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Abstract: This paper describes a novel type of solar concentrator – a mirror symmetrical 

dielectric totally internally reflecting concentrator (MSDTIRC). This new concentrator type has 

been designed to satisfy the following objectives: (i) to provide optimum gain in two different 

planes, therefore increasing the electrical output of a solar photovoltaic (PV) system, and (ii) to 

reduce the amount of the PV cell material needed, hence minimising the cost of the system. The 

concentrator is capable of having two different acceptance angles on different planes. The 

procedure of designing an MSDTIRC is explained and the geometrical properties are analysed in 

detail. In addition, the optical concentration gain is presented for various angles of incidence. 

Through simulation results, it is demonstrated that the MSDTIRC provides significant optical 

concentration gain within its acceptance angle, as high as 13.64 when compared with non-

concentrating solar cell. It can be concluded that the MSDTIRC can be an alternative way to 

produce a low cost solar PV system and can be chosen as an alternative design for the BIPV 

systems.  

 

 

Keywords: solar photovoltaic; solar concentrator; mirror symmetrical dielectric totally internally 

reflecting concentrator. 

 

*Manuscript_Clean Copy

Click here to view linked References



1. Introduction 

 

Solar photovoltaic (PV) is one of the renewable energy technologies that has great potential 

in supplying the world’s energy needs. According to a statistic from BP Global [1], the total 

installed capacity of solar PV around the globe in 2012 reached 100.1 GW, as presented in Figure 1. 

Around 68.4% of the installations were carried out in Europe, 8.2% in North America with the 

remaining balance found in other parts of the world. The rising trend of solar PV installation in 

many countries is mainly catalysed by the implementation of a financial incentive known as the 

feed-in tariff (FiT) scheme, which is currently enacted in more than 80 countries [2]. 

 

 

Figure 1: Cumulative installed capacity of solar PV worldwide in 2011. Adapted from [1]. 

  

The International Energy Agency (IEA) identified potential in integrating solar PV into the 

architectural design of roofs and facades for all types of building. A study [3] was conducted by the 

IEA to assess the prospect of building integrated photovoltaic (BIPV) systems in 14 selected 

countries. The study concluded that there is a BIPV area potential totalling approximately 23 billion 

m
2
 and could generate about 3 PWh annually. According to another study by Oliver and Jackson 

[4], BIPV systems could offer additional advantages when compared with centralised solar PV 

plant which include the following: 

i. Eliminate the cost of land acquisitions and the cost of support structures since the 

PV panels are mounted/replacing the building structure. The cabling cost could also 

be reduced since all buildings have access to the grid, unlike an isolated PV site. 

ii. The electricity generated by BIPV systems could be consumed in the building itself, 



which minimises the losses due to the transmission and distribution of electricity. A 

reduction in the electricity bill could be achieved since the electricity generation 

coincides with the peak electricity demand during the day. 

iii. The integration of PV panel substitutes parts of the building (e.g. roof, window, 

facade), eliminating the need for other building materials, which can be costly.  

  

In the last decade, there has been a significant rise in the use of solar concentrators for BIPV 

applications, including sky lights, double glazing windows and solar blinds [5]-[7]. A solar 

concentrator is a device that allows the collection of sunlight from a large area and focuses it on a 

smaller receiver or exit [8]. The concentrator is aimed at reducing the usage of expensive PV 

material, hence reducing the overall cost of the system [5].  

One example is the luminescence solar concentrator (LSC). With the ability to make full use 

of direct and diffuse sunlight, LSCs have the potential to replace windows and building facades. 

However, their low efficiency (the highest conversion efficiency is only 7.1% [9]) makes them less 

attractive for electricity generation, particularly if a homeowner wants to take full advantage of the 

FiT scheme. 

Another concentrator type, called the asymmetrical compound parabolic photovoltaic 

concentrator (ACPPVC), was demonstrated by Mallick et al. [10]. These concentrators are made 

from reflective materials with strips of solar cell connected in series and attached at the exit 

aperture of the concentrators. Their experimental results indicate that this concentrator managed to 

increase the maximum electrical output power by 62% when compared with a similar system 

without a concentrator [10]. The panel could also be mounted on the roof or replace the wall of a 

building. 

The asymmetrical compound parabolic concentrator (CPC) extrusion is another example 

employed by the Photovoltaic Facades of Reduced Cost Incorporating Devices with Optically 

Concentrating Elements (PRIDE) project which was carried out in the late 1990s [7],[11]. The 

asymmetrical CPC is made from dielectric materials. The first generation of PRIDE technology 

concentrators produced 2.3 times more electrical output when compared with a flat plate 

conventional solar PV [11]. However, it has disadvantages in terms of durability and instability of 

the dielectric material under long term outdoor characterisation [12]. This is because the 

concentrators were produced from casting processes which are prone to UV degradation [12]. With 

the aim of large scale production, durability and reduction in weight and cost, the second generation 

PRIDE design was developed in 2006 [12]. The prototype of the improved design was a 3 kWp PV 

concentrator module and was built using injection moulding processes. This design is suitable for 



building facade integration. When compared with a non-concentrating system, this prototype 

achieves a 2.01 output power gain. It is projected that the second generation PRIDE technology 

system could reduce the module cost by approximately 40% [12]. 

Recently, Sellami et al. developed a novel static 3D concentrator called the Square Elliptical 

Hyperboloid (SEH) for BIPV applications [5]. This concentrator has an elliptical entry aperture, 

hyperbolic side profiles and a square or rectangular exit aperture where a PV cell is attached. It has 

the potential to be integrated into double glazed windows. With a concentration value of 4x and 

acceptance angle of 120
o
 (+60

o
), an optical efficiency of 40% was recorded [5]. The large value of 

acceptance angle helps to eliminate the need for mechanical solar tracking.  

Clive has also proposed an alternative design for BIPV systems known as SolarBrane which 

comprises of extrusions of dielectric totally internally reflecting concentrators (DTIRCs) [13]. 

SolarBrane can reduce the usage of PV material by 70% while maintaining the same output power 

when compared with a traditional solar panel [14]. The use of DTIRCs has the potential of reducing 

the cost of implementation of conventional solar PV systems by 40% [14].  

Chemisana et al. [15] on the other hand investigated a holographic solar concentrator for the 

BIPV application. This concentrator is capable of diffracting light in the spectral bandwidth to 

which the cell presents the highest sensitivity - allowing the PV cell to be protected from 

overheating [15]. It is reported that the holographic concentrator managed to increase the efficiency 

of the PV cell by 3% [15]. 

 This paper proposes a new type of solar concentrator for use in BIPV systems. This 

concentrator is known as a mirror symmetrical dielectric totally internally reflecting concentrator 

(MSDTIRC). Section 2 explains the steps involved in producing the design, and the geometrical 

properties of the MSDTIRC are presented in Section 3. The optical concentration gain analysis is 

carried out in Section 4 prior to presenting the experimental result of the optical gain of the 

concentrator in Section 5. The annual output prediction of implementing the MSDTIRC in 

Malaysia is discussed in Section 6. Next the potential of MSDTIRC is outlined in Section 7. 

Conclusions are presented at the end of the paper. 

 

2. Design of MSDTIRC 

 

The MSDTIRC is a new variation of the DTIRC. This concentrator is able to achieve 

different field of views on different planes. In contrast to the rotational axis symmetrical DTIRC 

proposed by Ning et al. [16], this novel design generates a mirror symmetry design in four axes 

parallel to the base of the concentrator.  



The MSDTIRC uses the DTIRC based on the phase conserving method (PCM) as the 

design’s foundation. The MSDTIRC requires a number of input parameters, which are listed below; 

the total height of the concentrator, (HTot), the trial front surface arc angle (φ), the acceptance angle 

on the x-axis (θa-x), the acceptance angle on the z-axis (θa-z), the length of the PV cell (LPV), the 

width of the PV cell (WPV), the trial length of the entrance aperture (d1), the index of refraction of 

the material (n) and the number of extreme rays (N).  

  A MATLAB® based program has been developed to create the MSDTIRC. The algorithm 

is summarised in Figure 2. First, a 2D design is calculated based on the input variables, with the 

initial acceptance value equal to the acceptance angle on the x-axis (θa-x). The computer program 

calculates the trial height, which is later used to calculate the coordinates of the side wall. This 

calculation takes into account the number of extreme rays entering the concentrator at the critical 

angle. Once it is completed, the program compares the trial entrance aperture with the calculated 

aperture. A new entrance aperture is then computed from the difference between the two apertures. 

A number of iterations take place until the difference between both apertures is within an 

acceptable error value. The calculated total height of the concentrator is then compared with the 

desired total height. The total height is adjusted by varying the front surface arc angle until the 

difference between the total heights is within an acceptable value. The process is repeated to get the 

next 2D design, with each new design computed by incrementing the acceptance angle and the exit 

diameter accordingly using the value of ∆θa and ∆d0 respectively. The process stops when a 180
o
 

rotation around the y-axis is completed.  

 



 
Figure 2: The flowchart of producing an MSDTIRC. 

 

 

Figure 3 illustrates of the steps to produce the MSDTIRC, starting from position (plane) 1. 

For each position, a different profile is generated having different front surface arc angle and 

positioned at a different location of the exit aperture.  

 



 

Figure 3: Illustration on how to generate the MSDTIRC from the 2D DTIRC design. 

 

 

The MSDTIRC shown in Figure 4 is generated by selecting the total height HTot of 3.0 cm, 

an acceptance angle θa-x in the x-axis of +30
o
, an acceptance angle θa-z in the z-axis of +40

o
 and a 

refractive index n of the dielectric material from which the optical element is constructed with a 

value of 1.5. Unlike the 3-D rotationally symmetry DTIRC that has a smooth dome shape entrance 

front surface, this design has a sectored front surface with four axis of mirror symmetry (see Figure 

3(d)). Depending on the selection of input parameters, the front surface will be different from each 

design. Another important characteristic of this concentrator is its square exit aperture, as presented 

in Figure 3(e).  According to Sellami and Mallick [17], from the manufacturing point of view, it is 

desirable and easier to fabricate a square/rectangular cell, unlike a circular cell employed in a 

rotationally symmetry design. 

 



 

Figure 4: MSDTIRC (HTot = 3.0 cm, θa-x = +30
o
, θa-z = +40

o
, n = 1.5), where (a) is the isometric view; (b) is the side 

view 1; (c) is the side view 2; (d) the aerial view, and (e) is the bottom view of the concentrator. 

 

 

3. Geometrical Concentration Gain Analysis 

 

 This subsection analyses the impact that changing the total height and the index of 

refraction of the material has on the geometrical concentration gain of the MSDTIRC. This is useful 

to predict the final output gain based on the input parameters especially from the manufacturing 

point of view. Often, a high output gain is desirable, but this normally translates into a larger 

structure [13] and increases the material cost [14]. Therefore some trade off must be met, i.e. by 

choosing the appropriate gain while at the same time keeping the total cost as low as possible. The 

geometrical concentration gain of a 3D concentrator is defined as the ratio of the entrance aperture 

to the exit aperture of the concentrator [18]. 

It is not possible to know the direct relationship between the geometrical concentration gain, 

the front surface arc angle, and the acceptance angle in an MSDTIRC design. This is because it uses 

a range of acceptance angles in a single design and the arc angle varies throughout its top surface. 

However, owing to the fact that the MSDTIRC’s design strategy is based on the DTIRC design, it 

should mimic its characteristics. It has been shown that a DTIRC’s geometrical concentration gain 

is inversely proportional to both the arc angle and the acceptance angle [13],[14]. By having a 

higher acceptance angle, the total height of the concentrator greatly reduces. To further simplify the 

analysis in this subsection, the MSDTIRC analysis is undertaken in three groups: 



· Group 1, where the total height1 is between 6.4 cm to 6.8 cm and the acceptance 

angle2 is between +15
o
 to +25

o
. 

· Group 2, where the total height is between 4.5 cm to 4.9 cm and the acceptance 

angle is between +20
o
 to +30

o
. 

· Group 3, where the total height is between 2.9 cm to 3.2 cm and the acceptance 

angle is between +30
o
 to +40

o
. 

 

The relationship between the geometrical concentration gain and the total height (for each 

group of MSDTIRCs) using various refractive indices3 is shown in Figures 5 to 7.  Figure 5 shows 

the gain for the MSDTIRCs from Group 1, which have the highest gain range of between 11 and 

15. The gain in Group 2 ranges from 7 to 10 as presented in Figure 6. The gain reduces to between 

3.5 and 5.5 for Group 3, as indicated in Figure 7.  Comparing these three groups, it can be seen that 

as the total height and the acceptance angle are changed, the geometrical concentration gain varies 

greatly.  The gain is also inversely proportional to the acceptance angle, which is as expected [13].  

However, looking closely at the MSDTIRCs within the same group, the difference in height has a 

very small effect on the gain.  It is also possible to conclude from the three graphs that MSDTIRCs 

fabricated using higher refractive index materials produce higher gains than similar MSDTIRCs 

made from materials having a lower refractive index.  

                                                           

1 A typical solar panel has a thickness of between 2.5 cm and 7.5 cm [19],[20]. If a new panel incorporates the 

MSDTIRCs, the total height of MSDTIRC and the glass covers would be constructed within this range. 

2 The range of acceptance angles can be designed according to the requirement. For this paper, this value is chosen 

to be from +15
o
 onwards to cater for the variation of seasonal sun path in Europe [21]. 

3 This range of indices of refraction is the typical range for concentrator materials and optical lenses. Some 

examples of concentrator materials are PMMA (n = 1.491), Acrylic glass (n = 1.490 - 1.492) and ZEONEX (n = 1.509), 

while the example of optical lenses are Lithosil-Q (n = 1.45), H-QK1 (n = 1.47), K11 (n = 1.50) and BK8 (n = 1.52). In 

this paper, an optical system design software called ZEMAX® is used for simulations and ray tracing analysis. This 

software contains a variety of optical glasses that can be chosen for optical simulations, as presented later in Section 4. 



 

Figure 5: Geometrical Concentration Gain of Group 1 (n = 1.40 to 1.52). 

 

Figure 6: Geometrical Concentration Gain of Group 2 (n = 1.40 to 1.52). 

 

Figure 7: Geometrical Concentration Gain of Group 3 (n = 1.40 to 1.52). 

 



It is also interesting to note that there is no data available for an MSDTIRC with a total 

height of 2.8 cm with index of refraction of 1.47, 1.50 and 1.52 (see Figure 7). This is because the 

MSDTIRC with these particular parameters is physically impossible to fabricate as they do not 

fulfil the necessary DTIRC conditions [16].  

Therefore, depending on the desired design, some trade-offs may need to be made.  For 

example, it may be possible to achieve a smaller solar concentrator with wider field of view but 

accepting a smaller gain, or to use a concentrator with a smaller field of view and achieving a 

higher gain, but at the cost of a larger structure. 

 

4. Optical Concentration Gain Analysis 
 

 

The optical concentration gain is defined as the ratio of the irradiance at the photo detector 

with a concentrator placed in front of it to that of a photo detector without the concentrator [22]. 

Based on the geometrical gain analysis presented in Sections 3, it is possible to conclude that the 

optical concentration gain will present a similar trend. The purpose of the analysis in this section is 

to evaluate the variation of optical concentration gain of the MSDTIRC at different angles of 

incidence.  

The optical concentration gain variation is useful to predict the output performance of the 

MSDTIRC when the sun is considered as the light source. The angle variation of the incident rays 

along the x-axis represents the seasonal changes of the sun angle while the angle variation of the 

incident rays along the z-axis represents the daily sun path. To simplify the analysis, only one 

design of MSDTIRC is chosen from each group. The index of refraction of the material chosen for 

this analysis is 1.5. 

Three pieces of software are used to conduct this simulation. Because of the complexity of 

the design, MATLAB is used to generate the surface coordinates (point cloud) of any MSDTIRC, 

which are then imported into GeoMagic® or AutoCAD software, to generate a computer-aided 

design (CAD) model from which a Standard ACIS Text (SAT) format file model is obtained, as 

illustrated in Figure 3. The SAT file is then used in an optical system design software called 

ZEMAX® to conduct the ray tracing analysis.  

The ray tracing analysis is presented in Figure 8. A square power source is chosen to 

produce one million parallel rays and is configured to produce an incoming power of 1,000 W. The 

size of the source is large enough to cover the entirety entrance aperture of the concentrator at all 

angles of incidence. The CAD model of the MSDTIRC is placed at a distance of 35cm from the 



source and a photo detector is attached at the exit aperture of the concentrator. 

 

 

Figure 8: Ray tracing analysis conducted in ZEMAX®. 

 

First, the rays are fired perpendicular to the photodetector without the incorporation of the 

concentrator and the total power and the numbers of rays detected at the photo detector are 

recorded. The step is repeated by increasing the angle of incidence by 5
o
 until a value of 50

o
 is 

reached. Next, an MSDTIRC is “attached” to the photo detector (placed in between the source and 

the photo detector) and both steps are repeated. The analysis is carried out to investigate the optical 

concentration gain at both the x and the z-axes.  

Similar to the analysis in [5] and [22], it has been found in this analysis that the optical gain 

reaches a maximum value when the rays are fired at normal incidence, and this value reduces 

gradually when the angle of incidence increases until it is equal to the value of the acceptance 

angle. Beyond the acceptance angle of the concentrator, the gain should decrease greatly. Figures 9 

to 11 show the optical performance of the MSDTIRCs for Groups 1, 2 and 3 design respectively. 

In Figure 9, the maximum optical concentration gain of the MSDTIRC with a total height of 

6.5 cm is 13.54. By increasing the angle of incidence of the rays along the x and z-axis, the optical 

concentration gain drops dramatically. The gain reduces to about 24% (of the maximum) when the 

angle of incidence reaches the acceptance angle of +15
o
 along the x-axis and to about 10% when 



the angle of incidence reaches the acceptance angle of +25
o
 along the z-axis. The gain drops to 

almost 0 when the angle of incidence is +30
o
 or more. 

 

 
Figure 9: Optical concentration gain of Group 1 with HTot = 6.5 cm, and n = 1.50. 

 

Figure 10 shows the optical concentration gain of the sample from Group 2. When the rays 

are fired at normal incidence, the maximum optical concentration gain of the MSDTIRC with a 

total height of 4.5 cm is 8.62.  An increase in the angle of incidence of the rays along the x and z-

axis reduces the optical concentration gain, which drops considerably. The gain reduces to roughly 

14% when the angle of incidence reaches the acceptance angle of +20
o
 along the x-axis and to 

about 6% when the angle of incidence reaches the acceptance angle of +30
o
 along the z-axis. The 

gain drops to almost 0 when the angle of incidence is +40
o
 or more. 

 

 
Figure 10: Optical concentration gain of Group 2 with HTot = 4.5 cm, and n = 1.50. 

 



A similar trend is also observed for the MSDTIRCs from Group 3. In Figure 11, the peak 

value of optical concentration gain of the MSDTIRC with a total height of 3.0 cm is 4.43. An 

increase in the angle of incidence of the rays along the x and z-axes reduces the optical 

concentration gain gradually. The gain reduces to 8% when the angle of incidence reaches the 

acceptance angle of +30
o
 along the x-axis and to about 3% when the angle of incidence reaches the 

acceptance angle of +40
o
 along the z-axis. No significant gain is recorded when the angle of 

incidence is +50
o
 or more. 

 

 
Figure 11: Optical concentration gain of Group 3 with HTot = 3.0 cm, and n = 1.50. 

 

From the analysis, it can be concluded that within the desired acceptance angle, the 

MSDTIRC could provide significant optical concentration gain within a solar panel design, with the 

highest value recorded when the rays are at normal incidence. Outside the acceptance angle, the 

gain is reduced significantly.  

 Another factor that needs consideration when choosing the MSDTIRC is the distribution of 

irradiance concentration on the solar cell. Any non-uniformity of distribution of the irradiance on 

the cells reduces their efficiency [5]. The concentration of the irradiance on the solar cell due to the 

introduction of MSDTIRC is observed while investigating the optical concentration gain analysis. 

Figure 12 shows the distribution of irradiance as a result of using the three concentrators at normal 

incidence. 

 



 

Figure 12: Photodetector’s results obtained from the ZEMAX® simulation of concentration distribution at the cell of 

(a) Group 1 design; (b) Group 2 design; (c) Group 3 design, and (d) flat solar cell. The unit is recorded in W/cm
2
. 

 

The simulation shows an even irradiance distribution on a normal flat solar cell, with a peak 

irradiance of 20 W/cm
2
, as indicated in Figure 13(d). However, the concentration of light for Group 

1 and 2 designs are concentrated mostly at four small areas of the cell, with the maximum 

concentration reaching 181x and 130x when compared with the flat solar cell. As for the Group 3 

design, it produces a more uniform concentration distribution when compared with the designs 

from Group 1 and 2, with a maximum of 14x with respect to the flat solar cell. A high concentration 

of power increases the solar cell temperature and significantly reduces the cell performance [5]. 

Any designs that required higher gain must incorporate a system to reduce the cell’s temperature 

(either using air or water), and one of the solutions is to implement the hybrid/thermal system that 

utilises the co-generated heat to produce hot water [23]. 

 

5. Experimental validation4 

 

An MSDTIRC from Group 3 was fabricated for experimental purposes. This has a total 

height of 3.0 cm and an acceptance angle of +30
o
 along the x-plane and +40

o
 along the z-plane. The 

geometrical concentration gain of the concentrator is 4.9069. The design was produced using 

                                                           
4 A more detailed information regarding the fabrication process and extensive indoor and outdoor experiments of the MSDTIRC is 

covered in Ref [24]. 



material 6091 (manufactured by Renishaw PLC), which was selected because of its rigidity, water 

clarity and transparency. The material can also withstand high temperatures (up to 75
o
C), is UV 

stable, it has a refractive index of 1.515 and a transmissibility of 93.7%. 

The MSDTIRC prototype has been placed beneath a sun simulator. The sun simulator is set 

to exhibit an irradiance of 1,000 W/m
2
, when the room temperature is 25

o
C. Instead of changing the 

rays’ angle, the MSDTIRC is mounted on a variable slop base, where the base can be tilted 

accordingly. The tilt angle is measured accurately using a digital tilt meter. The measurement of the 

short circuit current is taken, for an angle of inclination starting from 0
o
 to 50

o
, with intervals of 5

o
. 

The opto-electronic gain of the concentrator is obtained by dividing the MSDTIRC’s short 

circuit current with the flat solar cell’s short circuit current [16], and is plotted in Figure 13. From 

Figure 13, it is observed that within the acceptance angles of the MSDTIRC, the opto-electronic 

gain is always more than 1.2 when compared with the flat solar cell, where the peak value 

calculated from the experiment is 4.17. The corresponding peak value from the simulation is the 

peak value from the optical concentration gain, i.e. 4.59, indicating a deviation of about 9%. The 

result from the experiment shows good agreement with the simulation data. Some of the possible 

reasons for the deviation between the experimental and simulation values include manufacturing 

errors, such as uneven surfaces of the entrance aperture and over polishing on the profile of the side 

wall, misalignment between the exit aperture of the concentrator and the solar cell, and reflection 

on the front surface of the MSDTIRC. 

 

 

Figure 13: Opto-electronic gain of the MSDTIRC. 

 

 

 



 

 

6. Annual output prediction 

 

It is possible to predict the annual output (in kWh) from the MSDTIRC5 panel (see Figure 

14) and a conventional PV skylight (without concentrator) under Malaysia’s environment. This 

comparison is carried out to evaluate the panels’ performance based on the square meter of the PV 

material used in each panel. This analysis is carried out according to these assumptions, which are: 

(i) each panel has the length and width of 118.62 cm and 79.42 cm respectively, with cell 

conversion efficiency of 17.32%6; (ii) the samples are installed in Kuala Terengganu, Malaysia 

(103°25’); (iii) the samples are mounted on a south facing rooftop at an angle of 103
o 

from the 

vertical to match the longitude of the site, and (iv) no mechanical tracking system is employed by 

the system. The simulation is carried out using ZEMAX® to evaluate the opto-electronic gain of 

the samples. Based on the average daily solar irradiance data in Kuala Terengganu, Malaysia [25], 

the variation of sun path throughout the year [21] and the daily opto-electronic gain from the 

ZEMAX® simulation, the energy yield from both samples are calculated.  

 

Figure 14: Aerial view of the arrangement of MSDTIRCs in a module. 

 

 

Figure 15 shows the annual output from the MSDTIRC panel and the traditional PV 

skylight. It can be seen that the MSDTIRC could increase the electrical output by 2.16 times when 

compared with amount generated by the traditional PV skylight, generating about 107.59 kWh per 

year. However, the predicted annual energy only indicates the comparison in terms of electricity 

generation. Other benefits of utilising an MSDTIRC panel should also be taken into account; 

especially in terms of illumination and the possibility of generating hot water and space heating, 

                                                           

5 The MSDTIRC used in the panel is from Group 3 ((HTot = 3.0 cm, θa-x = +30
o
, θa-z = +40

o
, n = 1.5). 

6 This is based on the efficiency of the cell used during the experiments. 



which will further reduce the energy requirement in a building. 

 

 

Figure 15: Comparison between the MSDTIRC panel and the traditional PV skylight. 

 

7. Advantages of the MSDTIRC 

 

The MSDTIRC-PV system offers several advantages when compared with the conventional flat 

plate panel. These are: 

i. It utilises only a fraction of the silicon solar cell in the design – as little as only 10% 

(depending on the design) when compared to the normal solar panel. It is understood the 

silicon wafers covers immense fraction of the total cost of the module, typically between 

40% and 60% depending on the type of solar cell. [17],[26]. 

ii.  The large entrance aperture allows the rays within the acceptance angle of the concentrator 

to be concentrated on the solar cell hence increasing the electrical output. The gain 

increment offset a reduction in terms of the size of the cell. 

iii. The usage of a square solar cell is desirable and easier to fabricate unlike the circular cell in 

the rotationally symmetry design [26]. 

iv. It is constructed from transparent dielectric material by using a moulding technique, which 

is cheaper than the cost of displaced silicon solar cell and much easier to mass produce 

hence minimising the manufacturing cost.  

v. For rays impinging on the entrance aperture outside the acceptance angle range and in 

between the entrance aperture of the concentrators, these rays could pass through the 

transparent material providing natural illumination for a building, which could potentially 



reduce the energy consumption and electricity cost for lighting purposes.  

vi. The large acceptance angle also helps to eliminate the need for mechanical tracking. 

Tracking systems often consume electrical energy and are normally associated with PV 

power plant [8]. 

vii. Small compact dielectric concentrators coupled with small solar cells produce more 

economical and practical designs than larger and heavier dielectric concentrators [27].  

viii. The concentrating PV (CPV) system works better and more efficiently when it is operated 

in a hybrid/thermal system application, which generates both electricity and hot water at the 

same time [23]. 

ix. When coupled with the FiT scheme, the total cost reduction of the system enables the 

participant(s) to gain more total profit, a higher return on investment, and a shorter payback 

period [28],[29]. 

 

 

Conclusions 

 

This paper explores the MSDTIRC, a new type of DTIRC. The method to produce an 

MSDTIRC has been explored and the geometrical analysis of the MSDTIRC is presented in detail. 

Through simulation results, it has been demonstrated that this MSDTIRC provides significant 

optical concentration gains within its acceptance angle. In this paper, it could reach up to 13.64 

when compared with non-concentrating solar cell. This is verified in through experimental work 

and a deviation of only 9% of the peak value is recorded. It can be concluded that the MSDTIRC 

can be an alternative way to produce a low cost solar PV system and can be chosen as an alternative 

design for the BIPV systems.  
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