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Abstract
In this review article, we have presented for the first time the new applications of 
supercapacitor technologies and working principles of the family of  RuO2–car-
bon-based nanofiller-reinforced conducting polymer nanocomposites. Our review 
focuses on pseudocapacitors and symmetric and asymmetric supercapacitors. Over 
the last years, the supercapacitors as a new technology in energy storage systems 
have attracted more and more attention. They have some unique characteristics such 
as fast charge/discharge capability, high energy and power densities, and long sta-
bility. However, the need for economic, compatible, and easy synthesis materials 
for supercapacitors have led to the development of  RuO2–carbon-based nanofiller-
reinforced conducting polymer nanocomposites with  RuO2. Therefore, the aim of 
this manuscript was to review  RuO2–carbon-based nanofiller-reinforced conducting 
polymer nanocomposites with  RuO2 over the last 17 years.
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CF  Carbon fiber
CNTs  Carbon nanotubes
Co3O4  Cobalt oxide
Csp  Specific capacitance
CV  Cyclic voltammogram
CVD  Chemical vapor deposition
DAAQ  1-4-Diaminoantraquinone
EDLC  Electrochemical double-layer capacitance
EPD  Electrophoretic deposition
EQCN  Electrochemical quartz crystal nanobalance
GO  Graphene oxide
GN  Graphene
RuO2  Ruthenium oxide
h-RuO2  Hydrous ruthenium oxide
h-RuO2/MWCNT  Hydrous ruthenium oxide/multi-walled carbon nanotube
HRGO  Holey reduced graphene oxide
MnO2  Mangane(IV) oxide
NiO  Nickel(II) oxide
PAN  Polyacrylonitrile
PANI  Polyaniline
PEDOT  Poly(3,4-ethylenedioxythiophene)
PEG  Polyethylene glycol
PEO  Polyethylene oxide
PCL  Poly(epsilon-caprolactone)
PCM  Phase change materials
PVA  Polyvinyl alcohol
PMA  Poly(methylmethacrylate)
PPy  Polypyrrole
PSS  Poly(styrene-4-sulfonate)
PTh  Polythiophene
Rct  Charge transfer resistance
RuO2  Ruthenium oxide
RuOx·nH2O  Hydrous ruthenium oxide
rGO  Reduced graphene oxide
SWCNT  Single-walled carbon nanotubes
TM  Thermal management
XRD  X-ray diffraction
QGN  Quasi-graphene
VACNT  Vertically aligned carbon nanotubes

Introduction

Supercapacitors can be divided into two sections: pseudocapacitors and electrochem-
ical double-layer capacitors (EDLC) by means of their energy storage mechanisms 
[1, 2]. Metal oxides are used to prepare electroactive materials for 
supercapacitors 
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due to enhancing of their higher energy and power density capabilities [3, 4]. These 
materials have both deposit energy and supply Faradaic reactions [5]. We mostly 
reviewed ruthenium oxide  (RuO2), which were used in many studies due to its high 
capacitance, large voltage range, reversibility, good conductivity, and high charge/
discharge capability [6, 7].  RuO2 and its composites have Faradaic redox reactions 
via cyclic voltammetry (CV) method, which is a broad quasi-reversible rectangular 
box shape [8]. The specific capacitance (Csp) of  RuO2 was obtained as Csp = 700 F/g 
in the literature [9–11]. The nanocomposites of metal oxides such as  RuO2,  Co3O4, 
 V2O5, and NiO and carbon-based materials were given as electrode materials for 
supercapacitors [12–14]. The inner d orbitals are responsible for the metallic con-
duction between ruthenium and oxygen elements [15].

Nanocomposites with  RuO2

Nanofillers and nanographene platelets have important effect to stabilize the nano-
composites [16]. In the literature, we have found that the addition of  IrO2 to  RuO2 
improved the capacitive performance and cycle life of the thermally prepared Ir-Ru 
oxide coatings [17].  RuO2 has been mostly employed in supercapacitor applications 
due to its high conductivity and reversibility processes [18–21]. However, there are 
some drawbacks associated with  RuO2 such as oxide delamination which are attrib-
uted to the breaking of the surface in acidic media [22–25]. Therefore, new com-
posite materials were synthesized to develop the electrochemical performance and 
stability of  RuO2. Active carbon [26], carbon aerogel [27], carbon black [28], carbon 
nanotubes (CNTs) [29], graphene [30], conducting polymers [31], and metal oxides 
[32] have been extensively studied as supercapacitors in the literature [33, 34].  RuO2
is used as a pseudocapacitor in supercapacitor [35, 36]. There is an important strat-
egy to obtain higher capacitance by using a large surface area of materials [37].
rGO/RuO2 nanocomposites has a capacitance value of Csp = 879.1 F/g at 0.5 A/g.
Moreover, the specific capacitance was maintained over 98% for carbon nanotubes
or reduced graphene oxide at 1 A/g. Shu et al. [38] indicated that MoN and  Mo2N
showed capacitive behavior very similar to  RuO2.  IrO2 has also similar capacitance
value compared to  RuO2 [39].

Zhang et  al. [40, 41] reported composite structures containing  RuO2 and car-
bon materials, which are used as next-generation supercapacitor. Ambare et  al. 
[42] stated metal oxides of  Co3O4 and  RuO2. Results show that the highest Csp was
obtained as 628.33 F/g at 1 mV/s in 1 M KOH. Both materials  Co3O4 [43] and  RuO2
[44, 45] show p-type semiconducting nature. Lee et al. [46] showed RuOx/polypyr-
role nanocomposite which had Csp values to be Csp = 681 F/g at 10 mV/s in 0.1 M
 H2SO4. The Ru% incorporation into the composite material affects the voltage range
[47]. In the literature, the percent amount of  RuO2 in the total weight percent, Csp
was found to be 633 F/g for  RuO2/ordered mesoporous carbon structure [48].

Terasawa et  al. [49] presented the incorporation of metal oxide particles 
such as  RuO2,  NiO2,  MnO2, or  IrO2 [50] with carbon materials. 1 wt% of  RuO2 
into multi-walled carbon nanotubes (MWCNTs) electrode can increase the Csp 
from 30 to 80 F/g. In addition, the relationship between charge/discharge ratio 
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performance is higher than polymer/CNT composites [51]. Wang et al. [52] fab-
ricated a supercapacitor device by plasma etching method. The results showed 
that a specific capacitance was found to be Csp = 272 mF/cm2 at 5 mV/s in neutral 
 Na2SO4 solution. Figure 1 presents the CV of all electrocoated samples including 
modified electrodes given at 20 mV/s [53].

Commercial value of  RuO2

Thermal management (TM) has an important effect on electronic devices due to 
its performance and reliability of the devices [54]. The main aim is to obtain pho-
toelectrochemical devices which have an efficiency of 8.5% [55]. Vita et al. [56] 
reported the activity of Pt/CeO2 as a catalysts, which were studied toward the 
stream reforming (SR) of n-dodecane, used as surrogate fuel for marine diesel.

Transition metal oxides are important candidates for pseudocapacitance; how-
ever,  RuO2 and its composites are very expensive [57]. To circumvent this prob-
lem, more economic materials have been employed such as  MnO2 [58]. Xiong 
et  al. [59] developed ternary cobalt ferrite/graphene/polyaniline composite for 
energy storage applications in industry. Aqueous electrolytes have some disad-
vantageous such as small voltage range (~ 1 V) [60]. This problem may be solved 
via using metal oxides such as  RuO2 [61].

RuO2 is the most widely used metal oxide due to its high conductivity, capaci-
tance, and chemical stability [62].  RuO2 has been widely studied as an electrode 
material for electrochemical capacitance applications [63]. However, there are 
major limitations to its commercial applications due to its elevated cost [64]. 
Therefore, the commercialization is not promising due to its high cost as well as 
toxic effects [65–67].

Fig. 1  CV of the electrocoated 
electrodes at 20 mV/s in 1.0 M 
 H2SO4 electrolyte. Reprinted 
with permission from Ref. [53]. 
Copyright@Elsevier
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RuO2 and carbon fibers

The composites including micro-sized continuous fibers together with nano-sized 
fillers such as carbon nanotubes have limited studies which include these materi-
als effects in the prediction of fracture energy [68]. Carbon fibers (CFs) have been 
employed for biosensor applications such as synthesis of poly(epsilon-caprolac-
tone) (PCL)-based nanocomposite films [69]. Graphene fibers have been used for 
coating in textile industry for supercapacitor applications [70]. The hybrid fiber 
with a polyvinyl alcohol (PVA)/graphene oxide (GO) composites in the weight 
ratio of 10/90 has a capacitance of Csp = 241 F/cm3 in 1 M  H2SO4.

Yang et al. [71] have prepared  RuO2/AC nanofibers by electrospinning method 
and thermal process. It shows good morphology and high Csp value as 180 F/g. 
In addition, high energy density between E = 14 Wh/kg and E = 20  Wh/kg and 
high power density range were obtained as P = 400–10,000  W/kg in aqueous 
KOH electrolyte. A number of  RuO2 nanocomposites have been reported in the 
literature [72–74]. Chervin et al. [75] synthesized a self-limiting conformal  RuO2 
film that coated around the nanofibers via silica paper in aqueous electrolyte [76]. 
 RuO2-containing mesoporous active carbon nanofiber (ACNF) composites were 
obtained by electrospinning, and then it was used as a supercapacitor application 
[77].

Fam et  al. [78] stated a single-walled carbon nanotube (SWCNT)/RuO2 
or  MnO2 composites on glass fiber for supercapacitor. The specific capaci-
tances were obtained as Csp = 72 F/g for the SWCNT/MnO2 and Csp = 98 F/g for 
SWCNT/RuO2. Liu et al. [79] identified that  RuO2 and  MnO2 had high capacities 
of Csp = 824 F/g in 1 M  H2SO4 and 1080 F/g in 2 M LiOH. Kim et al. [80] syn-
thesized active carbon nanofiber with  RuO2 by electrospinning via poly(methyl 
methacrylate) (PMMA) for supercapacitors. The TEM images showed hollow 
spheres which were made up of carbon fiber (Fig. 2a). The EDS spectra are shown 
in Fig. 2b, where carbon, oxygen, and ruthenium elements exist in the polymer 
matrix. Only carbon and oxygen elements were observed in blue line of Fig. 2c. 
However, ruthenium element was not observed in amorphous phase of  RuO2 [81] 
(Fig.  2d). Moreover, two composite materials were shown in a broad and clear 
peak between 20° and 30° in X-ray diffraction (XRD) spectroscopy (Fig. 2e).

RuO2 and carbon nanotubes

Nowdays, the interest of the carbon nanotube usage increased to aerospace tech-
nology [82]. Therefore, new substances were obtained in the form of film for-
mation with nanomaterials inside the composite matrices [83]. CNTs are used 
toward the solubilization of chemical and physical modifications [84] and syn-
thesis of materials [85]. CNTs have a unique chemical structure, which have high 
electrical and thermal conductivity, high chemical stability, and a high surface-
to-volume ratio [86, 87]. CNTs have good mechanical properties, such as a high 
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Young’s modulus, high tensile strength, and high elongation at break [88]. The 
combination of  RuO2 and CNT mesoporous carbon provides an enhancement of 
the Csp = 1102 F/g, E = 0.15 Wh/kg and P = 0.237 W/g values. These values are 
greater than mesoporous carbon. Lo et al. [89] studied the particle size of  RuO2 
(10 wt%) to be ~ 2–5 nm which affects the increase of capacitance from 281 to 
890 F/g at 2  mV/s. The carbon-based nanocomposites also support the capaci-
tance results [90, 91]. Wu et  al. [92] investigated three-dimensional hydrous 
 RuO2 nanotubes on Ti electrode at 90  °C [93]. Moreover, there is any binder 
usage in this study. The specific capacitance of  RuO2 nanotubes had a value of 
745 F/g at 32 A/g. The electrode’s retention was obtained to be 88.7% compared 
to the value of 840 F/g at 2 A/g. Chaitra et al. [94] synthesized  RuO2 and  RuO2/
MWCNT nanocomposites by a simple hydrothermal method. The Csp values of 
 RuO2 and  RuO2/MWCNT were presented to be 604 and 1585 F/g, respectively, at 

Fig. 2  TEM images b, c EDX data, d SEAD pattern of RuPM30, and e XRD peaks of RuPM30 and 
RuPM20. Reprinted with permission from Ref. [80]. Copyright@Elsevier
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2 mV/s in the voltage range from 0 to 1.2 V. Liu et al. [95] reported the function-
alization of MWCNTs using 1-4-diaminoanthraquinone (DAAQ) and the synthe-
sis of Pt-RuO2 nanoparticles with different morphologies on DAAQ-MWCNTs 
by a microwave-assisted polyol method. Jung et  al. [96] presented a vertically 
aligned carbon nanotubes (VACNT)/RuO2 core–shell cathode for non-aqueous 
Li-O2 batteries (Fig. 3). The VACNT is synthesized via chemical vapor deposi-
tion (CVD) method and used as the core material to obtain a binder-free and hier-
archical porous structure.

RuO2 and graphene nanosheets

Graphene (GN) has a carbon-based material which constitutes of a few lay-
ers of graphite nanocrystals. It supplies a synergetic effect in composite materi-
als to enhance mechanical and capacitive properties [97]. Hu et  al. synthesized 
rGO/RuO2 hydrogel nanocomposites by hydrothermal technique in which  RuO2 
had a particle size of 2–3  nm [98]. Hwang et  al. [99] reported a simple laser-
scribed rGO/RuO2 nanocomposites for supercapacitors. Its Csp and E values were 

Fig. 3  Schematic illustration of the VACNT and  RuO2 cathode employed in a non-aqueous Li-O2 battery. 
Reprinted with permission from Ref. [96]. Copyright@Elsevier
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obtained to be Csp = 1139 F/g and E = 55.3 Wh/kg. Leng et al. [100] made a nano-
composite of rGO/RuO2/TiO2, which had a facile in situ co-assembly without any 
surfactants. Ensafi et  al. [101] synthesized Ni–Al/layered double hydroxide on 
GO and  RuO2 coated on GO. The  RuO2/graphene nanocomposite showed a good 
Csp as 528.5 F/g at 0.1 A/g with a minimum charge transfer resistance (Rct) of 0.4 
Ω, an excellent rate capability as well as cycling stability [102]. Amir et al. [103] 
reported the synthesis of  RuO2/rGO nanocomposites via sol–gel method, fol-
lowed by the electrophoretic deposition (EPD) of the material into thin films. The 
SEM and TEM images of rGO/RuO2 films are shown in Fig. 4. Each nanosheet 
was fully coated with ultra-small  RuO2 nanoparticles. Moreover, the mean size 
of  RuO2 nanoparticles was found to be between 1.0 and 2.0 nm, homogeneously 
coated on the rGO.

Fig. 4  a, b SEM images of freeze-dried HRGO-RuO2, c, d TEM images of HRGO-RuO2 (yellow and 
red circles were used to highlight the representative  RuO2 nanoparticles and the in-plane nanopores, 
respectively, and e, f SEM images of the surface of HRGO/RuO2 film electrochemically deposited on 
gold coated PET (color figure online). Reprinted with permission from Ref. [103]. Copyright@Elsevier
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RuO2 and nanofiller‑reinforced conducting polymers

The combination of nanofillers with polymer matrix showed the improvements 
of dielectric constant and lower loss tangent values [104]. Moreover, it supplies 
mechanical, dielectric, and thermal properties of polymer, which was followed 
by X-ray transmission electron microscopy for the morphology of nanofillers. In 
the literature, a nanocomposite of cerium oxide  (CeO2) dispersed in polyethyl-
ene oxide (PEO) polyethylene glycol (PEG) polymer electrolyte was prepared by 
standard solution casting method [105]. Graphite nanofibers [106], carbon nano-
tubes [107], carbon nanofibers [108], and graphene nanoplatelets [109] were used 
as nanofillers for preparing high-conductivity composite phase-change materials 
(PCM).

Conducting polymers already has been used as an active electrode material 
in supercapacitors [110]. However, there are some disadvantageous associated 
to it, such as low stability and limited capacitance, causing limited commercial 
applications. To solve these problems, conducting nanofillers were added to 
nanocomposite materials so that the conductivity and capacitance of the active 
electrode material would be increased. Lean et al. [111] studied the energy stor-
age systems of nanofillers. In the literature, a mesoporous silica MCM-48 was 
added to poly(methyl acylate) (PMA) to improve mechanical and thermophysi-
cal properties [112]. This material in polymer shows a good dielectric constant 
and lower loss tangent values [113]. In general, nanofiller materials enhance the 
performance of nanocomposites in various applications [114]. Ann et  al. [115] 
reported PPy hollow nanoparticles as the specific capacitance of Csp = 326  Fg−1, 
which had two times higher than PPy. Its charge/discharge capacitance retention 
was obtained to be 86% even following 10.000 cycles.

Pseudocapacitors based on  RuO2

Pseudocapacitors based on Faradaic redox reactions have been reviewed in the 
literature [116, 117]. These redox reactions occur such as polyaniline, polypyr-
role,  MnO2, and  RuO2 [118–120]. Anodic pseudocapacitors have been developed 
for many types of metal oxides [121]. The Csp values show up to 700 F/g [122, 
123].  RuO2 is one of the most used metal oxides due to easy synthesis, high theo-
retical capacitance (Csp = 1358 F/g) [124], rapid charge/discharge processes, long 
life cycle [125, 126], and high gravimetric capacity [127].  RuO2·xH2O has been 
synthesized by vapor-phase deposition from  RuO4 [128–130].

RuO2 has high Csp values from 1300 to 2200 F/g for pseudocapacitor applica-
tions, [131, 132] and high electrical conductivity  (105 S/cm) [133–135]. As it is 
an expensive metal oxide the more economic metal oxides such as  MnO2, NiO, 
and  Co3O4 have been used with Csp values of 698 F/g [136–140]. Arnold et  al. 
[141] presented a laser scribing to obtain hydrous ruthenium oxide for superca-
pacitors. Sopcic et al. [142] studied the capacitance performance of  RuO2 which
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was measured by CV and electrochemical quartz crystal nanobalance (EQCN) in 
 H2SO4,  Na2SO4 and  K2SO4 solution. Nguyen et al. [143] investigated  RuO2 elec-
trodes by CV method and investigation of protic ionic liquids in supercapacitor 
device (Fig. 5).

RuO2‑based symmetric and asymmetric supercapacitors

Supercapacitors have higher capacitance, energy, and power densities than bat-
teries [144, 145]. There are some advantages for using hydrous ruthenium oxide 
 (RuOx·nH2O) such as ultra-high pseudocapacitance [146], wide potential range of 
stability, charge/discharge performance, and good cycle life [147]. Crystalline  RuO2 
has poor capacitance despite of d-band metallic conductor [148]. However, amor-
phous  RuO2 has high capacitance as Csp = 720 F/g.

Nanostructured  RuO2 materials have been synthesized using a great variety of 
methods, such as chemical precipitation, potentiostatic, potentiodynamic coating, 
hydrothermal and chemical vapor deposition, electrolytic methods and electrostatic 
spray deposition [149, 150]. These materials are used in a symmetric/asymmetric 
supercapacitor device fabrication. For instance, carbon fiber (CF) modified with 
anthraquinone (AQ)/RuO2 nanocomposite was obtained as E = 12.7 Wh/kg [151]. 
 RuO2 and  Co3O4 metal oxides on CF showed good electrochemical performance 
with E = 1.44 Wh/cm3 and P = 0.89 W/cm3.

The reversible reaction shown during charge/discharge process is presented 
below:

Such phase transformation in case of metal nitrides MN (M = Cr, Co) are not 
observed when cycled against carbon electrode materials, like  RuO2 [152], which 
is used as electrode materials for supercapacitors [153]. Zhang et al. [154] studied 
transparent, electroactive materials with  RuO2/PEDOT:PSS (Fig. 6).

MN + 3Li
+
+ 3e

−
↔ M + Li

3
N

Fig. 5  Specific capacitance is 
increased by increasing the tem-
perature. The values were cal-
culated using the anodic current 
from the cyclic voltammograms. 
Reprinted with permission from 
Ref. [143]. Copyright@Elsevier
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A table was obtained from the literature reports of this review article reports on 
 RuO2-carbon-based conducting polymer nanocomposites for supercapacitors during 
the years 2000–2017 as shown in Table 1.

Concluding remarks

This review article summarizes the nanocomposites with  RuO2 such as carbon fib-
ers, carbon nanotubes, and graphene nanosheets. Economical value of  RuO2 was 
presented in this study. Moreover, pseudocapacitance behaviors of  RuO2-based sym-
metric and asymmetric supercapacitors were given in this study. As a result,  RuO2 is 
an expensive metal oxide but has higher capacitive behaviors in various nanomateri-
als compared to other metal oxides, such as  NiO2,  TiO2.

Fig. 6  a Photograph of flexible asymmetric solid-state supercapacitor and the same device overlaid 
on a mobile phone display. b Transmittance spectra of the constituent electrodes and the complete 
device (with the same solid electrolyte). c CVs of the device at 5 mV/s. d Ragone plot for the 40 wt% 
 RuO2-based solid-state symmetric and asymmetric devices featured in this work, along with values for 
other devices described in the literature. Reprinted with permission from Ref. [154]. Copyright@Elsevier
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