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Abstract. Multiple sensor modalities provide more accurate Human
Activity Recognition (HAR) compared to using a single modality, yet
the latter is preferred by consumers as it is more convenient and less
intrusive. This presents a challenge to researchers, as a single modality
is likely to pick up movement that is both relevant as well as extraneous
to the human activity being tracked and lead to poorer performance.
The goal of an optimal HAR solution is therefore to utilise the fewest
sensors at deployment, while maintaining performance levels achievable
using all available sensors. To this end, we introduce two translation ap-
proaches, capable of generating missing modalities from available modal-
ities. These can be used to generate missing or “privileged” modalities at
deployment to augment case representations and improve HAR. We eval-
uate the presented translators with k-NN classifiers on two HAR datasets
and achieve up-to 5% performance improvements using representations
augmented with privileged modalities. This suggests that non-intrusive
modalities suited for deployment benefit from translation models that
generates privileged modalities.

Keywords: Human Activity Recognition ·Machine Learning · Case rep-
resentation · Privileged Learning

1 Introduction

Human Activity Recognition (HAR) involves the computational analysis of hu-
man movement. The types of movement which are recognised is directly de-
pendent on the application requirements. Typically these applications relate to
tracking or monitoring movements such as ambulatory activities (i.e. running or
jogging) [9, 11], daily activities of living (i.e. gardening or cooking) [1] or exercises
(i.e. muscle strength increasing exercises or stretching) [12]. In these situations
we would expect to use sensing devices comprised of wearables (inertial sensors
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such as an accelerometer or a gyroscope) and ambient sensors in the environment
(such as movement sensors in a home) to track user activity.

Reasoning with multi-modal sensor data is an active area of AI research [17]
with applications fielded in a range of domains, including health and well-being,
smart cities, robotics and interactive natural interfaces. For HAR having dif-
ferent modalities for sensing is advantageous as it provides contextually richer
representations. However access to all sensor modalities at deployment can be
restricted due to a variety of reasons - economics in some situations will limit
the number of available sensors, erroneous behaviour may cause loss of data
temporarily or ease of use may restrict the number of sensors one may be willing
to use. In short, considerations such as usability, ease of deployment and cost
all suggest that access to data from all modalities is likely to be a privilege to
be had at training, and not necessarily at deployment (test time). This poses an
interesting question of how representations learnt using all modalities at train
time can also be exploited at test time. Here instead of simply ignoring missing
modalities at test time we explore how performance gains can be achieved by
learning to estimate them.

In this paper we focus on HAR in the context of Privileged Learning (PL) [14].
Specifically we show how PL can be used to estimate missing parts of a repre-
sentation when one or more modalities are absent at test time. The key idea is to
learn a generative model that can use existing modalities to estimate representa-
tions for any missing modalities. Our solution borrows ideas from computational
language translation [13], but instead of translating between language pairs, we
translate between data generated by sensor modalities - from present to missing
modalities. The main assumption here is that there is an alignment or correla-
tion between modalities and that we can discover them from a parallel corpus
of modality pairs. Accordingly we make the following three contributions:

– formalise PL in the context of HAR by recognising how different modalities
contribute towards improved classification;

– introduce novel translation methods that can learn a mapping between sen-
sors to estimate missing modalities at deployment; and

– conduct a comparative study of the proposed algorithms on the SelfBACK3

and PAMAP2 4 datasets to demonstrate their ability to achieve improved
performance with fewer modalities at deployment.

This paper is organised as follows: in Section 2 we explore work related on
HAR, PL and Sequence generation; in Section 3 we interpret Privileged Infor-
mation (PI) in the domain of HAR and offer formalisations for our approaches.
We detail the datasets, experiment design and evaluation techniques in Section
4; in Section 5 we present results and discuss outcomes; followed by conclusions
and future improvements in Section 6.

3 The SelfBACK project is funded by European Union’s H2020 research and in-
novation programme under grant agreement No. 689043. More details available:
http://www.selfback.eu. The SelfBACK dataset associated with this paper is pub-
licly accessible from https://github.com/selfback/activity-recognition

4 https://archive.ics.uci.edu/ml/datasets/PAMAP2+Physical+Activity+Monitoring
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2 Related Work

Significant research has been carried out on reasoning with sensors for HAR using
machine learning techniques. While early work was focused on using a single
sensor to perform HAR with hand crafted features [6], more recent advancements
are largely due to the successes of deep learning. Much of the latest research
has focussed on exploiting multiple sensors for HAR with deep learning models
to achieve state of the art performance [16, 8]. In [9] the authors explore the
impact of different sensor placements on HAR performance and discuss the trade-
off between convenience (wrist placement) versus accuracy (thigh placement).
Ideally we want to optimise sensor placement convenience whilst minimising the
negative impact this can have on accuracy.

Privileged Learning (PL) mimics how humans learn with a teacher. In a
learning environment the teacher provides the student with explanations and
additional information around the topic, but at test time the student must rely
on what they have learned with no access to the teacher. This concept was
introduced by [14] where they define an additional feature space, Privileged In-
formation (PI) that guarantees 100% classification accuracy, but only available
at training. We can draw parallels here in sensor placements; whereby sensors
that lead to improved performance but not considered to be convenient place-
ments are analogous to the teacher in PL. However unlike with PL, a privileged
sensor placement can only promise positive improvements.

In this paper we explore how an additional PI space can be constructed
for HAR. Typically PI can be viewed as an extra set of features describing the
same problem. For example, using additional image masks to influence improved
orthogonality in convolutional functions for image classification [2] or the use of
skeleton information to improve depth sequence analysis [10]. In the latter paper,
the authors demonstrate a system capable of learning to generate privileged
(skeleton) information from training data (depth sequences) which can then be
used to support classification at test time. Similarly, in our work we generate a
PI feature space from existing sensors but use both feature spaces to improve
HAR. However our translation model is a reusable standalone component which
translates between sensor data compared to [10] where skeleton generation is
continuously refined with classification.

Sequence to sequence (seq2seq), learning has been successfully applied in
many domains, such as image/video captioning [18, 15], language translation [3]
and time-series forecasting [4] with Recurrent Neural Networks (RNNs). We also
see Sequence generation with Deep Belief Networks (DBNs) and Deep Autoen-
coders applied successfully in audio and video reconstruction [5]. Learning to
reconstruct missing sensor data is similar to sequence generation, but as we fo-
cus on a small window of time, there are less temporal dependencies to be learnt.
The mapping between input and output data in an autoencoder is more relevant
to our work. Unlike with autoencoders our input and output is not meant to be
identical - instead they involve different sensor streams aligned in time. As such
we focus more on learning a mapping between different sensor data to capitalise
on their spatial dependencies.



4 A. Wijekoon et al.

3 HAR with Privileged Learning
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Fig. 1. HAR casebase creation

Figure 1 illustrates how we create the casebase for HAR task from a sample
of people wearing two modalities (i.e. wrist and thigh). We use a sliding window
approach, with a window size of w, to decompose data streams from each modal-
ity. Accordingly the case representation, C = {X1, X2, X3, ..., Xn, L}, captures
all n modalities together with the activity class label L at each time window,
where Xi is the ith sensor modality.

Translator (T)
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Fig. 2. Case creation at deployment

Unlike with Figure 1, in Figure 2 at deployment the user is wearing a single
modality (a wrist sensor). We use a translator to estimate the missing modality,
using the data that is present. Thereafter both the present modality Xq

i and the
estimated modality Xq′

j are used to form the query case Cq. Here Xq′
j forms our

privileged information and the translation model is simply a mapping between
the input and output modalities. In our example (Figure 2) the translation model
can be learnt from a parallel corpus of wrist-to-thigh instances. We use cases from
our casebase to learn the translation model, as each case contains all potential
modalities. More generally, this mapping can be between any number of input
and output modalities.
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3.1 A Privileged Classification Model with Translators

In this section we formalise classification with privileged learning for HAR. We
consider privileged information in HAR as a set modalities that is present at
casebase creation but missing at deployment. The HAR classifier receives n
number of modalities as input to predict an activity class. Given a query case
Cq = {X1, X2, ..., Xm}, where m is the number of modalities present at deploy-
ment, we determine the missing modalities as n−m. We then use one or more
translators, T , to generate those missing modalities.

χ′ = T (χ)

where χ ⊂ X and χ′ ⊂ X ′. Here X denotes the set of modalities present at
deployment and X ′ is the privileged information generated by translators for all
missing modalities.

In this way, we augment the representation of the query case, using gen-
erated modalities to create the representation expected by the HAR classifier.
Accordingly, the augmented query has the following representation:

C ′q = {X1, X2, ..., Xm, X
′
m+1, X

′
m+2, ..., X

′
n}

C ′q = {X,X ′}

In the rest of this section we describe two translation methods that can generate
the missing modalities, n−m, from the m modalities.

3.2 k-Nearest Neighbour Translator

In this approach, the PI is generated for a query case by exploiting similarity
based retrieval and solution reuse. Given the query case Cq and a case C from
the casebase, we calculate their paired difference as follows:

Distance(Cq,C) =

m∑
i=0

δ(Xq
i , Xi)

where δ calculates the distance between a pair of modalities.
The top, k, cases are retrieved and their solutions (i.e. PI) is reused to esti-

mate the missing modalities values in Cq. More specifically, we reuse the values
from the privileged information attributes Xi as taken from the k nearest neigh-
bours and average over k to estimate the privileged attribute X ′i.

X ′i =
1

k

k∑
j=1

Xj
i

We iterate over all privileged modalities to form an augmented representation,
C ′q, for the query case. This k-Nearest Neighbour Translator will be referred to
as T kNN .
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Fig. 3. An example wrist-to-thigh Nearest Neighbour Translator

Figure 3 illustrates an example T kNN translator which retrieves the first 3
nearest neighbour cases from the casebase using the wrist modality attributes of
the query case. The thigh attribute modalities of the retrieved cases are averaged
to form an estimate thigh attribute for the query case. In this way an augmented
representation is formed by combining the estimated thigh modality with the
initial wrist modality.

3.3 Neural Translator

We use a fully connected neural network to generate privileged information;
where it learns a neural mapping between its input and output layers. Here the
input layer consists of features representing modalities that are present only at
test time and the output estimates the missing modalities.

More specifically we have, p ∗ w, input units where p is the number of input
modalities and w is the window size and the output layer consists of units from
a subset of missing modalities, q ∗w where q is the number of output modalities.
A single hidden layer is introduced to learn the feature mapping from input to
the output units. We propose to use a narrow middle layer to force the network
to learn the most significant features from the input when estimating its output.
This also helps avoid learning arbitrary noisy features from the input.

Figure 4 illustrates an example Neural Translator training using a single input
modality (i.e. wrist) to generate another single modality (i.e. thigh). For training
we use a parallel corpus of wrist-thigh pairs where wrist is input, and thigh is
the solution that is being estimated by the network. The figure also indicates
the node activation and loss functions expressions used for model training.

Let XH denote the hidden layer representation of the input Xwrist and calcu-
lated with weights WH and biases bH on the hidden layer. The network derives
X ′thigh using the hidden layer representation XH and weights WO and biases
bO of the output layer. During training, given an input, the network learns to
generate a representation of the output modalities that is as close to the actual
values. This is enforced by using a loss function of Mean Squared Error (MSE)
between predicted output and expected output, in Figure 4, it is the difference
between predicted thigh X ′thigh and actual thigh data, Xthigh.
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Fig. 4. An example wrist-to-thigh Neural Translator

When a query case Cq is presented at deployment, we use one or more Neural
Translators to generate all missing modalities required to re-construct C ′q for
classification. We refer to this Neural Translator as TN . Formally the privileged
information generated by TN is:

χ′ = θ(χ)

Here θ denotes parameters of the trained neural translator.

4 Evaluation

We conduct a comparative study to explore the utility of translation models to
augment representations for HAR. Accordingly we include the following algo-
rithms:

– T kNN (Section 3.2) for several k values (1,3 and 5) with Euclidean Distance
for δ; and

– TN (Section 3.3) using the hyper parameters in Table 1 which were found
to be empirically most effective.
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Table 1. Hyper-parameters for Neural Translator

Hyper-parameter Value

Number of Hidden Layers 1

Number of Hidden Units 96

Loss Function Mean Squared Error

Optimizer/Learning Rate Adam / 0.01

Number of Epochs 100

In the rest of this section we detail datasets, preprocessing and experiment
designs.

4.1 Datasets

We use two HAR datasets in our experiments and their details appear in Table
2.

SelfBACK dataset was compiled with two tri-axial accelerometer data streams
belonging to 6 activity classes performed by 34 individuals for approximately 3
minutes. Accelerometers were mounted on the right-hand wrist and thigh of the
subject (thus forming 2 modalities). The data for three axes was recorded at
100Hz for each modality with time stamp. The dataset was recorded simultane-
ously on two sensors but dispersed as two separate datasets for each modality.
For this study we merge the two datasets aligning them by timestamps to create
a dataset with 8 columns as follows: 1 for the time stamp, 3 (x,y,z) columns each
for wrist and thigh and the label.

PAMAP2 is a Physical Activity Monitoring dataset which contains data from
3 inertial measurement units (IMUs) located on wrist, chest and ankle. 18 dif-
ferent physical activities were recorded by 9 subjects following a pre-defined
protocol [7]. Due to class imbalance within subjects in the dataset we filter out
one subject and 9 activities with insufficient data. In addition we only selected
accelerometer data from IMUs. The refined dataset contained 8 subjects and
9 activity classes. Previous literature of PAMAP2 dataset provides benchmark
classification using all modalities [7]. But for the purpose of this research we
created classification models using individual sensor modality.

4.2 Data Pre-processing

We perform three pre-processing steps on each dataset to create case bases for
our translators and classification.

1. We use a sliding window size of 3 seconds with no overlap to create instances
for each subject.
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Table 2. Summary - Datasets

SelfBACK PAMAP2

Number of Subjects 34 8

Number of Activity Classes 6 9

Accelerometer Calibration ± 8g, 100Hz ± 16g, 100Hz

Sensor Placements and Notation Wrist (W) and Wrist (W), Chest (C)

Thigh (T) and Ankle (A)

Window Size 3s 3s

Number of Instances 9889 4833

Case Base {C1, C2, C3, ..., C9889} {C1, C2, C3, ..., C4833}
Case Ci = {Xi

W , Xi
T , L

i} Ci = {Xi
W , Xi

C , X
i
A, L

i}

2. We convert the three-dimensional (x, y, z) raw data in to a single dimension
Discrete Cosine Transform (DCT) instance. First we convert each axis data
instance of 300 timestamps in to a DCT feature array and then select the
first 60 DCT features. We append DCT features from all axes to form one
array of length 180.

3. Finally we normalize all data instances.

We use DCT feature transformations as it has been proven to result in sig-
nificant performance improvements over raw multi-dimensional features. DCTs
extract generic and robust features compared to other statistically crafted fea-
tures and was also shown to have slightly better or comparable results to deep
feature embeddings[9]. Importantly for us, it simplifies the task of translators
when the mapping can be carried over a proven feature representation for input
and output data. Finally data normalisation ensures that the k-NN classifiers are
unaffected by scalar differences between different modalities across all datasets.

4.3 Experiment Design

We employed Leave-One-Person-Out (LOPO) cross validation with all our ex-
periments of HAR, with a k-NN classifier where k = 3. We use accuracy on
classification to study the contribution of translators to performance gains in
HAR and compare results for with and without privileged information. We use
several baseline representation configurations with no privileged information. In
order to establish which modalities are more likely to be considered as privi-
leged in a given dataset, we also studied their individual performance and the
contribution they each provide when combined with other modalities.

With the neural translator we perform several experiments to identify the
most effective hyper-parameters. We experiment with different hidden units and
hidden layers in the neural translator to understand the impact on learning
the mapping between sensors. While maintaining the number of hidden lay-
ers to one, Figure 5 reports the results obtained for different hidden units for
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SelfBACK dataset. We can observe how performance increases with number of
hidden units, but after 96 (which is closer to half of the size of input units)
performance declines. This confirms claims we made in Section 3.3 on how a
narrow hidden layer supports learning better mappings between sensors while
discarding arbitrary noise.

Figure 6 presents performance results obtained with different hidden layers
on the SelfBACK dataset. In the first four columns, we maintain a considerably
narrow layer size compared to the input and output units, while increasing the
number of layers. These four experiments do not show substantial performance
gains from having additional layers. Later we increase number of layers and make
them broader which saw a significant drop in performance. We can observe that,
when the number of parameters of the network increases, the network tends to
overfit the training data and leads to poorer performance. Accordingly we use
the best hyper parameters in Table 1 on all Neural Translator experiments.
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We adopt the following naming convention, f(Xi/Xj) to identify the differ-
ent classifiers by the modalities that have been used for training, Xi, as well
as to indicate which modalities (if any) are used as privileged information, Xj .
Here Xj = ∅ indicates the absence of modalities for privileged information. For
example, the f(T/∅) denotes a classification model trained and tested with the
single modality thigh data using no privilege information; similarly f(W,C/∅)
is a classification model trained on two modalities, W (wrist) and C (chest),
again with no privileged information. In contrast f(W,C,A/A) suggests the use
of 3 modalities for training with modality A (ankle) forming the privileged in-
formation which will be estimated by a translator. With translators we adopt
the following naming convention T (Xi/Xj); For instance TN (W,C/A) indicates
a neural translator which generates A (ankle) as privilege information by trans-
lating from W & C (which are wrist and chest) data.
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5 Results

In this section we will first identify PI for each dataset by comparing baseline
results, next we present performance we obtained with k-Nearest Neighbour
Translator, finally we present performance we obtained with our Neural Trans-
lator. We discuss results and their implications at each subsection.

5.1 Comparison of baselines to identify Privileged Information

For each dataset we create several baselines classifiers with no privileged in-
formation (see Figure 7). This allows us to analyse individual performance on
the HAR classification task and identify modality placements that are ideal for
activity recognition.
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Fig. 7. Baseline classification results for SelfBACK and PAMAP2

In figure 7 there are results from 3 baselines created for the SelfBACK
dataset. The best baselines are f(W,T/∅) and f(T/∅), with the inclusion of
the wrist suggesting a slight decline in performance. With f(W/∅) using inly
the wrist, we see a considerable performance decline of almost 15% compared to
the other two. These baseline results confirm that thigh is clearly a Privileged
Information in the SelfBACK dataset.

The 7 baseline classifier accuracies for PAMAP2 dataset are also shown in
Figure 7. Here we can see that each of the 3 single modality classifiers have
comparable performance but appear to have as much as a 10% performs degra-
dation compared to the multi-modal baselines (e.g. f(W,C,A/∅)). This might
be explained by the similarities between some activity classes for example such
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as “Walking” and “Nordic Walking” which are harder to differentiate with a
single sensor and would instead require multiple modalities.

Of the multi-modal classifiers on PAMPA2, f(W,A/∅) out performs f(W,C/∅)
and f(C,A/∅), furthermore, performance of f(W,A/∅) is notably close to the
three-modality classifier f(W,C,A/∅). Surprisingly the two-modality classifiers
f(C,A/∅) does not improve their single-modality performance substantially, but
they both (Ankle and Chest) show improved performance when combined with
wrist modality. Accordingly in this dataset we assess the use of both chest and
ankle modalities as privileged information. We believe this is sensible especially
when considering the intrusiveness of either of these wearables compared to an
inertial sensor on the wrist.

5.2 Privilege Information generation with the k-NN Translator

In general k-NN as a translator failed to provide any significant improvements
over classification without privileged information on the SelfBACK dataset (see
Table 3). We studied two classifiers with both using a translator to generate
thigh; where one used only thigh data (first column) and the other uses both
wrist and thigh (second column). However at most, we only observed a clas-
sification performance improvement of only 1.32% over the baseline classifier
f(W/∅). Increasing the number of neighbours (from k values 1, 3 to 5) also had
no significant impact apart from a marginal improvement (as little as 1%).

Unlike with SelfBACK, in PAMPA2 we used only multi-modalities to train
the HAR classifier following the poor results observed in Figure 7 with single
modalities. However once again results here did not exhibit any substantial im-
provement or decline in performance compared to the baselines. In addition we
observe no significant performance difference was to be had by increasing the
neighbourhood sizes.

Table 3. T kNN with SelfBACK and PAMAP2

SelfBACK PAMAP2

f(T/T ),
T kNN (W/T )

f(W,T/T ),
T kNN (W/T )

f(W,A/A),
T kNN (W/A)

f(W,C/C),
T kNN (W/C)

f(W,C,A/A),
T kNN (W,C/A)

T 1NN 81.03 81.02 62.47 62.25 71.01

T 3NN 81.52 81.57 63.01 63.37 72.41

T 5NN 81.50 82.02 62.58 62.82 71.56

We believe the poor translation capability of the kNN method is primarily
due to the inherent noise in some of the modalities. This is particularly the
case with SelfBACK (as observed in 7) and therefore is not surprising that the
translation mapping was also not able to recover from this noise already captured
in the case representation from wrist. However with PAMPA2 we did not see any



Improving kNN for HAR with Privileged Learning using Translation Models 13

significant difference between any of the single modalities (Figure 7) and as such
do not believe that wrist is any nosier than, say chest for instance. Here we
believe that the poor performance might be explained by the inability of the
single modality to discriminate between the activity classes. These uncertainties
are emphasised when selecting neighbours using single modality, thus end up not
gaining any performance improvement from privileged information.

In general we expect that an incremental learner such as the neural translator
will have a better opportunity to learn an improved mapping as it minimises the
differences between the estimated in actual privileged information during train-
ing. This alone helps to create an improved feature embedding that currently
kNN does not have.

5.3 Privilege Information generation with the Neural Translator
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Fig. 8. TN with PAMAP2 and SelfBACK

Figure 8 shows classification results for the Neural Translator for both Self-
BACK and PAMAP2 datasets. Here each bar shows the lower and upper bounds
set by the baselines. For instance the upper bound is simply the baseline that
uses the actual data instead of the estimated generated by a translator; whilst
the lower bound is when the privileged modality is not used for HAR. Ideally
we want our translator to improve upon the lower bound so as to get closer to
the upper.

On PAMAP2 we experimented with three multi-modal Neural Translators.
Translator TN (W/A) learns from wrist case attribute to generate ankle case
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attribute from CBPAMAP2. Results suggests a 5.26% increment in accuracy be-
tween f(W,A/A) and the corresponding baseline f(W/∅). Similarly both Trans-
lators TN (W/C) and TN (W,C/A) improves accuracy of their corresponding
baselines f(W/∅) by 3.23% and f(W,C/∅) by 3.49% respectively.

The SelfBACK results appear in the last column of Figure 8. Here we can see
that the Neural Translator for SelfBACK has significantly improved the perfor-
mance of the lower bound baselines f(W/∅) brining it closer to the upper bound
set by f(W,T/∅) baseline (which is when all modalities are available without
the need for translation). Specifically we observe that the TN (W/T ) translator
(wrist-to-thigh) achieves a 4.28% increment in accuracy using privileged infor-
mation at deployment.

These results suggest that using a classifier trained with multiple modali-
ties, with a single or subset of modalities in deployment, is not only possible
but improves performance significantly. Unlike the k-NN Translator, the Neural
Translator is less affected by the ambiguities of the source modalities. Instead,
it learns relationships that help to map between source and target modalities.
As a result the generated modalities improve performance of the HAR classifiers
at deployment using the estimated knowledge.

6 Conclusions

We introduced two Translator approaches for privileged learning with HAR. Our
results showed the neural translator to have significant performance improve-
ments over the baselines which have no privilege learning. kNN translators were
less effective in this domain, and we concluded that this was due to the inherent
noise and class ambiguities in HAR which requires effective case representations.
But unlike the neural translator, the kNN translator had no mechanisms to it-
eratively refine its representations.

Overall the neural translator had significantly outperformed the lower bounds
set by the baseline classifiers on both datasets. However we believe there is fur-
ther opportunity to improve on the translator generated representations allowing
us to move closer to the upper bound or optimal performance observed when
actual privileged information is used.

Accordingly in future work we will explore a number of directions in which to
improve our Neural Translator, for instance exploring other network optimisation
techniques, different data representations and also considering how ideas from
case adaptation might be employed here in a neural setting. Another direction
involves the creation of personalised translators that are better able to capture
personal traits and individual differences when estimating missing modalities.

Finally this research has demonstrated that translation methods can help to
minimise the number of sensors needed at deployment; which we argue is one of
the key components of an optimal HAR solution.
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