanning electron microscopy, fourier transform infrared spectroscopy, wide and low angle X-ray 

diffraction spectroscopy, differential scanning calorimetry, thermogravimetric analysis and 

mechanical (tensile and elongation at break) testing. The morphological studies revealed that LDHs 

sheets were homogeneously inserted in between GO sheets, while LDHs@GO based layered 

nanostructures were found to be easily exfoliated in EVA/LDHs@GO hybrid nanocomposites up to 

0.7 wt. % loading after which agglomeration occurred. The thermal stability of the hybrid 

nanocomposites was found to be improved at highest LDHs@GO loading of 0.7 wt. %. Mechanical 

properties (tensile strength and elongation at break) of the hybrid nanocomposites were observed to 

be enhanced by 70 and 80 % respectively at LDHs@GO loading of 0.7 wt. % and highest values of 

mechanical properties were obtained. Though, the morphological, thermal and mechanical 

properties of the composites were improved, the FTIR analysis did not reveal any chemical 

interaction between EVA and the LDHs@GO based layered nanostructures. From the overall 

results, it is obvious that a significant synergism was observed in terms of morphological, thermal 

and mechanical properties of EVA/LDHs@GO hybrid nanocomposites with optimum (less than 1 

wt. %) loading of LDHs@GO based layered nanostructures. 
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1.  Introduction 

Currently, ethylene vinyl acetate (EVA) is rapidly emerging to substitute traditional polymeric 

material in technical fields, due to their unique characteristics, such as high softness, good 

mechanical and physical properties, easy processing as well as good resistance to chemicals. EVA 

is highly flexible due to its chemical structure and also possesses low-temperature toughness, high 

resistivity to rupture as well as ultra-violet radiation and delivers high cohesive strength, 

compatibility and excellent adhesion to a wide range of substrates. This elastomeric copolymer can 

be found applicable, depending on its vinyl acetate content and its characteristic. But EVA 

copolymers are thermally unstable and burn in a rapid way, which reduces their use of various 

applications [1]. To make them usable, different fillers are added [2]. However, improvement in the 

physico-mechanical (thermal, mechanical, physical) properties of EVA has become a significant 

topic [3], as high performance of materials, especially in field of insulating materials, hot melt 

adhesives, food packing [4], biomedical [5-6], photo voltaic [7], construction, lubricant, transport 

and electrical engineering applications.Traditionally unmodified and modified calcium carbonate 

[8-12], fly ash, carbon nanotubes (CNTs) [13], multi walled CNTs [14-16], carbon black, nanoclays 

[17,18], alumina clay [19], ZnO [20], Fe3O4 [21] and wollastonite [22] nanofillers are used to 

improve the physico-mechanical properties. Additionally, fillers are uniformly distributed or 

exfoliated with polymer matrix to form intermolecular interaction with polymer chains and to 

increase the properties of polymer nanocomposites. Nevertheless, high loading (3-4 wt. %) of 

inorganic nanofillers is needed to meet the requirement of improved physico-mechanical properties 

of polymer matrix. However, high content of inorganic nanomaterials may increase the cost. 

Researchers have already been using different fillers in various polymer matrices and reduced the 

production cost with enhancement of the multifunctional properties [23-25] and productivity [26-



30]. Addition of different hybrid nanostructures is another way to enhance physico-mechanical 

properties of EVA matrix. Moreover, the use of hybrid nanostructures can improve the same 

property by adding the less quantity (<1 wt. %) as compared to different nanomaterials [31]. 

In this work, a small content of LDHs@GO based layered nanostructures was employed to improve 

the physico-mechanical properties of EVA based hybrid nanocomposites. The aim of this work is to 

study the comparison of morphological, thermal and mechanical behavior for LDHs@GO filled 

EVA nanocomposites with different wt. % loading of layered nanostructures. The thermal stability 

and crystallization behavior of the nanocomposites were investigated by thermogravimetric analysis 

(TGA) and differential scanning calorimeter (DSC) analysis, respectively. And the intercalation and 

exfoliation of layered hybrid nanostructures in a polymer matrix were analyzed by field emission 

scanning electron microscope (FE-SEM) and X-ray diffractometer (XRD). The mechanical 

properties of the nanocomposites were measured using universal tensile testing machine (UTM). 

 

2. Experimental 

2.1 Materials  

For the preparation of EVA hybrid nanocomposites, EVA-1815 thermoplastic copolymer with 15 % 

vinyl acetate was procured from Hanwha Chemicals, Korea and LDHs@GO multi layered nano 

structures was synthesized with Mg-Al–LDHs and GO by bath ultrasonication technique. 

Magnesium nitrate (Mg(NO3)2·6H2O), aluminium nitrate (Al(NO3)3.9H2O) and graphite fine 

powder, hydrogen peroxide (H2O2), sulfuric acid (H2SO4), hydrochloric acid (HCl) and sodium 

nitrate (NaNO3), potassium permanganate (KMnO4) was used as a precursor for the synthesis of 

both Mg-Al LDHs and GO. All the precursors, anhydrous sodium carbonate, sodium hydroxide and 

sodium dodecyl sulfate (SDS) were also purchased from Rankem, India, Loba Chem, India, Merck, 



India, consisting 98 % purity and Sigma Aldrich, India. Solvent (toluene) was procured from 

Merck, India. All the chemicals were of analytical reagent grade and were used without any further 

purification. Double distilled water was used throughout the experiments.  

2.2 Synthesis of LDHs@GO based hybrid nanostructures 

The LDHs@GO (1:1) based hybrid layered nanostructures were synthesized by using GO and SDS 

modified Mg-Al LDHs by bath ultrasonication technique [32]. For the preparation of layered hybrid 

nanostructures, 50 mL aqueous GO and equal amount of aqueous LDHs were taken in the weight 

ratio of 1:1 (LDHs@GO). The resulting dispersion of GO was sonicated for 15 min, while LDHs 

solution was added drop wise to the GO solution under bath sonication. The mixture was sonicated 

for 30 min more in order to form a colloidal dispersion. Lastly, the beaker containing LDHs@GO 

dispersion was placed for 48 h for settling. Finally, the resulting product was vacuum dried at 120 

°C to remove any remaining traces of water.  

2.3 Preparation of EVA/LDHs@GO hybrid nanocomposites 

EVA/LDHs@GO based hybrid nanocomposites with 0.3, 0.5, 0.7, 0.9 and 1 wt. % loading of 

LDHs@GO based layered hybrid nanostructures were prepared by solution reflux technique [33]. 

The desired amount of EVA was dissolved in toluene and LDHs@GO based layered hybrid 

nanostructures were then added to the EVA solution. The temperature was increased up to the 140 

°C under constant stirring after addition of LDHs@GO and refluxed for 20 h at 140 °C with 

vigorous stirring for exfoliation and increase in the rate of mixing of hybrid layered materials into 

the EVA matrix. Finally, the composite solution was cast and dried at room temperature for 5 days 

and then in a vacuum oven for 24 h at 75°C.  

The mixed material of composites was then fed into an injection molding machine at 30 oC by 

keeping the temperatures at 90, 120 and 130 oC of the feed, compression and metering zones, 



respectively. The molding process cycle was kept for the duration of 60 Sec. to prepare dumbbell 

shape specimens.  

2.4 Characterizations  

Morphology of GO, LDH sheets and LDHs@GO layered nanostructures and LDHs@GO filled 

EVA hybrid nanocomposites were determined by using FE-SEM (S-4800 Hitachi High. Tech, 

Tokyo, Japan) operated at an accelerating voltage of 30 kV. The size of nanostructures and hybrid 

nanocomposites was also measured directly by FE-SEM and TEM. 

The FTIR transmission spectra of LDHs@GO layered nanostructures and LDHs@GO filled EVA 

hybrid nanocomposites were recorded on spectrophotometer (FTIR-8000, Shimadzu, Tokyo, Japan) 

at room temperature keeping 25 scans per sample. The resolution of the measurements was kept at 

4 cm-1 and spectra were recorded within the wave number range from 400 to 4000 cm-1. 

To understand the effect on crystallinity of the LDHs@GO and their hybrid nanocompsites with 

EVA, the wide angle XRD patterns were recorded. The small angle XRD pattern was also recorded 

to measure the exfoliation and intercalation of hybrid nanostructures in the matrix by using X-ray 

diffractometer (XRD, Bruker D8 Advance, Germany) in the range of 0-60° and 5-15°. 

Thermal behaviors and thermal degradation of LDHs@GO layered nanostructures, EVA and 

EVA/LDHs@GO hybrid nanocomposites were determined by using DSC-60 (Shimadzu, Tokyo, 

Japan) and TGA-50 (Shimadzu, Tokyo, Japan). Indium was employed for temperature calibration 

and nitrogen gas with a flux of ca. 50 mL/min was used to prevent oxidative degradation of 

samples. DSC and TGA thermograms were recorded within the range of -20 to 120 °C and 30 to 

600 ºC respectively at a heating rate of 10 °C/min. The inflection point of the slope of the heat 

capacity plot was taken as the glass transition temperature (Tg). The mechanical properties like 

tensile strength (TS) and elongation at break (EB) were measured as per ASTM-D 412 standards 



using testing machine (UTM 2302, High Tech Instruments, Mumbai, India) with a crosshead speed 

of 50 mm/min. The mechanical testing was performed five times and then analyzed. The mean 

value of five samples was taken and plots were generated. 

  

3. Results and discussion 

3.1 Morphology of LDHs@GO layered nano structures 

The FE-SEM micrographs of GO, LDH sheets and LDHs@GO layered nanostructures are shown in 

Fig. 1 (a-c) and TEM micrographs are as inset in Fig. 1 (a-c), which indicated that the GO exhibit 

the highly exfoliated layers with an average thickness of 50 nm and up to the certain µm in length 

(Fig. 1a) [34-37]. The LDH sheets are consisted of regular and thin hexagonal single platelets and 

highly exfoliated structures with an average thickness of 25 nm and length up to the 250 nm, which 

is indication of nanoscale size [38, 39]. The morphology of the LDHs@GO layered nanostructures 

are shown in FE-SEM and TEM micrographs (Fig. 1c). The corresponding images show that LDH 

sheets have been uniformly inserted into GO inter layers and considerably amplifies the distances 

between adjacent GO sheets and make them layered hybrid nanostructures [32]. 

3.2 FTIR analysis of EVA/LDHs@GO hybrid nanocomposites 

FTIR analysis was used to detect the structural and chemical changes in EVA/LDHs@GO hybrid 

nanocomposites. The FTIR spectra of nano composites are shown in Fig. 2. From Fig. 2 all the 

spectra show strong absorbance peaks around 2850 and 2920 cm-1, associated with the C-H 

asymmetric stretching of the polymer. The peak representing the vibration of the –C=O ester of the 

carbonyl group appears at 1650 to 1750 cm-1 in pure EVA (Fig. 2a). The spectra of 

EVA/LDHs@GO hybrid nanocomposites from 0-1 wt. % loading of layered LDHs@GO 

nanostructures shows a wide and intense peaks from 3000 to 3741 cm-1, which are attributed to the 



O-H band stretch (hydrogen bonding) of the GO and LDH crystal structure. The peaks at 2917 and 

2849 cm-1ascribed to the asymmetric and symmetric vibrations, respectively, of aliphatic groups 

(CH2). The band at around 1237 cm-1 is attributed to the asymmetric vibration of C-O-C stretching. 

The bands at around 1019 and 720 cm-1 are ascribed to the metal oxygen in plane stretching and 

deformation. The FTIR spectral analyses of EVA and its EVA/LDHs@GO hybrid nanocomposites 

show that the addition of LDHs@GO layered nanostructures into the EVA matrix enhances the 

width and intensity of the peak at 3000 - 3741 cm-1 and no chemical changes was observed in the 

EVA matrix after incorporation of LDHs@GO layered nanostructures, which suggest that the only 

hybrid nano structures might be exfoliated and intercalated properly into the EVA matrix [40-42]. 

Absence of any chemical reaction between EVA and LDHs@GO was supported by the FE-SEM 

and DSC results of hybrid nano composites. 

 

3.3 Structural and morphological properties of EVA/LDHs@GO based hybrid  

   nanocomposites 

After introducing the LDHs@GO layered nanostructures with various loadings from 0-1 wt. % into 

EVA matrix, the obtained EVA/LDHs@GO hybrid nanocomposites were analyzed using XRD to 

study crystalline behavior. Fig. 3 and Fig. 4 show the wide and small angle XRD pattern of 

EVA/LDHs@GO hybrid nanocomposites with different loading of LDHs@GO layered 

nanostructures. In case of the neat EVA, sharp typical diffraction peaks are clearly observed at 2θ = 

20.48º, 22.73º, 35.33º, 39.13º and 52.63º. For 0.3, 0.5 and 0.7 wt. % of LDHs@GO layered 

nanostructures loaded composites, the XRD peaks and their intensity are almost absent as compared 

to that of the neat EVA, this is directly vice versa with increasing the LDH loadings, the intensity of 

the reflection is gradually increased. These results clearly indicate that the LDHs@GO layered 



nanostructures have been successfully exfoliated into the EVA matrix using the solution reflux 

method [43]; and the peaks at lower angles, corresponding to greater d spacing of GO sheets are 

due to insertion of the LDH layered structures in between GO sheets [44]. Fig. 4 shows the low 

angle XRD patterns in the range of θ ≤5º for EVA/LDHs@GO hybrid nanocomposites with 

different loading of LDHs@GO layered nanostructures. From the Fig. 4 (a), it can be seen that the 

diffraction peak of exfoliated GO at 2θ=10.11ºattributed to the (002) plane at basal spacing 8.73Å, 

and peak intensity of modified LDH sheets are appearing at 2θ=11.6º to the (003) planes. 

EVA/LDHs@GO hybrid nanocomposites indicate that LDHs@GO layered nanostructures have 

been properly exfoliated. From wide angle XRD patterns, when the LDHs@GO layered 

nanostructures loadings further increase to 0.9 and 1wt. %, the EVA/LDHs@GO hybrid 

nanocomposites show intercalated or partially aggregated structures because of the relatively weak 

diffraction peaks layers marked by the asterisks (*) appeared (Fig. 3 e-f). These results show that 

the solution reflux technique favors the exfoliation of LDHs@GO layered nanostructures [45] 

without showing any diffraction peaks from ordered LDHs@GO hybrid nanostructured platelets. 

These results denote that LDHs@GO layered nanostructures are exfoliated into the EVA matrix up 

to the 0.7 wt. %. However, XRD results cannot be the absolute evidence for the exfoliation 

nanolayers, because at lower concentrations of layered nanofiller, the diffraction patterns may not 

be largely affected. Therefore FE-SEM observation has to be accompanied to resolve this issue 

[46]. In order to better understand the morphology of EVA/LDHs@GO hybrid nanocomposites, 

one must also have information from FE-SEM micrographs that can provide direct imaging of the 

morphology. XRD investigations can only definitively detect periodic packings of layers at the 

nanoscale, whereas FE-SEM micrographs permit the imaging of the actual LDHs@GO layered 

nanostructures layers and their exfoliation and also agglomerates over the micrometer and 



nanometer length scales; thus, one can fully describe the morphology of the nanocomposites system 

[47]. In the FE-SEM micrographs of EVA/LDHs@GO hybrid nanocomposites, the neat EVA and 

its fractured cryogenically nanocomposite films are seen in Fig.5. For the EVA/LDHs@GO hybrid 

nanocomposites with low contents up to 0.7 wt. % of LDHs@GO layered nanostructures were 

detected with exfoliated nature in the EVA matrix (Fig.5 (d). On the other hand, in the 

EVA/LDHs@GO hybrid nanocomposites with high contents above 0.7 wt. % of LDHs@GO 

layered nanostructures, partial aggregates or intercalated platelets are observed (Fig.5 (e-f)), 

although they did not exhibit any ordered structural feature, which was confirmed by XRD patterns 

as shown in Fig.3. The presence of aggregated LDHs@GO layered nanostructures is probably due 

to the partial restacking of disordered LDHs@GO platelets in the EVA nanocomposites with high 

contents. When the amount of LDHs@GO layered nanostructures reaches a critical content, the 

distance among LDHs@GO layered nano platelets is so small that they can be stacked together 

easily due to van der Waal force of attraction. From these results, it is conjectured that the 

LDHs@GO layered nanostructures give better exfoliation at less than 1 wt. % loading [47, 48]. It is 

expected that the excellent exfoliation of LDHs@GO layered nanostructures contributes to 

significant improvement in thermal stability and mechanical properties of EVA/LDHs@GO hybrid 

nanocomposites.  

3.4 Thermal properties 

3.4.1 DSC analysis 

Fig. 6 shows DSC curves of pristine EVA and the EVA/LDHs@GO hybrid nanocomposites. The 

glass transition temperature (Tg) and the melting transition temperature (Tm) increase with increase 

in wt. % loading of the LDHs@GO layered nanostructures up to the certain loading level of 0.7 wt. 

%. Tg and Tm of EVA/LDHs@GO hybrid nanocomposites with 0.3, 0.5 and 0.7 wt. % LDHs@GO 



layered nanostructures are 50, 51, 62 and 87, 87, 91 °C, respectively, largely higher than that of 

pristine EVA (48 and 83 °C) and slightly decrease for 0.9 and 1 wt. % loading (64, 89 and 40, 86 

°C) in agreement with the value in EVA/LDHs@GO hybrid nanocomposites. The LDHs@GO 

layered nanostructures are exfoliated in EVA matrix taking strong entanglement between EVA 

macromolecules at certain loading (0.7 wt. %). And further loading hinders the reinforcing 

interaction between macromolecular chains in EVA/LDHs@GO hybrid nanocomposites that results 

a decrease in glass transition and melting temperature of the EVA due to the filler-filler aggregation 

(Table 1). 

 

3.4.2 Thermogravimetric analysis 

It can be seen from Fig. 7 that all EVA/LDHs@GO hybrid nanocomposites show enhanced thermal 

stabilities as compared with pure EVA matrix. The thermal degradation process of pure EVA resin 

occurs in two steps. The first degradation steps (don1) are in the range of 275-310 °C which can be 

assigned to the evolution of acetic acid, whereas the second degradation steps (don2) are in the range 

of 395-440 °C which is due to the degradation of ethylene based chains present in EVA [51]. There 

is about 25 % weight loss in the range of 275-310 °C for the EVA/LDHs@GO hybrid 

nanocomposites, which can be attributed to the decomposition of LDHs@GO layered 

nanostructures and the thermo-oxidative degradation of EVA. It can be seen from Table 1 that the 

first thermal degradation temperatures (don1) of EVA/LDHs@GO hybrid nanocomposites are 280, 

285, 310, 255 and 230 °C for 0.3, 0.5, 0.7, 0.9 and 1wt. %, respectively. At the same time, the 

second thermal degradation temperatures (don2) of the EVA/LDHs@GO hybrid nanocomposites are 

400, 405, 440, 405 and 400 °C for 0.3, 0.5, 0.7, 0.9 and 1 wt. % loadings, respectively. These data 

indicate that the thermal degradation temperatures increase with increasing the wt. % loadings of 



LDHs@GO layered nanostructures up to the 0.7 wt. % loading and then decreases. This is probably 

because the more loading of LDHs@GO layered nanostructures, layers favor the obstruct effect and 

formation of char in the polymer, which increases the thermal stability of the nanocomposites. From 

the previous study [45], it has been found that the thermal degradation temperatures of exfoliated 

samples via solution reflux technique are higher than those of the corresponding exfoliated samples 

via other technique. This is probably because the more LDHs@GO layered nanostructures prepared 

by the solution reflux technique can homogeneously exfoliate in the EVA matrix [45]. By 

considering the thermal improvement, 0.7 wt. % loading of the LDHs@GO layered nanostructures 

in the EVA was found highly dispersed and reported as the optimum loading. The pristine EVA 

resulted in the reduction of 98 % weight loss (WL) (Fig. 7). If the LDHs@GO layered 

nanostructures loading are too high (above certain loading 0.7 wt. %) the thermal stability of the 

EVA/LDHs@GO hybrid nanocomposites is lowered and so it is not appropriate for perfect 

application [48]. It is believed that the thermal stability of EVA/LDHs@GO hybrid nanocomposites 

(with 0.3 to 0.7 wt. % loadings) was obviously enhanced during this stage. The last stage is 

apparently relevant to the thermal cracking of the carbonaceous conjugated polymer chains (0.9 and 

1wt. %) [49]. 

3.5 Mechanical properties  

Tensile strength (TS) and elongation at break (EB) of EVA/LDHs@GO hybrid nanocomposites at 

various wt. % loadings of LDHs@GO layered nanostructures are shown in Fig. 8. The TS of 

EVA/LDHs@GO hybrid nanocomposites was also shown in increasing trend up to 0.7 wt. % 

loading. This was due to proper exfoliation as well as uniform dispersion of nanostructures in the 

matrix, which results in intermolecular interaction with the matrix, and that enhances the elongation 

with an increase in tensile strength. (Fig.5 (d)). However, the TS was observed highest in 



EVA/LDHs@GO hybrid nanocomposites with 0.7 wt. % loading. This indicated that better 

reinforcing interaction and exfoliation of LDHs@GO layered nanostructures was improved at very 

lower loading as compared to single nanomaterials. In contrary, at higher loading (0.9 and 1wt. %), 

the TS of EVA/LDHs@GO hybrid nanocomposites decreased due to agglomeration and filler-filler 

interaction of the LDHs@GO layered nanostructures [Fig.5 (e-f)]. These results may lead to less 

interfacial interaction between LDHs@GO layered nanostructures and EVA matrix resulted in a 

reduction in TS of EVA/LDHs@GO hybrid nanocomposites at 0.9 and 1wt. % loading of 

LDHs@GO layered nanostructures. 

It is also evident from Fig. 8 that the EB of EVA/LDHs@GO hybrid nanocomposites increased up 

to 0.5 wt. % loading, decreased for 0.7 wt. % loading and again increased for 0.9 and 1 wt. % 

loadings of LDHs@GO layered nanostructures. At the early stage, due to proper exfoliation of 

LDHs@GO layered nanostructures, the enhancement of elongation is the high resistance exerted by 

well exfoliated LDHs@GO layered nanostructures against the chain deformation and the stretching 

resistance of the oriented polymer backbones in the galleries. In addition, an improvement in the 

mechanical properties can also be accounted on the basis of static adhesion strength as well as 

interfacial stiffness caused by the efficient stress transfer at the interface and elastic deformation 

originating from the increased wt. % of LDHs@GO layered nanostructures [50]. 

 
4. Conclusion 

 

 A small amount of LDHs@GO layered nanostructures (0-1wt. %) was introduced to improve the 

physico-mechanical properties of EVA/LDHs@GO hybrid nanocomposites. It revealed that 

LDHs@GO layered nanostructures exhibited a synergistic effect on physico-mechanical properties 

including morphological, thermal and mechanical properties. When an amount of 0.7 wt. % of 

LDHs@GO layered nanostructures incorporated in EVA matrix, EVA/LDHs@GO hybrid 



nanocomposites showed highest tensile strength (21 MPa) and don (310 °C) due to the greater 

reinforcing interaction and exfoliation of LDHs@GO. Further loading shows decrement in thermal 

stability and mechanical properties and this could be attributed to agglomeration and filler-filler 

interaction of LDHs@GO layered nanostructures due to the higher amount of filler. These 

properties of EVA/LDHs@GO nanocomposites are remarkably superior to those of pristine EVA or 

their conventional counterparts. Thus, preparation of EVA nanocomposites by reinforcement of 

LDHs@GO by solution reflux technique is an excellent method to obtain well hybrid 

nanocomposites. This opens the way to a wider industrial utilization of hybrid nanomaterials with 

good properties.            
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Captions for Figure 

 

Fig. 1. FE-SEM and TEM micrographs of (a) GO (b) SDS-modified Mg-Al LDH (c) 

LDHs@GO layered nanostructures 

 

Fig.2. FTIR spectra of (a) EVA and its hybrid nanocomposites containing (b) 0.3, (c) 0.5, 

(d) 0.7, (e) 0.9 and (f) 1 wt. % of LDHs@GO layered nanostructures 

 

Fig. 3. Wide angle XRD spectra of (a) EVA and its hybrid nanocomposites containing (b) 

0.3, (c) 0.5, (d) 0.7, (e) 0.9 and (f) 1 wt. % of LDHs@GO layered nanostructures 

 

Fig. 4. Small angle XRD spectra of (a) EVA and its hybrid nanocomposites containing (b) 

0.3, (c) 0.5, (d) 0.7, (e) 0.9 and (f) 1 wt. % of LDHs@GO layered nanostructures 

 

Fig. 5. FE-SEMmicrographs of (a) EVA and its hybrid nanocomposites containing (b) 0.3, 

(c) 0.5, (d) 0.7, (e) 0.9 and (f) 1 wt. % of LDHs@GO layered nanostructures 

 

Fig. 6. DSC of (a) EVA and its hybrid nanocomposites containing (b) 0.3, (c) 0.5, (d) 0.7, 

(e) 0.9 and (f) 1 wt. % of LDHs@GO layered nanostructures 

 

Fig.7. TGA of (a) EVA and its hybrid nanocomposites containing (b) 0.3, (c) 0.5, (d) 0.7, 

(e) 0.9 and (f) 1 wt. % of LDHs@GO layered nanostructures 

Fig.8. TS and EB of EVA and its hybrid nanocomposites containing 0.3, 0.5, 0.7, 0.9 and 1 

wt. % of LDHs@GO layered nanostructures  

 

Caption for Table 

Table 1.  DSC and TGA results of EVA/LDHs@GO hybrid nanocomposites 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Table 1.  

 

 

 

Wt. % of 

layered 

nanostructures 

in EVA 

nanocomposites  

Tg  

(°C) 

Tm  

(°C) 

don1 

(°C) 

don2  

(°C) 

Doff  

(°C) 

WL 

(%) 

0.0  48 (±1) 83 (±1) 275 (±5) 395 (±5) 485 (±5) 99.12 (±1) 

0.3  50 (±1) 86 (±1) 280 (±5) 400 (±5) 475 (±5) 98.85 (±1)     

0.5  51 (±1) 88 (±1) 285 (±5) 405 (±5) 480 (±5) 98.52 (±1) 

0.7  62 (±1) 91 (±1) 310 (±5) 440 (±5) 480 (±5) 97.32 (±1) 

0.9  64 (±1) 89 (±1) 255 (±5) 405 (±5) 460 (±5) 98.50 (±1) 

1.0 40 (±1) 86 (±1) 230 (±5) 400 (±5) 460 (±5) 98.23 (±1) 
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