
OCHEI, L.C., PETROVSKI, A. and BASS, J.M. 2019. Optimal deployment of components of cloud-hosted application for
guaranteeing multitenancy isolation. Journal of cloud computing [online] 8, article ID 1. Available from:

https://doi.org/10.1186/s13677-018-0124-5

Optimal deployment of components of cloud-
hosted application for guaranteeing

multitenancy isolation.

OCHEI, L.C., PETROVSKI, A., BASS, J.M.

2019

This document was downloaded from
https://openair.rgu.ac.uk

https://doi.org/10.1186/s13677-018-0124-5

Journal of Cloud Computing:
Advances, Systems and Applications

Ochei et al. Journal of Cloud Computing: Advances, Systems
and Applications (2019) 8:1
https://doi.org/10.1186/s13677-018-0124-5

RESEARCH Open Access

Optimal deployment of components of
cloud-hosted application for guaranteeing
multitenancy isolation
Laud Charles Ochei1* , Andrei Petrovski1 and Julian M. Bass2

Abstract

One of the challenges of deploying multitenant cloud-hosted services that are designed to use (or be integrated
with) several components is how to implement the required degree of isolation between the components when
there is a change in the workload. Achieving the highest degree of isolation implies deploying a component
exclusively for one tenant; which leads to high resource consumption and running cost per component. A low degree
of isolation allows sharing of resources which could possibly reduce cost, but with known limitations of performance
and security interference. This paper presents a model-based algorithm together with four variants of a metaheuristic
that can be used with it, to provide near-optimal solutions for deploying components of a cloud-hosted application in
a way that guarantees multitenancy isolation. When the workload changes, the model-based algorithm solves an
open multiclass QN model to determine the average number of requests that can access the components and then
uses a metaheuristic to provide near-optimal solutions for deploying the components. Performance evaluation
showed that the obtained solutions had low variability and percent deviation when compared to the
reference/optimal solution. We also provide recommendations and best practice guidelines for deploying
components in a way that guarantees the required degree of isolation.

Keywords: Cloud-hosted application, Multitenancy, Degree of isolation, Queuing network, Metaheuristic,
Component, Cloud deployment, Optimization, Decision support system

Introduction
Multitenancy is an essential cloud computing prop-
erty. Multitenancy is a software architecture where one
instance of a cloud offering is used to serve multiple ten-
ants and/or components [1, 2]. One of the challenges of
implementing multitenancy is how to ensure that there is
isolation between multiple components of a cloud-hosted
application when one of the components experiences high
load [1, 3]. A high degree of isolation can be achieved
by deploying an application component exclusively for
one tenant. This would ensure that there is little or no
performance interference between the components when
workload changes. However, because components are not
shared (e.g., in a case where there are strict laws and

*Correspondence: l.c.ochei@rgu.ac.uk
1School of Computing and Digital Media, Robert Gordon University, Aberdeen
AB10 7QB, UK
Full list of author information is available at the end of the article

regulations preventing them from being shared), it implies
duplicating the components for each tenant, which leads
to high resource consumption and running cost. Overall,
this will limit the number of requests allowed to access the
components. It may also be that a low degree of isolation
is required for a component, for example, to allow shar-
ing of the component’s functionality, data, and resources.
This would reduce resource consumption and running
cost, but the performance of other components may pos-
sibly be affected when one of the components experiences
a change in workload.
Therefore, in order to optimize the deployment of

components, the architect has to satisfy two objectives:
maximize the degree of isolation between components
and at the same time maximize resource sharing (espe-
cially the number of requests that can be allowed to
access the component). In other words, we have to
resolve the trade-off between a lower degree of isola-
tion versus the possible influence that may occur between

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-018-0124-5&domain=pdf
http://orcid.org/0000-0003-4148-1085
mailto: l.c.ochei@rgu.ac.uk
http://creativecommons.org/licenses/by/4.0/

Ochei et al. Journal of Cloud Computing: Advances, Systems and Applications (2019) 8:1 Page 2 of 38

components or a high degree of isolation versus the chal-
lenge of high resource consumption and running cost
of the component. This is a decision-making problem
that requires an optimal decision to be taken in the
presence of a trade-off between two or more conflicting
objectives [4, 5].
Motivated by this problem, this paper presents a model-

based algorithm together with a metaheuristic technique
that can be used to provide sufficiently near-optimal
solutions for deploying components of a cloud-hosted
application in a way that guarantees multitenancy isola-
tion, while at the same time allowing as many requests
as possible to access the components. We implemented
our model-based algorithm by first solving an open mul-
ticlass Queuing Network (QN) model to determine the
number of requests allowed to access a component. This
information is used to update a multiobjective optimiza-
tion model (derived by mapping our problem to a Mul-
tichoice Multidimensional Knapsack Problem (MMKP).
Thereafter, a metaheuristic based on simulated anneal-
ing is used to find near-optimal solutions for component
deployment.
We evaluated our approach by comparing the solu-

tions obtained from our approach with the optimal results
obtained from an exhaustive search of the entire solu-
tion space for a small problem. The research ques-
tion addressed in this paper is: “How can we provide
near-optimal solutions for deploying components of a
cloud-hosted application in away that guaranteesmul-
titenancy isolation.”. To the best of our knowledge, this
study is the first to present a model-based algorithm, an
optimization model and a metaheuristic solution to pro-
vide a near-optimal solution for deploying components
of a cloud-hosted application in a way that guarantees
multitenancy isolation.
Most related work looks at this problem from the per-

spective of the cloud provider (i.e., SaaS, PaaS or IaaS).
Examples include the autoscaling algorithms offered by
IaaS providers like Amazon and optimisation models pro-
posed for use by SaaS providers such as Salesforce.com
[6]). However, this paper looks at the problem from the
perspective of the tenant who owns software compo-
nents and is responsible for configuring them to design
and deploy its own cloud-hosted application on a shared
cloud platform whose provider does not control these
components.
This paper extends and expands on the previous work

conducted by Ochei et al. [7]. We summarise the addi-
tions to the previous work as follows. Firstly, we extend
our previous work by presenting mathematical equations
both for the optimization model and the open multi-
class Queuing network models. For the open multiclass
model, we provide mathematical equations for calculat-
ing the average number of requests that can be allowed

to access the components and the entire cloud-hosted
system. Secondly, we present a new algorithm that inte-
grates the optimization model and QN model to provide
optimal solutions for deploying components of a cloud-
hosted service for guaranteeing multitenancy isolation.
Thirdly, the experiments presented in this paper have
been expanded and strengthened by (i) increasing the size
and dimension of the datasets; (ii) increasing the num-
ber of runs (and iterations for each run) required for
each experimental scenario; (iii) incorporating a rigorous
analysis of the results using a two-way ANOVA model.
Fourthly, a new methodology section has been added to
explain how a modelling and simulation technique is used
in the study and how it fits into the overall research goal
of providing a framework to architect the optimal deploy-
ment of components of a cloud-hosted service in order
to guarantee the required degree of multitenancy isola-
tion. Fifthly, the paper also includes more related work,
examples, explanations and areas where our model can
be applied.
The main contributions of this paper are:
1. Creating a novel model-based algorithm, optimalDep,

that combines (i) an open multiclass QN model; and (ii)
an optimization model, to provide a near-optimal solution
for deploying components of a cloud-hosted application
with guarantees for multitenancy isolation.
2. Presenting a novel system architecture, optimalArch,

for transforming the model-based algorithm into a deci-
sion support system for architecting the deployment of
components of cloud-hosted services for guaranteeing
multitenancy isolation.
3. Developing four variants of a metaheuristic which are

based on a simulated annealing algorithm and hill climb-
ing for solving the optimization model. The four variants
were extensively evaluated and compared.
4. Presenting recommendations and best practice guide-

lines based on the experience gathered from extensive
evaluation and comparison of the algorithms.
The rest of the paper is organized as follows: “Near-op-

timal deployment of components for guaranteeing mul-
titenancy isolation” section first presents a motivating
example and then highlights the challenges pointed to by
the motivating example. It also discusses related work on
multitenancy isolation and optimal deployment of cloud-
hosted services. “Methodology” section presents the
methodology used in the study. “Problem formalization
and notation” section formalizes the optimization prob-
lem. “Open multiclass queuing network model” section
discusses the open multiclass queuing network model,
while “Metaheuristic search” section discusses the meta-
heuristic. “Model-based algorithm for optimal deploy-
ment of components” section presents a simulation-based
algorithm, optimalDep, together with a system architec-
ture that can be used to transform the algorithm into

Ochei et al. Journal of Cloud Computing: Advances, Systems and Applications (2019) 8:1 Page 3 of 38

a decision support system. “Evaluation” section presents
the evaluation methodology of the study, “Results” section
presents the results, while “Discussion” section discusses
the results. Recommendations and limitations of the
study are detailed in “Limitations of the study” section.
“Conclusion and future work” section concludes the paper
with future work.

Near-optimal deployment of components for
guaranteeingmultitenancy isolation
As applications and services are increasingly being
deployed to the cloud to be used by multiple ten-
ants/users, there is a need to isolate tenants, processes,
and components, and thus implement multitenancy. Mul-
titenancy architectures are typically used for deploying
components of cloud-hosted services for multiple ten-
ants/users. This is based on the assumption that ten-
ants share resources as much as possible which leads
to a reduction in resource consumption and running
cost per tenant. Overall this makes it feasible to tar-
get a wider audience as more resources would be made
available [1]. Before continuing our discussion, let us
consider the following scenario which captures a simi-
lar thought process, and serves to elaborate more on our
motivation.

Motivating example
Let us assume that there are multiple components of the
same tenant on the same underlying cloud infrastructure.
A component is simply an encapsulation of functionality
or resource that is shared between multiple tenants (e.g.,
message queue, database). A tenant in this context rep-
resents a team or department of a software development
company, whose responsibility is to build or maintain a
cloud-hosted application and their supporting processes
with various components. These components which are of
different types and sizes are required to integrate with or
designed to use a cloud-hosted application for deployment
in a multitenant fashion. The components may also be
categorised into different groups based on type (e.g., stor-
age components, processing components, communication
components, user interface components, etc.), purpose or
size or some other feature (see Fig. 1). Different groups
may have components with varying degrees of isolation,
which means that some components can provide the same
functionality, and hence can be shared with other ten-
ants while other components are exclusively dedicated
to some tenants or group of tenants. Each application
component requires a certain amount of resources of the
underlying cloud infrastructure to support the number of
requests it receives. In the next section, we will highlight
several significant problems pointed to by the motivat-
ing scenario, which will be addressed subsequently in
this paper.

Challenge of implementing the required degree of
multitenancy isolation on the cloud
There are several design questions and significant prob-
lems pointed to by the motivating scenario, which tenants
face with respect to the sharing of the components with
other tenants.

1. Firstly, the motivating scenario highlights a key design
question when implementing multitenancy which
is how to ensure that the performance demands
and resource consumption of one tenant does not
adversely affect another tenant. When a cloud cus-
tomer is not guaranteed a certain service level, possi-
bly as a result of the activities of other tenants, then
customers may not be willing to access the cloud-
hosted application. Instead, the customer may decide
to move to a different cloud provider which may even
be at a higher cost in order to get a better service. For
a cloud provider, this may mean losing customers and
revenue, while for the cloud customer it may mean a
waste of time and resources.

2. Secondly, the motivating scenario points to the fact
that software architects need to be able to control the
required degree of isolation between tenants sharing
components of a cloud-hosted application. This is an
important issue in a cloud environment since vary-
ing degrees of tenant isolation are possible, depending
on the type of component being shared, the process
supported by the component and the location of the
component on the cloud application stack (i.e., appli-
cation level, platform level, or infrastructure level). At
the very basic degree of multitenancy, tenants would
be able to share application components as much
as possible which translates to increased utilisation
of underlying resources. However, while some appli-
cation components may benefit from a low degree
of isolation between tenants, other components may
need a higher degree of isolation because the com-
ponent may either be too critical or not shareable
due to certain laws and regulation. For example, there
is growing evidence that many cloud providers are
unwilling to set data centres in mainland Europe
because of tighter legal requirements that disallow
the processing of data outside Europe [8, 9]. This
requirement will traverse down to the IaaS level, and
customers must take this into consideration if intend-
ing to host applications outsourced to such cloud
providers [1].

3. Thirdly, the motivating scenario highlights that
depending on the required degree of isolation, there
are fundamental trade-offs that would have to be
taken into consideration when deploying components
of a cloud-hosted service. Many cloud providers (e.g.,
Amazon and Microsoft) do not guarantee isolation

Ochei et al. Journal of Cloud Computing: Advances, Systems and Applications (2019) 8:1 Page 4 of 38

Fig. 1 Deploying Components of a Cloud-hosted Service in a Multitenant Infrastructure

and availability for a single component (e.g., disk) and
but only for the whole system. This re-enforces the
need to automate the monitoring and management
of components of cloud-hosted services to guarantee
multitenancy isolation.
In order to optimise the deployment of com-

ponents, the architect has to resolve the trade-off
between a lower degree of isolation versus the pos-
sible influence that may occur between components
or a high degree of isolation versus the challenge of
high resource consumption and the running cost of
the component. This is a decision-making problem
that requires an optimal solution to be determined in
the presence of a trade-off between two or more con-
flicting objectives [4, 5]. In order to resolve this trade-
off, we can model the problem as a multi-objective
optimization problem. Many multi-objective opti-
mization problems result in a trade-off situation that
involves losing some quality of one objective func-
tion in return for gaining quality in some of the other
objective functions [4, 5, 10].

Examples of real scenarios with components of a
cloud-hosted service
There are several real-life scenarios where our approach
can be applied. A typical scenario is a multitenant cloud-
hosted streaming system deployed using Apache Kafka-
base subsystem integrated with Cassandra backend for
streaming data for the forthcoming Olympics Games to

cater and produce live data (e.g., past games, competitions
schedule/draws for upcoming games or match analysis
from favourites sports analysts) for various websites. The
system allows tenants (i.e., Producers) to generate data to
persist their data in real-time in an Apache Kafka Topic
(regarded as components). Any of these Topics can then
be read by any number of tenants (i.e., Consumers) who
have subscribed for the data in real-time. Furthermore, as
this particular Kafka component is reusable for additional
websites, other tenants can register their components as
listeners and use the Cassandra for accessing the archived
data [11].
Streaming applications usually require varying degrees

of isolation. This is because a large number of com-
ponents may be published in various locations on the
cloud system, conflicts can occur with other previously
installed components or when components are removed
[12]. Therefore, the approach presented in this paper can
be used to provide an optimal deployment solution that
guarantees the required degree of isolation for compo-
nents shared between different tenants by intercepting all
published components and subscribed components and
re-distributing them to alternate brokers(servers).
Another interesting scenario is that of a tenant devel-

oping automated build verification and testing infrastruc-
ture using a Jenkins-based continuous integration system
to support the development of a large-scale software
project. For example, the continuous integration system
can be configured to poll one or more directories and

Ochei et al. Journal of Cloud Computing: Advances, Systems and Applications (2019) 8:1 Page 5 of 38

starts a build if certain changes are detected within those
directories [13, 14].
In such a large project, it is expected that multiple

builds will interact with multiple components to create
several dependencies and supported behaviour with each
other thereby making builds difficult and complex. Com-
plex and difficult builds are those that are composed of a
vast number of modular components including different
frameworks, components developed by different teams or
vendors, and open source libraries [13].
In this type of situation, it is essential that components

designed to use (or integrate with) such a cloud-hosted
service are made shareable to other tenants as well pro-
vided the initiating tenant gives its consent. This also
makes it easy to implement the required degree of isola-
tion between tenants.

Related work onmultitenancy isolation and optimal
deployment of cloud-hosted services
Cloud computing refers to both the applications deliv-
ered as a service over the Internet and the hardware
and systems software in the data centers that provide
those services [15]. The cloud could either be a pub-
lic cloud (that is, cloud is provided in a prepaid manner
to the general public), private cloud (that is, internal IT
infrastructure of an organization is inaccessible to the
general public), or a hybrid cloud (that is, the comput-
ing ability of the private cloud is boosted by the public
cloud).
There are three basic cloud service models: (i) Software

as a Service (SaaS): cloud providers can install, operate
and access their application software using a web browser,
thus eliminating the need for customers to run and install
the application on their own computers (e.g., Salesforce
delivering customer relationship management software);
(ii) Platform as a Service (PaaS): cloud providers deliver
cloud platforms which represent an environment for
application developers to create and deploy their applica-
tions. (e.g., Google App Engine); and (iii) Infrastructure
as a Service (IaaS): cloud providers offer physical (com-
puters, storage) and virtualized computer resources (e.g.,
Amazon EC2, and Azure Services Platform).

Related work onmultitenancy isolation
One of the challenges of implementing multitenancy on
the cloud is how to enable the required degree of isolation
between multiple components of a cloud-hosted appli-
cation (or tenants accessing a cloud-hosted application).
We refer to this as multitenancy isolation. In the con-
text of this paper, we define “Multitenancy isolation as a
way of ensuring that the required performance, stored data
volume and access privileges of one component does not
affect other components being accessed by multiple tenants
when the workload changes” [16, 17].

The varying degrees of multitenancy isolation can be
captured in three main cloud deployment patterns: (i)
shared component (i.e., tenants share the same resource
instance, and are unaware of other tenants); (ii) tenant-
isolated component (i.e., tenants share the same resource
and their isolation is guaranteed); and (iii) dedicated com-
ponent (i.e., tenants do not share resources, though each
tenant is associated with one instance or a certain number
of instances of the resource) [1]. The shared compo-
nent represents the lowest degree of isolation between
tenants while the dedicated component represents the
highest. The degree of isolation between tenants access-
ing a tenant-isolated component would be in the middle.
There are several approaches to implementing multite-
nancy that have been widely discussed in the literature.
Multitenancy can be implemented at different layers of the
cloud stack: the application layer, the middleware layer,
and data layer. For example, in [18], the author discusses
several approaches for implementing multitenancy in the
application tier and data tier.
Multi-tenancy can also be realised at the PaaS level so

that service providers can offermultiple tenants customiz-
able versions of the same version for consumption by their
users. The authors in [19] discussed how to implement
multitenancy at the PaaS (or middle tier) of an applica-
tion/cloud stack. In this work, the requirements for multi-
tenancy in an Enterprise Service Bus (ESB) solutions, a key
component in service-oriented architecture (SOA), were
identified and discussed as part of the PaaS model. An
implementation-agnostic ESB architecture was proposed
whereby multitenancy can be integrated independently of
the implementation into the ESB.
In [20], several approaches for implementing multite-

nancy are discussed and more importantly suggest that
customization is the solution to addressing the hidden
constraints on multitenancy such as complexities, secu-
rity, scalability, and flexibility. The author in [21] presents
a qualitative discussion of different approaches to imple-
menting multi-tenant SaaS offerings, while the author in
[22] discusses the advantages and disadvantages of multi-
tenancy in SaaS offerings. They both agree that a plugin
is the solution to true multitenancy and that most of the
available options for implementing multitenancy to some
extent require a re-engineering of the cloud service.
Several work of literature acknowledges that there could

be varying degrees of isolation between tenants. In [23],
three approaches to managing multi-tenant data are dis-
cussed. Chong et al. state that the distinction between
the shared data and isolated data is more of a contin-
uum, where many variations are possible between the two
extremes. The authors in [24] explore key implementation
patterns of data tier multi-tenancy based on different
aspects of isolation such as security, customization, and
scalability. For example, under the resource tier design

Ochei et al. Journal of Cloud Computing: Advances, Systems and Applications (2019) 8:1 Page 6 of 38

pattern, the authors identified the following patterns: (i)
totally isolated (dedicate database pattern); (ii) partially
shared (Dedicate table/schema pattern); and (iii) totally
shared (Share table/schema pattern). These patterns are
similar to the shared component, tenant-isolated compo-
nent and dedicated component patterns at the data tier,
respectively [1]. The author [25] describes three forms
of database consolidation which offers differing degrees
of inter-tenant isolation as follows: (i) multiple applica-
tion schemas consolidated in a single database, multiple
databases hosted on a single platform; and (iii) a combina-
tion of both.
The authors [26] describe how the services (or com-

ponents) in a service-oriented SaaS application can be
deployed using different multi-tenancy patterns and how
the chosen patterns influence the customizability, multi-
tenant awareness, and scalability of the application. These
patterns are referred to as a single instance, single con-
figurable instance and multiple instances. Although this
work describes how individual services of a SaaS appli-
cation can be deployed with different degrees of cus-
tomizability, we believe that these concepts are similar to
different degrees of isolation between tenants.
The three main aspects of multitenancy isolation are

performance, stored data volume, and access privileges.
For example, in performance isolation, other tenants
should not be affected by the workload created by one of
the tenants. Guo et al. evaluated different isolation capa-
bilities related to authentication, information protection,
faults, administration, etc. [27]. Bauer and Adams dis-
cuss how to use virtualization to ensure that the failure
of one tenant’s instance does not cascade to other tenant
instances [3].
In the work of Walraven et al., the authors imple-

mented a middleware framework for enforcing perfor-
mance isolation [28]. They used a multitenant imple-
mentation of a hotel booking application deployed on
top of a cluster for illustration. Krebs et al. imple-
mented a multitenancy performance benchmark for web
application based on the TCP-W benchmark where the
authors evaluated the maximum throughput and the
number of tenants that can be served by a platform [29].
Another related work is [30] where the authors defined a
feature-based cloud resource management model where
applications are composed of feature instances using a
service-oriented architecture. The approach produced a
higher degree of multitenancy for the scenarios con-
sidered when the relationships between the features
are taken into account using the application-oriented
placement.

Relatedwork on optimal deployment of cloud-hosted services
Research work on optimal deployment and allocation
of cloud resources on the cloud are quite significant.

However, there has been little or no work on provid-
ing an optimal solution for deploying components of a
cloud-hosted application in a way that guarantees the
required degree of multitenancy isolation. In [31], the
authors used an evolutionary algorithm to minimize
resource consumption for SaaS providers and improve
execution time. The authors in [32, 33] used a multitenant
SaaS model to minimize the cost of cloud infrastruc-
ture. Heuristics were not used in this work. The authors
in [34] developed a heuristic for capacity planning that
is based on a utility model for the SaaS. This utility
model mainly considers the business aspects related to
offering a SaaS application with the aim of increasing
profit.
In [35], the authors described how the optimal configu-

ration of a virtual server can be determined, for example,
the amount of memory to host an application through a
set of tests. Fehling et al. [36], considered how to eval-
uate the optimal distribution of application components
among virtual servers. A closely related work to ours is
that of Aldhalaan and Menasce [6], where the authors
used a heuristic search technique based on hill climbing
to minimize the SaaS cloud provider’s cost of using VMs
from an IaaS with response time SLA constraints.
Related work on multitenancy isolation has largely

focused on isolation at the data tier [37]. The main aspect
of isolation is usually performance isolation. For exam-
ple, the authors in [38] mainly focus on performance
isolation in a multitenant application in the cloud. The
varying degrees of multitenancy isolation based on multi-
tenancy patterns and the different aspects of isolation are
described in [39].
Most work on optimal deployment and allocation of

cloud resources on the cloud focuses on minimising
the cost of using the cloud infrastructure resources
[31]. Previous work concerning optimization of cloud
resources does not use heuristic at all, although a
few use simple heuristics. For example, the authors
in [6, 40] used a heuristic based on hill climbing
for minimising the cost of SaaS cloud providers with
response time SLAs constraints. This study, unlike oth-
ers, focuses on providing an optimal solution for deploy-
ing components of a cloud-hosted application in a way
that guarantees the required degree of multitenancy
isolation.

Methodology
In this section, we will first present the methodology (i.e.,
modelling and simulation technique) used in this paper
and thereafter discuss how it fits into the overall research
goal of providing a framework to architect the optimal
deployment of components of a cloud-hosted service in
order to guarantee the required degree of multitenancy
isolation.

Ochei et al. Journal of Cloud Computing: Advances, Systems and Applications (2019) 8:1 Page 7 of 38

Modelling and simulation for optimal deployment of
cloud-hosted services
A model represents the key characteristics, behaviours,
and functions of a selected physical or abstract system or
process. A simulation is an imitation of the operation of
a real-world process or system [41]. The architectures (or
architectural patterns) used to deploy services to the cloud
are of great importance to software architects, because
they determine whether or not the system’s required
quality attributes (e.g., performance) will be exhibited
[42]. Cloud patterns represent a well-defined format for
describing a suitable solution to a cloud-related problem,
for example, describing the cloud and its properties, and
how to deploy and use various cloud offerings [1].
In a cloud environment, it is very difficult (if not impos-

sible) to do a purely top-down architectural design of
a large and complex cloud-hosted system: there are too
many considerations (e.g., deployment parameters and
deployment scenarios) to weigh at once and it is too
hard to predict all of the relevant technological barri-
ers. Requirements may change in dramatic ways or a key
assumption may not be met. For example, there are cases
where a cloud providers API did not work as specified
or where an API exposing a critical function was simply
missing or inaccessible.
Therefore the focus of this study is to model a real-life

system (i.e., degrees of isolation between components of
a cloud-hosted service) so that it can be studied to see
how the system works. By changing variables in the sim-
ulation, we can turn several architectural parameters into

values that can be easily measured to resolve conflicting
trade-offs and, thus, implement a system that guarantees
the required degree of isolation between tenants. Specif-
ically, this study models a real cloud-hosted service that
has multiple components that can be deployed to multiple
tenants in a way that would guarantee the required degree
of isolation between tenants. Thereafter, we performed
simulations experiments on the model by assuming a
large-scale cloud-hosted service with different variables
and cloud deployment scenarios.
As shown in Fig. 2, the modelling and simulation study

is carried in an iterative fashion whereby the system to
study becomes the optimised system which then becomes
the real cloud-hosted service under study and the cycle
repeats. The study starts by using the information gained
from case studies of real cloud-hosted software tools and
then a synthesis of findings of the case studies (using
cross-case analysis technique) to formulate and develop
a model. The next step is to develop a simulation pro-
gram by relying on the model-based algorithm. Simula-
tion experiments were conducted which produces results
for analysis. Finally, the conclusions and recommenda-
tions were made to provide guidelines for architecting the
development of cloud-services for guaranteeing multite-
nancy isolation.
It is important to note that this study describes a com-

ponent which is fed with data obtained from realistic
experiments conducted with real cloud-hosted software
development tools. We previously conducted separate
case studies to empirically evaluate the degree of tenant

Fig. 2Modelling and Simulation technique used for the study

Ochei et al. Journal of Cloud Computing: Advances, Systems and Applications (2019) 8:1 Page 8 of 38

isolation in three cloud-hosted software development pro-
cess tools: continuous integration (with Hudson), ver-
sion control (with File SCM Plugin and Subversion), and
bug/issue tracking (with Bugzilla) [16, 17, 43].

Overall methodology to architect the deployment of
cloud-hosted services to guarantee multitenancy isolation
The overall research process for architecting the deploy-
ment of cloud-hosted services for guaranteeing mul-
titenancy isolation is shown in Fig. 3. It starts from
the exploratory study on cloud multitenancy patterns
and selection of the cloud-hosted Global Software
Development tools and processes up to modelling and
simulation.
At first, we carried out an empirical study to find out the

type of software processes and the supporting tools used
in Global Software development projects and also explore
the different cloud deployment patterns for deploying
these tools and support services to the cloud. Thereafter,
we conducted separate case studies to empirically evaluate
the degree of tenant isolation in three cloud-hosted soft-
ware development tools (and associated processes): con-
tinuous integration (with Hudson), version control (with
File SCM Plugin and Subversion), and bug/issue tracking
(with Bugzilla). The case studies allowed us to investi-
gate a contemporary software engineering phenomenon
(that is, the effect of varying degrees on tenant isola-
tion on cloud-hosted services) within its real-life context
using real-world Global Software Development (GSD)
tools deployed in a cloud environment [44].
Based on the information derived from the cases stud-

ies, we used modeling and simulation methodology to
first create a model that represents a cloud-hosted service

being accessed by multiple tenants that require varying
degrees of isolation. Thereafter, we performed simulation
experiments on the model by assuming a large-scale
project size with different variables and cloud deployment
scenario.
The validation approach used follows widely accepted

guidelines for evaluating experimentally a metaheuris-
tic and comparing metaheuristics in a rigorous way.
The guidelines entail selecting the performance measures
and indicators to compute: solution quality, computation
effort, and robustness. After the experimental results are
obtained for different indicators, methods from statisti-
cal analysis (ANOVA) is used to conduct the performance
assessment of algorithms/metaheuristics [45].

Problem formalization and notation
This section formalises the problem and then describes
how it is mapped to a Multichoice Multidimensional
Knapsack Problem (MMKP).

Systemmodel and description of the problem
The motivating example presented in “Motivating example”
section describes the problem faced by a software archi-
tect when selecting optimal components of a cloud-hosted
application for deployment. Assuming that one of the
components of the cloud-hosted application experiences
a very high load, how can an architect select compo-
nents for optimal deployment in response to workload
changes in a way that: (i) maximizes the degree of isola-
tion between components by ensuring that they behave
as if they were components of different tenants and, thus,
are isolated from each other; and (ii) maximizes the num-
ber of requests allowed to access the component (and the

Fig. 3 Overall methodology for architecting the deployment of cloud-hosted services for guaranteeing multitenancy isolation

Ochei et al. Journal of Cloud Computing: Advances, Systems and Applications (2019) 8:1 Page 9 of 38

application as a whole) without having the total resources
used to exceed the available resources (see Fig. 4).

System notations and assumptions
The following notations (Table 1) and assumptions are
used in this study.

1. Component of a cloud-hosted service: A compo-
nent of a cloud-hosted service is an encapsulation
of functionality or resource that is shared between
multiple tenants. An application component could be
a communication component (e.g., message queue),
data handling component (e.g., databases), or pro-
cessing component (e.g., load balancer), hardware
(e.g., virtual server) or microservice (e.g., Amazon
Web Services Lambda which is a responsive cloud
service used to inspect actions within an application
and responds to events and also consumes resources
only when an event actually occurs). Tenants inter-
act differently with the components depending on
the level in which the component is located in cloud
application stack (i.e., SaaS, PaaS or IaaS layer). Each
component is associated with six parameters: the iso-
lation value, the number of requests allowed to access
the component, and resource consumption for CPU,
RAM, Disk and Network bandwidth.

2. Tenant and Multi-tenant: This study extends the
notion of a tenant and multitenant from a single
user/customer to a team, the department of a software
company or software company, whose responsibil-
ity is to build or maintain a cloud-hosted application
and their supporting processes with various compo-
nents. This study assumes a Business-to-Consumer

(B2C) multitenancy model rather than the Business-
to-Business (B2B) model. In B2B cloud services, a
tenant is likely to be an account with several individ-
ual users. In contrast, for B2C cloud services, a tenant
is a single user or a group of users(e.g., a team of
developers).

3. Component Group: A component group is a col-
lection of components (e.g., database components,
virtual servers) with a common functionality or pur-
pose but with different configurations and hence
different resource consumption requirements. A typ-
ical example of a component group can be seen in
a Kafka-based application1, where consumers label
themselves with a consumer group name so that each
record published to a topic is delivered to one con-
sumer instance within each subscribing consumer
group.

4. A cloud-hosted service/application: A cloud-hosted
service/application is made up of different interacting
micro-services where each micro-service is regarded
as a component. These components are used to inte-
grate with or designed to use a cloud-hosted service
to serve multiple users.

5. Utilizing the Model-based Algorithm for Decision
Support Guidance: This study presents a model-
based algorithm for providing near-optimal solu-
tion to deploy components of a cloud-hosted
application with guarantees for multitenancy iso-
lation. With the system architecture provided in
“Model-based algorithm for optimal deployment of
components” section, this model can be transformed
into a decision support system and utilized for some
decision support guidance to help developers and

Fig. 4 System Model of a Cloud-hosted Service with multiple groups of components

Ochei et al. Journal of Cloud Computing: Advances, Systems and Applications (2019) 8:1 Page 10 of 38

Table 1 Notations and mapping of multitenancy problem to QN model and MMKP

Notation Multitenancy isolation problem MMKP QN model

N Total number of groups of
components

Total number of groups of objects Total number of classes

l Total number of items in a group Total number of objects in a group -

m (K is used
for QN)

Total number of resources Total number of resources Total number of service centers

α (k is used
for QN)

Index for resource supporting
a component

Index for resource supporting
a component

Index for service centers

i (c is used for
QN)

Index value for the Group Index value for the Group Index value for the Class

j Index value for the component Index value for the object -

aij A component which is associated
with isolation value, number of
requests, cpu, ram, disk and
bandwidth size

Objects in a group -

c Group of component (c1, ..., cN) Group of objects Class

rαij Resource consumption of
each component

Resources required by the object in
the knapsack

Service centres in the system (cpu,
ram, disk, bandwidth)

R Limit of each resource supporting
each component (R(=1,m))

Resources available in the knapsack
(knapsack capacity)

System/Component capacity

Iij Isolation value for a
component.Used to compute G.

- -

Qij The number of requests allowed to
access a component. Used to
compute G

- The queuelengthofclasscat centre k,

Dc,k The service demands at the
cpu,ram,disk, and bandwidth

- Service demand of class c at k service
centres (cpu, ram, disk, bandwidth)

λij Workload on the component
(arrival rate of request to the
component/system)

- Workload on the component
(arrival rate of request to the
component/system)

gij Optimal value for one component
in a group

Profit of one object in MMKP -

G Optimal function of the solution Profit of the solution in MMKP -

cloud deployment architects to determine the appro-
priate degree of resource sharing and performance
isolation between tenants.

6. Provision of Middleware Support by cloud provider:
There is need for a middleware support, for example,
middleware API provided by the cloud provider for
discovering common components and making these
components accessible to other tenants. For exam-
ple, the cloud provider can either provide an API to
tenants to directly retrieve the service demands of
the resources supporting the components or provide
access to such an API for the service demands to be
easily measured. This information is required to com-
pute the maximum number of requests that can be
allowed to access the components.
Furthermore, both cloud provider and tenants can

share the cost reduction benefits of multitenant
components. Where tenants give their consent that
resource sharing is possible then cloud providers can

lower their hosting costs assuming the tenant is will-
ing to provide component details.

7. Constraints to support sharing of components: The
components have to meet certain constraints in order
to support sharing with other independent tenants.
Specifically, the components have to adhere to the
principles of reusable component software applied by
the tenants. For example, one of the requirements
from tenants would be that the service demands of the
resources supporting the components can be easily
measured [46].

Optimal function of the problem
As stated in the “System model and description of the
problem” section, there are two objectives in the prob-
lem. An aggregation method is used to transform the
multiobjective problem into a single objective problem by
combining the two objective functions, (i.e., g1=degree
of isolation and g2=number of request) into a single

Ochei et al. Journal of Cloud Computing: Advances, Systems and Applications (2019) 8:1 Page 11 of 38

objective function (i.e., G=optimal function) in a linear
way. The particular aggregation strategy used is the pri-
ori single weight strategy which consists of defining the
weight vector to be selected based on a combination of
the decision makers’ preferences and domain knowledge
of the problem [45]. This approach has been widely used
in literature for metaheuristic such as genetic algorithm
and simulated annealing [47, 48].
Therefore, the goal is re-stated as follows: to provide an

optimal solution for deployment to the cloud in such a way
that meets the system requirements and also provides the
best value for the optimal function, G. G is defined by a
weighted sum of parameters including the degree of isola-
tion, the average number of requests allowed to access the
component, and the penalty for solutions that violate the
constraints.

Definition 1 (Optimal Function): Given an isolation
value of a component I, and the average number of request
Q, that can be allowed to access the component, then
optimal function G is defined as:

gij = (w1 × Iij) + (w2 × Qij) − (w3 × Pij) (1)

The penalty, P, for violating constraints of a component
of the cloud-hosted service is:

Pij =
m∑

j=1
Rjmax

{
0,

(
Rj − Rmax

j

Rmax
j

)}2

(2)

where w1,w2,w3 are the weights for the isolation value,
number of requests and penalty. The values assigned to
w1, w2 and w3 are: w1=100; w2=1 and w3=0.1. The
weights are chosen based on problem-specific knowledge
so that more importance or preference is given to the iso-
lation value and number of requests which are parameters
to be maximised in our model. The degree of isolation,
Iij, for each component, is set to either 1, 2, or 3 for
shared component, tenant-isolated component and dedi-
cated component, respectively. The penalty function, Pij, is
subtracted from the optimal function to avoid excluding
all infeasible solutions from the search space. The expres-
sion Rj − Rmax

j in the penalty function shows the degree
of constraint violation. This expression is divided by the
resource limit and squared to make the penalty heavier for
violating any constraint.

Mapping the problem to a multichoice multidimensional
knapsack problem (MMKP)
For a cloud-hosted service that can be designed to use
or be integrated with several components in N different
groups, and with m resource constraints, the problem of
providing optimal solutions that guarantee multitenancy
isolation can be mapped to a 0-1 multichoice multidimen-
sional knapsack problem (MMKP) [49, 50]. An MMKP is

a variant of the Knapsack problem which has been shown
to be amember of the NP-hard class of problems [51]. Our
problem is formally defined as follows:

Definition 2 (Optimal Component Deployment
Problem): Suppose there are N groups of components
(c1, ..., cN) with each having li (1 ≤ i ≤ l) components that
can be used to design (or integrate with) a cloud-hosted
application. Each application component is associated
with: (i) the required degree of isolation between compo-
nents (Iij); (ii) the arrival rate of requests to the component
λij; (iii) the service demand of the resources supporting
the component Dij (equivalent to Dc,k in the QN model as
shown in the “Open multiclass queuing network model”
section); (iv) the average number of requests that can be
allowed to access the component Qij (equivalent to Qc,k in
the QN model as shown in the “Open multiclass queuing
network model” section) and (v) m resources which are
required to support the component, rαij = r1ij, r2ij, ..., rmij . The
total amount of available resources in the cloud required
to support all the application components is R = Rα

(α = 1, ...,m). The objective of an MMKP is to pick exactly
one component from each group for a maximum total
value of the collected items, subject to m resource con-
straints of the knapsack [52, 53]. Concerning our problem,
the goal is to deploy components of a cloud-hosted service
by selecting one component from each group to meet
the resource constraints of the system and maximise the
optimal function G. There are unique features in our prob-
lem that lend to solving it using an MMKP and an open
multiclass problem. For example, the resources supporting
each component are mapped to the resources required by
the object in MMKP and are also mapped to the service
centres of each class in the open multiclass QN.

The optimization problem faced by a cloud architect for
deploying components of a cloud-hosted application due
to workload changes is thus expressed as follows:

Maximize G =
N∑

i=1

∑

j∈Ci

gij.aij

subject to
N∑

i=1

∑

j∈Ci

rαij .aij ≤ Rα(α = 1, 2, ...,m)

N∑

j∈Ci

aij = 1

aij ∈ 0, 1(i = 1, 2, ...,N), j ∈ Ci

(3)

where aij is set to 1 if component j is selected from group
Ci and 0 otherwise. The notation rij = r1ij, r2ij, ..., rmij , is the
resource consumption of each application component j

Ochei et al. Journal of Cloud Computing: Advances, Systems and Applications (2019) 8:1 Page 12 of 38

from group Ci. The total consumption of all resources rαij
of all application components must be less than the total
amount of resources available in the cloud infrastructure
R = Rα (α = 1, ...,m).
To calculate the number of requests, Qij that can be

allowed to access the component, an open multiclass QN
model has to be solved [41] for each component using
the arrival rate of each class of requests, and the ser-
vice demands of each resource required to support the
component (i.e., CPU, RAM, Disk capacity, and Band-
width). “Openmulticlass queuing network model” section
describes how the average number of requests allowed to
access each component is computed.

Openmulticlass queuing networkmodel
Queueing network modelling is an approach to com-
puter system modelling in which the computer system
is represented as a network of queues which is evalu-
ated analytically. A network of queues is a collection of
service centres, which represent system resources, and
customers, which represent users or transactions [41].
Fig. 5 shows an example of an open QN model with two
service centres (i.e., CPU and disk).
Assumptions: This study makes the following assump-

tions about a component:
(i) requests sent to a component have significantly dif-

ferent behaviours whose arrival rate is independent of the
system state.
(ii) the service demands at the CPU, RAM, Disk, and

Bandwidth that support each component are known or
can be easily measured by either the SaaS provider or the
SaaS customer.

(iii) the resources supporting each component are
enough to handle the magnitude of new incom-
ing requests as the workload changes. This ensures
that there is no overload when all components are
functional.
(iv) the consumption of resources supporting the com-

ponents reflects the running cost of the cloud-hosted ser-
vice. Therefore the cost implications are managed in the
same way regardless of the deployment model used - SaaS,
PaaS, or IaaS. For example, in IaaS this would include
the servers together with the resources and components
running on the servers.
The above assumptions allow us to use an open mul-

ticlass queueing network (QN) model to determine the
average number of requests that can be allowed to access
the component while meeting the required degree of iso-
lation and system requirements. In an open multiclass
QN, the workload intensity is specified by the request
arrival rate. This arrival rate usually does not depend on
the system state, that is, it does not depend on the number
of other tenants in the system [41]. The open multiclass
queuing network model is a widely used technique to
optimize the deployment of services in cloud computing
environments [54, 55]. This study is a further contribu-
tion to literature by applying an open multiclass queuing
model to provide optimal solutions for deploying cloud
services to guarantee the required degree of multitenancy
isolation.

Definition 3 (Open Multiclass Queuing Network
Model): Given N number of classes in a model, where each
class c is an open class with arrival rate λc. The vector

Fig. 5 Open multiclass queuing network model

Ochei et al. Journal of Cloud Computing: Advances, Systems and Applications (2019) 8:1 Page 13 of 38

of arrival rates is denoted by −→
λ ≡ (λ1, λ2, ... λN). The

utilization of each component of class c at centre k is given
by:

Uc,k
(−→

λ
)

= λcDc,k (4)

In solving the QN model, it is assumed that a component
represents a single open class system with four service
centres (i.e., the resources that support the component –
CPU, RAM, Disk capacity and Bandwidth). The average
number of requests at a particular service centre (e.g.,
CPU) for a particular component is:

Qc,k
(−→

λ
)

=
Uc,k

(−→
λ

)

1 − ∑N
i=1Ui,k

(−→
λ

) (5)

Therefore, to obtain the average number of requests that
would access this component, the queue length of all
requests that visit all the service centres (i.e., the resources
that support the components - CPU, RAM, Disk capacity
and Bandwidth) are added together.

Qc
(−→

λ
)

=
K∑

k=1
Qc,k

(−→
λ

)
(6)

The consumption of the resources supporting the compo-
nents are interpreted as follows: CPU usage is interpreted
as the computing speed of the hardware device (i.e., in
terms of clock speed). CPU is measured as Megahertz
(MHz), Gigahertz (GHz) or as the percentage of CPU
time spent. Memory usage is the amount of used mem-
ory, usually measured in kilobytes (e.g., 20 kb). Disk space
is the total amount of bytes that a disk drive can hold,
usually measured in kilobytes (KB), megabytes (MB), giga-
bytes (GB), or terabytes (TB). Bandwidth is the amount
of data that can be transmitted in a fixed amount of time
and measured in bits per second (bps). The term service
demand refers to the total amount of time required to
use a resource that supports a component (e.g., CPU and
RAM), and is measured in time units (e.g., seconds). For
example, we can specify that users requests arrive at a
component of a cloud-hosted system at a rate of one every
five seconds and that such request(s) requires an average
of 0.25 seconds of service at the CPU.

Metaheuristic search
The optimisation problem described in “System Model
and Description of the Problem” section is an NP-hard
problem which has been known to have a feasible state
space that grows in a combinatorial way [52]. The number
of feasible states for our optimal component deployment
problem is given by the following expression:

{(
l
j

)}N
(7)

The equation above represents the number of ways for
selecting one component (i items) from each group (made
up of l items) out of several (N) groups of components to
integrate with or designed to use a cloud-hosted applica-
tion when workload changes in a particular time interval.
Thus in response to workload changes, the number of
ways of selecting one component (i.e., j=1) each from
twenty groups (i.e., N=20) containing ten items in each
group (i.e., l=10) will result in approximately 10.24 × 1012
states. Depending on the number of times and frequency
with which the workload changes, the number of states
could grow very large at a much faster rate.
Therefore, an efficient heuristic is needed to find an

optimal solution to the optimisation problem, which must
be solved by the model-based algorithm and provided
to the SaaS customer (or a cloud deployment architect)
in almost real-time. The section that follows presents
four variants of metaheuristic solutions; two are based
on hill climbing (i.e., HC(Random and HC(Greedy)),
and the other two are based on simulated annealing
(i.e., (SA(Random) and SA(Greedy)). The justification for
deciding to base the variants of the metaheuristic on hill
climbing and simulated annealing is that Hill climbing
represents a family of improvement heuristic, while Sim-
ulated annealing represents a family of modern heuristic.
The difference between improvement heuristic and mod-
ern heuristic are summarised as follows [56]:
(i) Usually, modern heuristics are considered as

problem-independent, whereas improvement heuristics
are explicitly problem-specific and exploit problem struc-
ture. This means that modern heuristic can be applied to
a wide range of different problems with little or no mod-
ification while improvement heuristic is demanding to
design and use as it requires knowledge and exploitation
of problem-specific properties.
(ii) Improvement heuristic starts with a complete solu-

tion and iteratively tries to improve the solution, while
modern heuristic use during search both intensification
(exploitation) and diversification (exploration) phases.
(iii) In contrast to modern heuristic where improvement

steps alternate with diversification steps, which usually
lead to solutions with a worse objective value, improve-
ment heuristic uses no explicit diversification steps.
Any of the four variants of the metaheuristic solution can

be utilised with OptimalDep (see line 17 of Algorithm 1).
Also, an algorithm is developed to perform an exhaustive
search of the entire solution space for a small problem.
The algorithms for optimalDep and SA(Greedy) are pre-
sented as Algorithms 1 and 2, respectively. A high-level
description of these algorithms is provided below:
The SA(Greedy) for optimal Solution: This algorithm

combines simulation annealing and a greedy algorithm
to find an optimal solution to our optimization problem
which has been modelled as an MMKP. The algorithm

Ochei et al. Journal of Cloud Computing: Advances, Systems and Applications (2019) 8:1 Page 14 of 38

Algorithm 1 optimalDep Algorithm
1: optimalDep (workloadFile, mmkpFile)
2: optimalSoln ← null
3: Accept workload from SaaS users
4: Load workloadFile, mmkPfile; populate global variables
5: repeat
6: /*Compute No. of req. using QNModel*/
7: for i ← 1,NoGroups do
8: for j ← 1,GroupSize do
9: Calculate Utilization /*see Equation 4*/

10: Calculate No. of req. /*see Equation 5*/
11: Calculate Total No. of req.

/*see Equation 6*/
12: Store fitValue, Isol, qLength of optimal soln.
13: end for
14: end for
15: Update the mmkpFile with qLength
16: /*Run Metaheuristic*/
17: SA(GREEDY)()
18: /*Display optimal solution for deployment*/
19: until no more workload
20: Return (optimalSoln, fitValue, Isol, qLength)

loads the MMKP problem instance and then populates
the global variables (i.e., arrays of varying dimensions
that store the values of isolation, and the average num-
ber of requests, and component resource consumptions).
A simple cooling schedule is used which is expressed as:

Ti+1 = T0 + (A − T0) (8)

In the above cooling schedule, the variable A is computed
as follows:

A = (NoItrn)1 × β

(NoItrn)1

β = 1 −
(

1
NoItrn

) (9)

Our strategy for setting the initial temperature T0 is to
randomly generate a number of solutions equal to the size
of the number of groups in the problem instance, before
the simulated annealing algorithm runs, and then to set
the initial temperature T0 to the standard deviation of
all the randomly generated optimal solutions (line 2-4).
Another option could be to set T0 to the standard devi-
ation of a set of solutions from a heuristic whose initial
solution was generated randomly. In line 4, a greedy solu-
tion is then created as an initial solution. The simulated
annealing process improves the greedy solution and pro-
vides the optimal solution for deploying components to
the cloud (line 5-19).
A simple dry run of the algorithm for the problem

instance2 C(20,20,4) is as follows: 20 optimal solutions

Algorithm 2 SA(Greedy) Algorithm
1: SA(Greedy) (mmkpFile, N)
2: Randomly generate N solutions
3: Set initial temperature T0 to st. dev. of all optimal values
4: Create greedySoln a1 with optimal value g(a1)
5: optimalSoln ← g(a1)
6: bestSoln ← g(a1)
7: for i ← 1,N do
8: Create neighbouring soln a2 with optimal value g(a2)
9: Mutate the soln a2 to improve it

10: if a1 < a2 then
11: bestSoln ← a2
12: else
13: if random[0,1) < exp(−(g(a2) − g(a1))/T)

then
14: a2 ← bestSoln
15: end if
16: end if
17: Ti+1 = T0 + (A − T0) /*see Equation 8 and 9*/
18: end for
19: optimalSoln ← bestSoln
20: Return (optimalSoln)

are randomly generated and then the standard devia-
tion of all the solutions is computed. Assuming this
value is 5.26, the T0 is set to 5. At the first iteration,
g
(
a2

) = 151634.9773 and g
(
a1

) = 151535.7984 and
the current temperature then becomes 4.999995. At the
next iteration, the current temperature is expected to
reduce further (see equation 8 and 9). After five iterations,
the algorithm constructs an initial/first solution with
g
(
a1

) = 151732.4362, a current/second random solution
with g

(
a2

) = 151733.9821 and with a current temper-
ature of 4.999975. The solution a2 will replace a1 with
probability, P = exp(-(1.5459)/4.999975)=0.7340, because
g
(
a2

)
> g

(
a1

)
. In lines 13 to 15, a random num-

ber between 0 and 1 (i.e., rand = 0.0968) is generated,
and since rand < 0.7340, a2 replaces a1 and the algo-
rithm continues with a2. Otherwise, the algorithm con-
tinues with a1. At the next iteration, the temperature T
is reduced which now becomes T6 = 4.99997 (line 17).
The iteration continues until N (i.e., the number of itera-
tions set for the algorithm to run) is reached, and so the
search converges with a high probability to the optimal
solution.
SA(Random): This variant of themetaheuristic requires

only a slight modification. The SA(Random) randomly
generates a solution and then passes it to the simulated
annealing process to become the initial solution. That is,
in line 4, instead of constructing a greedy solution, a ran-
dom solution is simply generated. It is important to note
that the two variants which are based on the simulated

Ochei et al. Journal of Cloud Computing: Advances, Systems and Applications (2019) 8:1 Page 15 of 38

annealing algorithm (i.e., SA(Greedy and SA(random))
can be converted to a local search based on the hill climb-
ing algorithm by setting the initial temperature to zero
(i.e., T=0) so that the simulated annealing is forced to
systematically explore the neighbourhood around the cur-
rent solution and ensure that the search returns a local
minimum.
HC(Random) and HC(Greedy): The HC(Random) use

a randomly generated solution as the initial solution to run
the hill climbing algorithm, while the HC(Greedy), uses a
greedy solution as the initial solution to run the hill climb-
ing algorithm. From an implementation standpoint, this
translates to leaving outlines 12-15 (i.e., the else part of the
if statement) of Algorithm 2.

Model-based algorithm for optimal deployment of
components
In this section, we describe the optimalDep algorithm that
combines the optimization model, QN model, and meta-
heuristic to provide optimal solutions for deploying com-
ponents of a cloud-hosted service that would guarantee
multitenancy isolation. Thereafter, we present an archi-
tecture together with a theoretical description of how the
different components of the algorithmwork together, thus
allowing it to be transformed into a decision support sys-
tem to support the deployment of components to the
cloud for guaranteeing multitenancy isolation.

OptimalDep: an algorithm for optimal deployment of
components
This section describes the OptimalDep algorithm and also
show how the openmulticlass QNmodel and the heuristic
search fits into the model-based algorithm.

Description of optimalDep algorithm
A high-level description of the optimalDep algorithm is
as follows: when users requests arrive indicating a change
in workload, the algorithm uses the open multiclass QN
model to determine for each class, the queue length (i.e.,
the average number of requests allowed to access a com-
ponent) as a function of the arrival rates (i.e., λ) for each
class (lines 7-14). The average number of requests is used
to update the properties of each component (i.e., mmkp-
File) (line 15). Then the metaheuristic search is run to
obtain the optimal solution for deploying the component
with the highest degree of isolation and the highest num-
ber of requests allowed per component (line 17). This
algorithm assumes the optimal solution is the one that
guarantees themaximum degree of isolation and the high-
est number of requests allowed to access the components
and the whole cloud-hosted service. Clearly, the algo-
rithm can be extended to work for the required degree
of isolation by including the isolation value (i.e., isola-
tion value 1, 2 or 3), as an input parameter both in

the OptimalDep algorithm and in the metaheuristics to
search for and extract components that correspond to the
required degree of isolation.
Note that the algorithms described in this paper are

different from the autoscaling algorithms offered by IaaS
providers like Amazon and existing optimisation models
proposed for use by SaaS providers such as Salesforce.com
[6]. Saas providers may be able to monitor and esti-
mate to a certain degree the performance and resources
utilisation of application components integrated within
applications running on VMs that they have rented out
to SaaS customers. However, SaaS providers do not know
the required degree of isolation of each application com-
ponent (e.g., components that offer critical functionality),
the number of available components to be deployed, and
the number and capacities of resources required to sup-
port each component. In some cases, it may also be
necessary to associate a particular user/request to cer-
tain components or group of components to guarantee the
required degree of isolation. These details are only avail-
able to SaaS customers (e.g., a cloud deployment architect)
since they own the components and are also responsible
for deploying the components to the cloud.

OptimalDep algorithm example
The following example (Table 2) shows the different
solutions evaluated by optimalDep combined with the
SA(Greedy) algorithm to find an optimal solution to the
optimization problem. Every time there is a change in
the workload, the optimalDep algorithm finds a new opti-
mal solution for deploying components with the highest
degree of isolation and the highest number of supported
requests.
Let us assume that there are three groups of compo-

nents (N=3) that can be designed to use (or integrate
with) a cloud-hosted service and each component have
a maximum number of requests that can be allowed
to access it without having a negative impact on the
degree of isolation between components of the cloud-
hosted service. Each component is supported by four
main resources: CPU, RAM, Disk capacity and band-
width. The service demands for CPU=0.25, RAM=0.23,
disk=0.22, bandwidth=0.2, while the maximum capacity
of each of these resources is 20.
When users requests arrives indicating a change in

workload (i.e., in our case, this means an arrival rate
between 0 to 3.7 req/min), the QN model Eqs. 4, 5, and 6
are solved to find the average number of requests that can
access the components. The ninth row shows the updated
problem instance with the current number of requests
(i.e., 5.2) that can access the components in each group.
The updated problem instance is then solved with the
metaheuristic and the state with the highest optimal func-
tion value is returned. Solution 1 (in row twelve) shows the

Ochei et al. Journal of Cloud Computing: Advances, Systems and Applications (2019) 8:1 Page 16 of 38

Table 2 An example of optimal component deployment

GROUP 1 GROUP 2 GROUP 3

Item 1 Item 2 Item 1 Item 2 Item 1 Item 2

Initial state

Isolation 1 2 2 3 2 1

No. of Req. 0 0 0 0 0 0

Item resources: 8,6,3,3 9,3,9,9 4,1,2,6 2,6,1,6 7,9,4 ,6 2,5,1,7
(CPU,MEM,DSK,BDW)

Service demands (in seconds): 0.25,0.23, 0.25,0.23, 0.25,0.23, 0.25,0.23, 0.25,0.23, 0.25,0.23,
(CPU,MEM,DSK,BDW) 0.22,0.20 0.22,0.20 0.22,0.20 0.22,0.20 0.22,0.20 0.22,0.20

Request to increase workload from 0 to
3.7req/min

No. of Req. (updated) 5.20 5.20 5.20 5.20 5.20 5.20

Current solution

Solution format = (F/ I/ Q)

Solution 1: 515.6/5/15.60 � � �
Solution 2: 415.6/4/15.60 � � �
Solution 3: 615.6/6/15.60 � � �
Solution 4: 515.6/5/15.60 � � �
Solution 5: 615.59/6/15.60 � � �
Solution 6: 515.59/5/15.60 � � �
Solution 7: 715.59/7/15.60 � � �
Solution 8: 615.59/6/15.60 � � �

optimal value of 515.6 for selecting a solution that deploys
the first component from all the groups. This solution
results in an optimal value of 515.6 (isolation value=500;
and number of request=15.60). Note that no component
can be selected for deployment and hence no changes can
be effected in the cloud environment until the search is
over and a better solution is found.
Up to this point, all the solutions have been evaluated

and only the solution with the optimal value is returned
as the optimal solution. In this example, the optimal solu-
tion with the highest optimal value is solution 7 with an
optimal value of 715.60. Note that this example assumes
a fixed service demand for all components in each group.
In an ideal situation, components would have different
service demands. This would lead to different values for
the number of requests, thus further opening up different
options for the selection of an optimal solution.

Architecture for transforming optimalDep algorithm to a
model-based decision support system
The model-based simulation algorithm (i.e., optimalDep)
presented in this paper can be transformed into a model-
based decision support system (DSS) by relying on the
architecture, optimalArch, which is presented in Fig. 6.
Model-based DSS will utilize data and parameters pro-
vided by users to assist decision makers (e.g., software
architects, cloud developers) in analysing different cloud

deployment scenarios in for deploying components of
cloud-hosted to guarantee multitenancy isolation. The
decision support system can be implemented in differ-
ent ways, for example, as a web application or a desktop
application. It can also be deployed on the cloud as a
cloud-hosted service or embedded into other applica-
tions running on the cloud or distributed environment.
The architecture is composed of five main modules as
described below:

Input interface
This module is used to send input to the model-based
algorithm. In our case, the main input is the workload
of the system, which is represented as the arrival rate of
requests (λ) and the id of the (MMKP) problem instances,
which represents the different configurations of compo-
nents integrated with or designed to use a cloud-hosted
service.

Information repository
This module stores MMKP instances (which contains
information about component configuration) and the ser-
vice demands of resources supporting the components in
the MMKP instance). The service demand of the com-
ponent together with the arrival rate of request to the
component is used to solve the QN model to obtain the
average number of requests that can be allowed to access

Ochei et al. Journal of Cloud Computing: Advances, Systems and Applications (2019) 8:1 Page 17 of 38

Fig. 6 optimalArch: architecture for implementing a decision support system based on the model-based algorithm

the component. From the implementation standpoint, the
repository stores three types of file: (i) MMKP instances,
which contain component configuration, (ii) workload
file, which contains service demands and arrival rate for
each component, and (iii) updatedMMKP instance, which
contains updated details on the MMKP each time there
are changes in workload. Note that there may be multi-
ple workload files associated with/generated for a single
MMKP instance.

Queuing networkmodel
The input to this module is the arrival rate of the
requests to each component and the id of the required
(MMKP) problem instance. When there is a change
in workload based on the arrival rate of requests, the
id of the MMKP instance is used to retrieve the ser-
vice demand of resources that support the components
whose configuration are in the MMMKP instance file.
This information (i.e., arrival rate and service demands)
is used to calculate the number of requests, Q, allowed
to access the component. The new/current value of Q
is then used to update the MMKP instance to reflect
the current change in workload regarding the number
of requests that can be allowed to access the com-
ponent. This updated MMKP instance is returned to
the repository, and the id of this problem instance
is passed to the optimisation module. The number of
requests allowed to access each component and the total
number of requests allowed to access the whole/entire
cloud service can be computed and sent to the output
interface.

Optimizationmodule
The input to the optimisation module is the id of the
updatedMMKP instance. In the optimisation module, the
metaheuristic is invoked to search for and provide opti-
mal solutions. The optimal value (i.e., fitness/objective
function) of the obtained solution together with the opti-
mal solution for deploying components of the cloud-
hosted service is evaluated. This information (i.e., optimal
value and the optimal solution) is sent to the output inter-
face for use in architecting the deployment of components
of a cloud-hosted service to guarantee the required degree
of multitenancy isolation.

Output interface
The output interface will display several details associ-
ated with the optimal deployment of components of a
cloud-hosted service for guaranteeing multitenancy iso-
lation when there are workload changes. These include
the optimal function, optimal solution, the number of
requests accessing each component and the total number
of requests accessing the whole cloud service.

Applicability of the model-based algorithm in a typical
cloud deployment scenario
Our proposed model-based algorithm has several appli-
cations in the real cloud computing environment. Some
example scenarios where our work can be applied are
presented below:
(i) Optimal Allocation in a Resource-constrained

Environment: In a resource-constrained environment,
users are always looking for options to optimise the

Ochei et al. Journal of Cloud Computing: Advances, Systems and Applications (2019) 8:1 Page 18 of 38

consumption of resources while guaranteeing the
required degree of isolation between tenants. Our
model-based algorithm can be transformed into a
decision support system to achieve this by first setting
a limit on the resources (i.e., CPU, RAM, Disk and
Bandwidth) that are used to support each component.
Thereafter, the model-based algorithm can be used to
provide optimal solutions that represent the required
degree of isolation (i.e., either the highest, average or
lowest degree) and the maximum number of requests
that can access each component based on the available
resources.
(ii) Monitoring Runtime Information of Components:

Another application of our model-based algorithm is
that it can be used as a cloud deployment pattern or
integrated into other cloud patterns like an elastic load
balancer, and an elastic manager to monitor runtime
information about individual components. Examples of
information that could be monitored include the number
of requests that can concurrently access the application
components and the feasibility of the limits/capacities set
for the resources supporting each component to achieve
the required degree of isolation.
Even though many cloud providers offer a significant

amount of rule-based scaling or load balancing func-
tionality (e.g., Amazon’s Auto Scaling 3 and Microsoft
Azure Traffic Manager 4), our decision support system
can be customised to monitor and adjust the configu-
ration of components that were created as part of the
original scaling rules, and thus provide optimal solu-
tions that guarantee the required degree of multitenancy
isolation. This is especially important when there are fre-
quent workload changes and different or varying user
behaviours.
(iii) Controlling the Provisioning and Decommissioning

of Components: When runtime information of compo-
nents is available, they can be used to make important
decisions concerning scaling, provisioning of required
components and decommissioning of unused compo-
nents. For example, when the required degree of compo-
nents is known, this information can be used to adjust
the number of component instances to reflect the current
workload experienced by the application. Decommission-
ing components that would not impact negatively on the
performance of other components and the application
could lead to significant cost savings for users.
Our model-based algorithm can be customised to pro-

vide information for decommissioning of failed com-
ponents or components that are not working properly
to achieve the required degree of isolation. Although
many providers offer monitoring information, for exam-
ple, information about network availability and utilisation
of components deployed on their cloud infrastructure, it
is the responsibility of the customer to extract, deduce

and interpret these values and then provide information
regarding the availability of components.

Evaluation
In this section, we describe how we generated problem
instances used for the experiment, and the experimental
setup and procedure.

Dataset and instance generation
This section discusses the generation and composition of
the dataset used for the experiments. Also discussed is the
applicability of the generated instances to real-life cloud
deployment scenarios.

Dataset
The dataset used for simulation experiments on the opti-
misation model was based on a simulation testbed. There
are two datasets used in this study: the MMKP instance
file and the workload file.
(a) MMKP Instance file: Due to the unique nature of

our problem, the multichoice multidimensional knapsack
(MMKP) instances used in the experiments were ran-
domly generated and not based on a publicly available
dataset of MMKP instance. However, the instance was
generated based on the standard approach widely used in
literature [57, 58]. The format of the MMKP instance is
shown in Fig. 7. The description of the MMKP instance
format is summarised below:
(i) the first row contains three values - the number of

component groups in the MMKP instance, the maximum
number of components in each group and the maximum
number of resources supporting each component. The
maximum number of resources supporting each compo-
nent is four (i.e., represented by CPU, RAM, Disk space
and Bandwidth) and remains the same for all instance
types.
(ii) the second row contains four values which represent

the limit of the resource supporting each component.
(iii) the third column contains the number of compo-

nents for the first group.
(iv) the rows that follow contain six properties associ-

ated with each component of the group. These properties
are the isolation value of the component, the number
of requests allowed to access the component, and the
resource consumption for CPU, RAM, Disk space and
Bandwidth which support the component. So assuming
the column contains the value 20, it means that the first
group contains 20 components. Row four to row twenty-
three contains the properties associated with each of the
twenty components of the group.
(v) after the row that contains the properties of the last

item of group one, then the number of items for group
two follows. The format for the remaining groups follows
the same pattern. The next section explains how these

Ochei et al. Journal of Cloud Computing: Advances, Systems and Applications (2019) 8:1 Page 19 of 38

Fig. 7 Format of the MMKP instance

values (e.g., the resource capacities and consumption)
were generated.
(b) Workload file: workload file contains the values that

are used to simulate the workload offered to the system.
The key values it contains are the arrival rate of requests
and the service demands of each resource supporting the
components. The format of the MMKP instance shown in
Fig. 7 can be used to explained workload file as follows:
(i) the first, second, and third row is the same as in the

MMKP instance. (ii) the only difference is in the com-
position of the properties that are associated with each
component. For the workload file, there are five proper-
ties: the arrival rate of the requests to the component and
the service demands each for CPU, RAM, Disk space and
Bandwidth that support the component. The next section
explains how the arrival rate and service demands were
generated.

Instance generation
Several problem instances of various sizes and densi-
ties were randomly generated. After that, these instances
were solved using each variant of the metaheuristic. Two
categories of instances were generated and tailored on
the instances widely cited in literature: (i) OR bench-
mark Library [59] and other standard MMKP bench-
marks, and (ii) the new irregular benchmarks used by
Shojaei et al. [60]. These benchmarks are usually used for
single objective problems. This benchmark format was
modified and extended to conform to a multiobjective
case by associating each component with two different

profit values: isolation values and the average number of
requests [61].
(i) Defining an Instance Generating Function: To

generate the values associated with components in each
class i, the values were first bound with two parameters:
vmin
i and vmax

i , and then a uniform generating function was
applied to draw values uniformly and randomly within this
interval. The uniform generating function is given as:

pij = U
(
vmin
i , vmax

i
)

(10)

(ii) Generating Isolation, Number of Requests and
Resource Consumption: For isolation, the values were
randomly generated in the interval [1-3]. The value for
the average number of requests supported by each item
was initially set to zero (0) for all items. This value is
updated in the problem instance by solving the QNmodel
each time the workload changes. This updated instance is
then solved by the metaheuristic to obtain optimal solu-
tions for deploying components to the cloud. The values
of a component’s consumption of CPU, ram, disk capac-
ity, and bandwidth (i.e., the weights) were generated in the
interval [1-9].
(ii) Generating Resource Capacities: Values for capac-

ities of component resources (i.e., knapsack capacities for
CPU, ram, disk and bandwidth) are generated by setting it
to half of the maximum possible resource consumption.

ck = 1
2

× m × R (11)

Ochei et al. Journal of Cloud Computing: Advances, Systems and Applications (2019) 8:1 Page 20 of 38

The same principle has been used to generate instances
available at OR Benchmark Library, and also for instances
used in [57, 58].
(iv) Generating Workload and Service Demands: For

workload, the values were randomly generated follow-
ing a Poisson distribution (with mean=3) in the interval
[1, 5]. Values for service demand were in the interval
[0.05,0.25]. In this work, the number of resources in each
group is four, which corresponds to the basic resources
(i.e., CPU, RAM, disk, network bandwidth) required for a
component to be deployed to the cloud.
(v) Notation for defining an MMKP Instance: The

notation used to define a problem instance is given as:
C(number of groups, number of component per group,
number of resource types supporting each component).
So for example, C(4,5,4) means that the problem instance
has 4 groups of components, 5 components per group and
supported by 4 resource types -CPU, memory, disk space
and bandwidth.
(vi) Sample Dataset files: We have included in the

“Additional files” section, four sample files that represents
the dataset used in the experiment to improve reproduce-
ability (Additional files 1, 2, 3, and 4). The files included
are - a large problem instance file (i.e., C(500, 20,4), a ser-
vice demand file associated with C(500,20,4), an updated
instance file associated with C(500,20,4), and a workload
file associated with C(500,20,4).

Applicability of the generated instances to real-life cloud
deployment scenario
The MMKP problem instances represent a repository
of components that can be deployed to design (or inte-
grate with) a cloud-hosted service. A component could
be a database, a database table, a message queue, VM or
even a Docker container. It is also important to note that
although the weight values (i.e., the resource consump-
tion of the components) generated in the MMKP instance
may appear to be in the same interval, in reality, these
values could be normalised (or transformed) to represent
different resources units of the components.
As an illustration, one of Amazon’s EC2 instance types,

named "‘compute optimized (c4.xlarge model)"’, has the
following specification: 4 vCPU, 8 GiB of memory, EBS-
optimized only storage (which is similar to an IOPS pro-
visioned on an Amazon Elastic Block store volume) and
750 Mbps of dedicated EBS bandwidth [62]. An Amazon
EBS can be created with Provisioned IOPS SSD(io1) vol-
umes up to 16 TiB in size. So assuming the weights of a
component on a generated MMKP instance are given as
[4, 8, 8, 8], this specification could easily be transformed to
the actual specification of the above named Amazon EC2
instance using this normalisation format: [CPU, RAM,
DISK/2, BANDWIDTH/100]. This means that this partic-
ular component is supported with 4 virtual CPUs, 8GB

of memory, 8 TB of disk space and 8 Mbps of band-
width. Another approach suggested by Han et al. [63], is to
include the dimension index k as a parameter of the gen-
erating function so that the weight for a dimension k can
be chosen in a range that depends on k for the uniform
generating function.
The randomness of the values generated is consistent

with the unstable and unpredictable nature of cloud-
hosted systems. This unpredictability is due to increased
complexity and dynamicity of interactions between appli-
cations and workload sharing the cloud infrastructure
[15, 64, 65]. As a result, it is difficult to provide QoS
guarantees and also set service level agreements for both
users and providers of cloud-hosted applications [10]. In
addition, the randomness of the values and solutions is a
salient feature of evolutionary algorithms [56].

Experimental setup and procedure
The problem/MMKP instances used for our experi-
ments were generated as described in the “Dataset
and instance generation” sub-section (i.e., under the
“Evaluation” section). The instance generating program
and the algorithms were written using Java programming
with Netbeans IDE 7.3.1. All experiments have been car-
ried out on the same computation platform, which is a
Windows 8.1 running on a SAMSUNG Laptop with an
Intel(R) CORE(TM) i7-3630QM at 2.40GHZ, with 8GB
memory and 1TB swap space on the hard disk. Table 3
shows the parameters used for the experiments. Each
instance is tested with a workload associated with it. The
exhaustive search algorithm was incapable of solving large
instances. This was because of the lowmemory of the used
machine. And so a small MMKP instance, C(4,5,4) was
used for the evaluation and comparison of the algorithms.
This MMKP instance consists of 4 groups of components,
5 components per group and supported by 4 resource
types.
Aim of the experiment: The aim of the experiment is

to evaluate the performance (i.e., regarding obtained solu-
tion quality, robustness, and computational effort) of the
different variants of the metaheuristic when integrated
into the model-based algorithm (i.e., optimalDep).

Evaluation metrics and statistical analysis
The model-based algorithm is novel in the sense that it
combines a QN model and metaheuristics to find optimal
solutions for component deployment while guaranteeing
the required degree of multitenancy isolation. Thus, there
are no existing approaches that can be used to make a
direct comparison with our novel model-based algorithm.
Because of this, the solutions obtained from our approach
were compared with the optimal solutions obtained from
an exhaustive search of a small problem instance. There-
after, the obtained solutions were also compared with the

Ochei et al. Journal of Cloud Computing: Advances, Systems and Applications (2019) 8:1 Page 21 of 38

Table 3 Parameter values used in the experiments

Open multiclass QN model Value

λ (offered load) [0,4]

Isolation value [1,2,3]

No. of requests [1,10]

Resource consumption [1,10]

Service demands [0.15, 0.24]

Metaheuristic

No. of iterations 1000000

Population size 1000

No. of runs 20

Temperature T0 = st. dev of N randomly
generated solutions
(N=no. of groups)

Cooling schedule Ti+1 = T0 + (A − T0)

target solution obtained from different problem instances
of varying sizes and densities. The performance indicators
considered are:
(1) Quality of Solution:The quality of solutions obtained

was measured in terms of the percent deviation of the
obtained solution to the target/reference solution. This is
given as:

|f (s) − f (s∗)|
f (s∗)

(12)

where s is the obtained solution and s* is the reference
solution obtained from the exhaustive search [45].
(2) Robustness:Robustness wasmeasured in terms of the

variability of the solutions over different iterations of the
metaheuristic on the same instance; the lower the variabil-
ity, the better the robustness [45]. The standard deviation
was used as a measure of this variability.
(3) Computational Effort: The computation effort

required to produce the solutions was measured in terms
of the average execution time of the metaheuristic. The
execution time for the SA(Greedy) and HC(Greedy) is
computed as:

ExecTime = GreedyTime + (FEvalTime ∗ NoFEval) (13)

where ExecTime means the total time to run the meta-
heuristic, GreedTime is the time to produce the initial
greedy solution, FEvalTime is the time to evaluate a
randomly generated solution, and NoFEval is the num-
ber of function evaluations to reach the target solution.
For SA(Random) and HC(Random), the GreedyTime is
replaced with RandomTime, which is the time to produce
an initial random solution. The NoFEval represents the
average number of function evaluations over 20 runs for
each instance size.

In addition to the above metrics, we also computed the
success rate and performance rate of producing the solu-
tions from the different variants of the metaheuristics.
The success rate wasmeasured as the number of iterations
to reach the target solution over the total number of runs
or trials. The percent success (i.e., success %) is the per-
centage number of iterations to reach the target solution
over the total number of runs (i.e.,20 runs). The success
rate is given as:

number of iterations to reach the target solution
total number of runs

(14)

The performance rate of our approach when compared
to the optimal solution takes into account the computa-
tional effort by considering the total number of iterations
for each run [45]. This is given as:

number of iterations to reach the target solution
total no. of iterations × total no. of runs

(15)

Furthermore, graphs and statistical plots were used to
analyse the interaction between the different performance
indicators. For example, a graph of run-time length dis-
tribution (RLD) was plotted to analyse the convergence
behaviour of the metaheuristic on the number of func-
tion evaluations. RLD indicates the probability of reaching
a pre-specified objective function value over a specified
number of functional evaluations [66, 67]. The probabil-
ity value (success rate) is the ratio between the number of
runs to find a solution of a certain quality and the total
number of runs. RLD is usually used when time is mea-
sured with any architecture-independent parameter, such
as the number of evaluations or generations [68, 69].
It is important to note that there were limitations in the

computational power of the machine used for the experi-
ments and so the overall computation time required by the
optimalDep algorithm to produce the optimal solutions
was not considered. To address this challenge, the exe-
cution time of the metaheuristic was measured based on
the average number of function evaluations which is inde-
pendent of the computer system. In addition to this, the
simulation experiments were performed with very large
MMKP problem instances.
Statistical analysis was used to conduct a performance

assessment of optimalDep algorithm (i.e., the main sup-
porting algorithm for the model-based algorithm) when
combined with the different variants of the metaheuristic
solution. The two-way ANOVA was adopted to under-
stand if there is an interaction between the two indepen-
dent variables (i.e., type of instance size and variants of
metaheuristic) on the dependent variables (i.e., percent
deviation, standard deviation and execution time). The

Ochei et al. Journal of Cloud Computing: Advances, Systems and Applications (2019) 8:1 Page 22 of 38

statistical test focused on three performance indicators:
quality of solutions, robustness and computational effort
required to produce the solutions.

Results
The optimalDep algorithm requires a metaheuristic (see
line 17 in Algorithm 3) to provide optimal values from
the MMKP instance. The rest of the algorithm requires
computation of the queuing network model equations.
Therefore, it will test the applicability and the effect of
the different variants of the metaheuristic in driving the
optimalDep algorithm.
The performance evaluation will be presented in terms

of the quality of solution, robustness and the computa-
tional effort of the optimalDep algorithm when combined
with any of the four different variants of metaheuristics
solution:(i) HC(Random) - Hill climbing with a random
solution as the initial solution; (ii) HC(Greedy) - Hill
climbing with a greedy solution as the initial solution;
(iii) SA(Random) - Simulated Annealing with a random
solution as the initial solution; and (iv) SA(Greedy) - Sim-
ulated Annealing with a greedy solution as the initial
solution.

Comparison of solutions obtained from optimalDep
algorithmwith the optimal solution
The approach presented in this paper is novel in that it
combines a QN model and metaheuristics to find optimal
solutions for component deployment for guaranteeing
the required degree of multitenancy isolation. Therefore,
there are no existing approaches that can be used to make
a direct comparison with our approach. Because of this,
the solutions obtained from the optimalDep algorithm
(when running either with HC(Random), HC(Greedy),
SA(Random), SA(Greedy) are compared with the optimal
solutions obtained by running the OptimalDep algorithm
with the exhaustive search of a small problem size. The
quality of the optimal solutions was measured in terms
of the percent deviation from the optimal solution. The
instance used is C(4,5,4) because it was small enough to
cope with the requirements of the machine. The C(4,5,4)

instance consists of four groups of components, 5 com-
ponents per group and 4 resource types supporting each
component. The workload (i.e., the arrival rate) for each
component was randomly generated between 0.0 and 4
requests per seconds.
The results are summarised in Table 4. Each row of

the first column shows a different workload with an
arrival rate ranging from 2.7-3.9. The second column
shows the optimal function variables as (OP/IV/RV),
which stand for the value of the optimal function,
isolation value, and the number of allowed requests,
for the optimal solution. The third, fourth, fifth and
sixth columns show the optimal function variables
as (OP/FEval) for hill climbing(random), hill climb-
ing(greedy), simulated annealing(random) and simulated
annealing(greedy), respectively, which stand for the value
of the optimal function and the number of function eval-
uation to attain the optimal solution.
As shown in Table 4, all the four variants of the

metaheuristic produced results that were the same as
the optimal solution for all workloads. This means that
the four variants of the metaheuristic attained a 100%
success rate and 0% percent deviation. The similar-
ity seen in the results may be due to the small size
of the instance. This small size was chosen to cope
with the machine used for the experiments which could
not solve problem instances larger than C(4,5,4) due
to limitations in its hardware requirements (i.e., CPU
and RAM).
In Fig. 8, the Run Length Distribution (RLD) of the

instance is shown based on the arrival rate of 3.9 request
per seconds for only 20 iterations since the target solu-
tion is attained after about 20 iterations due to the small
size of the instance used. This plot shows the perfor-
mance of the metaheuristic in a scenario where there
is limited regarding the time and amount of resources
required to execute the model-based algorithm before
attaining an optimal value. It is observed that HC(Greedy)
and SA(Greedy) reach a 100% success rate and a corre-
sponding performance rate after the first iteration. How-
ever, the other variants that start with a random solution

Table 4 Comparing HC(Rand), HC(Greedy), SA(Rand), SA(Greedy) with optimal solution

Workload(λ) Optimal HC(Rand) HC(Greedy) SA(Rand) SA(Greedy)

2.7 1220.8/12/20.8 1220.8/41 1220.8/0 1220.8/41 1220.8/0

2.9 1225.69/12/25.69 1225.69/38 1225.69/0 1225.69/51 1225.69/0

3.1 1232.38/12/32.38 1232.38/56 1232.38/0 1232.38/60 1232.38/0

3.3 1242.14/12/42.14 1242.14/52 1242.14/0 1242.14/38 1242.14/0

3.5 1257.99/12/57.99 1257.99/38 1257.99/0 1257.99/41 1257.99/0

3.7 1289.77/12/89.77 1289.77/32 1289.77/0 1289.77/32 1289.77/0

3.9 1415.09/12/215.09 1415.09/17 1415.09/0 1415.09/18 1415.09/0

Ochei et al. Journal of Cloud Computing: Advances, Systems and Applications (2019) 8:1 Page 23 of 38

Fig. 8 Run Length Distribution for Small Instance (C(4-5-4))

(i.e., HC(Random) and SA(Random)) attain 100% suc-
cess after 9 and 15 iterations, respectively. This means
that for small instances there may be not much dif-
ference between the Hill climbing and the simulated
annealing when the initial solution starts with a greedy
solution.

Comparison of solutions obtained from optimalDep
algorithmwith the target solution
As an optimal solution could not be obtained with large
instances (e.g., C(500,20,4)), the results were compared
to a target solution as proposed by [45] in a situation
where there are limitations in the computation machine
on which the metaheuristic is executed or it is infeasi-
ble to obtain the optimal solution. The MMKP instance
C(500,20,4) consists of 500 groups of components, 20
components per group and 4 resource types supporting
each component. In our case, the target solution repre-
sents a requirement defined by a decision maker on the
quality of the solutions to obtain. This is expressed as:

TargetSoln = ((n × max(I) × w1) + e) (16)

where e is expressed as 0.05 × (n × max(Q) × w2)), n
is the number of groups, max(I) is the maximum iso-
lation value, max(Q) is the maximum possible number
of requests (calculated based on the upper limit of the
arrival rate), w1 is the weight assigned to I and w2 is
the weight assigned to the Q. This equation when used
to compute the target solution of C(4,5,4) with arrival
rate of 2.7 req/sec gives 1219.2 which is very close to the
optimal solution as shown in Table 4. The computed tar-
get solution for all instance sizes ranging from C(10,5,4),
C(10,20,4) up to C(1000,5,4), C(1000,20,4) and the opti-
mal values obtained for each instance of the four different
variants of the metaheuristic are shown in Tables 5 and 6.
The rest of the experiment was conducted with an arrival

rate of 3.9 requests per second. The last column of Tables 5
and 6 show the initial greedy solutions for all instance
sizes. The standard deviation was not computed for the
greedy solution, but for the optimal solution. The greedy
solution is the initial solution which is later improved by
the metaheuristic to produce the optimal solution.
It should be noted that the simulation ran for 1000000

function evaluations in order to be able to attain the best
possible solution for the algorithm. Therefore, the suc-
cess rate would be expected to be nearly 100%, with the
corresponding performance rate, since the optimal solu-
tion would have converged. Because of this, the study
extends the evaluation to cover scenarios where there is
limitation regarding the resources and time required to
provide optimal solutions, for example, when the algo-
rithm can run for only 1000 iterations (see Table 8 and
“Robustness of the solutions” section).

Quality of solutions
The quality of the solutions was measured in terms of
the percent deviation from the target solution. As shown
in Table 7, the percent deviation for all the variants
of the metaheuristic was the same. It was noticed that
the percent deviation of solutions is lower when the
number of components per group is high. For exam-
ple, the percent deviation for C(500,5,4) is 3.5 when the
number of components per group is 5 and the percent
deviation of C(500,20,4) is 1.49 when the number of
components per group is increased to 20. The problem
instance C(500,5,4) consists of 500 groups of compo-
nents, 5 components per group, and 4 resource types
and the instance C(500,20,4) consists of 500 groups of
components, 20 components per group and 4 resource
types. This means that the quality of solutions is a func-
tion of the number of components per group. The more
choices of a particular type of component there are, the

Ochei et al. Journal of Cloud Computing: Advances, Systems and Applications (2019) 8:1 Page 24 of 38

Table 5 Optimal values and standard deviation of different instances(l=5)

Instance Target solution HC(Rand) HC(Greedy) SA(Rand) SA(Greedy) Greedy

C(10,5,4) 3048 2815.09/0.0 2815.09/0.0 2815.09/0.0 2815.09/0.0 2714.43

C(20,5,4) 6096 6053.26/1.5E-4 6053.26/1.5E-4 6053.26/1.5E-4 6053.26/1.50 5523.81

C(30,5,4) 9144 9012.30/0.0 9012.30/0.0 9012.30/0.0 9012.30/0.0 8289.1

C(40,5,4) 12192 12028.67/0.0 12028.67/0.0 12028.67/0.0 12028.67/0.0 11665.49

C(50,5,4) 15240 14725.40/0.0 14725.40/0.0 14725.40/0.0 14725.40/0.0 13501.17

C(60,5,4) 18288 17923.88/0.0 17923.88/0.0 17923.88/0.0 17923.88/0.0 16805.41

C(70,5,4) 21336 21130.89/5.5E-4 21130.89/5.5E-4 21130.88/7.3E-4 21130.89/7.3E-4 20359.45

C(80,5,4) 24384 23389.81/0.0 23389.81/0.0 23389.81/0.00 23389.81/0.00 22361.58

C(90,5,4) 27432 26987.22/0.0 26987.22/0.0 26987.22/0.0 26987.22/3.5E-4 25983.6

C(100,5,4) 30480 28945.60/0.0 28945.60/0.0 28945.60/0.00 28945.60/0.00 27472.12

C(200,5,4) 60960 58647.49/0.0 58647.49/0.0 58647.47/0.01 58647.47/0.01 56055.95

C(300,5,4) 91440 86662.80/0.003 86662.80/0.00 86662.77/0.02 86662.77/0.02 81659.39

C(400,5,4) 121920 117405.24/0.0 117405.24/0.0 117405.15/0.04 117405.14/0.05 111049.71

C(500,5,4) 152400 147023.93/0.0 147023.93/0.00 147023.73/0.09 147023.77/0.07 140156.27

C(600,5,4) 182880 176735.26/0.00 176735.26/0.0 176734.98/0.10 176734.94/0.10 168795.78

C(700,5,4) 213360 205301.82/0.00 205301.82/0.00 205301.49/0.12 205301.44/0.14 195237.57

C(800,5,4) 243840 234472.96/0.0 234472.96/0.00 234472.51/0.16 234472.44/0.16 222105.9

C(900,5,4) 27432 264883.40/0.00 264883.40/0.00 264882.74/0.20 264882.83/0.18 252231.84

C(1000,5,4) 304800 291763.61/0.0 291763.61/0.0 291762.78/0.27 291762.85/0.17 277411.4

Table 6 Optimal values and standard deviation of different instances(l=20)

Instance Target
Solution

HC(Rand) HC(Greedy) SA(Rand) SA(Greedy) Greedy

C(10,20,4) 3048 3090.18015/0.0 3090.18/0.0 3090.18/0.0 3090.18/0.0 3042.95

C(20,20,4) 6096 6216.57/2.11E-4 6216.57/2.11E-4 6216.57/2.1E-4 6216.57/2.11 5806.68

C(30,20,4) 9144 9151.83/0.0 9151.83/0.0 9151.83/0.00 9151.83/0.00 8519.55

C(40,20,4) 12192 12361.51/0.0 12361.51/0.0 12361.50/0.00 12361.50/0.00 11925.67

C(50,20,4) 15240 15452.77/0.0 15452.77/0.0 15452.76/0.01 15452.76/0.01 14697.84

C(60,20,4) 18288 18661.63/2.4E-4 18661.63/2.4E-4 18661.62/0.01 18661.62/0.01 17837.44

C(70,20,4) 21336 21555.88/ 4.9E-4 21555.88/4.9E-4 21555.85/0.03 21555.85/0.03 20550.67

C(80,20,4) 24384 24715.83/0.0 24715.83/0.0 24715.80/0.01 24715.77/0.06 23426.28

C(90,20,4) 27432 27982.72/9.8E-4 27982.72/9.8-E4 27982.69/0.03 27982.68/0.03 26206.78

C(100,20,4) 30480 31124.34/5.98 31124.34/5.98 31124.28/0.03 31124.28/0.03 29233.1

C(200,20,4) 60960 61861.47/0.0 61861.47/0.0 61861.11/0.17 61861.10/0.16 58297.87

C(300,20,4) 91440 92474.27/0.0 92474.27/0.0 92473.23/0.28 92473.13/0.40 88139.89

C(400,20,4) 121920 123488.32/0.00 123488.32/0.00 123486.36/0.52 123486.44/0.42 116808.95

C(500,20,4) 152400 154665.71/0.0 154665.71/0.0 154662.53/0.70 154662.7/0.60 145493.58

C(600,20,4) 182880 185163.64/0.00 185163.64/0.00 185158.51/0.67 185158.34/0.71 173758.37

C(700,20,4) 213360 216017.65/0.0 216017.65/0.0 216010.27/1.26 216010.57/0.95 203323.86

C(800,20,4) 243840 247335.56/0.0 247335.56/0.0 247325.61/1.28 247325.92/1.18 234522.64

C(900,20,4) 27432 277366.77/0.0 277366.77/0.0 277354.00/1.46 277353.75/1.86 262264

C(1000,20,4) 304800 308359.13/0.00 308359.13/0.00 308344.05/2.00 308344.64/1.67 292307.23

Ochei et al. Journal of Cloud Computing: Advances, Systems and Applications (2019) 8:1 Page 25 of 38

Table 7 Percent deviation from the optimal solution on different instance sizes(l=5; l=20)

Instance size HC (rn) HC(gr) SA(rn) SA(gr) Gr Instance size HC(rn) HC(gr) SA(rn) SA(gr) Gr

C(10,5,4) 7.64 7.64 7.64 7.64 10.94 C(10,20,4) 1.38 1.38 1.38 1.38 0.17

C(20,5,4) 0.7 0.7 0.7 0.7 9.39 C(20,20,4) 1.98 1.98 1.98 1.98 4.75

C(30,5,4) 1.44 1.44 1.44 1.44 9.35 C(30,20,4) 0.09 0.09 0.09 0.09 6.83

C(40,5,4) 1.34 1.34 1.34 1.34 4.32 C(40,20,4) 1.39 1.39 1.39 1.39 2.18

C(50,5,4) 3.38 3.38 3.38 3.38 11.41 C(50,20,4) 1.4 1.4 1.4 1.4 3.56

C(60,5,4) 1.99 1.99 1.99 1.99 8.11 C(60,20,4) 2.04 2.04 2.04 2.04 2.46

C(70,5,4) 0.96 0.96 0.96 0.96 4.58 C(70,20,4) 1.03 1.03 1.03 1.03 3.68

C(80,5,4) 4.08 4.08 4.08 4.08 8.29 C(80,20,4) 1.36 1.36 1.36 1.36 3.93

C(90,5,4) 1.62 1.62 1.62 1.62 5.28 C(90,20,4) 2.01 2.01 2.01 2.01 4.47

C(100,5,4) 5.03 5.03 5.03 5.03 9.87 C(100,20,4) 2.11 2.11 2.11 2.11 4.09

C(200,5,4) 3.79 3.79 3.79 3.79 8.04 C(200,20,4) 1.48 1.48 1.48 1.48 4.37

C(300,5,4) 5.22 5.22 5.22 5.22 10.7 C(300,20,4) 1.13 1.13 1.13 1.13 3.61

C(400,5,4) 3.7 3.7 3.7 3.7 8.92 C(400,20,4) 1.29 1.29 1.28 1.28 4.19

C(500,5,4) 3.53 3.53 3.53 3.53 8.03 C(500,20,4) 1.49 1.49 1.48 1.48 4.53

C(600,5,4) 3.36 3.36 3.36 3.36 7.7 C(600,20,4) 1.25 1.25 1.25 1.25 4.99

C(700,5,4) 3.78 3.78 3.78 3.78 8.49 C(700,20,4) 1.25 1.25 1.24 1.24 4.7

C(800,5,4) 3.84 3.84 3.84 3.84 8.91 C(800,20,4) 1.43 1.43 1.43 1.43 3.82

C(900,5,4) 3.44 3.44 3.44 3.44 8.05 C(900,20,4) 1.11 1.11 1.11 1.11 4.39

C(1000,5,4) 4.28 4.28 4.28 4.28 8.99 C(1000,20,4) 1.17 1.17 1.16 1.16 4.1

AVG 3.32 3.32 3.32 3.32 8.39 AVG 1.39 1.39 1.39 1.39 3.94

STD 1.66 1.66 1.66 1.66 1.89 STD 0.44 0.44 0.45 0.45 1.29

better the chance of obtaining an optimal configura-
tion. This is particularly important for large open-source
projects that are either designed to use a large num-
ber of components within the cloud-hosted service or
be integrated with several components residing in other
locations.
Table 8 shows the obtained solutions and percent devi-

ation (%dev) of obtained solutions to the target solutions
for a large instance size (i.e., C(500,20,4)). Columns 2 to 3
shows the obtained solutions while columns 6 to 9 shows
the percent deviation of the different metaheuristics. It
was observed that the percent deviation for SA(Greedy)
and HC(Greedy) was better than the other variants. For
example, the percent deviation for SA(Greedy) was less
than 0.96 in most cases and was much more controlled
and stable than the other variants. Therefore, for large
problem instances, while HC(Greedy) may produce the
best optimal solutions, the SA(Greedy) will still produce
more stable solutions than other variants.
In Fig. 9, the quality of solutions is shown for the first

10000 iterations. This represents a scenario where there
is a limitation in time or resources to do an exhaustive
search of the entire problem size. The two variants that
started with the greedy solution as the initial solution

(i.e., HC(Greedy) and SA(Greedy) benefited significantly
from the greedy solution than the other two variants.
For example, it will take up to 7500 function evalua-
tions (which translates to more time and resources) for
the SA(Random) and HC(Random) to attain an opti-
mal value of at least 153000. That same optimal value
would have been reached by HC(Greedy) after about 2500
iterations.

Robustness of the solutions
Robustness was measured in terms of the variability of
the solutions over different iterations of each variant
of the metaheuristic on the same instance. The stan-
dard deviation was used as a measure of this variabil-
ity. Measuring the variability or otherwise (i.e., stability)
of the optimal solutions is important in cloud environ-
ments where there are varying workload changes. The
standard deviation of the optimal functions was com-
puted for different numbers of iterations of the same
instance. Tables 5 and 6 show the standard deviation for
all instance sizes in the variable, Opt/Std, which stands
for optimal value and standard deviation. As shown in
Tables 5 and 6, the standard deviation of the instance
c(1000,5,4) for SA(Random) and SA(Greedy) are 0.27

Ochei et al. Journal of Cloud Computing: Advances, Systems and Applications (2019) 8:1 Page 26 of 38

Table 8 Obtained solution (ob.sln) and Percent deviation(%dev) of obtained soln to the target soln - C(500,20,4)

ITRN HC(rn)-ob.soln HC(gr)-ob.soln SA(rn)-ob.soln SA(gr)-ob.soln HC(rn)-%dev SA(gr)-%dev SA(gr)-%dev SA(gr)-%dev

0 102493.35 151639.99 102553.45 151635.01 32.75 0.50 32.71 0.50

500 120066.77 152030.99 120232.32 152011.96 21.22 0.24 21.11 0.25

1000 130650.02 152453.57 130639.45 152296.21 14.27 0.04 14.28 0.07

1500 137610.24 152720.79 137510.18 152469.75 9.70 0.21 9.77 0.05

2000 142329.22 152932.51 141946.25 152670.75 6.61 0.35 6.86 0.19

2500 145443.36 153086.08 145022.77 152815.44 4.56 0.45 4.84 0.27

3000 147491.14 153262.74 147231.31 152991.31 3.22 0.57 3.39 0.39

3500 148966.65 153406.7 148858.75 153136.21 2.25 0.66 2.32 0.48

4000 150116.54 153533.35 150050.23 153246.17 1.50 0.74 1.54 0.56

4500 151066.03 153643.3 150837.07 153329.15 0.88 0.82 1.03 0.61

5000 151679.1 153726.85 151530.88 153420.63 0.47 0.87 0.57 0.67

5500 152093.62 153822.14 152003.19 153486.9 0.20 0.93 0.26 0.71

6000 152468.36 153888.66 152361.67 153329.15 0.04 0.98 0.03 0.61

6500 152752.03 153937.59 152683.1 153620.12 0.23 1.01 0.19 0.80

7000 152982.12 153986.83 152947.19 153673.2 0.38 1.04 0.36 0.84

7500 153151.13 153986.83 153111.49 153734.31 0.49 1.04 0.47 0.88

8000 153355.56 154102.75 153258.93 153756.01 0.63 1.12 0.56 0.89

8500 153512.38 154129.54 153392.12 153799.05 0.73 1.13 0.65 0.92

9000 153623.17 154162.96 153492.14 153829.5 0.80 1.16 0.72 0.94

9500 153752.4 154198.51 153570.9 153855 0.89 1.18 0.77 0.95

10000 153752.4 154226.25 153669.08 153870.42 0.89 1.20 0.83 0.96

Min 102493.35 151639.99 102553.45 151635.01 32.75 0.50 32.71 0.50

Max 153752.4 154226.25 153669.08 153870.42 0.89 1.20 0.83 0.96

Avg 145683.60 153470.43 145566.78 153189.35 4.41 0.70 4.48 0.52

Std 12877.15 725.97 12822.48 635.43 8.45 0.48 8.41 0.42

and 0.17, respectively. It was observed that the stan-
dard deviation for SA(Random) and SA(Greedy) was
higher than that of HC(Random) HC(Greedy) in most
of the cases. This means that metaheuristic based on
hill climbing were more stable and robust than the other

variants based on simulated annealing, especially for large
instances.
Table 8 shows that although the minimum, max-

imum, average values of solutions produced by the
HC(Greedy) when applied to a large instance (i.e., C(500-

Fig. 9 Quality of Solution for a large instance size(C(500-20-4))

Ochei et al. Journal of Cloud Computing: Advances, Systems and Applications (2019) 8:1 Page 27 of 38

2-4)) for the first 10,000 function evaluations are bet-
ter than the other variants of the metaheuristic, the
standard deviation values for HC(Greedy) were slightly
higher than that of SA(Greedy). As expected, the stan-
dard deviation for HC(Random) was greater than that
of SA(Random) and all other variants. This means
that for large instances when there is a limitation in
terms of time and available resources, the variants of
metaheuristic that start with an initial greedy solu-
tion, especially when used with simulated annealing (i.e.,
SA(Greedy) produce solutions that are more robust and
stable.

Computational effort of themetaheuristic
The computational effort was measured in terms of
success rate, performance rate and average execution
time required to produce a solution. Table 9 presents
the success rate and performance rate for C(500-20-4)
after running the algorithms for 10,000 iterations. It was
observed that the variants of the metaheuristics that start
with the initial greedy solution performed better. For

example, the HC(Greedy) requires 2000 function evalua-
tions to attain a 100% success rate whereas HC(Random)
requires 5000 function evaluations.
Figure 10 shows the run length distribution of a large

instance (i.e., C(500-20-4)) for all the variants of our
metaheuristic. As expected, the variants that start with
the initial greedy solution have a better %success than
the other variants. This confirms our earlier conclusion
that in a real-time environment when there are fewer
resources, HC(Greedy) will provide better results than the
other variants.
Table 10 shows the number of function evaluations

reached for each run before attaining the target solution.
The number of function evaluations is not the same as
the number of iterations. Function evaluation refers to a
call of the function that is being optimized (i.e., the opti-
mal function - G). That is, it means a call to the function
for evaluating each individual solution in the population.
An iteration is a step in a looped optimized process. In
this study the population size is set to 1000, the maximum
number is set to 1000000 (see Table 3). Therefore, the

Table 9 Success Rate(s.rt) and Performance Rate (p.rt) based on Target Solution (C(500-20-4))

ITRN HC(rn)-s.rt HC(gr)-s.rt SA(rn)-s.rt SA(gr)-s.rt HC(rn)-p.rt HC(gr)-p.rt SA(rn)-p.rt SA(gr)-p.rt

0 0 0 0 0 0 0 0 0

500 0 5 0 0 0 0.01 0 0

1000 0 55 0 35 0 0.06 0 0.04

1500 0 90 0 65 0 0.06 0 0.04

2000 0 100 0 95 0 0.05 0 0.05

2500 0 100 0 100 0 0.04 0 0.04

3000 0 100 0 100 0 0.03 0 0.03

3500 0 100 0 100 0 0.03 0 0.03

4000 0 100 0 100 0 0.03 0 0.03

4500 0 100 0 100 0 0.02 0 0.02

5000 5 100 5 100 0 0.02 0 0.02

5500 15 100 15 100 0 0.02 0 0.02

6000 70 100 40 100 0.01 0.02 0.01 0.02

6500 85 100 85 100 0.01 0.02 0.01 0.02

7000 95 100 100 100 0.01 0.01 0.01 0.01

7500 100 100 100 100 0.01 0.01 0.01 0.01

8000 100 100 100 100 0.01 0.01 0.01 0.01

8500 100 100 100 100 0.01 0.01 0.01 0.01

9000 100 100 100 100 0.01 0.01 0.01 0.01

9500 100 100 100 100 0.01 0.01 0.01 0.01

10000 100 100 100 100 0.01 0.01 0.01 0.01

Min 0 0 0 0 0 0 0 0

Max 100 100 100 100 0.01 0.06 0.01 0.05

Avg 41.43 88.10 40.24 85.48 0 0.02 0 0.02

Std 46.47 29.42 46.33 31.66 0 0.02 0 0.01

Ochei et al. Journal of Cloud Computing: Advances, Systems and Applications (2019) 8:1 Page 28 of 38

Fig. 10 Run Length Distribution for a Large Instance(C(500,20,4))

maximum number of function evaluations is 1000000000.
The results show that it takes the variants of the meta-
heuristic that start with the greedy solution a far less
number of function evaluations to reach the target solu-
tions. For example, the number of function evaluations for
HC(Random) inmost of the cases are between 3 to 8 times
more than that of HC(Greedy).
In addition, the execution time required by each variant

of the metaheuristic to reach the target solution for dif-
ferent instance sizes was also computed. First, the actual
times to produce both the initial greedy solution and a

randomly generated solution for each instance was com-
puted and logged separately. Thereafter, these times were
used to calculate the execution time using the formula
given in Eq.13. Table 11 summarises the results. Each row
of the first column shows a different problem/instance
size ranging from C(10,20,4) to C(1000, 20, 4). The sec-
ond, fourth, and sixth columns show the mean execution
times for obtaining a greedy solution, random solution
and optimal value from a randomly generated solution,
respectively. The third column, fifth, and seventh column
show the standard deviation of the mean execution times

Table 10 Function Evaluations to attain the target solution (N=1000000)

Instance HC(Random) HC(Greedy) SA(Rand) SA(Greedy)

C(10,20,4) 88 0 97 0

C(20,20,4) 220 102 204 93

C(30,20,4) 613 616 504 2620

C(40,20,4) 361 0 455 0

C(50,20,4) 558 145 459 140

C(60,20,4) 522 0 550 0

C(70,20,4) 884 236 490 262

C(80,20,4) 899 74 940 74

C(90,20,4) 865 103 979 105

C(100,20,4) 1022 0 1019 0

C(200,20,4) 2331 611 2449 816

C(300,20,4) 3679 923 4090 1046

C(400,20,4) 4874 689 4968 788

C(500,20,4) 5763 1055 6154 1217

C(600,20,4) 7416 892 7826 979

C(700,20,4) 8764 1510 9355 1628

C(800,20,4) 8771 1140 9448 1198

C(900,20,4) 11330 2324 12353 2865

C(1000,20,4) 12642 1986 13169 2238

Ochei et al. Journal of Cloud Computing: Advances, Systems and Applications (2019) 8:1 Page 29 of 38

Table 11 Computational Effort of different instant sizes

Instance size AVG (gr) STD (gr) AVG (rn) STD (rn) AVG (fe) STD (fe) HC (rn) HC (gr) SA (rn) SA (gr)

C(10,20,4) 30.78 3.5 0.23 0.67 0.46 0.42 40.71 30.78 44.85 30.78

C(20,20,4) 66.91 4.05 0.55 0.14 0.54 1.59 119.35 121.99 110.71 117.13

C(30,20,4) 117.81 2.48 0.78 0.15 0.75 0.16 460.53 579.81 378.78 2082.81

C(40,20,4) 170.51 3.45 0.11 1.06 0.93 0.08 335.84 170.51 423.26 170.51

C(50,20,4) 223.66 4.25 0 0.02 1.05 0.05 585.9 375.91 481.95 370.66

C(60,20,4) 277.6 12.55 0.28 0.07 1.67 0.26 872.02 277.6 918.78 277.6

C(70,20,4) 328.99 6.55 0.65 0.11 1.89 0.08 1671.41 775.03 926.75 824.17

C(80,20,4) 386.56 5.96 0.78 1.95 1.62 0.21 1457.16 506.44 1523.58 506.44

C(90,20,4) 435.65 8.76 0.86 0.11 2.14 0.08 1851.96 656.07 2095.92 660.35

C(100,20,4) 508.17 30.24 1.01 0.03 2.94 0.17 3005.69 508.17 2996.87 508.17

C(200,20,4) 1007.66 21.9 2.24 0.08 10.63 0.24 24780.77 7502.59 26035.11 9681.74

C(300,20,4) 1536.93 71.97 3.2 1.95 24.28 0.22 89329.32 23947.37 99308.4 26933.81

C(400,20,4) 2163.23 69.04 4.96 0.06 29.7 0.2 144762.76 22626.53 147554.56 25566.83

C(500,20,4) 2638.34 34.8 5.98 0.08 23.99 0.97 138260.35 27947.79 147640.44 31834.17

C(600,20,4) 3246.27 60.23 7.03 0.07 36.36 0.23 269652.79 35679.39 284560.39 38842.71

C(700,20,4) 3799.79 77.58 8.34 0.22 19.04 0.16 166874.9 32550.19 178127.54 34796.91

C(800,20,4) 4417.39 114.31 10.17 0.11 29.82 0.18 261561.39 38412.19 281749.53 40141.75

C(900,20,4) 5004.77 112.35 11.01 0.09 29.54 3.06 334699.21 73655.73 364918.63 89636.87

C(1000,20,4) 5592.63 87.27 12.06 0.16 30.78 3.09 389132.82 66721.71 405353.88 74478.27

for obtaining a greedy solution, random solution and opti-
mal value, respectively. Columns eight, nine, ten, and
eleven show the execution times for reaching the target
solution for each of the variants of the metaheuristic.
As expected, Table 11 shows that the average execu-

tion times for producing the initial greedy solution is
larger than that of the random solution. Surprisingly, as
illustrated in Fig. 11, the time to compute the initial
greedy solutions seems not to affect the overall exe-
cution times for HC(Greedy) as it is even less than
that of HC(Random). Table 11 shows that the execu-
tion time required to produce an initial greedy solution
is 400 times in most of the cases more than that of
random solutions. However, because the average num-
ber of function evaluations required by the metaheuris-
tic that starts with greedy solutions (i.e., HC(Greedy)
and SA(Greedy)) is far less than those that start with
random solutions. Thus, the overall execution time of
HC(Greedy) and SA(Greedy) is still less than that of
HC(Random) and SA(Random). Therefore, the variants
of the metaheuristic that start with the greedy solu-
tion used less computational effort regardless of whether
or not it is used with Hill climbing or Simulated
annealing.
The results of the study can be summarised as follows:
(i) Percent deviation for all variants was nearly the same

especially when a limited number of iterations are possi-
ble. For example, in as shown in Table 8 for large instances,

percent deviation of variants based on greedy solutions
was smaller and more stable.
(ii) Standard deviation of solutions from simulated

annealing was higher than that of hill climbing. How-
ever, for a limited number of function evaluations (i.e.,
less than 10,000 in our experiments), the standard devi-
ation of simulated annealing was lower than that of hill
climbing.
(iii) Metaheuristics that started with greedy solutions

attained a 100% success ratemuch faster and used less exe-
cution time than those that started with random solutions.
(iv) Small instance size had no significant effect on

robustness and quality of solutions. However, as with large
instance sizes, the variants of the metaheuristics that start
with a greedy solution required fewer function evaluations
to reach the target solution.
(v) Instances with more components per group had less

percent deviation, hence a higher chance of producing
better quality solutions
The implication of the results is as follows: The benefit

of our model-based algorithm is in monitoring, evaluat-
ing, adjusting and deploying components of cloud-hosted
service (especially for large-scale projects) for guaran-
teeing multitenancy isolation when there are workload
changes. For large-scale cloud-hosted services, running
the model-based algorithm with a metaheuristic whose
initial solution starts with a greedy solution (compared to
random solutions) can significantly boost the quality and

Ochei et al. Journal of Cloud Computing: Advances, Systems and Applications (2019) 8:1 Page 30 of 38

robustness of the solutions produced. Solutions from hill
climbing were more stable and robust than that of sim-
ulated annealing, especially in large instances. However,
when there is a limitation in terms of time and resources,
simulated annealing will produce more robust and stable
solutions for large instances compared to hill climbing.
Metaheuristics that started with greedy solutions were
more scalable and require fewer function evaluations to
reach the target solution when compared to metaheuris-
tics that start with random solutions.

Statistical analysis of results
This section presents a performance assessment of the
metaheuristic using the two-way ANOVA model. The
primary purpose of a two-way ANOVA is to under-
stand whether there is an interaction between the two
independent variables on the dependent variable [70].
The variables of interest are (i) the obtained solutions
(for testing quality of solution); (ii) percent deviation
of the obtained solution to the target solution(for test-
ing robustness and variability); and (iii) execution time
based on the number of functional evaluations required to
reach a target solution (for testing computational effort).
There are two factors being studied: (i) type of instance,
which is classified into two levels - small instances and
large instances, and (ii) variant of metaheuristic, which
is classified into four levels - HC(Random), HC(Greedy),
SA(Random) and SA(Greedy). The computational aspect
involves computing F-statistic and p-value (α = 0.005) for
the hypothesis. This study assumes typical conditions of
normality, independence, and equality of variance [45, 71].
In the design, the type of instance and the variant of

metaheuristic has two and four levels, respectively. In all
there are 2 × 4 = 8 groups. The version of the two-way
ANOVA used is the one with more than one observa-
tion per cell, but the number of observations in each cell
is equal. In our case, each group had six observations

making it a total of 46 cells. This version is useful for
determining if the type of instance and the variant of meta-
heuristic are independent of each other (or if there is
interaction); they are independent if the effect of instance
size on percent deviation (and standard deviation, suc-
cess rate, execution time) remains the same, irrespective
of whether the variant of metaheuristic used is taken into
consideration. Additionally, if there is interaction, then
a follow-up analysis is done to determine whether there
are any “simple mains effect” and what these effects are.
Simple mains effect for our problem involves determin-
ing the mean difference in percent deviation/standard
deviation/success rate/execution time between the type
of instance for each variant of the metaheuristic, as well
as between variants of the metaheuristic for each type of
instance.
The null hypothesis to be tested is:

• H0: The two factors (i.e., type of instance and variant
of metaheuristic) are independent, or that an
interaction effect is not present.

• H1: The two factors (i.e., type of instance and variant
of metaheuristic) are not independent, or that an
interaction effect is present

The hypothesis is tested for a large instance - C(500, 20, 4),
which has 500 groups, 20 components per group and sup-
ported by 4 resource types. The data used for the test
are as follows: obtained solutions were tested with the set
of results from Table 8 (columns 2, 3, 4 and 5), the per-
cent deviation was tested with sets of results from Table 8
(columns 6, 7, 8 and 9) and the computational effort was
tested with results from Table 11 (columns 8, 9,10 and
11). Six instance types were selected for statistical anal-
ysis each to represent a small instance type and large
instance type as follows: (i) small instances ranging from
instance C(10,20,4) to C(60,20,4), and (ii) large instances
ranging from instance C(500,20,4) to C(1000,20,4).

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

0 5000 10000 15000 20000 25000

)orci
m(e

mi
T

noitucex
E

Instance Size (No. of items)

HC(Random) HC(Greedy) SA(Rand) SA(Greedy)

Fig. 11 Computational Effort for a large instance size(C(500-20-4))

Ochei et al. Journal of Cloud Computing: Advances, Systems and Applications (2019) 8:1 Page 31 of 38

The results of the statistical analysis are summarised
below:
(i) Quality of Solutions: There was no statistically signif-

icant interaction between the effects of instance sizes and
different variants of metaheuristic on percent deviation of
the obtained solution to the target solution, (F(3, 40) =
0.000, p=1.000)). This means that type of instance and
variant of metaheuristic are independent of each other.
In other words, the effect of a variant of metaheuristic
on quality of solutions (i.e., regarding percent deviation
from the target solution) remains the same irrespective
of whether the type of instance used is taken into con-
sideration. This result is expected because each variant of
the metaheuristic is run for 1000000 function evaluations,
which ensured that the search converges to an optimal
solution. (see Figs. 12 and 13).
(ii) Robustness:There was a statistically significant inter-

action between the effects of instance size and variants
of the metaheuristic on standard deviation, F (3, 40) =
0.033, p = 0.010. Simple mains effect shows that there
was no difference in standard deviation when the differ-
ent variants of the metaheuristic were applied to small
instance sizes. However, there was a significant difference
in standard deviation when the different variants of the
metaheuristic were applied to large instances. Specifically,
out of the six possible combinations, the results shows that
there was a significant difference between the following
metaheuristics: HC(Random) and SA(Random)(p=0.09),

HC(Random) and SA(Greedy) (p=0.013), HC(Greedy)
and SA(Random)(p=0.09); and also HC(Random)
and SA(Greedy)(p=0.013). There was no difference
between HC(Random) and HC(Greedy)(p=1.000) and
SA(Random) and SA(Greedy)(p=0.882). This means
that for large instance sizes, there is no difference in
robustness if hill climbing is started either with the ran-
dom or greedy solution. The same holds for simulated
annealing.(see Figs. 14 and 15).
(iii) Computation Effort: There was a statistically signif-

icant interaction between the effects of instance size and
variants of the metaheuristic on the execution time (based
on the number of function evaluations), F (3, 40)= 19.114,
p = 0.000. Simple mains effect shows that there was no
difference in execution time when the different variants
of the metaheuristic were applied to small instance sizes.
However, there was a significant difference in execution
time when the different variants of the metaheuristic were
applied to large instances. Specifically, out of the six possi-
ble combinations, the results show that there was a signif-
icant difference between the following metaheuristic - HC
(Random) and HC (Greedy) (p=0.000), HC (Random) and
SA (Greedy) (p=0.000), HC (Greedy) and SA (Random)
(p=0.000) and SA (Greedy) and SA (Greedy) (p=0.000).
There was no difference between HC (Random) and SA
(Random) (p=0.561) and HC (Greedy) and S A(Greedy)
(p=0.843). This means that for large instance sizes, there
is no difference in execution time if a random solution is

Fig. 12 Quality of solution- 2

Ochei et al. Journal of Cloud Computing: Advances, Systems and Applications (2019) 8:1 Page 32 of 38

Fig. 13 Robustness of solution - 1

Fig. 14 Robustness of solution - 2

Ochei et al. Journal of Cloud Computing: Advances, Systems and Applications (2019) 8:1 Page 33 of 38

Fig. 15 Computational effort - 1

used to start either hill climbing or simulated annealing.
The same holds for the greedy solution. Therefore, the dif-
ference is in terms of the initial starting solutions, and not
in terms of the variants of the metaheuristic used as was
the case with robustness (see Fig. 16).

Discussion
In this section, the results of the study on modelling and
simulation are discussed.
(1) Quality of the solutions: The model-based algorithm

can be used to obtain high-quality solutions with any of
the four variants of metaheuristic when dealing with small
instances. The model-based algorithm would perform
well both on small problem instances and large problem
instances when started with an initial greedy solution (i.e.,
HC(Greedy) and SA(Greedy). Using a greedy solution and
other forms of improvement heuristics to construct an
initial solution for the metaheuristic has been shown in
several research works to improve the quality of solutions.
Many variants of metaheuristic often use initial solutions
generated randomly.
The results show that the percent deviation of solu-

tions from instances with five components in a group was
higher than the percent deviation from instances with
twenty components in a group. This seems to suggest that
there may be a greater chance of obtaining better qual-
ity solutions when there are more components in a group
(i.e., more deployment configurations to choose from).

Our approach is well suited for this type of scenario in the
sense that it allows us to use during search both inten-
sification (exploitation) and diversification (exploration).
A good balance of both will usually improve the per-
formance of the metaheuristic and hence the quality of
solutions [56].
Another important lesson from this study is that start-

ing the metaheuristic with an initial set of solutions (e.g.,
the greedy solutions as used in our approach) can sig-
nificantly improve the quality of optimal solutions for
guaranteeing the required degree of multitenancy isola-
tion. This corresponds with the conclusions from [72] of
which the author developed a prototype meta-heuristic
load balancer to allocate services on a cloud system with-
out overloading the nodes and maintaining the system
stability with minimum cost. The author recommends
that better results can be achieved if a solutions pool is
initially created from an already pre-computed set.
(2) Robustness of the solutions: The results show that

optimalDep algorithm when used with HC (Greedy) and
HC (Random) were more robust and stable in small
problem instances. However, it was discovered that the
problem instances with more components (i.e., m=20)
were less robust because the standard deviation was
much higher. This means that a cloud-hosted service with
several components per group may have a higher chance
of producing solutions that are of better quality, but with
low robustness or stability.

Ochei et al. Journal of Cloud Computing: Advances, Systems and Applications (2019) 8:1 Page 34 of 38

This could have an adverse impact on cloud-hosted ser-
vices that may have several interdependencies with other
components or cloud-hosted services. Therefore, when
working on large open-source projects, it is advisable to
limit the number of component choice per group or better
still use a combination of local search with greedy princi-
ples. This can also help to improve robustness and avoid
unstable solutions in environments where the workload is
expected to change very frequently. Several research work
havemade reference to such unstable environments where
there are frequent workload changes [1], unpredictable
and aggressive workloads [28, 73].
The result shows that variants of metaheuristic based on

hill climbing were more stable and robust than simulated
annealing. However, when there is a limitation in terms
of time and available resources, then simulated anneal-
ing would produce stable and robust solutions. Also, in
a situation where the workload changes frequently, then
hill climbing would be more suitable, but when time and
resources are limited, then simulated annealing would be
more appropriate.
(4) Computational Effort: The result of the experi-

ments show that the scalability of the solutions and
the computational effort required to attain an optimal
solution depend in part on the instance size and the type
of metaheuristic used. The results of the experiment show
that variants of the metaheuristic that start with an initial
greedy solution (i.e., HC(Greedy) and SA(Greedy)) were

more scalable and they also attained the target solution
much faster (i.e., with a fewer number of function eval-
uations), especially for large instance sizes. Variants of
metaheuristic that start with random solutions are suit-
able either for small problem instances or when there is a
need to produce optimal solutions frequently and quickly
from large problem instances. Therefore, if frequent pro-
visioning and decommissioning of components charac-
terise a cloud deployment scenario, then the OptimalDep
algorithm should be run with either HC(Greedy) or
SA(Greedy). As with previous works, our results show
that metaheuristics which start with greedy solutions as
the initial solution will require less computational effort to
provide optimal solutions for deployment [72].
Our approach assumes that the initial solution is com-

puted first before running the metaheuristic, and so it is
expected that the time and effort required to calculate
the greedy solution will be more than that of a ran-
dom solution which would have a negative impact on
the variants of metaheuristic that start with the greedy
solution. However, the results show that the high exe-
cution time required to produce a greedy solution was
not enough to counter the small number of function
evaluations required by metaheuristic that start with
greedy solutions to attain the target solutions. Therefore,
our model-based algorithm when supported with meta-
heuristic that starts with greedy solutions would be suit-
able for handling large-scale cloud deployment projects

Fig. 16 Computational effort - 2

Ochei et al. Journal of Cloud Computing: Advances, Systems and Applications (2019) 8:1 Page 35 of 38

that may have a significant number of interdependent
components.
There are several situations where there is a need to

reduce the computational effort required to produce an
optimal solution. For example, many customers and cloud
providers would be interested in being able to provision
and decommission resources so that tenants can access
servers and other IT resources more quickly and effi-
ciently while guaranteeing the required degree of multite-
nancy isolation. Another situation is when there is a need
to ensure that a cloud service is failure resistant to guar-
antee the availability of specific/individual components.
Existing approaches do not often guarantee the availabil-
ity and isolation of individual components but only for a
whole cloud service [1]. Our model-based DSS addresses
this challenge by first tagging each component and then
using a suitable metaheuristic to provide optimal solu-
tions for deploying components of a cloud-hosted service
with less computational effort.

Limitations of the study
This study assumed a special case of multitenancy iso-
lation where multiple components of the same tenant,
behave as if they were components of different tenants
and, thus, are isolated from each other. This is differ-
ent from the common scenario of multitenancy isolation
where there are multiple tenants accessing a component
or a cloud-hosted application, and behaving as if they were
different tenants [1]. A tenant in this context is a cloud
customer (e.g., a single user, a team, department or even
a software development company) whose responsibility
is to create cloud-hosted applications on top of a cloud
platform (such as PaaS offered by Salesforce and Heroku)
from several components that it owns and controls.
Our approach assumes that the resources supporting

each component are enough to handle incoming requests.
If this condition cannot be guaranteed, we recommend
using an elastic queue to control incoming requests.
Another approach could be to implement some form of
admission control mechanism, for example, limiting the
number of requests that are handled concurrently by each
component, to avoid overloads or any degradation in the
component’s performance.
This study assumes that the cost implication of imple-

menting our approach is reflected in the resource con-
sumption of the component; the higher the consumption
the costlier the running cost. For example, in IaaS, multite-
nancy isolation also includes avoiding servers with tenants
that need to use the same kinds of resources. There-
fore, if running cost is a major concern (e.g., for a small
to medium size cloud-hosted service), then the software
architect can use the model to select optimal components
for deployment that has low resource consumption while
guaranteeing the required degree of isolation.

This study did not use a real-world cloud application
because our focus was on simulation based on a model.
In our previous work, we conducted three case studies
using real-world cloud-hosted Global Software Develop-
ment tools to evaluate the effect of varying degrees of
multitenancy isolation on the performance and resource
of consumption of components [16, 17, 43]. The study
established the basis for developing a model for optimiz-
ing the deployment components in a way that guarantees
multitenancy isolation.
The dataset (i.e., MMKP instances) used for the sim-

ulation experiments on the model-based algorithm was
generated randomly following a standard approach used
for similar problems. As we could not challenge our
exhaustive search algorithm with large instances to pro-
duce optimal solutions for comparison with the obtained
solutions due to the limitation of the machine used for
the experiments, a target solution was computed and used
for this purpose. Also, we could not measure the over-
all computation time of the OptimalDep algorithm (i.e.,
the main algorithm supporting the DSS) due to the lim-
itation in the hardware(e.g., processor) of the machine
used. Therefore we used the number of function evalua-
tions which is a performance indicator that is independent
of the computer system for measuring the computational
effort required by the metaheuristic solutions to produce
the optimal solutions.
The findings of this study should not be generalized to

components developed for all types of applications. We
focused on cloud-hosted applications(e.g., SaaS applica-
tions) developed and deployed using a multitenant archi-
tecture. The approach and the associated algorithms that
we have presented in this work apply to cloud-hosted
applications at the application level, and so are imple-
mented almost at runtime.

Conclusion and future work
This paper presents the implementation of the model-
based algorithm for providing optimal solutions for
deploying components designed to use (or be integrated
with) a cloud-hosted application in a way that guarantees
multitenancy isolation, to contribute to the literature on
multitenancy isolation and optimising the deployment of
components of cloud-hosted services.
The model-based algorithm works as follows: when

users requests arrive indicating a change in workload, the
DSS solves an open multiclass QN model to determine
the average number of requests that can access each com-
ponent, updates the component configuration file with
this information, and then uses a metaheuristic to find
an optimal solution for deploying components with the
highest degree of isolation together with the maximum
possible number of requests that can be allowed to access
the component.

Ochei et al. Journal of Cloud Computing: Advances, Systems and Applications (2019) 8:1 Page 36 of 38

The study revealed that the model-based algorithm,
optimalDep, when combined with a metaheuristic that
starts with an initial greedy solution (e.g., SA(Greedy)),
produces solutions that are robust and of better qual-
ity when compared with the metaheuristic that starts
with random solutions (e.g., SA(Random)). This seems
to suggest that the obtained solutions produced from
randomly generated solutions are more sensitive to work-
load changes than obtained solutions from greedy solu-
tions. For large projects, starting the metaheuristic with
an initial solution with a greedy solution can boost
the model-based DSS. Also, for large instances, when
there are limitations regarding time (e.g., real-time and
dynamic environments) and resources (e.g., resource-
constrained environment) then simulated annealing pro-
duces solutions that are more robust and stable when
compared to hill climbing.
We plan to develop other metaheuristics for use

with our model-based system to handle large problem
instances. For example, we can integrate other types
of metaheuristics into the OptimalDep algorithm (i.e.,
the main algorithm driving the model-based algorithm)
or combining simple heuristics with more advanced
metaheuristics. Several research works have developed
algorithms that combine a genetic algorithm (i.e., a
population-based algorithm) with simulated annealing
for solving various optimization problems [74, 75]. For
example, the authors in [75] have developed the GA-SA-
combined algorithm, an algorithm that combines genetic
algorithm with simulated annealing for optimization of
wideband antenna matching networks.
In the future, we plan to transform the model-based

algorithm into a decision support system (DSS) for study-
ing tenant isolation on large-scale cloud-hosted systems
designed with multitenant architecture. The DSS can
also be used to investigate and predict how compo-
nents and/or cloud-hosted services will react to workload
changes at runtime, based on the required degree of
isolation (e.g., shared component or dedicated compo-
nent). For example, we can design rule-based algorithms
to specify that a new set of components be selected for
deployment either once an average utilization of compo-
nents or the whole system exceeds a defined threshold
or once the arrival rate of requests exceeds a defined
threshold. This decision can help in long-term invest-
ments regarding resource consumption and the running
cost of components and cloud services.

Endnotes
1Apache Kafka is an open-source distributed stream-

processing platform for handling real-time data feeds. It
allows systems that generate data (called Producers) to
persist their data in real-time in an Apache Kafka Topic.

Any topic can then be read by any number of systems who
need that data in real-time (called Consumers)

2The problem instance is defined as: C(number of
groups, number of component per group, number of
resource types supporting each component). So for
example, C(20,20,4) means that the problem instance has
20 groups of components, 20 components per group and
supported by 4 resources-CPU, memory, disk space and
bandwidth.

3Available at https://aws.amazon.com/autoscaling/
4Available at https://docs.microsoft.com/en-us/azure/

traffic-manager/traffic-manager-overview

Additional files

Additional file 1: Sample file for a large problem instance-C(500,20,4)).
(TXT 178 kb)

Additional file 2: Sample file for service demand associated with
C(500,20,4). (TXT 810 kb)

Additional file 3: Sample file of an updated instance associated with
C(500,20,4). (TXT 340 kb)

Additional file 4: Sample workload file associated with C(500,20,4).
(TXT 859 kb)

Abbreviations
DSS: Decision support system; MMKP: Multichoice multidimensional knapsack
problem; QN: Queuing network; In addition, Table 1 shows the notations and
mapping of the multitenancy problem to QN Model and MMKP

Acknowledgements
This research was supported by the Tertiary Education Trust Fund (TETFUND),
Nigeria and Robert Gordon University, UK.

Funding
No formal funding was received for this research, but the research was
supported by the Tertiary Education Trust Fund (TETFUND), Nigeria and Robert
Gordon University, Aberdeen, UK.

Availability of data andmaterials
Not applicable.

Authors’ contributions
LCO is the main author of this research paper. AP supervised and reviewed the
optimization modelling and the associated experiments. JB contributed to the
literature review and general organization of the paper. All authors read and
approved the final manuscript.

Authors’ information
1. Dr. Laud Charles Ochei holds PhD from Robert Gordon University, Aberdeen,

United Kingdom. His research interests are in software engineering,
distributed systems, cloud computing, and the Internet of things. He has
published several research papers in International Conferences and
Journals.

2. Dr. Andrei Petrovski is a Reader in Computational Systems at Robert Gordon
University, Aberdeen, United Kingdom. His primary research interests lie in
the field of Computational Intelligence (CI) - particularly, in the application
of CI heuristics (such as Genetic Algorithms and Particle Swarm
Optimisation) to single- and multi-objective optimisation problems. Andrei
has an interest in computer-assisted measurements, virtual
instrumentation, and sensor networks.

https://aws.amazon.com/autoscaling/
https://docs.microsoft.com/en-us/azure/traffic-manager/traffic-manager-overview
https://docs.microsoft.com/en-us/azure/traffic-manager/traffic-manager-overview
https://doi.org/10.1186/s13677-018-0124-5
https://doi.org/10.1186/s13677-018-0124-5
https://doi.org/10.1186/s13677-018-0124-5
https://doi.org/10.1186/s13677-018-0124-5

Ochei et al. Journal of Cloud Computing: Advances, Systems and Applications (2019) 8:1 Page 37 of 38

3. Dr. Julian Bass is a Senior Lecturer at the University of Salford, UK. His
research interests are in software development for large-scale systems
focusing on multi-national teams and using modern lean and agile
methods. He also has interests in deployment architectures used in
cloud-hosted software services and leading KTP with Add Latent Ltd to
develop and deploy cloud-hosted asset management applications for their
major clients in the energy and utility sectors.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1School of Computing and Digital Media, Robert Gordon University, Aberdeen
AB10 7QB, UK. 2School of Computing, Science and Engineering, University of
Salford, Salford M5 4WT, UK.

Received: 25 January 2018 Accepted: 28 November 2018

References
1. Fehling C, Leymann F, Retter R, Schupeck W, Arbitter P (2014) Cloud

Computing Patterns. Springer, London
2. Roche K, Douglas J, Beginning google app engine for java (2009)

Beginning Java Google App Engine. Apress, New York City. https://doi.
org/10.1007/978-1-4302-2554-6

3. Bauer E, Adams R (2012) Reliability and availability of cloud computing.
Wiley, New Jersey

4. Martens A, Ardagna D, Koziolek H, Mirandola R, Reussner R (2010) A hybrid
approach for multi-attribute qos optimisation in component based
software systems. In: Research into Practice–Reality and Gaps. Springer,
Berlin. pp 84–101. https://doi.org/10.1007/978-3-642-13821-8_8

5. Legriel J, Le Guernic C, Cotton S, Maler O (2010) Approximating the
pareto front of multi-criteria optimization problems. In: Tools and
Algorithms for the Construction and Analysis of Systems. Springer, Berlin.
pp 69–83. https://doi.org/10.1007/978-3-642-12002-2_6

6. Aldhalaan A, Menascé DA (2015) Near-optimal allocation of vms from iaas
providers by saas providers. In: Cloud and Autonomic Computing
(ICCAC), 2015 International Conference on. IEEE, Boston. pp 228–231.
https://doi.org/10.1109/ICCAC.2015.16

7. Ochei L, Petrovski A, Bass J (2016) Optimizing the deployment of
cloud-hosted application components for guaranteeing multitenancy
isolation. In: IEEE Conference Publications. pp 77–83. 2016 International
Conference on Information Society (i-Society 2016)

8. Hon K, Millard C (2017) Eu data protection law and the cloud.
International Association of Privacy Professionals. [Online: accessed in
February, 2017 from https://iapp.org/resources/article/]

9. Google (2017) Google cloud platform and the eu data protection
directive. Google Inc. [Online: accessed in February, 2017 from https://
cloud.google.com/security/compliance/eu-data-protection/]

10. Garg SK, Versteeg S, Buyya R (2012) A framework for ranking of cloud
computing services. In: Future Generation Computer Systems

11. Kreps J (2016) Introducing kafka streams: Stream processing made simple.
Confluent, Inc, California, USA. Online: accessed in November, 2018 from
https://www.confluent.io/blog/introducing-kafka-streams-stream-
processing-made-simple/

12. Kafka (2016) Introduction: Apache kafka is a distributed streaming
platform. what exactly does that mean? Confluent, Inc., California, USA.
Online: accessed in November, 2018 from https://kafka.apache.org/
documentation/

13. Manfred Moser M, O’Brien T (2011) The hudson book. Oracle, Inc., USA.
Online: accessed in November, 2018 from http://www.eclipse.org/
hudson/the-hudson-book/book-hudson.pdf

14. Hudson (2018) Files found trigger. [Online: accessed in January, 2018
from https://plugins.jenkins.io/files-found-trigger]

15. Armbrust M, Fox A, Griffith R, Joseph AD, Katz R, Konwinski A, Lee G,
Patterson D, Rabkin A, Stoica I, Zaharia M (2010) A view of cloud
computing. Commun ACM 53(4):50–58. [Online]. Available http://doi.
acm.org/10.1145/1721654.1721672

16. Ochei LC, Bass J, Petrovski (a) A (2015) Evaluating degrees of multitenancy
isolation: A case study of cloud-hosted gsd tools. In: 2015 International
Conference on Cloud and Autonomic Computing (ICCAC). IEEE, Boston.
pp 101–112. https://doi.org/10.1109/ICCAC.2015.17

17. Ochei LC, Bass J, Petrovski (b) A (2016) Implementing the required degree
of multitenancy isolation: A case study of cloud-hosted bug tracking
system. In: 13th IEEE International Conference on Services Computing
(SCC 2016). IEEE, San Francisco. https://doi.org/10.1109/SCC.2016.56

18. Mehta A (2017) Successful strategies for a multi-tenant architecture.
Developer.com(http://www.devx.com/) http://www.devx.com/architect/
Article/47662. Accessed Jan 2017

19. Strauch S, Andrikopoulos V, Leymann F, Muhler D (2012) Esb mt: Enabling
multi-tenancy in enterprise service buses. In: Cloud Computing
Technology and Science (CloudCom), 2012 IEEE 4th International
Conference on. IEEE, Taipei. pp 456–463. https://doi.org/10.1109/
CloudCom.2012.6427524

20. Khan MF, Mirza AU, et al. (2012) An approach towards customized
multi-tenancy. Int J Mod Educ Comput Sci 4(9):39

21. Momm C, Krebs R (2011) A qualitative discussion of different approaches
for implementing multi-tenant saas offerings. Softw Eng (Workshops)
11:139–150

22. Aiken L (2017) Why multi-tenancy is key to successful and sustainable
software-as-a-service (saas). Cloudbook Journal. [Online: accessed in
February 2017 from http://www.cloudbook.net/resources/stories/]

23. Chong F, Carraro G (2006) Architecture strategies for catching the long
tail. technical report, microsoft. [Online: accessed in February 2015 from
https://msdn.microsoft.com/en-us/library/aa479069.aspx]

24. Wang ZH, Guo CJ, Gao B, Sun W, Zhang Z, An WH (2008) A study and
performance evaluation of the multi-tenant data tier design patterns for
service oriented computing. In: E-Business Engineering, 2008. ICEBE’08.
IEEE International Conference on. IEEE, Xi’an. pp 94–101. https://doi.org/
10.1109/ICEBE.2008.60

25. Vengurlekar N (2012) Isolation in private database clouds. Oracle
Corporation. Online: Accessed in March, 2015 from http://www.oracle.
com/technetwork/database/database-cloud/

26. Mietzner R, Unger T, Titze R, Leymann F (2009) Combining different
multi-tenancy patterns in service-oriented applications. In: Enterprise
Distributed Object Computing Conference, 2009. EDOC’09. IEEE
International. IEEE. pp 131–140. https://doi.org/10.1109/EDOC.2009.13

27. Guo CJ, Sun W, Huang Y, Wang ZH, Gao B (2007) A framework for native
multi-tenancy application development and management. In:
E-Commerce Technology and the 4th IEEE International Conference on
Enterprise Computing, E-Commerce, and E-Services, 2007. CEC/EEE 2007.
The 9th IEEE International Conference on E-Commerce Technology. IEEE,
Tokyo. pp 551–558. https://doi.org/10.1109/CEC-EEE.2007.4

28. Walraven S, Monheim T, Truyen E, Joosen W (2012) Towards performance
isolation in multi-tenant saas applications. In: Proceedings of the 7th
Workshop on Middleware for Next Generation Internet Computing. ACM,
Limassol. p 6. https://doi.org/10.1109/UCC.2015.27

29. Krebs R, Wert A, Kounev S (2013) Multi-tenancy performance benchmark
for web application platforms. In: Web Engineering. Springer, Berlin.
pp 424–438

30. Moens H, Truyen E, Walraven S, Joosen W, Dhoedt B, De Turck F (2014)
Cost-effective feature placement of customizable multi-tenant
applications in the cloud. J Netw Syst Manag 22(4):517–558

31. Yusoh ZIM, Tang M (2012) Composite saas placement and resource
optimization in cloud computing using evolutionary algorithms. In: Cloud
Computing (CLOUD), 2012 IEEE 5th International Conference on. IEEE,
Honolulu. pp 590–597. https://doi.org/10.1109/CLOUD.2012.61

32. Shaikh F, Patil D (2014) Multi-tenant e-commerce based on saas model to
minimize it cost. In: Advances in Engineering and Technology Research
(ICAETR), 2014 International Conference on. IEEE, Unnao. pp 1–4. https://
doi.org/10.1109/ICAETR.2014.7012861

33. Westermann D, Momm C (2010) Using software performance curves for
dependable and cost-efficient service hosting. In: Proceedings of the 2nd
International Workshop on the Quality of Service-Oriented Software
Systems. ACM, Oslo. p 3. https://doi.org/10.1145/1858263.1858267

34. Candeia D, Santos RA, Lopes R (2015) Business-driven long-term capacity
planning for saas applications. IEEE Trans Cloud Comput 3(3):290–303

35. Abbott ML, Fisher MT (2009) The art of scalability: Scalable web
architecture, processes, and organizations for the modern enterprise.
Pearson Education, New Jersey. https://doi.org/10.1145/1858263.1858267

https://doi.org/10.1007/978-1-4302-2554-6
https://doi.org/10.1007/978-1-4302-2554-6
https://doi.org/10.1007/978-3-642-13821-8_8
https://doi.org/10.1007/978-3-642-12002-2_6
https://doi.org/10.1109/ICCAC.2015.16
https://iapp.org/resources/article/
https://cloud.google.com/security/compliance/eu-data-protection/
https://cloud.google.com/security/compliance/eu-data-protection/
https://www.confluent.io/blog/introducing-kafka-streams-stream-processing-ma de-simple/
https://www.confluent.io/blog/introducing-kafka-streams-stream-processing-ma de-simple/
https://kafka.apache.org/documentation/
https://kafka.apache.org/documentation/
http://www.eclipse.org/hudson/the-hudson-book/book-hudson.pdf
http://www.eclipse.org/hudson/the-hudson-book/book-hudson.pdf
https://plugins.jenkins.io/files-found-trigger
http://doi.acm.org/10.1145/1721654.1721672
http://doi.acm.org/10.1145/1721654.1721672
https://doi.org/10.1109/ICCAC.2015.17
https://doi.org/10.1109/SCC.2016.56
http://www.devx.com/
http://www.devx.com/architect/Article/47662
http://www.devx.com/architect/Article/47662
https://doi.org/10.1109/CloudCom.2012.6427524
https://doi.org/10.1109/CloudCom.2012.6427524
http://www.cloudbook.net/resources/stories/
https://msdn.microsoft.com/en-us/library/aa479069.aspx
https://doi.org/10.1109/ICEBE.2008.60
https://doi.org/10.1109/ICEBE.2008.60
http://www.oracle.com/technetwork/database/database-cloud/
http://www.oracle.com/technetwork/database/database-cloud/
https://doi.org/10.1109/EDOC.2009.13
https://doi.org/10.1109/CEC-EEE.2007.4
https://doi.org/10.1109/UCC.2015.27
https://doi.org/10.1109/CLOUD.2012.61
https://doi.org/10.1109/ICAETR.2014.7012861
https://doi.org/10.1109/ICAETR.2014.7012861
https://doi.org/10.1145/1858263.1858267
https://doi.org/10.1145/1858263.1858267

Ochei et al. Journal of Cloud Computing: Advances, Systems and Applications (2019) 8:1 Page 38 of 38

36. Leymann F, Fehling C, Mietzner R, Nowak A, Dustdar S (2011) Moving
applications to the cloud: an approach based on application model
enrichment. Int J Coop Inf Syst 20(03):307–356

37. Vanhove T, Vandensteen J, Van Seghbroeck G, Wauters T, De Turck F
(2014) Kameleo: Design of a new platform-as-a-service for flexible data
management. In: Network Operations and Management Symposium
(NOMS), 2014 IEEE. IEEE, Krakow. pp 1–4. https://doi.org/10.1109/NOMS.
2014.6838331

38. Krebs R (2015) Performance isolation in multi-tenant applications. Ph.D.
dissertation. PhD thesis (Karlsruhe Institute of Technology). https://se.
informatik.uni-wuerzburg.de/fileadmin/10030200/user_upload/
dissKIT_BW.PDF

39. Krebs R, Loesch M (2014) Comparison of request admission based
performance isolation approaches in multi-tenant saas applications. ACM,
Montreal. https://doi.org/10.1145/2405178.2405184

40. Aldhalaan A, Menascé DA (2015) Near-optimal allocation of vms form iaas
providers by saas providers. George Mason University, Fairfax

41. Menasce D, Almeida V, Lawrence D (2004) Performance by design:
capacity planning by example. Prentice Hall, Upper Saddle River

42. Bass L, Clements P, Kazman R (2013) Software Architecture in Practice,
3/E. Pearson Education, United States

43. Ochei LC, Petrovski A, Bass J (2015) Evaluating degrees of isolation
between tenants enabled by multitenancy patterns for cloud-hosted
version control systems (vcs). Int J Intell Comput Res 6(3):601–612

44. Cruzes DS, Dybå T (2011) Research synthesis in software engineering: A
tertiary study. Inf Softw Technol 53(5):440–455

45. Talbi E-G (2009) Metaheuristics: from design to implementation. Wiley,
New Jersey

46. Szyperski C (2007) Component Software: Beyond Object-Oriented
Programming, second edition ed. Pearson Education Limited, London
WC2E 9AW

47. Chipperfield AJ, Whidborne JF, Fleming PJ (1999) Evolutionary algorithms
and simulated annealing for mcdm. In: Multicriteria Decision Making.
Springer, New York. pp 501–532

48. Karasakal EK, Köksalan M (2000) A simulated annealing approach to
bicriteria scheduling problems on a single machine. J Heuristics
6(3):311–327

49. Martello S, Toth P (1987) Algorithms for knapsack problems.
North-Holland Math Stud 132:213–257

50. Kellerer H, Pferschy U, Pisinger D (2004) Introduction to NP-Completeness
of knapsack problems. Springer, Berlin. https://doi.org/10.1007/978-3-
540-24777-7_16

51. Martello S, Toth P (1990) Knapsack problems: algorithms and computer
implementations. Wiley, New York. https://doi.org/10.1109/NOMS.2014.
6838331

52. Yu T, Zhang Y, Lin K-J (2007) Efficient algorithms for web services
selection with end-to-end qos constraints. ACM Trans Web (TWEB) 1(1):6

53. Akbar MM, Rahman MS, Kaykobad M, Manning EG, Shoja GC (2006)
Solving the multidimensional multiple-choice knapsack problem by
constructing convex hulls. Comput Oper Res 33(5):1259–1273

54. Vondra T, Šedivỳ J (2017) Cloud autoscaling simulation based on
queueing network model. Simul Model Pract Theory 70:83–100

55. Dubois DJ, Casale G (2016) Optispot: minimizing application deployment
cost using spot cloud resources. Clust Comput 19(2):893–909

56. Rothlauf F (2011) Design of modern heuristics: principles and application.
Springer, Berlin. https://doi.org/10.1007/978-3-540-72962-4

57. Parra-Hernandez R, Dimopoulos NJ (2005) A new heuristic for solving the
multichoice multidimensional knapsack problem. IEEE Trans Syst Man
Cybern Syst Hum 35(5):708–717

58. Cherfi N, Hifi M (2010) A column generation method for the
multiple-choice multi-dimensional knapsack problem. Comput Optim
Appl 46(1):51–73

59. Beasley JE (1990) Or-library: distributing test problems by electronic mail.
J Oper Res Soc 41(11):1069–1072

60. Eckart Z, Marco L Test problems and test data for multiobjective
optimizers. Computer Engineering (TIK) ETH Zurich. [Online]. Available:
http://www.tik.ee.ethz.ch/sop/.../testProblemSuite/. Retrieved in
December, 2018

61. Zitzler E, Thiele L (1999) Multiobjective evolutionary algorithms: a
comparative case study and the strength pareto approach. IEEE Trans
Evol Comput 3(4):257–271

62. Amazon (2016) Amazon ec2 instance types. Amazon Web Services, Inc.
[Online: accessed in September 12, 2016 from https://aws.amazon.com/
ec2/instance-types/]

63. Han B, Leblet J, Simon G (2010) Hard multidimensional multiple choice
knapsack problems, an empirical study. Comput Oper Res 37(1):172–181

64. Hauck M, Huber M, Klems M, Kounev S, Müller-Quade J, Pretschner A,
Reussner R, Tai S (2010) Challenges and opportunities of cloud computing
– trade-off decisions in cloud computing architecture,. Karlsruhe Institute
of Technology(KIT), Germany. Technical Report. Vol. 2010-19, Tech. Rep

65. Schad J, Dittrich J, Quiané-Ruiz J (2010) Runtime measurements in the
cloud: observing, analyzing, and reducing variance. Proc VLDB
Endowment 3(1–2):460–471

66. Banati H, Bajaj M (2013) Performance analysis of firefly algorithm for data
clustering. Int J Swarm Intell 1(1):19–35

67. Hoos HH, Stützle T (2004) Stochastic local search: Foundations &
applications. Elsevier, New York

68. Barrero DF, Muñoz P, Camacho D, R-Moreno MD (2015) On the statistical
distribution of the expected run-time in population-based search
algorithms. Soft Comput 19(10):2717–2734

69. Hoos H, Stutzle T (1998) Characterizing the run-time behavior of
stochastic local search. In: AAAI-99 - Proceedings of the Sixteenth National
Conference on Artificial Intelligence and The Eleventh Annual Conference
on Innovative Applications of Artificial Intelligence. AAAI Press

70. Laerd.com (2017) Two-way anova in spss statistics. In: Lund Research Ltd.
[Online: accessed in February, 2017 from https://statistics.laerd.com/spss-
tutorials/]

71. Cohen P (1995) Empirical methods for artificial intelligencemit press. MIT
Press, Cambridge

72. Sliwko L, Getov V (2015) A meta-heuristic load balancer for cloud
computing systems. In: Computer Software and Applications Conference
(COMPSAC), 2015 IEEE 39th Annual, vol. 3. IEEE, Taichung. pp 121–126.
https://doi.org/10.1109/COMPSAC.2015.223

73. Doddavula SK, Agrawal I, Saxena V (2013) Cloud computing solution
patterns: Infrastructural solutions. In: Cloud Computing: Methods and
Practical Approaches. Springer, London. pp 197–219

74. Gan G-n, Huang T-l, Gao S (2010) Genetic simulated annealing algorithm
for task scheduling based on cloud computing environment. In:
Intelligent Computing and Integrated Systems (ICISS), 2010 International
Conference on. IEEE, Taichung. pp 60–63. https://doi.org/10.1109/ICISS.
2010.5655013

75. Chen A, Jiang T, Chen Z, Zhang Y (2012) A genetic and simulated
annealing combined algorithm for optimization of wideband antenna
matching networks. Int J Antennas Propag 2012:1–6. Article ID 251624,
https://doi.org/10.1155/2012/251624

https://doi.org/10.1109/NOMS.2014.6838331
https://doi.org/10.1109/NOMS.2014.6838331
https://se.informatik.uni-wuerzburg.de/fileadmin/10030200/user_upload/dissKIT_BW.PDF
https://se.informatik.uni-wuerzburg.de/fileadmin/10030200/user_upload/dissKIT_BW.PDF
https://se.informatik.uni-wuerzburg.de/fileadmin/10030200/user_upload/dissKIT_BW.PDF
https://doi.org/10.1145/2405178.2405184
https://doi.org/10.1007/978-3-540-24777-7_16
https://doi.org/10.1007/978-3-540-24777-7_16
https://doi.org/10.1109/NOMS.2014.6838331
https://doi.org/10.1109/NOMS.2014.6838331
https://doi.org/10.1007/978-3-540-72962-4
http://www.tik.ee.ethz.ch/sop/.../testProblemSuite/
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
https://statistics.laerd.com/spss-tutorials/
https://statistics.laerd.com/spss-tutorials/
https://doi.org/10.1109/COMPSAC.2015.223
https://doi.org/10.1109/ICISS.2010.5655013
https://doi.org/10.1109/ICISS.2010.5655013
https://doi.org/10.1155/2012/251624

	OCHEI 2019 COVERSHEET.pdf
	Pages from OCHEI 2019 Optimal depployment of components.pdf

