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Highlights:

We modeled the base classifiers’ output by using a granular prototype formalized as a
vector of intervals.

We defined a way to quantify the distance between the base clac..Sers’ output on an
observation and a granular prototype.

We proposed a novel framework to combine multiple cl»ssitic~s in an ensemble
system

The proposed method is highly competitive to sev.cral staic-of-the-art ensemble

methods.
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Abstract: In this study, a novel framework to com “in- multiple classifiers in an ensemble system is
introduced. Here we exploit the concept of info. ma.’on granule to construct granular prototypes for
each class on the outputs of an ensemble of b.. = classifiers. In the proposed method, uncertainty in
the outputs of the base classifiers ,n t.'ning observations is captured by an interval-based
representation. To predict the clas laber “r a new observation, we first determine the distances
between the output of the base ci.. ifie.s for this observation and the class prototypes, then the
predicted class label is obtai.ed b, ~hoosing the label associated with the shortest distance. In the
experimental study, we om}.ne several learning algorithms to build the ensemble system and
conduct experiments c.a th, UC), colon cancer, and selected CLEF2009 datasets. The experimental
results demonstrat- .nat wu.. proposed framework outperforms several benchmarked algorithms
including two tran ~ble .ombining methods, i.e., Decision Template and Two Stages Ensemble

System, Adak oost, Ri ndom Forest, L2-loss Linear Support Vector Machine, and Decision Tree.

Keywords: E.semble method, multiple classifiers system, information granule, information

uncertainty, supervised learning



1. Introduction

Supervised learning is an active research area in the machine learning community. Many
algorithms resulting from different learning methodologies have been introduce. to learn the
relationship between feature vectors and class labels with the aim of g nerr.ing discriminative
decision model. Experiments have shown that there is no single learning algor..m that performs well
on all datasets. A learner can achieve high accuracy on some data set. hu’ high error rate on others.
Ensemble learning, where multiple learning algorithms are com' ined i. to a single framework to

obtain a better discriminative decision model, offers a viable sol-.uon | 1.

Dietterich [2] showed the benefit of combining multiple ci.."sitiers from three aspects: statistical,
computational, and representational. When a classifier ‘s le. ™~y on a given training set, it gives a
hypothesis about the relationship between the feat. = vectors and the class labels. With a small
number of training data, different hypotheses (cl ss11 ..., can produce the same error rate on the
training data. It might happen that a poor hyp .><is is chosen to predict the label of an unseen
sample. By combining several hypotheses, w. can reduce the risk of choosing a wrong hypothesis.
From the computational aspect, many aig. <ithms perform local search to obtain locally optimum
solution. In ensemble methods, by chany e the starting point of algorithms, we can have a better
approximation of the unknown rci~*.ons.ip than that of a single learning algorithm. Finally, the
unknown relationship in soae ~ses cannot be modeled by a single hypothesis. By using a

combination of multiple h potl :ses, a better approximation for the relationship can be achieved.

In ensemble meth d, ¢.ffer .nt “models” could refer to the different learning algorithms or to a set
of generic classifi rs ger ~rated by learning a unique learning algorithm on many different training
sets [3]. Each ]=-"ning ...gorithm learns a classifier on a given training set to describe the relationship
between the fu-ture - ector and the class label of the training observations. The generated classifier
returns the ~or.erior probabilities, i.e., numerical class memberships that an observation belongs to

different classes. A combination method is then used to aggregate the outputs of all classifiers to



generate the discriminative model. As each classifier may output different results on each observation,

uncertainty is introduced.

A combiner which can capture the facet of uncertainty when combining the v.-= classifiers’
outputs would be desirable. In the literature, several combiners have been “~tro .uced based on this
consideration, such as fuzzy IF-THEN rule-based combiner [4] and Decisinn ‘1 olate method [5]. In
this study, we propose an ensemble framework based on modeling th . uncertainty in the base
classifiers’ output using interval-based representations [6, 7]. Here interva -based representations are
generated by the notion of information granularity. Starting fr . the pioneering work of Zadeh [8-
10], the concept of information granules have been used ¢ mod=! ..uman cognitive and decision-

making activities [11-13], and have been applied to many 1. ~1-wor' 1 applications [14].

In homogeneous ensemble methods like AdaBoos. '15], Bagging [16], and Random Forest [17],
the focus is on the generation of-new training schc mes 1ium the original training set. Meanwhile, in
the heterogeneous ensemble systems, a fixed se. 0. ditierent learning algorithms learns on the same
training set to generate the different base class.”ers. The outputs of these classifiers (called meta-data
of Levell data) are then combined to m .<e u.~ final prediction [3-5, 18]. In this type of ensembles, the
approach is focused on designing a’goriti. > that combine the meta-data to achieve higher accuracy
than that using a single classifier. n t' s work, we use the principle of justifiable information
granularity to generate granu ar p.. *otypes resulting from the outputs, i.e. the meta-data, of a set of
base classifiers of heteror ener us ensemble obtained from the training observations. By defining a
distance function betw .en . feature vector and a granular prototype, we propose a novel combining
algorithm for the he’*_ ogen. - as ensemble systems via a shortest distance-based mechanism.

The novelty of our ork I":s in the following:

(1) T ) the be t of our knowledge, this is the first approach that models the uncertainty in the
..~ data of training observations by using the granular prototype formalized as a vector
ot 1tervals.

(i1) We define a way to quantify the distance between the meta-data (a numerical vector) of

an observation and a granular prototype (a vector of intervals).



(ii))  We propose a novel combining algorithms for heterogeneous ensemble system via a

shortest distance-based mechanism.

The paper is organized as follows. In Section 2, heterogeneous ensemble r..."od and the concept
of justifiable granularity in the design of information granules are introduc=d. 1. Section 3, the novel
combining method based on the idea of justifiable granularity is propc .ed. Fxperimental results are
presented in Section 4; here the results of the proposed method ~re . mpared with the results
produced by a number of benchmark algorithms when using 26 da. ‘sets. F .nally, the conclusions are

presented in Section 5.

TABLE.1. SUMMARY OF M *IN NO'; ATION

Notation Description

D Observed data or traw. g set

X Observation

M Number of ¢i .28

N Number ¢ "‘mimz observations

N, Number of tran..ng observations belonging to m‘" class

K Nur .oer 01 'earning algorithms

mlm=1..m Sstot . he's

{Kidk=1,.x ¥ | arni 1g algorithms

{BCi}r=1,.x K base classifiers associated with K learning algorithms

L Meia-data or Levell data of D

L(x) ~ Meta-data or Levell data of observation x

L, Meta-data or Levell data related to the m*" class

Lo, j ~ j*hcolumn of Ly,

c{-} Relative cardinality of a set

[ij»mj] - Interval computed from j¢" attribute of L,,, (j = 1, ..., MK; m =

1,..,M)

vV, = {[Un‘ = :B ~ Granular prototype for the m*"* class (m = 1, ..., M)
— j=1,...,MK

V ={Vilm=1..m Set of M prototypes

d(x,['D Distance between scalar x and interval

d(t, V) Distance between a vector t and an interval prototype V




2. Related Work

2.1.  Ensemble method

Over the past years, many approaches related to ensemble methods have be. - proposed, and there
are different taxonomies of ensemble methods [1, 18-22]. We follow tb . . xonowuiy in [22] in which
ensemble methods are divided into two types:

e Homogeneous ensemble: A set of classifiers are generated -n difff ‘ent training sets obtained
from an original one by using the same learning algorit im. ~. nc outputs of these classifiers are
combined to give the final decision. Several state- f-tne-art ensemble methods in the
literature are AdaBoost [15], Bagging [16], and ™anac » "orest [17].

e Heterogeneous ensemble: Several different .~arning algorithms are learned on the same
training set to generate the different base <la‘su.ers. The heterogeneous ensemble focuses
more on the combining strategies on the mc*2-aata [3, 18, 23-26]) to achieve higher accuracy
than a single classifier.

In the literature, besides the practical 7 ppu. ~tions of ensemble methods in many areas, research on

ensemble methods can be divided ir o thre 2 pects:

e Design of new ensemt.e syste. s: Several recent research efforts have focused on designing
new ensemble syste~~ Rodriguez et al. [27] proposed the Rotation Forest in which principal
component analysi> “?CA) is applied to each of the K subsets randomly selected from a
feature set. T = | ar.s rotations form the new features for a base classifier. Blaser and
Fryzlewic . [28] « signed a novel ensemble system by generating random rotation matrices to
rotate .. feawre space before generating the base classifiers. Wu [29] proposed a new
ensemy '= le-.ning paradigm with the consideration of implicit supplementary information
abo. t .he performance orderings for the trained base classifiers in previous literature. By
measuring the similarity between the two learning tasks, the supplementary ordering

information for the trained classifiers of a given learning task can be inferred so as to obtain



the optimal combining weights of the trained classifiers. Moreover, several ensemble systems
were developed for different learning paradigms such as incremental learning [30-32], semi-
supervised learning [33], and multi-label learning [34, 35]. For instanr ., Pham et al. [31]
combined random projections and Hoeffding tree to construct an incre aer. al online ensemble
learning system. Krawczyk and Cano [32] incrementally learnt a .“vesho’1 for each arrived
instance in the online heterogeneous ensemble system. C.ssif .. ~re selected for the
prediction if their support on each instance exceeds the th-.>anold. Vu et al. [35] proposed
ML-FOREST algorithm to learn an ensemble of hierarchi. 1 m- iti-label classifier trees to
reveal the intrinsic label dependencies. Finally, besidc ™ *.e tv o popular combiners i.e. Sum
and Majority Vote [4, 36], novel combining algorithms v. =re introduced to enhance the task
of combining on classifiers’ outputs. For examp.> Kuncheva et al. [18] used the Ordered
Weighted Averaging (OWA) operators to aggre, ~te the classifiers’ outputs. Wang et al. [37]
proposed a new fusion scheme based on *h. upper integrals. Costa et al. [38] used the
generalized mixture functions as a comb. ving algorithm in which the weight each classifier
put on a class was set dynamically in the . ~mbination process.

Enhancing existing ensemble methc 1s: This approach focuses on techniques to enhance the
performance of some poralar enscmble methods such as Boosting [15], Bagging [16],
Random Forest [17], a-.d Ra..1c.n Subspace [39]. Several classifier selection or redundant
classifier pruning methods w.re proposed for this purpose, e.g., dynamic classifiers selection
[40, 41], instance “aced pruning [42], clustering-and-selection approach [43], and double
pruning scher ¢ (.atic and dynamic pruning working together) [44]. There are also hybrid
approache’ to weigh base classifiers in Random Subspace [45], and weigh feature subspaces
in Bageing | *<'. Yu et al. [47] proposed the hybrid incremental ensemble learning which
comb. ves fe' ture space-based learning and sample space-based learning in a single
fra. vev oin. Several methods have been introduced to improve the performance of AdaBoost,
for example by maximizing the margin between training samples of different classes via
linear programming in LPBoost [48], via quadratic programming in TotalBoost [49], and

learning from skewed training data in RUSBoost [50] to handle imbalanced datasets.
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e Study on properties of the ensemble: The research studies the properties of an ensemble
system such as diversity, margin, and generalization error bound, and their relationships and
uses them to enhance the ensemble’s performance. For instance, Kunche a ~t al. [51] studied
ten diversity measures and examined the relationships between the ac .ura y and measures of
diversity. Tang et al. [52] theoretically analyzed six diversity m. <ures ‘o understand the
relations between them and the concept of margin. Gao an/. Zb ,u "53] obtained a tight
generalization error bound by considering the empirical ave age maryin and margin variance.
Wang et al. [54] studied the relationship between the mc 'el’e generalization ability and
fuzziness of fuzzy classifiers. Kuncheva et al. [55] deri ~~ oow ds with a kappa-error diagram
which is used to analyze the performance of ensemble s stems. Li et al. [56] extended the
definition of margin based on the classification co..“dence of the base classifiers. The weights
of the base classifiers then were computed by 1. nimizing the margin induced classification
loss. Gou et al. [57] studied margin and dive. ¥ .y of ensemble systems and applied them to the

ensemble pruning process.

2.2.  Heterogeneous ensemble me*.10d

In this paper, we are concern .d w.th the heterogeneous ensemble method. For an observation X,
let P,(¥,,|X) be the probabili ~ that X belongs to the class with the label y,, given by the k"
classifier. Kuncheva et al. [ | » '‘mmarized three types of output for x for each k =1, ..., K :

e (Crisp Label: re arn 0..'v class label P, (y,,,|x) € {0,1} and }.,,, P, (¥ |X) = 1.

e Fuzzy Label: i un posterior probabilities that x belongs to classes, i.e. P, (v, |Xx) € [0,1]

and Yo Pe(y..[X) = ..

o Possi'ilistic '_abel: the same as fuzzy label but does not require the sum of all posterior

probahilities w equal one, i.e. P, (¥, |X) € [0,1] and Y., P, (¥ |X) > 0.

In this » udy, we consider the meta-data in the form of the fuzzy label. The meta-data of N
training observations is a N X MK posterior probability matrix {P,(y,,|X)Im=1,..,M; k =

1,..,K; n=1,..., N defined by:



Pi(y1lx1) - PiQymlxe) = PeOnlxe) - Pe(ymlxq)
L = Pl(y?|x2) P1(}’M.|X2) PK(y.ﬂxz) PK(}’M|X2) (1)

PLOnlxy) -+ PiQymlxy) - PeOnlxy) - Px(ymlxy)
whereas the meta-data of an observation X is given by:

Lx) =[P(1|x) = Piymlx) - PcOnlx) - Pe(yyx)] (2

There are two techniques to combine the meta-data, namely the fixe. ombining methods and the
trainable combining methods [3, 22]. The advantage of applying fixed ¢ ymbining methods for an
ensemble system is that no training based on the meta-data o trai~ ~g observations is needed; as a
result, they have less time complexity than their counterp. ts. Coveral popular fixed combining
methods are Sum Rule, Product Rule, Max Rule, Min Rule, ~ fedi- a Rule, and Majority Vote Rule [4,
36], in which Majority Vote Rule and Sum Rule are .. ...c.. popular. Kittler et al. [36] showed that
the Sum Rule is developed under two assun. ... ‘“conditional independence of respective
representations used by the classifiers and class *s “ein, " highly ambiguous”, and Sum Rule generally
results in the most reliable predictions. Ku. ~uc... ;58] proved the theoretical probability of error
related to different rules by making assi~ ~*ions about normal and uniform distribution. The Ordered
Weighted Averaging operator (OWA), ~ne r [ the most well-known operators applied to Decision
Making Systems, has also been a; ~lie { to .ne combiners in ensemble systems [18, 26]. This operator
is used to compute average vs.u. hased on weight, but instead of focusing on the original meta-data
like in the fixed rules, it is unk d to the order of data. As a result, the predictions at specific locations
can receive more attent’ yn than .~e others.

In contrast, trainabic ~07 bining methods utilize the knowledge in the meta-data of the training
set to obtain the | redictic 1 model. Although the computational cost would increase, they generally
lead to higher classii ~ation accuracy [3]. The trainable combining methods are based on the stacked
generaliza“on paiauigm (also called stacking algorithm) that was first proposed by Wolpert [59].
Stacking algc thm first trains several first-level learners on the original training set using different
learning algorithms. Then another learning algorithm (also called the combining algorithm) is trained

on the predictions of the first-level learners to obtain the second-level learner.



Trainable combining methods are constructed based on the meta-data of the training observations
which can be obtained via the Cross Validation procedure [3, 60, 61]. First, the training set is divided
into several disjoint parts of equal size. One part plays the role of testing in turn, .. the rests assume
the role of training during the training phase. The meta-data of the observ- ao1 5 in testing part is
obtained by classifiers learned on the training part. Several strategies have “een | oposed to exploit
label information in L in the combining method in which two well-k iow’ « ~roaches are weight-
based classifiers methods and the meta-data modeling-based method .

The first strategy is based on the assumption that each classifier "~ ase’gned a different weight for
each class label, and a combining algorithm is then conducted *» ¢d o . the M linear combinations of
posterior probabilities and the associated weights for the M class s. The predicted class label for an
unseen observation is decided by selecting the maximum ~lue among these combinations. Several
methods have been proposed to weigh the base classifier. Ting et al. [61] proposed the MLR method
by solving M Linear Regression models correspona.» 2 to the M classes based on the meta-data and
the training data labels in crisp form to find the .= cumbining weights. Zhang and Zhou [62] used
linear programming to find the weights of the v.-e classifiers. Sen et al. [63] introduced a method
inspired by MLR which uses a hing . loss 1 'nction in the combiner. By using this function with
regularization, three different cc abirations were proposed, namely weighted sum, dependent
weighted sum, and linear star<ed g.~ .ralization, based on different regularizations with group
sparsity.

On the other hand, the = ond strategy aims to construct the M representations on the meta-data
associated with the 7« cluss 'ibels. The discriminative decision model is obtained based on the
similarity betweer chese . »presentations and the meta-data of unseen observation. Kuncheva et al. [5]
introduced Dec*~"on . ..aplate method in which the representations (called the Decision Template) are
acquired by a\ ~ragin‘, values of the meta-data belonging to each class. The class label is assigned to
unseen obs. v- con if the associated Decision Template is nearest to its meta-data. The advantage of
Decision Template method is that it saves time in both training and classification due to its simple

computation. However, this method could have high error rate if the classifiers do not have high



enough accuracy due to the fact that the simple Decision Template may not provide a good
representation for a particular class. Nguyen et al. [3] modeled the likelihood distribution of the meta-
data associated with each class label by a Gaussian distribution computed using ¥ «. ational Inference
method. The combining algorithm is then obtained using Bayesian thec em where an unseen
observation is assigned to the class label associated with the maximum postc “or p.. hability.

There are trainable combining methods that do not belong to th . abr . <trategies. Merz [60]
proposed SCANN, an ensemble method compose of Stacking, Ce .csponacace Analysis (CA) and
kNN. In this method, CA is applied to an indicator matrix formed o1 ‘he r cta-data and the true labels
of the training observations. After that, kNN is used to classify "~ ,een bservations in the new scaled
space. The method is sometimes impractical due to the singul. ity characteristic of the indicator
matrix which cannot be handled by CA. Moreover, the .'assitication process of SCANN is more
complicated than that of other combining classifier alg. -ithms, and this increases the classification
time. Nguyen et al. [24] learned a Decision Tree C4..” n the meta-data of the training set to create the
second-level classifier. This model is combinec wiil Genetic Algorithm to select the subset of
features on the meta-data. Another approach is iv.~ta Decision Tree [64], a new Decision Tree on the
meta-data where at each node, a cla sifier .  chosen instead of selecting a value for splitting an
attribute. The entropy and maximu .1 pesteriur probability are also added to the meta-data to enhance
the discrimination ability but 10 the v tical basis was provided about the effectiveness of that
expansion. Zhang and Duin [22] c.mpared the performance of several heterogeneous ensemble
methods with fixed comb.. n< rules and several second-level learners such as Naive Bayes classifier
and Fisher classifier. " he .xpe-iments on just one hand gesture dataset with 3 different sizes of the
training set, howe» cr, do not present a convincing comparison. Recently, Nguyen et al. [4] proposed a
hybrid combini»< ¢..~~Lier system in which fuzzy rules work on the meta-data to produce the
classification model. Although that system outperforms other fuzzy rules-based methods and
ensemble 1. etk bas in the experiment since the uncertainty in the meta-data can be captured by the
fuzzy rules, the training process has high time complexity than other training combining methods due

to a large number of rules generated.
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2.3. The principle of justifiable information granularity

Normally, point statistics such as mean, median and skewness are often used .. describe the
data in many real-world applications. However, in many scenarios, point. “se mformation is less
useful for subsequent reasoning [12]. Instead, information granularity »™"ich .~olicitly models the
inherent uncertainty present in the data is more preferred. In this study, < aim to design information
granule to describe sample data D in the form of an interval Q = a,b] i which a and b are lower
and upper bounds of the interval, respectively. There are tw, int**ively compelling requirements
needed to be considered [65-67]. First, the information gran.'= Q ~".ould reflect the existing data in
such a way that the interval set becomes more legitimate as .~ore -.ata are within the bounds of (). On
the other hand, information granule should exhibit “'_!. . . cificity. This implies that the smaller
(more compact) the information granule is, the bet. . *~her specificity) it is.

We apply the principle of justifiable gt. . “lari. - [14, 66] to construct interval () to satisfy the
two requirements above. As the distribution « * v .. _enerally not known in advance, the experimental
evidence can be determined by the car”’ ~lity C{D} of the set of elements in D falling within the
bounds of Q. More generally, an increas.. ~ fu .ction f; of C{D} can be considered in the form of:
f(C{D}) = (C{DHF, >0 3)
Meanwhile, the specificity of che nterval can be specified based on its length since shorter interval
results in better specificit . In the same way, we use a continuous non-increasing function of the
length of the interval e pressed 1.« the form:
fo(la —bl) = exp(=~la F), a>0 “4)
in which |a — b| is the ler sth of interval Q = [a, b].

The two requ’ "ements above lead to the following optimization problem:

{ A{CD]: o )

follb —al; » max
It is noted that the two objective functions in (5) are in conflict since increasing fl{C{D}} would

increase |a — b|, resulting in the decrease in f,(u). A compromise can be reached by using the

11



product of these two functions and maximizing the expression with respect to the bounds of the

interval:

f1(C{D}) x f>(la — b]) (6)
We choose the median of data in D (denoted by med(D)) as the numeri- al 1 presentative of the

set of data around which Q is created. Here, we only discuss the proced “re t. zonstruct b (a is

determined similarly). Based on (3), (4), and (6), we compute the comp’ omis ¢ . ~0ciated with b:

V(b) = (C{x; € D | med(D) < x;, < b} x exp(—a(lmed(D) - 1)) 7

The optimal upper bound of the interval is determined by maximi~‘ng .. - values of V(b) i.e.

bopt = argmax {V(b)|b = med(D),b € D} (®)

The optimal lower bound is found in the same manner

aopr = argmax {V(a)|a < med(D), a € D} 9
where
V(a) = (C{x, €D |a < x;, < med(D)}F x e ~(—ulmed(D) — al)) (10)

A special case is noted in proposition 1 when the principle of justifiable granularity is applied to the
two-class classification problems.

Proposition 1: If [aopt, bopt] "+ the ir.erval built by justifiable granularity on the meta-data
associated with the first class "a. ~!l of a two-class classification problem, the interval associated with

the other class label is [1 - byy ,1— aopt] (See Appendix for the detailed proof)

op
Therefore, for binary c¢'issificauun, interval construction is only needed for the first class label while

the interval for the seconu 2 ,s label can be derived directly from the first one.

3. Prop ysed fr imework

In v i- paper, we focus on developing a classification framework by applying justifiable

granularity to the meta-data of training observations. Specifically, we model the uncertainty in the

12



base classifier outputs by constructing class interval associated with each class label (called granular

prototype) from the meta-data. The proposed framework is illustrated in Figures 1, 2, and 3.

[P1(}’1|X§n) o PmIxT) o PeOnlxih) o PK(yMle)]
L, = P1()’1_|X72n) P1()’1\/_1|Xgl) PK()’1.|X£n) PK()’M|X§n)I (1
POAE) - Pl - Pe(alxi) - Be(mlxi )i
\ 4 \ 4 \ 4
[P1(}’1|-):P1(y1|-)]~-~ [P1(}’M|-)' P1()’M|-)] [PK(J/M|-)'EMI-§]

We use a Cross Validation-based procedure to generate the me. *-~.ta f om the training set (see Figure
1). Specifically, T-fold Cross Validation is applied to the traini. ¢ set D to obtain T disjoint parts
D=D,U..UDp, D;ND; =0 (i #j), and |Dy| = -+ ~ 'Dr|. Meta-data of observations in D; is
then formed by the classifiers (denoted by BC), 1) generaw. ? by learning the K learning algorithms on
D; =D —D;. The meta-data of all training nbser. .tions belonging to D is finally obtained by
concatenating all meta-data from each D; into the ,\~rm of matrix L given by (1). Since class labels of
training observations are known in advance, L can ve separated into M groups corresponding to the M
class labels i.e. L, = {LX)|y(x) = .}(m = 1, ..., M). If the meta-data of the m®" class contains
N,,, observations, L,, is a N, ¥ MK metrix as shown in (11). On the j** column of L,,(j =
1, ..., MK), the principle of ji ‘tifiable granularity is applied to obtain the interval to represent all

elements (posterior probabi’ .. ?) in that column.
Let Vi = [vm W,J J~notes the interval obtained on the j¢" column (j = 1, ..., MK) of L,,.

After looping though all .."X columns, we obtain MK intervals associated with MK columns of L,,,

denoted by V,,, = ;‘Cn ,} MK Doing this for all M, we obtain a set of M granular prototypes i.e.

V ={V,}(m =1,.., U) representing the M class labels. V,, is our novel information granules
representa. on ', .ne mt* class label. Note that V,,, is a vector of interval values and is different to the
representation used in Decision Template method [5] where mean value is used to describe the
posterior probabilities in each column of L,,. At the end, the base classifiers {BC;} (k = 1, ...,K) are

generated by learning the K learning algorithms on entire training set D. The training process will
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output the M granular prototypes V = {V,,,} associated with M class labels and K base classifiers
{BC,}. These outputs will be used as the input for the classification process.

During classification, for each unlabeled observation X%, we compute its 1.. ta-data L(x*) in
the form of vector (2) by classifying x* with the K base classifiers BCy. T'.e ¢ ass label for x* is
predicted by calculating the distance between L(x*) and prototype V,, ™ = . ..,M) and then
selecting the smallest value among all distances. To do this, we need tc def’ (¢ . ¢ distance between a

numerical vector and a granular prototype.

Training set D

Partition into
| T parts

S
=]
)
~

Learning
algorithms

e
3
3

Fm——————————

Classifiers

BC =T =T associated
1 BCx with the

partitions

RS Be=2

\\/

T'he meta-data
of training set L

Fig.1. Meta-data generation
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Learlnmg . 1 K. 2 X, K J
algorithms “ue
| | .
Meta-data
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generation classifiers BC 1 BC 2 cee C =

\ The meta-data of

training set L

/ i T —

The meta-data I_
associated with the Ll LZ LM
class labels L L

~—__ l k///ij__

Justifiable Granularity |
J

—
/ l \ The prototypes

R B | vﬁ@mwﬁmi] O I |

Fig.2. Training procuoc of the proposed method

We start with the definitic « of a . .tance between a numerical value and an interval. The
distance is inspired by the diste «ce . tw .en two intervals d([xq,x;], [a, b]) = max {|x; — al, |x; —
b|} as defined in [68]. Since we ca. write x = [x,x], we define the distance between a numerical
value and an interval as:

Definition 1: The dist' nce vetween a numerical value x and an interval [a, b] is given by:
d(x,[a,b]) = may jx — a|,x — b|} (12)

Several inte. =t g properties of the distance function in (12) are listed below. They can be
regarded as a _eneralj :ation of the “classical” vector distance. The proof of these properties is covered
in the App.ndr .. . nese properties ensure that the distance function defined in (12) is a proper metric.
For example, P.operty 3 ensures that any prediction that falls inside the interval is more reliable than
those that fall outside the interval. Property 4 ensures that if x; is close to [a, b] and x, is close to

[a, b], then x; and x, must be close to each other.
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Final prediv.ion
Fig.3.Classifica.'an p ocess of the proposed method
Property 1 (Positive Definite .w>®): d(x, [a,b]) = 0and d(x,[a,b]) =0 x=a=b (13)
Property 2 (Equality): d( 4,11 ,b]) = d(xy,[a,b]) & x; =x,0rx; +x, =a+b (14)
Property 3 (Consistens y):If x; = [a, b] and x, € [a, b] then d (x4, [a, b]) < d(x,[a, b]) (15)
Property 4 (Triangle In.uziity): d(xq, [a, b]) < d(xq,x;) + d(x,, [a, b]) (16)
Property 5 (Symietry):c (x,[a, b]) = d([a, b], x) 17
Property 6 (Scale I ariance):d(ax, [a, al[a, b]) = |a|d(x, [a, b]) (18)
Property 7 (Transiation Invariance): d(x, [a, b]) = d(x + a, [a, b] + [, a]) (19)

Using Definition 1, we can define the distance between a numerical vector and a granular prototype

as:
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Definition 2: The distance between a vector t and a granular prototype V = {V]}(] =1,..,|V]) is

defined by:

d@,v) =3V d(t,v)) (20)

in which d(tj, V-) is the distance between the jt* attribute of t and the interva’ V; ¢.ven by (12).

Two important properties of d(t, V) are outlined as follows

Property 8 (Consistency): If t;={t;;}¢t;; €V, and t, = ty;}t, €V;Vj=1,..,|V| then
d(t;, V) <d(t,, V) (21)
Property 9 (Triangle Inequality):d(t,,V) < d(t;, t,) + d(r,. V) (22)

where d(tq, t,) is the distance between two vector t; and t,. Thei proof is presented in Appendix.

We can now compute the distance between the me."-ua . ~Funlabeled observation x*, i.e. L(x%), and
the M granular prototypes V,,,(m = 1, ..., M) and v.~dic. the class label to be the one that is associated
with the shortest distance

x* € yp if d(L(x*),Vy) = ming—y 7 7"), Vi) (23)
The algorithms which summarize t} 2 tra.. in‘, and classification process of the proposed method are
introduced in the Appendix. It is nu '~ . the . there are two parameters a and § whose values need to be

set. Their effect on the classif catic - results will be discussed in the next section.

4. Experiments, St.dies
41. Datasets ~uu Experimental Setting

The experimen.. ~~.¢ carried out using 24 datasets selected from the UCI repository [69]. These
datasets were <electe . as they are often used to validate the performance of various classification
systems. 11 ¢isuce the objectiveness in the comparison between our method and benchmark
algorithms, we conducted the experiments on datasets having few hundred (e.g., Hepatitis, Iris, and
Wine) and few thousands of observations (e.g., Twonorm, Musk2, and Satimage). The number of

attributes also varies from 3 (Haberman) to 649 (Multiple Features). We also conducted the
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experiment on two additional datasets i.e. a medical imaging dataset and a colon cancer dataset. The
medical imaging dataset is selected from the CLEF2009 database which is a large x-ray database
collected by Archen University, Germany [70]. Here we chose the 10 class datass . ~om this database
for the experiment. Histogram of Local Binary Pattern (HLBP) was selected s 1 ature vector of the
image. The colon cancer dataset [71] includes 62 samples collected fro1.. ~olo.. ~ancer patients in

which 40 patients suffer from colon cancer and the remaining are normal (see .le 2 and 3).

TABLE 2. UCI DATA: MAIN CHAR/.CTF™'STICS

# of # of # of , . .
. of ooservations in each class
features classes observations
Artificial 10 2 700 57.14%, 42.86%
Australian 14 2 690 44.49%,55.51%
Biodeg 41 2 1055 33.74%,66.26%
Blood 4 2 748 23.80%,76.20%
Breast Cancer 9 2 683 65.01%,34.99%
Cleveland 13 5 297 18.18%,11.78%,11.78%,4.38%,53.87%
Colon 2000 2 62 64.51%, 35.49%
Conn Bench Vowel 10 11 528 9.09% for each class label
Contraceptive 9 3 1473 42.70%,22.61%,34.69%
Dermatology 34 6 358 31.01%,16.76%,19.83%,13.41%,13.41%,5.59%
Glass 9 6 214 32.71%,35.51%,7.94%,6.07%,4.21%,13.55%
Haberman 3 2 306 73.53%,26.47%
Heart 13 2 270 55.56%,44.44%
Hepatitis 19 2 80 16.25%,83.75%
Iris 4 3 150 33.33%-33.33%-33.33%
Led7digit 7 10 50, 7.4%,10.2%,11.4%,10.4%,10.4%,9.4%,11.4%,10.6%,9.8%,9%
Madelon 500 2 700 50%,50%
Multiple Features 649 10 2 "0 10% for each class label
Musk2 166 2 659% 84.59%,15.41%
Satimage 36 6 6735 23.82%,10.92%,21.10%,9.73%,10.99%,23.43%
Texture 40 10 300 9.09%,9.09%,9.09%,18.18%,9.09%,9.09%,9.09%,9.09%,9.09%,9.09%
Twonorm 20 2 7400 49.96%,50.04%
Vertebral 6 3 300 19.35%,48.39%,32.26%
Wine 13 3 178 33.15%,39.89%,26.97%
Yeast 8 10 1484 31.20%,28.91%,16.44%,10.98%,3.44%,2.96%,2.36%,2.02%,1.35%,0.34%

TABLE 3. 10 CLA™" DA ASET FROM THE CLEF2009 MEDICAL IMAGE DATABASE

, /
Image . :
W

—
Descrip. n Abdomen Cervical Chest Facial cranium Left Elbow

Number of observa. an 80 81 80 80 69
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Image _» y 5
Il . l! . I

Description Left Shoulder Left Breast Finger Left Ankle Jo. Left Carpal Joint

Number of observation 80 80 66 R0 80

We used 3 learning algorithms namely Linear Discriminant A .aiysis (a¢noted by LDA), Naive
Bayes, and k-Nearest Neighbors (denoted by kKNN) to learn the has. ~Ia-_ifiers. The choice of these
algorithms is to demonstrate that an ensemble system built usi. - just imple learning algorithms can
achieve high classification accuracy. Moreover, in a heterogeneou ensemble system, a set of diverse
learning algorithms should be used to increase the system ‘versity. Less diverse learning algorithms
usually output hypotheses with similar classification res.'ts so that the ensemble has less chance to
improve the overall performance [1]. Here, LD: Naive Bayes, and kNN are three learning
algorithms with significantly different strategies, .na chey ensure the generation of diverse outputs.
For Naive Bayes classifier we used Gaussian . approximate the likelihood distribution of each
feature of the original data. For kNN the vai e of k was set to 5, denoted as kNNs. The mean and
variance of classification error rate: of t'iese iearning algorithms are shown in Table 4-6.

For comparison, we choosr the be..~ imark algorithms consisting of:

e Decision Templatr method: We wused the similarity measure S; defined by

{LX)NDTem,}

S1(L(x),DTem. ) = (1. 'X)UDTemp}

where DTem,y, is the Decision Template of m*"class [5].

e AdaBoost [15]: . ~cic.on Tree C4.5 was used as the learning algorithm with 200 iterations as
in [4]. We used A laBoost.M1 (for the binary classification problems) and AdaBoost.M2 (for
the mr 4lti-cla. s classification problem) from the Statistics and Machine Learning Toolbox of
M-tlab,

e Rana.m Forest [17]: We used Decision Tree C4.5 as the learning algorithm. 200 trees were
created in which the maximum number of features to consider when looking for the best split

was set to the square root of the number of features. We used this method from the scikit-
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learn  library  (available at  http://scikit-learn.org/stable/modules/generated/sklearn.

ensemble.RandomForestClassifier.html).

e [2-loss Linear Support Vector Machine (denoted by L2ZLSVM): L2LSV?! (  -as introduced by
solving the optimization problem including minimizing region toun'ed by these two
hyperplanes (margin) as in SVM plus L2-loss function. We usc? this method from the
package LIBLINEAR [72].

e Decision Tree C4.5: We used this method from the Statistic , and Machine Learning Toolbox
of Matlab.

e The stacked generalization paradigm in which the 1. ~.¢ le rning algorithms used in the
proposed method were used to generate the meta-data »f the training set. The unpruned
Decision Tree C4.5 learned on the meta-data is usc.' to create the second-level classifier [24].
We called this method the Two States Ensemble . 'stem with C4.5 (denoted by TSES).

It is noted that the two benchmark algorithms, i.. e Decision Template and TSES methods, and
the proposed method are all trainable combining .7eti.ods, and therefore they were constructed with
the same learning algorithms in the first-level.

We performed 10-fold Cross Va'.dation nd ran the test 10 times to obtain 100 test results for
each dataset. To assess the statis.ical sign.ficance of the differences in the classification results
produced by different methods. we us. ' Wilcoxon signed rank test [73] to compare the classification
results of the proposed apprrach anu each benchmark algorithm. The null hypothesis states that the
difference in results proau. > by the two methods is not statistically significant. The performance
scores of two method are trea ed as significantly different if the p-value of the test is smaller than a

given confidence ] .vel. Ir our experiments, the confidence level was set to 0.05.

4.2. Resui.manr Discussion

4.21. The ‘rrluence of parameters
In the proposed method, we used two parameters, i.e. @ and 8 to control the generation of

interval (see (7) and (10)). Figure 4 shows the relationship between classification error rate and values
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of @ and 8 where a € {0,0.1, ...,3.9,4} and B € {0.5, 1, 1.5, 2}. Some observations can be made here.
First, it can be seen that @ could have a significant effect on the classification error rate and its
optimal value is somewhat data dependent. For some datasets like Conn Bench * ow.' and Glass, the
classification error rate reduces sharply and then remain unchanged with che ncrease of a. For
datasets such as Haberman and Musk2, the classification error rate reduces ~harply to a minimum
before slightly increases. For Iris dataset, the classification error rate i mir imun at @ = 0. Besides,
it can be observed that 8 only have a very slight effect on the cle ;sificav. »n error rate since the line
graphs associated with 4 values of § are nearly the same on the .xperimental datasets.

In the next experiment, the value of @ and [ are ~htair~” via a 10-fold cross validation
procedure conducting on the meta-data (see Figure 5). We 'nop t' rough all given values of a and f§
ie. {0,0.1,...,3.9,4} and {0.5,1,1.5,2}, respectivel~ ~=~ - oose the pairs which minimize the

<

classification error rate on the meta-data of trainin;

oo~

4.2.2. Comparison with benchmark algc. 1.2

The mean and variance of the classi."cation error rates of the three learning algorithms, the
benchmark algorithms, and the pror vsed me10d are shown in Table 4, 5 and 6. First, compared to the
learning algorithms, the propos .d n. *hc s obtains better results on 16 datasets among 26 datasets.
Since we do not know which algoi.."ms are suitable for a given dataset, ensemble method can be a
viable solution which ge: ~ral'y performs better than using a single classifier. As discussed in the
Introduction section, sy 7 veraging the results of the base classifiers, we can reduce the risk of
choosing a wrong r.assifier, us well as getting a better approximation for the relationship between the
feature vectors and .“=ir - .ass labels.

The s atistica test result displayed in Figure 6 shows that the proposed method is better than
the two ti “tnar .. combining algorithms. Comparing the proposed method to Decision Template
method, we rejucted 11 null hypotheses that the two methods perform equally. In all these cases, the
classification error rates of the proposed method are smaller than that of Decision Template method.
On datasets like Satimage and Texture, the proposed method is significantly better than Decision
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Template method (0.1297 vs. 0.2965 on Satimage, and 0.009 vs. 0.0968 on Texture). Comparing with
TSES, we rejected 24 null hypothesis, in which the proposed method is better on 20 datasets and
worse on 4 datasets.

The proposed method also outperformed Decision Tree C4.5, L2LSV’4, » andom Forest, and
AdaBoost. Specifically, the proposed method is better than AdaBoost (22 w. "< anu ? losses), Decision
Tree C4.5 (20 wins and 3 losses), Random Forest (16 wins and 8 losses, ar 2 - ?LSVM (16 wins and
3 losses). The statistical test results clearly demonstrate the advantag . vf our o gorithm.

Table 7 shows the average ranking of the proposed metho. and .ne benchmark algorithms.
The average ranking was computed based on averaging the ran. = _s of oenchmark algorithms and the
proposed method on all experimental datasets. These rankn.»s were specified based on the
classification error rate: the lower the classification error 1. “¢ or the method, the higher its ranking. It
can be seen that the proposed method clearly ranked firs., followed by Decision Template method.

In Table 8, we show the granular prototy v s associated with the class labels of several
datasets. For datasets like Iris and Twonorm, the ‘ntc.vals of prototype V,,, associated with the m®"
class predicted by each base classifier are usually ~very tight, and the intervals of different classes are
well separated. Therefore, the discrir inative decision model is highly unambiguous, resulting in
significantly smaller classification r cror rate. (n contrast, on datasets like Contraceptive and Glass, the
intervals are highly overlapped. and c.. *< s high ambiguity in the discriminative model which lead to

higher classification error rate.
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Comparing to the propc.ed method, some benchmark algorithms like AdaBoost and
L2LSVM use different strategi- s to lea.. the classifiers. Some of these classifiers can provide a good
approximation for the ur'—own re¢lationship between inputs and labels, resulting in better
performance. This is the rea. - 1 why on some datasets, our method is better than AdaBoost, L2ZLSVM,
Random Forest, and . ‘*=ci,ion (ree C4.5, and vise verse. Here we further discuss the advantages of
our methods in co aparisc 1 to Decision Template and TSES method. Since they are all heterogeneous
ensembles with Giffercul combiners, the combining strategy can be used to explain why the proposed
method is bettc” on s~ me datasets.

In 1.»t rogeneous ensemble, each learning algorithm uses different methodology to learn a
base classifier, thereby introducing uncertainty to the meta-data. A combiner which can explicitly

represent knowledge with uncertainty is therefore desirable. Some traditional learning algorithms like
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Decision Tree C4.5 and Naive Bayes do not consider the uncertainty when they are used as combiner
on the meta-data, as a result, they are less likely to obtain good predictions. Meanwhile, Decision
Template method and the proposed method represent the uncertainty in di ..vent ways: point
estimations and intervals-based prototypes, respectively. It explains why Dec sio. Template method
and the proposed method obtain better results than TSES with C4.5 on man, Jatasc .

Decision Template models the meta-data associated with each r.ass . ~! by a vector of point
estimations. It is noted that in many scenarios, pointwise statistics < .va as n..an and median are less
informative for subsequent reasoning [12]. Figure 7 shows an ex. mnle of granular prototype and
Decision Template associated with each class label for the \ ~ _oral dataset. Clearly, the granular
prototype with interval values offers greater flexibility than Decis. \n Template with point values. The
proposed method provides a more general and flexible .-ay w0 describe the meta-data of training
observations than Decision Template method, resultu.> in better classification results on many
datasets.

TABLE.4.CLASSIFICATION ERROK RATES OF THE 3 LEARNING ALGORITHMS

AND THE PRC™OSED METHOD

LDA . "aive Bayes KkNN; Proposed Method

Mean Variance Mea Variance Mean Variance Mean Variance
Artificial 0.3121 1.17E- 3 vzl 1.15E-03 0.2413 2.31E-03 0.2394 3.07E-03
Australian 0.1453 1.427.-03 0.1387 1.39E-03 0.3439 2.99E-03 0.1314 1.90E-03
Biodeg 0.1465 8.06. 0/ r.2068 1.42E-03 0.1828 1.38E-03 0.1451 1.19E-03
Blood 0.2281 3 J5E-04 0.2453 1.11E-03 0.2341 1.56E-03 0.2511 2.92E-03
Breast-cancer 0.0414 . OE-04 0.0412 5.71E-04 0.0321 4.37E-04 0.0311 4.50E-04
CLEF2009 0.1714 1.42E "2 0.3684 1.79E-03 0.3583 3.09E-03 0.1861 1.44E-03
Cleveland 0.4228 1 21E-03 0.4328 4.31E-03 0.5521 3.64E-03 0.4226 2.80E-03
Colon 0.184~% " 96E-02 0.3717 3.98E-02 0.1740 1.60E-02 0.1601 2.07E-02
Conn-bench-vowel 0.3850 3.80E-03 0.4699 491E-03 0.0701 1.36E-03 0.1179 1.99E-03
Contraceptive 0.4°.29 . "6E-03 0.5247 1.95E-03 0.4840 1.17E-03 0.4785 1.39E-03
Dermatology 0 285 7 05E-04 0.0397 9.84E-04 0.1138 2.63E-03 0.0321 6.30E-04
Glass 0.7« /.68E-03 0.4019 7.10E-03 0.3335 8.59E-03 0.3612 8.90E-03
Haberman ~.263u 2.48E-03 0.2589 2.51E-03 0.2884 3.51E-03 0.2561 3.27E-03
Heart 0.16_.7 4.26E-03 0.1615 4.68E-03 0.3193 6.36E-03 0.1571 3.52E-03
Hepatitis 0.168¢ 1.48E-02 0.1563 1.22E-02 0.1938 6.68E-03 0.1526 1.20E-02
Iris NNty 1.00E-03 0.0400 2.31E-03 0.0393 1.79E-03 0.0400 2.30E-03
Led7digit 0.2778 3.45E-03 0.2706 3.28E-03 0.2970 4.59E-03 0.2640 3.92E-03
Madelon L 4592 1.08E-03 0.4119 1.18E-03 0.2936 9.81E-04 0.2930 8.11E-04
Multiple features ,.0199 8.33E-05 0.0389 1.79E-04 0.0511 2.39E-04 0.0140 5.20E-05
Musk2 0.0566 6.39E-05 0.2687 2.16E-04 0.0345 4.70E-05 0.0417 4.60E-05
Satimage 0.1598 1.28E-04 0.2126 1.76E-04 0.0910 1.15E-04 0.1297 1.60E-04
Texture 0.0053 7.93E-06 0.2470 2.68E-04 0.0133 2.52E-05 0.0090 1.00E-05
Twonorm 0.0223 2.96E-05 0.0239 3.15E-05 0.0317 3.84E-05 0.0221 2.00E-05
Vertebral 0.1965 3.69E-03 0.2565 4.59E-03 0.1845 2.48E-03 0.1747 2.62E-03
Wine 0.0095 4.45E-04 0.0463 1.98E-03 0.2971 8.24E-03 0.0297 1.23E-03
Yeast 0.4215 1.50E-03 0.4259 1.49E-03 0.4366 1.15E-03 0.4170 1.54E-03

*The best results are highlight in bold
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TABLE.5.CLASSIFICATION ERROR RATES OF THE 2 HETEROGENEOUS ENSEMBLE

METHODS AND THE PROPOSED METHOD (USING 3 LEARNING ALGORITHMS)

File name Decision Template TSES _vnposed Method

Mean Variance Mean Variance Mean Variance
Artificial 0.2433 1.60E-03 0.2789 A 2.74E-03 v.. 394 3.07E-03
Australian 0.1346 1.50E-03 0.1771 A 2.41E-03 0.7 314 1.90E-03
Biodeg 0.1493 A 9.76E-04 0.1880 A 1.22E-03 " 1451 1.19E-03
Blood 0.272 A 3.06E-03 0.3023 A 2.57E-03 0.z.°1 2.92E-03
Breast Cancer 0.0374 A 4.15E-04 0.0404 A 5.12E-04 v 311 4.50E-04
CLEF2009 0.1902 1.51E-03 02192 A 1.37E-03 0.1861 1.44E-03
Cleveland 0.4369 A 3.45E-03 0.4763 A 6.04E-C_ 0.4226 2.80E-03
Colon 0.1598 1.93E-02 0.2319A 2.17E-02 0.1601 2.07E-02
Conn Bench Vowel 0.1158 2.00E-03 0.0829V 1.54 .-03 0.1179 1.99E-03
Contraceptive 0.4781 1.40E-03 0.5379A 1.8( E-03 0.4785 1.39E-03
Dermatology 0.033 8.86E-04 0.0374 A 7.36L Y4 0.0321 6.30E-04
Glass 0.3785 A 1.11E-02 0.3910A «.V0E-02 0.3612 8.90E-03
Haberman 02779 A 5.00E-03 0.3350A 6.97 2-0. 0.2561 3.27E-03
Heart 0.1541 4.00E-03 0.2159 A _.85E-C, 0.1571 3.52E-03
Hepatitis 0.1663 1.60E-02 0.2050 A 1.35,.-02 0.1526 1.20E-02
Iris 0.040 2.50E-03 0.0313 1..3E-03 0.0400 2.30E-03
Led7digit 0.266 4.18E-03 0.2972 A 4.1 JE-03 0.2640 3.92E-03
Madelon 0.2941 8.17E-04 0.3697 A _.14E-03 0.2930 8.11E-04
Multiple Features 0.0148 A 5.90E-05 0.0132V 5.93E-05 0.0140 5.20E-05
Musk2 0.0455 A 3.89E-05 0.04Z « 5.03E-05 0.0417 4.60E-05
Satimage 0.2965 A 8.20E-05 0.1066'y 1.30E-04 0.1297 1.60E-04
Texture 0.0968 A 9.38E-06 0 7w 9.14E-06 0.0090 1.00E-05
Twonorm 0.0221 2.62E-05 0.0.25 4 4.05E-05 0.0221 2.00E-05
Vertebral 0.1890 A 3.77E-03 0.195 4 4.73E-03 0.1747 2.62E-03
Wine 0.0298 1.24E-03 9..753 1.22E-03 0.0297 1.23E-03
Yeast 0.4186 1.70E-03 0.'854 A 1.19E-03 0.4170 1.54E-03

TABLE.6.CLASSIFICATION ERROR ".* TES OF THE OTHER BENCHMARK ALGORITHMS

File name Random Forest Ada’ oost Decision Tree C4.5 L2LSVM

Mean Variance _ Mean Variance Mean Variance Mean Variance
Artificial 0.3016 A 1.21E-03 0 197V 1.90E-03 0.2433 1.60E-03 0.4551 A 1.35E-03
Australian 0.1299 1.74E-03 ©.1425 . 1.53E-03 0.1678 A 2.13E-03 0.307 A 2.12E-03
Biodeg 0.2003 A 1.29E-" 3 C'52 A 1.22E-03 0.1853 A 1.39E-03 0.1328V 8.65E-04
Blood 02304 Vv 1.54F 23 0209V 1.05E-03 0.2595 A 1.68E-03 0.2214V 6.64E-04
Breast Cancer 0.0269 ¥ 3.7¢ 204 0.0410 A 4.19E-04 0.0526 A 6.94E-04 0.1358 A 1.95E-03
CLEF2009 0.3610 A 2.18E-03 " 5532 A 2.22E-03 0.3664 A 3.12E-03 0.6318 A 1.77E-03
Cleveland 0.3840 V 7 o. 03 0.4208 1.88E-03 0.5055 A 6.30E-03 0.4181 1.60E-03
Colon 0.0462'V 3.26F I3 0.2224 A 2.27E-02 0.2588 A 2.74E-02 0.1614 1.92E-02
Conn Bench Vowel 0.3689 A 252 .-03 0.6297 A 3.21E-03 0.2295 A 3.15E-03 0.5485 A 3.74E-03
Contraceptive 0.4912 & 1.o. =03 0.4996 A 8.99E-04 0.4830 1.83E-03 0.4949 A 1.33E-03
Dermatology 0.1953 . *.06E-uo 0.0436 A 7.25E-04 0.0516 A 1.23E-03 0.0245V 6.09E-04
Glass 03327 ¢ 3.25F 03 0.5215 A 2.71E-03 0.3092V 1.05E-02 0.4067 A 8.82E-03
Haberman 0.2707 ~ 6.6 .-03 0.2743 A 3.60E-03 0.3048 A 5.27E-03 0.2598 1.39E-03
Heart 0.12*~ Vv T HE-03 0.1896 A 4.67E-03 0.2381 A 6.70E-03 0.1559 3.79E-03
Hepatitis 0,163V 1.16E-02 0.1363 1.41E-02 0.1663 1.22E-02 0.1588 1.15E-02
Iris .0387 1.88E-03 0.0540 A 2.82E-03 0.0507 A 2.40E-03 0.0440 2.33E-03
Led7digit 0. %46 A 3.61E-03 0.3474 A 3.91E-03 0.2906 A 2.75E-03 0.2734 A 4.04E-03
Madelon 935%- 1.32E-03 0.4056 A 1.09E-03 0.2462V 1.04E-03 0.4587 A 8.15E-04
Multiple Features 0.04"2 A 2.26E-04 0.3575 A 2.00E-03 0.0636 A 3.10E-04 0.0260 A 1.05E-04
Musk2 0.142. A 1.56E-05 0.0511 A 5.33E-05 0.0322V 4.34E-05 0.0473 A 5.41E-05
Satimage 0.361 A 1.92E-04 0.2035 A 1.61E-04 0.1415A 2.27E-04 0.2292 A 1.67E-04
Texture . .62 A 1.52E-04 0.3944 A 2.18E-04 0.0761 A 1.13E-04 0.0112 A 2.60E-05
Twonorm N0N641 A 7.34E-05 0.0310 A 3.76E-05 0.1602 A 2.21E-04 0.0221 2.06E-05
Vertebral 0.2003 A 3.00E-03 0.2245 A 1.25E-03 0.1984 A 3.75E-03 0.1865 A 3.84E-03
Wine 0.0182 'V 8.88E-04 0.0378 A 1.77E-03 0.1010 A 4.60E-03 0.0559 A 2.86E-03
Yeast 0.4333 A 1.56E-03 0.5880 A 2.44E-04 0.4642 A 1.86E-03 0.4300 A 1.21E-03

A or V indicate that proposed meéthod is better or worse than the benchmark algorithm, respectively.
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Fig.6. Statistical test results comparing propose. methoc to the benchmark algorithms

(using 3 learning alaorn. ms)

TABLE.7. AVERAGE RANKINGS OF ALL " "ETh DS (USING 3 LEARNING ALGORITHMS)

Algorithm Ranking
Decision Templa.. 3.37
AdaBo st 5.04
Decis.~n Tree 4.79
TS'.S 4.44
L' LS M 4.19
Kanag. ™ ‘orest 3.88
1 ~oosed Method 2.29

TABLE.8. EX. MT LE JF GRANULAR PROTOTYPES FOR SEVERAL DATASETS

Dataset name Granular pr otypes

VA={[7 290, 1.00000] [0.00000, 0.06440] [0.94109, 1.00000] [0.00000, 0.05891] [1.00000, 1.00000] [0.00000, 0.00000]}

Twonorm
V2=, 1.00000, 0.07 56] [0.93024, 1.00000] [0.00000, 0.09463] [0.92380, 1.00000] [0.00000, 0.00000] [1.00000, 1.00000]}
oo T2 0.96449] [0.00921, 0.41199] [0.03979, 0.58603] [0.10900, 0.96204] [0.00116, 0.66490] [0.03767, 0.59979] [0.20000, 1.00000] [0.00000, 0.40000]
[L 90" 4, 0.40000]}
c . V2={[0. 9282, 0.62354] [0.06022, 0.57610] [0.13421, 0.58900] [0.05647, 0.68147] [0.00232, 0.86498] [0.09485, 0.53928] [0.20000, 0.60000] [0.00000, 0.80000]
ontraceptive

[0.00000, 0.60000]}

V3={[0.14256, 0.67763] [0.02580, 0.49724] [0.16817, 0.63002] [0.07716, 0.75685] [0.00103, 0.69072] [0.14702, 0.63025] [0.20000, 0.60000] [0.00000, 0.40000]
[0.20000, 0.80000]}
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Iris

V1= {[1.00000, 1.00000] [0.00000, 0.00000] [0.00000, 0.00000] [1.00000, 1.00000] [0.00000, 0.00000] [0.00000, 0.00000] [1.00000, 1.00000] [0.00000, 0.00000]
[0.00000, 0.00000]}

V2={[0.00000, 0.00000] [0.91273, 1.00000] [0.00000, 0.08727] [0.00000, 0.00001] [0.94101, 1.00000] [0.00000, 0.05899] [0.00000, 0.00000] [1.00000, 1.00000]
[0.00000, 0.00000]}

V3={[0.00000, 0.00000] [0.00000, 0.19505] [0.80495, 1.00000] [0.00000, 0.00000] [0.00000, 0.06187] [0.93813, 1.00000] I .0000uv, "0000] [0.00000, 0.00000]
[1.00000, 1.00000]}

Glass

V1={[0.21048, 0.83217] [0.07672, 0.69066] [0.00343, 0.17914] [0.00000, 0.00061] [0.00000, 0.00544] [0.00000, 0.00. ' [ _2167, 0.71802] [0.09053, 0.74780]
[0.02996, 0.28073] [0.00000, 0.00036] [0.00000, 0.02064] [0.00000, 0.00012] [0.40000, 1.00000] [0.00000, 0.20000] , 0000, v.. 0] [0.00000, 0.00000] [0.00000,
0.00000] [0.00000, 0.00000]}

V2={[0.00000, 0.68058] [0.31214, 0.73528] [0.00000, 0.19830] [0.00000, 0.05873] [0.00000, 0.02251] [0.0" 00, 0.0 ,uc_ " 00000, 0.61310] [0.28941, 0.74108]
[0.00000, 0.16535] [0.00000, 0.02865] [0.00000, 0.01283] [0.00000, 0.00134] [0.00000, 0.40000] [0.40000, L., 201 1.00000, 0.00000] [0.00000, 0.00000] [0.00000,
0.00000] [0.00000, 0.00000]}

V3={[0.20043, 0.83912] [0.06652, 0.71189] [0.00033, 0.33895] [0.00000, 0.00023] [0.00000, 0.000: '] [0.00000, . 0000] [0.34264, 0.77711] [0.09489, 0.59960]
[0.03535, 0.21730] [0.00000, 0.00025] [0.00001, 0.00161] [0.00000, 0.00001] [0.40000, 1.00000] [0.006 ™ 0.200001 J.00000, 0.60000] [0.00000, 0.00000] [0.00000,
0.00000] [0.00000, 0.00000]}

V4={[0.00000, 0.10771] [0.00000, 0.87700] [0.00000, 0.01110] [0.00000, 1.00000] [0.0000L 0.2 ,4] [0.( 000, 0.10227] [0.00000, 0.11322] [0.00000, 0.91031]
[0.00000, 0.01789] [0.00000, 1.00000] [0.00000, 0.20848] [0.00000, 0.02114] [0.00000, 0. “100] [0.20000 .40000] [0.00000, 0.00000] [0.20000, 0.80000] [0.00000,
0.00000] [0.00000, 0.00000]}

V5={[0.00000, 0.47893] [0.00000, 0.65392] [0.00000, 0.03884] [0.00000, 0.00447] |. “1035, 0.98' 6] [0.00000, 0.21954] [0.00001, 0.40464] [0.00000, 0.60271]
[0.00003, 0.08869] [0.00000, 0.22933] [0.02167, 0.99452] [0.00002, 0.15650] [0.6v . 0.00u.  _..20000, 0.40000][0.00000, 0.00000] [0.00000, 0.00000] [0.20000,
0.60000] [0.00000, 0.00000]}

V6={[0.00000, 0.05812] [0.00000, 0.05386] [0.00000, 0.00986] [0.00000, 0.0v_ "?1 [0.00000, 0.00485] [0.99489, 1.00000] [0.00000, 0.11986] [0.00000, 0.01646]
[0.00000, 0.09883] [0.00000, 0.03480] [0.00000, 0.09730] [0.97793, 1.00000] [0.00000, - ~0000] [0.00000, 0.00000] [0.00000, 0.00000] [0.00000, 0.00000] [0.00000,
0.00000] [1.00000, 1.00000]}
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r arks the Decision Template. Top, middle, and bottom figures are associated with class 1, 2, and 3, respectively.

Note.

F.g.7. Decision Templates and Granular Prototypes for the Vertebral Dataset
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4.2.3. Different number of learning algorithms

To see the effect of using different number of learning algorithms on the ensemble, we built
heterogeneous ensemble system with 10 learning algorithms. The 7 new learr .. algorithms: two
kNN classifiers (with the number of nearest neighbors was set to 25 and 50, sen: ted by kNN,s, and
kNN, respectively), Decision Tree C4.5, Decision Stump, Fisher Class Ser | 71], Nearest Mean
Classifier (denoted by NMC), and Logistic Linear Classifier (denoted oy J o) [75], were added to
the previous ensemble system to form the new one. Once again, the “carning «igorithms were selected
as different as possible to promote system diversity. The kNN classi.” »r 2~ d Decision Tree C4.5 were

obtained from the Statistics and Machine Learning Toolbox o."* .atla! while the other new learning

algorithms was obtained from PRTools (available at http://p: ools.org/). It is noted that the
classification error rates of AdaBoost, Random Forest, De. <ion Tree C4.5, and L2ZLSVM would not
change in this experiment so that we only reportc.' the new experimental results of three
heterogeneous ensemble methods with these 10 learr. ~ 2 algorithms in Table 9.

Table Al in the Appendix shows the classfic.iion error rates of these 10 learning algorithms
and the proposed method. Once again, the bene. * of using the ensemble is demonstrated since the
proposed method obtains the best resu’. on 12 latasets. Based on the statistical test results in Figure 8,
it can be seen that proposed methr d continues to outperform AdaBoost (in 23 cases where the null
hypothesis is rejected, the propr sed n..*t od wins in 21 cases and loses in 2 cases), Decision Tree (in
22 cases where the null hypothesis 15 rejected, the proposed method wins in 21 cases and loses in 1
case), L2ZLSVM (in 18 ca. < vhere the null hypothesis is rejected, the proposed method wins in 16
cases and loses in 2 “asey, TOES (in 23 cases where the null hypothesis is rejected, the proposed
method wins in 19 cases "na loses in 4 cases), Random Forest (in 23 cases where the null hypothesis
is rejected, the r=opo.. * .nethod wins in 16 cases and loses in 7 cases) and Decision Template method
(in 13 cases w ere tF : null hypothesis is rejected, the proposed method wins in 11 cases and loses in
2 cases). 1 1e average ranking of the proposed method once again is better than all benchmark
algorithms (Table 10).

We note the significant differences in the classification error rate of the proposed method

construct by 3 or 10 learning algorithms. First, using 10 learning algorithms obtains better results than
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using 3 learning algorithms, for example, on Contraceptive (0.4572 vs. 0.4785), Glass (0.3196 vs.
0.3612), Madelon (0.2452 vs. 0.2930), and Vertebral (0.1510 vs. 0.1747). On Conn Bench Vowel, in
contrast, the classification error rate reduces 4% when using 3 learning algorithms « ~mparing to using
10 learning algorithms (0.1179 vs. 0.1571). This also happens with other b .ter geneous ensemble
methods like Decision Template and TSES method. Although the propose. ™methe ¥ is better than the
benchmark algorithms in both cases, the dependence of choosing tte le ...'»g algorithms to the

ensemble performance is the limitation of all the heterogeneous ense ..uie me...0ds.

TABLE.9.CLASSIFICATION ERROR RATES OF THE 2 7" (ER DGENEOUS ENSEMBLE

METHODS AND THE PROPOSED METHOD (USING 1u0 " EARNING ALGORITHMS)

Decision Template TSES Proposed Method

Mean Variance Maan Variance Mean Variance
Artificial 0.2233 A 1.53E-03 L.-S09 A 2.39E-03 0.2142 1.73E-03
Australian 0.1274 1.50E-03 0.183. 2.01E-03 0.1262 1.25E-03
Biodeg 0.1363 9.89E-04 u. .. A 1.12E-03 0.1374 1.10E-03
Blood 0.2754 A 2.51E-03 2987 A 2.49E-03 0.2438 1.86E-03
Breast Cancer 0.0362 5.04E-04 LM55A 6.31E-04 0.0359 5.01E-04
CLEF2009 0.1666 1.42E-03 N2245 A 1.88E-03 0.1659 1.45E-03
Cleveland 0.4326 4.94F "? 0.4719A 5.74E-03 0.4357 2.03E-03
Colon 0.1698 1.79E-u. 0.2431 A 1.77E-02 0.1633 2.02E-02
Conn Bench Vowel 0.1750 A 1.91E-03 0.0943V 2.06E-03 0.1571 2.37E-03
Contraceptive 0.4560 177603 0.5202 A 1.56E-03 0.4572 1.60E-03
Dermatology 0.0252 A 5.06E-* 0.0352 A 1.11E-03 0.0242 6.10E-04
Glass 0.3198 R92E-0 0.3630 A 9.58E-03 0.3196 7.10E-03
Haberman 0.2690 A 35073 0.3373 A 6.82E-03 0.2437 3.75E-03
Heart 0.1559 ».39E-03 0.2204 A 7.50E-03 0.1561 4.75E-03
Hepatitis 0.1725 1.5¢2-02 0.1975A 2.07E-02 0.1520 1.38E-02
Iris 0.0440 . 2. 9E-03 0.0340 2.18E-03 0.0410 2.35E-03
Led7digit" : - - - - -
Madelon 0.25,2A 9.69E-04 0.2770 A 9.59E-04 0.2452 9.92E-04
Multiple Features 0.,°°S A 6.87E-05 0.0144 A 7.38E-05 0.0120 6.35E-05
Musk2 033 V¥ 4.65E-05 0.0276 ¥ 4.57E-05 0.0387 4.31E-05
Satimage 9T ZA 6.52E-05 0.1089VY 1.48E-04 0.1222 1.21E-04
Texture 0.09v. A 1.45E-05 0.0049V 6.81E-06 0.0096 1.51E-05
Twonorm 04219V 2.29E-05 0.0331 A 3.24E-05 0.0222 2.77E-05
Vertebral 2151, 3.39E-03 0.1942 A 3.52E-03 0.1510 3.75E-03
Wine NRENEY 2.10E-03 0.0225 1.01E-03 0.0261 1.79E-03
Yeast 0.4056 1.44E-03 0.4944 A 1.62E-03 0.4032 1.38E-03

A or V indicate that propo. "d méthod i: hetter or worse than the benchmark algorithm, respectively.

* several of the learninr ~'~ariti... _...not be run on this dataset, hence final ensemble outputs are not available
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Fig.8. Statistical test results comparing proposed met,.~d tv ...¢ benchmark algorithms (using 10

learning algoi.*hms)

TABLE.10. AVERAGE RANKINGS OO°F Al.". METHODS (USING 10 LEARNING

AT GOR.THMS)
Algorithm Ranking
Decisi yn Ten, vlate 3.18
AdaBoos. 5.00
Dr cisir n Tree 4.96
TSL” 432
T2LSVM 4.20
Rand ~m Forest 4.08
Proposed Method 2.26

4.24. Timecomple ity ana',sis
Let O(%,) denote s the c. mplexity of the k" learning algorithm X, the complexity of the learning

process of the proposed method
isO (max ( T X <7 .aXg=1,. x O(Ky), (parameters searching), (combiner))) in which

O(T XargmeXg=1 g O(IKk)) is the time complexity of generating meta-data of training set via
running T-fold cross validation, O(parameters searching) is the time complexity of finding the

parameter a and [ from the specific values via 10-fold cross validation (see Figure 5), and
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O(combiner) is the time complexity of combiner working on meta-data of training set to produce the
decision model. In the proposed method, we used justifiable granularity to construct the interval for
each column of the meta-data of each class. The computation of the median ¢. . ~sorted posterior
probability array with N,,,(m = 1, ..., M) training observations belonging to » (‘" lass as well as the
bounds of interval class memberships based on (7) and (10) can be done v - firs. ~pplying a sorting
algorithm to the array. We can apply a sorting algorithm introduced in I o, “0 an array with Ny,
elements in which the time complexity is O(N,, X logN,,). The - rocedure runs though all M X K
columns of meta-data of training observations for each m =1, ,m -~ .aat the time complexity of
the combiner is O(M X K x argmaxp=1,_y O(Ny X logiv,,)). 1 the parameter searching
procedure, we loop through all given values of a and ? to finc the specific value that minimize
classification error rate on the training set via 10-fold cross v. lidation, as a result the time complexity
of the parameters searching procedure is 0(1” X |la| . |l X M X K X argmaxy,=1,_py O(Npy X
logN;;)) where N;i, < N,, is the number of tr ‘ning “bservations belonging to the m‘" class in the
parts obtained via the 10-fold cross valid i~ mi~cedure. Therefore, the time complexity of the

training process of the proposed method is O(max(T X argmaxg=1 g O(Ky), M XK X

argmaxy=1,..m O(Np X logN,,),10 ~'a| X (B X M X K X argmax,,=1__y O(Npy, X logN,";l))).
For TSES the time complexitv € the caining process is O(max (T X arg maxg=1 . x O(Ky),

0(combiner))) in which O(comb..er) is the time complexity of the learning algorithm for the

combiner. Depending on the ' arning algorithm for the combiner, TSES could have a longer or shorter
training time than t! > p opo ed method. In this paper, we used Decision Tree C4.5 (its time
complexity is O() X N, via the improvement in [77]) to learn on the meta-data of training
observation ..  wat the overall training complexity of TSES method is
0 (max (arg me g O XT, (DX N))). Meanwhile in the combining method of Decision
Template, th. loop runs through all training observations to compute the average of the meta-data
associated with each class label [5] so its time complexity is O(max(arg maxg=q . x O(K}) X

T,N )). It is noted that the proposed method can be implemented via parallel mechanism by using T
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processors to learn the meta-data, 10 X |a| X |B] X M X K processors to search the parameters, and

M X K processors to learn the intervals. The time complexity of the proposed method then becomes:

O(max(arg maxy=q _x O(¥y),argmaxy=y _y O(Np X logN,,), argmaxp=s OG5 X

logN;))) = O(max(arg maxy=y,_x O(Ky),argmax,,=qy O(Npy X logN, Y since Ny, < Np,.

Table 11 shows the average training and classification tine (3. .>7onds) for Decision
Template, TSES, and the proposed method, computed on 100 trai-.ug sets and associated test sets
partitioned from each dataset. Although the proposed method gener. ''v b .s longer training time and
classification time than Decision Template and TSES metho.' ae d fferences are within practical

limit.

TABLE.11. TRAINING AND CLASSIFICATION TIME (IN SECONDS) OF DECISION

TEMPLATE, TSES, AND PROPOSED METH\\I' (USING 3 LEARNING ALGORITHMS)

Decision Template TSES Proposed Method
Training  Classificatio.. Tra.cing Classification Training Classification
Time Time Time Time Time Time
Artificial 0.5414 0.0099 0.5657 0.0744 17.5385 0.4721
Australian 0.5374 0.01" . 0.5467 0.0702 29.6069 0.7538
Biodeg 0.7161 0.0 70 0.687 0.1141 19.5413 0.7732
Blood 0.5192 0.00¢" 0.5453 0.0762 13.5489 0.4850
Breast Cancer 0.5915 4.0102 0.5521 0.0693 40.0564 0.8671
CLEF2009 0.7451 0.0" 99 0.7157 0.0253 8.8935 0.3697
Cleveland 1.1949 o128 0.8905 0.0359 52.0346 0.2412
Colon 1.1938 0.05. 1.1808 0.0329 3.1703 0.1781
Conn Bench Vowel 3.1417 0.0216 2.4259 0.0581 95.9051 1.0321
Contraceptive 0.6583 L. 149 0.7007 0.0567 13.2749 0.6792
Dermatology 1.097, 0.0121 1.0225 0.0449 44.6629 0.2011
Glass 0.8 78 0.0077 0.9161 0.0249 47.0464 0.1483
Haberman 0 694. 0.0391 0.5203 0.0355 12.6771 0.1212
Heart ,.4976 0.0122 0.4853 0.0316 10.7566 0.0990
Hepeatitis 0.5,9 0.0080 0.5873 0.0051 8.9105 0.0578
Iris 178 0.0164 0.5311 0.0184 36.4504 0.1599
Led7digit 1.040. 0.0384 1.9646 0.0534 112.4801 0.5317
Madelon 15.398 0.3284 11.0456 0.4682 227.3102 6.2560
Multiple Features 26.€ .06 0.4417 30.296 0.7383 1243.4163 13.7829
Musk2 ©2.1663 0.8991 13.4885 5.0747 152.4641 8.3123
Satimage 3.0802 0.2286 4.8068 3.0047 225.2858 5.4413
Texture 4.0408 0.2359 5.8136 2.2746 212.2031 4.6231
Twonorm 1.9637 0.1587 5.7002 3.0170 100.7969 4.9567
Vertebral 0.5744 0.0078 0.5865 0.0345 12.8961 0.1898
Wine 0.6189 0.0079 0.5316 0.0211 13.1322 0.1874
Yeast 1.9967 0.0298 2.6987 0.1056 80.2426 1.5750
Average 3.1626 0.1007 3.4540 0.5987 109.0116 2.0190
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5. Conclusions

In this paper, we have introduced a novel trainable ensemble classi{. rs ,ystem based on the
concept of justifiable granularity. In our approach, we construct the gran''~t pi. “~type for each class
from the meta-data of training observations with the same class label. 7 ch granular prototype is a
vector of intervals, where the intervals reflect the uncertainty in cla s predi ‘ion generated by the base
classifiers. The class label of an unlabeled observation is pr.dicte? by picking up the class label
associated with the granular prototype that is the closest to the mete ~.ca of the unlabeled observation.
Extensive experiments were carried out by using an ensem. > syst .m of three and ten base classifiers,

and performance comparisons were conducted with <~ *~--

“mark algorithms including AdaBoost,
Random Forest, Decision Template, TSES, De .'~» Tree C4.5, and L2LSVM on 26 datasets.
Statistical test results indicated that our m.."nd .‘gnificantly outperforms all the benchmark
algorithms.

Some future work can be condr~ted to further improve the performance of the proposed
method. First, to deal with the tradc ~ff be ween the specificity and the experimental evidence
(cardinality), we used the produr - of thes: two requirements and maximizing the expression with
respect to the bounds of the '..*~rval. This simple choice may not provide the best solution in all
situations and techniques .uc. as multi-objective optimization can be investigated. Moreover, as
mentioned before, the enera. ~erformance of the proposed method depends on the choice of the
learning algorithms to c. 'strv ct the ensemble. A poor selection of learning algorithms may result in

the poor perform nce of the ensemble. The proposed method could be combined with learning

algorithm sele stion [75] to acquire the optimal set of learning algorithms for each specific dataset.
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Appendix

Proposition 1. If [aopt, bopt] is the interval built by ;~stifi .ble granularity on the meta-data
associated with the first class label of two class-clas "Jcauuu problems, the interval associated with
the other class label is [1 —bope, 1 — aopt]

Proof: Let denote X and Y as two random varia. 'c. represented for the meta-data associated with the
first and the second class label respectively. b =d ou the property of meta-data [3], we have:
X+vy=1 (AT)
Denote med(X) and med(Y) as the medi.~ ¢. X and Y. Based on the definition of median, we have:
P(X <med(X)) =P(X =medXx,, =1, 2 (A2)
Replace X by 1 — Y we obtaii.:

P(1-Y <med(X)) =P 1 - Y =med(X)) =1/2

© PA—-—medX)<.)= P —med(X) 2Y)=1/2 (A3)
= med(Y) = 1 - med(X) s the median of the meta-data associated with the second class label.
Since [a, b] is th= in.. = . built by justifiable information granularity, based on (6)-(10) we have:

V(b) = (C{m d(X) 2X <b}F x f,(Imed(X) — b|)and by, = argmax {V(b)|b > med(X)}(A4)
V(a) = (C{. - X < med(X)D? x f,(la — med(X)|) and Aope = argmax {V(a)|a < med(X)}(AS5)
Replace X by 1 — Y and med(X) by 1 — med(Y) in (A4), we have:

V(b) = (C{1 —med(Y) <1—-Y < b}P x £,(|1 — med(Y) — b|)
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e Vb)=(C{1-b<Y <medD? X f,(I1 — b —med(Y)|) (A6)
Comparing (A6) and (AS), the lower bound of the interval for Y is (1 — bopt). Similarly, the upper

bound of the interval for Y is (1 - aopt)u

Property 1: d(x,[a,b]) = 0and d(x,[a,b]) =0 x=a=b

Proof: Since d(x, [a,b]) = max{|x —al,|x —b|},and [x —a| = 0,|» - P, = 0= d(x,[a,b]) = 0.
If x = a = b, it is easy to see that d(x, [a, b]) = 0.

On the other hand, in case d(x, [a, b]) = max{|x —a|,|x — b), = 0. sumce |[x —a| = 0,|]x —b| =0

weobtain|]x —a| =[x —b|=0=>x=a=bC

Property 2: d(xy, [a, b]) = d(xy, [a,b]) iffx; =x, 0rx. ++ =a+b

Proof: Denote mid(a,b) = (a+ b)/2. Since r-~¥{lx, - a|,|x; — b|} = max{|x, — al, |x, — b},
we have four cases (A7-A10).

max{|x; —al,[x; = bl} = |x; —al, max{|lx_ ~' 1 —=bl}=|x; —al=|x; —a| =|x; —al (A7)
max{|x; — al,|x; — b} = [x; — al, max{lx, —al,|x; — bl} = |x; — b| = |x; — a| = |x, — b| (AB)
max{|x; — al,|x; — b} = [x; — b|, n.¥{|x; -al,|x; — b[} = |x; — b| = |x; — b| =[x, — b| (A9)
max{|x; —al,|x; = b|} = [x; — "t rax{'x; —al,|x; — b|} = |x; —a| = |x; — b| = [x, — a|(A10)
Here we only consider (A7) @ ..' (A8) (A9 and A10 can be handled similarly). For the case (A7), it
means that |x; —a| > |», — Y| and |x, —a| > |x, — b| = x; > mid(a, b) and x, > mid(a,b) =
|xy —al|=xy—a and x; —w, =x, —a = x; =X,

For case (A8), by the .10’ above we have |x; —al| =x; —a, and |[x;, —b| > |xy —a| 2 x, <

mid(a,b) = |x,- b|=t —x,2xy—a=b—x,>x;+x,=a+ b0

Property 2 1t x; < |a, b] and x, € [a, b] then d(x4, [a, b]) < d(x;,[a, b])

Proof: Since. . € [a,b] = d(xq, [a, b]) = max{|x; —al,|x; — b|} < |b—al.
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. |x, —al + |b—a|
= —_ —_ = —_ >
Since X, & [a,b] = d(x,,[a, b]) = max{|x, — al,|x, — b|} {|xz _b|+|b—al >|b—al =
d(xq,[a,b]) O
Property 4: d(xq, [a, b]) < d(xq,x,) + d(xy,[a, b])
Proof: Since |x; —a| = |x; —x2 +x, —a| < |x; — x| + |xp —aland |. —v, = |x; —x3 +x, —

b| < |x; — x| + |x; — b
= d(xy,[a,b]) = max{|x; —al,[x; — b|} < max{|x; — x| + |[x; -al,|x — x| +|x; —b|} =

d(xq,x5) + d(xy,[a,b])o

Property 5: d(x, [a, b]) = d([a, b], x)

It is the result of x = [x, x]O

Property 6: d(ax, [a, a][a, b]) = |ald(x, [a, b,

Proof: If @ = 0, [a, @][a, b] = [aa, ab]

d(ax,[a, a][a,b]) = d(ax, [aa, ab]’ = ma. (|ax — aal, |ax — ab]) = max(a|x — al, |a||x — b])

= amax(|x —al (x- b|) = ad(x, [a,b])

Doing a similar way, if @« < 0. .~ a][a, b] = [ab, aa], we have

d(ax,|a,alla,b]) = —ad’x,| , b]) = d(ax, [a, a][a, b]) = |a|d(x, [a, b])C

Property 7: d(x,[r,v]) = v x + a,[a, b] + [a, a])
Proof: d(x+a, " bl- [aq,a])=d(x+a,[a+a,b+a])=max(|x+a—a—al|,|x+a—b—

al) = max(|a —al,|: —b|) =d(x,[a, b])o

Property 8: If & = {t1;} t1; € V;and t, = {tz;} to; € V;Vj = 1,...,|V| then d(t1, V) < d(tz, V)

Proof: Using Property 3, we have if t;; € V; and t,; & V; then d(tlj, I/}) < d(tzj, VJ)
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That inequation is true Vj = 1,...,|V]| so le‘gld(tlj,VJ-) < Z‘,'j‘gld(tzj,lfj) o d(ty,V) <d(ty,V)o
Property 9: d(t,,V) < d(ty,x,) + d(t,,V) where d(t,t,) is the distance be weL two vector t;
and t,

Proof:

d(ty,V) = 2 d(61,V5) = S max (e = | o = Vi[) = S o[ty — 6+ 12 -

vl |t1j — b+t —ED = lev=l1max(|t1j —taj] + |ty = V| |t — 5] |t21 —ED =

St = b)) + max (|2 = G, |tz = Vj]) = d(ta, 1) + A Ve

Algorithm: Training process

Input: D: training set, K ={Ky|} —1...,4} : learning algorithms,

a,f: parameters to generate intervals

Output: M granular prototypes V- {Tnl}mzl,...,M and base classifier

{BCy}k=1,.x

1. L=0, {D...D;}=T . .~tition(D)

2. For each D

3. D;=D-D;

4. For each 7.

5. Classifie. BC;' = Learn (Kj, D;)
6. L - L J Test(BC{L D)

7. End For

8. End Fo.

9. For each %

10. be . classifier BCy= Learn (¥, D)
11. 'nd Fcr

12, C = LY = b (M= 1, M), V = (Vyduer, o = 8
13. or m=1 to M

14. For j=1 to MxK

15. Get jth column of Ly i.e. Ly
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16. Find med(Ly,;)

17. For each b €Ly j,b = med(Lm,j)
18. Compute V(b) by (7)

19. End For

20. Vpy,; = argmax , V(b)

21. For each a €Ly a< med(Lm'j)
22. Compute V(a) by (10)

23. End For

24. Upj = argmax V(a)

25 Vinj = vy, P ]

26. End For

27. Vin = Vi UV

28. End For

29. Return V = {Vplm=1..m and {BCilr=1 x

Algorithm: Classification process

Input: x%: unlabeled observation, V: set of granular prototypes,

{BCy}x=1,.x: Dbase class.fier

Output: Class label of »*

Lx*) =0
For each BCG,
L(x%) = .XxX%) U Test(BC,x%)
End For
For m=" tc M
For j=_ _-o MK
Coapute d(L(x}),Vi;) by (12)

EnA For

A A AN o

~or pute d(L(x*),V,,) by (20)

Era ror

—_ =
—_ O

X" €y; if d(L(x“),Vj) = mingy,=y u d(Lx"),V;,)
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TABLEAL.CLASSIFICATION ERROR RATES OF THE 10 LEARNING ALGORITHMS AND THE PROPSED METHOD

Naive Bayes kNN5 kN % kNN50

Mean Variance Mean Variance Mean Variance Mean L7 Mean Variance
Arificial 03121 LITE03 03121 LISE-03 00413 231E03 ({00 M3 0,199 1 94E-03
Australian 0,143 [42E03 0.1387 1 39E-03 03439 2.99E3 0,086 AED 03316 1 J4E-03
Biodeg 0.1465 §.08E-04 0.2068 [ 42E03 0.1828 1.38E-03 0220 1.33E-03 0.2472 1.60E-03
Blood 0.2281 3.05E-04 0.2453 LIE-03 0.234] 1.56E-03 0.2407 4 40E-04 02382 L15E-05
Breast-cancer 0.0414 4 99E-04 0.0412 5.TIE-04 00321 437604 0.0369 5.05E-04 0.0407 5.208-04
CLEF2009 0.1714 142803 0.3684 1 T9E-03 03583 309F %) vah 245603 04975 209E-03
Cleveland 04228 421803 04328 4313 055 364 M 4585 1.30E-03 04645 331E-M
Colon 0.1845 196E-02 03717 398EM 01740 1050 03140 5.69E03 0354 145603
Conn-bench-vowel 03856 3.80E-03 04699 491E-03 0.0701 |.J6E-03 04795 3 83E-03 05525 313603
Contraceptive 04829 | 46E-03 05247 1 95E-03 04840 BNRR(L 04528 1. 26E-03 04601 1.20E-03
Dermatology 00285 7.05E-04 0.0397 9 84E-04 0.1138 PREL} 0.2464 339803 0.3394 L46E-03
Glass 03574 768603 04009 TIOED3 035 8 5903 03793 T46E03 04195 T6EN
Haberman 02630 248603 02589 231E03 1184 SSIE3 054 320B-03 0.2566 1.66E-03
Heart 01637 426E-03 01615 468ED3 0.0 6.36E-03 03156 778E03 03552 6.4E-03
Hepatitis 0.1688 | 48E-02 0.1563 [.22E2 0193 6.68E-03 0.1625 328E-03 0.1625 328E-03
Iris 00193 1.00E-03 00400 231E3 2039 1T9E-03 0040 23BN 00660 3SIE03
LedTdigt 02778 J45E-03 0.2706 328E-s U270 4.59E-03 0.2692 4 27E-03 02636 417E-03
Madelon 04592 108E-03 04119 LISE03  u2936 9.81E-M 02529 TISEM 0264 7.55E04
Multiple Features 00199 §.33E05 0.0389 19k 00511 239E-M 00010 297804 0149 363EM
Musk? 00560 0.39E-05 0.2687 7 16E-04 0.0345 470805 00486 0.24E-05 00600 6.44E-05
Satimage 0.1598 |.28E-04 0212¢ .70k ¢ 0.0910 [.ISE-04 0.1067 [.10E-04 0.1230 1 40E-04
Texture 0.0053 793E-06 02" 26704 0.0133 2.52E-05 0.0274 4 40E-05 0.0395 5.16E-05
Twonorm 0.0223 2.96E-05 1239 " 15E05 0.0317 3.84E-05 00254 4 44E-05 00234 3.26E-05
Vertebral 0.1965 3.69E-03 0w 43003 01845 248E03 0.1671 3.03E3 0197 365E03
Wine 0.00% LAEM 0463 L98E03 02071 8. 4E03 0.2990 LIBE0 03008 996E03
Yeast 04215 | SO0E-( 04259 | 49E-03 04366 [.ISE(3 04059 1.J4E03 04168 |.29E-03
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Decision Tree C4.5 Decision Stump Fisher LLC "MC Proposed Method

Mean Variane  Mean  Variancs  Mean Variance  Mean  Variance “fean— Variance  Mean  Variance

Aifieia 02433 LGOE3 04250 143E4 03120 LIEG3 0319 I20Ew. 04934 2HE3 02142 LT3E3
Australian 01678 2I3E03 04139 44E04 01443 LAED3 0388 1M3 wuib L9IE3 04282 L2SE3
Biodeg 0853 L30E03 03379 LE0S 00412 TSIE4 037 (REM 0346 20E03 0434 LIOER
Blood 0255  TO8E03 02319 LG9E0S 0226 28B4 02281 3ot 03330 2e8E03 0438 L86EN

Breast Cancer 0050  6S4E4 01311 L162E03 00416 493EM4 0083 Aot 00360 S66E-04 00359 SOIE-M
CLEF2009 03064  JA2E03 08082  206E-04  0.1938  L3E03 002 JAOFS 03252 3MEM 01659 14SE3
Cleveland 05055 630E03 0461l TIOE0S 04237 LSE03 04181 SIEM 06100 SSOE03 04357 203E3
Colon 0258  274E02 03926 26E02 02150 2DSEM o2 LO7EA2 0663l 196E03 01633 202EA2
ConnBenchVowel -~ 02205 3USE3 (8441  3B4E04 05108  3TE03 2407 3B4E03 04538 4TSEOS OIS D3TED3
Contraceptive 04830 ISEN 0570 4ME06 0499 LISET vseow  L2E03 0619  9LE0M 0472 LGOE3
Dermatology 00516 IDE03 0514 LG4E03 0045  GE7ED4 0595 LTOE3 04922 TSIE3 00242 6.I0E4

Glass 03092  LOSEQY 04991  49E03 03877 0%k a3620  TT4ER 0558 BA9E03 0319 TIOR3
Haberman 03048  STE3 02047 BO2E0S 02618 196k’ 02576 207E03 03189 TO4E3 02437 3TSEN3
Heart 081 6T0E03 0444 LIEM4 01637 taoc™ 01678 3SSE3 03689 7MES 0461 475E3
Hepatitis 01663  [2E02 01625  328E03 05+ 12T 01800 LTEA2 02800 269E02 0150 L38E02
Iris 00507 240E03 03520 205E3  OI187T - OASE3 00367  L9E-03 00800  IMEDI  0.0410  235ED3
LedTdigt 02906 275E-03 - - w00 JASES 02666 3TOE03 02034 390ED3 - -

Madelon 02402 LOE03 04998  247EL 04595 IME03 04589 L30E03  03%  S9IE4 0242 9.9E-M
Multiple Features ~ 0.0636 ~ 310E04 0802 39%05 oMy STEOS 0017 TMEDS 0499 LOSEO3 0010 63SES
Musk? 0032 434E05 0141 BT 09607 6AREDS 04T STSEAS 02757 LSSE4 00387 43IES
Satimage 01415 22EM4 03975 593wl 02364 6S0E05 01637  945E05 02229 200E4 01222 12IE-M
Texture 00761 LIEGM 07737 "MEM4 0014 23EGS 00969  3e3E02 02419 DTIE4  000%  LSIES
Twonorm 01602 22IE04 049" BBRww 0023 29E05 0023 295E05 00219 3ISEGS 00222 2TIEAS
Vertebral 0984 37E03 0310 LI 02077 3OE03  OA520  D60E03 0243 SO3E03 04610 3TSEA3
Wine 01010 460E03  Od4ov.  645E03 00123 6O0E-G4 00242  122E03 02867  9T6E03 00261  L79E3
Yeast 04642 LSE3 0799  3STE4 04638 LDGEDS 041 TME 0508 LJIE03 04082 L3SE3

*The best results are highlight in bold
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