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Abstract— This paper compares the statistical error 

tolerances of the single neural network (SNN) and the ensemble 

neural network (ENN) recognition efficiencies, when both the 

SNN and ENN are applied to recognize partial discharge (PD) 

patterns. Statistical fingerprints from the phased and amplitude 

resolved patterns of PDs, have been applied for training and 

testing the SNN and the ENN. Statistical mean and variances of 

the SNN and ENN recognition rates were compared and 

evaluated over several iterations in order to obtain an acceptable 

value. The results show that the ENN is generally more robust 

and often provides an improved recognition rate with the higher 

mean value and lower variance when compared with the SNN. 

The result implies that it is possible to determine the accurate 

statistical error tolerances for the SNN and ENN recognition 

probability for correct diagnosis of PD fault. 

Keywords— Partial discharge; Single neural network; 

Ensemble neural network. 

I. INTRODUCTION  

Partial discharge (PD) is a well known electrical discharge 
phenomenon that occurs within the high voltage insulation 
system. It occurs as a result of sustained high electric field 
stress. In recent times, the pursued goal has been identifying a 
robust technique for classifying PD patterns using several 
pattern recognition techniques. Among these techniques, the 
neural network (NN) was widely applied, due to its ability to 
learn well from few training examples [1, 2, 8]. Over the last 
few years, the author of this paper has been trying in 
successive stages to determine an improved PD pattern 
recognition technique using the ensemble neural networks 
(ENN) [2, 3]. An ENN is a model that trains many NN 
topologies and combines their output predictions [3]. From the 
literature [2], statistical confidence limits of recognition rates 
of the ENN have been determined and the results were 
compared with the widely applied single neural network 
(SNN). However, these results were based on training and 
testing of the ENN and SNN based on a small dataset. In order 

to improve the situation, this paper determines a more reliable 
ENN and SNN statistical recognition rates using relatively 
large dataset. 

To discriminate PDs, statistical features from φ-q-n (phase-
amplitude-number) patterns were widely applied as training 
and testing fingerprints for several NN models. Gulski [1] 
obtained high recognition rates for PD patterns results using 15 
statistical fingerprints as training and testing set for several NN 
models. Following Gulski, this paper applies statistical features 
from the φ-q-n patterns to train and test both the ENN and 
SNN. The φ-q-n patterns were obtained over a lengthy time 
period, at the level of initial insulation degradation. The overall 
focus of this paper is to determine a robust technique that can 
effectively discriminate and recognize PD patterns and can 
serve as a practical tool for diagnosing complex PD 
phenomenon. 

II. PD  MEASUREMENT PROCESS 

The PD measurement process follows the IEC 60270 PD 
standard [4]. The high voltage (HV) A.C system comprises of a 
HV transformer, an AC measurement capacitor, a PD 
measurement capacitor, an over voltage protection, a current/ 
voltage regulating devices and a PD detection circuit. In this 
Investigation, a power frequency of 50Hz is used in all the 
experiments. Fig. 1 shows the general HV set-up showing the 
HV transformer, two capacitors, a sample test-cell. An earth 
rod was applied to discharge the HV system as necessary. 

The PD measurement software as developed by the HV 
laboratory of Glasgow Caledonian University measures the 
apparent charge associated with the PD and generates the φ-q-n 
patterns over longer stressing period. Four PD faults are 
simulated. These include voids in polyethylene-terephthalate 
(PET) insulation, electrode bounded cavity, surface discharge 
in air and surface discharge in oil. 



 
Fig. 1: Photo of the HV system; (1) HV transformer (2), AC capacitor,  

(3) PD measurement capacitor, (4) Earth rod, (5) Test cell. 
 

Surface discharge in air was investigated by placing a small 
brass ball of 55mm diameter on Perspex insulation as shown in 
Fig.2a. Discharges occur as a result of electric field 
enhancement at the ball-perspex contact and extended beyond 
the contact point of the electrode and perspex. The inception 
voltage is approximately 4.2kV and the experiment was 
conducted at approximately 5kV (i.e. 20% above the inception 
voltage). The Perspex was stressed for 4 hours and the φ-q-n 
patterns captured continuously over this period. 

For single void, an experiment was carried out using a set 
of samples containing a cylindrical void in PET, as shown in 
Fig. 2b.  Nine PET layers were created for the experiment and 
the void was located at the middle of the PET layers. The 
inception voltage was 2.82kV and measurements were taken at 
3.6kV. PD data were captured from the start of the experiment, 
up to 7 hours of stressing period. 

Discharges from electrode bounded cavity were 
investigated by creating a 10mm diameter cavity at the topmost 
PET layer adjacent to the HV electrode. This is to ensure that  

 

 

Fig. 2:Simulated PD faults: a) surface discharges in air; b) 0.6mm single 
void; c) corona in air, and d) surface discharge in oil. 

the void has an electrode surface at one side and the PET 
surface on the opposite side. Similar to the single void 
experiment, nine PET layers were used, including the one 
possessing the void (see Fig. 2c). For this experiment, a voltage 
of 3.6kV was applied and then φ-q-n patterns captured at 
15mins intervals throughout the 7-hour degradation period. 

Surface discharge along an oil-pressboard interface was 
investigated by means of an experimental test cell as shown in 
Fig. 2d. A section of pressboard was embedded in a container 
with Castrol insulating oil. A needle was placed at a 
predetermined angle to the pressboard surface and certain 
distance from a block earth electrode, also placed on the 
pressboard surface. The needle was of length 30mm and has a 
tip radius of 10μm. Point to earth gap distance of 25mm was 
considered. 

III. THE ENSEMBLE NEURAL NETWORK 

An ENN is a well known technique for training a number 
of SNN models and aggregating their component predictions. 
The inspiration for this technique is based on the fact that by 
aggregating the outcomes of a number of trained SNNs, the 
generalization performance of the SNN might be enhanced. It 
has been shown in the literature [6] that this is only possible if 
the components SNNs forming the ensemble are 
simultaneously diverse and accurate. Among several 
techniques for training the SNNs in the ensemble, 
bagging(bootstrapping) has been widely applied. In bagging, a 
number of training fingerprints are generated by bootstrap 
resampling of the original dataset. In this case, several training 
fingerprints are repeated while others are simply eliminated. 
One merit of the bagging process is that it helps prevent over 
fitting common to NNs, and also provides accurate values of 
bias and variance [7]. Therefore, this paper applies the bagging 
technique to choose fingerprints from the original input 
parameters that serves as input to the constituent SNNs in the 
ensemble. The ENN prediction was determined by combining 
the component SNN outputs in the ensemble, using the 
dynamically weighted averaging of the networks [3]. 

IV. STATISTICAL FINGERPRINTS FOR THE SNN AND ENN 

This paper uses 15 statistical fingerprints as input and 
output parameters to the SNN and ENN. Statistical parameters 
of interest comprise the  skewness (sk), kurtosis (ku), discharge 
factor, cross-correlation (cc) and modified cross-correlation 
(mcc), obtained from the two-dimensional derived plots of the 
φ-q-n patterns, i.e. Hn(φ)+, Hn(φ)-, Hn(q)+, Hn(q)-, Hqn(φ)+, 
Hqn(φ)- plots. The definition of the 2D distributions for 
evaluating the SNN and ENN is shown in Table 1.  

Figs. 3-6 show the mean statistical parameters for each PD 
fault, which were applied as inputs in order to evaluate the 
performance of both the SNN and ENN. It is obvious that there 
exists statistical variability between the PD patterns considered. 
The sk and ku appears to show higher variability and 
distinction between the PD patterns compared to the other 
statistical measures, because their high variance statistic. 
Additionally, the ku of Hn(q) distributions consistently 
demonstrate higher values and distinction when compared to 
the other parameters. This is due to the highly peaked nature of  



Table 1: 2D derived plots from the  φ-q-n patterns 

Distribution Description 

Hn(φ)+ Pulse-count distribution (+ve half cycle) in phase 

Hn(φ)- Pulse-count distribution (-ve half cycle) in phase 

Hqn(φ)+ Mean pulse-height distribution (+ve half cycle) in phase 

Hqn(φ)- Mean pulse-height distribution (-ve half cycle) in phase 

Hn(q)- Pulse amplitude distribution (+ve half cycle) in amplitude 

Hn(q)- Pulse amplitude distribution (-ve half cycle) in amplitude 

 
the Hn(q) plots, especially at the lower amplitudes [3], making 
them suitable for statistical discrimination of PD faults. 

V. RESULTS AND DISCUSSION 

It is widely known that the SNN gives a different 
performance assessment with different initial states [5]. To 
analyze these variations, this paper compares the mean and 
variance of the recognition efficiencies for both the SNN and 
ENN, when applied to discriminate between the void, surface 
discharges in air, surface discharge in oil and corona in air. The 
statistical measures of mean and variance permits the 
determination of the statistical error tolerances for the SNN and 
ENN recognition rates for PD fault geometries.  To simplify 
this analysis, relevant statistical abbreviations for the statistical 
indicators were considered and described in Table 2. N 
represents the number of simulation iterations. For effective 
evaluation of the mean and variance recognition efficiencies of 

the SNN and ENN, 100 iterations were considered. This is 
desirable in order to obtain high degree precision on the SNN 
and ENN recognition efficiencies. Previously [2], the ENN has 
demonstrated an improved performance assessment when 
compared with the SNN, but this result was based on limited 
data. For reliability and better discrimination of PD geometries, 
this paper applies relatively large data set of PD faults for the 
SNN and ENN evaluation. 

Both the SNN and ENN were evaluated using statistical 
fingerprints of the void, surface discharges in air, surface 
discharge in oil and corona in air. Each set of fingerprints 
composed of a  matrix (140 x 17). The first 15 columns were 
taken as the input fingerprints, while the last 2 represent the 
output data. The input fingerprints were the PD statistical 
features in Fig. 4 while the output parameters for the 4 PD fault 
types were [0 1], [1 0], [0 0] and [1 1]. For each PD fault 
geometry, out of the 140 input row vectors, 40 were selected as 
the testing fingerprints for the developed SNN and ENN. For 
the ENN, six networks having the same arrangement, and then 
trained and tested from the 140 input row vectors of 
bootstrapped resample data. In choosing the best SNN 
arrangement for the ensemble, the hidden layer, learning and 
momentum rates were adjusted and the best parameters are 
selected for comparison and these were applied as the 
configurations for the ENN. One hidden layer with 20 neurons 
were chosen, having learning and momentum rates of 0.06 and 
0.9 respectively. Relevant abbreviations applied in this paper 
are presented in Table 2. 

 
Fig. 3: Average values of statistical parameters for single void. 

 

 
Fig. 4: Average values of statistical parameters for surface discharge in air. 

 

 
Fig. 5: Average values of statistical parameters for electrode bounded cavity. 

 

 
Fig. 6: Average values of statistical parameters for surface discharge in oil. 

 

 



Table 2: Description of Abbreviations of mean and variance used. 

Abbreviation equation Description 





N

i

iSS X
N 1

1
  

mean of the recognition rates of the 
SNN, where Xis  are the individual 

recognition result; 





N

i

iEE X
N 1

1
  

mean of the recognition rates of the 

ENN, where XiE  are the individual 

ENN recognition result; 





N

i

SiSS X
N 1

2)(
1

  
Variance  of the recognition rates 

of the ENN, where Xis  are the 

individual ENN recognition result; 





N

i

EiEE X
N 1

2)(
1

  

mean of the recognition rates of the 

ENN, where XiE  are the individual 

ENN recognition result 
 

In order to investigate the effectiveness of the SNN and 
ENN in recognizing different PD faults, the approach 
employed is as follows: Training both the SNN and ENN with 
PD fingerprints of one geometry and then testing with the 
fingerprints of the other PD faults geometries.Similar 
permutation is applied to the other PD fault samples. 

Figs. 7-10 show plots  of  the  mean values, variances (i.e. 
µS,  µE, σS, σE) of the recognition efficiencies of the SNN 
and ENN, when they trained with any of the PD fault samples  

 

 
Fig. 7.  Plot of σS, σE , when both SNN and ENN are trained with electrode 

bounded cavity and then tested with all 4 PD faults. . (µE and µS are the mean 
values of the variance intervals of the ENN and SNN respectively). 

 

 
Fig. 8.  Plot of σS, σE  when both SNN and ENN are trained with surface 

discharge in air and then tested with all 4 PD faults. (µE and µS are the mean 

values of the variance intervals of the ENN and SNN respectively). 

(void, surface discharges in air, surface discharge in oil and 
corona in air ) and then tested with all the PD fault φ-q-n 
samples taken independently from the 4 PD samples. The 
results show that for the ENN and SNN trained and tested 
with PD φ-q-n fingerprints of same PD geometry fingerprints, 
µE, always demonstrate higher mean recognition rate and 
better (i.e. lower) recognition rate statistical error limits when 
compared with µS, σS. For the SNN and ENN trained and 
tested with different PD datasets, their confidence limits 
clearly show that the ENN does not always produce an 
improved result over the SNN. This clearly indicates that there 
are some instances when the SNN might outperform the ENN 
at certain initial weights and biases. This investigation may be 
applied as a means of recognition if different biases and 
weights are used to obtain a number of SNN and ENN 
outputs. It is clear from this result that the ENN appears to be 
generally more robust when compared with SNN in 
discriminating PD patterns. However, this has to be verified 
with more complex PD statistical fingerprints. Compared to 
the literature [2], this result shows lower statistical error 
tolerance due to the relatively large PD fingerprints applied 
for the SNN and ENN evaluation. 

 
 

 

 
Fig. 9.  Plot of σS, σE  when both SNN and ENN are trained with surface 

discharge in oil and then tested with all 4 PD faults (µE and µS are the mean 

values of the variance intervals of the ENN and SNN respectively). 

 

 
Fig. 10.  Plot of σS, σE  when both SNN and ENN are trained with 0.6mm void 

and then tested with all 4 PD faults. (µE and µS are the mean values of the 
variance intervals of the ENN and SNN respectively) 



VI. CONCLUSION 

In this paper, statistical error tolerances of partial 
discharge recognition rates using the SNN and ENN have 
been determined. Statistical data obtained from the φ-q-n 
patterns were applied in training both the SNN and ENN. In 
comparison to the SNN, the ENN has shown improved 
recognition performance in discriminating a number of PD 
fault samples using the same training and testing fingerprints. 
The ENN consistently shows higher average recognition rate 
and lower statistical error over the SNN for repeated 
iterations. The result obviously indicates the ENN can be a 
potential tool for practical PD recognition applications. This 
result implies that it is possible to know the statistical error 
tolerances of PD recognition rates using the NN tools that can 
provide reliable interpretation of PD fault cases within any 
High voltage set-up. Future work concentrates on determining 
the robustness of the ENN is discriminating different noise 
sources in partial discharge patterns. In order to avoid lengthy 
simulations, there is also need to investigate the optimum 
weights of SNN and ENN topologies for PD classification. 
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