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Abstract. Classification of imbalanced data remains an important field
in machine learning. Several methods have been proposed to address
the class imbalance problem including data resampling, adaptive learn-
ing and cost adjusting algorithms. Data resampling methods are widely
used due to their simplicity and flexibility. Most existing resampling tech-
niques aim at rebalancing class distribution. However, class imbalance is
not the only factor that impacts the performance of the learning algo-
rithm. Class overlap has proved to have a higher impact on the classifi-
cation of imbalanced datasets than the dominance of the negative class.
In this paper, we propose a new undersampling method that eliminates
negative instances from the overlapping region and hence improves the
visibility of the minority instances. Testing and evaluating the proposed
method using 36 public imbalanced datasets showed statistically signifi-
cant improvements in classification performance.

Keywords: Undersampling · Overlap · Imbalanced Data· Classification
· Fuzzy C-means· Resampling

1 Introduction

In classification, sufficient data with balanced class distribution often results in
more accurate models. However, in many real-world scenarios, datasets contain
relatively few samples that belong to the class of interest, e.g. in fraud detection,
where there are considerably more instances representing legitimate transactions.
Such data form is so called imbalanced datasets. In a binary imbalanced dataset,
the class with more instances is referred to as the majority or negative class
whereas the rare class is regarded as the minority or positive class.

Generally, available learning algorithms are not designed to handle classifi-
cation of datasets with skewed distributions. Without appropriate adjustments,
the minority class tend to be overlooked, and hence are likely to be misclassified.
In addition, imbalanced datasets also often suffer from class overlap [6], which
proved to have a higher impact on classification than class imbalance [3,7,9,15].

Methods for handling imbalanced datasets can be grouped into two main cat-
egories: data-level and algorithm-level [11, 16]. Algorithm-level methods mostly
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involve modifying existing learning algorithms to account for class imbalance
[9, 13, 14]. Data-level methods typically reconstruct the original dataset into a
more class-balanced version. This is often achieved by means of resampling,
which includes undersampling and oversampling. Undersampling reduces in-
stances in the majority class; in contrast, oversampling increases instances in
the minority class. The advantages of data-level methods over algorithm-level
ones are that no deep understandings of the learning algorithm are required [2]
and it is flexible to any learning algorithm.

Among undersampling techniques, k-means has been widely utilised in recent
literature [2, 10–12]. By applying k-means, the majority class is divided into
clusters before undersampling is performed resulting in a more balanced and
diversified class distribution of the data. However, these approaches as well as
most existing undersampling methods only aim at data rebalancing and neglect
the overlap issue, which may need a closer attention.

It has been suggested that class imbalance on it own may not affect classifier’s
performance. Japkowicz et. al [8] and Denil et al. [3] demonstrated that when
sufficient training data was available, any extent of imbalance did not hinder
classification. On the other hand, class overlap has been reported to cause more
deteriorations than class imbalance [3, 15].

In this paper, we propose a new undersampling framework that reduces the
dominance of the majority class instances and more importantly removes them
from the overlapping region. For convenience, we refer to our Overlap-Based Un-
dersampling method as OBU. The method incorporates a soft clustering algo-
rithm to determine overlapped instances. We hypothesise that an instance with
uncertain membership degrees assigned by the soft clustering algorithm is likely
to be in the overlapping region. Then, using the proposed OBU, overlapped
negative instances can be potentially removed. Subsequently, the visibility of
the minority class to the learner will be improved leading to better classifica-
tion without the need of data rebalancing. Extensive experiments on 36 public
datasets showed significant improvements in classification over the baseline while
in most cases, higher results against the state-of-the-art’s were achieved. OBU
is demonstrated with a well known soft clustering algorithm, Fuzzy C-means
(FCM); however, it is worth noting that any existing soft clustering algorithm
can be applied. Therefore, the overlap-based undersampling method is a general
framework for handling class overlap in imbalanced dataset classification.

2 Methods

2.1 Fuzzy C-means Algorithm

Fuzzy c-means [1] is one of the most commonly-used soft clustering algorithms.
Unlike hard clustering, soft clustering algorithms allow each data instance to be a
member of many clusters with membership degrees between 0 and 1. FCM follows
similar clustering procedure to k-means, a well-known hard clustering algorithm
except that FCM’s objective function involves two additional parameters, which
are the membership degree and the fuzziness degree.
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In this paper, the main FCM parameter which is the C value (number of
clusters) was set to equal 2 as it serves the propose of differentiating between
the characteristics of the two classes in binary datasets.

2.2 The Proposed Overlap-Based Undersampling Algorithm

Unlike other clustering-based undersampling methods, our proposed framework
uses membership degrees obtained from the clustering process to facilitate the
elimination of negative instances from the overlapping region. Given an imbal-
anced training set D that is made of positive class (Dpos) and negative class
(Dneg), a soft clustering is then applied to give each instance a negative mem-
bership degree md. In this paper, we use FCM as the soft clustering algorithm;
however, OBU is a framework that can be adapted to use other soft cluster-
ing techniques. All indecisive negative instances whose membership degrees are
vague are considered as part of the overlapping region. These instances are then
removed from the training set D. The resulting undersampled training set will
include the remaining negative instances d’s in DnegOBU

along with the positive
instances in Dpos.

Since binary datasets are used in this paper, when applying soft clustering,
the number of clusters is set to 2 to differentiate between the positive and neg-
ative classes. Thus, each instance is assigned with 2 membership degrees. These
are the degrees of being in cluster 1 and cluster 2, which sum up to 1. By
default, the higher membership degree determines the predicted cluster of the
instance. Thus, it can be said that a negative instance has been clustered to the
correct class if the resulting negative membership degree is 0.5 or higher. On the
other hand, it is considered misclustered when the negative membership degree
is less than 0.5. In OBU, all misclustered negative instances are removed from
the training set. In addition, to allow flexibility and avoid excessive eliminations,
an elimination threshold α−cut is introduced. The α−cut is set such that any
negative instance whose md is below the α−cut is removed from the training
set. Finally, a fuzzy set DnegOBU

is expressed as

DnegOBU
= {d ∈ Dneg | md ≥ α−cut} (1)

In this paper, the α−cut values between 0.3 to 0.5 were empirically experimented
to achieve the global α−cut that optimised the overall results. This will be
discussed in the next section.

2.3 Selection Process

In our framework, when two clusters are created, they may not be readily
matched with the two prior class labels. For linearly separable problems, this
can be resolved by simply finding the dominant class of the cluster. However, in
a complex dataset where both imbalance and overlap exist, an alternative and
principled approach to perform this matching process is needed.
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Fig.1 shows a complex scenario where the data is both imbalanced (minor-
ity:majority = 3:10) and highly overlapped as an example. The negative and
positive classes are presented with blue circle and red triangle, respectively. Per-
forming FCM clustering on the data resulted in two clusters showed in the left
diagram. The between-class border was roughly sketched with the grey line.
There are 80 and 100 negative instances in the left and the right clusters, re-
spectively. With OBU, the 100 negative instances in right cluster are supposed
to be eliminated. Note that these are the majority of the negative class. Thus, a
criterion to eliminate a smaller number of negative instances cannot be applied
as a selection process of OBU. It is also worth pointing out that judging from
the positive class is not valid for all cases either.

Fig. 1. Original data with the cluster boundary from FCM clustering (left), correctly
undersampled data (middle), incorrectly undersampled data (right)

In imbalanced and overlapping domains, besides this example, there are various
problematic cases that prevent the clustering labels to be matched correctly
with the actual labels. Therefore, our proposed framework has been adapted to
handle such ambiguous scenarios (Fig.2). To achieve this, negative instances in
both clusters (batch 1 and 2) are considered for elimination, one at a time. One
batch remains in the training set while the other is eliminated. As a result, two
classification models are obtained. Since the positive class should be more visible
in the overlapping region after applying OBU, the model obtained from the
correctly undersampled case is expected to yield higher positive class accuracy.
The selection is performed at this stage and the other model is discarded.

3 Experiment

3.1 Setup

Three different experiments were carried out to evaluate our proposed method.
First, the datasets were classified after applying OBU. Second, we compared our
results with the baseline which was simply classifying the datasets using Random
Forests with no undersampling. Finally, we reproduced one of the state-of-the-art
methods [10], and compared it with our proposed technique .

Random Forest (RF) was chosen as the baseline as it proved to be amongst
the top performing traditional machine learning algorithms [4, 5]. For all three
experiments, the default parameter settings for RF in caret package in R were
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Fig. 2. Overlap-based undersampling framework

used (500 trees, and
√
n features at each split, where n is the total number of

features in the dataset). In the first experiment, α−cut was set to 0.45 based on
empirical results over a range of α−cut values (0.3, 0.36, 0.42, 0.45, and 0.5).
The full code for reproducing is available on GitHub3.

The partitioning ratio of the training and testing sets is 80:20, and the 10-fold
cross-validation technique was adopted across the three experiments.

3.2 Datasets

In all experiments, 36 frequently used datasets in class-imbalance classification
were selected. These datasets are obtained from UCI and KEEL repositories.
Showed in Table 1, these datasets vary in terms of size (129 to 5472 instances),
imbalance ratio (1.87 to 129.44), and number of features (3 to 19). These vari-
ations allowed the proposed technique to be tested for its robustness under dif-
ferent situations.

3.3 Evaluation Metrics

The evaluation metrics used in the experiments were sensitivity and balance ac-
curacy. Sensitivity is the true positive rate (TPR). It receives the most attention
in imbalanced data classification since the positive class is of higher concern.
Higher sensitivity is desired; however, high sensitivity by itself is not sufficient
to assess a classifier. An overall classification performance is also needed.

Balance accuracy is a measure of the overall performance. Showed in Eq. (2),
balance accuracy is the average of the TPR and the true negative rate (TNR).
It is preferable to the traditional accuracy, which neglects the fact that the
cardinality of the positive class is relatively very small in imbalanced domains.

Balance accuracy =
TPR+ TNR

2
(2)

3 https://github.com/fonkafon/Overlap_based_Undersampling
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4 Results and Discussion

4.1 Results

As can be seen in Table 1, the proposed OBU produced the most favourable re-
sults among the different experiments and outperformed the recently proposed
undersampling technique, k-means clustering-based undersampling, which proved
to give comparable results with state-of-the-art methods [10]. Wilcoxon signed
rank tests indicate that by employing our approach, the classification improve-
ments over the baseline were statistically significant as detailed below.

Table 1. Comparative results

Dataset Instances ImbRatio Features nMajLeft OBU Sens OBU BA kmeans Sens kmeans BA Org Sens Org BA

Abalone09-18 731 16.4 8 287 0.75 0.7181 0.5 0.6186 0.375 0.6839
Ecoli1 336 3.36 7 170 1 0.9412 0.8 0.8902 0.8 0.8706
Ecoli2 336 5.46 7 146 0.9 0.9232 0.8 0.9 0.8 0.9
Glass016vs2 192 10.29 9 5 1 0.5571 0.3333 0.3952 0 0.5
Glass4 214 15.47 9 7 1 0.825 0.5 0.6875 0.5 0.7375
Haberman 306 2.78 3 97 0.75 0.6306 0.625 0.6125 0.3125 0.534
Ecoli0137vs26 281 39.14 7 89 1 0.9907 1 0.6111 1 0.9815
Ecoli4 336 15.8 7 169 1 1 1 0.9841 0.5 0.75
New-thyroid1 215 5.14 5 78 1 0.9722 1 0.9583 0.8571 0.9286
Vowel0 988 9.98 13 312 1 0.986 1 0.9078 0.9444 0.9722
Yeast5 1484 32.73 8 776 1 0.9688 1 0.941 0.5 0.7483
Iris0 150 2 4 77 1 1 1 1 1 1
Page-blocks13vs2 472 15.86 10 351 1 1 1 0.9773 1 1
Shuttle2vs4 129 20.5 9 60 1 1 1 1 1 1

Glass0 214 2.06 9 6 1 0.6429 0.7143 0.8393 0.5714 0.7857
Glass0123vs456 214 3.2 9 5 1 0.5156 0.9 0.9188 0.8 0.8688
Glass1 214 1.82 9 5 1 0.5185 0.6667 0.7407 0.6667 0.8148
Glass6 214 6.38 9 4 1 0.6351 0.8 0.8865 0.6 0.8
Pima 768 1.87 8 86 0.9057 0.5028 0.7736 0.7568 0.6415 0.7308
Vehicle1 846 2.9 18 187 0.8372 0.5306 0.8372 0.8106 0.5814 0.7307
Vehicle2 846 2.88 18 233 1 0.772 0.9767 0.9644 0.9535 0.9767
Yeast1 1484 2.46 8 477 0.8824 0.7042 0.8588 0.7422 0.5647 0.7255
Ecoli3 336 8.6 7 185 0.8571 0.7952 0.8571 0.8286 0.2857 0.6345
Glass016vs5 184 19.44 9 5 1 0.5143 1 0.9 0 0.5
Glass5 214 22.78 9 7 1 0.8293 1 0.8902 0 0.5
Segmemt0 2308 6.02 19 577 1 0.9899 1 0.9937 0.9846 0.9923

Yeast05679vs4 528 9.35 8 209 0.8 0.8526 1 0.7526 0.5 0.7447
Yeast1289vs7 693 22.1 8 461 0.3333 0.6639 1 0.5027 0.1667 0.5806
Yeast1458vs7 459 14.3 8 337 0.1667 0.5455 0.5 0.428 0 0.5
Yeast4 1484 28.1 8 768 0.8 0.8493 1 0.507 0.3 0.65
Yeast6 1484 41.4 8 775 0.7143 0.8122 1 0.5173 0.4286 0.7126

Abalone19 4174 129.44 8 1661 0.5 0.5707 0.8333 0.6848 0 0.5
Glass2 214 11.59 9 39 0.6667 0.5 1 0.7051 0 0.5
Vehicle3 846 2.99 18 341 0.7857 0.7381 0.8571 0.8095 0.3571 0.6349
Yeast2vs4 514 9.08 8 164 0.8 0.8946 1 0.9402 0.5 0.75
Yeast3 1484 8.1 8 675 0.7813 0.8414 1 0.9015 0.625 0.8068

The overlap-based undersampling method produced the best results across 26
and 23 datasets in terms of sensitivity and balance accuracy, respectively. It is
also shown that on 14 of these datasets, OBU won in both metrics, which far
outnumbered the k-means based technique. These results are highlighted in Table
1 as bold indicating that our method is winning and in italic indicating that
our method is winning over one method and having similar (tie) performance
to the other. However, it should be noted that most of these ties occurred with
the sensitivity value of 100%. In other words, these datasets are imbalanced
yet already linearly separable and do not need to be resampled. The results
suggest that our method improved the classification on most of the datasets.
At the same time, it was unlikely to hurt the classification performance on a
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linearly separable dataset, where the classification accuracy was already at the
maximum. This could be attributed to the fact that OBU only undersamples
negative instances in the overlapping region.

To further assess the significance of the improvements using our proposed
framework, one-tailed Wilcoxon signed rank tests were carried out. The resulting
p-values for OBU paired with the baseline and k-means undersampling on the
sensitivity were 1.16× 10−6 and 0.473, and of balance accuracy were 0.108 and
0.271, respectively. These results suggest that at the significance level of 0.05,
our method led to statistically significant improvements over the baseline on
sensitivity while the other pairs had insufficient evidence to conclude.

4.2 Discussion

By applying the proposed undersampling framework, it was possible to remove
negative instances from the overlapping region, where misclassification often
occurs. This made positive instances more visible to the learner, and as a result,
the sensitivity values of most datasets were improved.

Table 1 presents 4 groups of the results based on the classification improve-
ments obtained with OBU. The first group is the datasets that OBU produced
winning results in both sensitivity and balance accuracy. The second group has
wining sensitivity values but not balance accuracy. This must have occurred due
to the tradeoff between the accuracy of the positive and the negative classes in
the overlapping region, and thus can be slightly adjusted for a more compromised
result. In the third group, OBU produced the best results in balance accuracy,
but not the sensitivity. This implies that more undersampling can be applied
to further eliminate the overlapped negative instances. For the last group, our
approach outperformed the baseline but not the k-means based undersampling
method. Our assumption is that the variation in the results is due to the inher-
ent data characteristics. Also, it should be noted that these results are based on
a global empirical setting of the α−cut value. In other words, fine-tuning this
value for individual datasets could potentially improve the results further.

Unlike common undersampling methods, our framework minimises informa-
tion loss by undersampling from the overlapping region only, which also results in
maximising the visibility of the positive instances. This is evident by higher sen-
sitivity and balance accuracy obtained in most datasets as the tradeoff between
lower negative accuracy and higher positive accuracy has been compromised.

5 Conclusions and Future Work

In this paper, a new overlap-based undersampling framework was proposed. By
removing negative instances from the overlapping region, an exceptional im-
provement in the minority class accuracy with a relatively small trade-off of
the TNR was achieved, resulting in a significant improvement in sensitivity.
This technique has proved to enhance the classification of well-known imbal-
anced datasets and outperformed the state-of-the-art method in most of the
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demonstrated cases. These results can be attributed to several advantages of
our method over other common undersampling techniques. These include: first,
the amount of undersampling done by OBU is proportional to the overlap degree;
second, OBU is unlikely to eliminate instances outside the overlapping region,
which minimises information loss. For a future direction, we are experiment-
ing to further improve this undersampling framework, especially in the selection
process and an adaptive α−cut approach.
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