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A comprehensive working state monitoring method for power battery packs 
considering state of balance and aging correction
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aSchool of Information Engineering & Robot Technology Used for Special Environment Key Laboratory of Sichuan Province, Southwest University of 
Science and Technology, Mianyang 621010, China;
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Abstract: A comprehensive working state monitoring method is proposed to protect the power lithium-ion battery 
packs, implying accurate estimation effect but using minimal time demand of self-learning treatment. A novel state 
of charge estimation model is conducted by using the improved unscented Kalman filtering method, in which the 
state of balance and aging process correction is considered, guaranteeing the powered battery supply reliability 
effectively. In order to realize the equilibrium state evaluation among the internal battery cells, the numerical 
description and evaluation is putting forward, in which the improved variation coefficient is introduced into the 
iterative calculation process. The intermittent measurement and real-time calibration calculation process is applied to 
characterize the capacity change of the battery pack towards the cycling maintenance number, according to which the 
aging process impact correction can be investigated. This approach is different to the traditional methods by 
considering the multi-input parameters with real-time correction, in which every calculation step is investigated to 
realize the working state estimation by using the synthesis algorithm. The state of charge estimation error is 1.83%, 
providing the technical support for the reliable power supply application of the lithium-ion battery packs.
Keywords: power battery pack; working state monitoring; unscented Kalman filter; state of balance; aging correction
Corresponding author: Chun-Mei Yu. Tel/fax: +86-13778082737. E-mail address: yuchunmei@swust.edu.cn.

1. Introduction
The lithium-ion battery has recently become the most promising 

power battery because of the manufacturing technology 
improvement, which plays an important role in its power supply 
application. The lithium-ion battery pack has been introduced into a 
large number of applications, such as: hybrid buses, pure EVs, 
underwater weapons, underwater vehicles, as well as the aerospace 
[1, 2]. However, the safety of the lithium-ion battery pack is still an 
issue attracting great attention, which affects the utilization 
efficiency of its capacity and life directly, leading to accidents in 
several cases [3]. For the entire lifespan, the key parameter named 
as State of Charge (SOC) has a great influence on its power supply 
effect [4]. Therefore, the real-time working state monitoring 
assesses the overall working performance. 

The core factor SOC in the Battery Management System (BMS) 
is quite important to the battery-based energy storage and supply 
systems in various working conditions [5]. With respect to the cell-
to-cell battery difference, the technology design of the associated 
BMS equipment becomes more and more challenging [6], which 
should be investigated under the limited computational resource 
requirement conditions [7]. The SOC value is necessary to be 
estimated accurately by the BMS for the power application battery 
packs [8]. However, the technical bottleneck of the accurate SOC 
estimation is rather difficult to be solved [9], due to the immature 
management of the associated BMS equipment. It is used for the 
energy supply, which has stability and reliability requirements [10], 
aiming to avoid over-discharge and over-charge risks by conducting 
the battery situation treatments. 

The capacity and SOC of the lithium-ion battery packs are 
changing along with the electro-chemical degradation process [10]. 
These changes are difficult to be measured online directly [11] in 
the aircraft power supply system, but it should be known for a 
certain accurate degree to monitor the energy state in real time [12]. 
Without the working state estimation and the energy adjustment that 

should be carried out by the associated BMS equipment, the aircraft 
will be confronted with the emergency energy loss and safety out of 
control issues [13]. The high energy density is the important basis of 
the performance indicator choice [14]. The working state estimation 
can be realized by using different modeling algorithms [15, 16] for 
the lithium-ion batteries, in which the Coulombic efficiency should 
be also considered [16]. The LiCoO2 is used as the lithium-ion 
battery pack of the aerial emergency power supply, which consists 
of multiple series-connected battery cells, heating components, 
sampling resistors, temperature sensors, and sockets. The topology 
structure of the aircraft power system is shown in Fig. 1.
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Fig. 1.The structure of the aircraft power system
Due to the necessity and urgency requirements of finding reliable 

SOC monitoring methods, a novel approach based on the adaptive 
Kalman Filter (KF) algorithm was proposed [17] by using the 
strong tracking cubature. The discharging and charging pattern of 
the lithium-ion battery was also studied by using the improved 
Extended Kalman Filter (EKF) algorithm [18]. The multi-
dimensional construction was also reported by the equivalent circuit 
modelling treatment [19] of the large-scale batteries implemented 
by the bilinear interpolation method. The mathematical treatment of 
the SOC estimation method was stated [20] for the lithium-ion 
batteries by the detailed interaction deduction of the standard KF 
and the Unscented KF together with the support vector machine 
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algorithm. A naive Bayes model is constructed [21] for the robust 
life prediction of the lithium-ion batteries. However, the working 
state monitoring still lacks of systematic estimation methods [22]. 
The remaining capacity was also investigated [23] and the SOC 
estimation model was constructed [24]. The computational model 
was reported [25] with SOC dependencies, in which the impedance 
was also a core parameter to be considered [26]. The SOC 
estimation methods were stated [27] as well as the Ampere-hour 
(Ah) counting method [28]. A data-driven modeling method is 
proposed [29] for the EV applications and the real-time SOC 
estimation is also realized [30]. The particle model was implied [31] 
together with the predictor-corrector strategy [32]. 

The SOC estimation is challenging and requires accurate online 
estimation performance [33], which is embedded in the BMS of the 
power lithium-ion battery packs [34]. The SOC estimation can be 
realized by considering the consistency evaluation, which is named 
as State of Balance (SOB). The deterministic battery Equivalent 
Circuit Model (ECM) was used for the high safety requirement of 
the power lithium-ion battery pack, aiming to avoid its malfunction. 
Meanwhile, it is quite necessary to track the SOC estimation and the 
output voltage errors. As a result, the adaptive estimation algorithm 
named as Unscented Kalman Filter (UKF) was also used in the 
correction treatment together with the self-learning adaptation 
analysis, proposing a reliable energy state monitoring and 
management method for the power lithium-ion battery packs. The 
aging information is quite important to realize the accurate SOC 
estimation, which should be used in the effective energy 
management process, even if no direct aging sources can be gained 
from the iterative calculation process. As can be known from the 
actual working conditions, the aging information can be 
characterized by two parts of the long-term and short-term effects. 
The long-term influence comes from the long accumulation of 
cycling charge-discharge application, which can be characterized by 
using the OCV-SOC relationship curve. Meanwhile, the short-term 
influence can be described by the real-time cycling number record. 
As a result, the main factors can be identified and established, which 
are realized by using the Optimized Operation Strategy (OOS). 

A novel comprehensive method is proposed to realize the SOC 
estimation of the lithium-ion battery pack, in which the correction 
treatment of SOB and aging process are investigated. Then, the 
estimation model is conducted by using the improved UKF and the 
improved variation coefficient is introduced to evaluate the cell-to-
cell consistency in the battery pack. The mathematical method of 
the instruction and principle is analyzed, which is followed by the 
description of the BMS and Battery Maintenance and Testing 
System (BMTS) that are designed and implemented to realize the 
working state monitoring purpose. 
2. Mathematical analysis

The iterative SOC calculation process is provided for the power 
lithium-ion battery packs, in which the Lithium-ion cobalt oxide 
batteries are used because of the good security reliability of the 
aircraft power supply domains. The proposed method is realized by 
the improved UKF algorithm combined with the discharge and 
charge experimental treatment process. 

2.1.Working principle analysis
The internal working state monitoring is quite important to be 

embedded in the associated BMS equipment, including the SOC 
estimation model that is built for the application feature description 
[35]. The power supply ability evaluation named as State of Health 
(SOH) is mainly composed by the State of Life (SOL) and fault 
limits, in which the core estimation factors are considered. The fault 
diagnosis consists of sensors, actors, network, and other relative 
parameters [36]. The estimation process of the main factor SOC can 
be investigated by considering the zero load voltage named as Open 
Circuit Voltage (OCV) [37]. The Ah segmentation method is also 
used in the SOC estimation process of the power lithium-ion 
batteries [38]. The KF-based methods can realize the online 
parameter identification and correction in the iterate SOC 
calculation process, which is applied to the working state 
monitoring of the power lithium-ion battery packs that are settled in 
various working conditions [39]. The parameter named as State of 
Function (SOF) is also utilized in the associated BMS equipment, 
according to which the battery packs are maintained [40].

The single battery cell is supposed to comprise the positive 
electrode, separator and negative electrode. The organic solvent 
electrolyte is a carbonate [41] and the overall dimension of the 
battery case is steel and square. Its overall reaction together with the 
cathode and negative electrode reactions are shown in Equation 1 
respectively.

(1)

c
2 1 2d

c
6d

c
2 1 2 6d
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x x

LiCoO Li CoO xLi xe

xLi xe C Li C

LiCoO C Li CoO Li C








   
   


  

：

Wherein, the physical meaning of symbols are shown as follows: 
P (Positive), N (Negative), T (Total reaction), c(charge), and 
d(discharge). The lithium-ion battery pack using the LiCoO2 has 
attracted a lot of interest due to its obvious advantages, which is also 
used as the main emergency energy source of the aircraft. The 
intelligent SOC calculation algorithm makes its value to be 
estimated accurately, which can be used for the working state 
monitoring. 
2.2.Equivalent circuit model construction

The battery ECM modeling technique can be translated into the 
state-space differential equations in the working state estimation 
process [42], the parameter identification of which cannot be 
realized in real time and directly in the associated BMS equipment 
[43]. However, the dynamic performance parameters can be 
captured in its power supply systems with electrical circuit elements 
[44]. The proposed ECM modeling method can be investigated by 
using the electro-chemical parameters. 

The model-based SOC estimation method has been previously 
developed [45]. There are some cell-to-cell variations on voltage, 
capacity and temperature, which will be serious along with the 
battery aging process [46]. The energy storage and power delivering 
ability should be known for the reliable energy supply and safety 
protection against the lithium-ion battery packs. By the ECM 
modeling analysis, the state-space equation can be obtained and it is 
shown in Equation 2.

  (2) L OC b L O L p pU U C I dt R I R I   
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The power lithium-ion battery pack can be applied to the high 
power energy supply application, in which the SOC-based energy 
control adjustment should be conducted by the associated BMS 
equipment. As a result, the parameter relationship function of the 
observation and state variables at different sampling time points can 
be obtained as shown in Equation 3. 

(3)

a

L,a L,a P,a0
L,aOC b

L,b L,b P,b L,b0b
c
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                              
 






Wherein, UOC is used to characterize the OCV value and Cb 
represents the line equivalent capacitance. IL is the current in the 
circuit loop. The parameters of a, b, c and d are the sampling time 
points respectively, which are used to characterize the different 
time-point working states. The curve fitting results and experimental 
data points can be obtained for the OCV values towards the varying 
SOC level by the Hybrid Pulse Power Characteristic (HPPC) test. 
Furthermore, the battery parameters are obtained by using the 
accurate ECM battery model, according to which a recursive 
solution of the SOC estimation can be provided by using the KF-
based algorithms together with the nonlinear treatment of the state 
parameters. Meanwhile, the SOC estimation parameter vector 
changes relatively fast along with the time variation, in which the 
ECM construction and iterate calculation can be realized in the 
dynamic SOC estimation category. 
2.3.Comprehensive estimation treatment

The SOC is an important aspect in the associated BMS equipment 
that should be estimated real-timely, which is usually used to 
describe the core battery parameter and the aging performance [47]. 
In order to realize the real-time SOC estimation accurately, an 
online calculation and correction method is proposed and realized. 
The sampling data point selection is based on the Unscented 
Transform (UT) processing treatment [48], the state-space 
description of which is combined with the prior mean and the 
variance values. The 2n+1 Sigma dataset and its weight coefficients 
are obtained through the following UT treatment. The statistical 
SOC characteristics can be expressed by using the Equation 4.

(4)

 

    
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
   


     






Wherein, i is the serial number of the sample data sequence and P 
is its covariance matrix. The variance P is the square root product of 
the arithmetic square root that is shown in Equation 5.

 (5)   T
P P P

The iterative UT calculation process is achieved by using the 
following steps: First of all, the data points of the power lithium-ion 
battery pack can be obtained according to the original SOC 
distribution screening of the state value. Then, these selected 
sampling data points should be substituted for the state and 
observing equations. Furthermore, the data points of the nonlinear 
equations are analyzed to obtain the expected SOC values. The 

SOC estimation accuracy reaches the second order by this 
treatment, which is higher than the accuracy of the EKF-based 
estimation method that can be acquired by using the Taylor series 
expansion. 

The corresponding weights of these sampling data points are 
calculated, in which the weighting coefficient and the sample data 
sequence can be obtained by the weighted value calculation process 
that is shown in Equation 6.

 (6)
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

,

Wherein, the subscript m represents the mean value of the Sigma 
data point set of the SOC. The subscript c can be used to describe 
the covariance, which characterizes the variance in the Sigma data 
point set for the SOC. The superscript i can be used to represent the 
serial number of sampling data points. λ is the overall scaling factor, 
which is used to describe the scaling characteristics and reduce the 
SOC estimation error. The choice of α determines the state 
distribution of the SOC value sequence. Furthermore, the parameter 
value of κ can be obtained by using the premise that (n+λ)*P is a 
positive semi-definite matrix. By the selection of the non-negative 
weight coefficient β, the statistical high-order term error of the state-
space equation is incorporated to ensure that the high-order term 
influence is covered in the UT treatment.

The data points numbered as 2n+1 should be selected in the UT 
process, in which fewer data points in the UT process will be 
advantageous to the integrated BMS applications. Incorporating the 
conversion to the SOC estimation process, only 2n+1=3 data points 
are required, in which n is set to be 1. The initialization weight 
coefficient W0 is previously assigned to the n-dimensional nonlinear 
treatment process. The selection result of which only affects the 
fourth-order and higher order Sigma data point set. The remaining 
weight coefficients can be selected from W1 to Wn. The first three-
element vector of SOC from 0 to 2 can be obtained according to the 
weight coefficient W1, and the required n+2 data point set sequences 
are generated with n-dimensional features, so that the vector is 
calculated recursively. The UT treatment can be implemented, 
which is used in the parameter preprocessing calculation steps. The 
iterative calculation process of the real-time SOC estimation is 
shown in Fig. 2.
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Fig. 2.The iterative SOC estimation process
The iterate calculation process includes the random state variable 

SOC fused with Gaussian white noise w(k). Meanwhile, an 
observation random variable UL(k) is fused with the Gaussian white 
noise v(k). f(*) is the nonlinear state equation in the SOC estimation 
process and g(*) is the nonlinear observation equation that describes 
the characteristics of the output Closed-Circuit Voltage (CCV). The 
process noise variance matrix w(k) and the observed noise matrix 
v(k) can be described by using Q and R. The SOC estimation 
calculation treatment of different time point k is realized by using 
the following steps.

S1: The Sigma data sequence can be constructed by using a series 
of sampling points, and the corresponding weight coefficients can 
be obtained by conducting the UT treatment that is shown in 
Equation 7.

(7)   
 

     
     

-1

-1 -1 -1

-1 -1

i

SOC k

SOC k SOC k n P k

SOC k n P k





 
 
   
 
   

S2: A detailed methodology is used to assess the SOC value, in 
which the electrical topology and balancing adjustment control has 
been conducted in our previous research. The one-order prediction 
of the sinusoidal 2n+1 data point sequence can be calculated as 
shown in Equation 8.

(8)       | -1 , -1 , 1, 2, , 2 1i iSOC k k f k SOC k i n     

S3: The one-step prediction of the state-space SOC distribution 
and its variance matrix can be calculated. The weighted perform 
summation of the Sigma data pointed sequence and the SOC 
estimation can be implemented in combination with the various 
calculation expressions of the UT processing treatment. The 
algorithm uses the last time-point corrected SOC values by using 
the mathematical description of the state-space function to replace 
the real-time calculated SOC value. According to this calculation 
treatment, only one step calculation is needed to obtain the predicted 
SOC value. The prediction process is implemented by the settled 
three data points, and the average value can be calculated by 
combining the weighting coefficients that are shown in Equation 9.

(9)       
2

0
| -1 | -1

n
i i

i
SOC k k SOC k k



 
Then, the predicted SOC variance value can be obtained as shown 

in Equation 10.
 (10)               
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0
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n Ti i i

i
P k k SOC k k SOC k k SOC k k SOC k k Q



         

S4: A new sequence of Sigma data points can be obtained by 
applying the step-less UT treatment process once again to the one-
step prediction value that is shown in Equation 11.

(11)   
 

     
     

| 1

| 1 = | 1 + | 1

| 1 - | 1

i

SOC k k

SOC k k SOC k k n P k k

SOC k k n P k k





 
 
    
 
    

S5: The iterate calculation of the CCV value is presented as 
follows. Firstly, the timely updated calculation in the prediction step 
is conducted with the initial estimation value of the state parameter 
SOC and its error covariance. The Sigma data point sequence can 
be obtained in the previous step, which is substituted for the 
observation equation, obtaining the predicted observed variable 
matrix that is shown in Equation 12.

 (12)       | 1 | 1 , 1, 2, , 2 1i i
LU k k h SOC k k i n       

The inaccurate online SOC estimation is the main drawback in the 
commercialization process of the lithium-ion battery packs. The 
characteristics of which limit the endurance mileage of the power 
supply application for different working conditions. Moreover, the 
associated BMS equipment including the accurate SOC estimation 
requires high calculation resource requirement to prevent 
manufacturers from applying battery packs. 

S6: The predicted CCV value of the output circuit can be 
calculated, which can be used as the autocorrelation and cross-
correlation matrices. The calculation of these values can be realized 
by the weighted summation of the predicted values of the Sigma 
data point sequence. 

(1) The forecasted mean value is shown in Equation 13.

(13)       
2

0
| -1 | -1

n
i i

L L
i

U k k U k k


 
(2) The measurement correction is updated at the same time, in 

which the autocorrelation matrix is realized by Equation 14.
(14)   

             
2

0
| -1 | -1 | -1 | -1

L L

n Ti i i
L LL LU k U k

i
P U k k U k k U k k U k k R



         
(3) The cross correlation matrix is realized by using Equation 15.

(15)   
             

2

0
| -1 | -1 | -1 | -1

L

n Ti i i
L LL LSOC k U k

i
P U k k U k k U k k U k k



        
S7: The Kalman gain matrix can be obtained by the iterate 

calculation that is shown in Equation 16.
(16)         

1
L L LSOC k U k U k U kK k P P

S8: The state and error-covariance update processing can be 
implemented in the following two steps along with the non-linear 
characteristics.

(1) The state-updating process can be conducted by the calculation 
treatment that is shown in Equation 17.

(17)         | -1 | -1L LSOC k SOC k k K k U k U k k    
(2) The error update treatment is calculated by Equation 18.

(18)           | -1
L L

T
U k U kP k P k k K k P K k 
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The iterate calculation framework is constructed in order to realize 
the iterative SOC estimation process. In the one-step SOC 
prediction calculation process, the non-linear conversion problem of 
the mean and variance in the SOC estimation can be solved by 
using the reduced three-point UT treatment. The sampling data 
sequence is set for the approximate posterior in the SOC estimation 
process, which is conducted without performing the Jacobian matrix. 
There is no a high-order term ignoring the problem with the 
calculation process, which makes the statistical features having a 
high accuracy advantage, reducing the nonlinear errors effectively. 
The weighted Sigma data points are implied by streamlining these 
three particles, and the mean value of the detected data samples can 
be calculated and taken as the predicted value accordingly. In this 
way, the SOC estimation model can be built by the UT processing 
and the improved UKF algorithm. The detailed conducting process 
is shown in Fig. 3.
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Fig. 3.The detailed SOC computation process
The electrolyte and charge-transfer resistances are adopted as the 

inputs, according to which the SOC values are predicted to compute 
the corresponding battery capacity. As stated above, the 
comprehensive calculation should be suitable for the high energy 
and power specification of the lithium-ion battery packs. Therefore, 
a large number of input parameters are related to the working 
environments, which should be considered in the adaptive SOC 
estimation model design. The comprehensive SOC estimation is 
cast in the iterative calculation process, in which the structural 
analysis model is built to suit the multi-input condition 
characteristics. During the different step calculation of the 
temperature, voltage and current, the SOC estimation model is built 
for the comprehensive evaluation of the combined multiple input-
parameters with conjunctive relations.
2.4.State of balance evaluation

The diaphragm microspore changes and other internal parameters 
in the lithium-ion battery packs cannot be measured directly. The 
Ohm resistance, polarization resistance-capacitance and other 
parameters also need to be measured indirectly by conducting the 
off-line experiments. The online measurements are only suitable 
and available externally for the parameters of voltage, current and 
temperature. As a result, the online State of Balance (SOB)  
evaluation can only be realized by using these parameters. In order 
to realize the equilibrium state evaluation among the internal 
connected battery cells, the numerical description and evaluation 
thought is investigated by the SOB calibration treatment. The SOC 
correction process can be improved by the model parameters and 
weighted factors, which is the most direct and effective way to 
evaluate the overall equilibrium state by detecting the voltage in 
real-time. The voltage detection has real-time, fast and easy 
implement advantages in the realization process of the online SOB 

evaluation.  The individual cell voltage Uc is used to evaluate the 
SOB value of the battery pack, which can be obtained by Equation 
19.

 (19) 
1

1 n

c c ci
i

E U U = U
n 

 
In the above expression, Uci is the i-th battery cell voltage in the 

lithium-ion battery pack, and n is the total battery cell number. The 
calculation result E(Uc) represents the expected voltage value of all 
inter-connected battery cells, which is the average of the voltage 
value. The standard deviation parameter δ is an important technical 
indicator of the differential working state evaluation. Therefore, the 
proposed SOB evaluation method adopts the measurement of the 
standard deviation and probability distribution. Then, the SOB 
together with its quantitative evaluation index is applied to the SOC 
estimation, meeting the post-quantification equilibrium evaluation 
target. As a result, the inconsistent equilibrium parameter SOB is 
investigated and its dispersion degree is defined by the probability 
statistics theory. The mathematical description of which is shown in 
Equation 20.

 (20)  2

1

1 n

ci c
i

U E U
n




 
δ2 is used to characterize the fluctuation of the voltage values (Uc1, 

Uc2, ..., Ucn) of all the internal connected battery cells, and then the 
cell voltage inconsistency can be described. Meanwhile, the 
variation coefficient θ can describe the influence extent of voltage 
fluctuation more accurately according to the differential degree 
evaluation target. The calculation process of which is shown in 
Equation 21.

 (21)
 

 
 

2

1

1 n
ci c

ic c

U E U
E U n E U




 
    

 


In the above expression, δ2 is used to denote the voltage difference 
variance in the internal battery cells of the lithium-ion battery pack. 
Furthermore, the above evaluation parameters can be obtained by 
using the average voltage value E(Uc) among the respective battery 
cells through the voltage value detection of each single cell, which 
can describe the average level of each single battery voltage. The 
voltage standard deviation δ describes the various discrete degree of 
the battery cell voltage.

When the standard deviation of each cell voltage decreases, the 
voltage deviation from each battery cell will be smaller accordingly 
together with the cell-to-cell consistency improvement. In the above 
calculation process, the variance describes the operating voltage 
distribution of all the battery cells. The variation coefficient is a 
representation of the single-cell voltage observation variability. 
Through the introduction to this parameter, the consistency state 
under different working conditions can be described. The 
calculation of the parameter θ needs to be carried out with the 
square root treatment. Finally, the squared parameter ε is used as the 
variation coefficient is employed to evaluate the equilibrium state, 
and its calculation process is shown in Equation 22.

 (22) 
 

2

2

1

1 n
ci c

i c

U E
SOB

U
n E U

 






  





 
In the above expression, ε describes the battery cell voltage 

inconsistency, in which θ is employed to define the voltage 
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variation coefficient of the battery cells. In order to realize the 
dynamic equilibrium state evaluation, the real-time sampling and 
calculation of the individual cell voltages should be investigated. 
The mathematical difference description of the single battery cells 
can be provided, which offers a quantifiable parameter index for the 
equilibrium state evaluation. During the calculation process, the 
difference is described to characterize the correlation between the 
interconnected individual battery cells in the entire lithium-ion 
battery pack. The equivalent electromotive force and the resistance 
parameter under the equilibrium state influence are obtained and 
expressed in the equivalent model. The voltage change under the 
influence of the equilibrium state ε can be investigated, according to 
which the calculation expression can be obtained by Equation 23.

(23)
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The main parameter which determines the problem should be 
solved in the SOB calculation process of the battery cells, according 
to which the interaction relationship of the group working 
characteristic is analyzed and taken as the main basis of the 
correction process. By conducting the integrated SOB evaluation of 
the battery cell voltages, the numerical and mathematical SOB 
description is carried out in the evaluation process. In the SOB 
assessment framework, the index system is established and the 
influencing factors are determined according to the model factor 
analysis, in which the SOB evaluation of the internal connected 
battery cells and their calculation influence should be considered.

The SOC level information about the battery cell is necessary for 
the working state monitoring, which is built in the associated BMS 
equipment with the solution design by using series and parallel 
topologies. As a result, this thought is practical for the high power 
packing energy supply applications, in which the comprehensive 
credibility should be established for these various input parameters.
2.5.Aging process impact correction

Through the mathematical SOC estimation study method, the KF-
based algorithm is introduced into the iterative calculation process. 
Furthermore, it is realized by combining the model parameter 
identification. By the SOC estimation method research in the aerial 
application environment and the experimental analysis of the 
charging and discharging process, the estimation process is realized 
and the structural model is constructed. The iterative calculation 
process is combined with the model parameter identification. 
Experiments are carried out by the standard 1C5A discharge 
capacity together with the Ah integral method, in which the actual 
released power state Qn_Deter can be obtained. The parameter can 
be characterized by using the end-time-point SOC value of the 
intermittent discharge period, which is described by using the 
symbol SOCn. The relative SOC change ratio can be obtained as 
shown in Equation 24.

 (24)
0

100%n
SOC

SOC
SOC

  

The balancing charge mode is used to make the lithium-ion 
battery pack to be fully charged, according to which the initial SOC 
replacement can be investigated. In this case, the amount of SOC 

change is represented by the normalization of Qn. The influence 
coefficient KQ  of the aging state on the electric quantity of Qn can be 
obtained and the calculation expression is shown in Equation 25.

 (25)
0 0

_100%= 100%
_

n n
Q SOC

SOC Q DeterK
SOC Q Rated

   

Because of the slow change aging process characteristics of the 
lithium-ion battery pack, the retrieval of the functional relationship 
can be achieved by the regular calibration. By the synchronous 
acquisition and correction of the relative values of the rated capacity 
and the cyclic discharge-charge number, the correcting calculation 
formula for the overlapping cyclic number can be obtained as 
shown in Equation 26.

 (26) nQ f N 

Wherein, N is the cycling discharge-charge number after the last 
capacity measurement and ΔQn is the subsequent cycling effect on 
the rated capacity Qn. The mathematical aging process description 
of the rated capacity can be obtained as shown in Equation 27.

 (27)_n Q n Rated nQ K Q Q   

The characteristics are analyzed in the experiments, in which the 
capacity aging law can be obtained by recording the discharging 
capacity of every cycling discharge and charge process. When the 
material structure is changed along with the cyclic discharge-charge 
number, the lithium-ion battery pack will also experience the 
mathematical characteristic behavior change. As a result, there is an 
obvious correlation between the capacity aging characteristic and 
the cycling number. Therefore, it is necessary to characterize the 
discharging and charging performance. The test data analysis and 
mining performance can be conducted accordingly, in which the 
capacity aging characteristics are obtained.

There is a significant linear attenuation relationship between the 
capacity and the cycling discharge-charge number. Therefore, the 
correction processing is performed by using the aging influence 
coefficient, in which the cycling number of charging and 
discharging treatment is considered. Furthermore, the charge and 
discharge performance of the SOC estimation process of the aircraft 
lithium-ion battery pack is characterized as shown in Equation 28.

 (28)  1 2_ *R C f N p N p  

The normalized capacity change can be expressed towards the 
number of the charging and discharging cycles. p1 is the coefficient 
of the first order and p2 is the constant term. By conducting the 
linear fitting treatment, the value of the first term is obtained as p1 = 
-0.0001029, and the value of the constant term is p2 = 1.0000. 
Therefore, the attenuation rate of the rated capacity per cycle is p1, 
and the real-time correction of the capacity is obtained as shown in 
Equation 29.

 (29) _ 1 _*n Q n Rated n Q n RatedQ K Q Q K p N Q      

The battery capacity can be treated as a constant variable for a 
certain time period and the variation law should be used in the real-
time SOC estimation process. Meanwhile, as the battery capacity 
aging law can be obtained by the cycling discharge-charge 
experiments, it is quite necessary to extract the accurate battery 
capacity aging characteristic description. As a result, the aging 
factor is used to express the application characteristics, providing 
great supports for the accurate SOC estimation. The proposed 
comprehensive SOC estimation method is realized in the associated 
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BMS equipment by using the iterative calculation and correction 
process, which can be conducted accordingly by the modeling 
establishment of the multiple-input parameter condition in the 
power supply system. 
3. Experimental analysis

The associated BMS equipment together with the SOC 
assessment model is designed and built, according to which the 
verification is conducted by the experimental discharge-charge 
process together with the Battery Maintenance and Test System 
(BMTS) platform. The maintenance cabinet system of the BMTS 
platform is designed by using the RS485 field-bus. The electronic 
loads are embedded into the BMTS platform to simulate the energy 
consumption process of the loading sub-systems in the aircraft. The 
data acquisition and record subsystems are used to record the core 
parameter values, which is also used for the energy management of 
the on-chip BMS equipment in the computing realization process. 
The high accuracy current sensors are used in the BMTS platform, 
the accuracy of which is 0.10%. The C# type program is done in the 
Industrial Personal Computer (IPC), which is designed and used as 
the human-computer interaction interface. Aiming to satisfy the 
comparative data processing and real-time monitoring process 
requirement, the microcontroller STM32 is used in the associated 
BMS equipment. The overall structure of the BMTS platform is 
shown in Fig. 4.
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Fig. 4.BMTS equipment for the battery pack
The high-accuracy detection sub-system is emoting for the core 

parameter measurement, and the signal data onto the KF-based 
SOC estimation is conducted by the mathematical calculation 
treatment process. According to the online application functionality 
and the performance requirements, the working state detection and 
analysis sub-system is designed and embedded in the associated 
BMS equipment, which constructs the SOC assessment. There are 
14 digital powers used for the balancing charge treatment of the 
BMTS platform, together with two big powers from Taiwan for the 
serial charging process.
3.1.Charge-discharge working characteristics

The ability to store and release energy is affected by the internal 
interconnected battery cells in the lithium-ion battery packs. 
Therefore, the SOC of the lithium-ion battery pack is determined by 
the performance of each individual battery cell. In the cycling 
charge-discharge experimental process, the aerial lithium-ion 
battery pack samples are selected and the experimental test of the 
cycling charge-discharge maintenance should be conducted. The 
total voltage, current and each cell voltage data are detected in real-
time along with the variation rule analysis of each parameter. 
During the cycling charge and discharge test, the conditions of each 

parameter are set to avoid over-charge or over-discharge for the 
safety protection of the lithium-ion battery pack.

The aerial lithium-ion battery pack is selected as the experimental 
samples, in which 7 cells are connected serially. The constant-
current and equalization charging treatment is conducted, in which 
the threshold CCV value is set to be 28.840V during the charging 
process. In the equalization charging process, the voltage 
conversion condition of constant-current charging and constant 
voltage charging of each unit is 4.150V. The stopping condition of 
the equalizing charging constant voltage replenishing electric power 
is less than or equal to 2.000A, avoiding the over-charge 
phenomenon in the case of fully capacity utilization of each battery 
cell. During the discharge process, the discharge stop condition is 
set when the CCV voltage is less than or equal to 21.000 V or the 
voltage of any battery cell is 3.000 V or less. In this way, the 
occurrence of over-discharge is avoided in the case of improving the 
capacity utilization efficiency of the lithium-ion battery pack. Under 
the premise of ensuring its safety, the experimental study of charge-
discharge cycles can be carried out, in which the working 
characteristic variation on the lithium-ion battery pack is analyzed 
under different SOC conditions. Through the analysis of the group 
working characteristics, the data basis of the equivalent model 
construction can be provided for the lithium-ion battery pack, and 
the working characteristics of the lithium-ion battery pack are more 
accurately characterized. Furthermore, the SOC estimation accuracy 
of the lithium-ion battery pack can be improved by these 
experimental analysis results. During the cycling charge and 
discharge process of lithium-ion battery packs, the CCV has a 
certain regularity with time, which has obvious pointed inflection 
characteristics. The variation characteristics of the lithium-ion 
battery pack are shown in Fig. 5.
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Fig. 5.Cycling charge-discharge working characteristics
As can be seen from the experimental results, the charging process 

can be divided into four different stages by the three points of P1, P2 
and P3. The small current pre-charging, constant-current fast 
charging and constant-voltage variable current charging process can 
be realized according to this. The description of the supplementary 
power and shelving process is carried out by comparing and 
analyzing the CCV of the lithium-ion battery pack by conducting 
the equivalent voltage tracking experiment, and then the equivalent 
model can be improved and optimized. By extending the capacity 
of the individual battery cells to a group level definition, the group 
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capacity can be obtained by the Ah integration, which is achieved 
by discharging all cells in the battery pack in case of one single 
battery cell in the group is fully charged. As a result, the fully 
charged state of the whole battery pack can be achieved. 

During the discharge process, the large current discharge 
treatment is realized by using the rapid discharge current of 1C5A. 
During the cycling charge-discharge process of the lithium-ion 
battery pack, the voltage variation on each internal battery cell is 
obtained by detecting and recording the voltage of each cell in real-
time. On the basis of the variation law of each cell voltage in the 
group working mode, the working state of each battery cell is 
monitored synchronously and the safety protection is also 
investigated. The raw data onto the SOB evaluation among the 
battery cells in the lithium-ion battery pack is provided, which is 
used for the correction step of the SOC estimation to improve its 
accuracy and reliability.
3.2.SOC tracking effect under complex conditions

To verify the joint estimation applicability of the proposed SOC 
estimation method, the Minimum Mean Square Error (MMSE) is 
investigated for the SOC estimation effect evaluation purpose. The 
serially connected battery packs are introduced into the experiments. 
The estimation effect is analyzed when the SOC initial value is set 
to be 1, in which the experiments are conducted simultaneously 
along with the simulated working condition process. The SOC 
tracking result is described in Fig. 6. 
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Fig. 6.SOC estimation effect analysis
As can be known from the experimental results, the proposed 

method shows a positive effect on the SOC estimation of the 
lithium-ion battery pack. Comparing with the references from [15] 
and [49], the SOC estimation has similar experimental values 
compared to the reported results, in which the average absolute error 
of the SOC value is only 1.83% on the proposed estimation method. 
According to the battery surface temperature variation along with 
the correctness [50], the battery diagnosis can be proved in the 
correction steps. 

The estimated absolute error becomes small when the initial SOC 
value is low, which makes the estimation results to match accurately 
with the theoretical value. The development of the proposed 
correlation is involved in the experiments, in which the adaptability 
is analyzed by comparing the experimental data onto the actual 
SOC value. The least-square fitting method together with the 

correlation is used to establish the battery ECM model and its model 
parameters are calculated, in which the curve fitting treatment is 
conducted to identify the battery model parameters. 
3.3.Noise influencing effect 

The adaptability of the proposed SOC estimation method is 
analyzed by considering the process and observation noise 
influence, which is also carried out for the accuracy verification. 
Due to the calculating condition limitation of the processor and 
inevitably, the number of decimal places and the high-order terms in 
the calculation process is discarded. As a result, the process noise is 
generated, which will affect the SOC estimation results. By 
superposing varying process noise, the estimation effects and 
adaptability can be verified under different processor accuracy. The 
original process noise is set to be Q = 1e-10. The industrial 
computers and other processors have great computing ability where 
the process noise is small. During the analysis process of the 
estimating effect, the process noise is set as Q1 = 1e-10, Q2 = 1e-8, 
Q3 = 1e-6 and Q4 = 1e-3 respectively. By conducting the 
experiments, the SOC estimation results can be obtained as shown 
in Fig. 7.
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Fig. 7.The SOC estimation effect under different noise influence
In the Figure, SOC0 is obtained by the Ah integration, and SOC1 

is the SOC value with Q = 1e-10. SOC2 is the SOC value with Q = 
1e-8. SOC3 is the SOC value with Q = 1e-6, and SOC4 is the SOC 
value when Q = 1e-3. As can be known from the experimental 
results, the estimated SOC results adapt the theoretical value of the 
whole iterative calculation process along with the varying noise 
influence. When the SOC value ranges from 60.00% to 20.00%, the 
error is large because of the platform effect [51] during this time 
period. The process noise influence becomes prominent as the 
process noise turns to be large.
3.4.State of balance correction analysis 

The experimental analysis of the SOB correcting effect is carried 
out by conducting the verification experiments.  Furthermore, the 
SOC estimation effect can be obtained through the estimation effect 
analysis under various working conditions. In the SOC estimation 
process, the SOB influences the description of the correction effect 
which can be realized by adding the influence factor of the SOB 
into the correction step. The comparative experiments are 
conducted, in which the different SOC tracking results can be 
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obtained by the varying methods, including Ah integral, considering 
or not considering the SOB influence. The SOC estimation results 
can be obtained when the consistency situation of the lithium-ion 
battery pack is good, which are shown in the left part of Fig. 8. In 
the Figure, SOC1 is obtained by the Ah method. SOC2 signifies the 
SOC value considering the SOB addition treatment. SOC3 
characterizes the SOC value without considering the SOB 
influence. As can be known from the experimental results, the 
correction effect of the SOB factor is small when the equilibrium 
condition is good. Whether or not the influence of this factor is 
considered, high values of SOC accuracy estimation results can be 
obtained in the experiments.
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Fig. 8.Estimation effect under different SOB conditions
Furthermore, the poor balance condition is obtained by the cycling 

discharge-charge treatment, which is used to conduct the SOC 
estimation effect analysis under terrible working conditions of the 
lithium-ion battery pack. In the SOC estimation process, the SOB 
influences and the description of the correction effect can be 
realized by adding the influence factor of the SOB and the situation 
is not considered by the SOB influence. The experimental results 
are shown in the right part of Fig. 8. As can be known from the 
experimental results, the correction effect of the SOB correction 
factor is obvious under the condition of poor balance in the lithium-
ion battery pack. The SOB impact becomes more and more obvious 
along with the time as a continuation of the main discharge 
conditions. As a result, it should be considered in the SOC 
correction and in the energy balancing processes [39]. The 
comprehensive estimation method can obtain high accuracy values 
of SOC values under complex working conditions. The estimation 
accuracy rate was found to be: 98.17% by using the method of the 
comprehensive SOC estimation strategy. This method has high 
precision and easy calculation advantages when it is compared with 
the existing reports using the KF-based algorithms [9, 31]. The 
related experimental studies have been done, in which the 
associated BMS equipment is combined with this comprehensive 
method. 
4. Conclusion

A novel and powerful working state monitoring method is 
proposed, in which the SOC estimation is realized by the improved 
UKF-based iterative calculation model and verified by the 
implementation of the associated BMS equipment along with the 
iterative calculation. In order to characterize the cell-to-cell 
battery consistency, an iterative SOB evaluation method is 
proposed by conducting the improved variation coefficient 
calculation. The intermittent measurement and real-time 
calibration calculation process is applied to characterize the 
capacity change of the battery pack towards the cycling 
maintenance number, according to which the aging process 

impact correction can be realized. The comprehensive SOC 
estimation model is realized by using the improved UKF method, 
effectively guaranteeing the power supply reliability and providing 
a positive useful promotion role of the lithium-ion battery packs. 
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(1) A novel comprehensive state of charge estimation method for the lithium-ion battery pack.
(2) The state of balance and aging process correction is considered in the recommended method.
(3) The estimation model is conducted by using the improved unscented Kalman filter. 
(4) The improved variation coefficient is introduced to evaluate the cell-to-cell consistency.
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