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• Ultra-Short Base Line (USBL) is the most commonly adopted localization method
in industry due to its flexibility. However, the maximum number of underwater
targets that can be simultaneously localized by USBL is very limited (up to 10
using the most advanced technology) [1].

• A large-scale hierarchical localization approach has been investigated in [2][3]
for stationary underwater sensor network.

• The main concept behind a hierarchical localization approach is that a
successfully localized ordinary node with high precision can serve as a reference
node for neighboring nodes localization.

• The authors in [2][3] introduced the concept of confidence value which is
associated with the localization process and a predetermined confidence
threshold. Confidence values of localized ordinary nodes in [2] were solely
dependent on the localization error.

• An optimized confidence value-based localization algorithm for large scale
underwater mobile sensor networks is proposed.

• To dynamically determine the confidence value of each sensor node on current
localization estimate

• To promote a localized ordinary node to a reference node for neighboring
ordinary nodes localization; based on its confidence value.

• The proposed algorithm harnesses a single USBL system and common
proprioceptive sensors for large-scale swarm localization.
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• Consider an underwater mobile sensor network with N nodes.
• Define the certainty of the 𝑖-th node at a certain position at time t as confidence

value (𝛿𝑖
𝑡), that is a scalar value between 0 and 1.

• It measures how confident the node’s current localization estimate is using a
belief function (reflects the AUV’s internal knowledge about its position).
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• In the proposed algorithm, a pre-defined confidence threshold ( 𝑥1) is set in
promoting an ordinary high precision localized node to a reference node.

• In addition, as far as ToA-based trilateration localization method is concerned, a
minimum Node Density ( 𝑥2) in the swarm should also be carefully maintained.

OBJECTIVES:
• Minimizing localization error {𝑓1 𝑥 }
• Minimizing ToA-based trilateration utilization {𝑓2 𝑥 }
• Maximizing mean confidence value {𝑓3 𝑥 }
• Maximizing USBL utilization {𝑓4 𝑥 }

min 𝑓1 𝑥1, 𝑥2

min 𝑓2 𝑥1, 𝑥2

max 𝑓3 𝑥1, 𝑥2

max 𝑓4 𝑥1, 𝑥2

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ቊ
𝑙1 ≤ 𝑥1 ≤ 𝑢1

𝑙2 ≤ 𝑥2 ≤ 𝑢2

• 𝑙𝑖 and 𝑢𝑖 (𝑖 = 1, 2) are the lower and upper bounds of the confidence threshold 

and node density respectively. 

• The Fast and Elitist Multi-objective Genetic Algorithm (NSGA-II) [4] finds the 
Pareto Optimal set based on Non-dominated Sorting and Crowding Distance to 
ensure the diversity in the pareto optimal set. 

Parameter Value

Endurance Time 1000-time steps

Swarm Size 100 Nodes

Initial Confidence Value 1

Max Simultaneous USBL Localized Nodes 10

Max Dead Reckoning Drift 30%

Node’s Communication Range [5, 55] m

Confidence Threshold [0, 1]

NSGA-II Population size 1000

NSGA-II Max Generation No. 500

NSGA-II Non-dominated Fraction 0.02

• Suppose 100 identical mobile sensor nodes are randomly distributed on a
surface of a confined region of 100 m x 100 m x 100 m.

• Each node is equipped with a depth sensor with accuracy of 0.01% AHRS with a
typical dead reckoning accuracy of 30% of the traveled distance, a USBL
transponder and a short-range communication modem.

• Assume a USBL localization system, hull mounted on a surface vessel, capable of
localizing 10 nodes simultaneously is deployed.

• Correlated and uncorrelated random walker models are employed to govern the
mobility of the nodes.

Table 1. Simulation Parameters

• The fitness function of each objective has been built based on data fitting
models of the objective function surfaces. The evolutionary multi-objective
optimization method NSGA-II is then employed to find the optimized Confidence
Threshold ( 𝑥1): 0 ≤ 𝑥1 ≤ 1 and Node density ( 𝑥2): 0 ≤ 𝑥2 ≤ 40.

Fig. 2. The corresponding Pareto Optimal set

of Pareto Front (in Confidence Threshold

and Node Density). Four selected optimal

solutions are represented by filled colored

circles.

Fig. 3. The score of four selected optimal

solutions in the four objectives (a) mean

error (b) mean confidence value (c) USBL

utilization and (d) ToA-based utilization.

Fig. 4. Histograms of localization error and

confidence value of a single node in both a

non-optimal case (𝑥1=0.9 and 𝑥2=6.35; red)

and the optimal case (𝑥1=0.7 and 𝑥2=26;

blue) over 1000 localization period with

mean localization error of 4.42 m and

2.08 m and mean confidence value of 0.56

and 0.74 in the non-optimal and the optimal

cases respectively.

Fig. 5. Traces of typical localization errors and

confidence values of a single node over the first

150 localization period in the non-optimal case

(red) and the optimal case (blue). The red dashed

horizontal lines represent confidence thresholds.

CONFIDENCE-BASED LOCALIZATION

Fig. 1. An overview of confidence-

value based localization in 1D

• Ƹ𝑝𝑖
𝑡−1 : node’s 𝑖 estimated 

position at 𝑡-1.

• 𝑟𝑖𝑗: range measurements.

• Ƹ𝑝𝑗
𝑡 : neighboring node’s 𝑗

estimated position.

• There is an improvement of 47.7% in localization mean error, 27.3% in localization error standard deviation and 33.92% in the mean confidence value in the swarm
(105 localization period) when algorithm’s parameters are optimized.

• A wide localization coverage can be achieved using a single Ultra-Short Base Line system and localization mean error can be reduced by over 45% when algorithm’s
parameters are optimized in an underwater swarm of 100 robots.

• Mean localization error and mean confidence value have been improved by
52.94% and 32.14% respectively when confidence threshold and node density
are optimized.
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