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AB ST R ACT  

Given a pair of data structures, such as strings, trees, graphs or sets of points, several correspondences (also referred in literature as 
labellings, matchings or assignments) can be defined between their local parts. The Hamming distance has been largely used to 
define the dissimilarity of a pair of correspondences between two data structures. Although it has the advantage of being simple in 
computation, it does not consider the data structures themselves, which the correspondences relate to. In this paper, we extend the 
definitions of a recently presented distance between correspondences based on the concept of the edit distance, which we called 
Correspondence edit distance. Moreover, we present an algorithm to compute the set of weighted means between a pair of graph 
correspondences. Both the Correspondence edit distance and the computation of the set of weighted means are necessary for the 
calculation of a more representative prototype between a set of correspondences. In the validation section, we show how the use of 
the Correspondence edit distance increases the quality of the set of weighted means compared to using the Hamming distance.  

Keywords: Graph correspondence, Hamming distance, Edit distance, Weighted mean, Generalised median. 
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1. Introduction 

A graph correspondence (or simply a correspondence) is a concept from the graph matching domain which is defined as a bijective 

function that designates a set of mappings (or assignments) between the nodes and/or edges of a pair of graphs. It can be generated 

either manually or automatically, in order to find the similarity between the two graphs. In cases where a correspondence is obtained 

through an automatic method, it is usually deduced through an optimisation process called error-tolerant graph matching. Several graph 

matching methods have been proposed in recent years [1], [2], [3], [4], [5] to address a variety of problems such as general pattern 

recognition and image processing [6], text interpretation [7], symbol classification in schematic diagrams [8], chemical and protein 

compound association, biometrics, malware detection in networks [9], 2D to 3D process plant diagram conversion [10], among others. 

As a result, it is possible to generate more than one correspondence between a single pair of graphs. In these scenarios, it may be 

interesting to obtain a single representative prototype correspondence instead.  

One of the first concepts proposed in literature as a suitable representative prototype of a set is the generalised median [4], [12], [13] 

mainly because of its robustness. The generalised median is defined as a representation in the same domain as the data in the set, which 

achieves the minimum sum of distances to the whole set. Moreover, it was proven in [14] for any metric that, if the number of 

representations in the set is exactly two, then any weighted mean is also a generalise median. Thus, current methodologies that compute 

the weighted mean [15], [16], [17] could be adapted to deduce a generalised median. However, for a set of more than two elements, this 

relation no longer holds therefore, these methods cannot be used. 

One fundamental concept bounded to the weighted mean and the generalised median calculation is the distance function used 

between data structures. So far in the literature, the most commonly used distance between correspondences is the Hamming distance, 

which measures the number of mappings that are different between two correspondences. This distance has been used either to measure 

the accuracy of graph matching algorithms [30], [31] or to perform classification [13]. However, the Hamming distance fails to 

accurately represent the dissimilarity between a pair of correspondences and for this reason, we propose the definition of a new 

distance. 

In the case of strings [18], graphs [19], data clusters [20] and correspondences as well, computing the generalised median of a set of 

multiple data structures is an NP-complete problem. Thus, some suboptimal methods have been represented to approximate to the 

generalised median. For instance, an embedding approach has been presented for strings [21], graphs [22] and data clusters [23]. Most 

recently, a strategy known as the evolutionary method [24] has proven to obtain fair approximations to the generalised median in 

reasonable time, specifically in the case of strings. Interestingly, the latter method relies on the use of equidistant weighted means to 

better approximate towards the generalised median, which could be obtained more easily with a robust weighted mean search strategy. 

Also, a method to deduce the optimal generalised median of a set of correspondences based on the classical Hamming distance was 

presented in [25]. Remarkably, some consensus methodologies for correspondences based on classical optimisation methods have been 

presented in [26], [27], [28], [29]. Given two correspondences [26] or several correspondences at once [27], [28], [29], these proposals 

learn the consensus correspondence, which is a correspondence that minimises some specific cost functions while intending to be close 

to the mean correspondence.  

 To apply any of the aforementioned frameworks properly, a more representative distance between correspondences must be 

defined. To justify this claim, consider the following toy example. Assume that three separate parties (human experts or automatic 

systems) deduce respectively three correspondences 𝑓1 (blue), 𝑓2 (green) and 𝑓3 (red) between two graphs 𝐺 and 𝐺′ as shown in Figure 

1 (numbers in nodes represent their attributes). We propose two options to define a distance between these correspondences.  

 

Fig. 1. Three correspondences 𝑓1, 𝑓2 and 𝑓3 between two graphs. 

 

On the one hand, the classical Hamming distance between correspondences. In our example, this distance between 𝑓1 and 𝑓2 is 

exactly the same as between 𝑓1 and 𝑓3, which turns out to be 2 (there are two different node-to-node mappings). This implies that, 

given the Hamming distance, both 𝑓2 and 𝑓3 are equally dissimilar with regards to 𝑓1. 

On the other hand, we consider the cost of each correspondence as the sum of the Euclidean distance between the attributes of the 

mapped nodes. Then, we define the difference between correspondences as the difference between their costs. In our example, we have 

the following costs: 𝐶𝑜𝑠𝑡(𝑓1) = 1 + 0 + 1 + 1 = 3, 𝐶𝑜𝑠𝑡(𝑓2) = 1 + 0 + 1 + 3 = 5 and 𝐶𝑜𝑠𝑡(𝑓3) = 6 + 5 + 1 + 1 = 13. Therefore, 

we have |𝐶𝑜𝑠𝑡(𝑓1) − 𝐶𝑜𝑠𝑡(𝑓2)| = 2 but |𝐶𝑜𝑠𝑡(𝑓1) − 𝐶𝑜𝑠𝑡(𝑓3)| = 10. In this case, 𝑓1 is considered to be more similar to 𝑓2 than 𝑓3. 

The second option has taken into consideration the node attributes, and thus reflects the difference between the attributes. As we will 

show in the experimental section, the fact of considering the attributes makes the distance more appropriate for the methods that need a 
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distance between correspondences. A first step towards the calculation of a distance between correspondences which considers the node 

attributes was defined in [32], which we have called Correspondence Edit Distance (CED). 

In this paper, we present a threefold extension of the work in [32]. First, we extend the definition of the CED, considering more 

information for its computation by means of the local substructure (i.e. Star) of the mapped nodes and verifying that the distance axioms 

are still applicable to this distance. Secondly, we introduce a new strategy to simultaneously obtain a set of weighted means between a 

pair of correspondences, which is used to solve a crucial step of the evolutionary method [24] that calculates the generalised mean 

correspondence. Finally, we present additional experiments to compare the accuracy and applicability of CED with respect to the 

Hamming distance.  

The rest of the paper is structured as follows. The next section introduces the basic definitions. In Section 3, we present the newly 

proposed distance between a pair of correspondences. In Section 4, we explain our algorithm to deduce the set of weighted mean 

correspondences. In Section 5, we contrast the new distance against the Hamming distance in the case of finding the set of weighted 

mean correspondences. Finally, Section 6 is reserved for conclusions and further work. 

 

2. Basic Definitions 

Consider a data structure 𝐷 = (𝛴, 𝛾), where 𝑣𝑖 ∈ Σ represents its elements and γ is a function that assigns a set of attributes to each 

element. This data structure may contain null elements, which have a set of attributes that differentiate them from the rest. From now 

on, we shall refer to these null elements of 𝐷 as 𝑣𝑖 ∈ �̂�, where �̂� ⊆ 𝛴. Note that the concept of data structure may refer to a graph, tree, 

string or set of elements. In this paper, we consider attributed graphs even though the method we present could be applied to these other 

data structures, since they are concretisations of attributed graphs. 

Given 𝐷 = (𝛴, 𝛾) and 𝐷′ = (𝛴′, 𝛾′) of the same order 𝑛 (naturally or due to the aforementioned null element presence), we define 

the set of all possible correspondences T, so that each correspondence in T maps all elements of 𝐷 to elements of 𝐷′, 𝑓: Σ → Σ′ in a 

bijective manner. Thus, Let 𝑓1 and 𝑓2 denote two arbitrarily selected correspondences in T. We deduce how similar these two 

correspondences are through the Hamming distance 𝐻𝐷 between 𝑓1 and 𝑓2, 

𝐻𝐷(𝑓1 , 𝑓2) =  ∑(1 − 𝜕(𝑓1(𝑣𝑖) , 𝑓2(𝑣𝑖)))

𝑛

𝑖=1

 
   (1) 

Where 𝑣𝑖 is an element of 𝐷 mapped to an element 𝑓(𝑣𝑖) of 𝐷′ and ∂ is the well-known Kronecker Delta function, 

𝜕(𝑎, 𝑏) =  {
0  𝑖𝑓 𝑎 ≠ 𝑏

1 𝑖𝑓 𝑎 = 𝑏
 (2) 

One of the most widely used frameworks to evaluate the distance between two data structures is the edit distance. This concept has 

been concretised in the literature as string edit distance [33], tree edit distance [34] and graph edit distance [35], [36], [37] (sets of 

points are a special case of graphs that do not have edges). The dissimilarity is defined as the minimum amount of required operations 

that transform one structure into the other. To this end, a number of distortion or edit operations, consisting of the substitution, deletion 

or insertion of elements are defined. Edit cost functions are introduced to quantitatively evaluate the edit operations. The basic idea is to 

assign a penalty cost to each edit operation according to the amount of distortion that it introduces in the transformation. Deletion and 

insertion operations are assignments of a non-null element of the first or second structure to a null element of the second or first 

structure respectively. Substitutions simply indicate element-to-element mappings. Given two data structures 𝐷 and 𝐷′, and a 

correspondence 𝑓 between them, the edit cost is 

𝐸𝑑𝑖𝑡𝐶𝑜𝑠𝑡(𝐷, 𝐷′, 𝑓) = ∑ 𝐶𝑠(𝑣𝑖 , 𝑓(𝑣𝑖))

𝑣𝑖 ∈ 𝛴−�̂�

𝑓(𝑣𝑖) ∈ 𝛴′−�̂�′

+ 

+ ∑ 𝐶𝑑(𝑣𝑖 , 𝑓(𝑣𝑖))

𝑣𝑖 ∈ 𝛴−�̂�

𝑓(𝑣𝑖) ∈ �̂�′

+ ∑ 𝐶𝑖(𝑣𝑖 , 𝑓(𝑣𝑖))

𝑣𝑖 ∈ �̂�

𝑓(𝑣𝑖) ∈ 𝛴−�̂�

 

 

  (3) 

where function 𝐶𝑠 is a distance between elements, and functions 𝐶𝑑 and 𝐶𝑖  are the penalty of deleting and inserting elements.  Then, the 

edit distance, 𝐸𝐷, is the minimum cost under any bijection in T, 

𝐸𝐷(𝐺, 𝐺′) = 𝑚𝑖𝑛
𝑓∈𝑇

{𝐸𝑑𝑖𝑡𝐶𝑜𝑠𝑡(𝐷, 𝐷′, 𝑓)}   (4) 

3. Graph edit distance and local substructures 

Let 𝐺 = (𝛴𝑣
 , 𝛴𝑒

 , 𝛾𝑣
 , 𝛾𝑒

 ) be an attributed graph. 𝛴𝑣
 = {𝑣𝑖

  | 𝑖 =  1, … , 𝑛} is the set of vertices and 𝛴𝑒
 = {𝑒𝑖,𝑗

 |𝑖, 𝑗 ∈ 1, … , 𝑘} is the set of 

edges. Functions 𝛾𝑣
 : 𝛴𝑣

 → 𝛥𝑣
  and 𝛾𝑒

 : 𝛴𝑒
 → 𝛥𝑒

  assign attribute values in any domain to vertices and edges. 𝛾𝑣
 (𝑣𝑖

 ) = 𝑣𝑖
  and 𝛾𝑒

 (𝑒𝑖,𝑗
 ) =

𝑒𝑖,𝑗
 . The orders of the nodes and edges of the graph are 𝑛 and 𝑘 respectively. Similar definitions hold for 𝐺′. 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

The graph edit distance is defined as the minimum amount of required distortion to transform 𝐺 into 𝐺’. To this end, edit operations 

consisting of the substitution, deletion or insertion, are applied to nodes and edges to calculate a cost 𝐸𝑑𝑖𝑡𝐶𝑜𝑠𝑡(𝐺, 𝐺′, 𝑓). Given graphs 

𝐺 and 𝐺′, 𝐶𝑣𝑠 is a function that represents the cost of substituting the node 𝑣𝑖 of 𝐺 with a node 𝑣′𝑝 of 𝐺′, while 𝐶𝑒𝑠 is a function that 

represents the cost of substituting the edge 𝑒𝑖,𝑗 of 𝐺 with an edge 𝑒′𝑝,𝑞 of 𝐺′. 

Moreover, 𝐶𝑣𝑑 and 𝐶𝑣𝑖 are the costs of deleting node 𝑣𝑖 of 𝐺 (i.e. mapping to a null node) or inserting the node 𝑓(𝑣𝑖) of 𝐺′ (i.e. being 

mapped from a null node). Likewise, 𝐶𝑒𝑑  and 𝐶𝑒𝑖  are the costs of assigning edge 𝑒𝑖,𝑗 of 𝐺 to a null edge of 𝐺′ or assigning edge 𝑓(𝑒𝑖,𝑗) 

of 𝐺′ to a null edge of 𝐺. This results in Equation 3 applied to graphs, which is formally described as follows, 

𝐸𝑑𝑖𝑡𝐶𝑜𝑠𝑡(𝐺, 𝐺′, 𝑓) =     

∑ 𝐶𝑣𝑠(𝑣𝑖 , 𝑣𝑝
′ )

𝑣𝑖
  ∈ 𝛴𝑣

 −�̂�𝑣
 

𝑣𝑝
′  ∈ 𝛴𝑣

′−�̂�𝑣
′

   + ∑ 𝐶𝑒𝑠(𝑒𝑖,𝑗, 𝑒𝑝,𝑞
′ )

𝑒𝑖,𝑗
  ∈ 𝛴𝑒

 −�̂�𝑒
 

𝑒𝑝,𝑞
′  ∈ �̂�𝑒

′−�̂�𝑒
′

+ 

∑ 𝐶𝑣𝑑(𝑣𝑖 , 𝑣𝑝
′ )

𝑣𝑖 ∈ 𝛴𝑣
 −�̂�𝑣

 

𝑣′𝑝
  ∈ �̂�𝑣

′

   + ∑ 𝐶𝑒𝑑(𝑒𝑖,𝑗
 , 𝑒𝑝,𝑞

′ )

𝑒𝑖,𝑗
 ∈𝛴𝑒

 −�̂�𝑒
 

𝑒𝑝,𝑞
′  ∈ �̂�𝑒

′

+ 

                                                                                      (5) 

∑ 𝐶𝑣𝑖(𝑣𝑖 , 𝑣𝑝
′ )

𝑣𝑖 ∈ �̂�𝑣
′

𝑣′𝑝
  ∈ 𝛴𝑣

 −�̂�𝑣
 

   + ∑ 𝐶𝑒𝑖(𝑒𝑖,𝑗
 , 𝑒𝑝,𝑞

′ )

𝑒𝑖,𝑗
  ∈ �̂�𝑒

′

𝑒′𝑝,𝑞 
 ∈ 𝛴𝑒

 −�̂�𝑒
 

 

As a result, the graph edit distance 𝐸𝑑𝑖𝑡𝐷𝑖𝑠𝑡 is defined as the minimum cost under any bijection in T: 

𝐸𝑑𝑖𝑡𝐷𝑖𝑠𝑡(𝐺, 𝐺′) = 𝑚𝑖𝑛𝑓∈𝑇{𝐸𝑑𝑖𝑡𝐶𝑜𝑠𝑡(𝐺, 𝐺′, 𝑓)} (6) 

To calculate a more accurate dissimilarity measure between two graph correspondences, we have considered the Star local 

substructure due to its trade-off between simplicity and robustness [38]. A Star within a graph is composed of a node, its connecting 

edges and incident nodes. These structures are defined as attributed graphs with their specific node and edge structure. More formally, 

the Star of a node 𝑣𝑖, named 𝑆𝑖 , on a graph 𝐺, is another graph 𝑆𝑖 = (𝛴𝑣
𝑆𝑖 , 𝛴𝑒

𝑆𝑖 , 𝛾𝑣
𝑆𝑖, 𝛾𝑒

𝑆𝑖) composed of 𝛴𝑣
𝑆𝑖 = {𝑣𝑖 ∪ 𝑣𝑗|𝑒𝑖,𝑗 ∈ 𝛴𝑒 } and 

𝛴𝑒
𝑆𝑖 = {𝑒𝑖,𝑗|𝑒𝑖,𝑗 ∈ 𝛴𝑒 }. Moreover, 𝛾𝑣

𝑆𝑖(𝑣𝑗) = 𝛾𝑣(𝑣𝑗), ∀ 𝑣𝑗 ∈ 𝛴𝑣
𝑆𝑖 and 𝛾𝑒

𝑆𝑖(𝑒𝑖,𝑗) = 𝛾𝑒(𝑒𝑖,𝑗), ∀ 𝑒𝑖,𝑗 ∈ 𝛴𝑒
𝑆𝑖.  

 

4. Correspondence edit distance 

4.1. Definition 

In contrast to the classical Hamming distance, the CED aims to consider the attributes and the structure of the mapped attributed 

graphs. This property makes the CED more appropriate for the computation of a distance between the weighted mean of two graph 

correspondences as will be shown later in the present work. Given two attributed graphs 𝐺 and 𝐺′, and two correspondences 𝑓1 and 𝑓2 

between them, the elements to be considered by the CED are the unary elements (mappings) within 𝑓1 and 𝑓2. This means that it is not 

our purpose to compute the distance between 𝐺 and 𝐺′, but rather the distance between 𝑓1 and 𝑓2. Thus, correspondences 𝑓1 and 𝑓2 are 

defined as sets of mappings F1 = {𝑚1
1, … , 𝑚𝑖

1, … , 𝑚𝑛
1 } and F2 = {𝑚1

2, … , 𝑚𝑗
2, … , 𝑚𝑛

2 }, where 𝑚𝑖
1 = (𝑣𝑖 , 𝑓1(𝑣𝑖)) and 𝑚𝑗

2 = (𝑣𝑗 , 𝑓2(𝑣𝑗)). 

Notice that the CED, in contrast to calculating the distance between the graph edit distances associated to each correspondence, can be 

applied to other scenarios such as manually generated correspondences or correspondences generated for strings, trees, and sets of 

points, among others.  

The key of computing the CED is based on finding a bijective function ℎ (such as 𝑓 in Equation 3) which generates the minimum 

cost between the mappings in the sets F1 and F2. Similarly to the general case of the edit distance defined in Section 2, these sets of 

mappings can be enlarged with null mappings, which are included in subsets F̂1 and F̂2. Then, we define the CED as,  

𝐶𝐸𝐷(𝐺, 𝐺′, 𝑓1, 𝑓2) = 𝑚𝑖𝑛
ℎ∈𝐻

{𝐸𝑑𝑖𝑡𝐶𝑜𝑠𝑡(𝐺, 𝐺′, F1, F2, ℎ)} (7) 

and the edit cost is defined as follows, 
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𝐸𝑑𝑖𝑡𝐶𝑜𝑠𝑡(𝐺, 𝐺′, F1, F2, ℎ) = ∑ 𝐶𝑚𝑠(𝑚𝑖
1, 𝑚𝑗

2)

𝑚𝑖
1 ∈ 𝐹1−�̂�1

𝑚𝑗
2 ∈ 𝐹2−�̂�2

+ 

∑ 𝐶𝑚𝑑(𝑚𝑖
1, 𝑚𝑗

2)

𝑚𝑖
1 ∈ 𝐹1−�̂�1

𝑚𝑗
2 ∈ �̂�2

+ ∑ 𝐶𝑚𝑖(𝑚𝑖
1, 𝑚𝑗

2)

𝑚𝑖
1 ∈ F̂1

𝑚𝑗
2 ∈ F2−F̂2

 

 

 

(8) 

where 𝐶𝑚𝑠, 𝐶𝑚𝑑 and 𝐶𝑚𝑖 represent the cost of substituting, deleting and inserting a mapping respectively. Notice that in Equation 8, ℎ is 

defined as the bijective function derived from edit cost calculated between a pair of mappings, in a similar way as 𝑓 in Equation 3.  

The first requirement of the definition of the CED is the concretisation of 𝐶𝑚𝑠, 𝐶𝑚𝑑 and 𝐶𝑚𝑖, which is 

 

𝐶𝑚𝑠(𝑚𝑖
1, 𝑚𝑗

2) = 𝐶𝑖,𝑗 + 𝐶𝑝,𝑞 

𝐶𝑚𝑑(𝑚𝑖
1, 𝑚𝑗

2) = 𝐶𝑖,𝜀 + 𝐶𝑝,𝜀 

𝐶𝑚𝑖(𝑚𝑖
1, 𝑚𝑗

2) = 𝐶𝜀,𝑗 + 𝐶𝜀,𝑞 

 

(9) 

𝐶𝑖,𝑗 is the cost of mapping star 𝑆𝑖  to 𝑆𝑗 and 𝐶𝑝,𝑞 is the cost of mapping star 𝑆′𝑝 to 𝑆′𝑞. Note that in 𝐶𝑖,𝑗, both mapped stars, 𝑆𝑎 and 𝑆𝑏, 

belong to 𝐺. Similarly, in 𝐶𝑝,𝑞, both mapped stars, 𝑆′𝑝 and 𝑆′𝑞, belong to 𝐺′. Recall that the computation of Star substitution is done by 

combining the node and edge substitutions, that is 𝐶𝑣𝑠 and 𝐶𝑒𝑠. Figure 2 shows the substitution of mappings 𝑚𝑖
1 with 𝑚𝑗

2.  

 

 
Fig. 2. Substitution of 𝑚𝑎

1  with 𝑚𝑏
2. 

 

In cases where 𝑣𝑖 is a null node, 𝑣𝑖 ∈ �̂�𝑣
 , or 𝑣𝑗 is a null node, 𝑣𝑗 ∈ �̂�𝑣

  and the other nodes are non null nodes, 𝑣𝑝
′ ∈ Σ𝑣

′ − Σ̂𝑣
′  or 

𝑣𝑞
′ ∈ Σ𝑣

′ − Σ̂𝑣
′ , then the star substitution is converted into a star deletion. Similarly, in cases where 𝑣′𝑖  is a null node, 𝑣′𝑖 ∈ �̂�𝑣

′ , or 𝑣′𝑗 is a 

null node, 𝑣′𝑗 ∈ �̂�𝑣
′  and the other nodes are non null nodes, 𝑣𝑖

 ∈ Σ𝑣
 − Σ̂𝑣

  or 𝑣𝑗
 ∈ Σ𝑣

 − Σ̂𝑣
 , then the star substitution is converted into a 

star insertion. Besides, 𝐶𝑖,𝜀 and 𝐶𝑝,𝜀 are the costs of deleting the stars of both graphs in terms of 𝐶𝑣𝑑 and 𝐶𝑒𝑑 . Similarly, 𝐶𝜀,𝑗 and 𝐶𝜀,𝑞 are 

the costs of inserting the stars of both graphs in terms of 𝐶𝑣𝑖 and 𝐶𝑒𝑖 . Again, it could be that the involved stars are composed of only one 

null node. In this case, the cost of inserting or deleting a null node is always zero. 

Notice that in the first experimentation stages of this work, we computed the distances between correspondences as 

|𝐸𝑑𝑖𝑡𝐶𝑜𝑠𝑡(𝐺, 𝐺′, 𝑓1) − 𝐸𝑑𝑖𝑡𝐶𝑜𝑠𝑡(𝐺, 𝐺′, 𝑓2)|. Although it might be the simplest distance between graph correspondences, we realised 

that it did not properly incorporated the structural difference that related both correspondences. This is because, in some occasions, 

completely different correspondences return distances close to zero since different correspondences can have equal or similar edit costs. 

 

4.2. Proof of CED as a valid distance 

As explained in the previous section, the CED is based on Star edit costs corresponding to each of the mappings that compose each 

correspondence. Since the Star edit operations are done through additions of node and edge edit operations, the CED is related to the 

edit cost operations of the GED. In this section, we demonstrate that the distance axioms are applicable to the CED in the same way that 

they are to the GED [39]. 

1) Non-negativity: 𝐶𝐸𝐷(𝐺, 𝐺′, 𝑓1, 𝑓2) ≥ 0. 
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For the GED to be a distance, costs 𝐶𝑣𝑠, 𝐶𝑣𝑑, 𝐶𝑣𝑖, 𝐶𝑒𝑠, 𝐶𝑒𝑑  and 𝐶𝑒𝑖  have to be defined non-negative [39]. Thus, since 𝐶𝑚𝑠, 𝐶𝑚𝑑 and 

𝐶𝑚𝑖 are defined as additions of these costs, for sure they are non-negative and therefore, the CED is also non-negative.  

2) Identity of indiscernible elements:                     𝐶𝐸𝐷(𝐺, 𝐺′, 𝑓1, 𝑓2) = 0 ⇔ 𝑓1 = 𝑓2. 

The costs  𝐶𝑣𝑠 and 𝐶𝑒𝑠 have to be zero if the mapped nodes and edges have the same attributes to be the GED a distance [39]. Then, 

suppose that ℎ is the identity. In this case, there are not any costs 𝐶𝑚𝑑 or 𝐶𝑚𝑖 involved in ℎ. Moreover, the whole involved costs 𝐶𝑚𝑑 or 

𝐶𝑚𝑖 becomes zero since they are mapping nodes and edges that have the same attributes. In this case, we have that 

𝐸𝑑𝑖𝑡𝐶𝑜𝑠𝑡(𝐺, 𝐺′, F1, F1, ℎ) = 0. Due to the Non-negativity of CED, previously defined, for sure that this is the minimum cost and thus, 

being the identity the optimal correspondence in 𝐻. 

3) Symmetry: 𝐶𝐸𝐷(𝐺, 𝐺′, 𝑓1, 𝑓2) =  𝐶𝐸𝐷(𝐺, 𝐺′, 𝑓2, 𝑓1) 

If GED is defined as a distance, costs 𝐶𝑣𝑠 and 𝐶𝑣𝑑 have to fulfil the symmetry restriction, as well as the insertion and deletion costs 

of nodes and edge, more formally, 𝐶𝑣𝑖 = 𝐶𝑣𝑑 and 𝐶𝑒𝑖 = 𝐶𝑒𝑑  [39]. Thus, 𝐶𝑚𝑠(𝑚𝑖
1, 𝑚𝑗

2) = 𝐶𝑚𝑠(𝑚𝑗
2, 𝑚𝑖

1) and 𝐶𝑚𝑑(𝑚𝑖
1, 𝑚𝑗

2) =

𝐶𝑚𝑖(𝑚𝑗
2, 𝑚𝑖

1). Therefore, the CED also complies with the symmetry property, since it is computed as the addition of these costs. 

4) Triangle inequality:                                                                                     

𝐶𝐸𝐷(𝐺, 𝐺′, 𝑓1, 𝑓2) ≤  𝐶𝐸𝐷(𝐺, 𝐺′, 𝑓1, 𝑓3) + 𝐶𝐸𝐷(𝐺, 𝐺′, 𝑓3, 𝑓2) 

For GED to be a distance, costs 𝐶𝑣𝑠 and 𝐶𝑒𝑠 have to fulfil the triangle inequality [39]. More formally, costs are defined as 

𝐶𝑣𝑠(𝑣𝑎 , 𝑣𝑏) ≥ 𝐶𝑣𝑠(𝑣𝑎 , 𝑣𝑐) + 𝐶𝑣𝑠(𝑣𝑐 , 𝑣𝑏)  and 𝐶𝑒𝑠(𝑣𝑎,𝑎′, 𝑣𝑏,𝑏′) ≥ 𝐶𝑒𝑠(𝑣𝑎,𝑎′, 𝑣𝑐,𝑐′) + 𝐶𝑒𝑠(𝑣𝑐,𝑐′, 𝑣𝑏,𝑏′). Moreover, 𝐶𝑣𝑠 ≤ 𝐶𝑣𝑑 + 𝐶𝑣𝑖   and 

𝐶𝑒𝑠 ≥ 𝐶𝑒𝑑 + 𝐶𝑒𝑖 . In this case, for sure that the minimum value achieved by  𝐶𝐸𝐷(𝐺, 𝐺′, 𝑓1, 𝑓2) is lower o equal than 

𝐶𝐸𝐷(𝐺, 𝐺′, 𝑓1, 𝑓3) + 𝐶𝐸𝐷(𝐺, 𝐺′, 𝑓3, 𝑓2). 

 

4.3. Other distance frameworks for correspondences 

The optimal transport as a general framework for modelling the distance between probability distributions. Several models for its 

calculation have been defined in literature, such as the Wasserstein distance [40] or the Earth-Mover’s distance [41]. The optimal 

transport deduces the probability distribution distance through considering as a whole the difference between the distributions and the 

distance between their positions in the sample domain. Intuitively, if each distribution is viewed as an amount of earth, the distance is 

the minimum cost of turning one pile into the other, which is assumed to be the amount of earth that needs to be moved times the 

distance it has to be moved. 

Note that, the CED could be interpreted as a concrete case of this general framework. This is because the two correspondences to be 

compared can be seen as different displacements of the earth and the graphs can be seen as the structural and discrete version of the 

probability densities. 

5. Search for a set of weighted means 

Given 𝑓1 and 𝑓2 in T and a distance 𝐷𝑖𝑠𝑡 between them, a weighted mean 𝑓̅
  is defined as a correspondence in T that holds the 

following condition 

 

𝐷𝑖𝑠𝑡(𝑓1, 𝑓2) = 𝐷𝑖𝑠𝑡(𝑓1, 𝑓̅
 ) + 𝐷𝑖𝑠𝑡(𝑓̅

 , 𝑓2) 

 

  (10) 

Clearly, 𝑓1 and 𝑓2 are also weighted means of themselves. Moreover, the set of weighted mean correspondences is usually not 

unique depending on the distance used. This aspect, which has an effect on the weighted mean search, is discussed in depth in the 

experimental validation. Our goal is to present a weighted mean search strategy that is able to find a reasonable amount of weighted 

mean correspondences simultaneously while reducing the computational cost. 

Given two sets of elements of order 𝑛, the number of possible bijective correspondences 𝑓 ∈ T between them is 𝑛!. From this 

combinatorial space, the search for the weighted mean correspondences can be restricted in two ways. The first way is related to the 

distance metric used and the second way deals with the exploration space. 

Firstly, a distance between correspondences 𝐷𝑖𝑠𝑡 must be defined as an addition of local distances (i.e. subadditivity) 

𝐷𝑖𝑠𝑡(𝑓1 , 𝑓2) =  ∑ 𝑑(𝑓1(𝑣𝑖) , 𝑓2(𝑣𝑖) )

𝑛

𝑖=1

 (11) 

where 𝑑 is a distance measure between mappings.  Both the Hamming distance (Equation 1) and the CED (Equation 7) hold this 

restriction, since both accomplish the triangle inequality axiom and thus.  

With regard to the second limitation, we force the weighted mean search space to be within 𝒲 ⊆ T. Correspondences in 𝒲 have the 

property that their element-to-element mappings are equal to the element-to-element mappings on either 𝑓1 or 𝑓2, in other words, 

𝑓̅ ∈ 𝒲  if  𝑓(̅𝑣𝑖) = 𝑓1(𝑣𝑖) or 𝑓(̅𝑣𝑖) = 𝑓2(𝑣𝑖); ∀ 𝑣𝑖 ∈ 𝐺 (12) 

Theorem 1 demonstrates that all correspondences in 𝒲 are indeed weighted means of 𝑓1 and 𝑓2. 
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Theorem 1. If 𝑓̅ ∈ 𝒲, then correspondence 𝑓 ̅is a weighted mean of 𝑓1 and 𝑓2. 

Proof. Considering the distance definition in Equation 11, we have the following definitions, 

𝐷𝑖𝑠𝑡(𝑓1, 𝑓)̅ = ∑ 𝑑(𝑓1(𝑣𝑖) , 𝑓(̅𝑣𝑖) )

𝑛

𝑖=1

𝐷𝑖𝑠𝑡(𝑓2, 𝑓)̅ = ∑ 𝑑(𝑓2(𝑣𝑖) , 𝑓(̅𝑣𝑖) )

𝑛

𝑖=1

𝐷𝑖𝑠𝑡(𝑓1, 𝑓2 ) = ∑ 𝑑(𝑓1(𝑣𝑖) , 𝑓2(𝑣𝑖) )

𝑛

𝑖=1

 

 
 
 
 
(13) 

 

Therefore, to verify that 𝑓 ̅is a weighted mean correspondence, we need to demonstrate that Equation 14 holds, 

∑ 𝑑(𝑓1(𝑣𝑖) , 𝑓2(𝑣𝑖) )

𝑛

𝑖=1

= 

= ∑ 𝑑(𝑓1(𝑣𝑖) , 𝑓(̅𝑣𝑖) )

𝑛

𝑖=1

+ ∑ 𝑑(𝑓2(𝑣𝑖) , 𝑓(̅𝑣𝑖) )

𝑛

𝑖=1

 

 
 
 
(14) 

 

If the output of 𝑓1 and 𝑓2 is the same, then it is certain that all correspondences in 𝒲 contain this mapping and therefore 

𝑑(𝑓1(𝑣𝑖), 𝑓2(𝑣𝑖)) = 𝑑 (𝑓(̅𝑣𝑖) , 𝑓1(𝑣𝑖)) = 𝑑 (𝑓(̅𝑣𝑖) , 𝑓2(𝑣𝑖)) = 0 and Equation 14 holds. Otherwise, the correspondences in 𝒲 must 

have either option, in other words 𝑓(̅𝑣𝑖) = 𝑓1(𝑣𝑖) or 𝑓(̅𝑣𝑖) = 𝑓2(𝑣𝑖). For the first case, 𝑑 (𝑓(̅𝑣𝑖) , 𝑓1(𝑣𝑖)) = 0, thus 

𝑑(𝑓1(𝑣𝑖) , 𝑓2(𝑣𝑖)) = 0 + 𝑑(𝑓(𝑣𝑖) , 𝑓2(𝑣𝑖)) and Equation 14 holds. For the second case, a similar demonstration can be deduced ∎  

Algorithm 1 returns the set 𝒲 of weighted means of 𝑓1 and 𝑓2 by recursively calling function 𝐴𝑙𝑙_𝑀𝑒𝑎𝑛𝑠, which compares the 

mappings in 𝑓1 and 𝑓2 (if 𝑖 ≤ 𝑛), keeping the similar ones and searching until all combinations of different partial mappings 𝑝𝑎𝑟𝑡𝑖𝑎𝑙_𝑓 

have been computed. 

 

Algorithm 1. Weighted Mean Search 

Input:𝑓1 , 𝑓2  

Output: 𝒲 

Begin 

   𝒲 = 𝐴𝑙𝑙_𝑀𝑒𝑎𝑛𝑠(1, ~)  //~: empty correspondence 
End Algorithm 

Function 𝐴𝑙𝑙_𝑀𝑒𝑎𝑛𝑠 (1, 𝑝𝑎𝑟𝑡𝑖𝑎𝑙_𝑓) 
Begin 

𝑖𝑓 𝑖 > 𝑛 
 𝑟𝑒𝑡𝑢𝑟𝑛 𝑝𝑎𝑟𝑡𝑖𝑎𝑙_𝑓; 
𝑒𝑛𝑑 𝑖𝑓 
𝑖𝑓 𝑓1(𝑖) = 𝑓2(𝑖)                               //two mappings are equal     𝑝𝑎𝑟𝑡𝑖𝑎𝑙_𝑓(𝑖) = 𝑓1(𝑖)                 //mapping is kept 

𝐴𝑙𝑙_𝑀𝑒𝑎𝑛𝑠(𝑖 + 1, 𝑝𝑎𝑟𝑡𝑖𝑎𝑙_𝑓)   //continue search 

𝑒𝑙𝑠𝑒                             //two mappings are different      

𝑓𝑜𝑟 (𝑗 = 𝑓1(𝑖) ∨ 𝑗 = 𝑓2(𝑖))    //search for jth mapping 

𝑖𝑓 𝑗 𝑛𝑜𝑡 𝑖𝑛 𝑝𝑎𝑟𝑡𝑖𝑎𝑙_𝑓 

𝑝𝑎𝑟𝑡𝑖𝑎𝑙_𝑓(𝑖) = 𝑗    //mapping is kept 

𝐴𝑙𝑙_𝑀𝑒𝑎𝑛𝑠(𝑖 + 1, 𝑝𝑎𝑟𝑡𝑖𝑎𝑙_𝑓)  //continue search 

𝑝𝑎𝑟𝑡𝑖𝑎𝑙_𝑓(𝑖) = 0  //clear ith mapping in partial_f 

𝑒𝑛𝑑 𝑖𝑓 

𝑒𝑛𝑑 𝑓𝑜𝑟 

𝑒𝑛𝑑 𝑖𝑓 
End Function 

 

The worst computational cost of this algorithm is 𝑂(2𝑛). This is because the exploration tree has 𝑛 levels and each level has, at the 

most, two branches. 

6. Validation 

6.1. Comparison between distances while computing the set of weighted means  

As commented in the introduction, the approximation of the generalised median can be performed through approaches such as the 

evolutionary method [24]. One of the crucial steps of this method is to obtain a set of equidistant weighted means 𝑓�̅� between a pair of 

graphs. In this section, we analyse the capability of our search strategy to generate said equidistant set of weighted means. This analysis 

is performed using both the Hamming distance and the CED. 
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To this end, the following example is provided. Using the first two entries of the “EASTPARK” sequence in the “Tarragona 

Rotation Zoom” graph repository [42] (shown in Figure 3), we select for each entry the seven strongest SIFT features out of the 50 

contained nodes. Afterwards, a graph is constructed using these nodes with the edges conformed through the Delaunay triangulation. 

 
Fig. 3. First two entries of the “EASTPARK” sequence in the “Tarragona Rotation Zoom” graph repository. ●: Seven strongest SIFT features 

(i.e. nodes) used to generate graphs. 

 

With these two graphs, two node-to-node correspondences 

𝑓1 = {1 → 6′, 2 → 2′, 3 → 3′, 4 → 4′, 5 → 5′, 6 → 7′, 7 → 𝛷′, 𝛷 → 1′} 

𝑎𝑛𝑑 

𝑓2 = {1 → 𝛷′, 2 → 5′, 3 → 7′, 4 → 4′, 5 → 2′, 6 → 3′, 7 → 1′, 𝛷 → 7′} 

are generated at random. Correspondences 𝑓1 and 𝑓2 have a total of eight mappings, with seven of them being different one from each 

other. Moreover, both correspondences have null nodes 𝛷 and 𝛷’ which to force them to be bijective. 

Algorithm 1 finds twelve correspondences 𝒲 = 𝑓1̅, … 𝑓1̅2, two of them being the original 𝑓1 and 𝑓2, thus 𝑓1̅ = 𝑓1 and 𝑓1̅2 = 𝑓2 (an 

example of how weighted mean correspondences are depicted in a similar case has been previously presented in [32]). Figure 4 shows 

the distance 𝛼𝑖 between each of the twelve weighted means towards 𝑓1, normalised by the distance between 𝑓1 and 𝑓2. That is 

         𝛼𝑖 =
𝐷𝑖𝑠𝑡(𝑓1,𝑓̅𝑖)

𝐷𝑖𝑠𝑡(𝑓1,𝑓2)
, 1 ≤ 𝑖 ≤ 12                 (15) 

In this experiment, we have defined the substitution costs with nodes as the normalised Euclidean distance between the SURF 

features [43] of the salient points that conform the nodes of the graphs and the insertion and deletion costs of nodes as 0.2. The 

distances between 𝑓1 and 𝑓2 are: 𝐻𝐷(𝑓1, 𝑓2) = 6 and CED(𝑓1, 𝑓2) = 5.85. As expected, the values obtained by the first and the last 

weighted means are 0 and 1, respectively. 

 

 
𝑓�̅� 

Fig. 4. Normalised distances of the twelve weighted means considering the Hamming distance (+) and CED (O). The horizontal axis represents 

the different weighted means 𝑓�̅� ; 1 ≤ i ≤ 12. 

Notice that using the Hamming distance for the computation of the set of weighted means 𝒲 achieves seven different values, with 

α3 = α4 = α5 = 0.16̅ and α8 = α9 = α10 = 0. 3̅. Conversely, all weighted means in 𝒲 deliver a different distance when the CED is 

used. The main conclusion drawn from this theoretical validation is that the CED is able to deduce more diverse distances than the 

Hamming distance, due to the fact that it considers the attributes of the nodes and edges of the graphs being mapped.  

Suppose that we are interested in the weighted mean closest to αi = 0.25. Therefore, if the Hamming distance is considered, it is 

observed from Figure 4 that four correspondences (𝑓2̅, 𝑓3̅, 𝑓4̅ and 𝑓5̅) approach equally to this value, however in the case of the CED, 

only 𝑓4̅ approaches the best. In the case of the Hamming distance, the error committed by 𝑓2̅ is |0.16̅ − 0.25| = 0.083, which is the 

same as the one committed by 𝑓3̅, 𝑓4̅ and 𝑓5̅, in other words |0. 3̅ − 0.25| = 0.083. By contrast, in the case of CED, the error committed 

by 𝑓4̅ is |0.2011 − 0.25| = 0.049.  
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Table 1.  Mean error and selected correspondences as different number of equidistant weighted means Ω are requested. 
Ω 3 4 5 6 7 8 9 10 11 12 

𝐻𝐷 
Mean  
Error 

0 0 0.056 0.050 0.015 0.048 0.048 0.042 0.044 0.045 

𝐻𝐷 
𝒲Ω 

𝑓1̅, 𝑓5̅, 
𝑓1̅2 

𝑓1̅, 𝑓3̅, 
 𝑓8̅, 𝑓1̅2 

𝑓1̅, 𝑓2̅,  
𝑓5̅, 𝑓8̅, 

𝑓1̅2 

𝑓1̅, 𝑓2̅, 
 𝑓3̅, 𝑓8̅, 
𝑓1̅0, 𝑓1̅2 

𝑓1̅, 𝑓2̅, 𝑓3̅ 
𝑓5̅, 𝑓8̅, 

𝑓1̅0, 𝑓1̅2 

𝑓1̅, 𝑓2̅,  
𝑓3̅, 𝑓5̅ 
𝑓5̅, 𝑓8̅, 

𝑓1̅0, 𝑓1̅2 

 

𝑓1̅, 𝑓2̅, 𝑓2̅, 
𝑓3̅, 𝑓5̅, 
 𝑓8̅, 𝑓8̅ 

𝑓1̅0, 𝑓1̅2 
 

𝑓1̅, 𝑓2̅, 
 𝑓2̅, 𝑓3̅ 
𝑓5̅, 𝑓5̅, 
𝑓8̅, 𝑓1̅0, 
𝑓1̅0, 𝑓1̅2 

𝑓1̅, 𝑓2̅, 
 𝑓2̅, 𝑓3̅ 

𝑓3̅, 𝑓5̅, 𝑓8̅ 
𝑓8̅, 𝑓1̅0, 
𝑓1̅0, 𝑓1̅2 

𝑓1̅, 𝑓2̅, 
 𝑓2̅, 𝑓3̅, 𝑓3̅ 
𝑓5̅, 𝑓5̅, 𝑓8̅ 
𝑓8̅, 𝑓1̅0, 
𝑓1̅0, 𝑓1̅2 

CED  
Mean 
Error 

0.009 0.013 0.036 0.027 0.015 0.041 0.039 0.036 0.035 0.038 

CED 
𝒲Ω 

𝑓1̅, 𝑓7̅, 
𝑓1̅2 

𝑓1̅, 𝑓4̅, 
 𝑓9̅, 𝑓1̅2 

𝑓1̅, 𝑓3̅, 
 𝑓7̅, 𝑓1̅1, 

𝑓1̅2 

𝑓1̅, 𝑓3̅, 
 𝑓5̅, 𝑓8̅, 
𝑓1̅1, 𝑓1̅2 

𝑓1̅, 𝑓2̅, 𝑓4̅ 
𝑓7̅, 𝑓9̅, 

𝑓1̅1, 𝑓1̅2 

𝑓1̅, 𝑓2̅, 
 𝑓4̅, 𝑓6̅ 
𝑓8̅, 𝑓1̅0, 
𝑓1̅1, 𝑓1̅2 

 

𝑓1̅, 𝑓2̅, 𝑓3̅, 
𝑓5̅, 𝑓7̅, 
 𝑓9̅, 𝑓1̅0 
𝑓1̅1, 𝑓1̅2 

 

𝑓1̅, 𝑓2̅, 
 𝑓3̅, 𝑓4̅ 
𝑓6̅, 𝑓8̅, 
𝑓9̅, 𝑓1̅0 
𝑓1̅1, 𝑓1̅2 

𝑓1̅, 𝑓2̅, 
 𝑓3̅, 𝑓4̅ 

𝑓5̅, 𝑓7̅, 𝑓8̅ 
𝑓9̅, 𝑓1̅0, 
𝑓1̅1, 𝑓1̅2 

𝐴𝑙𝑙 

 

The evolutionary method that seeks for a generalised median [24] requires a set of Ω equidistant weighted means 𝒲𝛺 =
𝑓�̅�1

, … , 𝑓�̅�𝑤
, … , 𝑓�̅�𝛺

 so that 𝐷𝑖𝑠𝑡(𝑓1, 𝑓�̅�1
)  is close to α1, 𝐷𝑖𝑠𝑡(𝑓1, 𝑓�̅�2

) is close to α2, and so on, using the following definition: 

𝛼𝑤 = 𝐷𝑖𝑠𝑡(𝑓1, 𝑓2) ·
𝑤 − 1

Ω − 1
; 1 ≤ 𝑤 ≤ Ω 

𝑓�̅�𝑤
= 𝑎𝑟𝑔𝑚𝑖𝑛

𝑓̅∈𝑇
{|𝐷𝑖𝑠𝑡(𝑓1, 𝑓̅) − 𝛼𝑤|} 

 
 
(16) 

 

Table 1 shows the average error of the weighted mean search algorithm for 3 ≤ Ω ≤ 12 while using the Hamming distance and the 

CED. The error is computed using Equation 17: 

𝐸𝑟𝑟𝑜𝑟 =
|𝐷𝑖𝑠𝑡(𝑓1, 𝑓�̅�𝑤

) − 𝛼𝑤|

𝐷𝑖𝑠𝑡(𝑓1, 𝑓2)
 

(17) 

Since the errors of the first and last weighted means are always 0, the mean error was computed only with the rest of them. 

Moreover, it is shown which weighted means have been selected. Note that as Ω increases, the error through the use of the CED is 

lower than when considering the Hamming distance. Furthermore, it is possible to observe that the weighted means obtained through 

the Hamming distance are sometimes repeated in the same search, while weighted means obtained through the CED are always 

different.  

 

6.2. Error and Runtime Analysis using Synthetic Graphs  

In a second round of tests, we analyse the average error, using Equation 17, and the runtime of the new weighted mean search 

strategy given both distances. To do so, we randomly generated four experimental sets 𝐒k. Each set is composed of 60 tuples. Each 

tuple is composed of a pair of graphs and a pair of correspondences between them, {𝐺, 𝐺′, 𝑓1, 𝑓2}, with the particularity of each set 

being the order of its graphs (𝐒1 with graph orders [5,10], 𝐒2 with [10,15], 𝐒3 with [15,20] and 𝐒4 with [20,25]). The final 

experimental dataset is composed of 4×60=240 pairs of graphs and their respective pairs of correspondences.  

The experiments were carried out as follows. Per each tuple, a random number αw was generated so that 0 < 𝛼𝑤 < 𝐷𝑖𝑠𝑡(𝑓1, 𝑓2). 

Then, 𝑓�̅�𝑤
 is computed using Equation 16, and the error is deduced using Equation 17 given both distances. Figure 5 shows the relation 

between the error committed by the Hamming distance and the CED. We observed that in the majority of the cases, the CED error is 

lower than the Hamming distance error. Furthermore, the error magnitudes are reduced as graph size increases. Note that, in general, as 

the order of the graphs increases, the order of set 𝒲 also increases. 

Figure 6 shows the relationship between the runtime spent to compute our algorithm using the Hamming distance and the CED. The 

runtime was measured in seconds using a PC with an Intel 3.4 GHz CPU and a Windows 7 operating system. Notice the Hamming is 

faster in all the experimented cases, and this difference is particularly significant in low and medium size graphs. However, there is a 

tendency of reducing the gap between both distances as the graph order increases. This is because as the order of the graph increases, 

the runtime of 𝐴𝑙𝑙_𝑀𝑒𝑎𝑛𝑠, which has a maximum computational cost of 𝑂(2𝑛), becomes larger than the time spent on the distance 

calculation. 
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Fig. 5. Mean error committed by the Hamming distance and the CED, given different graph orders (note the scales are different). 

 

 

Fig. 6. Runtime of our algorithm while obtaining weighted means using the Hamming distance and the CED (note the scales are different). 

 

From these results, we can conclude that in applications with a low number of nodes, using the Hamming distance could be a better 

choice since the runtime is reduced and the error gap is not so important. Conversely, when the number of nodes is large or the 

weighted mean search requires high precision, the CED would be the most suitable option. 

Finally, we observed that in some cases, both algorithms produced exactly the same error using both distances (dots in the red 

diagonal in Figure 5). However, the mean correspondence could be different, since as mentioned earlier, the use of a determined 

distance has an effect on the mean. 

 

 

6.3. Evaluation of the Space Search Limitation  

Finally, we compared the runtime of our algorithm (which is 𝑂(2𝑛) due to search space reduction) with regard to the runtime of a 

brute force algorithm (which is 𝑂(𝑛!) due to the exploration of the whole search space). Since the complexity of this second algorithm 

is exponential, experiments were only performed with the first set of graphs (the order of graphs is 5 to 10 nodes). Figure 7 shows the 

runtime in logarithmic scale. We observed that the runtime of our method is several orders of magnitude faster than the brute force 

algorithm. 
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Fig. 7. Runtime of our method compared to a brute force algorithm that searches for weighted means in the whole search space, either using 

Hamming distance or the CED. 

7. Conclusions and Future Work 

In this work, we have extended the definition of a distance between a pair of correspondences presented in previous work [32] 

called CED. This distance aims at finding the dissimilarity between two correspondences which have been computed using different 

graph matching strategies. Moreover, we have also presented a new algorithm to obtain a set of weighted means given two 

correspondences. This algorithm has the particularity of considering the CED, which conveys a computational cost of 𝑂(2𝑛), being 𝑛 

the order of the bijective correspondences. Although this complexity is still exponential and thus its application is restricted to the order 

of the correspondence, we have shown that the obtained dissimilarity measure is more meaningful than any other existing distance 

between correspondences. We have empirically tested this search strategy for small correspondences resulting in the computation of all 

possible weighted means, nonetheless it is still not demonstrated that 𝒲 contains all possible weighted means for any type of 

correspondences.   

The aim of this distance and the weighted mean calculation algorithm is to compute the generalised median of a set of 

correspondences through an evolutionary algorithm in a future work. The generalised median of a set of correspondences has been 

computed using sequential algorithms. However, in the case of sets and strings, the evolutionary algorithm has been shown to produce 

accurate generalised medians. This is the reason why we wish to explore this strategy applied to finding the generalised median of a set 

of graph correspondences. 

This new distance, even though we computed it using an adaptation of the sub-optimal algorithm called Bipartite graph matching, 

obtains improved results compared to the classical Hamming distance. This is because, using the CED, we take into consideration not 

only the correspondences themselves, but also the attributes of the mapped nodes and edges. 

We have presented an experimental validation based on two possible distance options: the Hamming distance and the new distance. 

We have seen that the error produced by the new distance is smaller than the one produced by the Hamming distance in cases where 

that a set of equidistant weighted means are required. Although the Hamming distance is faster than the CED, this tendency is reduced 

when the order of the graphs increases. Finally, we have analysed how accurate our algorithm is while deducing the set of weighted 

mean correspondences since the exploration space has been reduced from 𝑂(𝑛!) to 𝑂(2𝑛). We concluded the errors of both methods are 

similar, but our method is clearly faster than a brute force search. 

In a near future, we intend to use the new weighted mean search strategy in order to enhance the evolutionary framework for the 

generalised median approximation on a set of correspondences. Currently, we are analysing in depth the relevance of CED applied to 

other methods, for instance, learning the edit costs of the GED. These analyses cannot be included in this paper due to space reasons. 
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