

AUTHOR(S):

TITLE:

YEAR:

Publisher citation:

OpenAIR citation:

Publisher copyright statement:

OpenAIR takedown statement:

 This publication is made
freely available under
________ open access.

This is the ___________________ version of proceedings originally published by _____________________________
and presented at __
(ISBN __________________; eISBN __________________; ISSN __________).

This publication is distributed under a CC ____________ license.

__

Section 6 of the “Repository policy for OpenAIR @ RGU” (available from http://www.rgu.ac.uk/staff-and-current-
students/library/library-policies/repository-policies) provides guidance on the criteria under which RGU will
consider withdrawing material from OpenAIR. If you believe that this item is subject to any of these criteria, or for
any other reason should not be held on OpenAIR, then please contact openair-help@rgu.ac.uk with the details of
the item and the nature of your complaint.

Training Neural Networks Using Taguchi
Methods: Overcoming Interaction Problems

Alagappan Viswanathan, Christopher MacLeod,
Grant Maxwell and Sashank Kalidindi

School of Engineering, The Robert Gordon University
Schoolhill, Aberdeen, UK

Abstract. Taguchi Methods may be used to train small Artificial Neural
Networks very quickly in a variety of tasks. These include, importantly,
Control Systems. Previous experimental work has shown that they could
be successfully used to train single layer networks with no difficulty. How-
ever, interaction between layers precluded the successful reliable training
of multi-layered networks. This paper describes a number of successful
strategies which may be used to overcome this problem and demonstrates
the ability of such networks to learn non-linear mappings.

1 Introduction

A number of papers have outlined the use of Taguchi and other Orthogonal
arrays to train Artificial Neural Networks (ANNs). The idea was originated by
C. MacLeod in 1994 [1] at the Robert Gordon University and implemented to
practice by his student Geva Dror in an MSc project [2]. Another group at the
JPL research centre in NASA also developed the same idea independently at
around the same time [3].

The technique works by trying a series of different weight combinations on
the network and then using Taguchi’s techniques [4] to interpolate the best
combination of these. A detailed description is not presented here due to space
restrictions and the fact that the method is explained fully in several of the
references [1, 3, 5]. The American team added to the basic technique by proposing
an iterative approach [3].

The technique can operate very quickly to set network weights and it has
been suggested that this could be used in “disaster control” networks [5] where
the ANN takes over control from a damaged system (for example, an aircraft
with compromised control surfaces).

The problem with the technique is that Taguchi Methods only operate well
on variables which do not interact. In the case of a two layer ANN, the weights
in the initial layer interact strongly with those of the second layer (that is, if
you change the first layer weights, those in the second layer must also change
if the error is to stay the same). This meant that, although it was occasionally
possible to get a two layer network to train, more often than not, it did not.

Maxwell suggested some possible ways around this problem [5] but these did
not work reliably in all cases. However, the methods outlined below do show

good results when used with two layer networks. They do this by treating the
neurons, rather then the individual weights, as the basic units of the network.

2 Coding The State of Each Neuron

Since interaction between weights in different layers is the cause of the interaction
described above, one possible way around this is to have each variable used in
the Orthogonal Array (OA) correspond to a state of a particular neuron [6]. For
example, an array with four levels could be used to code a two input neuron
as shown in Fig. 1. The possible combinations of weights are shown in table 1.
These then are used in the OA which represents the overall network.

a

b

c

Fig. 1. Using levels to code neuron states.

Table 1. List of all weight combinations.

Level Weight a Weight b Weight c

1 -1 -1 -1
2 -1 -1 +1
3 -1 +1 -1
4 -1 +1 +1
5 +1 -1 -1
6 +1 -1 +1
7 +1 +1 -1
8 +1 +1 +1

As with the original method [1], the weights are quantised. As noted in the
references [5], although standard texts on the Taguchi method [4] give only
simple arrays, it is possible to generate others using standard formulae [7, 8].

When this method is used, it does give a better error reduction than applying
the standard method to a two-layer array. However, when compared against
the full-factorial results for the same problem, although the error reduction is
generally good, it is not as high as theoretically possible. The reason for this is
neuron to neuron interaction replacing layer by layer interaction as a problem.

One can see this if one considers the structure of the experimental arrays.
Consider a very simple example of the middle two experiments in a L4 array: 1
2 2 and 2 1 2. We can see that both these experiments correspond to the same

network (although the neurons are in a different order) as shown in Figs. 2(a)
and 2(b). This means that, when we calculate the best state for a particular
neuron, the system cannot differentiate between states 1 and 2 for a particular
neuron as the table is symmetric.

 State1

State2

State2

(a)

 State2

State1

State2

(b)

Fig. 2. Two different combinations of neuron weights which give the same result.

It is possible that this problem might be overcome by allocating different
states to different levels in different neurons or by using interaction columns in
the tables; however, this has not been tested.

The advantage of this approach is that reasonably good (although not opti-
mum) results can be achieved. Its disadvantage is that large tables are required
(as the size of the network increases) because the size of the table is proportional
to the number of neurons.

3 Neuron By Neuron Training

A more successful technique is to train each neuron one by one. This does allow
the error to fall to its lowest theoretical limit. It works as shown in Fig. 3. In
network (a), the weights of the neuron are set using an orthogonal array in the
usual way. These weights are then fixed and not altered during the rest of the
training. Next, as in (b), a new neuron is added and its weights trained; the first
neuron’s output is used in the calculation of the error. Finally, the third neuron
is added and the process is repeated, again using the first two neurons’ outputs
in the error calculation.

Apart from the guarantee of reaching a low error (within the limits that the
quantised weights apply), this method also has the advantage that the orthogonal
arrays used are small (because their size is proportional to the number of weights
associated with an individual neuron, not the whole network). The disadvantage
is that each succeeding neuron is refining the output and so the initial neuron has
the greatest affect and each successive addition has less. In effect, the method
acts rather like the iterative method discussed earlier [3]. Indeed, one can tailor
the succeeding weights to refine the output in a similar way.

(a) First neuron’s
weights are trained

(b) Second neuron
added and trained.
First neuron used in
error calculation

(c) Third neuron added
and trained. Previous
neurons used in calcula-
tion of error

Fig. 3. Neuron by Neuron training.

4 Power Series Neurons

Power series neurons are a refinement of perceptron types and are discussed in
previous papers [9]. They allow a single neuron unit to fulfil any differential
function as shown in Fig. 4. It was shown in earlier work [5, 9] that power series
neurons can be trained using these methods.

an

bn

cn

Fig. 4. A power series neuron

c = f((a0.i1 + b0.i2) + (a1.i
2
1 + b1.i

2
2) + (a2.i

3
1 + b2.i

3
2) + . . .) (1)

Where f(x) is the activation function of x (typically a sigmoid), ixn is the
xth power of nth input and an, bn are the weights a and b associated with the
(n + 1)th power of the inputs.

Such a neuron can fulfil complex mathematical functions without having
to resort to many layers. Although it is not capable in this form of separat-
ing discrete areas of input space, this is not necessary for fulfilling many func-
tions required of control systems. It is possible to combine the power series and
neuron-by-neuron approaches. Each additional power series neuron provides a
new classifier.

5 Results

The training methods were shown to work by testing them on some non-linear
mappings. These were a sigmoid, reverse sigmoid and gaussian. In this case the
first method (coding the state of the neuron as a level) was used. The network
consists of two inputs, one of which is held constant (at one unit); the other
is varied as shown on the x axis. There are nine hidden layer and one output
neuron. The array used is 64 rows of 8 levels coded as shown in Fig. 1 and
generated using Owen’s data [8]. The results are shown in Figs. 5, 6 and 7.

Sigmoid Test Results

0

0.2

0.4

0.6

0.8

1

1.2

-10 -5 0 5 10

Input 2

O
u

tp
u

t

Target

Actual output

Fig. 5. Sigmoid Test

Reverse sigmoid test

0

0.2

0.4

0.6

0.8

1

1.2

-10 -5 0 5 10

Input 2

O
u

tp
u

t

Target

Actual Output

Fig. 6. Reverse Sigmoid Test

6 Conclusion

Using Orthogonal or Taguchi arrays to train neural networks is a promising tech-
nique. It allows relatively small networks to be trained very quickly and simply.

Gaussian Test

0

0.2

0.4

0.6

0.8

1

1.2

-10 -5 0 5 10

Input 2
O

u
tp

u
t

Target

Actual Output

Fig. 7. Gaussian Test

This makes it an ideal technique for some specialised applications in control, par-
ticularly in the stabilisation of systems which may have undergone some change
which makes their system model difficult or impossible to determine.

The method, however, suffers from the problem of interaction which means
that it is difficult to apply to multi-layer networks. However, it is possible to
overcome this problem. The three techniques discussed above are examples of
how this may be done, the last two being particularly effective.

References

1. C. MacLeod, G. Dror and G. M. Maxwell, Training Artificial Neural Networks
Using Taguchi Methods, AI Review, (13) 3, 177-184, Kluwer, 1999.

2. G. Dror, Training Neural Networks Using Taguchi Methods, MSc thesis, 1995, The
Robert Gordon University.

3. A. Stoica, J. Blosiu, Neural Learning Using Orthogonal Arrays. In proceedings of
the International Symposium on Intelligent Systems, Reggio (Italy), 418-423, IOS
Press, Amsterdam, 1997.

4. R. K. Roy, A Primer on the Taguchi Method, Wiley, New York, 1990.
5. G. Maxwell and C. MacLeod, Using Taguchi Methods To Train Artificial Neu-

ral Networks In Pattern Recognition, Control And Evolutionary Applications. In
proceedings of the International Conference on Neural Information Processing,
(ICONIP 2002), vol 1, 301-305, Singapore, 2002.

6. A. Viswanathan, Using Orthogonal Arrays to Train Artificial Neural Networks,
MPhil Thesis, forthcoming.

7. A. Dey, Orthogonal Fractional Factorial Designs, Wiley, New York, 1985.
8. A. Owen, Orthogonal Arrays for Computer Experiments, Integration and Visual-

ization, Statistica Sinica 2, 439-452, 1992.
9. N. Capanni, C. MacLeod, G. Maxwell, An Approach to Evolvable Neural Function-

ality. In proceedings of the International Conference on Artificial Neural Networks
and Neural Information Processing, (ICANN/ICONIP 2003), Istanbul (Turkey),
220-223.

	coversheetConferences
	icann_alagappan

	OA: GREEN
	OA Logo:
	AUTHORS: VISWANATHAN, A., MACLEOD, C., MAXWELL, G. and KALIDINDI, S.
	TITLE: Training neural networks using Taguchi methods: overcoming interaction problems.
	YEAR: 2005
	Publisher citation: VISWANATHAN, A., MACLEOD, C., MAXWELL, G. and KALIDINDI, S. 2005. Training neural networks using Taguchi methods: overcoming interaction problems. Lecture notes in computer science [online], 3697, Proceedings of the 15th international conference on artifical neural networks (ICANN 2005): formal models and their applications, 11-15 September 2005, Warsaw, Poland, part 2, pages 103-108. Available from: https://dx.doi.org/10.1007/11550907_17
	OpenAIR citation: VISWANATHAN, A., MACLEOD, C., MAXWELL, G. and KALIDINDI, S. 2005. Training neural networks using Taguchi methods: overcoming interaction problems. Lecture notes in computer science, 3697, Proceedings of the 15th international conference on artifical neural networks (ICANN 2005): formal models and their applications, 11-15 September 2005, Warsaw, Poland, part 2, pages 103-108. Held on OpenAIR [online]. Available from: https://openair.rgu.ac.uk
	Version: AUTHOR ACCEPTED
	Publisher: SPRINGER
	Conference: 15th International conference on artifical neural networks (ICANN 2005), 11-15 September 2005, Warsaw, Poland.
	ISBN: 9783540287551
	eISBN: 9783540287568
	ISSN: 0302-9743
	Set statement: The final publication is available at Springer via http://dx.doi.org/10.1007/11550907_17
	License: BY-NC-ND 4.0
	License URL: https://creativecommons.org/licenses/by-nc-nd/4.0
	CC Logo:
		2016-09-16T11:25:55+0100
	OpenAIR at RGU

