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Abstract
A review of the existing two- and three-phase relative permeability correlations shows a lot of pitfalls and restrictions imposed 

by (a) their assumptions (b) generalization ability and (c) difficulty with updating in real-time for different reservoirs sys-

tems. These increase the uncertainty in its prediction which is crucial owing to the fact that relative permeability is useful 

for predicting future reservoir performance, effective mobility, ultimate recovery, and injectivity among others. Laboratory 

experiments can be time-consuming, complex, expensive and done with core samples which in some circumstances may 

be difficult or impossible to obtain. Deep Neural Networks (DNNs) with their special capability to regularize, generalize 

and update easily with new data has been used to predict oil–water relative permeability. The details have been presented in 

this paper. In addition to common parameters influencing relative permeability, Baker and Wyllie parameter combinations 

were used as input to the network after comparing with other models such as Stones, Corey, Parker, Honapour using Corey 

and Leverett-Lewis experimental data. The DNN automatically used the best cross validation result (in a five-fold cross 

validation) for its training until convergence by means of Nesterov-accelerated gradient descent which also minimizes the 

cost function. Predictions of non-wetting and wetting-phase relative permeability gave good match with field data obtained 

for both validation and test sets. This technique could be integrated into reservoir simulation studies, save cost, optimize the 

number of laboratory experiments and further demonstrate machine learning as a promising technique for real-time reservoir 

parameters prediction.
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Abbreviations
Kro  Oil relative permeability

Krw  Water relative permeability

Sw  Water saturation

Swc  Irreducible water saturation

So  Oil saturation

cv  Cross validation

val  Validation dataset

dnn  Deep neural network

σ  Standard deviation

n  Number of samples

Introduction

Relative permeability is the most important property of 

porous media to carry out reservoir prognosis in a mul-

tiphase situation (Delshad and Pope 1989; Yuqi and; Dacun 

2004) and therefore needs to be as accurate and readily 

accessible as possible. Theoretically, it is the ratio of effec-

tive and absolute permeability. It is useful for the determina-

tion of reservoir productivity, effective mobility, wettability, 

fluid injection for EOR, late-life depressurization, gas con-

densate depletion with aquifer influx, injectivity, gas trap-

ping, free water surface, residual fluid saturations, temporary 

gas storage amongst others (Fig. 1). It is well known that a 

significant variation in relative permeability data can have a 

huge impact on a macroscopic scale.

The oil and gas industries have a need for easily avail-

able and reliable relative permeability data, expense 

reduction on experiments and a more general model for 

the parameter judging by the pitfalls pointed out by several 

researchers (Table 1) after testing the existing two- and 

three-phase relative permeability models. Such workers 
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like Fayers and Matthews (1984) and Juanes et al. (2006), 

after testing non-wetting relative permeability interpola-

tion models such as Baker and Stone’s I and II, against 

Saraf et al. (1982), Schneider and Owens (1970), Saraf and 

Fatt (1967) and Corey et al. (1956) experimental data, pre-

sented the same conclusion that they give similar results 

for high oil saturations but are different as it tends towards 

residual oil saturation. Manjnath and Honarpour (1984) 

concluded that Corey gives higher values for non-wetting 

phase relative permeability after comparing against Don-

aldson and Dean data.

Based on the assumption that water and gas relative per-

meability depends only on their saturation and not on that 

of other phases, Delshad and Pope (1989) concluded after 

a comparative study of seven relative permeability mod-

els that Baker and Pope performed better but also stated 

the need for better models. Siddiqui et al. (1999) found 

Wyllie-Gardner and Honarpour to yield consistently better 

results at experimental condition after testing ten relative 

permeability models. Al-Fattah and Al-Naim (2009) found 

Honarpour regression model to be the best after comparing 

with five other models and also developed his own regres-

sion model. Since the coefficients of these regression mod-

els are not generalized, they are not suitable for real-time 

applications.

Furthermore, for wetting phase relative permeability 

in consolidated media, Li and Horne (2006) showed that 

the Purcell model best fits the experimental data in the 

cases studied by them provided the measured capillary 

pressure curve had the same residual saturation as the 

relative permeability curve which is sometimes not the 

case. Saraf and McCaffery (1985) could not recommend 

a best model due to scarcity of three-phase relative per-

meability data. The different relative permeability cor-

relations have limitations and assumptions which no 

doubt have implications, thus increasing the uncertainty 

in reservoir simulation studies hence the need for a more 

generalized model.

Therefore, the purpose of this study is to implement a 

Deep Neural Networks model for the prediction of rela-

tive permeability accounting for reservoir depletion, satu-

ration and phase changes with time. Guler et al. (1999) 

developed several neural network models for relative per-

meability considering different parameters that affects the 

property and selected the best model to make predictions 

for the test set while Al-Fattah (2013) also used a general-

ized regression neural network to predict relative permea-

bility. Getting better prediction for out-of-sample datasets 

(better generalization), performance flattening out with 

a certain amount of data (scalability) as well as requiring 

far more neurons (and hence an increased computational 

time) to achieve better results as deep learning models is 

an issue for such networks. Again most of the reviewed 

empirical models can hardly generalize (Du Yuqi et al. 

2004) and are static but deep neural networks (with its 

advanced features), if appropriately tuned, can capture the 

Fig. 1  Schematic of oil–water 

relative permeability curve
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transients faster and more accurately throughout the res-

ervoir life while also getting better as more data becomes 

available with time. Training can be done offline and the 

trained networks are suitable for on-board generation of 

descent relative permeability profiles as their computa-

tion requires a modest CPU effort hence not a concern to 

real-time application.

Methodology

The most commonly available factors influencing rela-

tive permeability such as porosity, ; viscosity, μ; per-

meability k; saturation s, together with Baker and Wyl-

lie parameter combinations were used as inputs for the 

network. Baker gave correlation coefficients of 0.96 and 

0.86 while Wyllie has correlation coefficients of 0.91 and 

0.89 for Corey and Leverett-Lewis datasets, respectively 

(Table 2). There were a total of 12 input parameters fed 

into the network as shown in Table 3 after testing the 

sensitivity of several parameter combinations.

Ten (10) sets of water–oil relative permeability data 

with 132 data points from a North Sea field with four-

fifths used as training set and one-fifth as validation set. 

Another set of water–oil relative permeability data from a 

separate field were used as the testing set after data wran-

gling and normalization. A seed value was set to ensure 

the repeatability of the model. An optimised number of 

hidden layers was used to reduce the need for feature 

engineering. The best cross validation result in a fivefold 

arrangement was automatically used to train the DNN 

models until convergence using Nesterov-accelerated gra-

dient descent (which minimize their cost function). The 

Rectifier Linear Units (ReLUs) were used in the DNN 

modelling to increase the nonlinearity of the model, sig-

nificantly reduce the difficulty in learning, improve accu-

racy and can accept noise (Eq. 1). This allows for effec-

tive training of the network on large and complex datasets 

making it helpful for real-time applications compared to 

the commonly used sigmoid function which is difficult 

to train at some point.

where Y ∼ ℵ(0, 𝜎(x)) is the Gaussian noise applied to the 

ReLUs.

Separate models were constructed for wetting and non-

wetting phases as they have also been found to improve 

predictions (Guler et al. 1999). They were then validated 

and tested to check the generalization and stability of the 

models for out-of-training sample applications.

The developed Deep Neural Networks model could fur-

ther be applied to predict other experimental data carried 

(1)f (x) = max(0, x + Y) ,

out based on Buckley and Leverett (1942) frontal advance 

theory (Fig. 2) and Welge (1952) method for average water 

saturation behind the water front using the saturation his-

tory to make predictions of relative permeability as a func-

tion of time.

Deep neural networks

Deep neural networks (sometimes referred to as stacked 

neural network) is a feed-forward, artificial neural network 

with several layers of hidden units between its inputs and 

outputs. One hundred hidden layers with twelve neurons 

each (100, 12) were used in this work. The ability of the 

model to transfer to a new context and not over-fit to a 

specific context (generalization) was addressed using cross 

validation which is described in detail below. All networks 

were trained until convergence with Nesterov-accelerated 

gradient descent which also minimizes the cost function. 

In addition, both 𝜆1 and 𝜆2 regularization (Eq. 2) were 

used to add stability and improve the generalization of the 

model. This regularization ability was further improved 

by implementing dropout. A copy of the global models 

parameters on its local data is trained at each computed 

node with multi-threading asynchronously and periodi-

cally contributes to the global model through averaging 

across the network.

Mathematically,

where x are inputs, 𝜃 are parameters, 𝝀 is a measure of com-

plexity by introducing a penalty for complicated and large 

parameters represented as l1 or l2 (preferred to l0 for con-

vexity reasons). They are well suited for modelling systems 

with complex relationships between input and output which 

is what is obtainable in natural earth systems. In such cases 

with no prior knowledge of the nature of non-linearity, tra-

ditional regression analysis is not adequate (Gardner and 

Dorling 1998). It has been successfully applied to real-time 

speech recognition, computer vision, optimal space craft 

landing etc.

Cross validation

Overfitting which is the single major problem of pre-

diction when independent datasets is used was reduced 

through cross validation by estimating out-of-sample 

error rate for the predictive functions built to ensure gen-

eralization. Other issues like variable selection, choice 

of prediction function and parameters and comparison of 

(2)J(𝜃) =
1

2

n∑

i=1

(
𝜃

Tx(i) − y(i)
)2

+ 𝜆

p∑

j=1

𝜃
2

j
,
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different predictors were also addressed. A fivefold cross 

validation technique was used to split the data set into 

training and test set, build a model on the training set, 

evaluate on the test set and then repeat and average the 

errors estimated. A weight decay was chosen to improve 

the generalization of the model by suppressing any irrel-

evant component of the weight vector while solving the 

learning problem with the smallest vector. This also sup-

presses some of the effects of static noise on the target if 

chosen correctly and increases the level of confidence in 

the prediction (Fig. 3).

Results and discussion

Deep neural networks model has been validated using 

separate out-of-sample datasets not used for the train-

ing. The good agreement between experimental data and 

DNN’s model predictions indicates that the complex, 

transient, non-linear behaviour of reservoir fluids can be 

effectively modelled as their saturation and phase changes 

with time.

Figures 4, 5 and 6 give a comparison between actual 

experimental values and model predictions using neural 

networks without cross validation, neural networks with 

cross validation and the deep neural networks. The objec-

tive here was to see how deep learning out performs ordi-

nary networks on new data. These cross plots show the 

extent of agreement between the laboratory and predicted 

values. For the testing set drawn from a different field 

from the training set, the deep neural networks for both 

the wetting and non-wetting phase relative permeability 

(Fig. 6b and d) gives very close values to the perfect cor-

relation line in all data points compared to the other mod-

els. Figure 4a and c representing neural networks without 

cross validation, gave an RMS value of 0.2484 and 0.0767 

while neural net with cross validation gave an RMS of 

0.0624 and 0.0765 (Fig. 5a and c). The deep neural net 

gave an RMS value of 0.2517 and 0.065 (Fig. 6a and c) 

for both wetting and non-wetting relative permeability. It 

is clear that all the models did well for the validation set 

although the deep neural networks performed better than 

the other two models. The different models were then 

shown new data from a separate field to see how they 

performed. For the test set (which is an out-of-sample 

dataset) obtained from a different field, the RMS for neu-

ral network without cross validation is 0.9996 and 0.8483 

(Fig. 4b and d), 0.2295 and 0.8022 with cross validation 

(Fig. 5b and d) while DNNs gave 0.0759 and 0.15 (Fig. 6b 

and d) for wetting and non-wetting relative permeability, 

respectively.

The deep learning model used the fourth cross 

validation model which happen to be the best for the Ta
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Table 2  Comparison of 

relative permeability models 

(vertical) with different datasets 

(horizontal) using correlation 

coefficient (Modified after 

Baker 1988)

Data Corey Leverett and 

Lewis

Reid Snell Saraf et al Hosain Guckert

Stone I 0.97 0.76 0.90 0.57 0.82 0.85 0.48

Stone II 0.77 0.75 0.87 0.75 0.68 0.33 0.50

Aziz and Setarri 0.8 0.75 0.95 0.75 0.74 0.9 0.48

Corey 0.88 0.83 0.89 0.48 0.50 0.74 0.6

Baker 0.96 0.86 0.88 0.58 0.9 0.84 0.57

Naar and Wygal 0.74 0.67 0.78 0.50 0.55 0.54 0.50

Parker 0.85 0.73 0.88 0.56 0.87 0.93 0.52

Land 0.93 0.8 0.89 0.50 0.66 0.74 0.55

Wyllie 0.91 0.89 – – – – –

Table 3  Accuracy of the Deep 

Learning model for the wetting 

phase with cross validation for 

the five folds

Mean SD Fivefold cross validation results

1 2 3 4 5

mae 0.0489 0.0068 0.0558 0.0477 0.0612 0.0330 0.0468

mrd 0.0052 0.0022 0.0053 0.0047 0.0108 0.0014 0.0038

mse 0.0052 0.0022 0.0053 0.0047 0.0108 0.0014 0.0038

r2 0.9259 0.0186 0.9121 0.9086 0.9018 0.9745 0.9325

rd 0.0052 0.0022 0.0053 0.0047 0.0108 0.0014 0.0038

rmse 0.0689 0.0150 0.0728 0.0684 0.1037 0.0380 0.0615

rmsle 0.0541 0.0130 0.0509 0.0558 0.0854 0.0277 0.0509

Fig. 2  Water fractional flow 

curve with its derivative for the 

field considered
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wetting phase with a correlation coefficient of about 97% 

(Table 3) and the lowest training error of 0.0014 while 

the second cross validation model was used for the non-

wetting phase relative permeability having 96% correla-

tion coefficient and the lowest training error value of 

0.030 (Table 4).

Figures 7 and 8 display the trend comparing the different 

models using the standard relationship between saturation 

and relative permeability. The deep learning model clearly 

out performs the other models giving better predictions for 

both the wetting and non-wetting phases. Measurement error 

which causes input values to differ if the same example is 

presented to the network more than once is evident in the 

data. This limits the accuracy of generalization irrespective 

of the volume of the training set. The deep neural networks 

model deeply understands the fundamental pattern of the 

data thus able to give reasonable predictions than ordinary 

networks and empirical models (Figs. 9, 10). The curves 

show that significant changes in the saturation of other 

phases has large effect on the wetting phase ability to flow 

as observed from the less flattening of the water relative 

permeability curve and vice versa for the flattened curve. 

Although this flattening behaviour is usual in the secondary 

drainage and imbibition cycles but mainly in the wetting 

phase when flow is mainly through small pore networks. 

Again, the curve flattening of the oil relative permeability 

curve could from experience be from brine sensitivity and 

high rates causing particle movements resulting in forma-

tion damage.

Figures 9 and 10 compares the deep neural network 

model with commonly used empirical relative permeabil-

ity models like Baker, Wyllie, Honarpour, Stones, Corey, 

Parker. Despite the fact that some of these models were 

developed using lots of datasets way more than the amount 

Fig. 3  Deep neural network 

model architecture showing 

input, hidden and output layers 

(Lee et al. 2017)

Fig. 4  Actual vs predicted value 

for neural networks without 

cross validation (cross valida-

tion not considered as part of 

the model formulation) with a 

wetting phase relative perme-

ability for validation set, b 

wetting phase relative perme-

ability for test set, c non-wetting 

relative permeability for valida-

tion set, d non-wetting relative 

permeability for the test set
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used for training the deep neural networks, it still out per-

formed them showing that it is more able to capture the 

transients and eddies in real-time scenarios due to its ability 

to regularize and generalize using its robust parameters as 

discussed earlier.

Figures 11 and 12 corroborate the earlier observation that 

the deep learning model predicts better compared to most of 

the relative permeability models used in reservoir modelling 

software. It is important to note here that the empirical mod-

els (Figs. 9, 10) have a problem of generalization especially 

as every reservoir is unique. Again, the assumptions associ-

ated with their formulation might not be practically true in 

all cases but this reservoir uniqueness or generalization is 

captured by the deep learning model bearing in mind that 

it will perform even better as more real-time data are added 

to the training set.

Figures 13 and 14 describe the relative importance (sensi-

tivity) of the variables used for the wetting and non-wetting 

deep learning relative permeability models. The wetting phase 

model was more sensitive to its saturation and relatively less 

Fig. 5  Actual vs predicted 

value for neural networks with 

cross validation technique used 

for its model formulation and 

it improved prediction ability 

of the network with a wetting 

phase relative permeability for 

validation set, b wetting phase 

relative permeability for test set, 

c non-wetting relative perme-

ability for validation set, d non-

wetting relative permeability for 

the test set

Fig. 6  Actual vs predicted value 

for deep neural networks model 

with a wetting phase relative 

permeability for validation set, 

b wetting phase relative perme-

ability for test set, c non-wetting 

relative permeability for valida-

tion set, d non-wetting relative 

permeability for the test set
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sensitive to that of the non-wetting phase while the non-wet-

ting phase model was very sensitive to both its saturation and 

that of the wetting phase. Both models were also more sen-

sitive to their own viscosities than the other. These models 

seem to obey the basic physics underlying relative permeabil-

ity modelling. The least important variable still contributed 

above the median mark although in general, all variables show 

greater sensitivity in the non-wetting model than in the wetting 

relative permeability model. Table 5 shows the performance of 

the different variables combinations for both the wetting and 

non-wetting phase model.

Conclusion

A deep neural network methodology has been formulated 

for wetting and non-wetting phase relative permeabil-

ity predictions taking into account phase and saturation 

changes hence its capability for real-time applications. 

This work has the following conclusions:

1. Deep neural network has shown to be a good predictive 

and prescriptive tool for relative permeability than ordi-

nary networks. Its ability to generalize and regularize 

helped to stabilize and reduce the main problem of all 

predictive tools which is over fitting.

2. Different results were obtained from different relative 

permeability models for the same reservoir with some 

of the models giving better predictions at lower satura-

tions but performs poorly at higher saturations and vice 

versa; hence, lots of uncertainty. Therefore, it is needful 

for practitioners to know the limitations of any correla-

tion used for the prediction of wetting and non-wetting 

phase relative permeability.

3. In an industry where big data is now available, deep 

learning can provide the platform to systematically 

Table 4  Accuracy of the 

deep learning model for the 

non-wetting phase with cross 

validation for the fivefolds

Mean SD Fivefold cross validation results

1 2 3 4 5

mae 0.0470 0.0109 0.0633 0.0395 0.0593 0.0583 0.0521

mrd 0.0052 0.0019 0.0065 0.0038 0.0089 0.0075 0.0060

mse 0.0052 0.0019 0.0065 0.0038 0.0089 0.0079 0.0060

r2 0.9214 0.0217 0.8800 0.9636 0.9099 0.9043 0.9492

rd 0.0052 0.0019 0.0065 0.0038 0.0089 0.0065 0.0060

rmse 0.0690 0.0153 0.0805 0.0619 0.0941 0.0705 0.0774

rmsle 0.0489 0.0090 0.0641 0.0466 0.0578 0.0541 0.0492

Fig. 7  Experimental and 

predicted relative permeability 

models using neural network 

with and without cross valida-

tion and deep neural networks 

on the validation set. The neural 

network model with cross 

validation (cv) partitioned the 

dataset into fivefold and then 

trained and tested the model 

using the different folds
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Fig. 8  Experimental (actual) 

and predicted relative perme-

ability models using neural 

network (both with and 

without cross validation) and 

deep neural networks on the 

out-of-sample test set (Stafjord 

reservoir). Cross validation (cv) 

involved in the network helped 

to improve its accuracy for out-

of-sample datasets
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Fig. 9  Comparison of Wyllie, 

Corey, Parker, Stone, Baker, 

Honarpour, deep neural net-

works for the Brent reservoir, 

North Sea. The DNN gave bet-

ter prediction than the existing 

models for this validation set. 
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Fig. 10  Comparison of Wyllie, 

Corey, Baker, Honarpour, deep 

neural networks models for the 

Stratjford reservoir, NorthSea
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Fig. 11  Comparison of deep 

neural networks and Baker with 

the measured wetting and non-

wetting relative permeability 

models for the validation set 

(Brent reservoir)
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forecast reservoir fluid and rock properties to drastically 

optimize the cost and time needed for laboratory experi-

ments. Even with the amount of data used, the power 

of the deep neural networks is evident in that it gave 

reasonable predictions which will dramatically improve 

if more data were available.

Fig. 12  Comparison of deep 

neural networks and Baker with 

the wetting and non-wetting 

phase relative permeability 

models with for the test sets 

(Stratjford reservoir). Baker was 

used since it performed best 

among the models compared
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Fig. 13  Sensitivity analysis of 

individual variables used for 

building the wetting phase deep 

learning relative permeability 

model
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