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Abstract—The recent growth of the Internet of Things (IoT)
has resulted in a rise in IoT based DDoS attacks. This paper
presents a solution to the detection of botnet activity within
consumer IoT devices and networks. A novel application of
Deep Learning is used to develop a detection model based
on a Bidirectional Long Short Term Memory based Recurrent
Neural Network (BLSTM-RNN). Word Embedding is used for
text recognition and conversion of attack packets into tokenised
integer format. The developed BLSTM-RNN detection model is
compared to a LSTM-RNN for detecting four attack vectors
used by the mirai botnet, and evaluated for accuracy and loss.
The paper demonstrates that although the bidirectional approach
adds overhead to each epoch and increases processing time, it
proves to be a better progressive model over time. A labelled
dataset was generated as part of this research, and is available
upon request.

Index Terms—Deep Learning, LSTM, Word Embedding, IoT,
Botnet, Mirai, DDoS.

I. INTRODUCTION

The Internet of Things (IoT) is expected to usher in an
era of increased connectivity, with an estimated 50 billion
devices expected to be connected to the Internet by 2020
[1]. At its core, the aim of the IoT is to connect previously
unconnected devices to the Internet [2], thus creating smart
devices capable of collecting, storing and sharing data, without
requiring human interaction [3] [4]. Many of these IoT devices
are aimed at consumers, who value low cost and ease of
deployment over security. These market forces have resulted
in IoT manufacturers omitting critical security features, and
producing swathes of insecure Internet connected devices,
such as IP cameras and Digital Video Recorder (DVR) boxes.
Such vulnerabilities and exploits are often derived and epit-
omised by inherent computational limitations, use of default
credentials and insecure protocols. The rapid proliferation of
insecure 10T devices and ease by which attackers can locate
them using online services, such as shodan, provides an ever
expanding pool of attack resources. By comprising and lever-
aging multitudes of these vulnerable IoT devices, attackers can
now perform large scale attacks such as spamming, phishing
and Distributed Denial of Service (DDoS), against resources
on the Internet [5].

The rise in IoT based DDoS attacks, witnessed in recent
years, will likely continue until IoT manufacturers accept

responsibility and incorporate security mechanisms into their
devices. Until such a time, the IoT has the potential to become
the new playground for future cyber attacks and therefore
presents a number of challenges. Since an increasing number
of DDoS attacks seek to leverage consumer level IoT devices,
the issues highlighted previously, coupled with a lack of
technical knowledge or awareness of inherent vulnerabilities,
by owners of these devices, presents one such problem. This
challenge is further compounded by a lack of convenient user
interface on many consumer IoT devices, making detection
and awareness of attacks in home networks practically impos-
sible for consumers.

To substantiate this issue, we undertook preliminary re-
search and created a secure sandboxed botnet environment.
An IoT IP Camera was successfully infected, and leveraged to
perform a sequence of DDoS attacks against a selected target.
During the infection process and attacks, the camera did not
display any adverse symptoms of infection, and continued to
function as expected. Remote access to the device was still
possible, and performance did not appear to be degraded. Live
video streaming continued to be as responsiveness as prior to
the attacks, therefore without any clear signs of an infection it
was confirmed that, detection or awareness or botnet activity
would prove very difficult within consumer networks.

Current methods of botnet detection such as signature or
flow based anomaly intrusion detection, have proved ineffec-
tive in preventing the spread of IoT botnets. Largely due to
simple code mutations rendering attack signatures obsolete or
a lack of protocol support (NetFlow, Sflow) within consumer
networks and equipment.

This paper presents a solution to the detection of botnet
activity within consumer IoT devices and networks. A novel
detection model was developed based on a Deep Bidirectional
Long Short Term Memory based Recurrent Neural Network
(BLSTM-RNN). Detection was performed at the packet level,
and focused on text recognition within features, normally
discarded by other flow based detection methods. Word Em-
bedding was used for text recognition and conversion, and
proved to be an effective method for predicting attack vectors.
The BLSTM-RNN detection model was compared with a
LSTM-RNN, and evaluated for accuracy and loss.



The main contributions of this paper can be defined as:

1) Producing a labelled and public dataset incorporating
botnet traffic, attack vectors, and normal traffic;

2) Developing a detection algorithm for text recognition of
features within botnet attack vectors;

3) Comparing LSTM and BLSTM Recurrent Neural Net-
work based detection models to detect and predict in-
fected IoT device traffic.

The rest of the paper is organized as follows: Section II
introduces botnet activity within the IoT, and the application
of deep learning for attack detection. Section III describes
the botnet architecture used to generate the botnet dataset.
It also details the use of a BLSTM-RNN in conjuction with
Word Embedding methodology to create a botnet detection
model. Section IV describes the process of data collection and
pre-processing. Section V evaluates the experimental results,
comparing the LSTM and BLSTM Recurrent Neural Network
models for accuracy and loss. Section VI draws conclusions
and suggests possible future research directions.

II. SECURITY IN THE INTERNET OF THINGS

Some of the most extensive and destructive cyber-attacks
deployed on the Internet have been Distributed Denial of
Service (DDoS) attacks. According to Akamai, a global leader
in web security, some of the largest DDoS attacks ever
recorded occurred in the second half of 2016. During this
time, attacks of over 100 Gbps, were up by 140% with three
attacks reaching over 300 Gbps [6]. Fuelled in full or part by
the Internet of Things, 88% of DDoS attacks in quarter 4 of
2017 employed a multi-vector attack strategy [7].

A. Botnets in the Internet of Things
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Fig. 1. Botnet Infection and Proliferation

One of the most prominent examples of a DDoS attack
emanating from the IoT during this period was the Mirai
botnet. Mirai is a piece of malware that attempts to find and
infect IoT devices to establish and propagate a network of
robots (botnet) consisting of the infected IoT devices (bots).
An attacker (botmaster) then uses a command and control
(C&C) server to remotely control the bots, forcing them to
participate in DDoS attacks against targets on the Internet. On
September 20 2016 the Mirai botnet was used to perform an
unprecedented 620 Gbps DDoS attack on security journalist
Brian Krebs website krebsonsecurity.com [8]. Shortly after it

was also responsible for a series of additional DDoS attacks
peaking at over 1.2 Tbps against French hosting company
OVH and DNS provider DYN, who estimated that up to 100
000 infected IoT devices (bots) were involved in the attack.
The severity of the DYN attack was sufficient to cause major
disruption on the Internet, and render several high profile
websites such as GitHub, Twitter, Reddit, Netflix, inaccessible

[9].

Fig. 1 shows the process of infection and propagation
method employed by Mirai. The Mirai infrastructure consists
of a command and control (C&C) server, a Scan/Loader server
and infected IoT devices known as bots.

Infection and propagation occurs by exploiting weak default
security credentials found on many IoT devices running busy-
box, an embedded version of Linux. An attacker (botmaster)
starts the process by connecting to the Scan/Loader server
(step 1) and initiating ./loader to execute the scanner.c module,
and scan the Internet for vulnerable IoT devices with Telnet
services and ports 23 or 2323 open (step 2). Upon detecting
a vulnerable device, the malware attempts to brute force a
successful login using a list of 62 known default usernames
and passwords. If successful, login credentials and device
information are sent back to the C&C server, and will be
used later by the Scan/Loader server to login and deliver
the malware to the vulnerable device (step 3). An infect
command is sent from the C&C server to the Scan/Loader
server containing all necessary information such as login
details, IP address, hardware architecture. Mirai supports mul-
tiple hardware architectures, including arm, mips, sparc and
powerpc (step 4).

The Scan/Loader server uses this information to login
and instruct the vulnerable device to tftip or wger to the
Scan/Loader server, download and execute the corresponding
payload binary. Once executed, the first infected IoT device
becomes part of the Mirai botnet and can communicate with
the C&C server. The malware binary is removed and runs
only in memory, to avoid detection (step 5). The botmaster
can now issue attack commands, specifying parameters such
as attack duration and target (step 6). The malware includes
10 DDoS attack types, including UDP flood (udp), Recursive
DNS (dns), SYN packet flood (syn), ACK packet flood (ack),
GRE flood (gre ip), which can be used to attack a target on
the Internet (step 7). The first bot now attempts to repeat
the infection process and propagate the botnet by scanning
the Internet for additional vulnerable IoT devices with Telnet
services and ports 23 or 2323 open (step 8). New vulnerable
IoT device information is returned to the C&C server (step
9). A new infect command is issued to the Scan/Loader server
(step 10). The appropriate hardware binary is loaded onto the
newly discover vulnerable IoT device (step 11). The relevant
attack command is issued from the C&C server (step 12).
The attack is executed by the newly infected second bot, in
conjunction with the first bot (step 13). Scanning for additional
vulnerable IoT devices is repeated to further expand the botnet.
(step 14).



B. Deep Learning for Attack Detection

The increasing presence of IoT systems in a broad range
of applications, as well as their increasing computing and
processing capabilities make them a valuable attack target,
such as network packets and malware designed to compromise
specific IoT devices. Attack detections in IoT systems is
notably different from the existing mechanisms because of
the special service requirements, such as low latency, resource
specificity, distributed nature, mobility, to mention a few
[10]. This means that conventional network attack detection
has limited application in addressing IoT security problems.
According to Kaspersky Lab, in 2016 the majority of IoT
devices examined were insecure, using default passwords or
unpatched vulnerabilities, and easily compromised by Mirai
and Hajime malware [11].A considerable number of zero-day
attacks are continuously emerging because of the addition of
various IoT protocols. Most of these attacks are small variants
of previously known cyber-attacks that present a difficulty in
their detection even for advanced computational intelligence
mechanisms such as traditional machine learning systems.

Previous literature have suggested the potential of lever-
aging machine learning to enhance security threat hunting,
but it is not practical to simply integrate machine learning
in static and dynamic cyber security analysis due to the
wide variety and distribution of IoT devices, particularly
for (inexpensive) IoT devices with limited processing power
[12]. On the other hand, the success of deep learning (DL)
in various big data fields has attracted noticeable interest
in cybersecurity fields. The application of DL has become
practical because of the advances in computer architecture
(e.g. NVIDIA DGX platforms) and in development of new
neural network libraries (such as Theano and Tensorflow for
instance); also, the availability of large and diverse training
datasets made a contribution to the effectiveness of deep
learning algorithms.

Deep learning (DL) enables several breakthroughs of con-
ventional Al tasks in the fields of image processing, pattern
recognition and computer vision. Deep networks are capable of
achieving significant improvement in accuracy of classification
and predictions in these complex tasks. The main benefit of
deep learning is the absence of manual feature engineering,
unsupervised pre-training and compression capabilities which
enable the application of deep learning feasible even in re-
source constraint networks. It means that the capability of DL
to self-learning results in higher accuracy and faster process-
ing, which can be effectively utilised for a novel distributed
attack detection in IoT systems [13]. This is very important
in the context of IoT security because such systems face a
plethora of security problems, including jamming, spoofing,
replaying and eavesdropping, but also prone to issues related
to resource constraints e.g. out-of-memory accesses, unsafe
programming languages, etc. [14].

This research is aimed at adopting a deep learning approach
to cybersecurity to enable the detection of botnet attacks. Other
machine learning and evolutionary computing techniques have
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Fig. 2. Botnet Architecture and Deep Learning Detection Model

been successfully applied in mitigating against botnet attacks.
One example is the use of swarm intelligence for destroying
any rigid master-slave relationship between bots and for auton-
omizing the bot operating roles [15]. The evolving behaviour
of botnets often enables them to circumvent the traditional de-
tection approaches. The development of behavioural detection
approaches, however, have helped in dealing with the constant
change in the botnet activities by finding the common patterns
that botnets follow across their life cycle. For instance, all the
bots need connect to the C&C server to receive new orders,
and this kind of behaviour observed only after a long period
of time can guide the detection methods.

One implication of observing the network traffic over a
long period is the necessity to successfully deal with large
data sequences. Recurrent neural networks (RNN) in general,
and one of its variants the Long Short Term Memory (LSTM)
network have been proven effective in recognizing the different
sequences of states that change over time, bridging thereby
long time lags between relevant input and target output [16].
This type of structure is theoretically well suited and has
been proven a powerful model for tagging tasks with appli-
cations in natural language processing, machine translation,
Image recognition, and the like [17]. A bidirectional LSTM
(BLSTM), furthermore, introduces two independent layers to
accumulate contextual information both from the past and the
future [12]. The main contribution of this paper is the applica-
tion of the variants of LSTM networks for implementing deep
learning in network traffic analysis aimed at detecting botnet
attacks.



III. METHODOLOGY

To promote reproducibility of this paper, a detailed descrip-
tion of botnet environment and algorithm implementation is
presented.

A. Experimental Setup

A secure sandboxed environment was created as shown in
Fig. 2. This consisted of a command and control C&C server, a
Scan/Loader server and an additional utilities server to handle
DNS queries and reporting. A soft tap (Tap0) SPAN port was
created to mirror all relevant traffic to a packet sniffing device,
to capture for later analysis. Two Sricam AP009 IP Cameras
running busybox utilities were used as bots to attack a target
Raspberry Pi.

The Mirai source code was downloaded from GitHub. To
ensure a true representation of a Mirai infection and attack,
amendments to the source code were kept to a minimum
however, some configuration changes were required to comply
with ethical and legal regulations.

1) C&C Server Configuration:

Essential packages were installed using apt-get install unzip
gcc golang electric-fence screen y

Domains were created for report.McDPhD.org
cnc.McDPhD.org, and added to table.c and main.go.

MySQL was installed using apt-get install mysql-server
mysql-client y and a user created using INSERT INTO users
VALUES (NULL, ’miraiuser’, 'miraipassword’, 0, 0, 0, 0, -1,
1, 30, ); Once configured main.go was edited to include the
MySQL credentials.

Cross compilers for the required binary architectures
(e.g. arm, mips) were installed and appropriate export
paths added to /etc/profile using export PATH= $PATH:
letc/xcompile/mips/bin. To allow information regarding C&C
connections, compiler issues and flood status to be sent the
C&C server ./build.sh debug telnet was run. The required
binary files for each architecture were created and stored in
the release directory using ./build.sh release

2) Scan Loader Server Configuration:

Apache was installed using apt-get install apache2 y and
binary architecture files created earlier, were moved to the
loader/bins directory. The Scan/Loader IP address was added
to main.c and full permission granted using chmod777%. The
loader file was compiled and added to the loader directory
using ./build.sh

To reduce the number of IP ranges available for scanning
and ensure the range used in our environment was allowed,
excluded IP ranges were amended in scanner.c to reflect our
topology.

The Scan/Loader IP address was added to scanlisten.go
and port 48101 specified as the default port to listen for brute
force results. Within the fools directory the scanListen file
was compiled using go build scanListen.go and moved to the
loader directory.

The Sricam AP0O09 IP camera used in the lab setup did not
include wget, therefore tftp was installed using apt-get install

tfipd tfip.

and

Algorithm 1 Botnet Detection Algorithm

: dataProcessing (dataset)

. unitToDrop < 25%

: Parse data to predefined format

: Define token dictionary

repeat

/*Parse data to format*/
for row < 1,rows do

Convert text to tokenised integer format
Index tokenised text
Create dictionary of tokenised text indices
Pad data arrays with Os to max 25
Inject additional tokenised features into array

13: end for

14: until return dataset

15: Split Training and Test based on unitToDrop

16: TrainAndValidate (trainingData, testData)

17: model < sequential()

18: cell + 0

19: activation < sigmoid

20: loss < mae

21: optimiser <— Adam

22: epochs <— 100

23: Create new BLSTM/LSTM unit

24: Add LSTM unit to model

25: Create new Dense Layer

26: Add Dense Layer to model

27: Set activation for Dense Layer

28: Compile model using Optimiser and Loss

R A A S

— = =
N e e

29: repeat

30: /*Fit Model*/

31: for epoch < 1, epochs do

32: Evaluate Loss, Validation Loss

33: Evaluate Accuracy and Validation Accuracy
34: end for

35: until All epochs completed
36: Return Loss, ValLoss, Acc, ValAcc

A tftp configuration was created using touch
/etc/xinetd.d/tftp and /tftpboot specified as the directory
where the architecture binary files will be copied to for
delivering later delivering the payload.

3) DNS Server Configuration:

The Mirai malware requires access to a DNS server
to discover the C&C servers IP address. Bind9 software
was installed and used to create two required domains re-
port.McDPhD.org and cnc.McDPhD.org in named.conf.local.
These will be used by the bots to report [oT device information
and communicate with the C&C server.

B. Pre-Processing using Word Embedding

The developed model uses a novel application of Deep
Bidirectional Long Short Term Memory based Recurrent
Neural Network (BLSTM-RNN), in conjunction with Word



Embedding, to convert string data found in captured packets,
into a format usable by the BLSTM-RNN.

The dataset used in our experiments was generated from the
experimental set-up described in Section III-A. It consists of
Mirai botnet traffic such as Scan, Infect, Control and Attack
traffic as described in Section II-A and normal IoT IP Cam-
era traffic generated in our experimental set-up. The dataset
included features No., Time, Source, Destination, Protocol,
Length, and overall payload information in the Info feature.
Some features such as No. and Time did not provide much
scope for data analysis so were removed.

Majority of the captured information resided in the Info
feature, as shown in Table III therefore a model was required
which could read and understand the text presented in this
feature. As discussed in Section III-C an Artificial Neural Net-
work(ANN) and more complex versions of Recurrent Neural
Networks(RNN) such as Long Short Term Memory (LSTM)
only work with numerical values. However [18] demonstrated
that a Deep Bidirectional Long Short Term Memory based
RNN (BLSTM-RNN) can be used which provides promising
results for text recognition. This potential was further demon-
strated in [17] where a BLSTM-RNN was used in conjunction
with Word Embedding, in such a way phrases and vocabulary
were mapped to vectors or real numbers, and proved to be an
effective method for modelling and predicting sequential text.

Motivated by this potential, this paper presents a detection
algorithm and model, which is applied to botnet detection in
the IoT. Since the information provided in the Info feature of
the dataset follows a sequence, we implemented our approach
by first converting each letter into a tokenized and integer
encoded format. A dictionary of all tokenized words and their
index within the Info feature was created and text replaced with
its corresponding index number. In order to understand each
attack type, it was important to maintain the sequence order of
the indices, therefore an array of the indices was created. Since
attacks are often closely coupled to the protocol used and the
length of the captured packet, the Profocol and Length features
also required to be included in the array. Word Embedding
was again used to convert and create a dictionary of all
tokenized protocols and their index. These were then added,
along with the Length feature, which was already an integer,
to the array. Labels identifying each type of captured packets
were mapped from string to integer ("norm’: 0,’mirai’:1,’udp’:
2, ’dns’:3, ’ack’:4,’normal’:5), and also injected into the array.
To simplify this process, we used the Keras library with
a wrapper API around Theano and Tensorflow. The Keras
one_hot function was used to convert strings into indices, form
a 2-dimension list and create a dictionary at the same time.
Finally, since deep neural networks require arrays to be of
equal length, we needed to find the maximum length of a
sentence within the Info feature and pad all the arrays with O
to be equal to the maximum length of 25.

After processing the dataset it was split into training and test
datasets and reshaped into 3 dimensions, the format required
for LSTM layer (see algorithm 1.)

TABLE 1. Model Parameters

Variables Values

Activation Sigmoid

Loss Mean Absolute Error (mae)

Optimiser Adam

BLSTM layer total units 20

Dense layer total unit 6

Epochs 100

TABLE II. Captured Attack Samples
Attack | Normal| Mirai | Cleaned

Mirai | O 598676 | 5102 595478
UDP 9380 587524 | 2576 601542
ACK 67444 | 588560 | 6372 632889
DNS 8706 588410 | 4408 602496

C. Modelling using Long Short Term Memory Recurrent Neu-
ral Network

As previously stated the main contribution of this paper is
the application of deep learning to botnet detection in the IoT.
Word embedding was used in Section III-B to convert text into
tokenised integer format, for use with a deep neural network.
To test the effectiveness of this approach the detection model
is evaluated using LSTM-RNN and BLSTM-RNN and tested
against a series of attacks associated with the Mirai botnet. As
shown in algorithm 1 to develop the detection models, unit and
Output layer with sigmoid activation are added to the model.
The model is then compiled with the MAE loss function and
the Adam optimiser over total of 100 iterations, as shown in
Table L.

The proposed detection model shown in Fig. 2 transitions
acquired botnet data through three distinct phases. The Pre-
processing phase adjusts features to ensure data representation
is suitable for the used algorithms. The Word Embedding
method described in Section III-B tokenises the data, before
normalisation and removal of packets with missing data.

In the Modelling phase the LSTMN-RNN and BLSTM-
RNN algorithms are applied to the training data to define,
fit and evaluate the detection model.

Finally in the Anomaly Detection phase the generated
dataset is tested to determine the effectiveness of the model
in terms of accuracy and loss.

IV. DATA SOURCES

To evaluate our detection models we required a dataset
which contained a mixture of IoT botnet communication,
multiple attack vectors and normal [oT device traffic. There
are currently no public datasets that fulfilled all three cri-
teria, therefore an experimental set-up was implemented as
described in Section III-A. The mirai botnet malware contains
ten available attack vectors, which infected IoT devices can
utilise to engage in DDoS attacks against targets. For the
purpose of our experiments, four attack vectors were chosen,
including User Datagram Protocol (UDP) flood, Acknowl-
edgement (ACK) flood, Domain Name System (DNS) flood,
and Synchronize (SYN) flood attacks, used by mirai. Command



TABLE III. Attack Packet Structure

Packet | Time Source Destination Protocol | Size Info

Normal | 0.000226 | 192.168.252.40 | 192.168.252.60 | TCP 66 81 - 50451 [SYN, ACK] Seq=0 Ack=1 Win=5840 Len=0
MSS=1460 SACK_PERM=1 WS=2

Mirai 0.268276 | 192.168.252.40 | 106.65.144.6 TCP 64 62002 - 23 [SYN] Seq=0 Win=57378 Len=0 [ETHERNET
FRAME CHECK SEQUENCE INCORRECT]

UDP 0.268276 | 192.168.252.40 | 192.168.252.50 | UDP 554 55741 - 65170 Len=512

DNS 4.513663 | 192.168.252.40 | 192.168.252.22 | DNS 90 Standard query 0x0c9 A nntlheibflkk.report. McDPhD.org

TABLE IV. ACK Packet Structure and Sequencing

Packet | Time Source Destination Protocol | Size Info

ACK 1.940214 | 192.168.252.40 | 192.168.252.50 | TCP 566 59693 - 41058 [ACK] Seq=1 Ack=1 Win=29597 Len=512

ACK 1.940431 | 192.168.252.50 | 192.168.252.40 | TCP 60 41058 - 59693 [ACK] Seq=1 Ack=1 Win=29597 Len=0

ACK 1.959063 | 192.168.252.40 | 192.168.252.50 | TCP 566 28029 - 45060 [ACK] Seq=1 Ack=1 Win=29597 Len=512

ACK 1.959074 | 192.168.252.40 | 192.168.252.50 | TCP 566 56493 - 64047 [ACK] Seq=1 Ack=1 Win=29597 Len=512

and control messages between the C&C server and the infected
IoT IP camera (bot) were also captured, as was normal traffic
generated by the camera.

To capture packets and generate the necessary dataset the
tcpdump command tepdump W 5 C 500 w datacapture was
issued, where -W stipulates to split the capture into a maxi-
mum of five files and -C stipulates that the maximum capture
file size should be 500mb.

The necessary data was captured in a series of five separate
captures, which would later be concatenated into a single
dataset. The first capture (normal.pcap) consisted of normal
IoT device traffic, for a duration of 2 hours and included
normal device communication on the network, and also two
remote connections to the camera to view the video feed, each
of which lasted 5 minutes.

Mobaxterm was used to create a secure shell (ssh) into
the C&C server, before executing command screen ./cnc
from within the mirai/release directory, to start the MYSQL
database. A second remote session was used to telnet and log
into the C&C server, ready to issue attack commands to the
infected IoT IP camera. A third remote session was used to
ssh into the Scan/Loader server, before executing the ./loader
command from within the mirai/release directory, to scan the
network for available IoT devices to infect.

The initial scanning process and device infection was cap-
tured in the second capture (mirai.pcap) which also included
the infected camera scanning on ports 23 and 2323 for new
devices to infect. The third capture (udp.pcap) consisted of a
single (udp) flood attack, whereby the C&C server issued the
attack command, and the infected IoT device flooded its target
with bursts of (udp) packets for a total period of 60 seconds.
The fourth capture (dns.pcap) consisted of a single (dns) flood
attack, whereby the C&C server issued the attack command,
and the infected IoT device flooded its target with bursts of
(dns) packets for a total period of 60 seconds. The fifth capture
(ack.pcap) consisted of a single (ack) flood attack, whereby the
C&C server issued the attack command, and the infected IoT
device flooded its target with bursts of (ack) packets for a total
period of 60 seconds.

After capturing all five attack scenarios using the .pcap
format, the capture files were converted to .csv files. In order
to train and validate our detection model, ground-truth labels
norm, mirai, udp, dns, ack were assigned to the captured data,
ready to be ingested into the detection model. The total number
of samples captured by each attack type can be seen in Table
II. The cleaned column represents the total number of samples
once packets with missing data have been removed.

V. MODEL COMPARISON AND DISCUSSION

To compare our deep learning detection models a series
of four experiments were performed for each. Since uni-
directional LSTM-RNN only preserve information from the
past, the aim of the comparison was to ascertain if the use
of a bidirectional LSTM-RNN, which is able to accumulate
contextual information from both past and future, could return
better accuracy or loss metrics for our captured dataset. For
Experiment 1 each attack type was split between frain and
validate, presented to each model and trained over a total of 20
iterations. The mean accuracy and loss metrics for each attack
were measured, and are presented in Table V. As can be seen
from the results, both models returned high accuracy and pre-
diction for mirai, udp, and dns attack types. However, returned
less favourable results for ack attacks, despite this attack
having the highest number of samples. This was possibly due
to the nature and complexity of information in the info feature,
as seen in Table IV, where the sequence numbers in each ack
packet changed. Despite this, a pattern can however be seen
on rows one and two, where sequence numbers (59693-41058,
41058-59693) of contiguous packets were clearly linked, and
packet size and Length were consistent. Unfortunately some
packets appeared out of sync as can been in rows three
and four, and possibly resulted in the detection model not
recognising this pattern, contributing to the lower detection
rate, and significantly higher loss metric. By contrast, although
the mirai captured packets in Table III appear to be equally
complex, the information in the info feature, remained largely
the same, possibly aiding better detection.

Since multi-vector DDoS attacks were highlighted as being
a growing issue in Section II, Experiment 2 consisted of norm,




TABLE V. Detection Accuracy and Loss

Train Validate | BLSTM Accuracy | LSTM Accuracy | BLSTM Loss LSTM Loss
Mirai 387060 | 208418 99.998992 99.571605 0.000809 0.027775
UDP 391002 | 210540 98.582144 98.521440 0.125630 0.125667
ACK 411384 | 221515 93.765198 93.765198 0.858700 0.858773
DNS 391622 | 210874 98.488289 98.488289 0.116453 0.116453
Mulit-Vector (with ACK) 419887 | 226094 91.951002 91.951002 0.841303 0.841381
Mulit-Vector (without ACK) 395564 | 212996 97.521033 97.521033 0.115293 0.115293
Mulit-Vector (with three ACK) 468534 | 252289 92.243513 92.243513 0.161890 0.242358
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mirai, udp, dns, and ack captures being concatenated to form a
multi-vector attack scenario. Results on row 5 of Table V show
the impact of the ack attack on the overall detection accuracy
and particularly loss metrics. To validate this observation,
Experiment 3 consisted of norm, mirai, udp, and dns captures
being concatenated to form a multi-vector attack scenario,
minus the ack attack. Results on row 6 of Table V show that
once the ack attack is removed, overall detection accuracy and
prediction of the model are very good. A final validation of this
observation was conducted in Experiment 4 which consisted of
three ack attacks were performed during the same time frame,
increasing the total sample size of ack attacks, in order to
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observe the variation in accuracy and prediction.

Row 7 of Table V shows an increase in sample size, im-
proves the overall validation accuracy to 92%, with BLSTM-
RNN returning the better loss metric, meaning this model was
able to better predict attack traffic, when presented with a
larger sample size.

Fig. 3 through to Fig. 6 show accuracy and loss metrics for
the detection models. Although metric results are comparable,
and the bidirectional approach adds overhead to each epoch,
increases processing time, the trajectory shows a better pro-
gressive model over time. A larger dataset with more samples,
could further demonstrate the benefit of BLSTM-RNN.




VI. CONCLUSIONS AND FUTURE WORK

This paper presents the implementation of deep learning
using a Bidirectional Long Short Term Memory Recurrent
Neural Network (BLSTM-RNN), in conjunction with Word
Embedding for botnet detection. The model was compared to
a unidirectional LSTM-RNN to ascertain if the accumulation
of contextual information from both past and future used by
the BLSTM-RNN, could return better accuracy or loss metrics
for our captured dataset. Both models returned high accuracy
and low loss metrics for the four attack vectors used by the
mirai botnet malware. Results for mirai, udp, and dns were
very encouraging with 99%, 98%, 98% validation accuracy
and 0.000809, 0.125630, 0.116453 validation loss metrics
respectively. The ack attack vector metrics were shown to be
less favourable, but the paper showed that a larger sample size
could improve accuracy and reduce loss. The positive results
demonstrate the effectiveness of our novel application of deep
learning for botnet detection in the IoT. By focusing detection
at the packet level, and using text recognition on features
normally discarded, we have demonstrated that the limitations
of existing specification or flow based detection methods, can
be overcome. Furthermore, although the bidirectional approach
adds overhead to each epoch, and increases processing time,
it appears to be a better progressive model over time

Several avenues for future research have been identified.
Firstly a second more comprehensive dataset will be generated,
incorporating all ten attack vectors used by the mirai botnet
malware. To demonstrate the ability of our developed model
to detect new variations of botnets, a mutated version of the
mirai source code will be used to generate a third dataset, and
will be compared against existing signature and flow based
anomaly detection methods. Having successfully demonstrated
a solution to the detection problem presented in Section I, we
will also further investigate ways to improve situational aware-
ness of botnet activity within the IoT. By helping consumers
become aware when their device is infected, we hope to raise
awareness of the inherent vulnerabilities, and aid them to make
better choices in the future, with regard to procurement, and
operation of such devices.

The generated mirai botnet dataset has been made public
and is available upon request.
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