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Abstract. Ontology alignment is crucial for integrating heterogeneous
data sources and forms an important component for realising the goals
of the semantic web. Accordingly, several ontology alignment techniques
have been proposed and used for discovering correspondences between
the concepts (or entities) of different ontologies. However, these tech-
niques mostly depend on string-based similarities which are unable to
handle the vocabulary mismatch problem. Also, determining which simi-
larity measures to use and how to effectively combine them in alignment
systems are challenges that have persisted in this area. In this work,
we introduce a random forest classifier approach for ontology alignment
which relies on word embedding to discover semantic similarities between
concepts. Specifically, we combine string-based and semantic similarity
measures to form feature vectors that are used by the classifier model to
determine when concepts match. By harnessing background knowledge
and relying on minimal information from the ontologies, our approach
can deal with knowledge-light ontological resources. It also eliminates
the need for learning the aggregation weights of multiple similarity mea-
sures. Our experiments using Ontology Alignment Evaluation Initiative
(OAEI) dataset and real-world ontologies highlight the utility of our
approach and show that it can outperform state-of-the-art alignment
systems.

Keywords: Ontology alignment - Word embedding - Machine classifi-
cation - Semantic web.

1 Introduction

Arising from the need to integrate heterogeneous databases, ontology alignment
(or ontology matching) deals with the discovery of semantic correspondences be-
tween the entities of different ontologies. A proliferation of ontologies of different
levels of formalisation to drive the semantic web, create knowledge organisation
and question answering systems, etc. have led to increased need for aligning on-
tologies. The utility of aligned ontologies are enhanced, enabling applications
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requiring knowledge exchange. Interest in this area is reflected through the On-
tology Alignment Evaluation Initiative (OAEI)? which provides a platform to
assess and compare alignment systems. In addition, the Linking Open Data
community project* who aims to align ontologies on a Web scale currently have
over a thousand aligned datasets from different contributors in multiple domains
including DBpedia, WordNet, GeoNames, and MeSH.

Ontology alignment is a challenging process especially when ontologies are
of heterogeneous origins which leads to inherent differences between them. Even
when of the same sub-domain, ontologies can vary widely in levels of formalisa-
tion and vocabularies mismatch. Establishing semantic correspondences between
the entities of different ontologies have been the subject of various research works
over the years. The predominant method for alignment is through a composi-
tion of multiple string similarity metrics [2]. Various textual features of entities
(labels, definitions, etc.) in the source and target ontologies being aligned are
compared and aggregated to determine when they correspond. There is a defi-
ciency of methods for semantic matching which is crucial when the vocabulary
of ontologies are different [17,18]. Lexical databases such as WordNet have been
leveraged for semantic matching but lacks sufficient coverage especially when
dealing with domain-specific vocabulary. As a result, word embedding which is
effective at capturing semantics have been proposed for semantic matching in
ontology alignment [20,21].

In this work, we introduce a novel matching system that relies on the inte-
gration of string-based similarity and semantic matching using word embedding
to build a machine learning model, a random forest classifier. This is achieved in
two stages where a subset of candidate alignments are first selected using basic
matching techniques. Afterwards, several similarity indicators form feature vec-
tors for a machine classifier with which it determines whether pairs of entities
are semantic correspondences or not (crisp alignment). Our main contributions
are the incorporation of vector-based similarity for semantic match discovery in
the alignment process and the introduction of a set of novel features for align-
ment. By using background knowledge from word embedding, our approach is
able to rely on minimal information from the ontologies, making it suitable for
aligning knowledge-light ontological resources. We evaluate the alignment sys-
tem on benchmark datasets from the OAEI and dataset from EuroVoc (EU’s
multilingual thesaurus)?®.

The remainder of this paper is organised as follows: section 2 reviews relevant
works in literature; section 3 presents our ontology alignment approach; section
4 is an experimental evaluation which compares our approach to alternative
approaches; and section 5 concludes this work and presents an outline for future
work.

3 http://ocaei.ontologymatching.org/
4 http://linkeddata.org/
® European Union, 2018, http://eurovoc.europa.eu/
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2 Related work

Ontology alignment establishes semantic links between the entities of different
ontologies which is a solution to the semantic heterogeneity problem [5,18]. Im-
portantly, it reduces the semantic gap between overlapping representations of a
domain and trends show increasing interest in this area [17]. As ontologies differ
widely, it is not unusual to encounter alignment approaches which work well for
some problems and perform weakly on others [8]. Establishing correspondences
between the entities of different ontologies generally follows pairwise comparisons
(direct or indirect) to identify best matches. Matching entities can be element-
level or structure-level [17]. Element-level matching uses intrinsic features of en-
tities such as natural language labels and comments [9]. Instead of exact string
matching, edit distance approaches such as Levenshtein and Jaro—Winkler dis-
tances are commonly used for fuzzy matching to account for spelling variations
and word inflection. Structure-level matching considers the ontological neigh-
bourhood of entities in order to determine similarity. Even when entities share
little element-level features, correspondences can be discovered by similarity of
structures such as having similar ancestors or descendants [16]. Due to their dif-
ferences, an individual string similarity approach cannot be relied on for effective
alignments [2]. Accordingly, most alignment systems combine multiple metrics
(basic matchers) sequentially or in parallel [3,9,15]. This leads to a categorisation
of research in ontology alignment as matching techniques or matching systems.
Matching techniques deal with measures of similarity and strategies that deter-
mine the extent to which the concepts of different ontologies relate while match-
ing systems use one or more matching techniques to align ontologies [17]. The
choice of matching techniques and determining composition weights for multiple
similarity metrics have been subject of several research works [6,12].
Comparing strings become less effective for alignment when the vocabulary
of ontologies differ. As a result, external knowledge resources such as WordNet
and Wikipedia have leveraged used to estimate semantic similarities [8,11]. Use
of external background knowledge requires anchoring entities being compared
to the external resources which is then used for inferencing [7]. Still, semantic
matching is rarely used because effective integration of string-based similarity
and semantic similarity remains a challenge [17,18]. Recent experiments show
that word embedding outperform lexical databases such as WordNet for semantic
matching [21]. Word embedding implementations such as Word2vec use shallow
neural networks to embed words in a dense continuous vector space based on
linguistic contexts [13]. Word embedding preserves several linguistic regularities
and have been shown to correlate well with human judgements of similarity.
Word2vec models (continuous bag-of-words and continuous skip-gram) are pop-
ular implementations of word embedding using shallow neural networks to em-
bed words based on linguistic contexts [13]. The use of word embedding is also
promising for cross-lingual alignment by jointly embedding ontologies in a vector
space [20]. Even more effective when using word embedding for ontology align-
ment is a hybrid similarity approach that incorporates string similarity using
edit distance [21]. To the best of our knowledge, no other system has extended
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use of word embedding for alignment beyond hybrid similarity of edit distance
and vector similarity.

3 Classifier-based ontology alignment

Our approach is based on generating a machine classifier model using a hybrid
of element-level string-based, semantic similarity features, and context-based
structure-level features. The alignment process starts with the selection of can-
didate alignments using a range of similarity metrics. A feature vector is then
generated for each candidate alignment which is passed to the machine classifier.
The classifier determines whether the concept pair form an alignment or not. A
high-level overview of the alignment process is presented in Figure 1 and the rest
of this section describes the process in detail.

Source Target
Ontologies L
/ \ / \ . . .
2_& ) - &,,\: Reference alignment

i ] 3

Select candidate

matches
‘ Classification labels
Feature
vectors !
Machine
learning Traini
. raining
algorithm Phase
Candidate Feature Prediction
ontologles match  vector Phase

Fig. 1: Overview of ontology alignment process using machine learning.
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Notations, scope and assumptions First, a description of the notations used
in this work and assumptions we have made. An ontology, 6 as specifying a set of
concepts (or entities), 8 = {c1,...,cn}. A concept ¢ € 6 represents the semantic
definition of a meaningful entity in a domain. Although several ontologies also
specify data and object properties, we use this minimal representation to include
knowledge-light ontological resources such as thesauri and controlled vocabular-
ies. labels(c) returns the set of textual labels of a concept (label, synonyms, etc.)
while labels(f) returns all labels of all concepts of . Similarly, tok(c) returns
all words from a concept’s label while tok(#) returns all words in 0. We assume
that the ontologies being aligned specify subsumption relations (is-a or broader-
than relations) between their concepts. The subsumption relation between two
concepts ¢; and c; is represented as ¢; < c¢; which means that c; is a broader
concept of c;.

The output of the matching process between 6 and 6’ is the alignment, A
which is a set of correspondences between semantically equivalent concepts of
both ontologies. Each correspondence a € A is a 4-tuple, a :< ¢,c,r, s > where
¢ is concept from the source ontology 6, ¢’ is concept from the target ontology
0, r is the alignment relation type such as equivalent, subsumption, or disjoint,
and s is the confidence of alignment correspondence in [0.0, 1.0] range. For crisp
alignment, confidence is either 1 (correspondence) or 0 (no correspondence). Our
approach discovers equivalent relations for crisp alignment.

3.1 Identify alignment candidates

The alignment process begins with identifying a set of candidate correspondences
between the ontologies by comparing each pair of source and target concepts
using four similarity measures. The objective for selecting candidate alignments
is to avoid including concept pairs that have little or no chance of being aligned
in subsequent machine classification stage. A pair of concepts being compared
become candidate alignments if their similarity exceeds the threshold for any of
the similarity measures. Accordingly, similarity thresholds for candidate selection
are kept low enough to maximise recall but not very low to select the entire
similarity matrix. This avoids having to generate features for concept pairs with
very low similarities and also leads to a better class balance during classification.
We also use a Maxl selection approach for each similarity measure such that
if multiple concepts in the target ontology exceed the selection threshold, we
only choose the pair(s) with highest similarity value. This is commonly used to
enforce a 1 : 1 correspondence in alignment [18].

The similarity measures were chosen considering a range of ways in which
concepts can be similar as follows.

1. Hybrid similarity (hybrid): combines word embedding and edit distance
(Levenshtein),

2. Vector space model (vsm): cosine similarity of term vectors using term fre-
quency — inverse document frequency (tf-idf) scheme,
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3. Stoilos similarity (stoilos): string similarity metric designed for ontology
alignment, and

4. Similarity of semantic context (context): indirectly compares concepts based
on the similarity between their parent and child nodes.

Hybrid similarity Hybrid similarity combines use of word embeddings and
edit distance measures. Hybrid similarity is expected to produce results that are
at least, as good as its components [21]. After discarding words which occurred
less than 10 times, we embedded a November 2016 database dump of Wikipedia
English language articles in vector space of 300 dimensions using Word2vec’s
skip-gram model. The word embedding model was learned using an open-source
deep learning libraryS. There is an abundance of literature and software tools on
word embedding therefore, we will not discuss details of implementation further.
We also used the Google New Corpus model” as an alternative word embedding
for comparison. The edit distance component of our hybrid similarity is based
on Levenshtein distance. Similarity between terms is based on the approach for
measuring sentence similarity [10] which we describe as follows.

Let tok(c) = {w; -+ wy,} and tok(c') = {w] ---w],} be the words in labels
of concepts ¢ and ¢’ being compared. Hybrid similarity is measured as shown in
equation 1.

hybrid(c, ) =
1 . Z Z maz(emb(w,w’), lev(w,w")) (1)

max(|t0k(c)|, |t0k(0/)|) wetok(c) w’ €tok(c’)

emb(w,w’) is the cosine similarity between the embedding vectors of w and w’
while lev(w, w’) is normalised Levenshtein similarity. First, Levenshtein distance
is normalised to [0.0,1.0] interval by dividing by the length of the longer string.
Similarity is then determined as 1 — normalised distance. Simply put, equation
1 compares each word from one term with every word in the other term and
selects the maximum similarity of either word embedding or edit distance. In our
implementation, the most similar pairing is used when concepts have multiple
labels (synonyms). A low hybrid similarity threshold of 0.4 was chosen in our
experiments to maximise recall.

Vector space model The second similarity measure is based on the vector
space model using cosine similarity of tf-idf weights. Each ontology forms a collec-
tion, D with documents generated from labels of every concept (D = labels(f)).
The tf-idf weight of each word, w in a document, d is determined as shown in
equation 2.

5 https://deeplearning4j.org/word2vec.html

" https://s3.amazonaws.com/d14j-distribution/GoogleNews-vectors-negative300.

bin.gz
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tf-idf(w) = fuq - log 1Dl (2)
)
fuw,d is the frequency of w in d, and n,, is the number of documents which
w appears in. Cosine similarity between any two documents d and d’ is then
measured using tf-idf weight vectors (d and d’ respectively) as in equation 3.
. , d-d
cosSim(d, d") Tl (3)
Since each concept can have multiple documents when there are alternative
labels (synonyms), TF-IDF similarity is determined as the maximum similarity
of the documents of any two concepts (equation 4).

vsm(c,c’) = max (cosSim(d,d")) (4)
{dec,d’ec’}

By weighing terms such that frequently occurring words in an ontology con-
tribute less to similarity, we discover alignments that may otherwise be missed
as observed in [16]. Similarity threshold was set at 0.7 which is low enough for
good recall.

Stoilos similarity The third similarity approach is a string similarity metric
which was specifically designed for the purpose of aligning ontologies [19]. It is
based on the intuition that the similarity between two strings is determined by
the extent of their common substrings and this is offset by their differences. We
use an implementation of this similarity in the Alignment API [4].

Context similarity When the lexical forms of textual features of a pair of
concepts are entirely different, comparing their ontological neighbourhoods can
discover correspondences that are missed by semantic matching. Accordingly,
we indirectly measure the similarity of concepts by comparing their parent and
child concepts. If the parents and children of the concepts being compared are
similar, the pair are included in the alignment candidates set. Let the parent
concepts of ¢ be ¢, and child concepts be c., we implemented context similarity
as in equation 5.

1
context(c,c') = = - (hybrid(c,, c,) + hybrid(c., c
/ 5 hybrid(cy ; hybrid 4 )

Similarity is measured using hybrid similarity and since equation 5 is an
average, we set selection threshold at half of hybrid similarity threshold.

3.2 Features

In the next step, feature vectors are generated for candidate alignments which
will be used by a machine classifier to determine whether they are actual align-
ments. We introduce various novel features in addition to several similarity met-
rics that are commonly used for basic matching. Recall that each alignment
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candidate comprises of a concept from the source ontology (¢ € #) and a concept
from the target ontology (¢’ € ¢'). Features are grouped into three categories
(selection, direct similarity, and context features) and summarised in Table 1.

Table 1: Feature vectors for alignment

Feature category

Feature

Description

matchType Indicates similarity method used for selection
as candidate alignment
sim max (hybrid, vsm, stoilos, context)
Selection simOffset Offset to the next highest sim
hybrid Hybrid similarity
vsm Similarity based on vector space model
stoilos String similarity
context Context similarity
lev Similarity based on Levenshtein distance
fuzzy Based on fuzzy string score. A point is given

Direct similarity

for every match character with bonus points
awarded for subsequent matches.

les

Similarity based on Longest Common Subse-
quence

dice Similarity based on Sorensen-Dice coefficient

mongeElkan Monge-Elkan similarity measure

prefixOverlap Ratio of prefix overlap to length of shorter
string

suffixOverlap Ratio of suffix overlap to length of shorter
string

emb Cosine similarity of word embedding vectors

parentsOverlap Hybrid similarity of parent concepts

childrenOverlap Hybrid similarity of child concepts

contextOverlap Hybrid similarity of all context tokens

Context contextOverlapOffset|Offset to contextOverlap of the next most sim-

ilar concept in the target ontology

hasParents Indicates whether both, one, or none of the
concepts have parent nodes

hasChildren Indicates whether both, one, or none of the
concepts have child nodes

depthDiff Difference in relative depths of concepts in

taxonomic hierarchy
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Selection features These are features that are determined during selection
of candidates alignments reflecting the method of similarity used for selection
(matchType), actual similarity measure (sim), and similarity offset to the next
most similar concept (simOf fset) in the target ontology (¢ € 8'). sim is deter-
mined as maz(hybrid(c, ), vsm(c, '), stoilos(c, '), context(c,c")). matchType
is a nominal feature with values from {typel, type2, type3, typed} to represent
hybrid, vsm, stoilos, and context similarity respectively. simO f fset is deter-
mined as sim(c, ¢’) — sim(c, ¢”’). This feature captures the distinctiveness of the
candidate alignment. High sim and simOf fset values are expected to be good
indicators of actual alignments. Finally, we also include each similarity method
as a separate feature.

Direct similarity features This category of features are other similarity met-
rics that directly compare textual labels of concepts. They include five com-
monly used string-based similarity measures: Levenshtein (lev), Fuzzy Score®
(fuzzy), Longest Common Subsequence (Ics), Sorensen-Dice (dice), and Monge-
Elkan (mongeFElkan) [2,14]. These were chosen to provide a variation of string
similarities as each algorithm makes different considerations in their algo-
rithms. In addition, we include a similarity features for maximum prefix overlap
(prefizOuverlap), suffix overlap (suf fizOverlap), and similarity based on word
embedding alone (emb). Prefix and suffix overlaps are based on the number of
contiguous shared characters which is normalised by the length of the shorter
string. Implementation of most of the string similarity measures was based on
publicly available API®.

Context features Features in this category are determined by the place-
ment of concepts on the taxonomic hierarchy. These include parentsOverlap
and childrenOwverlap which are hybrid similarities of parent and child con-
cepts respectively of candidate nodes. We also introduce contextOverlap
which is the hybrid similarity between all context words. That is,
contextOverlap(c,c’) = hybrid((c, + c.), (¢, + c.)). contextOverlapOf fset is
given as contextOverlap(c, ') — contextOverlap(c, ¢”). Furthermore, we intro-
duce two features (hasParents and hasChildren) for additional insight into
the neighbourhood of candidate alignments. Nominal features {both, one, none}
respectively represent when both concepts being considered have parent nodes,
only one concept have parent nodes, or none have parent nodes. This is also sim-
ilar for child nodes. Finally, depthDif f is the difference in relative taxonomic
depth of concepts being compared. Using shortest paths, the the relative depth
of a concept is measured as the ratio of the number of edges from the concept to
root to the total number of edges on the concept’s path. Concepts with similar
relative depths may increase confidence for aligning them. For the purpose of

8 https://commons.apache.org/proper/commons- text/apidocs/org/apache/
commons/text/similarity/FuzzyScore.html
9 http://github.com/tdebatty/java-string-similarity
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measuring depths, we assume an imaginary top concept (root node) when an
ontology does not specify one.

3.3 Machine learning

The final step is the classification of candidate alignments as either true or false
alignments. Decision trees have been previously shown to outperform other ma-
chine learning algorithms for aligning ontologies [15]. We use a Random Forest
classifier which is an ensemble method using multiple decision trees for improved
classification and to avoid overfitting [1]. Each decision tree uses a subset of fea-
tures and classification is based on majority voting of decision trees’ predictions.
Being supervised machine classification, training data is required for learning
a model. In the training data, feature vectors (as in Table 1) are generated
for each candidate alignments and class labels are determined by the reference
alignments. Reference alignments specify actual correspondences between source
and target ontologies. The presence of a candidate alignment in the reference
alignment indicates a true alignment, otherwise, it is a false alignment. In the
prediction phase (when there are no reference alignments), the learned model
uses generated feature vectors to determine if a candidate alignment is a true
alignment.

4 Evaluation

4.1 Experiment setup

We perform experiments to evaluate the performance of our approach on two
alignment datasets.

Benchmark dataset The first dataset is from 2016 Ontology Alignment Eval-
uation Initiative (OAEI) Conference track !°. This dataset consists of 7 small
to medium-sized ontologies specifying concepts in the domain of conference or-
ganisation. Although of same domain, the ontologies have heterogeneous origins
resulting in differences in structure and vocabulary. The gold standard is 21
reference alignments representing all alignments between ontology pairs.

EuroVoc dataset The second dataset consists of two large controlled vocabu-
laries — the European Union multilingual thesaurus (EuroVoc)!! and the GEn-
eral Multilingual Environmental Thesaurus (GEMET)!2. The standard is 1,126
correspondences between equivalent concepts of both ontologies'®. EuroVoc and
GEMET describe 7,234 and 5,220 concepts respectively.

10 http://oaei.ontologymatching. org/2016/conference/

" http://eurovoc.europa.eu

12 http://www.eionet.europa.eu/gemet/en/themes

3 http://data.europa.eu/euodp/en/data/dataset/eurovoc/resource/
3430afb6-51c7-44d8-blc7-ale045e£5696
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Alternative alignment approaches

— StringEquiv: Discovers alignments by exact string matching of concept la-
bels. An OAEI baseline which outperforms several alignment systems in its
challenges.

— edna: Uses edit distance for approximate string matching. Another OAEI
baseline which outperforms StringFEquiv. Edit distance is based on Leven-
shtein distance.

— WordEmb Word embedding approach using Word2Vec’s continuous skip-
gram model. We embed words using Wikipedia data dump (version
20161130). Words with less than 5 occurrences were excluded and embedding
vectors had dimension of 300.

— Hybrid Combines word embedding and edit distance to discover correspon-
dences [21].

Our approach which we refer to as Rafcom, has two variants — Rafcomy
and Rafcomg for Wikipedia-based and Google News word embedding models
respectively. Leave-one-out approach is used for the Conference dataset such that
a pair of ontologies are left out in turn while a model is trained on remaining
dataset. The trained model is then used to aligned held out ontologies. For the
EuroVoc dataset with a pair of ontologies only, we use ten-fold cross-validation.

Alignment performance is based on standard precision, recall and F-measure
which are averaged over the dataset. Precision is the proportion of returned set
of correspondences that are present in the reference alignment. Recall is the
proportion of correspondences in the reference alignment that are discovered by
an alignment system. F-measure is the harmonic mean of precision and recall.

4.2 Results and discussion

The performances of alignment approaches at best Fl-measures are as shown
in Tables 2 and 3 for the Conference and EuroVoc datasets respectively. Best
performances for each evaluation metric are in boldface. Our approach clearly
outperformed the others on the Conference dataset for all evaluation metrics
with Rafcomg slightly outperforming Rafcomy . About 84% of true corre-
spondences were discovered in the candidate selection stage and the classifier
achieved about 96% accuracy. Performance differences were more subtle for Eu-
roVoc dataset. Rafcomy and Rafcomea had better precision while edna was
best in recall. Similar to the Conference dataset, about 84% of true correspon-
dences were discovered in the candidate selection stage. However, the classifier
accuracy on was about 90%. edna outperformed StringFEquiv on both datasets
which is consistent with results at the OAEI challenge and previous works [2].
Also, hybrid outperformed its components as had been expected.



12 I. Nkisi-Orji et al.

Table 2: Performances on OAEI 2016 conference track (classes only)

Precision Recall Fl-measure
String Equiv 0.878 0.498 0.635
edna 0.880 0.537 0.667
WordEmb 0.881 0.544 0.673
Hybrid 0.880 0.564 0.687
Rafcomw 0.889 0.680 0.770
Rafcoma 0.891 0.695 0.781

Table 3: Performances on EuroVoc dataset (EuroVoc-GEMET alignment)

Precision Recall Fl-measure
String Equiv 0.580 0.746 0.653
edna 0.572 0.776 0.659
WordEmb 0.581 0.746 0.653
Hybrid 0.581 0.768 0.662
Rafcomw 0.714 0.632 0.671
Rafcomga 0.714 0.629 0.669

Figure 2 shows results of alignment systems on the Conference dataset at the
OAEI challenge ordered by F1-measure. Although the systems may have compete
under a different circumstance, our results are promising when compared with
the best systems at the challenge.

Similarity types in discovery of candidate alignments The simplest cor-
respondences to discover are exact string matches. Any of Hybrid, Stoilos, or
VSM discovers such correspondences. There are observed differences between
similarity approaches when concept labels do not match as shown in Table 4.
Correspondence between “Academic Event” and “Scientific  Event” was found
using the Hybrid approach because “Academic” and “Scientific” were embedded
in similar vector space. Correspondene between “Track-workshop chair” and
“Workshop _Chair” was discovered using Stoilos similarity. Stoilos similarity has
a greater emphasis on common substrings resulting in high similarity (0.91). The
similarity between this pair is 0.6 using Levenshtein. “Conference document”
and “Document” have a high similarity of 0.94 using VSM. This is because “Con-
ference” appeared multiple times in both ontologies (conference# and ekaw#)
and as a result, has a low tf-idf weight. “conference#Conference document” vs
“ekaw#Conference” results in a similarity of 0.33 using VSM highlighting the

' http://oaei.ontologymatching.org/2016/conference/eval . html
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Threshold Precision F.5-measure Fl-measure F2-measure Recall
CroMatch 0 0.78 0.77 0.76 0.75| 0.74
AML 0| 0.83 0.8| 0.76 0.72 0.7
LogMap 0| 0.84 0.79| 0.73 0.67] 0.64
XMap 0| 0.86 0.8| 0.73 0.67 0.63
LogMapBio 0| 0.8 0.76| 0.71 0.67  0.64|
DKPAOMLite 0| 0.82 0.69 0.63

DKPAOM

FCAMap

0.67

LogMapLt
StringEqu

iv 1}

0.64

Lily 0 0.59 0.61 0.62 0.63
LPHOM 0.76 0.89 0.71 0.55 0.45 0.4
Alin 0 0.89 0.65 0.46 0.36 0.31
LYAM 0.97 0.48 0.36 0.26 0.21] 0.18

Fig. 2: Performance of alignment systems on OAEI 2016 conference track (classes

only)14.

reduced significance of “Conference”. Also interesting is the comparison between
“Paper” and “Submission” which returned low similarity scores for all direct com-
parisons. However, comparing their semantic neighbourhoods rightly identifies

the pair as candidate alignments.

Table 4: Similarity values for some correspondences discovered

Source concept
vs
Target concept

Similarity approaches

hybrid

stoilos

vsm

context

conference#Paper
vs
confOf#Paper

1.0

1.0

1.0

0.28

edas#Academic_Event
Vs
ekaw#Scientific Event

0.84

0.61

0.34

0.72

conference# Track-workshop chair
vs
ekaw# Workshop Chair

0.56

0.91

0.42

0.25

conference#Conference document
Vs
ekaw#Document

0.57

0.81

0.94

0.33

edas# Paper
vs
iasted#Submission

0.18

0.0

0.0

0.76
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Influence of feature categories To evaluate how the features influenced per-
formance, we perform experiments by dropping feature categories during classifi-
cation of candidate alignments. As shown in Figure 3, precision and recall values
were observed for each group of feature categories. We reused previous config-
urations and performance was based on 10-fold cross-validation on Conference
dataset.

Feature groups

Al

Selection

Direct similarity

Context

All except selection

All except direct similarity
All except context

m Precision mRecall
1
09

08
0.7
06
0.5
0.4
0.3
0.2
0.1

0

1 2 3 4 5 § 7

FEATURE GROUPS

~N o AW

Fig. 3: Impact of excluding features categories.

Classification using all features (1) was best but only marginally better than
dropping the context features (7). Context features contributed least to perfor-
mance and this is further highlighted by weak performance when context features
alone (4) are used for classification. We put this down to insufficient data. Anal-
ysis of candidate alignments showed that only 3% of true correspondences in the
were identified using context similarity. As a result, the classifier model did not
learn to effectively use context information. An interesting observation is that
using direct similarity features alone (3) results in good performance. However,
dropping direct features (6) is almost just as good. This suggests that several
similarity features may be redundant.

5 Conclusion and future work

We introduced a classifier-based approach for ontology alignment based on a hy-
brid of string-based and semantic similarity features. Word embedding was used
to generate semantic features for classification in addition to novel features which
were introduced. Our experiments showed promising results and outperformed
previous known approach which incorporates word embedding. Also, comparison
with best-performing alignment systems at the OAEI challenge suggests that it
can outperform state-of-the-art systems.
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Future work will investigate a systematic determination of similarity thresh-

olds for selecting candidate alignments. Also, the ability to transfer a trained
model to a different domain will be explored. This is particularly useful in the
initial stages of alignment where there are no reference alignments.
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