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Abstract—The service chain planning process is a critical 

component in the operations of companies in the service industry, 

such as logistics, telecoms or utilities.  This process involves 

looking ahead over various timescales to ensure that available 

capacity matches the required demand whilst maximizing 

revenues and minimizing costs.  This problem is particularly 

complex for companies with large, multi-skilled workforces as 

matching these resources to the required demand can be done in a 

vast number of combinations.  The vastness of the problem space 

combined with the criticality to the business is leading to an 

increasing move towards automation of the process in recent 

years.   In this paper we focus on the tactical plan where planning 

is occurring daily for the coming weeks, matching the available 

capacity to demand, using capacity levers to flex capacity to keep 

backlogs within target levels whilst maintaining target levels for 

provision of new revenues.  First we describe the tactical planning 

problem before defining a bi-level model to search for optimal 

solutions to it.  We show, by comparing the model results to actual 

planners on real world examples, that the bi-level model produces 

good results that replicate the planners’ process whilst keeping the 

backlogs closer to target levels, thus providing a strong case for its 

use in the automation of the tactical planning process.    

Keywords—Bi-level, tactical planning, optimisation, genetic 

algorithm, GA, linear programming 

I. INTRODUCTION 

In recent decades, with the advent of privatization and the 
increase in competition, there has been a drive in the service 
operations sector to improve the sophistication of supporting 
applications up to the level of the far more mature supply sector 
[1].  Recent research has shown that this is increasingly 
involving the automation of planning processes [2].  

One of the key areas for development lies within the field of 
service chain planning.  Planning for a service industry involves 
the matching of resources’ available time to the jobs requiring 
completion.  This matching occurs along the dimensions of time 
periods, area and skill.  Each job requires a skill to complete, in 
a certain geographical area, within a certain period of the plan. 
The planner attempts to match this with the skills and areas a 
resource can cover within each period, by using some simple 
rules [3].  The key objective of planning is to have the right 

resource available at the right time in the right place to fulfil the 
customer demand. Advanced planning of resources helps firms 
to maximize the utilization and minimize the wastage, and by 
doing so it helps to fulfil customer demand and maximize 
revenue, at the same time minimizing cost.   Planning can be 
categorized into three groups [4]. 

1. Strategic planning - a long term plan looking 3-5 years 
ahead deciding company strategy for the next few years. 
[5] 

2. Operational planning - a medium term plan looking at 12 
to 18 months ahead taking operational decisions such as 
demand prioritization and resource recruitment. [6]  

3. Tactical planning– a short term plan up to 90 days ahead 
balancing daily capacity against daily workstack [7]. 

We will be focusing on tactical planning in the rest of the 
paper. Tactical planning is typically done on a daily basis up to 
90 days in advance. However much of the input from the planner 
is required for the first 7 to 14 days, i.e. near the execution date, 
where the unforeseen fluctuation in available resource capacity 
as well as change in demand has to be taken into account to 
produce an actionable plan to match demand to supply. 
Depending upon the type of task to be undertaken, the planning 
process can be different. For example, tasks that are related to 
faults and require repair are predicted in advance due to their 
repetitive nature and past patterns of fault volumes.  This means 
there are a steady stream of fault tasks requiring completion 
within the plan that add up into a backlog that the planner aims 
to keep at a manageable level.  In contrast there are also tasks 
where the planner has some control over the volumes such as 
installation tasks; here the planner sets the number of 
appointments to open up for selling to the customer.  For 
example, in the case of a telecoms company this could be 
appointments to supply a new customer with a fibre connection.  
The goal of the planning process is to ensure there is enough 
capacity available to keep the fault backlogs at a level where 
service targets are being met whilst also opening up enough 
installation tasks to meet selling targets to maximise new 
revenue.  To meet this goal, capacity can be flexed by applying 
factors such as overtime, contractors or moving resources 
between areas.  This, in essence, is the tactical planning problem 



which becomes very large and complex when dealing with a 
large multi-skilled workforce.  A large number of resources, 
each capable of performing multiple different skills, requiring 
matching up to a vast number of tasks, with different levers 
available to flex the capacity, leads to a vast number of possible 
solutions. In this paper we propose a bi-level model [8] [9] to 
solve this large problem and compare the solutions provided 
with those reached by some actual planners using some real 
world data.   

The paper is organized as below. Section 2 describes the 
tactical planning problem and illustrates its size providing a 
justification for breaking the problem down into two sections to 
create a bi-level model.  Section 3 defines this bi-level model, 
describing the leader and follower models used to solve the 
problem. Section 4 reports the results of the experiments 
comparing the model outputs with actual planners on real world 
data. We conclude the paper in section 5. 

II. THE TACTICAL PLANNING PROBLEM 

This section of the paper first defines the tactical planning 
problem, briefly explaining the planning process, before 
formalising the portion of the plan we are looking to optimise.  
We then give a couple of examples of possible solution 
approaches along with the justification for investigating the bi-
level approach which is followed in the rest of this paper. 

A. Problem Definition 

In a member of the service industry with a large multi-skilled 
workforce the tactical planning process consists of optimising a 
plan with two main components, the capacity and the demand.   

The capacity for the plan is made up of the members of the 
workforce available on each day of the plan, called the 
resources. Each resource has a number of different skills they 
can perform as well as an amount of available time in each 
period of the plan.   

The demand portion of the plan consists of the jobs that are 
to be completed.  These jobs are grouped by the skill required to 
complete them into workstacks.  In the tactical plan there are 
generally two different types of workstacks, those where the 
planner has no control over the number of jobs needing 
completed and those where the planner can set the number to be 
completed.  The former type usually involves repairing of faults 
where the intake is set by the future forecast of the levels of 
faults expected.  The latter type is one where the planner can set 
the number of jobs available, such as setting the number of 
appointments to make available for deliveries, a new 
connection, etc.  For the rest of this paper the former shall be 
referred to as faults and the latter as installation. 

The fault workstacks consist of the number of jobs waiting 
to be completed (backlog), the number of new jobs expected to 
appear each day of the plan (intake) and the target number to 
complete each day.  In the majority of situations, the target is not 
to clear the entire backlog, as this may be economically 
infeasible and may not even be possible (e.g. if the fault job is 
within a property it will only be possible to complete it when 
access is available).  The target for the purposes of the model 

built in this paper is a configurable percentage of the backlog at 
the start of that day in the plan. 

The installation workstacks do not contain a backlog nor an 
intake, instead the planner sets the number of jobs to make 
available each day of the plan.  For the purpose of the model 
built in this paper these workstacks contain a target number of 
jobs to aim for on each day of the plan. 

Both workstack types share a minimum number of jobs 
requiring completion on each day, these are jobs that have 
already been appointed such as an installation job that a 
customer has already booked or fault tasks that have been 
appointed where property access is required. 

The task of the planner, and the definition of the tactical 
planning problem, is to match the capacity to the demand in such 
a way that the demand targets are met as closely as possible.  
This is a two-part process; the first part is in optimally assigning 
the resources to jobs based on their available time and the skills 
they can perform; the second part is the attempt to bridge the gap 
between the capacity and the demand through the use of various 
levers. 

The demand lever as mentioned earlier is to decide the 
number of installation jobs to make available for booking.  The 
remaining levers all relate to the capacity.  These include things 
such as overtime, resource loans (loaning resource from one area 
to another), shrinkage (amount of leave and sickness), 
contractors and productivities (the amount of time a resource 
takes to complete a job of a given skill).  For the purpose of the 
problem explored in this paper we are taking the productivity 
and shrinkage levers as fixed, leaving the remaining overtime, 
contractors and area loan levers available to attempt to shape the 
capacity to fit the demand. 

The outputs from the planning process are the values for 
these levers along with the number of jobs of each type to be 
completed by each resource on each day of the plan. 

B. Solution Methods 

The tactical planning problem, particularly for organisations 
with large multi-skilled workforces, quickly becomes very large.  
Two of the initial solution methods considered were that of a 
linear programming model [10] or use of a meta-heuristic [11] 
[12]such as a genetic algorithm (GA) [13] [14] or particle swarm 
optimisation (PSO) [15] [16].  

In both cases, the large size of the problem was highlighted 
as a bottleneck.  Even taking a reduced example, where the 
overall problem is split geographically into a number of separate 
areas, to solve the planning problem for and solving for a single 
week only still remains large.   

Let’s take a small example where we have 50 different 
resources that, on average, can perform 7 skills each out of a 
total of 13 skills. This gives approx. 350 decision variables for 
each day of the plan and 2450 across the week, simply for 
allocating their time to each of their skills.  Adding in overtime 
decisions, 50 for each day of the plan for 350 in total, contractor 
decisions, one for each 13 skills, on each day of the plan for a 
total of 91 decision variables, and area loans, same number as 
overtime for another 350, the problem is already very large at 



3241 variables before even adding the demand decision 
variables. 

These decisions also come with a large number of constraints 
which further complicates the linear modelling approach.  The 
heuristic does not fare much better as, to model all of the 
possible decision variables, a large chromosome with many 
possible values for each allele is required, leading to a very large 
search space.  It may be possible to effectively search this space 
using some advanced techniques, the solution explored in this 
paper is that of breaking the problem down into smaller, inter-
connected, problems to allow the use of different techniques for 
solving each sub-problem.  The solution was a bi-level model 
with the leader model, pulling the capacity levers, to set the 
capacity constraints that is used by follower model. This is 
outlined in the next section. 

III. BI-LEVEL MODEL 

In this section of the paper, the bi-level model used to solve 
the tactical planning problem is specified.  First the general 
structure is defined, followed by detailed descriptions of the 
leader and follower models.  Finally, the model configuration 
used to achieve the required behaviour is outlined. 

A. General Structure 

The general structure of a bi-level model is given by the 
equation [17]:   

 cover this with equation (1) 

 

Here F(x,y) is the leader model with the associated 
constraints G(x,y), similarly f(x, z) denotes the follower model 
with the associated constraints of g(x,z).  In the case of the model 
developed in this paper, to solve the tactical planning problem, 
the leader model’s decision variables, x, are not included in the 
fitness function of the follower model.  Instead they only affect 
the constraints for the follower model.  Thus, for the purposes of 
this model, the follower model’s fitness function can be 
simplified to f(z).  The leader and follower models for this 
solution are described in the rest of this section. 

B. Leader Model 

The leader model controls the capacity levers that set the 
constraints for the follower model.  These encompass the 
following decision variables  

1. Overtime - applied to each resource  

2. Contractors - Number of contractors applied to each 
skill  

3. Reduction - Number of resources to remove from the 
plan 

Each of these variables require an entry for each period in 
the plan.  In this paper a genetic algorithm was used to model 
this level of the problem.  The following sub-sections of this 
paper describe the chromosome structure used for this GA, 

followed by the constraints applied to the problem, the evolution 
methods and finally the fitness function. 

1) Chromosome Structure 
Fig. 1 shows the structure of a solution to the leader model.  

The chromosome is split into three main sections that define the 
decisions for contractors, overtime and reductions in the plan.  
Within the contractor section there is an allele, Cn, for each of 
the N skills contractors can be applied to.  For overtime and 
reductions there are alleles Om and Rm respectively for each of 
the M resources in the plan.  Each allele is a list of values, Pt, for 
each of the T periods in the plan that represent the value for that 
allele in that plan period.  The values within the contractor and 
overtime alleles were all positive real numbers with the values 
in the reductions being natural. For example, if the value of P1 
for the allele O2 is 3.5 then that indicates that resource 2 has been 
allocated 3.5 additional overtime (in whatever unit the model 
inputs used, typically hour) in the first period of the plan. 

Decoding the chromosome then gives the amount of 
overtime and reductions applied to each resource on each period 
of the plan along with the amount of completions allocated to 
contractors on each day of the plan.  This modifies the available 
capacity, thus changing the capacity constraints in the follower 
model.  

2) Leader Model Constraints 
Constraints applied to the leader model were of two types, 

the first to set the budget for the solution and the second to 
ensure correct behaviour of the model.  Let’s define the set of 
decision variables for the follower model as Y and those for the 
leader as cnt, omt and rmt which are the values in period t for 
contractors applied to skill n, and overtime and reductions 
applied to resource m respectively.  If we further define the 

variable mt as the amount of time available for resource m in 
period t then the leader portion of the problem can be defined 
with its constraints as: 

 minFc, o, r, yfor cC, oO, rR, yY 

subject to: 

1. nt cnt ≤ Cbudget 

2. mt omt ≤ Obudget 

3. m rmt ≤ Rbudget  t  T 

4. omt ≤ Omax  m  M, t  T 

5. omt + mt ≤ max  mM, tT 

 

Fig. 1. Leader model solution chromosome 

 



The first three constraints for (2) are budget constraints 
which are simply the maximum allowed contractors, Cbudget, 
overtime, Obudget, and reductions, Rbudget, allowed within the plan.  
For contractors and overtime, this just set the maximum total 
values that could be applied to each of the solution sections.  
Reductions maximum was slightly different in that it was 
applied to each specific period of the plan, e.g. a value of 5 for 
the maximum reductions constraint means that on each period 
of the plan there can’t be more than a total of 5 reductions 
applied across all of the M resources. 

The remaining constraints were to keep the solutions within 
the feasible bounds for a plan solution.  These were constraints 
to the maximum amount of overtime that could be applied to one 
resource in a period, Omax, and the maximum total time a 
resource could have in a period, Amax.  The latter is there to 
ensure that if a resource already has 8 hours available time on a 
given day and the max they can work in a day is 10 hours, the 
model won’t allocate more than 2 hours overtime to that 
resource in that day. 

3) Evolution Methods 
  The GA used the standard roulette wheel selection [18] to 

select the parents for subsequent generations.  Mutation chance 
was configured separately for each of the 3 sections of the 
chromosome, with mutation causing a single value to be 
increased or decreased by a proportion of the current value for 
the contractor or overtime sections, with the proportion 
randomly chosen from a Gaussian distribution with standard 
deviation of 0.333.  For the reductions section, a mutation just 
increased or decreased the reduction amount for that resource in 
that period by 1.  All of the mutations were restricted to only 
allow solutions that would meet the model constraints.  If a 
solution was mutated then a check and fix process was 
performed that would modify the solution to ensure it remained 
within the valid solution space if required. 

Crossover was performed using a standard crossover process 
with a configurable number of crossover points and probability 
of occurring.  Crossover was allowed to occur within sections as 
well as between sections, however crossover that split a section 
would got through a check and fix stage afterwards to ensure that 
the max constraint for that section was not broken. 

4) Fitness Function 
The fitness of a solution was calculated based on the cost of 

the budget use by the leader solution plus the cost achieved by 
the follower model with those capacity constraints.  If the cost 

for contractors, overtime and reductions use are defined as c, 

o and r respectively and the cost for the follower model is 

given by f(z) where z  Y is the optimal solution of the follower 
model for the current leader solution then the fitness function 
can be given as:  

 F(c, o, r, z) cnt cnt + omt omt +rmt rmt + f(z) (3) 

C. Follower Model 

The follower model matches the available capacity to the 
demand, attempting to meet the workstacks targets.  The 
matching occurs across the dimensions of skill and time, with 

the available time for each resource in each period allocated to 
the skills they can perform to complete jobs in the workstacks 
associated with those skills.  For the purposes of this paper, the 
model was built using linear programming as previous work had 
shown linear programming to be good at solving this sub-
problem [6].  Here we first describe the linear formulation of this 
problem before expanding on the methods used to optimise 
towards the target workstack levels. 

1) Linear Model Formulation 
Further defining the members of Y, the follower decision 

variables are defined as a, d, d’, d’’, L and E.  Here,  

amst is the allocation of time for resource m to skill s in period t, 

dst is the completion of a jobs for fault skill s in period t,  

d’st is the completion of installation jobs up to the target for skill 
s in period t,  

d’’st is completion of installation jobs beyond the target for skill 
s in period t,  

Lst is the rollover of target fault completions for skill s to period 
t+1  

Est is the rollover of the remainder of the fault workstack for skill 
s to period t+1.   

The mechanics for the workstack rollovers and target 
installation completions will be explained in the next sub-
section.  With these decision variables defined, we can now 
specify the follower model mathematically as: 

 Cover this with the equation (4) 

 

subject to: 

1. s amst ≤ omt + mt  m, t 

2. m pmstamst – dst = 0 t, sfault 

3. m pmstamst – d’st - d’’st = 0 t, sprov 

4. dst + Lst+ Est – Ls(t-1) –Es(t-1) = Is(t-1) t, sfault 

5. Est + (st - 1) Es(t-1) ≤ (1 - st) Is(t-1) t, sfault 

6. Lst - Ls(t-1) - st Es(t-1) ≤ st Is(t-1) t, sfault 

7. dst - st Ls(t-1) - st Es(t-1) ≤ st Is(t-1) t, sfault 

8. d’st ≤ st t, sprov 

9. (d’st + d’’st), dst ≥ dmin
st t, s 

10. amst, Lst, d’st, d’’st, Est ≥ 0 t, s, m 

The weight variables m, lt, f,p and ap are the costs and 
benefits for using resource time, rolling over target fault 
completions, completing faults jobs, completing installation 
tasks up to the installation target and completing additional 

installation tasks respectively.  The final cost variable  is a 
zero cost that is attached to rolling over of additional fault 
jobs beyond the target. 



The constraints for (4) ensure a valid planning solution is 
produced and set the skill matching and completion targets 
behaviour.  The 1st constraint simply states that the max amount 
of time used for each resource m in period t across all their skills 
should be less than or equal to the total time they have available 

as set by their base time, mt, plus any addition overtime, omt, 
applied by the leader model.  The second and third constraints 
state that the total number of completions by resources of a skill, 
given by the time applied to that skill, amst, multiplied by the 
number of jobs of that skill they can complete per unit of time 
applied (the productivity pmst), must equal the total number of 
completions assigned to that skills workstack. This is dst in the 
case of a fault skill or d’st + d’’st in the case of an installation 
skill.  Constraint 4 introduces a new quantity, Is(t-1), which is the 
intake of new fault jobs on period t-1.  For the first period of the 
plan this value would be the starting backlog.  Constraint 4 is 
stating that all jobs must be accounted for, either by being 
completed or by being rolled over to the next period through Lst 

and Est.  The rollover from the previous period is also taken into 
account in this constraint, ensuring the backlog correctly 
propagates through the model.  The 5th and 6th constraints 
enforce the fault completions target mechanic by aiming to 
complete a proportion of the start of day backlog for each skill 

in each period. This is defined as st.  The mechanics for this are 
explained in the next sub-section.  

The 7th constraint is an additional constraint on fault completions 
which states that only a certain proportion of the start of day 
backlog for each skill in each period can be completed, defined 

by st.  The 8th constraint also uses the st quantity, however in 
the context of an installation skill, this is the target number of 
jobs the model should aim to do for installation in each period 
of the plan.  The final two constraints set a minimum number of 
completions for each skill in each period, dmin

st, and also forbid 
any decision variables from being negative.  

2) Optimising towards target levels 
  A key problem to solve when defining the follower as a 

linear model was how to replicate the non-linear behaviour 
caused by planning to target workstack levels.  When the 
backlog is too high (above the target level), a planner puts extra 
resource time into that skill (if possible) to increase the number 
of completions and bring the backlog lower.  However, once the 
target backlog level is met, the skill will suddenly become a 
lower priority.  This two-stage behaviour was captured in the 
model by splitting the fault workstacks backlog into two 
portions in each period of the plan. The first is the proportion 
that should be completed in that period for that skill to meet the 

target, st, and second is the remainder.  Constraints 5 and 6 of 
(4) encode this behaviour into the linear model. 

Fig. 2 shows a graphical representation of how these 
constraints, along with the L and E decision variables that 
represent the rollover of jobs above and below the target level 
respectively, cause the required behaviour.  In the first plan day, 
the backlog is split into two portions. First one represented by 
Lmax

s1 is the target number of completions for skill s in the first 
period, defined as: 

  Lmax
s1 = s1 * Backlog   (5) 

The remainder of the backlog is represented by Emax
s1. These 

two variables represent the maximum values possible for the two 
rollover variables Ls1 and Es1 respectively.  The value of the 
decision variable ds1 sets the number of completions performed 
for skill s in the first period, which are first taken from the 
amount of rollover of jobs above the target represented by Ls1.  
In the first period in Fig. 2, this value is less than the max 
rollover for jobs above the target level. Therefore, some jobs 
above the target level and all the jobs below the target level roll 
over to the next period.  For the next day the target completions 
are all the target completions from the previous period. In this 
case it is Ls1, plus the portion of the backlog to complete this 
period.  For period n the backlog is the rollover of jobs below 
the target level, Es(n-1) which in this case is Es1, plus the intake of 
new jobs from the previous period, Is(n-1) which in this example 
is Is1.  The backlog is then split in the same way as previously 
described to give the target completions for this period of: 

 Lmax
snsn (Is(n-1)+ s(n-1))Ls(n-1) (6) 

The jobs below the target level are therefore given by the 
remainder of the backlog for period n: 

 Emax
snsn) (Is(n-1)+ s(n-1)) (7) 

Fig 2. Further illustrates what happens if the number of 
completions in the period are above the target level. The 
transition from day n to day n + 1 shows a value of dsn greater 
than the target level, so the extra completions are removed from 
the remaining rollover Esn . This results in a reduced backlog for 
the next period which continues to be split using the target 
proportion as before. 

D. Model Configuration 

With both the leader and follower model defined, the final 
part of creating the bi-level model was configuring the weights, 

, for all of the decision variables in order to obtain the required 
behaviour. 

The first fix for the model weights was to address the issue 
of the different productivities for different skills.  Some skills 
take little time to perform, so 1 hour applied to that skill might 
produce 5 completions, whereas an hour applied to another skill 
might only produce 1 completion.  This introduces an 
unintended priority to the linear model as the optimal solution is 
going to be - to apply time to the skills with the higher 
productivities in order to maximise the number of completions.  

Fig. 2. Fault workstack propagation in the linear model 

 



This was rectified to some extent by introducing a fixing factor 
to the weights for resource time application. This is done by 

dividing the weight by the productivity, giving m/ pmst.  This 
ensures the cost for the completion of one job of skill s1 will 
equal the cost for one completion of s2 no matter what their 
productivities are. 

With the fix in place, the weights we configured to replicate 
the priorities of a manual planner.  They will attempt to apply 
extra capacity through the use of overtime and contractors to 
allow the fault and productivity completions to reach their 
targets, prioritising faults slightly over installation.  For this 

purpose, the cost for the use of resource time, m was set to 1.0, 

with the benefit for completing a fault job, f, set to -1.0 and the 

penalty for rolling over a target fault job to the next period, lt, 
set to 0.1.  In this way, there was zero benefit for completing a 
fault job, if it was below the target but completing any jobs 
above the target level, would prevent the 0.1 penalty per job 
rolled over from being applied.  Similarly, the benefit for 

completing an installation job up to the target amount, p, was 

set to -1.05 and the benefit for any additional jobs, ap, was set 
to -1.0.  In this way the model prioritises target fault jobs, then 
target installation, then gains no further benefit from additional 
fault and installation. 

The weights for the leader model were also set to create the 

required behaviour.  The cost for overtime,o, was set to 0.05 

and contractors, c, to 0.01.  The reasons for these values is that 
contractors are generally cheaper to use, but cover less skills, 
than overtime so should attempt to be applied first.  Also, 
although the cost for overtime matches the benefit for 
installation, the fact that the productivity value is generally > 1 
means that 1 unit of overtime translates into more than 1 unit of 
completions and thus it still would give a benefit when those 
completions are used for target installation completions.  
Finally, the cost for reductions was set to 0.0 as the benefit for 
removing someone from the plan would be seen by the reduction 
in the cost of their time being used in the follower model if it 
wasn’t being applied efficiently.  

IV. RESULTS 

In this section of the paper we test the bi-level model on 
some real-world data.  First the data used is outlined, followed 
by the experimental technique and finally the results of the 
experiments are examined. 

A. Experiment Data 

For the purposes of this experiment one weeks’ worth of real 
planning data was obtained for a week in October 2017.  The 
data for 10 different areas was used to give us 10 different 
problem instances for the tests.  The total number of skills in the 
problem were 13 - 6 fault skills and 7 installation skills.  Three 
of those installation skills were able to field contractors.  The 
number of resources varied per area, with the minimum number 
being 106 and the maximum 186 with an average number across 
all ten areas of 126.  To reduce the problem size to a more 
manageable size, resources with similar skill sets were grouped 
together into resource groups.   

The target percentages for the fault workstacks were set to 
the same as those used by the planners during that week with 
similar target installation levels set.  We also obtained the 
decisions made by the actual planners for those 10 areas during 
that week to use as a comparison to the models results. 

B. Experimental Method 

The model was run on each of the 10 datasets with the 
evolution set to stop after 10 generations of stagnation.  The 
mutation probability for all 3 sections of the chromosome were 
set to 0.05 with the crossover probability of 0.85.  The overtime 
budget was set to 500 and the contractors to 1800 which were 
both slightly higher than the highest amount used by any of the 
planners in the problem instances.  The maximum amount of 
reductions allowed per day was set to 20.  After the models had 
reached their stopping point the resulting completions and 
capacity lever values were recorded to be compared with the 
planners’ decisions in those instances. 

C.   Comparison to Planners 

Table 1 shows the results of the comparison experiments, 
that values shown in the first column are the difference between 
the average distance between the target backlog level and the 
backlog achieved by the plan for each fault skill across each day 
of the plan by the model and the planner.  The values for all areas 
are negative, which means the bi-level model was closer to the 
target in all problem instances and by quite a significant margin.  
Overall the model was 26.1 completions closer to the target on 
average than the actual planners. 

The second column shows the difference between the 
average amount of installation jobs completed for each 
installation skill across each day of the plan by the model and 
the planner.  This time the negative value means that the bi-level 
model was producing less installation completions than the 
actual planners, however the value is fairly low at only a 1.3 
difference on average. 

Area 
Average Skill Per Day Average Per Day 

Fault Off-

Target 

Installation 

Sold 
Overtime Contractors Resources 

Area 1 -24.3 -1.3 2.7 40.5 -6.7 

Area 2 -60.8 -0.8 22.6 4.4 -2.3 

Area 3 -10.6 -3.3 8.4 -45.8 -2.3 

Area 4 -12.6 -2.0 9.2 -29.6 -2.6 

Area 5 -12.5 -1.5 -6.6 53.4 -2.3 

Area 6 -50.4 -1.6 32.4 -66.2 -2.7 

Area 7 -20.6 1.0 17.7 -37.5 -2.9 

Area 8 -18.1 -0.5 -0.8 75.2 -2.9 

Area 9 -26.2 -1.9 8.0 -3.3 -2.9 

Area 

10 
-24.6 -1.5 18.0 -30.9 -2.3 

Overall -26.1 -1.3 11.1 -4.0 -3.0 

 

TABLE I.  RESULTS COMPARING THE MODEL VS REAL PLANNERS 



The last three columns show the difference between the 
average overtime, contractors and reductions applied per day by 
the model and the planner.  The data shows that on average the 
model used 11.1 more hours of overtime daily but used 4 less 
contractors and managed to remove an average of 3 resources 
from the plan per day.  The reason resources were removed 
while overtime was applied would indicate that some resources 
didn’t have useful skills on specific days and overtime was 
needed on the resources with the rarer skills instead.  These freed 
resources could be loaned to other areas or given different tasks.  
The overall gain from the additional completions outweighs the 
additional cost of the overtime applied if we use the weights 
applied to configure the mode, thus in that sense the model has 
produced a more optimal solution than the actual planners across 
all the problem instances.   With the goal being to reach the fault 
backlog levels and installation completion levels required, the 
model has shown the optimal way to reach these with the levers 
it had available in each case. 

Looking specifically at the area with the largest difference in 
the fault off-target value between the planner and the model, 
area 2, to see how this was achieved, the large difference can be 
attributed to the area starting with the backlogs above the target 
equilibrium as illustrated in the graph of a typical skill’s backlog 
shown in fig. 3.  Looking at the target backlog line we can see 
that it is decreasing across the 7 days of the plan.  This is due to 
the target number of jobs to complete each day being a 
percentage of the start of day backlog, the target backlog levels 
therefore will naturally increase or decrease to the point where 
the percentage of the backlog on each day (the target number of 
jobs to complete) is equal to the intake of new jobs that day.  
From the planner and model’s achieved backlog level lines we 
can see that the model performs much better in bringing the 
backlog down to target levels.  The planner does achieve some 
reduction but not at the same rate as the target backlog level 
reduces and thus falls behind the required reduction rate.  Fig. 4 
shows where this improvement is mainly achieved by the model, 
which is in the additional application of overtime early in the 
plan to bring the backlog down to the target level.  We see 
increased overtime early in the plan with the levels back to 
normal by the last day of the week.  This is a typical pattern seen 
across all the areas tested, to a greater or lesser extent. 

V. CONCLUSION 

In this paper we defined the tactical planning problem as a 
large and complex problem when dealing with a large multi-
skilled workforce.  We described a bi-level model for solving 
this problem, using a GA as the leader model that set the 
capacity constraints for the follower model, which was 
formulated as a linear programming model.  The model weights 
were configured to mimic the planning priorities of the actual 
planners, aiming to use the capacity levers to bring the fault 
backlogs down to target levels, whilst also providing for target 
levels of installation jobs to be completed.  We also gave the 
model the additional goal of attempting to remove excess 
resources from the plan (where possible) that could be loaned to 
other areas, used on other tasks or trained to cover new skills. 

We showed, using real world data that this model produces 
solutions that compare favourably with the current planning 
processes by bringing the fault backlogs far closer to target 
levels than the planners themselves had managed whilst keeping 
similar installation completion levels. This is achieved by 
applying additional overtime to the plan but at the same time 
managing to reduce the contractor use and free up some 
resources for use elsewhere.  These solutions were following the 
same priorities that a real planner would be taking and so the 
model could be used to effectively automate the capacity plan in 
the future. 

Future work in this area would be to investigate methods to 
improve the run-time of the model, such as by taking advantage 
of the bi-level structure to replace the follower model with a 
surrogate requiring cheaper computation effort. 
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