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Abstract: In this study, a novel framework to combine multiple classifiers in an ensemble system is 

introduced. Here we exploit the concept of information granule to construct granular prototypes for 

each class on the outputs of an ensemble of base classifiers. In the proposed method, uncertainty in 

the outputs of the base classifiers on training observations is captured by an interval-based 

representation. To predict the class label for a new observation, we first determine the distances 

between the output of the base classifiers for this observation and the class prototypes, then the 

predicted class label is obtained by choosing the label associated with the shortest distance. In the 

experimental study, we combine several learning algorithms to build the ensemble system and 

conduct experiments on the UCI, colon cancer, and selected CLEF2009 datasets. The experimental 

results demonstrate that the proposed framework outperforms several benchmarked algorithms 

including two trainable combining methods, i.e., Decision Template and Two Stages Ensemble 

System, AdaBoost, Random Forest, L2-loss Linear Support Vector Machine, and Decision Tree. 

 

K eywords: Ensemble method, multiple classifiers system, information granule, information 

uncertainty, supervised learning 
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1. Introduction 

Supervised learning is an active research area in the machine learning community. Many 

algorithms resulting from different learning methodologies have been introduced to learn the 

relationship between feature vectors and class labels with the aim of generating discriminative 

decision model. Experiments have shown that there is no single learning algorithm that performs well 

on all datasets. A learner can achieve high accuracy on some data sets but high error rate on others. 

Ensemble learning, where multiple learning algorithms are combined into a single framework to 

obtain a better discriminative decision model, offers a viable solution [1]. 

Dietterich [2] showed the benefit of combining multiple classifiers from three aspects: statistical, 

computational, and representational.  When a classifier is learned on a given training set, it gives a 

hypothesis about the relationship between the feature vectors and the class labels. With a small 

number of training data, different hypotheses (classifiers) can produce the same error rate on the 

training data. It might happen that a poor hypothesis is chosen to predict the label of an unseen 

sample. By combining several hypotheses, we can reduce the risk of choosing a wrong hypothesis. 

From the computational aspect, many algorithms perform local search to obtain locally optimum 

solution. In ensemble methods, by changing the starting point of algorithms, we can have a better 

approximation of the unknown relationship than that of a single learning algorithm. Finally, the 

unknown relationship in some cases cannot be modeled by a single hypothesis. By using a 

combination of multiple hypotheses, a better approximation for the relationship can be achieved. 

In ensemble method, different s could refer to the different learning algorithms or to a set 

of generic classifiers generated by learning a unique learning algorithm on many different training 

sets [3]. Each learning algorithm learns a classifier on a given training set to describe the relationship 

between the feature vector and the class label of the training observations. The generated classifier 

returns the posterior probabilities, i.e., numerical class memberships that an observation belongs to 

different classes. A combination method is then used to aggregate the outputs of all classifiers to 
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generate the discriminative model. As each classifier may output different results on each observation, 

uncertainty is introduced. 

A combiner which can capture the facet of uncertainty 

outputs would be desirable. In the literature, several combiners have been introduced based on this 

consideration, such as fuzzy IF-THEN rule-based combiner [4] and Decision Template method [5]. In 

this study, we propose an ensemble framework based on modeling the uncertainty in the base 

classifiers  using interval-based representations [6, 7]. Here interval-based representations are 

generated by the notion of information granularity. Starting from the pioneering work of Zadeh [8-

10], the concept of information granules have been used to model human cognitive and decision-

making activities [11-13], and have been applied to many real-world applications [14].  

In homogeneous ensemble methods like AdaBoost [15], Bagging [16], and Random Forest [17], 

the focus is on the generation of new training schemes from the original training set. Meanwhile, in 

the heterogeneous ensemble systems, a fixed set of different learning algorithms learns on the same 

training set to generate the different base classifiers. The outputs of these classifiers (called meta-data 

of Level1 data) are then combined to make the final prediction [3-5, 18]. In this type of ensembles, the 

approach is focused on designing algorithms that combine the meta-data to achieve higher accuracy 

than that using a single classifier. In this work, we use the principle of justifiable information 

granularity to generate granular prototypes resulting from the outputs, i.e. the meta-data, of a set of 

base classifiers of heterogeneous ensemble obtained from the training observations. By defining a 

distance function between a feature vector and a granular prototype, we propose a novel combining 

algorithm for the heterogeneous ensemble systems via a shortest distance-based mechanism.  

The novelty of our work lies in the following:  

(i) To the best of our knowledge, this is the first approach that models the uncertainty in the 

meta-data of training observations by using the granular prototype formalized as a vector 

of intervals. 

(ii) We define a way to quantify the distance between the meta-data (a numerical vector) of 

an observation and a granular prototype (a vector of intervals). 
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(iii) We propose a novel combining algorithms for heterogeneous ensemble system via a 

shortest distance-based mechanism. 

 

The paper is organized as follows. In Section 2, heterogeneous ensemble method and the concept 

of justifiable granularity in the design of information granules are introduced. In Section 3, the novel 

combining method based on the idea of justifiable granularity is proposed. Experimental results are 

presented in Section 4; here the results of the proposed method are compared with the results 

produced by a number of benchmark algorithms when using 26 datasets. Finally, the conclusions are 

presented in Section 5. 

TABLE.1. SUMMARY OF MAIN NOTATION 

Notation Description 

 Observed data or training set 

 Observation 

 Number of classes 

 Number of training observations 

 Number of training observations belonging to  class 

 Number of learning algorithms 

 Set of labels 

  learning algorithms 

  base classifiers associated with  learning algorithms 

 Meta-data or Level1 data of  

 Meta-data or Level1 data of observation  

 Meta-data or Level1 data related to the  class 

  column of  

 Relative cardinality of a set 

 Interval computed from  attribute of  (

) 

 Granular prototype for the  class  

 Set of  prototypes 

 Distance between scalar  and interval 

 Distance between a vector  and an interval prototype  



5 
 

2. Related Work 

2.1. Ensemble method 

Over the past years, many approaches related to ensemble methods have been proposed, and there 

are different taxonomies of ensemble methods [1, 18-22]. We follow the taxonomy in [22] in which 

ensemble methods are divided into two types: 

 Homogeneous ensemble: A set of classifiers are generated on different training sets obtained 

from an original one by using the same learning algorithm. The outputs of these classifiers are 

combined to give the final decision. Several state-of-the-art ensemble methods in the 

literature are AdaBoost [15], Bagging [16], and Random Forest [17]. 

 Heterogeneous ensemble: Several different learning algorithms are learned on the same 

training set to generate the different base classifiers. The heterogeneous ensemble focuses 

more on the combining strategies on the meta-data [3, 18, 23-26]) to achieve higher accuracy 

than a single classifier. 

In the literature, besides the practical applications of ensemble methods in many areas, research on 

ensemble methods can be divided into three aspects: 

 Design of new ensemble systems: Several recent research efforts have focused on designing 

new ensemble systems. Rodriguez et al. [27] proposed the Rotation Forest in which principal 

component analysis (PCA) is applied to each of the  subsets randomly selected from a 

feature set. The  axis rotations form the new features for a base classifier. Blaser and 

Fryzlewicz [28] designed a novel ensemble system by generating random rotation matrices to 

rotate the feature space before generating the base classifiers. Wu [29] proposed a new 

ensemble learning paradigm with the consideration of implicit supplementary information 

about the performance orderings for the trained base classifiers in previous literature. By 

measuring the similarity between the two learning tasks, the supplementary ordering 

information for the trained classifiers of a given learning task can be inferred so as to obtain 
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the optimal combining weights of the trained classifiers. Moreover, several ensemble systems 

were developed for different learning paradigms such as incremental learning [30-32], semi-

supervised learning [33], and multi-label learning [34, 35]. For instance, Pham et al. [31] 

combined random projections and Hoeffding tree to construct an incremental online ensemble 

learning system. Krawczyk and Cano [32] incrementally learnt a threshold for each arrived 

instance in the online heterogeneous ensemble system. Classifier are selected for the 

prediction if their support on each instance exceeds the threshold. Wu et al. [35] proposed 

ML-FOREST algorithm to learn an ensemble of hierarchical multi-label classifier trees to 

reveal the intrinsic label dependencies. Finally, besides the two popular combiners i.e. Sum 

and Majority Vote [4, 36], novel combining algorithms were introduced to enhance the task 

of combining on 18] used the Ordered 

Wei 37] 

proposed a new fusion scheme based on the upper integrals. Costa et al. [38] used the 

generalized mixture functions as a combining algorithm in which the weight each classifier 

put on a class was set dynamically in the combination process. 

 Enhancing existing ensemble methods: This approach focuses on techniques to enhance the 

performance of some popular ensemble methods such as Boosting [15], Bagging [16], 

Random Forest [17], and Random Subspace [39]. Several classifier selection or redundant 

classifier pruning methods were proposed for this purpose, e.g., dynamic classifiers selection 

[40, 41], instance-based pruning [42], clustering-and-selection approach [43], and double 

pruning scheme (static and dynamic pruning working together) [44]. There are also hybrid 

approaches to weigh base classifiers in Random Subspace [45], and weigh feature subspaces 

in Bagging [46]. Yu et al. [47] proposed the hybrid incremental ensemble learning which 

combines feature space-based learning and sample space-based learning in a single 

framework. Several methods have been introduced to improve the performance of AdaBoost, 

for example by maximizing the margin between training samples of different classes via 

linear programming in LPBoost [48], via quadratic programming in TotalBoost [49], and 

learning from skewed training data in RUSBoost [50] to handle imbalanced datasets.  
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 Study on properties of the ensemble: The research studies the properties of an ensemble 

system such as diversity, margin, and generalization error bound, and their relationships and 

uses them to enhance the ensemble  performance. For instance, Kuncheva et al. [51] studied 

ten diversity measures and examined the relationships between the accuracy and measures of 

diversity. Tang et al. [52] theoretically analyzed six diversity measures to understand the 

relations between them and the concept of margin. Gao and Zhou [53] obtained a tight 

generalization error bound by considering the empirical average margin and margin variance. 

Wang et al. [54

fuzziness of fuzzy classifiers. Kuncheva et al. [55] derived bounds with a kappa-error diagram 

which is used to analyze the performance of ensemble systems. Li et al. [56] extended the 

definition of margin based on the classification confidence of the base classifiers. The weights 

of the base classifiers then were computed by minimizing the margin induced classification 

loss. Gou et al. [57] studied margin and diversity of ensemble systems and applied them to the 

ensemble pruning process. 

 

2.2. H eterogeneous ensemble method 

In this paper, we are concerned with the heterogeneous ensemble method. For an observation , 

let  be the probability that  belongs to the class with the label  given by the  

classifier. Kuncheva et al. [5] summarized three types of output for  for each   : 

 C risp Label: return only class label  and . 

 Fuzzy Label: return posterior probabilities that  belongs to classes, i.e.  

and  . 

 Possibilistic Label: the same as fuzzy label but does not require the sum of all posterior 

probabilities to equal one, i.e.  and . 

 In this study, we consider the meta-data in the form of the fuzzy label. The meta-data of  

training observations is a  posterior probability matrix 

 defined by: 
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 (1) 

whereas the meta-data of an observation  is given by: 

 (2) 

 

There are two techniques to combine the meta-data, namely the fixed combining methods and the 

trainable combining methods [3, 22]. The advantage of applying fixed combining methods for an 

ensemble system is that no training based on the meta-data of training observations is needed; as a 

result, they have less time complexity than their counterparts. Several popular fixed combining 

methods are Sum Rule, Product Rule, Max Rule, Min Rule, Median Rule, and Majority Vote Rule [4, 

36], in which Majority Vote Rule and Sum Rule are the most popular. Kittler et al. [36] showed that 

the Sum R l independence of respective 

representations used by the classifiers and classes being highly ambiguous , and Sum Rule generally 

results in the most reliable predictions. Kuncheva [58] proved the theoretical probability of error 

related to different rules by making assumptions about normal and uniform distribution. The Ordered 

Weighted Averaging operator (OWA), one of the most well-known operators applied to Decision 

Making Systems, has also been applied to the combiners in ensemble systems [18, 26]. This operator 

is used to compute average value based on weight, but instead of focusing on the original meta-data 

like in the fixed rules, it is linked to the order of data. As a result, the predictions at specific locations 

can receive more attention than the others. 

In contrast, trainable combining methods utilize the knowledge in the meta-data of the training 

set to obtain the prediction model. Although the computational cost would increase, they generally 

lead to higher classification accuracy [3]. The trainable combining methods are based on the stacked 

generalization paradigm (also called stacking algorithm) that was first proposed by Wolpert [59]. 

Stacking algorithm first trains several first-level learners on the original training set using different 

learning algorithms. Then another learning algorithm (also called the combining algorithm) is trained 

on the predictions of the first-level learners to obtain the second-level learner.  
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Trainable combining methods are constructed based on the meta-data of the training observations 

which can be obtained via the Cross Validation procedure [3, 60, 61]. First, the training set is divided 

into several disjoint parts of equal size. One part plays the role of testing in turn, and the rests assume 

the role of training during the training phase. The meta-data of the observations in testing part is 

obtained by classifiers learned on the training part. Several strategies have been proposed to exploit 

label information in  in the combining method in which two well-known approaches are weight-

based classifiers methods and the meta-data modeling-based methods.  

The first strategy is based on the assumption that each classifier is assigned a different weight for 

each class label, and a combining algorithm is then conducted based on the  linear combinations of 

posterior probabilities and the associated weights for the  classes. The predicted class label for an 

unseen observation is decided by selecting the maximum value among these combinations. Several 

methods have been proposed to weigh the base classifiers. Ting et al. [61] proposed the MLR method 

by solving  Linear Regression models corresponding to the  classes based on the meta-data and 

the training data labels in crisp form to find these combining weights. Zhang and Zhou [62] used 

linear programming to find the weights of the base classifiers. Sen et al. [63] introduced a method 

inspired by MLR which uses a hinge loss function in the combiner. By using this function with 

regularization, three different combinations were proposed, namely weighted sum, dependent 

weighted sum, and linear stacked generalization, based on different regularizations with group 

sparsity. 

On the other hand, the second strategy aims to construct the  representations on the meta-data 

associated with the  class labels. The discriminative decision model is obtained based on the 

similarity between these representations and the meta-data of unseen observation. Kuncheva et al. [5] 

introduced Decision Template method in which the representations (called the Decision Template) are 

acquired by averaging values of the meta-data belonging to each class. The class label is assigned to 

unseen observation if the associated Decision Template is nearest to its meta-data. The advantage of 

Decision Template method is that it saves time in both training and classification due to its simple 

computation. However, this method could have high error rate if the classifiers do not have high 
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enough accuracy due to the fact that the simple Decision Template may not provide a good 

representation for a particular class. Nguyen et al. [3] modeled the likelihood distribution of the meta-

data associated with each class label by a Gaussian distribution computed using Variational Inference 

method. The combining algorithm is then obtained using Bayesian theorem where an unseen 

observation is assigned to the class label associated with the maximum posterior probability. 

There are trainable combining methods that do not belong to the above strategies. Merz [60] 

proposed SCANN, an ensemble method compose of Stacking, Correspondence Analysis (CA) and 

NN. In this method, CA is applied to an indicator matrix formed on the meta-data and the true labels 

of the training observations. After that, NN is used to classify unseen observations in the new scaled 

space. The method is sometimes impractical due to the singularity characteristic of the indicator 

matrix which cannot be handled by CA. Moreover, the classification process of SCANN is more 

complicated than that of other combining classifier algorithms, and this increases the classification 

time. Nguyen et al. [24] learned a Decision Tree C4.5 on the meta-data of the training set to create the 

second-level classifier. This model is combined with Genetic Algorithm to select the subset of 

features on the meta-data. Another approach is Meta Decision Tree [64], a new Decision Tree on the 

meta-data where at each node, a classifier is chosen instead of selecting a value for splitting an 

attribute. The entropy and maximum posterior probability are also added to the meta-data to enhance 

the discrimination ability but no theoretical basis was provided about the effectiveness of that 

expansion. Zhang and Duin [22] compared the performance of several heterogeneous ensemble 

methods with fixed combining rules and several second-level learners such as Naïve Bayes classifier 

and Fisher classifier. The experiments on just one hand gesture dataset with 3 different sizes of the 

training set, however, do not present a convincing comparison. Recently, Nguyen et al. [4] proposed a 

hybrid combining classifier system in which fuzzy rules work on the meta-data to produce the 

classification model. Although that system outperforms other fuzzy rules-based methods and 

ensemble methods in the experiment since the uncertainty in the meta-data can be captured by the 

fuzzy rules, the training process has high time complexity than other training combining methods due 

to a large number of rules generated. 
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2.3. The principle of justifiable information granularity 

Normally, point statistics such as mean, median and skewness are often used to describe the 

data in many real-world applications. However, in many scenarios, pointwise information is less 

useful for subsequent reasoning [12]. Instead, information granularity which explicitly models the 

inherent uncertainty present in the data is more preferred. In this study, we aim to design information 

granule to describe sample data  in the form of an interval  in which  and  are lower 

and upper bounds of the interval, respectively. There are two intuitively compelling requirements 

needed to be considered [65-67]. First, the information granule  should reflect the existing data in 

such a way that the interval set becomes more legitimate as more data are within the bounds of . On 

the other hand, information granule should exhibit high specificity. This implies that the smaller 

(more compact) the information granule is, the better (higher specificity) it is.  

We apply the principle of justifiable granularity [14, 66] to construct interval  to satisfy the 

two requirements above. As the distribution of  is generally not known in advance, the experimental 

evidence can be determined by the cardinality  of the set of elements in  falling within the 

bounds of . More generally, an increasing function  of  can be considered in the form of: 

,  (3) 

Meanwhile, the specificity of the interval can be specified based on its length since shorter interval 

results in better specificity. In the same way, we use a continuous non-increasing function of the 

length of the interval expressed in the form: 

,   (4) 

in which  is the length of interval . 

The two requirements above lead to the following optimization problem: 

 (5) 

It is noted that the two objective functions in (5) are in conflict since increasing  would 

increase , resulting in the decrease in . A compromise can be reached by using the 
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product of these two functions and maximizing the expression with respect to the bounds of the 

interval: 

 (6) 

We choose the median of data in  (denoted by ) as the numerical representative of the 

set of data around which  is created. Here, we only discuss the procedure to construct  (  is 

determined similarly). Based on (3), (4), and (6), we compute the compromise associated with : 

 (7) 

The optimal upper bound of the interval is determined by maximizing the values of  i.e. 

 (8) 

The optimal lower bound is found in the same manner 

 (9)  

where 

 (10) 

 

A special case is noted in proposition 1 when the principle of justifiable granularity is applied to the 

two-class classification problems. 

Proposition 1: If  is the interval built by justifiable granularity on the meta-data 

associated with the first class label of a two-class classification problem, the interval associated with 

the other class label is  (See Appendix for the detailed proof) 

Therefore, for binary classification, interval construction is only needed for the first class label while 

the interval for the second class label can be derived directly from the first one. 

 

3. Proposed framework 

In this paper, we focus on developing a classification framework by applying justifiable 

granularity to the meta-data of training observations. Specifically, we model the uncertainty in the 
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base classifier outputs by constructing class interval associated with each class label (called granular 

prototype) from the meta-data. The proposed framework is illustrated in Figures 1, 2, and 3. 

 (11) 

 

...          

 

We use a Cross Validation-based procedure to generate the meta-data from the training set (see Figure 

1). Specifically, T-fold Cross Validation is applied to the training set  to obtain  disjoint parts 

, , and . Meta-data of observations in  is 

then formed by the classifiers (denoted by ) generated by learning the  learning algorithms on 

. The meta-data of all training observations belonging to  is finally obtained by 

concatenating all meta-data from each  into the form of matrix  given by (1). Since class labels of 

training observations are known in advance,  can be separated into  groups corresponding to the  

class labels i.e. . If the meta-data of the  class contains 

 observations,  is a  matrix as shown in (11). On the  column of 

, the principle of justifiable granularity is applied to obtain the interval to represent all 

elements (posterior probabilities) in that column. 

Let  denotes the interval obtained on the  column  of . 

After looping though all  columns, we obtain  intervals associated with  columns of , 

denoted by . Doing this for all , we obtain a set of  granular prototypes i.e. 

 representing the  class labels.  is our novel information granules 

representation for the  class label. Note that  is a vector of interval values and is different to the 

representation used in Decision Template method [5] where mean value is used to describe the 

posterior probabilities in each column of . At the end, the base classifiers   are 

generated by learning the  learning algorithms on entire training set . The training process will 
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output the  granular prototypes  associated with  class labels and  base classifiers 

. These outputs will be used as the input for the classification process. 

During classification, for each unlabeled observation , we compute its meta-data  in 

the form of vector (2) by classifying  with the  base classifiers . The class label for  is 

predicted by calculating the distance between  and prototype  and then 

selecting the smallest value among all distances. To do this, we need to define the distance between a 

numerical vector and a granular prototype. 

 

 

F ig.1. Meta-data generation 

Training set  

    

   

    
 

The meta-data 
of training set  

 

 
Partition into 

T parts 

Learning 
algorithms 

Classifiers 
associated 
with the 

partitions 
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F ig.2. T raining process of the proposed method 

 

We start with the definition of a distance between a numerical value and an interval. The 

distance is inspired by the distance between two intervals 

 as defined in [68]. Since we can write , we define the distance between a numerical 

value and an interval as: 

Definition 1: The distance between a numerical value  and an interval  is given by:  

 (12) 

Several interesting properties of the distance function in (12) are listed below. They can be 

is covered 

in the Appendix. These properties ensure that the distance function defined in (12) is a proper metric. 

For example, Property 3 ensures that any prediction that falls inside the interval is more reliable than 

those that fall outside the interval. Property 4 ensures that if  is close to  and  is close to 

, then  and  must be close to each other. 

Training set  

   Learning 
algorithms 

   Base 
classifiers  

The meta-data of 
training set  

Meta-data 
generation 

  
 

Justifiable Granularity 

 

 

 

 

  

The meta-data 
associated with the 

class labels 

The prototypes 



16 
 

 

F ig.3.Classification process of the proposed method 

 

Property 1 (Positive Definiteness):  (13) 

Property 2 (Equality):  (14) 

Property 3 (Consistency):If  and  then  (15) 

Property 4 (T riangle Inequality):  (16) 

Property 5 (Symmetry):  (17) 

Property 6 (Scale Invariance):  (18) 

Property 7 (T ranslation Invariance):  (19) 

 

Using Definition 1, we can define the distance between a numerical vector and a granular prototype 

as: 

   

   

New data 

Predictions 

 

 

Meta-data of 
new data 

  
 

    

 

F inal prediction 

 

Base classifiers 

The prototypes 

The distances 
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Definition 2: The distance between a vector  and a granular prototype  is 

defined by: 

 (20) 

in which  is the distance between the  attribute of  and the interval  given by (12).  

 

Two important properties of  are outlined as follows 

Property 8 (Consistency): If   and  then 

 (21) 

Property 9 (T riangle Inequality):  (22) 

where  is the distance between two vector  and . Their proof is presented in Appendix. 

 

We can now compute the distance between the meta-data of unlabeled observation , i.e. , and 

the  granular prototypes  and predict the class label to be the one that is associated 

with the shortest distance 

 if  (23) 

The algorithms which summarize the training and classification process of the proposed method are 

introduced in the Appendix. It is noted that there are two parameters  and  whose values need to be 

set. Their effect on the classification results will be discussed in the next section. 

 

4. Experimental Studies 

4.1. Datasets and Experimental Setting 

The experiments were carried out using 24 datasets selected from the UCI repository [69]. These 

datasets were selected as they are often used to validate the performance of various classification 

systems. To ensure the objectiveness in the comparison between our method and benchmark 

algorithms, we conducted the experiments on datasets having few hundred (e.g., Hepatitis, Iris, and 

Wine) and few thousands of observations (e.g., Twonorm, Musk2, and Satimage). The number of 

attributes also varies from 3 (Haberman) to 649 (Multiple Features). We also conducted the 
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experiment on two additional datasets i.e. a medical imaging dataset and a colon cancer dataset. The 

medical imaging dataset is selected from the CLEF2009 database which is a large x-ray database 

collected by Archen University, Germany [70]. Here we chose the 10 class dataset from this database 

for the experiment. Histogram of Local Binary Pattern (HLBP) was selected as feature vector of the 

image. The colon cancer dataset [71] includes 62 samples collected from colon-cancer patients in 

which 40 patients suffer from colon cancer and the remaining are normal (see Table 2 and 3). 

 

TABLE 2. UCI DATA: MAIN CHARACTERISTICS 

  
# of 

features 
# of 

classes 
# of 

observations 
% of observations in each class 

Artificial 10 2 700 57.14%, 42.86% 
Australian 14 2 690 44.49%,55.51% 
Biodeg 41 2 1055 33.74%,66.26% 
Blood 4 2 748 23.80%,76.20% 
Breast Cancer 9 2 683 65.01%,34.99% 
Cleveland 13 5 297 18.18%,11.78%,11.78%,4.38%,53.87% 
Colon 2000 2 62 64.51%, 35.49% 
Conn Bench Vowel 10 11 528 9.09% for each class label 
Contraceptive 9 3 1473 42.70%,22.61%,34.69% 
Dermatology 34 6 358 31.01%,16.76%,19.83%,13.41%,13.41%,5.59% 
Glass 9 6 214 32.71%,35.51%,7.94%,6.07%,4.21%,13.55% 
Haberman 3 2 306 73.53%,26.47% 
Heart 13 2 270 55.56%,44.44% 
Hepatitis 19 2 80 16.25%,83.75% 
Iris 4 3 150 33.33%-33.33%-33.33% 
Led7digit 7 10 500 7.4%,10.2%,11.4%,10.4%,10.4%,9.4%,11.4%,10.6%,9.8%,9% 
Madelon 500 2 2000 50%,50% 
Multiple Features 649 10 2000 10% for each class label 
Musk2 166 2 6598 84.59%,15.41% 
Satimage 36 6 6435 23.82%,10.92%,21.10%,9.73%,10.99%,23.43% 
Texture 40 10 5500 9.09%,9.09%,9.09%,18.18%,9.09%,9.09%,9.09%,9.09%,9.09%,9.09% 
Twonorm 20 2 7400 49.96%,50.04% 
Vertebral 6 3 310 19.35%,48.39%,32.26% 
Wine 13 3 178 33.15%,39.89%,26.97% 
Yeast 8 10 1484 31.20%,28.91%,16.44%,10.98%,3.44%,2.96%,2.36%,2.02%,1.35%,0.34% 

 
 
 

TABLE 3. 10 CLASS DATASET FROM THE CLEF2009 MEDICAL IMAGE DATABASE 
 

Image 

 

     

Descr iption Abdomen Cervical Chest Facial cranium Left Elbow 

Number of observation 80 81 80 80 69 
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Image 

  

  
 

Descr iption Left Shoulder Left Breast Finger Left Ankle Joint Left Carpal Joint 

Number of observation 80 80 66 80 80 

 

We used 3 learning algorithms namely Linear Discriminant Analysis (denoted by LDA), Naïve 

Bayes, and -Nearest Neighbors (denoted by NN) to learn the base classifiers. The choice of these 

algorithms is to demonstrate that an ensemble system built using just simple learning algorithms can 

achieve high classification accuracy. Moreover, in a heterogeneous ensemble system, a set of diverse 

learning algorithms should be used to increase the system diversity. Less diverse learning algorithms 

usually output hypotheses with similar classification results so that the ensemble has less chance to 

improve the overall performance [1]. Here, LDA, Naïve Bayes, and NN are three learning 

algorithms with significantly different strategies, and they ensure the generation of diverse outputs. 

For Naïve Bayes classifier we used Gaussian to approximate the likelihood distribution of each 

feature of the original data. For NN, the value of  was set to 5, denoted as NN5. The mean and 

variance of classification error rates of these learning algorithms are shown in Table 4-6. 

For comparison, we choose the benchmark algorithms consisting of: 

 Decision Template method: We used the similarity measure  defined by 

 where  is the Decision Template of class [5]. 

 AdaBoost [15]: Decision Tree C4.5 was used as the learning algorithm with 200 iterations as 

in [4]. We used AdaBoost.M1 (for the binary classification problems) and AdaBoost.M2 (for 

the multi-class classification problem) from the Statistics and Machine Learning Toolbox of 

Matlab. 

 Random Forest [17]: We used Decision Tree C4.5 as the learning algorithm. 200 trees were 

created in which the maximum number of features to consider when looking for the best split 

was set to the square root of the number of features. We used this method from the scikit-
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learn library (available at http://scikit-learn.org/stable/modules/generated/sklearn. 

ensemble.RandomForestClassifier.html). 

 L2-loss Linear Support Vector Machine (denoted by L2LSVM): L2LSVM was introduced by 

solving the optimization problem including minimizing region bounded by these two 

hyperplanes (margin) as in SVM plus L2-loss function. We used this method from the 

package LIBLINEAR [72]. 

 Decision Tree C4.5: We used this method from the Statistics and Machine Learning Toolbox 

of Matlab. 

 The stacked generalization paradigm in which the three learning algorithms used in the 

proposed method were used to generate the meta-data of the training set. The unpruned 

Decision Tree C4.5 learned on the meta-data is used to create the second-level classifier [24]. 

We called this method the Two States Ensemble System with C4.5 (denoted by TSES).  

It is noted that the two benchmark algorithms, i.e. the Decision Template and TSES methods, and 

the proposed method are all trainable combining methods, and therefore they were constructed with 

the same learning algorithms in the first-level. 

We performed 10-fold Cross Validation and ran the test 10 times to obtain 100 test results for 

each dataset. To assess the statistical significance of the differences in the classification results 

produced by different methods, we used Wilcoxon signed rank test [73] to compare the classification 

results of the proposed approach and each benchmark algorithm. The null hypothesis states that the 

difference in results produced by the two methods is not statistically significant. The performance 

scores of two methods are treated as significantly different if the p-value of the test is smaller than a 

given confidence level. In our experiments, the confidence level was set to 0.05. 

 

4.2. Results and Discussion 

4.2.1. The influence of parameters 

In the proposed method, we used two parameters, i.e.  and  to control the generation of 

interval (see (7) and (10)). Figure 4 shows the relationship between classification error rate and values 
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of  and  where  and . Some observations can be made here. 

First, it can be seen that  could have a significant effect on the classification error rate and its 

optimal value is somewhat data dependent. For some datasets like Conn Bench Vowel and Glass, the 

classification error rate reduces sharply and then remain unchanged with the increase of . For 

datasets such as Haberman and Musk2, the classification error rate reduces sharply to a minimum 

before slightly increases.  For Iris dataset, the classification error rate is minimum at . Besides, 

it can be observed that  only have a very slight effect on the classification error rate since the line 

graphs associated with 4 values of  are nearly the same on the experimental datasets. 

In the next experiment, the value of  and  are obtained via a 10-fold cross validation 

procedure conducting on the meta-data (see Figure 5). We loop through all given values of  and  

i.e.  and , respectively and choose the pairs which minimize the 

classification error rate on the meta-data of training set. 

 

4.2.2. Comparison with benchmark algorithms 

The mean and variance of the classification error rates of the three learning algorithms, the 

benchmark algorithms, and the proposed method are shown in Table 4, 5 and 6. First, compared to the 

learning algorithms, the proposed method obtains better results on 16 datasets among 26 datasets. 

Since we do not know which algorithms are suitable for a given dataset, ensemble method can be a 

viable solution which generally performs better than using a single classifier. As discussed in the 

Introduction section, by averaging the results of the base classifiers, we can reduce the risk of 

choosing a wrong classifier, as well as getting a better approximation for the relationship between the 

feature vectors and their class labels. 

The statistical test result displayed in Figure 6 shows that the proposed method is better than 

the two trainable combining algorithms. Comparing the proposed method to Decision Template 

method, we rejected 11 null hypotheses that the two methods perform equally.  In all these cases, the 

classification error rates of the proposed method are smaller than that of Decision Template method. 

On datasets like Satimage and Texture, the proposed method is significantly better than Decision 
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Template method (0.1297 vs. 0.2965 on Satimage, and 0.009 vs. 0.0968 on Texture). Comparing with 

TSES, we rejected 24 null hypothesis, in which the proposed method is better on 20 datasets and 

worse on 4 datasets.  

The proposed method also outperformed Decision Tree C4.5, L2LSVM, Random Forest, and 

AdaBoost. Specifically, the proposed method is better than AdaBoost (22 wins and 2 losses), Decision 

Tree C4.5 (20 wins and 3 losses), Random Forest (16 wins and 8 losses), and L2LSVM (16 wins and 

3 losses). The statistical test results clearly demonstrate the advantage of our algorithm.  

Table 7 shows the average ranking of the proposed method and the benchmark algorithms. 

The average ranking was computed based on averaging the rankings of benchmark algorithms and the 

proposed method on all experimental datasets. These rankings were specified based on the 

classification error rate: the lower the classification error rate of the method, the higher its ranking. It 

can be seen that the proposed method clearly ranked first, followed by Decision Template method. 

In Table 8, we show the granular prototypes associated with the class labels of several 

datasets. For datasets like Iris and Twonorm, the intervals of prototype  associated with the  

class predicted by each base classifier are usually very tight, and the intervals of different classes are 

well separated. Therefore, the discriminative decision model is highly unambiguous, resulting in 

significantly smaller classification error rate. In contrast, on datasets like Contraceptive and Glass, the 

intervals are highly overlapped, and causes high ambiguity in the discriminative model which lead to 

higher classification error rate. 
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F ig.4. Effect of parameters on the classification er ror rate  

 

F ig.5 Procedures to find  and  

Comparing to the proposed method, some benchmark algorithms like AdaBoost and 

L2LSVM use different strategies to learn the classifiers. Some of these classifiers can provide a good 

approximation for the unknown relationship between inputs and labels, resulting in better 

performance. This is the reason why on some datasets, our method is better than AdaBoost, L2LSVM, 

Random Forest, and Decision Tree C4.5, and vise verse. Here we further discuss the advantages of 

our methods in comparison to Decision Template and TSES method. Since they are all heterogeneous 

ensembles with different combiners, the combining strategy can be used to explain why the proposed 

method is better on some datasets. 

In heterogeneous ensemble, each learning algorithm uses different methodology to learn a 

base classifier, thereby introducing uncertainty to the meta-data. A combiner which can explicitly 

represent knowledge with uncertainty is therefore desirable. Some traditional learning algorithms like 

The meta-data 
of training set 

The values 
for  and  

-fold Cross Validation 

Input values for granular-
based procedure 

Interval-based 
prototypes 

Justifiable Granularity 

Justifiable Granularity 
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Decision Tree C4.5 and Naïve Bayes do not consider the uncertainty when they are used as combiner 

on the meta-data, as a result, they are less likely to obtain good predictions. Meanwhile, Decision 

Template method and the proposed method represent the uncertainty in different ways: point 

estimations and intervals-based prototypes, respectively. It explains why Decision Template method 

and the proposed method obtain better results than TSES with C4.5 on many datasets. 

Decision Template models the meta-data associated with each class label by a vector of point 

estimations. It is noted that in many scenarios, pointwise statistics such as mean and median are less 

informative for subsequent reasoning [12].  Figure 7 shows an example of granular prototype and 

Decision Template associated with each class label for the Vertebral dataset. Clearly, the granular 

prototype with interval values offers greater flexibility than Decision Template with point values. The 

proposed method provides a more general and flexible way to describe the meta-data of training 

observations than Decision Template method, resulting in better classification results on many 

datasets. 

TABLE.4.CLASSIFICATION ERROR RATES OF THE 3 LEARNING ALGORITHMS 

AND THE PROPOSED METHOD 

  
  

LDA Naïve Bayes NN5  Proposed Method 
Mean Variance Mean Variance Mean Variance Mean Variance 

Artificial 0.3121 1.17E-03 0.3121 1.15E-03 0.2413 2.31E-03 0.2394 3.07E-03 
Australian 0.1453 1.42E-03 0.1387 1.39E-03 0.3439 2.99E-03 0.1314 1.90E-03 
Biodeg 0.1465 8.08E-04 0.2068 1.42E-03 0.1828 1.38E-03 0.1451 1.19E-03 
Blood 0.2281 3.05E-04 0.2453 1.11E-03 0.2341 1.56E-03 0.2511 2.92E-03 
Breast-cancer 0.0414 4.99E-04 0.0412 5.71E-04 0.0321 4.37E-04 0.0311 4.50E-04 
CLEF2009 0.1714 1.42E-03 0.3684 1.79E-03 0.3583 3.09E-03 0.1861 1.44E-03 
Cleveland 0.4228 4.21E-03 0.4328 4.31E-03 0.5521 3.64E-03 0.4226 2.80E-03 
Colon 0.1845 1.96E-02 0.3717 3.98E-02 0.1740 1.60E-02 0.1601 2.07E-02 
Conn-bench-vowel 0.3856 3.80E-03 0.4699 4.91E-03 0.0701 1.36E-03 0.1179 1.99E-03 
Contraceptive 0.4829 1.46E-03 0.5247 1.95E-03 0.4840 1.17E-03 0.4785 1.39E-03 
Dermatology 0.0285 7.05E-04 0.0397 9.84E-04 0.1138 2.63E-03 0.0321 6.30E-04 
Glass 0.3574 7.68E-03 0.4019 7.10E-03 0.3335 8.59E-03 0.3612 8.90E-03 
Haberman 0.2630 2.48E-03 0.2589 2.51E-03 0.2884 3.51E-03 0.2561 3.27E-03 
Heart 0.1637 4.26E-03 0.1615 4.68E-03 0.3193 6.36E-03 0.1571 3.52E-03 
Hepatitis 0.1688 1.48E-02 0.1563 1.22E-02 0.1938 6.68E-03 0.1526 1.20E-02 
Iris 0.0193 1.00E-03 0.0400 2.31E-03 0.0393 1.79E-03 0.0400 2.30E-03 
Led7digit 0.2778 3.45E-03 0.2706 3.28E-03 0.2970 4.59E-03 0.2640 3.92E-03 
Madelon 0.4592 1.08E-03 0.4119 1.18E-03 0.2936 9.81E-04 0.2930 8.11E-04 
Multiple features 0.0199 8.33E-05 0.0389 1.79E-04 0.0511 2.39E-04 0.0140 5.20E-05 
Musk2 0.0566 6.39E-05 0.2687 2.16E-04 0.0345 4.70E-05 0.0417 4.60E-05 
Satimage 0.1598 1.28E-04 0.2126 1.76E-04 0.0910 1.15E-04 0.1297 1.60E-04 
Texture 0.0053 7.93E-06 0.2470 2.68E-04 0.0133 2.52E-05 0.0090 1.00E-05 
Twonorm 0.0223 2.96E-05 0.0239 3.15E-05 0.0317 3.84E-05 0.0221 2.00E-05 
Vertebral 0.1965 3.69E-03 0.2565 4.59E-03 0.1845 2.48E-03 0.1747 2.62E-03 
Wine 0.0095 4.45E-04 0.0463 1.98E-03 0.2971 8.24E-03 0.0297 1.23E-03 
Yeast 0.4215 1.50E-03 0.4259 1.49E-03 0.4366 1.15E-03 0.4170 1.54E-03 

*The best results are highlight in bold 
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TABLE.5.CLASSIFICATION ERROR RATES OF THE 2 HETEROGENEOUS ENSEMBLE 

METHODS AND THE PROPOSED METHOD (USING 3 LEARNING ALGORITHMS) 

F ile name 
Decision T emplate TSES           Proposed M ethod 

Mean Variance Mean Variance Mean Variance 

Artificial 0.2433 1.60E-03  2.74E-03 0.2394 3.07E-03 
Australian 0.1346 1.50E-03  2.41E-03 0.1314 1.90E-03 
Biodeg  9.76E-04 0.1880  1.22E-03 0.1451 1.19E-03 
Blood  3.06E-03  2.57E-03 0.2511 2.92E-03 
Breast Cancer  4.15E-04  5.12E-04 0.0311 4.50E-04 
CLEF2009 0.1902 1.51E-03 0.2192  1.37E-03 0.1861 1.44E-03 
Cleveland  3.45E-03  6.04E-03 0.4226 2.80E-03 
Colon 0.1598 1.93E-02 0.2319  2.17E-02 0.1601 2.07E-02 
Conn Bench Vowel 0.1158 2.00E-03  1.54E-03 0.1179 1.99E-03 
Contraceptive 0.4781 1.40E-03  1.80E-03 0.4785 1.39E-03 
Dermatology 0.033 8.86E-04  7.36E-04 0.0321 6.30E-04 
Glass  1.11E-02  1.00E-02 0.3612 8.90E-03 
Haberman  5.00E-03  6.93E-03 0.2561 3.27E-03 
Heart 0.1541 4.00E-03  5.85E-03 0.1571 3.52E-03 
Hepatitis 0.1663 1.60E-02  1.39E-02 0.1526 1.20E-02 
Iris 0.040 2.50E-03          0.0313 1.73E-03 0.0400 2.30E-03 
Led7digit 0.266 4.18E-03  4.10E-03 0.2640 3.92E-03 
Madelon 0.2941 8.17E-04  1.14E-03 0.2930 8.11E-04 
Multiple Features  5.90E-05  5.93E-05 0.0140 5.20E-05 
Musk2  3.89E-05  5.03E-05 0.0417 4.60E-05 
Satimage  8.20E-05  1.30E-04 0.1297 1.60E-04 
Texture 0.0968  9.38E-06  9.14E-06 0.0090 1.00E-05 
Twonorm 0.0221 2.62E-05  4.05E-05 0.0221 2.00E-05 
Vertebral  3.77E-03  4.73E-03 0.1747 2.62E-03 
Wine 0.0298 1.24E-03           0.0253 1.22E-03 0.0297 1.23E-03 
Yeast 0.4186 1.70E-03  1.19E-03 0.4170 1.54E-03 

 

TABLE.6.CLASSIFICATION ERROR RATES OF THE OTHER BENCHMARK ALGORITHMS 

F ile name 
Random Forest AdaBoost Decision T ree C4.5 L2LSV M 

Mean Variance Mean Variance Mean Variance Mean Variance 

Artificial 0.3016  1.21E-03  1.90E-03 0.2433 1.60E-03  1.35E-03 
Australian 0.1299 1.74E-03  1.53E-03  2.13E-03  2.12E-03 
Biodeg 0.2003  1.29E-03  1.22E-03  1.39E-03  8.65E-04 
Blood 0.2304  1.54E-03  1.05E-03  1.68E-03  6.64E-04 
Breast Cancer 0.0269  3.75E-04 0.0410  4.19E-04  6.94E-04  1.95E-03 
CLEF2009 0.3610  2.18E-03 0.5532  2.22E-03 0.3664  3.12E-03 0.6318  1.77E-03 
Cleveland 0.3840  6.54E-03  0.4208 1.88E-03  6.30E-03 0.4181 1.60E-03 
Colon 0.0462  5.26E-03 0.2224  2.27E-02 0.2588  2.74E-02 0.1614 1.92E-02 
Conn Bench Vowel 0.3689  3.53E-03  3.21E-03  3.15E-03  3.74E-03 
Contraceptive 0.4912  1.30E-03  8.99E-04 0.4830 1.83E-03  1.33E-03 
Dermatology 0.1953  4.06E-03  7.25E-04  1.23E-03  6.09E-04 
Glass 0.3322  5.25E-03  2.71E-03  1.05E-02  8.82E-03 
Haberman 0.2707  6.64E-03  3.60E-03  5.27E-03 0.2598 1.39E-03 
Heart 0.1396  3.95E-03  4.67E-03  6.70E-03 0.1559 3.79E-03 
Hepatitis 0.1163  1.16E-02 0.1363 1.41E-02 0.1663 1.22E-02 0.1588 1.15E-02 
Iris 0.0387 1.88E-03 0.0540  2.82E-03  2.40E-03 0.0440 2.33E-03 
Led7digit 0.2946  3.61E-03  3.91E-03  2.75E-03  4.04E-03 
Madelon 0.3582  1.32E-03  1.09E-03  1.04E-03  8.15E-04 
Multiple Features 0.0432  2.26E-04  2.00E-03  3.10E-04  1.05E-04 
Musk2 0.1423  1.56E-05  5.33E-05  4.34E-05  5.41E-05 
Satimage 0.3612  1.92E-04  1.61E-04  2.27E-04  1.67E-04 
Texture 0.4082  1.52E-04  2.18E-04  1.13E-04  2.60E-05 
Twonorm 0.0641  7.34E-05 0.0310  3.76E-05  2.21E-04 0.0221 2.06E-05 
Vertebral 0.2003  3.00E-03  1.25E-03  3.75E-03  3.84E-03 
Wine 0.0182  8.88E-04  1.77E-03 0.1010  4.60E-03  2.86E-03 
Yeast 0.4333  1.56E-03 0.5880  2.44E-04  1.86E-03  1.21E-03 

 ethod is better or worse than the benchmark algorithm, respectively. 
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F ig.6. Statistical test results comparing proposed method to the benchmark algorithms 

(using 3 learning algorithms) 

 

TABLE.7. AVERAGE RANKINGS OF ALL METHODS (USING 3 LEARNING ALGORITHMS) 

Algorithm Ranking 

Decision Template 3.37 

AdaBoost 5.04 
Decision Tree 4.79 
TSES 4.44 
L2LSVM 4.19 
Random Forest 3.88 
Proposed Method  2.29 

 

 

TABLE.8. EXAMPLE OF GRANULAR PROTOTYPES FOR SEVERAL DATASETS  

Dataset name G ranular prototypes 

Twonorm 
V1={[0.93560, 1.00000] [0.00000, 0.06440] [0.94109, 1.00000] [0.00000, 0.05891] [1.00000, 1.00000] [0.00000, 0.00000]} 

V2={[0.00000, 0.07266] [0.93024, 1.00000] [0.00000, 0.09463] [0.92380, 1.00000] [0.00000, 0.00000] [1.00000, 1.00000]} 

Contraceptive 

V1={[0.16152, 0.96449] [0.00921, 0.41199] [0.03979, 0.58603] [0.10900, 0.96204] [0.00116, 0.66490] [0.03767, 0.59979] [0.20000, 1.00000] [0.00000, 0.40000] 

[0.00000, 0.40000]} 

V2={[0.10282, 0.62354] [0.06022, 0.57610] [0.13421, 0.58900] [0.05647, 0.68147] [0.00232, 0.86498] [0.09485, 0.53928] [0.20000, 0.60000] [0.00000, 0.80000] 

[0.00000, 0.60000]} 

V3={[0.14256, 0.67763] [0.02580, 0.49724] [0.16817, 0.63002] [0.07716, 0.75685] [0.00103, 0.69072] [0.14702, 0.63025] [0.20000, 0.60000] [0.00000, 0.40000] 

[0.20000, 0.80000]} 
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Iris 

V1= {[1.00000, 1.00000] [0.00000, 0.00000] [0.00000, 0.00000] [1.00000, 1.00000] [0.00000, 0.00000] [0.00000, 0.00000] [1.00000, 1.00000] [0.00000, 0.00000] 

[0.00000, 0.00000]} 

V2={[0.00000, 0.00000] [0.91273, 1.00000] [0.00000, 0.08727] [0.00000, 0.00001] [0.94101, 1.00000] [0.00000, 0.05899] [0.00000, 0.00000] [1.00000, 1.00000] 

[0.00000, 0.00000]} 

V3={[0.00000, 0.00000] [0.00000, 0.19505] [0.80495, 1.00000] [0.00000, 0.00000] [0.00000, 0.06187] [0.93813, 1.00000] [0.00000, 0.00000] [0.00000, 0.00000] 

[1.00000, 1.00000]} 

Glass 

V1={[0.21048, 0.83217] [0.07672, 0.69066] [0.00343, 0.17914] [0.00000, 0.00061] [0.00000, 0.00544] [0.00000, 0.00000] [0.22167, 0.71802] [0.09053, 0.74780] 

[0.02996, 0.28073] [0.00000, 0.00036] [0.00000, 0.02064] [0.00000, 0.00012] [0.40000, 1.00000] [0.00000, 0.20000] [0.00000, 0.20000] [0.00000, 0.00000] [0.00000, 

0.00000] [0.00000, 0.00000]} 

V2={[0.00000, 0.68058] [0.31214, 0.73528] [0.00000, 0.19830] [0.00000, 0.05873] [0.00000, 0.02251] [0.00000, 0.00708] [0.00000, 0.61310] [0.28941, 0.74108] 

[0.00000, 0.16535] [0.00000, 0.02865] [0.00000, 0.01283] [0.00000, 0.00134] [0.00000, 0.40000] [0.40000, 1.00000] [0.00000, 0.00000] [0.00000, 0.00000] [0.00000, 

0.00000] [0.00000, 0.00000]} 

V3={[0.20043, 0.83912] [0.06652, 0.71189] [0.00033, 0.33895] [0.00000, 0.00023] [0.00000, 0.00027] [0.00000, 0.00000] [0.34264, 0.77711] [0.09489, 0.59960] 

[0.03535, 0.21730] [0.00000, 0.00025] [0.00001, 0.00161] [0.00000, 0.00001] [0.40000, 1.00000] [0.00000, 0.20000] [0.00000, 0.60000] [0.00000, 0.00000] [0.00000, 

0.00000] [0.00000, 0.00000]} 

V4={[0.00000, 0.10771] [0.00000, 0.87700] [0.00000, 0.01110] [0.00000, 1.00000] [0.00000, 0.29264] [0.00000, 0.10227] [0.00000, 0.11322] [0.00000, 0.91031] 

[0.00000, 0.01789] [0.00000, 1.00000] [0.00000, 0.20848] [0.00000, 0.02114] [0.00000, 0.00000] [0.20000, 0.40000] [0.00000, 0.00000] [0.20000, 0.80000] [0.00000, 

0.00000] [0.00000, 0.00000]} 

V5={[0.00000, 0.47893] [0.00000, 0.65392] [0.00000, 0.03884] [0.00000, 0.00447] [0.00035, 0.98126] [0.00000, 0.21954] [0.00001, 0.40464] [0.00000, 0.60271] 

[0.00003, 0.08869] [0.00000, 0.22933] [0.02167, 0.99452] [0.00002, 0.15650] [0.00000, 0.00000] [0.20000, 0.40000][0.00000, 0.00000] [0.00000, 0.00000] [0.20000, 

0.60000] [0.00000, 0.00000]} 

V6={[0.00000, 0.05812] [0.00000, 0.05386] [0.00000, 0.00986] [0.00000, 0.00313] [0.00000, 0.00485] [0.99489, 1.00000] [0.00000, 0.11986] [0.00000, 0.01646] 

[0.00000, 0.09883] [0.00000, 0.03480] [0.00000, 0.09730] [0.97793, 1.00000] [0.00000, 0.00000] [0.00000, 0.00000] [0.00000, 0.00000] [0.00000, 0.00000] [0.00000, 

0.00000] [1.00000, 1.00000]} 
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Note: x marks the Decision Template. Top, middle, and bottom figures are associated with class 1, 2, and 3, respectively.  

F ig.7. Decision Templates and G ranular Prototypes for the Vertebral Dataset 
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4.2.3. Different number of learning algorithms 

To see the effect of using different number of learning algorithms on the ensemble, we built 

heterogeneous ensemble system with 10 learning algorithms. The 7 new learning algorithms: two 

NN classifiers (with the number of nearest neighbors was set to 25 and 50, denoted by NN25, and 

NN50, respectively), Decision Tree C4.5, Decision Stump, Fisher Classifier [74], Nearest Mean 

Classifier (denoted by NMC), and Logistic Linear Classifier (denoted by LLC) [75], were added to 

the previous ensemble system to form the new one. Once again, the learning algorithms were selected 

as different as possible to promote system diversity. The NN classifier and Decision Tree C4.5 were 

obtained from the Statistics and Machine Learning Toolbox of Matlab while the other new learning 

algorithms was obtained from PRTools (available at http://prtools.org/).  It is noted that the 

classification error rates of AdaBoost, Random Forest, Decision Tree C4.5, and L2LSVM would not 

change in this experiment so that we only reported the new experimental results of three 

heterogeneous ensemble methods with these 10 learning algorithms in Table 9. 

Table A1 in the Appendix shows the classification error rates of these 10 learning algorithms 

and the proposed method. Once again, the benefit of using the ensemble is demonstrated since the 

proposed method obtains the best result on 12 datasets. Based on the statistical test results in Figure 8, 

it can be seen that proposed method continues to outperform AdaBoost (in 23 cases where the null 

hypothesis is rejected, the proposed method wins in 21 cases and loses in 2 cases), Decision Tree (in 

22 cases where the null hypothesis is rejected, the proposed method wins in 21 cases and loses in 1 

case), L2LSVM (in 18 cases where the null hypothesis is rejected, the proposed method wins in 16 

cases and loses in 2 cases), TSES (in 23 cases where the null hypothesis is rejected, the proposed 

method wins in 19 cases and loses in 4 cases), Random Forest (in 23 cases where the null hypothesis 

is rejected, the proposed method wins in 16 cases and loses in 7 cases) and Decision Template method 

(in 13 cases where  the null hypothesis is rejected, the proposed method wins in 11 cases and loses in 

2 cases). The average ranking of the proposed method once again is better than all benchmark 

algorithms (Table 10). 

We note the significant differences in the classification error rate of the proposed method 

construct by 3 or 10 learning algorithms. First, using 10 learning algorithms obtains better results than 
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using 3 learning algorithms, for example, on Contraceptive (0.4572 vs. 0.4785), Glass (0.3196 vs. 

0.3612), Madelon (0.2452 vs. 0.2930), and Vertebral (0.1510 vs. 0.1747). On Conn Bench Vowel, in 

contrast, the classification error rate reduces 4% when using 3 learning algorithms comparing to using 

10 learning algorithms (0.1179 vs. 0.1571). This also happens with other heterogeneous ensemble 

methods like Decision Template and TSES method. Although the proposed method is better than the 

benchmark algorithms in both cases, the dependence of choosing the learning algorithms to the 

ensemble performance is the limitation of all the heterogeneous ensemble methods. 

 

TABLE.9.CLASSIFICATION ERROR RATES OF THE 2 HETEROGENEOUS ENSEMBLE 

METHODS AND THE PROPOSED METHOD (USING 10 LEARNING ALGORITHMS) 

  Decision Template TSES Proposed Method  
  Mean Variance Mean Variance Mean Variance 

Artificial  1.53E-03  2.39E-03 0.2142 1.73E-03 
Australian 0.1274 1.50E-03  2.01E-03 0.1262 1.25E-03 
Biodeg 0.1363 9.89E-04  1.12E-03 0.1374 1.10E-03 
Blood  2.51E-03  2.49E-03 0.2438 1.86E-03 
Breast Cancer 0.0362 5.04E-04  6.31E-04 0.0359 5.01E-04 
CLEF2009 0.1666 1.42E-03 0.2245  1.88E-03 0.1659 1.45E-03 
Cleveland 0.4326 4.94E-03  5.74E-03 0.4357 2.03E-03 
Colon 0.1698 1.79E-02 0.2431  1.77E-02 0.1633 2.02E-02 
Conn Bench Vowel 0.1750  1.91E-03  2.06E-03 0.1571 2.37E-03 
Contraceptive 0.4560 1.69E-03  1.56E-03 0.4572 1.60E-03 
Dermatology  5.06E-04  1.11E-03 0.0242 6.10E-04 
Glass 0.3198 8.92E-03 0.3630  9.58E-03 0.3196 7.10E-03 
Haberman 0.2690  3.36E-03  6.82E-03 0.2437 3.75E-03 
Heart 0.1559 5.39E-03  7.50E-03 0.1561 4.75E-03 
Hepatitis 0.1725 1.59E-02  2.07E-02 0.1520 1.38E-02 
Iris 0.0440  2.69E-03 0.0340 2.18E-03 0.0410 2.35E-03 
Led7digit* - - - - - - 
Madelon  9.69E-04 0.2770  9.59E-04 0.2452 9.92E-04 
Multiple Features  6.87E-05  7.38E-05 0.0120 6.35E-05 
Musk2  4.65E-05  4.57E-05 0.0387 4.31E-05 
Satimage  6.52E-05  1.48E-04 0.1222 1.21E-04 
Texture 0.0998  1.45E-05  6.81E-06 0.0096 1.51E-05 
Twonorm  2.29E-05  3.24E-05 0.0222 2.77E-05 
Vertebral 0.1510 3.39E-03  3.52E-03 0.1510 3.75E-03 
Wine  2.10E-03 0.0225 1.01E-03 0.0261 1.79E-03 
Yeast 0.4056 1.44E-03  1.62E-03 0.4032 1.38E-03 

 ethod is better or worse than the benchmark algorithm, respectively. 

* several of the learning algorithms cannot be run on this dataset, hence final ensemble outputs are not available 
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F ig.8. Statistical test results comparing proposed method to the benchmark algorithms (using 10 

learning algorithms) 

TABLE.10. AVERAGE RANKINGS OF ALL METHODS (USING 10 LEARNING 

ALGORITHMS) 

Algorithm Ranking 

Decision Template 3.18 

AdaBoost 5.00 
Decision Tree 4.96 
TSES 4.32 
L2LSVM 4.20 
Random Forest 4.08 
Proposed Method  2.26 

 

4.2.4. Time complexity analysis 

Let  denotes the complexity of the  learning algorithm , the complexity of the learning 

process of the proposed method 

is  in which 

 is the time complexity of generating meta-data of training set via 

running -fold cross validation,  is the time complexity of finding the 

parameter  and  from the specific values via 10-fold cross validation (see Figure 5), and 
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 is the time complexity of combiner working on meta-data of training set to produce the 

decision model. In the proposed method, we used justifiable granularity to construct the interval for 

each column of the meta-data of each class. The computation of the median of unsorted posterior 

probability array with  training observations belonging to  class as well as the 

bounds of interval class memberships based on (7) and (10) can be done by first applying a sorting 

algorithm to the array. We can apply a sorting algorithm introduced in [76] to an array with  

elements in which the time complexity is . The procedure runs though all  

columns of meta-data of training observations for each  so that the time complexity of 

the combiner is . In the parameter searching 

procedure, we loop through all given values of  and  to find the specific value that minimize 

classification error rate on the training set via 10-fold cross validation, as a result the time complexity 

of the parameters searching procedure is 

 where  is the number of training observations belonging to the  class in the 

parts obtained via the 10-fold cross validation procedure. Therefore, the time complexity of the 

training process of the proposed method is 

. 

For TSES the time complexity of the training process is 

 in which  is the time complexity of the learning algorithm for the 

combiner. Depending on the learning algorithm for the combiner, TSES could have a longer or shorter 

training time than the proposed method. In this paper, we used Decision Tree C4.5 (its time 

complexity is  via the improvement in [77]) to learn on the meta-data of training 

observation so that the overall training complexity of TSES method is 

. Meanwhile in the combining method of Decision 

Template, the loop runs through all training observations to compute the average of the meta-data 

associated with each class label [5] so its time complexity is 

. It is noted that the proposed method can be implemented via parallel mechanism by using  



35 
 

processors to learn the meta-data,  processors to search the parameters, and 

 processors to learn the intervals. The time complexity of the proposed method then becomes:  

 since . 

Table 11 shows the average training and classification time (in seconds) for Decision 

Template, TSES, and the proposed method, computed on 100 training sets and associated test sets 

partitioned from each dataset. Although the proposed method generally has longer training time and 

classification time than Decision Template and TSES method, the differences are within practical 

limit.  

 

TABLE.11. TRAINING AND CLASSIFICATION TIME (IN SECONDS) OF DECISION 

TEMPLATE, TSES, AND PROPOSED METHOD (USING 3 LEARNING ALGORITHMS) 

  
  

Decision T emplate TSES Proposed M ethod 

Training 
Time 

Classification 
Time 

Training 
Time 

Classification 
Time 

Training 
Time 

Classification 
Time 

Artificial 0.5414 0.0099 0.5657 0.0744 17.5385 0.4721 
Australian 0.5374 0.0101 0.5467 0.0702 29.6069 0.7538 
Biodeg 0.7161 0.0170 0.687 0.1141 19.5413 0.7732 
Blood 0.5192 0.0088 0.5453 0.0762 13.5489 0.4850 
Breast Cancer 0.5915 0.0102 0.5521 0.0693 40.0564 0.8671 
CLEF2009 0.7451 0.0099 0.7157 0.0253 8.8935 0.3697 
Cleveland 1.1949 0.0128 0.8905 0.0359 52.0346 0.2412 
Colon 1.1938 0.0314 1.1808 0.0329 3.1703 0.1781 
Conn Bench Vowel 3.1417 0.0216 2.4259 0.0581 95.9051 1.0321 
Contraceptive 0.6583 0.0149 0.7007 0.0567 13.2749 0.6792 
Dermatology 1.0965 0.0121 1.0225 0.0449 44.6629 0.2011 
Glass 0.8978 0.0077 0.9161 0.0249 47.0464 0.1483 
Haberman 0.6945 0.0391 0.5203 0.0355 12.6771 0.1212 
Heart 0.4976 0.0122 0.4853 0.0316 10.7566 0.0990 
Hepatitis 0.5859 0.0080 0.5873 0.0051 8.9105 0.0578 
Iris 1.1778 0.0164 0.5311 0.0184 36.4504 0.1599 
Led7digit 1.0463 0.0384 1.9646 0.0534 112.4801 0.5317 
Madelon 15.0398 0.3284 11.0456 0.4682 227.3102 6.2560 
Multiple Features 26.9106 0.4417 30.296 0.7383 1243.4163 13.7829 
Musk2 12.1663 0.8991 13.4885 5.0747 152.4641 8.3123 
Satimage 3.0802 0.2286 4.8068 3.0047 225.2858 5.4413 
Texture 4.0408 0.2359 5.8136 2.2746 212.2031 4.6231 
Twonorm 1.9637 0.1587 5.7002 3.0170 100.7969 4.9567 
Vertebral 0.5744 0.0078 0.5865 0.0345 12.8961 0.1898 
Wine 0.6189 0.0079 0.5316 0.0211 13.1322 0.1874 
Yeast 1.9967 0.0298 2.6987 0.1056 80.2426 1.5750 
Average 3.1626 0.1007 3.4540 0.5987 109.0116 2.0190 
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5. Conclusions 

In this paper, we have introduced a novel trainable ensemble classifiers system based on the 

concept of justifiable granularity. In our approach, we construct the granular prototype for each class 

from the meta-data of training observations with the same class label. Each granular prototype is a 

vector of intervals, where the intervals reflect the uncertainty in class prediction generated by the base 

classifiers. The class label of an unlabeled observation is predicted by picking up the class label 

associated with the granular prototype that is the closest to the meta-data of the unlabeled observation. 

Extensive experiments were carried out by using an ensemble system of three and ten base classifiers, 

and performance comparisons were conducted with six benchmark algorithms including AdaBoost, 

Random Forest, Decision Template, TSES, Decision Tree C4.5, and L2LSVM on 26 datasets. 

Statistical test results indicated that our method significantly outperforms all the benchmark 

algorithms.  

Some future work can be conducted to further improve the performance of the proposed 

method. First, to deal with the trade-off between the specificity and the experimental evidence 

(cardinality), we used the product of these two requirements and maximizing the expression with 

respect to the bounds of the interval. This simple choice may not provide the best solution in all 

situations and techniques such as multi-objective optimization can be investigated. Moreover, as 

mentioned before, the general performance of the proposed method depends on the choice of the 

learning algorithms to construct the ensemble. A poor selection of learning algorithms may result in 

the poor performance of the ensemble. The proposed method could be combined with learning 

algorithm selection [25] to acquire the optimal set of learning algorithms for each specific dataset. 
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Appendix 

Proposition 1:  If  is the interval built by justifiable granularity on the meta-data 

associated with the first class label of two class-classification problems, the interval associated with 

the other class label is  

Proof: Let denote  and  as two random variables represented for the meta-data associated with the 

first and the second class label respectively. Based on the property of meta-data [3], we have: 

 (A1) 

Denote  and  as the median of  and . Based on the definition of median, we have: 

 (A2) 

Replace  by  we obtain: 

 

 (A3) 

 is the median of the meta-data associated with the second class label. 

Since  is the interval built by justifiable information granularity, based on (6)-(10) we have: 

and (A4) 

 and (A5) 

Replace  by  and  by  in (A4), we have: 
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 (A6) 

Comparing (A6) and (A5), the lower bound of the interval for  is . Similarly, the upper 

bound of the interval for  is  

 

Property 1:  

Proof: Since , and . 

If , it is easy to see that .  

On the other hand, in case , since  

we obtain   

 

Property 2:  

Proof: Denote . Since , 

we have four cases (A7-A10). 

 (A7) 

 (A8) 

 (A9) 

(A10) 

Here we only consider (A7) and (A8) (A9 and A10 can be handled similarly). For the case (A7), it 

means that 

  and  

For case (A8), by the proof above we have , and 

 

 

Property 3: If  and  then  

Proof: Since .  
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Since 

  

 

Property 4:  

Proof: Since  and  

 

 

 

Property 5:  

It is the result of  

 

Property 6:  

Proof: If ,  

 

Doing a similar way, if , , we have 

 

 

Property 7:  

Proof: 

 

 

Property 8: If   and  then  

Proof: Using Property 3, we have if  and  then  
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That inequation is true   so  

 

Property 9:  where  is the distance between two vector  

and  

Proof: 

 

 

Algorithm: T raining process 
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TABLE.A1.CLASSIFICATION ERROR RATES OF THE 10 LEARNING ALGORITHMS AND THE PROPOSED METHOD 

  
  

LDA Naïve Bayes NN5 NN25 NN50 

  Mean Variance Mean Variance Mean Variance Mean Variance Mean Variance 

Artificial 0.3121 1.17E-03 0.3121 1.15E-03 0.2413 2.31E-03 0.1906 1.93E-03 0.1990 1.94E-03 
Australian 0.1453 1.42E-03 0.1387 1.39E-03 0.3439 2.99E-03 0.3286 2.40E-03 0.3316 1.34E-03 
Biodeg 0.1465 8.08E-04 0.2068 1.42E-03 0.1828 1.38E-03 0.2265 1.53E-03 0.2472 1.60E-03 
Blood 0.2281 3.05E-04 0.2453 1.11E-03 0.2341 1.56E-03 0.2407 4.40E-04 0.2382 2.15E-05 
Breast-cancer 0.0414 4.99E-04 0.0412 5.71E-04 0.0321 4.37E-04 0.0369 5.05E-04 0.0407 5.22E-04 
CLEF2009 0.1714 1.42E-03 0.3684 1.79E-03 0.3583 3.09E-03 0.4506 2.45E-03 0.4975 2.09E-03 
Cleveland 0.4228 4.21E-03 0.4328 4.31E-03 0.5521 3.64E-03 0.4585 1.30E-03 0.4645 3.31E-04 
Colon 0.1845 1.96E-02 0.3717 3.98E-02 0.1740 1.60E-02 0.3140 5.69E-03 0.3524 1.45E-03 
Conn-bench-vowel 0.3856 3.80E-03 0.4699 4.91E-03 0.0701 1.36E-03 0.4795 3.83E-03 0.5525 3.13E-03 
Contraceptive 0.4829 1.46E-03 0.5247 1.95E-03 0.4840 1.17E-03 0.4528 1.26E-03 0.4601 1.20E-03 
Dermatology 0.0285 7.05E-04 0.0397 9.84E-04 0.1138 2.63E-03 0.2464 3.39E-03 0.3394 2.46E-03 
Glass 0.3574 7.68E-03 0.4019 7.10E-03 0.3335 8.59E-03 0.3793 7.46E-03 0.4195 7.62E-03 
Haberman 0.2630 2.48E-03 0.2589 2.51E-03 0.2884 3.51E-03 0.2524 3.20E-03 0.2566 1.66E-03 
Heart 0.1637 4.26E-03 0.1615 4.68E-03 0.3193 6.36E-03 0.3156 7.78E-03 0.3552 6.04E-03 
Hepatitis 0.1688 1.48E-02 0.1563 1.22E-02 0.1938 6.68E-03 0.1625 3.28E-03 0.1625 3.28E-03 
Iris 0.0193 1.00E-03 0.0400 2.31E-03 0.0393 1.79E-03 0.0440 2.33E-03 0.0660 3.51E-03 
Led7digit 0.2778 3.45E-03 0.2706 3.28E-03 0.2970 4.59E-03 0.2692 4.27E-03 0.2636 4.17E-03 
Madelon 0.4592 1.08E-03 0.4119 1.18E-03 0.2936 9.81E-04 0.2529 7.15E-04 0.2604 7.55E-04 
Multiple Features 0.0199 8.33E-05 0.0389 1.79E-04 0.0511 2.39E-04 0.0910 2.97E-04 0.1249 3.63E-04 
Musk2 0.0566 6.39E-05 0.2687 2.16E-04 0.0345 4.70E-05 0.0486 6.24E-05 0.0606 6.44E-05 
Satimage 0.1598 1.28E-04 0.2126 1.76E-04 0.0910 1.15E-04 0.1067 1.10E-04 0.1230 1.40E-04 
Texture 0.0053 7.93E-06 0.2470 2.68E-04 0.0133 2.52E-05 0.0274 4.40E-05 0.0395 5.16E-05 
Twonorm 0.0223 2.96E-05 0.0239 3.15E-05 0.0317 3.84E-05 0.0254 4.44E-05 0.0234 3.26E-05 
Vertebral 0.1965 3.69E-03 0.2565 4.59E-03 0.1845 2.48E-03 0.1671 3.03E-03 0.1974 3.65E-03 
Wine 0.0095 4.45E-04 0.0463 1.98E-03 0.2971 8.24E-03 0.2990 1.13E-02 0.3008 9.96E-03 
Yeast 0.4215 1.50E-03 0.4259 1.49E-03 0.4366 1.15E-03 0.4059 1.34E-03 0.4168 1.29E-03 
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Decision Tree C4.5 Decision Stump Fisher LLC NMC 

 
Proposed Method 

 
Mean Variance Mean Variance Mean Variance Mean Variance Mean Variance Mean Variance 

Artificial 0.2433 1.60E-03 0.4251 1.43E-04 0.3121 1.17E-03 0.3119 1.20E-03 0.4934 2.11E-03 0.2142 1.73E-03 
Australian 0.1678 2.13E-03 0.4139 4.42E-04 0.1443 1.42E-03 0.1388 1.24E-03 0.3406 1.91E-03 0.1262 1.25E-03 
Biodeg 0.1853 1.39E-03 0.3374 1.21E-05 0.1412 7.51E-04 0.1378 8.62E-04 0.3446 2.03E-03 0.1374 1.10E-03 
Blood 0.2595 1.68E-03 0.2379 1.69E-05 0.2276 2.86E-04 0.2281 3.76E-04 0.3330 2.68E-03 0.2438 1.86E-03 
Breast Cancer 0.0526 6.94E-04 0.2311 1.62E-03 0.0416 4.93E-04 0.0338 4.37E-04 0.0360 5.66E-04 0.0359 5.01E-04 
CLEF2009 0.3664 3.12E-03 0.8062 2.06E-04 0.1938 1.38E-03 0.2102 3.49E-03 0.3252 3.28E-02 0.1659 1.45E-03 
Cleveland 0.5055 6.30E-03 0.4611 7.10E-05 0.4237 1.82E-03 0.4181 3.33E-03 0.6100 5.50E-03 0.4357 2.03E-03 
Colon 0.2588 2.74E-02 0.3926 2.66E-02 0.2150 2.25E-02 0.1812 1.97E-02 0.6631 1.96E-03 0.1633 2.02E-02 
Conn Bench Vowel 0.2295 3.15E-03 0.8441 3.84E-04 0.5108 3.77E-03 0.4307 3.84E-03 0.4538 4.75E-03 0.1571 2.37E-03 
Contraceptive 0.4830 1.83E-03 0.5730 4.74E-06 0.4959 1.15E-03 0.4880 1.28E-03 0.6196 9.13E-04 0.4572 1.60E-03 
Dermatology 0.0516 1.23E-03 0.5144 1.64E-03 0.0245 6.67E-04 0.0595 1.70E-03 0.4922 7.52E-03 0.0242 6.10E-04 
Glass 0.3092 1.05E-02 0.4991 4.92E-03 0.3877 5.58E-03 0.3626 7.74E-03 0.5578 8.49E-03 0.3196 7.10E-03 
Haberman 0.3048 5.27E-03 0.2647 8.92E-05 0.2618 1.96E-03 0.2576 2.07E-03 0.3189 7.04E-03 0.2437 3.75E-03 
Heart 0.2381 6.70E-03 0.4444 1.37E-04 0.1637 4.26E-03 0.1678 3.85E-03 0.3689 7.73E-03 0.1561 4.75E-03 
Hepatitis 0.1663 1.22E-02 0.1625 3.28E-03 0.1613 1.38E-02 0.1800 1.73E-02 0.2800 2.69E-02 0.1520 1.38E-02 
Iris 0.0507 2.40E-03 0.3520 2.05E-03 0.1187 6.45E-03 0.0367 1.99E-03 0.0800 3.73E-03 0.0410 2.35E-03 
Led7digit 0.2906 2.75E-03 - - 0.2690 3.45E-03 0.2666 3.79E-03 0.2634 3.90E-03 - - 
Madelon 0.2462 1.04E-03 0.4998 2.47E-05 0.4595 1.24E-03 0.4589 1.30E-03 0.3996 8.91E-04 0.2452 9.92E-04 
Multiple Features 0.0636 3.10E-04 0.8032 3.98E-05 0.0103 5.72E-05 0.0127 7.72E-05 0.4499 1.05E-03 0.0120 6.35E-05 
Musk2 0.0322 4.34E-05 0.1541 3.92E-07 0.0607 6.48E-05 0.0473 5.75E-05 0.2757 1.88E-04 0.0387 4.31E-05 
Satimage 0.1415 2.27E-04 0.5975 5.93E-05 0.2364 6.90E-05 0.1637 9.45E-05 0.2229 2.00E-04 0.1222 1.21E-04 
Texture 0.0761 1.13E-04 0.7737 2.03E-04 0.0134 2.37E-05 0.0969 3.63E-02 0.2419 2.71E-04 0.0096 1.51E-05 
Twonorm 0.1602 2.21E-04 0.4924 8.68E-06 0.0223 2.96E-05 0.0223 2.95E-05 0.0219 3.15E-05 0.0222 2.77E-05 
Vertebral 0.1984 3.75E-03 0.2310 1.37E-03 0.2077 3.29E-03 0.1521 2.60E-03 0.2423 5.03E-03 0.1510 3.75E-03 
Wine 0.1010 4.60E-03 0.4604 6.45E-03 0.0123 6.00E-04 0.0242 1.22E-03 0.2867 9.76E-03 0.0261 1.79E-03 
Yeast 0.4642 1.86E-03 0.6799 3.57E-04 0.4658 1.26E-03 0.4173 1.44E-03 0.5028 1.21E-03 0.4032 1.38E-03 

*The best results are highlight in bold 
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