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Abstract. Localization in large-scale underwater swarm robotic systems has in-

creasingly attracted research and industry communities’ attention. An optimized 

confidence-based localization algorithm is proposed for improving localization 

coverage and accuracy by promoting robots with high confidence of location 

estimates to references for their neighboring robots. Confidence update rules 

based on Bayes filters are proposed based on localization methods’ error char-

acteristics where expected localization error is generated based on measure-

ments such as operational depth and traveled distance. Parameters of the pro-

posed algorithm are then optimized using the Evolutionary Multi-objective Op-

timization algorithm NSGA-II for localization error and trilateration utilization 

minimization while maximizing localization confidence and Ultra-Short Base 

Line utilization. Simulation studies show that a wide localization coverage can 

be achieved using a single Ultra-Short Base Line system and localization mean 

error can be reduced by over 45% when algorithm’s parameters are optimized 

in an underwater swarm of 100 robots. 

Keywords: Underwater Swarm Localization, Confidence Values, Multi-

objective Optimization.  

1 Introduction  

Seventy-one percent of the earth’s surface is covered by water and it is commonly 

believed that we know more about the space than deep oceans. Spatial information in 

various offshore applications such as deep-sea oil and gas exploration, environmental 

monitoring, geological and ecological research must be collected alongside the data 

modality of interest. These marine missions can be achieved by means of underwater 

Distributed Autonomous Robotic Systems (DARS) such as a swarm of Autonomous 

Underwater Vehicles (AUVs). Various localization technologies for underwater 

DARS have been actively investigated for a decade. Localization algorithms can be 

classified into three main categories based on systems mobility, namely stationary, 

mobile and hybrid localization algorithms, and each main category can be classified 

into two sub-categories namely centralized and distributed localization algorithms [1].  
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Cheng et al. in [2] have investigated the distributed stationary sequential Underwa-

ter Positioning Scheme (UPS) in which four stationary anchor nodes or robots (accu-

rately localized) are required to localize an ordinary node and in [3] the Enhanced 

Underwater Positioning Scheme has been introduced in which a maximum waiting 

time for anchor nodes to broadcast their beacons was introduced. All ordinary nodes 

in both localization algorithms have to be within the communication range of anchor 

nodes. Sabra and Fung have proposed a fuzzy logic based dynamic localization plan 

that requires users to specify the fuzzy rule base that capture human expert knowledge 

on the best performing localization methods under various operational conditions [4]. 

A large-scale hierarchical localization approach has been investigated in [5] for sta-

tionary underwater sensor network. In addition, Zhou et al. in [6] extended the algo-

rithm in [5] and introduced a hierarchical localization approach for mobile underwater 

sensor network in which underwater sensors predict their mobility patterns. The main 

concept behind a hierarchical localization approach is that a successfully localized 

ordinary node with high precision can serve as a reference node for neighboring nodes 

localization. Both [5] and [6] considered a simple approach to regulate the promotion 

of ordinary nodes to reference nodes. They introduced the concept of confidence val-

ue which is associated with the localization process and a predetermined confidence 

threshold. Confidence values of localized ordinary nodes in [5] were solely dependent 

on the localization error. The major drawback of this algorithm is that it is not always 

possible to measure localization error in underwater missions. However, the confi-

dence values in [6] are calculated by simply averaging the participating reference 

nodes’ confidence values and considering the error in range measurements. Bhuva-

neswari et al. in [7] proposed a confidence discount rule based on the number of time 

steps since last localization and a high but arbitrarily defined confidence threshold. A 

computationally expensive quality of trilateration-based localization scheme in 2-

dimentional space has been introduced in [8] where reference nodes are selected 

based on geometric relationship of their positions and ranging errors. The authors in 

[8] focused only on localization by trilateration and considered the scenario in which 

a node has to select 3 reference nodes for localization based on their quality-of-

trilateration score.  

Ultra-Short Base Line (USBL) is the most commonly adopted localization method 

in industry due to its flexibility as it does not require artificial landmarks to be de-

ployed on the seafloor and it only requires a single surface vessel for operation. How-

ever, the maximum number of underwater targets that can be simultaneously localized 

by USBL is very limited (up to 10 using the most advanced technology) [9]. Different 

localization methods including trilateration and dead reckoning are employed when 

USBL is not available in hierarchical localization. Sabra et al. introduced a confi-

dence-based underwater localization scheme [10] in which three common localization 

methods, namely USBL localization, trilateration and dead reckoning were adopted. 

They have shown by numerical simulation that a swarm of 100 nodes can be tracked 

using a single USBL system, range measurement sensors and communication mo-

dems. 

In this paper, the confidence-based underwater localization algorithm introduced in 

[10] that harnesses a single USBL system and common proprioceptive sensors for 
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large-scale swarm localization is summarized. The confidence threshold and node 

density are key parameters to the confidence-based localization algorithm’s perfor-

mance, so they are optimized in this paper for accuracy enhancement using an Evolu-

tionary Multi-objective Optimization algorithm through extensive simulation. Each 

underwater robot or node1 in the swarm is associated with a scalar confidence value 

which measures the localization estimate precision using a belief function. Confi-

dence values are updated and monitored through the proposed algorithm in which 

confidence update rules based on localization error characteristics and Bayes filters 

are employed. Nodes with high confidence can be employed as references for neigh-

boring ordinary nodes localization using trilateration. 

The remainder of this paper is organized as follows. Section 2 briefly explains the 

proposed algorithm and formulates the multi-objective optimization problem for find-

ing the optimal confidence threshold and node density through simulation. Section 3 

shows how to employ localization method’s error characteristics in confidence update 

rules and multi-objective optimization in localization accuracy improvement. Moreo-

ver, the algorithm’s performance is compared for both optimized and arbitrary non-

optimized parameters. Finally, section 4 concludes this paper and discusses possible 

extension of this work. 

2 Confidence-based Localization Algorithm 

In this section, confidence-based localization algorithm for a swarm of mobile under-

water sensor nodes is presented. The proposed algorithm aims at improving localiza-

tion coverage and localization estimate accuracy by promoting high-precision local-

ized ordinary nodes to reference nodes based on their confidence values. The confi-

dence value of a node is dynamically updated by the proposed confidence update 

rules.  

2.1 Confidence Update Rules 

Define 𝛿𝑖
𝑡 as a confidence value, which is between 0 and 1, associated with the 𝑖-𝑡ℎ 

node at time 𝑡. It measures how confident the current localization estimate of the node 

is using a belief function. The certainty of a node being at a certain position can be 

considered as a belief (state of knowledge) and it can be represented as a conditional 

probability distribution [11]. A belief can be easily calculated by the Bayes filter algo-

rithm [11]. If a node has a confidence value of 1, its current localization estimate is 

certain. On the other hand, the current localization estimate of a node is completely 

unreliable if its confidence value is 0. Initially it is set to 1 as nodes are deployed from 

a known position. The confidence value of node 𝑖 (𝛿𝑖
𝑡) is dynamically updated in each 

localization step. Any localization method can be integrated in the proposed algorithm 

by implementing confidence value update rules based on a localization method’s error 

characteristics. Different update rules of the confidence value are implemented based 

                                                           
1  The term “node” and “AUV” are used interchangeably in the manuscript. 
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on a designated localization method’s expected localization error, instead of its meas-

ured error. In contrast to terrestrial localization, localization estimate error in the un-

derwater environment cannot be measured unless a sophisticated localization system 

is employed such as Long Base Line (LBL) which require artificial landmarks to be 

deployed on the seafloor in advance.  

If the confidence value of node 𝑖 (𝛿𝑖
𝑡) drops below a pre-defined confidence 

threshold ( 𝑥1) and the USBL is available, then node 𝑖 will be localized by USBL and 

its confidence value is updated (boosted) based on its previous confidence value 

{ 𝛿𝑖
𝑡−1 ∝ �̂�𝑖

𝑡−1 : �̂�𝑖
𝑡−1 = estimated position at time 𝑡 − 1} and measurements {𝑧𝑡 = 

operational depth} which can be accurately acquired by a depth sensor. The node’s 

confidence value ( 𝛿𝑖
𝑡) is updated as follows 

  𝛿𝑖
𝑡 =  𝑏𝑒𝑙(�̂�𝑖

𝑡) (1) 

 𝑏𝑒𝑙(�̂�𝑖
𝑡) = 𝜂 𝑝(𝑚𝑡|�̂�𝑖

𝑡) 𝑏𝑒𝑙(�̂�𝑖
𝑡−1) (2) 

where 𝜂 is a normalization term and 𝑝(𝑚𝑡|�̂�𝑖
𝑡) represents the probability of a node 

being at the estimated position �̂�𝑖
𝑡 based on measurements 𝑚𝑡 which is the operational 

depth 𝑧𝑡 when a node is localized by USBL. In other words, the probability of an 

estimated position being matched with an expected position is related to the expected 

error derived from a localization method’s error characteristics.  

If  USBL is not available (when it is localizing 10 other nodes simultaneously), 

then three conditions will be checked (refer to step 9 in Algorithm 1) prior to perform-

ing Time of Arrival (ToA) based trilateration [12] where 𝐽 is the number of neighbor-

ing nodes and 𝑙𝑑 is the minimum bounding box’s dimensions formed by neighboring 

nodes 𝑗 = 1, 2, … , 𝐽. We solve ToA-based trilateration least squares problem using 

Particle Swarm Optimization (PSO) [13]. In literature, it has been usually solved by 

Gauss-Newton algorithm, but we have obtained more accurate results through PSO as 

Monte-Carlo simulation has been conducted to show that PSO always gives more 

accurate results with faster convergence in solving ToA-based trilateration least 

squares problem. Confidence value (𝛿𝑖
𝑡) is updated, in this case, based on neighboring 

nodes confidence values (𝛿𝑗
𝑡) and their estimated positions (�̂�𝑗

𝑡), the estimated position 

of node 𝑖 (�̂�𝑖
𝑡) and range measurements (𝑟𝑖𝑗) between node 𝑖 and its neighboring nodes 

(𝑗 = 1, 2, … , 𝐽): 

  𝛿𝑖
𝑡 =

∑ 𝛿𝑗
𝑡(1−

||�̂�𝑗
𝑡−�̂�𝑖

𝑡|−𝑟𝑖𝑗|

|�̂�𝑗
𝑡−�̂�𝑖

𝑡|
)

𝐽
𝑗=1

𝐽
 (3) 

Equation (3) considers the undiscounted confidence value of a neighbor node 𝑗 if the 

distance between node 𝑖 and 𝑗 through their estimated positions (�̂�𝑖
𝑡) and (�̂�𝑗

𝑡) perfectly 

matches the corresponding range measurement (𝑟𝑖𝑗).  

Node 𝑖 location will be tracked using dead reckoning when neither USBL nor tri-

lateration method can be adopted. Confidence value (𝛿𝑖
𝑡) is discounted based on its 

previous confidence value { 𝛿𝑖
𝑡−1 ∝ �̂�𝑖

𝑡−1} and measurements {𝑤𝑡  = traveled distance 
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since the last USBL or trilateration localization} using Equations (1) and (2) with 

𝑚𝑡 = 𝑤𝑡 .  
Table 1 depicts the localization process of node 𝑖 in which USBL system (at most 

ten nodes can be localized simultaneously) [9], trilateration or dead reckoning locali-

zation is selected for every localization period ∆𝑡 based on its confidence value 𝛿𝑖
𝑡.  

Table 1. Algorithm 1: Confidence-based localization  

1: Procedure (Node 𝑖 localization) 
2: 𝛿𝑖

𝑡=1 = 1 

3: for t = 1+∆𝑡 : ∆𝑡: tend   

4:  if 𝛿𝑖
𝑡 ≤  𝑥1 

5:   Request USBL localization  

6:    if request granted  

7:     Use USBL 

8:     Update 𝛿𝑖
𝑡 ← (�̂�𝑖

𝑡−1,𝑧𝑡) 
9:     elseif  min

𝑗=1:𝐽
𝛿𝑗
𝑡  ≥   𝑥1 & 𝐽 ≥ 4 & min

𝑑=1:3
𝑙𝑑  ≥  1  

10:      Use Trilateration 

11:      Update 𝛿𝑖
𝑡 ← (𝛿𝑗

𝑡 , �̂�𝑗
𝑡 , �̂�𝑖

𝑡 , 𝑟𝑖𝑗) 

12:     else 

13:      Use Dead reckoning 

14:      Update 𝛿𝑖
𝑡 ← (�̂�𝑖

𝑡−1,𝑤𝑡) 
15:     end if 

16:    elseif  𝛿𝑖
𝑡 >  𝑥1 

17:     Use Dead reckoning 

18:     Update 𝛿𝑖
𝑡 ← (�̂�𝑖

𝑡−1,𝑤𝑡) 
19:  end if  

20: end for 

21: end Procedure 

2.2 Parameters Optimization  

In the proposed algorithm, a pre-defined confidence threshold ( 𝑥1) is set in promoting 

an ordinary high precision localized node to a reference node. However, determining 

a universal confidence threshold that suits different AUV deployment scenarios is 

laborious and nearly impossible. In addition, as far as ToA-based trilateration locali-

zation method is concerned, a minimum Node Density ( 𝑥2) in the swarm should also 

be carefully maintained.   

It has been commonly assumed that the optimized parameters on random walkers 

may suit various deployment scenarios. Therefore, we have assumed correlated and 

uncorrelated random walker models [14] to govern the mobility of nodes in a con-

fined region. The impact of confidence threshold and node density on localization 

performance have been investigated through extensive simulation. Four performance 

metrics were considered, namely mean localization error, mean confidence value, 

USBL utilization and ToA-based trilateration utilization.   
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Our objectives are to minimize both localization error {𝑓1(𝑥)} and ToA-based tri-

lateration utilization {𝑓2(𝑥)}, due to its high demand of on-board computational pow-

er, while maximizing confidence value {𝑓3(𝑥)} and USBL utilization {𝑓4(𝑥)} as it is 

the most reliable localization method adopted. There is no single optimum solution in 

the parameter space that simultaneously optimizes these four irreconcilable objectives 

in Equation (4). However, a set of optimal solutions that provides a trade-off among 

objectives seems ideal to this multi-objective optimization problem:    

 

{
 

 
min 𝑓1(𝑥1, 𝑥2)

min 𝑓2(𝑥1, 𝑥2)

max 𝑓3(𝑥1, 𝑥2)

max 𝑓4(𝑥1, 𝑥2)

 𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 {
𝑙1  ≤  𝑥1  ≤  𝑢1
𝑙2  ≤  𝑥2  ≤  𝑢2

  (4) 

where 𝑥1 is the confidence threshold, 𝑥2 is the node density, 𝑙𝑖 and 𝑢𝑖 (𝑖 = 1, 2) are 

their lower and upper bounds respectively. Node density ( 𝑥2) is defined as the ex-

pected number of nodes in a node’s neighborhood and thus it can be varied by nodes’ 

communication range. 

Multi-objective optimization using Evolutionary Algorithms (EAs) is a promising 

method in design optimization for various applications [15]. Due to the flexibility of 

Evolutionary Algorithms (EAs) and its wide spread applicability, Evolutionary Multi-

objective Optimization (EMO) has become a popular approach [15]. The nature of 

population-based search algorithms allows EAs to return multiple optimized solutions 

among objectives called Pareto Optimal solutions [16]. Pareto Optimal solutions are 

the elitists population in the last generation in which selecting one solution over an-

other requires sacrificing one objective and gaining another [16]. There are many 

algorithms dedicated to choosing the Pareto Optimal set, that is, a set of non-

dominated diverse solutions. The Fast and Elitist Multi-objective Genetic Algorithm 

(NSGA-II) is a robust and efficient algorithm introduced by Deb et al. to find the 

Pareto Optimal set based on Non-dominated Sorting and Crowding Distance [17].  

A solution is said to dominate another when it is not worse in all objectives and 

better in at least one objective. The crowding distance is simply a measure of how 

close a solution is to another. Longer distances are associated with higher scores, and 

thus the diversity is ensured in a Pareto Optimal set. Interested readers are referred to 

[17] for details on Non-dominated Sorting and Crowding Distance Assignment pro-

cedures.  

3 Simulation 

In this section, error characteristics of localization methods used in our simulation are 

employed to generate a localization method’s expected error and thus, confidence 

values are updated as in Equations (2) and (3). Moreover, simulation settings, parame-

ters and results of algorithm’s parameters optimization and localization estimates are 

provided. The importance of the confidence threshold and the node density optimiza-

tion is emphasized in this section by comparing the proposed algorithm’s performance 

in an optimized case and an arbitrary non-optimized case. 
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3.1 Error Characteristics for Confidence Update  

When USBL localization method is adopted, the expected error for localization esti-

mate can be generated based on its error characteristics. According to the datasheet of 

a given USBL system, in 1000 m depth 63% (1 Drms) of total errors are within 2.7 m 

radius [9]. We assume that the localization estimate error of the given USBL system 

follows a Gaussian distribution given by 

 𝜀𝑈 ~ 𝒩(𝜇, 𝜎
2)  (5) 

where 𝜇 = 2.7 m and 𝜎 = total error (1Drms) depicted from the relationship in [9]. 

The error in USBL localization estimate can be predicted based on the operational 

depth. We calculate the probability 𝑝(𝑚𝑡|�̂�𝑖
𝑡) in Equation (2) as follows  

 𝑝(𝑧𝑡|�̂�𝑖
𝑡)  ∝

1

Γ(κ)Θ𝜅
 𝜀𝑈

𝜅−1 𝑒
−𝜀𝑈
Θ + 𝜏  (6) 

where 𝜀𝑈 is the USBL expected localization error, 𝜏 is a damping factor, 𝜅 and Θ are 

Gamma distribution parameters. A damping factor (𝜏) is crucial for the probability 

stability, the higher the value of 𝜏 the less-likely the confidence value is to fluctuate. 

Exponential distribution is a special case of Gamma distribution but using Gamma 

distribution provides us with one more degree of freedom in penalizing the expected 

error. It is worth mentioning that there is no need to have an expectation of a node’s 

position as we can directly have an expectation of the error by its operational depth.  

Equation (3) is used to calculate the confidence value of node 𝑖 when ToA-based 

trilateration is adopted. Based on existing underwater range measurement technolo-

gies [18] we assume that the range measurement between two arbitrary neighboring 

nodes 𝑖 and 𝑗 (𝑟𝑖𝑗) follows a Gaussian distribution with mean equal to real measured 

range and standard deviation of 2% of the mean. 

In case none of the available localization methods is adopted, a node’s location is 

tracked using dead reckoning. Confidence value (𝛿𝑖
𝑡) is then updated based on equa-

tion (2). We assume a low cost and low power consumption sensor suite consists of 

an Attitude-Heading Reference System (AHRS) and pressure gauge employed in each 

node with a typical dead reckoning accuracy of 30% of traveled distance [19]. We 

calculate the expected error of dead reckoning localization as follows   

 𝜀𝐷 = 𝑤𝑡ϕ ∶  ϕ ~ uniform(α, β)  (7) 

 𝑝(𝑤𝑡|�̂�𝑖
𝑡)  ∝

1

Γ(κ)Θ𝜅
 𝜀𝐷

𝜅−1 𝑒
−𝜀𝐷
Θ  (8) 

where 𝜀𝐷 is the dead reckoning expected localization error, α is related to the number 

of dead reckoning navigation steps (reset to 0 when USBL or trilateration is adopted) 

and β is the maximum drift of dead reckoning navigation (i.e. 30%). Thus, the width 

of the probability density function of ϕ is decreasing when time progresses.   
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3.2 Simulation Settings  

Suppose 100 identical mobile sensor nodes are randomly distributed on a surface of a 

confined region of 100 m x 100 m x 100 m. Each node is equipped with a depth sen-

sor with accuracy of 0.01% [20], AHRS with a typical dead reckoning accuracy of 

30% [19] of the traveled distance, a USBL transponder and a short-range communica-

tion modem. Assume a USBL localization system, hull mounted on a surface vessel, 

capable of localizing 10 nodes simultaneously is deployed [9]. Correlated and uncor-

related random walker models [14] are employed to govern the mobility of the nodes. 

Table 2 summarizes key parameters of simulation and Evolutionary Multi-objective 

Optimization NSGA-II [17] used in confidence-based localization algorithm optimi-

zation.  

Table 2. Simulation Parameters 

Parameter Value 

Endurance Time 1000-time steps 

Swarm Size 100 Nodes 

Initial Confidence Value 1 

Max Simultaneous USBL Localized Nodes 10 

Max Dead Reckoning Drift 30% 

Node’s Communication Range [5, 55] m 

Confidence Threshold [0, 1] 

NSGA-II Population size  1000 

NSGA-II Max Generation No.  500 

NSGA-II Non-dominated Fraction  0.02 

 

Notice that we consider measuring distances in the objectives space (Pareto Front) 

instead of variables space for Crowding Distance as the computed distances of solu-

tions in variables space might be very small although their corresponding Pareto Front 

distances are not.  

3.3 Results and Analysis  

The proposed algorithm performance with respect to the four aforementioned perfor-

mance metrics has been investigated through more than 200 simulations in which the 

confidence threshold was varied from 0 to 1 with an increment of 0.05 and nodes’ 

communication range were varied from 5 m to 55 m with an increment of 5 m. This 

represents node density ranging from 0 to 40, interested readers are referred to [10] 

for the four objective function surfaces, namely mean localization error, ToA-based 

trilateration utilization, confidence value, and USBL utilization.   

The fitness function of each objective has been built based on data fitting models 

of the objective function surfaces in [10]. The evolutionary multi-objective optimiza-

tion method NSGA-II is then employed to find the optimized Confidence Threshold 

( 𝑥1): 0 ≤ 𝑥1 ≤ 1 and Node density ( 𝑥2): 0 ≤ 𝑥2 ≤ 40. The upper bound of 𝑥2 (40) 

is equivalent to a node’s communication range of more than 50% (≈ 55 m) of a de-
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ployment region’s dimension (i.e. 100 m). Figure 1 reveals the Pareto Front (Pareto 

Optimal set score in objectives space) and Fig. 2 shows the corresponding Pareto 

Optimal set. Figure 3 shows the score of the four objectives of four dominant optimal 

solutions in the proposed deployment scenario. 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Fig. 1. The score of Pareto Optimal set, Pareto Front, in (a) mean error and mean confidence 

value (b) mean error and USBL utilization (c) mean error and ToA-based trilateration utiliza-

tion (d) mean confidence value and USBL utilization (e) mean confidence value and ToA-

based utilization (f) USBL utilization and ToA-based utilization. The solutions in Pareto front 

are numbered from 1 to 23. 
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Fig. 2. The corresponding Pareto Optimal set 

of Pareto Front (in Confidence Threshold and 

Node Density). Four selected optimal solu-

tions are represented by filled colored circles.  

Fig. 3. The score of four selected optimal 

solutions in the four objectives (a) mean error 

(b) mean confidence value (c) USBL utiliza-

tion and (d) ToA-based utilization. 

A decision maker now has the option to choose any of the solutions in the Pareto 

Optimal set in Fig. 2 based on application requirements or objectives priorities. It can 

be noticed that the optimal solutions in Fig. 2 can be grouped into 4 clusters. We 

therefore select a single solution in each cluster in the Pareto Optimal set to empha-

size each cluster’s score in the Pareto Front. The selected four optimal solutions (col-

ored) are 19, 20, 7 and 23, as shown in Fig. 2. 

Solution 7 (𝑂7) minimizes the mean error in Fig. 3a while maximizes mean confi-

dence value in Fig. 3b and USBL utilization in Fig. 3c but it does not minimize trilat-

eration utilization in Fig. 3d. Although 𝑂23 minimizes trilateration utilization in Fig. 

3d, it maximizes the mean error in Fig. 3a. However, 𝑂19 outperforms 𝑂20 in mini-

mizing the trilateration utilization in Fig. 3d by around 30%. 𝑂20 outperforms 𝑂19 in 

maximizing both USBL utilization and mean confidence value; hence 𝑂19 suggests 

mostly dead-reckoning localization. Therefore, we select the set of optimal parame-

ters represented by 𝑂20. It is worth mentioning that 𝑂19 can provide optimal parame-

ters for our deployment scenario given the relatively small deployment region we 

consider. From Fig. 2, 𝑂20 suggests a Confidence Threshold of 0.7109 and Node 

Density of 26 (communication range of 45 m).  

Fig. 4 below shows histograms of localization estimate error and confidence value 

of a single node in a swarm of 100 nodes over 1000 localization period in an arbitrari-

ly selected non-optimal case where confidence threshold ( 𝑥1) is 0.9 and Node density 

( 𝑥2) is 6.35 (25 m communication range) and in the selected optimal case (𝑂20). Fig-

ure 5 depicts the traces of localization error, confidence value and the adopted locali-

zation method in each localization period of the same node presented in Fig. 4 over a 

time window of 150 localization period in both cases.  
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Fig. 4. Histograms of localization error and 

confidence value of a single node in both a 

non-optimal case (red) and the optimal case 

(blue) over 1000 localization period with 

mean localization error of 4.42 m and 2.08 m 

and mean confidence value of 0.56 and 0.74 

in the non-optimal and the optimal cases 

respectively.  

Fig. 5. Traces of typical localization errors 

and confidence values of a single node over 

the first 150 localization period in the non-

optimal case (red) and the optimal case (blue). 

The red dashed horizontal lines represent 

confidence thresholds. 

When both Confidence Threshold ( 𝑥1) and Node Density ( 𝑥2) are optimized, the 

node presented in Fig. 5 (the optimal case) was considered as a reference node for 

62.9% (629 localization period) of the total running time (1000 localization period). 

In contrast, when confidence threshold and node density were arbitrarily set to 0.9 and 

6.35 respectively (a non-optimal case), the node presented in Fig. 5 was considered as 

a reference node for only 18% (180 localization period) of the total running time. 

Consequently, mean localization error and mean confidence value have been im-

proved by 52.94% and 32.14% respectively when confidence threshold and node 

density are optimized as shown in Fig 4. More nodes can become reference nodes for 

trilateration with sufficiently high confidence in the optimized case. In addition, 

standard deviations of both localization estimate error and confidence value in Fig. 4 

have been improved by around 30.15% (from 1.99 to 1.39) and 65.5% (from 0.29 to 

0.10) respectively.  

Figure 6 shows histograms of the localization estimate error and the confidence 

value of all nodes in the swarm (i.e. 100 nodes) in the pre-mentioned non-optimal 

case and in the suggested optimal case (𝑂20). 
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Fig. 6. Histograms of localization error and confidence value of 100 nodes in both the non-

optimal case (red) and the optimal case (blue) over 1000 localization period. The mean locali-

zation error in 105 localization period is equal to 4.48 m and 2.34 m with mean confidence 

value equal to 0.56 and 0.75 in the non-optimal and the optimal cases respectively. 

Figure 6 reveals an improvement of 47.7% in localization mean error, 27.3% in lo-

calization error standard deviation and 33.92% in the mean confidence value in the 

swarm (105 localization period) when algorithm’s parameters (confidence threshold 

and node density) are optimized.  

4 Conclusion and future work   

In this paper, an optimized confidence-based algorithm is proposed for large-scale 

underwater swarm localization. Confidence threshold and node density are key pa-

rameters for the proposed algorithm. Confidence threshold and node density are ob-

tained and optimized through extensive simulation in which random walker models 

are applied so that the optimized parameters could suit various deployment scenarios. 

In future work, an ordinary node will be promoted to a reference node in a certain 

cluster of nodes based on a voting mechanism instead of a pre-defined confidence 

threshold so there is no need for extensive simulation to optimize a confidence 

threshold. 
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