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Abstract

Activity Recognition is concerned with identifying the physical state of a user at a par-

ticular point in time. Activity recognition task requires the training of classification

algorithm using the processed sensor data from the representative population of users.

The accuracy of the generated model often reduces during classification of new instances

due to the non-stationary sensor data and variations in user characteristics. Thus, there

is a need to adapt the classification model to new user characteristics. However, the

existing approaches to model adaptation in activity recognition are blind. They con-

tinuously adapt a classification model at a regular interval without specific and precise

detection of the indicator of the degrading performance of the model. This approach

can lead to wastage of system resources dedicated to continuous adaptation.

This thesis addresses the problem of detecting changes in the accuracy of activity recog-

nition model. The thesis developed a classifier for activity recognition. The classifier

uses three statistical summaries data that can be generated from any dataset for sim-

ilarity based classification of new samples. The weighted ensemble combination of the

classification decision from each statistical summary data results in a better performance

than three existing benchmarked classification algorithms.

The thesis also presents change detection approaches that can detect the changes in the

accuracy of the underlying recognition model without having access to the ground truth

label of each activity being recognised. The first approach called ‘UDetect’ computes

the change statistics from the window of classified data and employed statistical process

control method to detect variations between the classified data and the reference data

of a class. Evaluation of the approach indicates a consistent detection that correlates

with the error rate of the model. The second approach is a distance based change

detection technique that relies on the developed statistical summaries data for comparing

new classified samples and detects any drift in the original class of the activity. The

implemented approach uses distance function and a threshold parameter to detect the

accuracy change in the classifier that is classifying new instances. Evaluation of the

approach yields above 90% detection accuracy. Finally, a layered framework for activity

recognition is proposed to make model adaptation in activity recognition informed using

the developed techniques in this thesis.

Keywords: Activity Recognition, Change Detection, Classification Algorithm, Sen-

sors.
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Chapter 1

Introduction

Sensor rich devices have become commonplace items in the hands of billions of people

worldwide. They are gaining improvements in computing power and are equipped with

sensors such as accelerometer, gravity, gyroscope, microphone Bluetooth, and other

wireless communication interfaces. This advancement has revolutionised the way people

interact and open up innovations in many other application areas. For example sensors

on the mobile phone can be utilised individually and collectively to support myriads of

applications in healthcare [6], environment monitoring [57] and location awareness [60].

These applications can enhance the user experience by way of providing context-rich

information to the users at the right time and place.

Context recognition is one of the application areas of ubiquitous computing. The ele-

ments of context include activity [9], surrounding sound events [57], emotion state [76],

location [60] and phone state [89]. Monitoring of these contexts can be used to develop

applications for providing custom services to the users. For example, monitoring of user

physical activities can facilitate the development of health and fitness applications. It

can also be used to monitor physical activity of people with motion related ailments

to provide an emergency alert to caregivers. Also, users can collaboratively share their

activity status. For example, a context service integrated with a phone book can auto-

matically show the activity state of each contact to enable the user to know the status

of the contact list and decides whether to call them or not in such situations.

1
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Activity recognition is a component of context that is useful to most applications that

customise their services to the user. However, to realise the full potential of developing

scalable activity recognition in the face of the diverse user population and non-stationary

sensor data, the need to provide adaptive and personalised recognition cannot be un-

derestimated. A good activity recognition system should be able to adapt to different

environment and users.

The traditional approach to motion-based activity recognition involves the collection of

sample data from a group of users who perform the designated set of target activities

to be recognised by the system. The sensor data obtained is pre-processed to extract

more informative features to represent the raw data. After this, the data is used to

train a classifier that can distinguish different activity patterns from the training set.

The assumption behind this practice is that the training data contains all the possible

variations that would be encountered in the new unseen data in the future. However, this

assumption may not hold, given the fact that, it is not possible to anticipate all possible

variations that may occur during recognition time. Different variations can happen

in the data due to differences in user characteristics that are not captured during the

training time. Research has shown that pattern of activity of a user can serve as a form

of personal identification due to the uniqueness of how gait characteristics vary from

user to user [43]. Thus, it is practically challenging to create a one-size-fits-all model

that caters for all user characteristics embodied in variations in age, weight, gender and

other environment factors for activity recognition.

The reasons for the variations in users that lead to model inaccuracy across different users

can be attributed to various user characteristics such as weight, age, gender and height.

Also, data from the device sensors may exhibit variations due to different positioning of

the device during training and recognition. Catering for all these situations would require

an enormous data collection efforts to cover all the possible anticipated changes which

are impractical and costly. Hence, adaptive systems capable of incremental learning have

been proposed as a better solution. Such systems will adapt to the non-stationary nature

of the evolving data and subsequently updates the classifier model so as to improve its

accuracy on the fly. However, a continuous adaptation of the model without precise
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detection of degradation in the accuracy of the classifier will lead to consumption of

system resources and reduce the efficiency of the recognition model. Therefore, this

thesis presents approaches that focus on developing change detection framework that is

non-intrusive and resource efficient for motion-based activity recognition.

1.1 Problem Context

The different characteristics possessed by various categories of people introduce a unique

challenge to activity recognition. The reason being that there is always a variation be-

tween how two users perform the same activity [46, 100]. Also variations exist within

individual ways of performing an activity, which may depend on the person well-beings

such as stress, level, emotional state, e.t.c. A classifier that is trained from the prelim-

inary data of some users will encounters reduced performance when used by another

user with varying characteristics from the reference training data. Model adaptation

has been the main approach to cater for reduced classifier accuracy as a result of the

aforementioned variations [47]. The adjustment of the model is carried out by updating

the recognition model at a periodic interval with new ground-truth information. This

adaptation is normally carried out without detecting the change that leads to model in-

accuracy. This blind adaptation without precise detection of the indication of variations

is a wasteful task. Thus, change detection in the underlying model will eliminate the

blind adaptation and allow the system to be used optimally.

Change detection in activity recognition is a unique and challenging problem because

it encompasses two intertwined domain of change detection and concept drift detec-

tion. In one part, change detection considers detecting variations in an unlabelled data

stream while concept change detection focuses on detecting changes in the concept being

learned from a stream. That is, the emphasis is on detecting changes in the conditional

distribution of the output labels while the conditional distribution of the input attributes

remains unchanged [30]. Thus, many of the approaches in this regard rely on the ground

truth of the predicted label for monitoring the model degenerated accuracy. However,
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since drift in activity recognition does not only depends on the change in the distri-

bution of output variable and the ground truth of the predicted activity is not readily

available, many of the approaches for real concept drift detection will not work in this

case. Similarly, approaches that focus mainly on detecting changes in the distribution

of the attributes have shortcomings since the change in activity recognition data does

not only manifest in the attributes but also in the simultaneous changes in the labels.

Therefore, to effectively detect a change in activity recognition where there may be a

simultaneous change in both the input and output data distribution in the absence of

ground truth, techniques suited for this unique problem is required. Hence, the work in

this thesis developed frameworks that are uniquely tailored to the challenging task of

change detection in activity recognition. In order to address the issue of eliminating blind

adaptation of activity recognition model, two main research questions are formulated as

follows:

1. How can change in accuracy of activity recognition model be detected in the ab-

sence of ground truth labels of the types of activities?

2. How can statistical data characteristics be used to identify changes in activity

recognition model accuracy?

1.2 Aim and Objectives of the Research

The aim of this research is to develop techniques for change detection in activity recogni-

tion. The source of changes in activity recognition model often arises from the variations

in users’ characteristics, and it manifests in degenerating performance in the accuracy

of the recognition model. The specific objectives of the research are:

1. Develop a framework to incorporate change detection in activity recognition model

without access to ground truth for error monitoring.

2. Develop a classification algorithm that utilises reduced statistical data summaries

derived from the original data for weighted ensemble nearest neighbour classifier.
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3. Develop change detection techniques that in part utilised the baseline data as

reference data to detect changes in the new set of classified examples.

1.3 Key Contributions of the Thesis

This thesis contributes to the development of algorithms for change detection in activity

recognition. A change detection framework for activity recognition is developed. The

framework leverages on the data characteristics without recourse to ground truth to

detect classifier model degrading performance. The primary contributions of this thesis

are the following:

1. Development of data characteristics from activity patterns: The thesis

proposed three statistical data characteristics that capture the patterns in an activ-

ity dataset. The three data characteristics proposed included the centre, minimum

and maximum which, are obtained from micro-clusters created from an activity

class. These three characteristics capture the boundaries of a particular pattern

in the activity dataset, and they are used as a summary for the whole data in the

micro-cluster.

2. Development of a clustering and nearest neighbour based classifier (Clus-

terNN) for Activity Recognition: The classifier employs the statistical data

summaries to compute the similarity between new instances and the data sum-

maries. The weighted ensemble combination of the classification decisions from

each data summary results in a better performance than three existing bench-

marked classification algorithms widely used for activity recognition.

3. Development of Unsupervised Change Detection Techniques: To avoid

blind adaptation, change detection techniques were developed to monitor the evolu-

tion of the performance of activity recognition model. Two approaches for change

detection in activity data developed contributed to knowledge in the following

ways:
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• Unlike other approaches for change detection that utilise ground truth label

to monitor the error rate of a model, the detection framework developed here

can detect classifier errors without access to the ground truth.

• The approach developed can handle both multi-dimensional and unidimen-

sional data change detections. This method is more useful in the real scenar-

ios of the multi-sensor data stream for activity recognition compared to other

approaches that deal with unidimensional data only.

1.4 Thesis Structure

This thesis has seven chapters. The rest of the thesis is organised as follows:

Chapter 2 Literature Review: This chapter provides the theoretical and

practical underpinning of activity recognition systems. It identifies the var-

ious schemes of adaptation in activity recognition, all of which are blind

adaptations without explicit detection schemes. This chapter also discusses

various approaches for change detection in unlabelled data in one hand and

that of labelled data in another hand.

Chapter 3 Benchmark Algorithms and Datasets: This chapter presents

background details about the general research framework of this thesis. The

chapter also describes the datasets used for the evaluation of the base learning

algorithm and the change detection techniques. Also, the chapter presents

the evaluation metrics employed in the research.

Chapter 4 ClusterNN: A Clustering and Nearest Neighbour Based

Classifier for Activity Recognition: presents the base classification algo-

rithm developed in this thesis. The algorithm builds on the concept of nearest

neighbour and clustering to develop an hybridised algorithm that is suitable

for the mobile environment with limited computational resources.

Chapter 5 Unsupervised Accuracy Change Detection for Activity

Recognition: Existing approaches to concept change detection rely on the

availability of ground truth labels to monitor the error rate of the online
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classification algorithm. The monitoring of the change in the distribution the

error rate serves as the indicator for the change detection in the underlying

distribution of the data. This thesis presents a novel approach that does not

rely on the availability of ground truth in other to detect the changes in the

model accuracy degradation. This chapter presents the methods developed

and the evaluation of the method in addition to the results obtained.

Chapter 6 Distance Based Change Detection Technique for Activ-

ity Recognition: While the previous chapter is dedicated to detecting the

structural change in the accuracy of the model. The chapter presents another

improved approach that locates the actual point in time the accuracy of the

underlying model begins to degrade.

Chapter 7 Conclusion: This chapter concludes the thesis with the pro-

posed layered framework for activity recognition system based on the devel-

oped techniques. It also states the summary of the contributions of the thesis

and the proposed relevant future work.



Chapter 2

Literature Review

2.1 Introduction

Recognition of user activities is an important task in pervasive computing. It

provides contextual information to the computing platform so as to adapt their

functions to the users’ context. The physical activities of a user are part of the

context that can be fed to a computing platform in order to provide enhanced

computing services to facilitate quality user experience. The recognition of ac-

tivity has a wide area of application such as personalised healthcare monitoring,

surveillance and context aware awareness [55, 77, 81]. There are various kinds of

sensors for recognising activity depending on the application areas and the types

of activity to be recognised. However, a key issue in activity recognition is the

need to adapt a recognition model to the varying user characteristics. Various

approaches have been prescribed, but they all have the demerit of being blind

approaches. Thus, the need for a change detection in the model before starting

the adaptation process.

The rest of this chapter is organised as follows: Section 2.2, gives the definition of

activity and identify its different categories. Section 2.3 provides a brief overview

of the process of machine learning approach for activity recognition. Section 2.4

focused on the discussion of the different type of sensors that are being used for

8
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activity recognition. Section 2.5 presents the different approaches to model adap-

tation. In Section 2.6 the methods of change detection in unlabelled data stream

are examined while Section 2.7 discusses the methods of change detection in la-

belled data stream. Section 2.8 outlines the conclusion from the literature and the

summary of the chapter follows in Section 2.9.

2.2 Definition and Types of Activities

Activity recognition is the computational task of detecting the state of physical

action of a user from sensor data at a particular point in time. There are many

types of activities that have been subject of research in the literature and there is

no general consensus on their categorization. An attempt to categorise activities

is made by Huynh [36], who proposed 3 categorization of activities namely: ges-

tures, low level and high level activities. Gestures are brief and distinct body part

movements such as taking a step, bending the arm, waive the arm e.t.c. These ac-

tivities can occur within few seconds. Low-level activities on other hand are short

duration sequences of bodily movements (running, walking) or a distinct station-

ary posture (standing or sitting). The recognition and monitoring of low-level

activities has been a topic of interests over the years. Shahmohammadi et. al. [85]

collected smartwatch accelerometer sensor data on five low-level activities of run-

ning, walking, standing, sitting, and lying down and evaluated the accuracy of four

supervised machine learning algorithms on the collected data and the efficiency of

active learning in improving the baseline classifier accuracy. Further examples of

low-level activity recognition studies were conducted in [15, 20, 42, 68]. These

show that activity recognition is a topical subject with lot of interest. High-level

activities are composed of a set of low-level activities, for example, the high-level

action of shopping consists of series of locomotion task like walking, standing. A

distinctive subset of high level activities known as activity of daily living or in-

strumental activity of daily living are also common in the literature due to their

importance in supporting healthy living in intelligent homes such as monitoring
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elderly activities in homes, and assisted living of people with limited and impaired

mobility [98].

Furthermore, an in-depth look at the literature reveals that there are other types

of activities which have received the attention of activity recognition researchers

that do not fit directly into the categorization given above. For example, health-

related activities such as sleep and stress [6, 46] and fall detection [23, 31, 32] and

workshop or assembly activities [59] have also been researched in the literature. A

survey on activity recognition [51] codifies a flexible categorization of activities as

presented in Table 2.1. These activities can be recognised with sensor data from

smartphone sensors or other types of wearable sensors.

Group Activities

Ambulation Walking, running, sitting, standing still, ly-
ing, climbing stairs, descending stairs, riding
escalator, and riding elevator.

Transportation Riding a bus, cycling, and driving.

Phone usage Text messaging, making a call.

Daily activities Eating, drinking, working at the PC, watch-
ing TV, reading, brushing teeth, stretching,
scrubbing, and vacuum

Exercise and fitness Rowing, lifting weights, spinning, Nordic
walking, and doing push ups.

Military Crawling, kneeling, situation assessment, and
opening a door.

Upper body Chewing, speaking, swallowing, sighing, and
moving the head.

Table 2.1: Categories of Activity Adapted from [51]

2.3 Supervised Machine Learning Approach to Activ-

ity Recognition

Activity recognition using supervised learning approach involves the use of col-

lected sample of activity data to train a classification algorithm to recognise similar

activities from new unseen samples. The generic process of this method can be bro-

ken down into four basic tasks namely: (i) Sensor Sampling and Pre-processing (ii)
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Segmentation and Feature Extraction (iii) Online or Offline Training of classifier

(iv) Model Generation and Deployment.

2.3.1 Sensor Sampling and Pre-processing

The first step in supervised machine learning approach to activity recognition is

the sampling of sensor data. Pre-processing steps are required to be applied to

the raw data to ensure their reliability and precision. Typical pre-processing ap-

proaches include sensor calibration and smoothing. Sensor Calibration is used to

eliminate the effects of zero-offset and drift sensitivity error sometimes encoun-

tered in accelerometer sensor data. Zero-offsets are incorrect data obtained from

the sensor other than the actual expected values. For example, a device at rest

is expected to give a magnitude acceleration of 9.8m/s2. This value is the sum

of acceleration forces along each of the three axes with an x-axis and y-axis hav-

ing zero values and z-axis having 9.8m/s2 due to the gravity effect. Any value

greater or less than this is an offset error. Calibration requires the computation of

scaling factor and offset values along each orthogonal axis of the accelerometer to

compensate for the drift and offset error. A traditional approach to calibration is

to determine the positive and negative g-force along each axis of the device [109].

This process is done by precise positioning of the device along the direction of

gravity to determine the positive and negative g-forces experienced along its six

orientations. After obtaining these values, the offset and the scale factor of each

axis is determined with Equations 2.1 and 2.2 respectively. The positive values

are the { b1, b2, b3 } while the negative values are the { b′1, b′2, b′3 }. The equations

show only the calibration for the x-axis. The other axes are computed the same

way.

offsetx =
b1 + b′1

2
(2.1)

scalex =
|b1 − b′1|

2
(2.2)

The demerit of this approach stems from the difficulty of determining the precise

g-direction to which the device must be pointed. Also, the procedure needs to be
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repeated several times to obtain accurate values. Doing this will be cumbersome

for the end user. Thus a more sophisticated and automatic calibration techniques

for accelerometer data have been presented in [108] and [56]. Smoothing or fil-

tering can also be applied to ensure continuous elimination of jitter in the signal.

Common filtering techniques include moving average, low pass filter and high pass

filter.

2.3.2 Segmentation and Feature Extraction

Segmentation is the process of grouping streaming time series raw sensor data

into manageable chunks that contain enough data to characterize an activity. The

amount of sample data within a segment or window is dependent on the predefined

window data collection strategy. Various windowing strategies have been proposed.

Figure 2.1 shows three common approaches to windowing. The first approach

collects chunks of data within every fixed period defined by the system while the

overlapping window method combines a fixed amount of previous window data

with the current window data by a predefined proportion. The third approach

does not employ time. The system collects a predefined amount of data of fixed

size n from the continuous flow of streaming sensor data. The overlapping window

has the advantage of catering for activity transition points while the rest do not.

The segmentation step is necessary because the point by point streaming sensor

data is inadequate to capture the signal variations associated with a given activity.

Also, an activity can span a period of seconds or minutes. Thus, a single raw

sample point cannot contain adequate information to differentiate the performed

activity [51].
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Figure 2.1: Segmentation of Raw Data with Windowing Approach

Feature Extraction is the process of extracting more meaningful information

from each segment of data obtained during the segmentation process. Time and

frequency domain features are the two basic categories of features that are com-

monly used in inertial based activity recognition. Time domain features are basic

statistical quantities computed over the raw data captured in a window. They can

be calculated from the individual orthogonal axis or the magnitude of the three

axes data. The descriptions and formulae of some of the commonly used statistical

features as described in [109] and [51] are summarised in the Table 2.2.

Frequency domain features on the other hand are derived by transforming raw

data in the window into the frequency domain by using Fast Fourier transform

(FFT). The FFT coefficients obtained from the transform serve as the amplitudes
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Features Formulae Description

Mean X = 1
n

n∑
i=1

xi The mean represents the DC com-
ponent of the motion signal.

Root Mean Squares rms =

√
1
n

n∑
i=1

x2i It captures the the intensity of the
signal and invariably the activity
being performed.

Variance 1
n−1

n∑
i=1

(xi −X)2 As a measure of dispersion, this fea-
ture indicates level of dynamics of
the signal, differentiating between
low dynamic activity such as walk-
ing and high dynamic activity such
running.

Standard Deviation

√
1

n−1

n∑
i=1

(xi −X)2 Same as variance.

Table 2.2: Time Domain Features

of the frequency components of the signal and its energy distribution. A number

of these coefficients can serve as a feature vector, and other features such as energy

(Equation 2.3) can be derived from the coefficients as well.

E =

n∑
i=1

FFTcoefi

n
(2.3)

The energy feature captures the level of intensity of the accelerometer signals

and invariably the activity intensity. The features extracted from the raw data

will allow machine learning algorithms to discriminate better between one activity

data and another rather than using ordinary raw data.

2.3.3 Model Generation and Deployment

Once the data has been processed they are ready to be used for inducing a classi-

fication model. Several supervised machine learning algorithms such as K-nearest

neighbour (KNN), decision tree, Naive Bayes and Gaussian discriminant analysis

have been proposed by different authors. Preece et al. [73] presents a detailed

review of many of the existing work on activity recognition. The model generation

can be performed directly on the device that is used for data collection or on a

remote server system. The choice of the platform for model generation depends on
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the scale of deployment of the resulting model. A single-user activity recognition

can utilise model generated on the user’s device while a large population activity

recognition will require model generated on a remote system by using a large pool

of data from many users. The generalised population model is prone to inaccurate

recognition due to differences in users characteristics while single-user model based

on each user data results in duplication of efforts. Thus, the compromise is to use

model adaptation to maintain the accuracy of the model.

2.4 Sensor Modalities for Activity Recognition Sys-

tems

Sensors are crucial components in activity recognition. There are many types of

sensors that can be used for activity recognition. Sensors can be used singly to

recognise a particular kind of activity or combined to improve recognition accuracy.

Multi-modal context recognition can also be done by combining sensors of differ-

ent types. The choice of sensors depends on factors such as the type of context

being sensed, the level of intrusiveness of the sensor, ease of use, level of recogni-

tion precision desired, availability and cost. This section presents the commonly

used sensors in activity recognition which include, wearable sensors, environment-

installed sensors and smartphone sensors. Wearable sensors are attached to the

user body e.g. 3D accelerometers; environment-installed sensors are fixed into a

position in the home or office environment e.g. wireless sensor network and camera

while smartphone sensors consist of many types of sensors integrated into mobile

devices.

Inertial Sensors

These sensors are by far the most widely used sensors for activity recognition.

Their usage stems from the fact that they are minuscule and can be easily carried

as wearable sensors attached to the users’ body. Besides, they have low cost and

are usable under different environments both indoor and outdoor to recognise

ambulatory activities. 3-D accelerometers are the usual inertial sensors used in
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activity recognition research. They are usually packaged in compact cases and

attached to the users at specific positions on their body parts, such as waist, arms,

knees, ankles and hips. An accelerometer measures the magnitude and direction of

acceleration forces along the three reference axes. These values obtained reflect the

level of intensity of the force experienced by the device which invariably indicates

the type of activity the user is performing. Before the advent of smartphones,

researchers used body-worn accelerometers for recognising activity. The pioneering

work of Intille and Bao [12] examined the use of sensors worn on different body

parts to accurately determine physical activities. Similar works in [54, 63, 70] also

focused on activity recognitions using body worn sensors.

Audio Sensor

The sound encountered in the surrounding of a user while performing an activity

is a good clue to the kind of activities. Audio based sensing is useful for recognis-

ing high-level activities of daily living such as driving and vacuuming the floor by

extracting characteristics sounds associated with such activities. Stork et al. [93]

presented a microphone based system that can recognise 22 different sounds cor-

responding to some human activities in a bathroom and kitchen context. They

extracted mel-frequency cepstra coefficients (MFCC) from sound samples and ap-

plied segmentation free approach that yielded a recognition rate of over 85%. An-

other work presented by Zhan and Kuroda [45] employed Haar-like sound features

with HMM to recognise 22 different activities related to personal cooking using

such as vacuum cleaning, shaving and drinking and other groups related to social

events such as shopping and outside dining. They claimed an average accuracy of

97% given their laboratory settings.

Although the use of audio for activity recognition is yielding promising results as

reported in the works cited above, the major challenges in real world situations

are the interference produced by background noise. Another limitation is that

sound cannot be used to recognise some activities such as ambulation and sports

activities since they do not produce characteristics sound to discern their audio

patterns.
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Image Sensor

Use of camera for activity recognition has been studied extensively in the literature.

There are two main approaches to recognising human actions from video i) a

direct recognition of human action from video sequences ii) inferring the actions

through observation of phenomenon such as location and object in the environment

of the user. The former is often hard to achieve due to variations in motion,

recording settings and inter-personal differences [72, 96]. The latter approach is

more practical and commonly used in recognising activity of daily living in the

home to monitor the inhabitant activity. For example, Duong et al. [24] presented

a work that installed multiple cameras in a room which observes a user performing

different actions. They divided the room into regions of squares with the various

objects of interest in each region. The list of visited regions is used to infer the

actions of the user such as watching television. The major limitation of image

sensors is that they can only observe the activity of objects within the vicinity of

their installed location. They are not pervasive enough to recognise activity of a

user outside their surroundings.

Object Use through Wireless Sensor Network and RFID

Another approach for capturing data to infer users’ activities is through their inter-

action and contact with some sensors in the environment. Wireless sensor networks

are used for activity recognition by connecting them to objects that people inter-

act with inside smart homes. The sensor node is usually equipped with various

types of sensors such as contact switches, pressure mats, mercury contacts, pas-

sive infrareds sensors, humidity sensors and temperature sensors. Data from these

sensors indicate activities such as sleeping using pressure mats sensors, bathing

using humidity sensors in the bathroom, cooking using temperature sensors in the

kitchen and in-the-room using contact sensors [98, 106]. Similarly, RFID (Radio-

frequency identification) is also used by attaching tags to objects in the house,

and users with RFID reader which can read information stored in those tags. The

activity is inferred based on the tag information on the objects interacted with by
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the user. Philipose et al. [71] implemented an activity recognition that attached

RFID tags with objects and user with a glove embedded with RFID readers to

recognise their activities.

Physiological and Vital Signs Sensors

These categories of sensors are used to infer activities by sensing physiological

parameters of the wearer of the device. The magnitudes of those parameters

indicate the intensity of the actions that the user is performing. Vital signs data

such as ECG (electrocardiogram), GSR (galvanic skin response), skin temperature

and oxygen saturation are being used to improve activity recognition. Parka et

al. [70] examined the use of physiological sensors for activity recognition and

concluded that they did not provide more useful data for activity recognition. They

observed that physiological signals correlate with the intensity level of activities,

they are not adequate to reflect the type of activity because physiological signal

reacts slower to activity changes. In another work, Tapia et al. [94] demonstrated

an activity recognition system that combines data from heart rate monitor and

five accelerometers. They arrived at the same conclusion that physiological sensors

did not respond well to activity changes. However, Lara et al. [52] assert that by

performing additional feature extraction on the physiological data, they can be

used to improve recognition accuracy. The main drawback of physiological sensors

is their high level of intrusiveness as the user has to attach the sensors to the basal

skin to read the signals.

Smartphone Sensors

Today’s mobile phones are becoming more and more powerful with many types

of sensors packaged into them. A typical smartphone has many of the individual

sensors discussed in the previous sections thereby making them a good platform

to infer more fine-grained user context. Incel et al. [37] presented a taxonomy of
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mobile phones based activity recognition.They identify three approaches to infer-

ring activities using a cell phone to include i) location, ii ) motion and iii) hybrid

phone-based activity recognition.

Location-driven recognition uses the location information of the users to infer

their activities. The primary focus was to recognise activities associated with

some places [19]. Reality Mining Project [25] used Bluetooth and cell tower data

to model user location and regular activity such as being at home, work and

elsewhere. They employed HMM algorithm conditioned on the hour of the day

and day of the week to build a predictive model and recorded a 95% accuracy.

Motion-based Activity Recognition uses phone embedded sensors like accelerom-

eter, gyroscope, cellular, Wi-Fi and GPS radio data from moving users to infer

their activities. Accelerometer enables inference of user activity by capturing the

acceleration force experienced by the device. The intensity of this force correlates

to the intensity of the activity that is being performed. Works carried out by

Bertchold et al. [13], Alvian and Muhammad [82] and many others utilised mobile

phone accelerometers for recognition of activity. Sohn et al. [92] used GSM data

collected by mobile phones to recognise walking, driving, stationary and daily step

count activities of users. They used fingerprinting principle, where GSM observa-

tions with a stable set of towers and signal strengths are used to infer not moving

and changes in the set of nearby towers and signal strengths indicate motion. An-

other related work presented by Anderson et al. [7] tracks daily exercises activities

of users and allow individual user to share and compare their activity level to oth-

ers. They employ an Artificial Neural Network (ANN) to analyse GSM cell signal

strength and visibility. The multitude of sensors on mobile phones allows the in-

ference of more fine-grained context information. Cenceme [64] draws inferences

from GPS, Bluetooth, accelerometer and audio data to infer user context. Lane et

al. [46], Alqassim et al. [6] and Natale et al. [67] utilized phone embedded sensors

to infer user sleep patterns for well-being monitoring.

It can be concluded that smartphones are versatile tools for performing sensing

of user context at a different level of details. The advantage of using smartphone
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sensors for activity recognition stems from the ubiquity of the phones and popu-

larity of usage among billions of people worldwide. It is less intrusive, and users

would not hesitate to carry the phones with them always.

2.5 Approaches to Model Adaptation in Activity Recog-

nition

Model adaptation is the process of adapting a base recognition model to the varia-

tion in the new unseen data which manifests in decreasing accuracy of the model.

The aim is to make the model usable across many people with diverse charac-

teristics such as age and gender. The process involves creating an initial model

from labelled training data which is then deployed into an application. The model

is adapted later to reflect the current characteristics of the new user. This sec-

tion examines the several approaches that have been proposed in the literature for

model adaptation and personalization of activity recognition. The approaches can

be broadly categorised into three namely: Model re-training with crowd-sourced

data, personalised single user model and incremental model adaptation.

2.5.1 Model Re-training

The model re-training approach adopts the strategy of updating an existing activ-

ity recognition model by replacing it with a newly created model after re-training.

The new updated models are created by adding data from a target user to the al-

ready existing data to re-train the classification algorithm that creates a new model.

The update can also be made by combining the target user data with the crowd-

sourced data that is similar to the data of the target user. The later approach was

adopted in [13, 48] while the former approach was adopted in [5, 13, 33, 41]. Lane

et al. [48] proposed Community Similarity Network (CSN) which uses similarity

metrics between target user’s data and other subscribed users’ data to generate a

new model to replace existing one periodically.
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CSN has a client and a server components. The client side runs on mobile phones.

It uses initial model downloaded from the server side to classify and store new

data from the phone sensors. The stored data comprising of both user-labelled

and unlabelled data is periodically uploaded to the cloud-hosted server. These

ground truth data are combined with other users’ data in the server to build

similarity networks and train an updated model which is pushed to the client

periodically. The similarity networks for each user is constructed by using crowd-

sourced data from other users. The network is composed of nodes and edges. Nodes

represent users connected by weighted edges to the target user. The weights on

the edges indicate the level of similarity between users regarding physical, lifestyle

and sensor data characteristics. The physical similarity metric between useri and

userj is computed using the mahalanobis distance between the vectors according

to Equation 2.4:

sim(−→x i,−→x j) = exp(−γ(−→x i −−→x j)>)Σ−1(−→x i −−→x j) (2.4)

−→x i −→x j are vectors of values of age, height, weight, well-being and physical activity

scores denoting physical characteristics of the two users. Σ is the covariance matrix

and γ is a scaling factor determined empirically. Lifestyle similarity is computed

according to equation 2.5:

sim(i, j) =
∑
f∈F

T>
f (i)

Tf (j) (2.5)

where Tf (i) represents lifestyle variable of type f for useri from the set F that

contains the GPS mobility patterns, diurnal patterns and distribution of activities

performed. GPS mobility patterns were obtained by accumulating GPS location

data and taking the frequency of how often the user stays in a location. Activity

distribution are computed by finding the frequency of each activity performed

while the diurnal lifestyle is computed by accumulating the number of times the

user is active for a particular period of time in the week scaled between 0 and

167hrs.
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Sensor data similarity, on the other hand, is computed by applying Locality Sen-

sitive Hashing (LSH) to generate a histogram that represents the collection of

each user data. The sensor data similarity between users is calculated from the

histogram representation of the data through LSH using equation 2.6.

sim(i, j) = T>
f (i)

Tf (j) (2.6)

The model re-training phase in the cloud employs the data from the weights of the

similarity networks to train three separate classifiers, one from each type of net-

work data using boosting. Finally, the three classifiers are unified and pushed to

the mobile clients to replace any existing model there. The major drawback of this

approach is that the process of generating the similarity networks is cumbersome

and generating a model for each subscribed user is un-scalable as population of

clients increases. The method also does not cater for detection of changes before

initiating the adaptation process which makes it updating the model unnecessarily.

This technique is refined in [5] to cater for scalability by generating a single model

for users within a similarity network and uses a natural language technique for

removing error in crowd-sourced labels. Although, it also does not cater for detec-

tion of model errors before adapting the model. Berchtold et al. [13] presented a

service based approach for personalised activity recognition. Their system employs

split-level architecture with mobile phones and server-based components. Person-

alization is achieved by user-generated data that is sent to the server for training a

personalised model. The performance is reported to be 97.3% if the training data

of the user evaluating the system is used and the phone is kept in the same body

position like pants pocket as it was during collection phase. However, the accuracy

drops to 60% if the data is collected with the phone placed at different locations.

If the target user data is excluded from the training set, the accuracy rate varies

between 63.3% and 80% which indicates the importance of personalization. How-

ever, this personalization or adaptation method does not incorporate detection of

changes, thereby unduly wasting resources.
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2.5.2 On-the-Phone Personalised Model Generation

The approaches in this category aim to eliminate the need for adaptation by using

individual user data for model generation on the mobile phone without recourse

to the cloud or pre-generated model on a computer. In this case, there is no

data collection from any other users to pre-train the model. It is only the data

from the target user that are collected and used to build a model on the phone

directly. At the beginning of using the activity recognition system, users are asked

to perform sample activities and the data collected during this set-up phase are

used to generate a personalised model.

The use of online personalised activity recognition has been explored as alternative

to generalised model adaptation and many of such work are presented in [87].

Kose et al. [41] proposed an improved KNN algorithm for personalised phone

based activity recognition. Initially, the approach extracted four features from

the raw accelerometer values. They extracted k maximum and minimum data

points from each class of activity in the raw x,y,z axes values of the accelerometer

dataset. They also extracted k nearest data points to the average of the datasets

and standard deviation of the whole datasets in each class. These data points

and their corresponding class tags are employed during recognition phase by using

nearest neighbour computation with test instances. The proposed approach in

Chapter 4 is different form this approach because it explores the patterns in the

dataset by applying clustering to the data in each class to reveal the patterns in a

given class of activity. Then the patterns in each sub-cluster are summarized by

extracting the three statistical summaries that represent the boundary of each sub-

cluster. Also, while this approach arbitrarily select K data points, the clustering

routines in the proposed approach in Chapter 4 is based on the desired level of

data retention of the system.

Bartolo et al. [33] also presented a personalised mobile activity recognition system

that performs online training and classification of activity data collected from the

target user. They proposed an incremental Naive Bayes algorithm for incremen-

tal learning of the underlying activities. The system relies on the user provided
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labelled data for incremental training and updating the model as required. The

work opine that by using an incremental Naive Bayes algorithm, the model can

be updated with more of the same user data based on the changing profile of the

user.

The main drawback of these approaches is the need for each user to provide data

individually to train their models. Also, they do not incorporate change detection

to detect when the accuracy of the model degenerates.

2.5.3 Incremental Model Adaptation

Incremental adaptation approach utilizes stepwise adaptation of the initial gener-

alised model to a user specific model by utilizing self-labelled data provided by the

user to tune the generalised model to the target user. This approach is different

from those presented in section 2.5.1 because they do not perform an explicit re-

training of a classification algorithm to generate new model. Rather, they adopt

mechanisms that tune the existing recognition model to the target user. The

adaptation is carried out incrementally when the user is using the model.

An incremental model adaptation method is presented by Abdallah et al. [3, 4].

The two presented algorithms built offline classifiers by applying similarity mea-

sures between various cluster parameters obtained from the dataset and the new

cluster of sample from the new user.

The parameters extracted from each cluster include centroid, standard deviation

and density. These are defined in Equations 2.7 to 2.9:

Centroids =
n∑
i=1

xi
n

(2.7)

Density =
Weight

V olume
(2.8)

where weight is the number of sample in the cluster and volume = 4
3πRadii

n with

Radii = max(Euclidean(xi, Centroid) ∀xi ∈ cluster
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StandardDeviation =

√√√√√ n∑
i=1

(Euclidean(xi, Centroid))2

n
(2.9)

During the classification step, clustering is applied to a window of raw accelerom-

eter data points to extract the same parameters as the stored ones. The algorithm

uses four measures to compare the stored cluster characteristics and the new one.

The new instance is then assigned to the appropriate class using majority voting

to determine the final class. The measures are used to compare the data:

• Euclidean distance between stored cluster centroids and incoming cluster cen-

troid. The label of the stored centroid with the minimum distance to the new

one is assigned to it.

• Gravitational force between the stored clusters and the incoming cluster cen-

troid. The label of the stored centroid with highest force is assigned to the

new cluster.

GravitationalForce =
WeightcentroidiWeightnewcentroid

Euclidean(centroidi, newcentroid)2
(2.10)

• Density gain when the new cluster is merged with each stored cluster. The

label of the stored cluster with highest density gain is assigned to the new

one.

• Arithmetic difference between the stored standard deviations of the reference

clusters and the standard deviation of the new cluster is computed. The label

of the cluster that gives minimum value is assigned to the new cluster.

After using these measures for classification, a final majority voting is applied

to assign a final class label to the new cluster. The adaptation of the model is

performed by requesting for user input whenever two measures vote for the same

class while the other two votes for different classes or when two measures or more

vote for different classes. There is no adaptation when the majority or all measure

vote for a class.The adaptation algorithm updates the cluster parameters of the

closest cluster to the new user-labelled cluster. A key fundamental drawback of
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this model adaptation approach is that there is no mechanism to detect explicitly

the changes in the accuracy of the model. Also, the detection of misclassification

is based on the classifier decisions and not a separate detection method. The

detection cannot be used to detect changes in accuracy of any other classification

algorithm because it is built into the classifier majority decision.

Another incremental adaptation proposed by Froster et al. [26] is based on learning

algorithm guided by error feedback mechanism. The scheme employs weighted

KNN with weight assigned to each instance. Initially all instances have a weight

set to 1 and each class is represented with a model given in Equation 2.11,

Mc,t = {((x(1), yi), w1,t), ((x
(2), yi), w2,t), ..., ((x

(n), yi), w1,t)} (2.11)

having set of examples xi ∈n, weight wi,t ∈1 and class label y = {c1, c2...cn}. Thus,

at any point in time t, the classifier Ct has n models corresponding to the number

of classes in the classification problem Ct = {M1,t,M2,t, ...,Mn,t}. To classify a

new instance xt, the K- nearest neighbour is determined and the sum of weights

of the instances belonging to the same class are computed. The new instance is

classified to the class with highest sum of weights among the nearest neighbour

instances, ct = argmax ciSW (ci).

Once the classification is performed, the error feedback mechanism based on pro-

vision of correct and incorrect indicator (st) is used for adaptation. If the classifier

gives a correct prediction, the indicator is set to correct otherwise it is set to in-

correct. The two signals determine the adaptation step to take. For the case of

correct indicator, the classified instance xit, the predicted class ct and the correct

signal st = correct are used for adaptation based on Algorithm 1.

According to the Algorithm 1, the classified instance is added to the set of near-

est m point of model Mc,t to which the instance is classified, and the weight of

those instances are incremented. Conversely, if the prediction is not correct the

adaptation procedure is based on Algorithm 2. In this case, the weights of the

nearest m points to xt from model Mc,t to which the new instance is classified are
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Algorithm 1: Correct Signal Adaptation [26]

Input: (xt, ct, wt = 1) // new correctly classified instance with correct label and

weight=1

1 Mnn = NN(M(c,t), xt, m)
// obtain m nearest neighbours of xt from M(c,t)

2 for each (x(i), ci) in Mnn do
3 if ci == ct then

4 w(i,t+1) = − (w(i,t)−2)2

2

5 end

6 end

decremented. Afterwards, instances with weights less than a set threshold k are

removed from the model Mc,t.

Algorithm 2: Incorrect Signal Adaptation [26]

Input: ( xt, ct) // new classified instance with label

1 Mnn = NN(M(c,t), xt, m) obtain m nearest neighbours of xt from M(c,t)

2 for each (x(i), ci) in Mnn do
3 if ci == ct then

4 w(i,t+1) =
w(i,t)

2

2

5 end

6 end

7 for each (x(j), cj , wj,t) in Mc,t do
8 if wj,t < k then

9 remove(x(j), cj , wj,t)
10 end

11 end

The quadratic functions for weight adaptation are meant to ensure the balance

between low and high weight values. The high weight values (wi,t > 1) are less

affected than the low weight values (wi,t < 1) such that when the system is in a

stationary state, the weights will be high (wi,t 2) and when in non-stationary state,

the weight will be low (wi,t << 2). This is to ensure more time to adapt the clas-

sifier. Furthermore, the correct learning for a particular class c with model Mc,t is

stopped if the sum of weights of the instances exceed the mean of the highest and

lowest sum of weight of all classes K and a factor (1 + α) where α ∈ [0, 1].

∑
w

Mc,t >

maxK(
∑
w
MK,t) + minK(

∑
w
MK,t)

2
. (1 + α) ∀ K = ci..cn
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Similarly, the incorrect learning is halted when the following condition is fulfilled:

∑
w

Mc,t <

maxK(
∑
w
MK,t) + minK(

∑
w
MK,t)

2
. (1− α) ∀ K = ci..cn

Also, the author proposed the stoppage of incorrect adaptation for a class c if the

number of instances in its model Mc,t is less than or equal a threshold δ.

The nearest neighbour used for classification is maintained by by ensuring that at

any point in time t , k is proportional to some instances in the classification models

Ct that is kt = R.n(Ct) , R ∈ {0, 1}. Also, the amount of nearest instance m used

during adaptation of the model is maintained by: mt = LR.n(Ct) , LR ∈ {0, 1}

This approach requires user input to confirm correct or incorrect classification.

This method is not practical in real life as it will be cumbersome for the user

to provide such indicator continuously. Also, as other approaches mentioned, it

does not detect the changes before initiating the adaptation process. Although,

mechanism for terminating the adaptation is proposed the same mechanism for

detecting the model inaccuracy change is not proposed.

The preceding approaches may be regarded as supervised adaptation because they

require user input. Unsupervised adaptation does not require the effort of the

user during the adaptation process. The major difference between the two is that

the output of a classifier prediction in unsupervised adaptation is used directly

for incremental model update without requiring the user to give correct label if

the classifier makes a wrong prediction. This is directly opposite of supervised

adaptation that relies on user input to either indicate a correct or incorrect sig-

nal or directly provides the ground truth label for wrongly predicted instance by

the classifier before performing the model update. Foster et al. [26] proposed

an unsupervised self adapting nearest cluster centre adaptation mechanism. The

adaptation proceeds after the classifier classifies an instance xi into a class yi. The

label is used to adapt the corresponding cluster centre CCi nearest to the instance.

This cause the class centre at time i to be moved to CCi+1. The centroid move is
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performed according to the update rule:

CCi+1 = (1− ψ).CCi + ψ.xi

where ψ is the learning rate that determines the rate of movement of the centre.

Zhao et al. [110] employed transfer learning approach that incorporates k-means

clustering algorithm and decision tree. They generate a model for user A using

decision tree and use the model to classify unlabelled data of user B. The result

of the classification of user B is then used to adapt the decision tree model of

user A for user B by clustering new input to correlate the data of user B during

classification by decision tree.

The advantage of these approaches is that they do not require the intervention of

the users to provide labelled data. This is more practical and less intrusive since

most users will not be committed to monitoring a recognition system and provide

labelled data for all unclassified instance. However, they do not incorporate the

detection of change before adaptation.

2.6 Change Detection in Unlabelled Data Stream

An unlabelled data stream is a sequence of data emanating from a source ( such

as industrial process monitoring sensors) independently without the need to reg-

ister the data as belonging to a category. The data is solely dependent on the

distribution of the source of the data. It can be univariate, that is, having only

one attribute or it could be multivariate whereby the attributes are more than one

and are distributed jointly according to the source of the data.

Change detection in an unlabelled data stream is concerned with the identifica-

tion of variations in the descriptive parameters of the data distribution such as

mean and variance. There are various methods for detecting changes in univari-

ate and multivariate data stream. This section discusses the various categories of

techniques for change detection in an unlabelled data stream.
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2.6.1 Sequential Change Detection

Sequential change detection are methods that test the sample data as they arrive

for a change point in contrast to the traditional hypothesis testing where all the

data must be collected before performing the test. A sequential test is carried out

to determine if there is a change in the parameter of the data being observed up

until the moment of the test. The test can be performed as the data arrived one

at a time or as they arrived in batches depending on the problem settings and the

technique put in place to detect the change.

The detection can be based on the utilisation of a statistical test of hypothesis or a

threshold constant to detect when a significant change occurs in the parameters of

the data stream being monitored. The threshold value is preset such that when the

value of the test statistic exceeds the threshold, change is declared. An hypothesis

test defines a null and an alternative hypothesis and a test statistic. The null is

rejected when the value of the test statistic is beyond the critical value. Otherwise,

the alternative hypothesis is accepted. However, if the test fails to decide on the

null or alternative hypothesis the test continue by taking more samples from the

rest of the data and repeat the procedure. The following are the major techniques

of sequential change detection.

Sequential Probability Ratio Test

This is a classical sequential test developed by Wald in 1947 [99] in the context

of industrial production quality control problems. The test originally aims to

ascertain that a set of items from many production output items meets the desired

specifications. The test procedure involves the setting up of null and alternative

hypothesis that corresponds to the desired quality level. The test is premised on

making a statistical decision to accept a null hypothesis, reject the null hypothesis

or to continue the experiment by considering additional items from the production

lot.

In the contest of change detection, the technique can be adapted to determine the

change in distribution between a reference window W1 = 1..k and subsequently
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observed data W2 = k...N. Assume that the data in W1 is generated from a

distribution P0 and the data in W2 is generated from another distribution P1. Two

hypotheses are set up with null hypothesis as that the probability distribution P of

new data is P0 and no change occurs and alternative hypothesis that the probability

distribution of the new data is P1 there is a change in distribution.

• H0 : P = P0 at w

• H1 : P 6= P1 at point w

The test statistic is computed as:

ϑi = log
P (xk|H1)

P (xk|H0)
(2.12)

Two test parameters α and β controls the decision as follows:

(a) if log β
1−α <

∑t
i=k ϑi < log 1−β

α take another observation.

(b) if
∑t

i=k ϑi ≥ log
1−β
α reject H0

(c) if
∑t

i=k ϑi ≤ loglog
β

1−α accept H0

α and β are small constants often selected to be 0.05 and indicates the type 1 and

type 2 errors that often characterise hypothesis testing. The main challenge of the

test is the appropriate selection of the underlying distribution of the data and the

parameters of the model.

Sequential CUSUM Test

Cumulative sum test is a sequential test that can be used to detect a small shift or

change in the parameter that is being monitored to detect a significant change in

its magnitude. The target value is often the expected apriori statistics of the data

stream such as the mean of the data. In another clime, the input to the CUSUM is

a residual form a predictors such Kalman filter. The residual represents the error

between the observed and estimated value of a regression [84].
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Algorithm 3: CUSUM Test

Input: target value , theta, slack variable nabla, threshold limit ±ξ
Data: S = {xi.....}
// Stream of data

Result: τ
// change indicator

1 CumSum−t−1 = 0
2 CumSum+

t−1 = 0
3 foreach xi ∈ S do
4 CumSum+

t = max(0, CumSum+
t−1 + xi − θ −∇)

5 CumSum−t = min(0, CumSum−t−1 + xi − θ +∇)
6 CumSum+

t−1 = CumSum+
t

7 CumSum−t−1 = CumSum−t
8 if CumSum+

t ≤ ξ CumSum
−
t ≤ −ξ then

9 τ = 1
10 end
11 else
12 τ = 0
13 end
14 return τ

15 end

The test progresses by computing the cumulative sum of the deviations of the

observed data and expected target parameter value. This cumulative sum is then

checked at every time step to see if it has deviated significantly from zero within

the allowable threshold value. The deviations is monitored in either positive or

negative directions or both at the same time. In the case of positive deviation,

maximum is used to update the cumulative sum while the minimum is used in

the case of negative direction monitor. The CUSUM algorithm for detecting both

positive and negative change directions is outlined in Algorithm 3. The CUSUM

test procedure requires a threshold parameter to signal the change and the level of

tolerance in the deviation between target and observed values. The sensitivity of

the algorithm relies mostly on this threshold. In the realm of process control, the

slack variable is usually set to be 1σ of the average of the data and the positive

and negative threshold is often set to be ±4σ of the average.
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Exponential Weighted Moving Average (EWMA)

The exponential weighted moving average sequential method for change detection

can be used to detect the time step at which a significant drift exists in the param-

eter of the data stream being monitored. The parameter could be the expected

value of the mean of the data stream. When a series of samples xi are observed,

they are weighted and added to the previously observed data, and when the sum

exceeds a threshold, change is declared in the underlying distribution of the data.

The procedure starts by assigning an initial value to the cumulative weighted sum

Zi−1. This value is usually the target parameter that is being monitored. After-

wards, each successively observed samples is weighted and added to the previous

value to obtain the new sum Zi. This is defined as: Zi = xiλ + (1 − λ) where λ

is the weighting factor and xi is the currently observed sample.

The sensitivity of the EWMA to detect change depends on the value of λ and

the threshold ξ. Setting them too high or too low may lead to missed detec-

tion. Therefore an optimum value is required to reduce false positive rate. In

practise, it is common to set λ to 0.2 and the threshold is often set to Z0 ±

3σ
√

λ
2−λ(1− (1− λ))2i for the positive and the negative threshold limits.

Page Hinkley Test

This is a sequential test for change point detection originally devised by Page

Hinkley in 1954 for change detection in signal processing [69]. The approach is

similar to CUSUM but rather than computing cumulative sum; it computes a test

statistic; the cumulative difference between the observed values and their mean

up till the moment of the test. It is defined as CT =
∑T

t=1(xt − x − θ), where

x = 1
T

∑T
1 xt and θ is the accepted magnitude of tolerable changes. The minimum

of CT is defined as ct = min(Ct : t = 1...T ). The two parameters are compared as

PHtest = ct−CT . If the result is greater than a threshold ζ, a change is signalled.
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2.6.2 Distributional Change Detection on Two Different Windows

In contrast to approaches that examine data in a sequential manner to detect a

change, the approaches discussed here aim to detect the change by testing for

distributional similarity and dissimilarity between two contiguous data sequences.

The first data chunk represents a historic reference data and the second represents

the current data. If the test yields a result in favour of a change in the distribution

of the two data sequences, change is signalled at the starting point of the second

data sequence. Otherwise, a new sequence of data are admitted, and the detection

test continues until the end of the whole data stream. The two data sequences

are often maintained in windows, and there are different strategies for managing

these windows. For example, Kifer et al. [39] employed two equal and fixed size

windows where they compare one reference non-sliding window of historical data

with a sliding window of the same size containing the most recent data. Another

approach presented by Dasu et al. [22] used window of adjacent and equal sizes,

where the data in the two sliding windows are compared for distribution change.

Bifet et al. [14] also proposed another approach that used all adjacent windows

to look for the distribution change within a single accumulated window of moving

samples. The size of the window is often selected based on system heuristics.

The detection method of distribution change can be parametric or non-parametric.

The parametric approaches use a hypothesis test to determine the distributional

similarity between two samples by using the parameters derived from the samples.

The mean and variance extracted from the data samples are the commonly used

parameters. Many theoretical statistical testing methods have been established for

this task. The following are the prevalent methods in change detection literature.

Welch’s t-test

This method is a parametric change detection method. It is an adaptation of

the Student’s t test by Welsh [102]. Given two samples n1 and n2 sampled from

population N1 and N2, the test is used to statistically test the null hypothesis that

the means of the population N1 and N2 with unequal sample variances s1
2 and
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s2
2 are equal. The null hypothesis can be rejected depending on the p-value given

in Equation 2.13.

p− value =
(N1 −N2)√
( s1

2

n1
) + ( s2

2

n2
)

(2.13)

Hotteling’s t2 Test

This is another parametric method. The test [35] is used to test the equivalence of

the means of two distributions of multivariate data. The test computes a statistic

to accept or reject the null hypothesis that the two data samples in windows W1

and W2 are drawn independently from two multivariate normal distributions with

the same mean and covariance matrices. The t2 statistic is computed according to

the equation

T 2 =
N1N2N1 +N2 − n− 1)

n(N1 +N2 − 2)(N1 +N2)(µ̂1 − µ̂2)
T

(2.14)

Kolmogorov-Smirnov’s test

The Kolmogorov-Smirnov’s test [18] is often used to determine if a set of samples

follows a particular reference distribution or if two samples follow the same distri-

bution or not. This test is non-parametric and is based on empirical cumulative

distribution function (ECDF) computed from the test samples. To test if two

samples follow the same distribution, the test computes ECDF for each ordered

number of points N x1, x2, ...xN in each sample of size N1 andN2 according to

Equation 2.15.

ECDF (i) =
γ(i)

N
(2.15)

where γ(i) is the number of points less than xi; and the xi are ordered from

smallest to largest value. The Kolmogorov-Smirnov distance between the two

test samples is computed as: D = maxi(ECDF1(xi) − ECDF2(xi)). The null

hypothesis assuming that the two samples follow the same distribution is rejected

with a confidence θ, if:
√

(N1N2)
(N1+N2)

D > Kθ. The value of K can be found in the

Kolmogorov-Smirnov table.
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2.7 Change Detection in Labelled Data Stream

Change detection in labelled data stream is often regarded as concept change

detection or concept drift detection [30]. In this domain of change detection, the

data that is being monitored is labelled with ground truth for online learning. The

direct manipulation of the attribute data is no more adequate to detect a change

in the distribution of the data generating process which is conditioned on the data

label. Hence an alternative approach to detecting change is being proffered.

The detection of a change in this domain can be done by monitoring different

types of indicators [79]. Error rate, precision and recall are the commonly used

performance indicators to detect concept change in the underlying online learning

model [79]. A principal drawback here is the need for the availability of the ground

truth of the predicted instances to ascertain the correct or incorrect nature of the

predictions.

2.7.1 Types of Changes in Labelled Data Stream

Concept drift is a phenomenon in classification problem where a classifier built to

recognise certain concept from the set of training data becomes inaccurate over

time because the distribution of the data being classified has changed from the

initial distribution known to the model [30].

The changes in the data can be viewed from three perspectives. In the first case,

the change can occur in the class labels of a given set of related attributes for some

data instances while the attributes themselves remain unchanged. That is, given

a particular sample with set of attribute values and a class label say ‘0’, when

changes occur the same sample now has label ‘1’. In the second case, the attribute

values of the data may change while the class labels remain unchanged while in

the third case of change, the two parts of the data can change simultaneously. In

the first and third situations, the classifier will need to be updated with the new

emerging distribution of the data while the second situation may or may not affect

the decision boundary and hence may not require model update. Another possible

but infrequent change, is the change in the prior probabilities of classes termed



Chapter 2. Literature Review 37

concept evolution that results in the emergence of new concepts or merging of

existing concepts [61].

More formally, concept drift arises as a result of differences in the relationship

between input variable x any target variable y between two points in time t0

and t1 : P (x, y)t0 6= P (x, y)t1 where X ∈ Rn is input attributes and y ∈ {yi : i =

1...c number of classes}. The changes in this relationship can manifest in the form

of changes in the class conditional probability P (x/y) where the attributes values

changes for given yi but the class label y remains unaffected. It may also result in

posterior probability p(y/x) changes which mean the attributes remain unchanged

but the class labels change for a given attributes, or there could be simultaneous

changes in posterior and class conditional probability. It is also possible to have

prior probability changes leading to the emergence of new concepts.

Types of
Drift

Notation Comments

Real Drift p(y/x)t0 6= p(y/x))t1 This drift affect the decision bound-
ary.

Virtual Drift p(x/y))t0 6= p(x/y))t1 Does not affect the decision bound-
ary.

Virtual Drift
with Decision
Boundary
Change

p(x/y))t0 6= p(x/y))t0 and
p(y/x)t0 6= p(y/x))t1

Simultaneous drift in class con-
ditional probability and posterior
probability which affects the deci-
sion boundary.

Concept Evo-
lution

p(y)t0 6= p(y)t1 Concept evolution results in emer-
gence of new classes other than the
existing known classes.

Table 2.3: Categories of Drift

Changes that arises from p(y/x) is regarded as real concept drift, while p(x/y) is

referred to as virtual drift. The virtual drift can also occur when both p(x/y) and

p(y/x) changes simultaneously. The changes in p(y) is referred to concept evolu-

tion. Table 2.3 gives a summary of classes of drift in the literature. Three general

approaches for change detection in labelled data stream are discussed below:

Sequential Change Detection in Labelled Data Stream

Change detection in label data stream often used the performance indicators of

the online learning algorithms. To apply the sequential test to change detection in
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labelled data stream will require the input to the detector to come from the predic-

tion errors of the underlying algorithm. Different authors have adapted the change

detection in the unlabelled data stream to the case of labelled data stream by using

the error rate indicators as input rather than the actual raw data from the stream.

Gama et.al. [29] have used the Page-Hinkley test for change detection to show the

efficiency of prequential evaluation technique on the data stream. Similarly, [83]

evaluated Page-Hinkley [69] test among other change detection methods by using

the error rate obtained from online learning model built from the non-stationary

stream. The basis for using error rate is that in the absence change in the un-

derlying distribution of the data the error rate should be stable or decreases and

when there is a change in distribution the error rate will increase. By using Page

Hinkley test, they monitor the deviation between the currently observed error rate

and the accumulated mean of the error rate up until the moment of the test. If

this value exceeds the threshold, change is declared, and the model is reset.

Method Based on Statistical Control

This method considers learning as a process and applies the principle of process

control chart to concept change detection by defining upper and lower control

limits for the variable of the model being monitored. In this case the error rate.

When the error rate of the online model derived from the stream is within the

limit of the lower and upper control limit the model is said to be in control when

the limit is exceeded, the current model is declared as out of control and change is

declared. The drift detection method [28, 40] are some of the approaches that use

the idea of process control chart for change detection in the labelled data stream.

The method monitors the performance evolution of a classifier and relies on the

availability of ground truth to determine when the classifier gives a correct or

incorrect prediction. The method incrementally compute the proportion of errors

produced by the current model with pi = pi−1 + (x − pi−1)/n with x = 1 if the

prediction is incorrect and x = 0 if the prediction is correct. The average error

is thus computed incrementally. The standard deviation of the error rate si at

each time step of the learning process is also computed. Two registers pmin and
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smin are maintained and they are updated with pi and si respectively whenever

pi + si < pmin + smin. DDM has two thresholds to take a decision on the drift:

if pi + si ≥ pmin + 2 ∗ smin it implies a warning level. Subsequent examples after

this point are stored in anticipation of a possible change of context. The examples

are used to retrain the model. If pi + si ≥ pmin + 3 ∗ smin a drift level is signalled

after a series of warning state concept drift is declared, the model induced by the

learning method is reset and a new model is learnt using the examples stored since

the warning level was triggered. The values for pmin and smin are reset to 0.

The intuition behind this approach is that in the absence of concept drift the error

rate should decrease indicating a stationary distribution. However, if the error

rate decreases significantly, it means the classifier is no more in tandem with the

distribution of the data. Thus a concept drift has occurred and the model has

to be rebuilt. Authors in [10] extends DDM to account for the distance between

error point while [16] used DDM as a component for their adaptation algorithms

to make them informed.

Distributional Change Detection in Labelled Data Stream

Approaches based on monitoring the changes in the distribution between two win-

dows can be used to track the performance indicators of the online learners as

labelled samples prediction errors are evaluated. The techniques in this category

employ a statistical testing technique to determine change point between the ref-

erence window and a detection window. Apart from this, some techniques employ

geometrical similarity measures between two windows and determine whether the

threshold limit is exceeded to signal a change.

A notable approach for concept change detection is the adaptive windowing tech-

nique [14]. In ADWIN, a window W containing the error rate from the predictions

of a learning model grows until there has been a change in the average value inside

the window. Therefore, when the algorithm succeeds at finding two distinct sub-

windows, the split point can be considered as a concept change. Also, Widmer

and Kubat [104] proposed change detection approach that analyses the misclas-

sification error rates and the changes that occur in the structures of the learning
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algorithm (adding new definitions in the rules in this case). When there is varia-

tion of these indicators, the size of the training window is reduced. Otherwise, the

window grows with more examples to achieve better learning.

2.8 Conclusion from the Literature

Activity recognition from wearable sensors involves use of sensors data collected

from reference users to train a machine learning classification algorithm that gives

a model that recognises the activity of large population of users. This process has

been seen in the literature to suffer from inadequacy of accurate recognition for

large user populations with differing characteristics [44, 48, 49, 62, 97, 100].

Various approaches have been proposed in the literature to cater for the problem of

degrading accuracy of classification model as a result of varying characteristic and

differences in user populations. The approaches are generally termed personaliza-

tion and adaptation of activity recognition model. However, there are deficiencies

in the process of invoking the adaptation process. The approaches do not identify

the actual state at which the model degrades. They either assume that the model

should be adapted for each of the new users or continuously adapt the model at

regular intervals. This definitely indicates an unfounded adaptation of the model

that either update or replace the model unnecessarily. They may also miss the

best time to update the model.

Therefore, an holistic solution will be to detect the state at which the model

performance degrades before updating the model. However, existing approaches

in the literature show that the unlabelled change detection are mainly used for

detecting changes in the unlabelled data distribution parameters such as mean

and variance. They have not been used directly for detecting changes in labelled

data. On the other hand, detecting changes in labelled data relies on using ground

truth to detect changes in error rate of the model. Thus, it is clear that a method

that does not rely on ground truth in order to detect changes in labelled data

during classification is desired for activity recognition because it is impractical to

ask the user to be providing ground truth at every point of activity prediction by
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the classifier. Therefore, the research question of this thesis is centred on how to

detect change in activity recognition model without having access to the ground

truth. The thesis answer this question by proffering alternative novel solutions to

detect classifier error without access to ground truth labels during classification of

new sample of instances.

2.9 Chapter Summary

This chapter has reviewed the background literatures on activity recognition pro-

cess and the various sensor modalities being used in activity recognition system.

Also, a review of various approaches being used for model adaptation in activity

recognition are discussed and their drawbacks are identified. The lack of informed

decision before adaptation is a key problem that this thesis aim to address. This

chapter has also discussed various approaches for change detection in labelled and

unlabelled data. It is observed that change detection in unlabelled data focuses

on determining change in the parameters that characterise a given data samples.

Such parameters include the mean and variance of the data distribution. These

approach cannot be directly applied in labelled data stream because the data sam-

ples are condition on their labels. Also, current approaches for change detection

in labelled data rely on label availability to monitor the error rate of the model

generated from the data. This approach is not realistic for activity recognition

because it will be tedious for the user to be providing label for each instance of

the data during recognition.



Chapter 3

Benchmark Algorithms and

Datasets

3.1 Introduction

This chapter presents background details about the machine learning algorithms

and datasets used for the evaluation of the proposed and implemented learning

algorithm and the change detection techniques. Also, the chapter discusses the

evaluation metrics employed in the research.

3.2 Benchmark Supervised Machine Learning Algorithms

Three machine learning algorithms were used as benchmark algorithms to compare

with the new classification method that is developed in this research. The bench-

mark algorithms are: Naive Bayes, Decision Tree, and Instance-Based Classifier

also called K- Nearest-Neighbour. These three algorithms are some of the most

commonly used algorithms for state of the art activity recognition system [51, 85].

• Decision trees utilised the concept of if-then rules to build a hierarchical model

in the form of trees. The tree nodes represent the attributes in the sample

data and the edges of the tree represent the possible attribute values. Each

branch from the root to the leaf node is a classification rule. C4.5 is the

42
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most widely used implementation of a decision tree. It utilised the concept

of information gain to determine which attributes should be placed in the

top nodes [75] and recursively builds the tree until all attributes are selected,

and leaf nodes are reached. A decision tree is easy to understand by humans

but suffers from difficulties in obtaining a single optimal tree. Decision Tree

algorithm has been found to perform well on activity recognition tasks that

employed the wearable and mobile devices sensors [12, 38, 63]

• Naive Bayes is another widely used learning algorithm for activity recognition.

It is based on the Baye’s probability theorem [17]. To determine the class ci of

an unseen data xi ∈ Rn with attributes a1, a2, ..., an and corresponding values

v1, v2, ..., vn, the algorithm first computes the prior probabilities of each class

P (c1), P (c2), ..., P (ck) from the training data. The conditional probability of

the observed data given the classes ci ∈ K is also computed with:

P (a1 = v1|ci)×P (a2 = v2|ci)×...×P (an = vn|ci)) ∀c ∈ K numberofclasses

Finally the posterior probability of the most probable class c, out of all pos-

sible classes K to be assigned to the instance xi is obtained from:

c = argmax ci∈K
P (ci)P (a1 = v1|ci)× P (a2 = v2|ci)× ...× P (an = vn|ci)
K∑
i=1

P (ci)P (a1 = v1|ci)× P (a2 = v2|ci)× ...× P (an = vn|ci)

(3.1)

The denominator is called the marginal probability or the normalizer. Naive

Bayes algorithm is easier to use with categorical attributes. If the attributes

are continuous as in the case of most sensor data, a pre-processing step is

required to discretized the data. Naive Bayes and the related Bayesian algo-

rithm have been used in activity recognition system including [94] [50].

• K-nearest neighbour is an instance based machine learning classification al-

gorithm [105]. It works by comparing unseen instance with all instances in

the data set using a distance function. K nearest training data to the unseen

instance is selected and the class labels of the majority of the selected k points
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are used as the class of the unseen instance. KNN was employed in [53, 74]

for activity recognition.

3.3 Justification for the Selected Benchmark Algorithms

The algorithms selected are part of the most widely used in recognition of low-level

activity. These algorithms have been used in other recent work for recognition

of low level activities [81, 85, 88]. In [88] kNN, decision tree and Naive Bayes

classifiers were employed in the evaluation of data collected for different low-level

and high level activities. There results indicate that the classifiers are adequate in

recognizing the activities accurately under various sensor fusions and placement

scenario. Lara and Labrador [51] have stated that these classifiers are among the

state of the art algorithms for activity recognition. Another important justification

for selecting these classifiers is because of their real time practical usage on mobile

phone for recognizing day-to-day low level activities [86, 87]. Various studies have

employed these classifiers on mobile phones. For example, Naive Bayes classifier

was implemented for mobile activity recognition in [21, 33, 46, 85], decision tree

was employed in [27, 58, 64] while kNN was the selected algorithm in [90, 95]. All

these point to the effectiveness of the selected algorithms for activity recognition.

Also, using more complex classifiers on mobile phones will result in higher resource

consumption which will eventually affects the user experience in using the mobile

activity recognition application [101].

3.4 Activity Recognition Datasets

The three publicly available real activity recognition datasets used in this thesis

are described in this section. The description include the source of the datasets

and the distribution of instances across all subjects.
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3.4.1 WISDM Dataset

The Wireless Sensor Data Mining (WISDM) activity recognition dataset [44] was

obtained from the accelerometer of mobile phones. The researcher collected the

data from 36 subjects that performed six designated activities of working, jogging,

ascending and descending stairs, sitting and standing. Forty-three features repre-

sent each data sample in the dataset. Each 43 features of each instance data were

computed from the transformation of 200 raw samples from the tri-axial accelerom-

eter of a mobile phone. The 200 raw accelerometer samples were recorded within

a 10-seconds window with a sampling frequency of 20Hz. The features used were

basic statistical features including standard deviation, average, resultants among

others [44] described as follows:

• X0..X9, Y 0..Y 9, Z0..Z9 are set of bins of values representing a fraction of

accelerometer samples that fell within that bin.

• XAV G, Y AV G,ZAV G these features account for the average of the x, y,

and z values in each recorded 200 samples.

• XPEAK ,Y PEAK ,ZPEAK these features approximate the dominant fre-

quency along the x, y, and z-axis values of the accelerometer within each 200

samples point.

• XABSOLDEV, Y ABSOLDEV,ZABSOLDEV are the average absolute de-

viations from the mean value for each axis.

• XSTANDDEV, Y STANDDEV,ZSTANDDEV are the standard devia-

tions for each axis.

• RESULTANT is the average of the square roots of the sum of the values of

each axis squared
√

(x2i + y2i + z2i )

The dataset distribution spread across the six activities. The total samples in the

obtained dataset and their distribution across each activity and users are shown

in Table 3.1.



Chapter 3. Benchmark Algorithms and Datasets 46

User No. Walking Jogging Walking
Upstairs

Walking
Down-
stairs

Sitting Standing

1 42.11 36.18 11.18 10.53 0.00 0.00
2 50.00 50.00 0.00 0.00 0.00 0.00
3 36.31 30.73 10.61 10.06 4.47 7.82
4 50.00 8.33 13.33 16.67 11.67 0.00
5 41.78 21.92 12.33 12.33 6.16 5.48
6 39.87 35.95 8.50 7.19 5.88 2.61
7 35.03 29.30 12.10 7.64 8.28 7.64
8 50.60 30.95 0.00 0.00 8.33 10.12
9 100.00 0.00 0.00 0.00 0.00 0.00
10 36.52 34.27 13.48 11.24 0.00 4.49
11 37.27 38.51 14.91 9.32 0.00 0.00
12 32.14 36.90 8.93 9.52 7.14 5.36
13 35.52 31.15 13.66 12.02 3.28 4.37
14 36.13 34.55 21.47 7.85 0.00 0.00
15 41.91 39.71 8.82 9.56 0.00 0.00
16 60.78 0.00 6.86 7.84 14.71 9.80
17 42.48 13.27 26.55 17.70 0.00 0.00
18 39.75 34.16 8.07 7.45 4.97 5.59
19 37.99 35.37 10.04 6.99 4.80 4.80
20 23.81 19.78 9.16 9.16 28.21 9.89
21 26.23 15.57 21.31 18.03 6.56 12.30
22 30.97 27.43 24.78 16.81 0.00 0.00
23 25.58 47.29 19.38 7.75 0.00 0.00
24 23.66 47.33 12.21 11.45 3.05 2.29
25 51.52 48.48 0.00 0.00 0.00 0.00
26 40.00 35.76 12.12 12.12 0.00 0.00
27 36.47 31.76 9.41 11.18 6.47 4.71
28 65.42 0.00 14.02 14.02 0.00 6.54
29 32.63 30.53 13.16 12.11 6.84 4.74
30 48.06 0.00 17.83 16.28 6.20 11.63
31 37.67 31.39 10.76 9.42 4.93 5.83
32 36.26 30.41 11.70 7.02 9.36 5.26
33 49.01 9.93 8.61 16.56 11.26 4.64
34 36.61 34.97 11.48 8.74 4.37 3.83
35 31.86 55.75 0.00 0.00 7.08 5.31
36 19.02 36.20 16.56 14.11 7.98 6.13

Total 38.41 29.99 11.66 9.75 5.65 4.54

Table 3.1: Distribution of WISDM Dataset in (%)

3.4.2 Human Activity Recognition Using Smartphone Dataset-

HARS

The Human Activity Recognition Using Smartphone (HARS) Dataset [8] was col-

lected from 30 different volunteers with their ages ranging between 19 to 48 years.

Each subject performed six designated activities of walking, walking-upstairs,

walking-downstairs, sitting, standing, and laying while wearing a smartphone at-

tached to their waists. The sensor data were obtained from gyroscope and ac-

celerometer sensors of the smartphone. Each instance (feature vector and label)

in the dataset is represented by 561 features containing both time domain and
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frequency domain features and a corresponding activity label. The feature vectors

was computed from 128 fixed-length sliding windows of raw accelerometer data

within 2.56sec and 50% overlap. The released dataset is partitioned into two rep-

resenting 70% and 30% of training set and testing set respectively. The dataset

distribution spread across the six activities. The total samples in the obtained

dataset and their distribution across each activity is shown in Table 3.2.

User No. Walking Walking
Upstairs

Walking
Down-
stairs

Sitting Standing Laying

1 27.38 15.27 14.12 13.54 15.27 14.41

2 19.54 15.89 15.56 15.23 17.88 15.89

3 17.01 17.30 14.37 15.25 17.89 18.18

4 18.93 16.40 14.20 15.77 17.67 17.03

5 18.54 15.56 15.56 14.57 18.54 17.22

6 17.54 15.69 14.77 16.92 17.54 17.54

7 18.51 16.56 15.26 15.58 17.21 16.88

8 17.08 14.59 13.52 16.37 19.22 19.22

9 18.06 17.01 14.58 17.36 15.63 17.36

10 18.03 15.99 12.93 18.37 14.97 19.73

11 18.67 17.09 14.56 16.77 14.87 18.04

12 15.63 16.25 14.38 15.94 19.06 18.75

13 17.43 16.82 14.37 14.98 17.43 18.96

14 18.27 16.72 13.93 16.72 18.58 15.79

15 16.46 14.63 12.80 17.99 16.16 21.95

16 13.93 13.93 12.84 18.85 21.31 19.13

17 16.58 13.04 12.50 17.39 21.20 19.29

18 15.38 15.93 15.11 15.66 20.05 17.86

19 14.44 11.11 10.83 20.28 20.28 23.06

20 14.41 14.41 12.71 18.64 20.62 19.21

21 12.75 11.52 11.03 20.83 21.81 22.06

22 14.33 13.08 11.21 19.31 19.63 22.43

23 15.86 13.71 14.52 18.28 18.28 19.35

24 15.22 15.49 14.44 17.85 18.11 18.90

25 15.05 14.03 12.76 19.90 18.88 19.39

26 15.05 14.03 12.76 19.90 18.88 19.39

27 15.16 13.56 11.70 18.62 21.28 19.68

28 14.14 13.35 12.04 18.85 20.68 20.94

29 15.41 14.24 13.95 17.44 18.90 20.06

30 16.97 16.97 16.19 16.19 15.40 18.28

Total 16.60 14.92 13.60 17.41 18.54 18.94

Table 3.2: Distribution of HARS Dataset in (%)
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3.4.3 Opportunity Dataset Description

The Opportunity dataset for human activity recognition from wearable object and

ambient sensors [80] also generally referred to as the Opportunity dataset was ob-

tained from the UCI repository. The dataset is devised to serve as the basis for

benchmarking algorithms for classification, automatic data segmentation sensor

fusion and feature extraction tasks in the context of human activity recognition

problems. The collection and release of the dataset to public domain was motivated

by the lack of standard benchmark datasets in the activity recognition community

for comparing and validating results among activity recognition research commu-

nity. It is common for each group to use their own in-house collected dataset to

validate their algorithms and methods. The dataset was collected in the context

of a smart home setting whereby a studio flat simulates a sensor-rich environment

with sensors attached to the subjects in the apartment, objects used such as fridge,

spoons and plates. Each subject performed five sessions of scripted activities rang-

ing from locomotion activity (sit, lie and walk) hand gesture activity (hold cup,

open door and open fridge ). The first four sessions of the data were performed

by the user in a free form manner without any specific sequence for the user to

follow in performing the ADLs. While the last session called, the drill session was

carried out by following a prescribed sequence of activities. All the sensor reading

were synchronised and recorded in column matrix while the activity label which

was annotated by expert were appended to the last columns. The data used in this

experiment, however, excludes some sensor channels and activity labels. Only the

sensor data from the accelerometer and inertial measurement units (IMU) attached

to the subjects as they perform activities in the flat were used. The quaternion

channels data from the IMU sensor recordings were also excluded.
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Subject ADL Sessions Null Standing Walking Lying Sitting

S1ADL1 26.62 43.78 12.80 14.59 2.21

S1ADL2 23.94 31.93 20.21 19.59 4.33

S1ADL3 23.95 31.19 18.12 22.85 3.89

S1ADL4 24.59 31.83 19.48 21.06 3.03

S1ADL5 25.52 30.71 17.41 22.33 4.04

S1Drill 5.21 41.11 43.62 10.07 0.00

S2ADL1 18.39 34.01 21.16 23.45 2.99

S2ADL2 23.44 30.40 19.35 24.09 2.72

S2ADL3 22.12 33.40 18.45 23.35 2.67

S2ADL4 22.08 27.17 22.58 25.91 2.26

S2ADL5 27.83 28.11 19.80 20.62 3.64

S2Drill 11.49 49.61 32.20 6.70 0.00

S3ADL1 13.17 39.05 25.72 15.22 6.83

S3ADL2 10.50 41.10 29.71 13.58 5.10

S3ADL3 20.18 39.57 16.98 17.60 5.67

S3ADL4 9.23 32.82 32.59 17.56 7.80

S3ADL5 22.07 39.08 16.91 16.28 5.66

S3Drill 3.50 67.91 21.15 7.45 0.00

S4ADL1 30.50 37.19 15.72 12.74 3.85

S4ADL2 29.05 35.03 18.13 14.63 3.16

S4ADL3 29.89 33.68 15.41 16.59 4.42

S4ADL4 32.25 31.04 21.88 11.28 3.54

S4ADL5 21.98 34.08 29.97 10.91 3.05

S4Drill 7.95 55.90 26.51 9.65 0.00

Total 18.69 39.73 22.91 15.74 2.92

Table 3.3: Distribution of Opportunity Dataset in (%)

Change Detection Performance Metrics

• True Positive Detection Tpd : These are the set of instances which are truly

misclassified and the detector detects them as misclassified.

• True Negative Detection Tnd : These are the number of instances which the

model classified correctly and the detector detects them as not misclassified.

• False Positive Detections Fpd : These represent set of instances which the

model classified correctly, but the detector detects them as being misclassified.

• False Negative Detection Fnd : This refers to set of instances which the clas-

sification model misclassified but the detector detect them as not being mis-

classified.

• Overall Detection Accuracy: This is the percentage of correctly detected

samples which is denoted by the sum of true positive detection and true
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negative detection divided by the total number of samples.

Tpd + Tnd
Total Samples

• Recall: This the proportion of correctly detected unseen instances to the total

number of both correctly detected and falsely detected unseen instances. This

is given as:

Tpd
Tpd + Fnd

• Precision: This the proportion of correctly detected unseen instances to the

total number of both correctly detected and falsely detected unseen instances.

This is given as:

Tpd
Tpd + Fpd

• Specificity: This the proportion of correctly detected known instances to the

total number of both correctly detected and falsely detected known instances.

This is given as:

Tnd
Fpd + Tnd

• Detection Error Rate: This connotes the error rate in the detection scheme

given as:

Fpd + Fnd
TotalSamples

3.5 Chapter Summary

This chapter presents an overview of the methodologies adopted in this thesis. It

discussed the benchmark supervised machine learning algorithms: Naive Bayes,

Decision Trees and kNN that were used for comparing the new ClusterNN algo-

rithm. It also provides the justifications for selecting these algorithms. The major

reason for selecting the algorithms include their less computation resource over-

head which make them suitable for resource constraint environments such as mo-

bile phones. Also, this chapter provides details about the three publicly available

activity recognition datasets namely the Opportunity, the Wireless Sensor Data
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Mining (WISDM) dataset and the Human Activity Recognition Using Smartphone

(HARS) that were employed for the myriad set of experiments performed through-

out the thesis The description of the features used to generate the data and the

distributions of the instances in the datasets are discussed. Finally, the chapter

presents the metrics used for the evaluation of the classification method and the

change detection methods developed in the thesis.



Chapter 4

ClusterNN: A Clustering and

Nearest Neighbour Based

Classifier for Activity

Recognition

4.1 Introduction

This chapter presents a classification approach called ClusterNN. The algorithm

builds on the concept of nearest neighbour and clustering to develop an hybridised

algorithm that utilised less amount of training data. This is desirable for using in-

stance based learning in a resource constraint environment such as mobile phones.

The algorithm evaluation and results are presented along with the performance

comparison with the benchmark algorithms described in Chapter 3.

The rest of this chapter is organised as follows: Section 4.2 highlights the process

of formation of the reduced data from the proposed statistical data summaries.

Section 4.3presents the online classification stage of the ClusterNN algorithm while

Section 4.4 presents the experimental evaluation of the approach. The chapter is

summarised in the last Section 4.5.

52
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4.2 Formation of the Reduced Data

One of the key reasons for proposing this algorithm is to develop a change detection

that can support adaptive incremental learning strategy for activity recognition.

In this regard, an algorithm that is capable of being updated during online clas-

sification is needed. The proposed algorithm is well suited for this purpose. The

framework termed ‘ClusterNN’ is based on the application of clustering and near-

est neighbour hybrid technique to create a holistic representation of the original

dataset into a compact and more discerning set.

The framework has two phases of operation: the offline and online phases. The

off-line phase involves extensive experimentation to determine the amount of data

to be retained in the dataset to ensure more accurate classification with nearest

neighbour approach. The main essence of this stage is to reduce the original dataset

as much as possible to yield a more compact and informative reduced set that is

suitable for on-line recognition. To achieve this, clustering is applied on the original

dataset with the introduction of the notion of percentage data reduction to guide

the clustering routine on the number of clusters to create in each class present

in the dataset. The sub-clusters produced in each class of activity represent the

various patterns that are present within a given class. This will invariably enable

the system to leverage on the numerous patterns rather than a single centroid

model per class to classify new samples. After this, three statistical summaries:

minimum, maximum and centroid are extracted from each sub-cluster. Each of

these statistical summaries can be used individually as referenced reduced dataset

or their predictions can be combined into an ensemble predictions depending the

level of accuracy desired and system resources available. The process is illustrated

in Figure 4.1.

The three statistical summaries represent set of discerning data characteristics

that summarise the original dataset in a reduced form by reducing the size of the

instances. This method does not reduce along the dimension of the features rep-

resenting the data. The main purpose of the statistical summaries is to reduce

the data samples and produce more compact and reduced data that posses more
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Figure 4.1: Statistical Summaries Extraction Process

discerning information than the original data set. The proposed statistical sum-

maries do not have any limitation on the type of features they can summarise.

Regardless of the number features and amount of data in the underlying dataset,

the approach can extract the desired proportion of data from them. This is made

possible because the clustering technique that clusters the base data into differ-

ent patterns is directed by the proportion of desired data to retain. The three

proposed statistical summaries and the data obtained are described as follows:

• Centroid or Mean: The is obtained from a cluster of data by computing the

average of the set of d-dimensional data points that are present in a cluster

as ~µl = 1
|Ci|

∑
~xi where Ci is the amount of samples belonging to cluster i.

The set of centroid vectors obtained from different clusters created from each

class of activity data represents a reduced and new representative set from

the centroid perspective.

• Maximum characteristic from a cluster is obtained as a d-dimensional vector

in Rd with each component containing the maximum value in each dimension

of the set of d− dimensional instance vectors in a cluster. This implies that

each cluster produces a maximum vector. The collection of maximum vectors

obtained from n sub-clusters of a given class in a dataset represents another

representation or view of the original dataset. The intuition of using the

maximum characteristic to represent a micro-cluster is that its data represents

the upper limit of the points in that cluster. Thus, it serves as the upper
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boundary of the data in the cluster. Also, the set of maximum vectors across

each type of activity can be used to differentiate high intense activity with

high values from low intense activity with low values.

• Minimum characteristic is a vector in Rd similar to maximum characteristic

but each of its components contains the minimum value in each dimension

of the instance vectors in a cluster. This also represents another view of

the original dataset. The intuition of using this in contrast to the maximum

characteristic is that it represents the lower limit of the points in a cluster.

It serves as the lower boundary of the data in the cluster. Also, the set of

minimum vectors across each type of activity can be harnessed to differentiate

low intense activity with low values from high intense activity with high

values.

The procedure for extracting the data for these statistical summary is shown in

Algorithm 4. The algorithm takes the training data and the desired percentage

of data to retain as input and produces the Model Data (MD).

The model data (MD) is the set of data resulting from the centroid, minimum and

maximum statistical summaries obtained after applying clustering on the dataset.

In this algorithm, data samples belonging to each classi are clustered (lines 1-3

Algorithm 1) by applying a clustering technique on the data. Possible clustering

algorithms include k-Means, DBScan, EM and host of others [107]. However, bi-

secting k-means is used for clustering the dataset in each class. After the clustering

step, the list of cluster centres obtained for the class of data is stored in a list.

Also, the minimum vectors and maximum vectors are extracted from each sub-

cluster returned for the current class (Algorithm 4 lines 4-8). The number of

clusters created per class is proportional to the number of samples in the class and

the desired percentage of data retention. This step is repeated for each class in

the data. Finally, the set of cluster characteristics i.e. centroids, minimum and

maximum obtained from the different clusters of each class and their associated

labels are returned from the algorithm. These represent the Model Data (MD) to

be deployed for the online recognition. The key feature of the model is that it is
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more compact and has a reduced resource overhead in terms of memory require-

ment and time when compared to the ordinary KNN. In addition, the reduced

compact set including centroids can be adapted to evolving activity data as new

unanticipated changes occur in the input data distribution.

Algorithm 4: Offline Data Characteristic Formation

Input: Cn number of classes in the dataset
Kn // percentage of data to retain in each class of examples that serves as cluster

centroids.

Data: D = (xi, yi) xi ∈ Rn and yi ∈ R1 // set of training examples

Result: MD // Data Summaries

1 foreach classk in Cn do
2 dataclassi=getData(D, classk)
3 centroidsList[k], clusterAssign= Clustering( dataclassi, Kn)
4 centroidList.append(centroidsList[k]) foreach clusterk in len(centroidsListk) do
5 pointsInClusterk = getData(clusterAssign, clusterk)
6 maximumList.append(max(pointsInClusterk))
7 minimumList.append(min(pointsInClusterk))

8 end
9 MD = [centroidsList, minimumList, maximumList,classk]

10 end
11 return MD

4.3 ClusterNN Online Classification

During the online phase, new instances are classified by passing them and the

MD to Nearest-Neighbour routine. It employs Euclidean distance to compute

the K-nearest neighbour to the new instance and assigns the majority label of

the K nearest point to it (Algorithm 5). Since there are more than one cluster

characteristics in the MD, each is considered separately, and a majority voting is

performed on the outcome of each comparison. The final class given to the new

instance is the majority label returned by all of them.

4.4 Experiments

In this section the experiments conducted to evaluate the applicability and accu-

racy of the proposed algorithm are presented. The datasets: WISDM, HARS and

Opportunity were used to perform the experiments.
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Algorithm 5: Online Classification

Input: xnew , k
// new unlabelled instance, number of nearest neighbours

Data: MD
// Reduced training set obtained from statisical summaries

Result: ynew
// predicted class

1 foreach clusterCharacteristicsi in MD do
2 predictioni =nearestNeighbour(clusterCharacteristicsi, xnew, k )
3 end
4 ynew = argmaxc (predictionc) c = (1...C)
5 return ynew

The experiments was performed in two phases. In the first phase, the accuracy of

using individual cluster characteristic was examined. As there are three statistical

summaries that are used for classification decision during the online phase (Algo-

rithm 5). The centroid characteristic is the mean of the data points in a cluster.

Minimum characteristic characteristic is the minimum values across each feature

for the data points in a cluster while the maximum characteristic is the minimum

values across each feature for the data points in a cluster. The percentage of data

retained was varied between 10% to 90% retention rate. The 100% retention rate

was not tested because this will be equivalent to having all the dataset present.

Therefore, the accuracy of using each characteristic was recorded as the number of

data retention was varied. In the second phase of the experiment, all the charac-

teristics were combined to predict the classes of unseen instances used for testing

the algorithm.

In carrying out the experiment, the hold-out evaluation strategy was followed. The

entire dataset was divided into the training set and test set. The split of the data

was proportional to the number of instances in each class for the training set and

the testing set. Each dataset is divided into 70% for training and 30% for testing

set. The same configuration is used in evaluating ClusterNN and the benchmark

algorithms.
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4.4.1 ClusterNN Performance on WISDM Dataset

The accuracy of the proposed classifier for activity recognition is presented here.

The results of using the first dataset are presented here. The results of using

WISDM [44] dataset for evaluation are shown in Tables 4.1, 4.3 and 4.2.

The tables show the results for the three different reduced data samples (centroid,

minimum and maximum) employed individually by computing the nearest simi-

larity between them and new instances of the test data. As indicated in Table

4.1, centroid data give its best accuracy in classifying test instances when nearest

neighbour is set to 1 and the percentage of data retained is set to 50% of the

original dataset. The accuracy of using minimum data for classification decision

give its best accuracy when K=1 and data retained is 80% while maximum data

characteristic gives its best accuracy when k=2 and data retained is either 80% or

90% of the original training dataset.

However, when the predictions from all the three representative data were com-

bined and the majority voting scheme was used to select the final class of an

instance, the best accuracy is obtained when the number of nearest neighbour

K = 2 and 80% data retained. These results indicate that there is a trade-off

between accuracy and the amount of data retained for classification across each

of the three data characteristics and their ensemble predictions. Thus, one can

select the percentage of data reduction based on the level of the desired accuracy.

For this dataset, 50% data retention can be adopted as the optimal data retention

given that the overall best accuracy of 81.46% is achieved with centroid character-

istic at this point. More so, going beyond this percentage of data reduction does

not yield any high significant increase in accuracy across each of the training data

representation and their combination. Therefore, going beyond 50% data reten-

tion is ineffectual considering that the corresponding accuracy improvement is not

very significant. It is also observed that the best accuracy was obtained for the

WISDM dataset [44] within the range of nearest neighbours set between 1 and 5.

Table 4.5 shows the comparison of the accuracy of KNN which utilised all the

dataset and the three statistical summary with their best accuracies obtained at
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Centroid Data

K 10% 20% 30% 40% 50% 60% 70% 80% 90%

1 76.85 79.80 80.07 80.54 81.46 80.81 80.90 80.63 81.00
2 76.01 77.77 78.78 79.80 79.70 80.26 80.63 81.09 80.81
3 75.83 78.32 78.78 78.32 79.43 79.24 80.17 79.70 78.60
4 76.20 77.31 77.95 78.60 79.24 78.14 79.34 79.61 79.61
5 75.37 76.57 77.58 78.04 78.51 78.14 79.34 79.34 79.43

Table 4.1: Accuracy of Using Centroid Data with Varying Percentage of Data Re-
tained on WISDM Dataset

Maximum Data

K 10% 20% 30% 40% 50% 60% 70% 80% 90%

1 62.55 65.31 73.15 75.28 77.31 78.87 79.15 79.34 79.98
2 62.92 65.22 72.05 75.00 77.40 79.06 80.07 80.44 80.44
3 64.11 66.42 72.05 73.80 76.11 77.40 77.77 79.34 78.78
4 63.10 65.87 71.77 74.54 77.03 77.95 79.52 78.60 79.43
5 63.10 66.61 71.31 73.71 76.38 76.75 79.06 78.51 79.43

Table 4.2: Accuracy of Using Maximum Data with Varying Percentage of Data Re-
tained on WISDM Dataset

Minimum Data

K 10% 20% 30% 40% 50% 60% 70% 80% 90%

1 70.48 71.59 75.09 78.04 77.95 79.89 79.98 81.73 80.44
2 69.10 71.49 75.37 77.03 77.58 79.15 79.52 80.72 80.90
3 69.37 73.43 75.83 76.57 77.68 78.97 78.78 79.80 79.61
4 69.83 73.62 75.55 77.31 77.86 78.23 79.61 80.72 80.35
5 69.46 72.42 75.00 76.94 77.49 78.14 78.41 79.52 79.98

Table 4.3: Accuracy of Using Minimum Data with Varying Percentage of Data Re-
tained on WISDM Dataset

Ensemble Prediction

K 10% 20% 30% 40% 50% 60% 70% 80% 90%

1 73.71 76.85 78.32 79.61 79.80 81.18 80.81 81.09 80.35
2 69.74 72.79 76.01 78.14 78.23 79.34 80.07 81.18 81.00
3 70.20 73.80 75.74 76.66 77.58 78.14 79.52 80.26 79.24
4 70.39 73.43 75.55 76.66 77.68 77.58 79.98 80.26 79.89
5 69.46 72.88 75.18 76.38 77.58 77.49 79.06 79.06 79.80

Table 4.4: Accuracy of Using Ensemble Prediction with Varying Percentage of Data
Retained on WISDM Dataset

the corresponding data reduction level. It is seen that the accuracy of basic KNN

is lower than the centroid, minimum and the ensemble prediction accuracies. As
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indicated further in Figure 4.2, the accuracy of using centroid data for prediction is

the best when K=1 and the percentage of data reduction is 50%. This is followed

closely by the ensemble prediction which utilises the combined prediction of the

three statistical summary data. Although, the ensemble prediction is not suitable

for this dataset because it will require the retention of 60% each for the three data

representations. However, the minimum data representation which utilised 80%

of the data is also better than that of the KNN that used all the data samples in

classifying a new instance. The only data representation that gives a less accuracy

compared to KNN is the maximum data and this margin of difference is very low.

KNN Centroid-50% Maximum-80% Minimum-80% Ensemble Prediction-60%

80.90 81.46 79.34 81.73 81.18
80.99 79.70 80.44 80.72 79.34
79.89 79.43 79.34 79.80 78.14
80.07 79.24 78.60 80.72 77.58
79.98 78.51 78.51 79.52 77.49

Table 4.5: Accuracy of Different Data Transformation Compared with KNN Algo-
rithm on WISDM Dataset

In general, it is evident that using reduced statistical summary samples instead

of the entire dataset yield better accuracy for nearest neighbour classification. It

is also clear that this approach can transform a training set into a reduced set

using clustering and extraction of statistical summary from the clusters to obtain

a better nearest neighbour classification accuracy.

It should be noted that the general low accuracy below 90% for this dataset can be

attributed to the nature of the dataset in terms quality of features and the subjects

used for data collection. The dataset contains data from 32 different users of

varying characteristics in performing the designated activity. This produces many

variations in the training and testing data. Nevertheless, the performance of the

statistical summary data are good given the fact that they can use a reduced

dataset for online recognition compare to KNN that requires the entire training

instance to achieve good performance.
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Figure 4.2: Accuracy of Using Different Data Transformation and KNN Algorithm
with WISDM Dataset

4.4.2 ClusterNN Performance on HARS Dataset

The results obtained for the HARS dataset are presented in Tables 4.6, 4.7 and

4.8. The tables show the results for the three different representation (centroid,

maximum and minimum) of the original dataset with varying amount of data

retention employed to classify test instances. As indicated in Table 4.6, centroid

data representation gives its best accuracy of 91.65% in classifying test data when

nearest neighbour is set to 10 and the percentage of data retained is 40%. The best

accuracy of using maximum data representation in place of the original dataset is

89.96%. This is obtained when K=6 and data retained is 80% as shown in Table

4.7. Similarly, the best accuracy obtained for using minimum data representation

is 90.87% when K=7 and data retained is at 80% as shown in Table 4.8. Moreover,

the accuracy of ensemble prediction of all the three data representations yields the

best accuracy of 91.01% at the point when K=7 and a data retention of 60% as

shown in Table 4.9.

Table 4.10 shows the comparison of the accuracy of KNN and the three data sum-

maries of ClusterNN. The KNN utilised all the training dataset while the centroid,

minimum and maximum data summaries utilised a reduced and transformed form

of the original dataset. It can be seen that the best accuracy of 90.77% is obtained

for KNN when the nearest neighbour for deciding the final label of an instance
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Centroid Data

K 10% 20% 30% 40% 50% 60% 70% 80% 90%
1 89.45 88.77 89.58 88.77 89.38 87.85 88.16 87.58 88.16
2 87.65 88.29 89.07 88.39 88.33 87.00 86.94 86.80 86.94
3 90.33 89.85 90.70 89.75 90.02 88.97 89.35 89.41 89.35
4 90.50 90.60 90.80 90.30 90.13 89.07 89.62 89.45 89.62
5 90.50 90.40 90.63 90.46 90.70 89.89 89.99 90.13 89.99
6 90.77 91.14 91.28 91.35 90.97 90.23 90.23 90.26 90.23
7 90.74 90.74 90.77 91.21 90.91 90.74 90.46 89.92 90.46
8 91.14 91.11 90.91 91.65 91.11 90.94 90.23 90.23 90.23
9 90.40 90.40 90.46 91.11 90.60 90.87 90.57 90.57 90.57
10 91.62 90.70 90.84 91.52 91.01 91.14 90.40 90.50 90.40

Table 4.6: Accuracy of Using Centroid Characteristic with Varying Percentage of
Data Retained on HARS Dataset

Maximum Data

K 10% 20% 30% 40% 50% 60% 70% 80% 90%
1 66.03 79.00 82.46 83.58 85.58 86.46 87.17 87.61 87.17
2 62.71 73.19 78.96 80.86 83.24 84.66 85.44 85.88 85.44
3 71.46 80.12 85.31 85.82 87.51 88.26 88.67 89.18 88.67
4 69.19 78.62 84.32 85.07 87.00 87.65 88.19 88.94 88.19
5 72.18 80.56 85.04 86.26 87.72 89.21 89.45 89.79 89.45
6 71.16 79.88 85.24 86.19 87.55 88.70 89.01 89.96 89.01
7 72.82 81.37 85.37 86.63 88.19 89.51 88.94 89.62 88.94
8 72.58 81.64 85.61 86.56 88.09 88.84 89.24 89.18 89.24
9 73.94 81.37 86.09 86.46 88.80 89.11 89.48 89.75 89.48
10 73.29 81.34 85.95 86.09 88.67 89.11 89.35 89.75 89.35

Table 4.7: Accuracy of Using Maximum Characteristic with Varying Percentage of
Data Retained on HARS Dataset

Minimum Data

K 10% 20% 30% 40% 50% 60% 70% 80% 90%
1 74.69 79.50 83.92 85.31 86.73 87.17 87.44 87.72 87.44
2 70.41 74.55 80.56 82.05 84.26 85.04 85.92 86.02 85.92
3 77.13 82.22 86.73 86.87 88.53 89.24 89.58 89.72 89.58
4 74.89 79.54 85.14 85.71 87.51 88.50 89.04 89.58 89.04
5 77.20 82.97 86.22 87.78 89.18 89.99 90.36 90.53 90.36
6 76.42 81.81 86.60 86.77 88.97 89.68 90.23 90.33 90.23
7 77.50 84.39 87.31 87.58 89.38 90.70 90.43 90.87 90.43
8 76.89 83.61 87.31 87.34 88.90 89.92 90.06 90.46 90.06
9 77.71 85.27 87.17 88.02 89.68 90.23 89.99 90.40 89.99
10 76.93 84.56 87.21 87.82 89.04 90.26 89.99 90.53 89.99

Table 4.8: Accuracy of Using Minimum Characteristic with Varying Percentage of
Data Retained on HARS Dataset
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Ensemble Predictions

K 10% 20% 30% 40% 50% 60% 70% 80% 90%
1 78.18 84.73 87.95 87.72 88.50 88.16 87.99 87.92 87.99
2 73.97 79.71 84.32 85.17 86.09 86.16 86.53 86.66 86.53
3 80.18 86.63 89.68 89.14 90.16 89.85 90.02 89.99 90.02
4 78.69 84.83 88.46 88.56 89.68 89.58 89.41 89.75 89.41
5 79.64 86.53 88.43 89.62 90.50 90.91 90.70 90.77 90.70
6 79.67 85.88 88.94 89.38 90.43 90.53 90.33 90.74 90.33
7 80.22 86.60 89.24 89.99 90.33 91.01 90.70 90.70 90.70
8 80.32 87.04 89.11 89.96 89.92 90.57 90.13 90.63 90.13
9 80.25 87.11 89.07 89.62 90.16 90.67 90.33 90.50 90.33
10 80.59 87.28 88.87 89.68 89.79 90.97 90.09 90.57 90.09

Table 4.9: Accuracy of Using Ensemble Prediction with Varying Percentage of Data
Retained on HARS Dataset

is set to 8. This accuracy is less than the centroid data representation with K

ranges between 1 and 10 and percentage of data reduction between 10% and 60%

level. This shows that a reduced set using centroid data is better than the KNN

approach that uses all the training dataset.

Since other characteristics utilized lower amount of data, their accuracy can be

traded-off for the smaller amount of data required when compared to the basic

KNN that utilized all the training data.

K KNN Centroids-40% Maximum-80% Minimum-80% Ensemble Prediction-60%

1 88.19 88.77 87.61 87.72 88.16
2 86.29 88.39 85.88 86.02 86.16
3 89.35 89.75 89.18 89.72 89.85
4 89.11 90.30 88.94 89.58 89.58
5 89.99 90.46 89.79 90.53 90.91
6 89.99 91.35 89.96 90.33 90.53
7 90.50 91.21 89.62 90.87 91.01
8 90.77 91.65 89.18 90.46 90.57
9 90.53 91.11 89.75 90.40 90.67
10 90.40 91.52 89.75 90.53 90.97

Table 4.10: Accuracy of the Three Different Data Summaries of ClusterNN Compared
with KNN on HARS Dataset

These results indicate that there is a trade-off between accuracy and the amount

of data retained for classification across each of the three reference data and their

ensemble predictions. Thus, the percentage of data reduction can be selected based

on the level of desired accuracy and available computational resource. For this
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Figure 4.3: Accuracy of Using Different Data Summaries of ClusterNN Compared
with KNN on HARS Dataset

dataset, one can take the 10% data reduction and the centroid data as the reference

training data for classifying new instances. Figure 4.3 shows the comparative

accuracy of using each of the three reduced data as the training set for nearest

neighbour classification and their ensemble predictions. It can be observed that

the accuracy of minimum and centroid are better than the KNN. This is more

important since the two use a less amount of data for prediction. Also the accuracy

of the ensemble prediction is also better when k=7 and the data reduction rate

is 60%. It is only the maximum data that gives a lesser accuracy than KNN

although the difference is very small. With this, it can be concluded that the

presented approach of reducing the dataset with different statistical summary that

are extracted from the clusters is better than using the KNN with all the training

data for predictions.

4.4.3 ClusterNN Performance on Opportunity Dataset

The result for the experiments with Opportunity dataset is presented here. Ta-

bles 4.11, 4.12 and 4.13 show the results for the three different statistical sum-

maries data (centroid, maximum and minimum) that were derived from the original

dataset with varying amount of data retention employed to classify test instances.
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As indicated in Table 4.11, using ClusterNN with centroid data gives its best ac-

curacy of 96.28% in classifying test data when nearest neighbour is set to 8 and

the percentage of data retained is 20%. The best accuracy of using maximum

summary data in place of the original dataset is 92.48%. This is obtained when

K=7 and data retained is 40% as shown in Table 4.12. Similarly, the best accuracy

obtained for using minimum data representation is 95.62% when K=7 and data

retained is at 30% as shown in Table 4.13. Moreover, the accuracy of ensemble

predictions of all the three data yielded the best accuracy of 93.27% at the point

when K=5 and a data retention of 40% as shown in Table 4.14.

Centroid Data

K 10% 20% 30% 40% 50% 60% 70% 80% 90%
1 93.01 92.81 93.40 90.02 88.91 90.19 89.66 90.77 89.91
2 91.38 92.99 93.32 90.05 89.11 89.40 88.63 90.39 89.64
3 94.18 93.84 94.71 91.68 90.55 91.12 89.76 91.75 90.87
4 94.78 94.37 94.79 91.91 90.77 91.62 90.86 92.30 91.63
5 93.75 94.61 94.67 92.06 91.12 92.41 90.55 92.46 92.44
6 95.00 95.44 95.66 94.15 91.96 92.98 91.76 93.35 93.16
7 94.66 96.12 95.61 93.15 92.21 93.03 91.25 93.21 92.94
8 95.07 96.28 96.17 94.59 92.10 93.23 92.55 93.65 93.62
9 93.58 95.66 95.37 92.26 91.78 92.24 91.90 93.11 92.73

10 94.33 93.26 93.80 93.72 92.54 93.28 93.86 93.43 92.95

Table 4.11: Accuracy of Using Centroid Characteristic with Varying Percentage of
Data Retained on Opportunity Dataset

Maximum Data

K 10% 20% 30% 40% 50% 60% 70% 80% 90%
1 70.22 83.57 86.95 90.42 88.49 89.55 88.06 89.61 88.69
2 66.26 78.13 83.66 87.77 86.03 86.90 86.32 87.88 87.03
3 75.56 84.63 90.30 91.42 89.89 90.98 89.22 91.18 91.04
4 72.22 82.65 88.73 90.32 89.89 90.33 89.78 90.94 90.17
5 76.50 84.69 89.96 91.16 90.63 91.31 90.60 91.79 91.20
6 75.14 84.18 90.11 91.20 90.08 91.15 90.03 91.96 91.53
7 77.35 85.44 89.99 92.48 89.63 91.18 90.13 91.62 91.36
8 75.76 86.18 90.37 91.85 89.51 90.39 89.39 91.18 90.85
9 76.95 85.95 90.97 91.38 90.52 90.99 90.30 91.75 91.42

10 75.68 83.52 88.60 91.86 91.97 91.13 91.69 92.20 91.83

Table 4.12: Accuracy of Using Maximum Characteristic with Varying Percentage of
Data Retained on Opportunity Dataset
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Minimum Data

K 10% 20% 30% 40% 50% 60% 70% 80% 90%
1 79.30 84.02 92.62 89.54 87.76 89.67 87.83 89.72 89.20
2 73.57 79.14 90.82 87.14 87.02 87.71 86.07 88.02 87.50
3 81.23 86.87 94.41 90.77 90.72 91.50 90.29 91.72 91.23
4 79.33 83.77 94.28 91.49 90.58 91.53 90.42 91.58 91.09
5 82.06 87.30 95.43 92.62 91.53 92.31 90.64 92.53 91.86
6 79.63 86.42 95.22 92.12 91.33 92.24 91.09 92.33 91.88
7 82.29 88.41 95.62 92.42 91.87 92.27 91.00 92.87 92.35
8 80.73 88.21 94.86 92.63 91.46 91.46 91.16 92.46 92.10
9 81.57 89.35 94.83 91.60 91.40 92.09 90.93 92.4 91.58

10 80.56 88.95 95.39 91.69 91.53 92.20 91.08 92.53 92.31

Table 4.13: Accuracy of Using Minimum Characteristic with Varying Percentage of
Data Retained on Opportunity Dataset

Ensemble Predictions

K 10% 20% 30% 40% 50% 60% 70% 80% 90%
1 81.98 89.11 92.41 90.40 88.43 89.65 89.14 90.16 89.47
2 77.56 84.10 90.78 88.73 87.05 87.67 86.43 88.16 87.65
3 84.07 91.07 94.33 92.69 90.61 91.57 90.54 91.85 91.12
4 82.49 89.52 94.42 91.83 89.91 91.38 90.20 91.58 90.89
5 84.03 91.14 95.85 93.27 91.70 91.98 91.67 92.91 92.40
6 82.83 90.01 95.06 91.63 91.29 92.41 90.95 92.53 91.59
7 84.45 91.21 95.31 93.95 91.65 92.86 91.24 93.01 92.51
8 84.24 91.29 94.82 92.91 91.09 92.26 90.64 92.57 92.24
9 84.96 91.74 95.18 92.08 91.17 92.27 91.44 92.67 92.34

10 84.75 91.38 95.76 92.41 91.31 92.73 91.35 92.97 92.33

Table 4.14: Accuracy of Using Ensemble Prediction with Varying Percentage of Data
Retained on Opportunity Dataset

Table 4.15 shows the comparison of the accuracy of KNN and the three data

representations. The KNN utilised all the training dataset while the centroid,

minimum and maximum data representation utilised a reduced and transformed

form of the original dataset. The highest accuracy of 93.62% is obtained for KNN

when the nearest neighbour for deciding the final label of an instance is set to 9.

This accuracy is less than the centroid data representation with K ranges between

3 to 10 and percentage of data retention between 10% and 90% level. This shows

that a reduced set using centroid data is better than the KNN approach that uses

all the training dataset. Similarly, the minimum data summary yield a better

accuracy than kNN when data retained is 30% and K ranges between 3 to 10. The

same observation is recrded for the ensemble data with its accuracy outperforming
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kNN at 30% and K ranges between 3 to 10. However, the maximum data summary

with its best accuracy of 92.48% is slightly less than the kNN best accuracy of

93.62%.

Since ClusterNN uses a lower amount of data than the kNN, it implies that the

proposed statistical summaries contain adequate discerning patterns to guarantee

good accuracy than KNN. In the situation where kNN outperformed ClusterNN,

the lower amount of training data used can be traded-off against the accuracy of

kNN that utilized all the training data.

K KNN Centroids-20% Maximum-40% Minimum-30% Ensemble Prediction-30%

1 91.76 92.81 90.42 92.62 92.41
2 88.83 92.99 87.77 90.82 90.78
3 91.80 93.84 91.42 94.41 94.33
4 91.89 94.37 90.32 94.28 94.42
5 92.32 94.61 91.16 95.43 95.85
6 93.27 95.44 91.2 95.22 95.06
7 92.51 96.12 92.48 95.62 95.31
8 92.80 96.28 91.85 94.86 94.82
9 93.62 95.66 91.38 94.83 95.18
10 93.52 95.26 91.86 95.39 95.76

Table 4.15: Accuracy of the Three Different Data Representation Compared with
KNN Algorithm on Opportunity Dataset

Figure 4.4: Accuracy of Using ClusterNN Different Summary Data and KNN Algo-
rithm with Opportunity Dataset
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These results indicate that there are varying accuracies based on the amount of

data retained for classification across each of the three reference statistical sum-

mary data and their ensemble predictions. Thus, the percentage of data reduction

can be selected based on the level of desired accuracy and available computational

resource. For this dataset, one can take the 20% data reduction and the centroid

data as the reference training data for classifying new instances. The ensemble

data can also be used at 30% data retention.

Figure 4.4 shows the comparative accuracy of using each of the three reduced

data as the training set for nearest neighbour classification and their ensemble

predictions. It can be observed that the accuracy of minimum and centroid are

better than the KNN. This is more important since the two use a less amount of

data for prediction. Also the accuracy of the ensemble prediction is also better

when k=7 and the data reduction rate is 60%. It is only the maximum data that

gives a lesser accuracy than KNN although the difference is very small. With

this, it can be concluded that the presented approach of reducing the dataset with

different statistical summary that are extracted from the clusters is better than

using the KNN with all the training data for predictions.

4.4.4 Comparative Evaluation of Weighted Ensemble ClusterNN

with other Algorithms

Having observed the relative performances of each statistical summary extracted

from the original dataset and the ordinary majority voting ensemble, an improved

weighted voting scheme for taking the final decision on the classification of samples

was implemented and evaluated.

The weighted ensemble voting scheme assigned weight to each of the decision made

from each characteristic with centroid having more weight than the minimum and

maximum characteristics. The results obtained with comparative performance

with three other algorithm is presented in Table 4.16.
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Weighted Ensemble
ClusterNN

KNN Decision Tree Näıve Bayes

WISDM 92.50 81.99 86.00 87.10
HARS 97.97 90.77 90.20 91.20
Opportunity 98.99 92.57 93.56 94.12

Table 4.16: Comparative Evaluation of ClusterNN with other Algorithms

Statistical Test Result 4.4.1. Paired T-Test and Confidence Interval: Weighted

Ensemble ClusterNN vs KNN
N Mean StDev SE Mean

Weighted Ensemble ClusterNN 3 96.49 3.49 2.01

KNN 3 88.44 5.66 3.27

Difference 3 8.04 2.17 1.25

95% Confidence Interval for mean difference: (2.65, 13.44)

T-Test of mean difference = 0(vs 6= 0): T-Value = 6.42 P-Value= 0.023

Statistical Test Result 4.4.2. Paired T-Test and Confidence Interval: Weighted

Ensemble ClusterNN vs Decision Tree
N Mean StDev SE Mean

Weighted Ensemble ClusterNN 3 96.49 3.49 2.01

Decision Tree 3 89.92 3.79 2.19

Difference 3 6.567 1.171 0.676

95% Confidence Interval for mean difference: (3.657, 9.477)

T-Test of mean difference = 0(vs 6= 0): T-Value = 9.71 P-Value= 0.010

Statistical Test Result 4.4.3. Paired T-Test and Confidence Interval: Weighted

Ensemble ClusterNN vs Naive Bayes

N Mean StDev SE Mean

Weighted Ensemble ClusterNN 3 96.49 3.49 2.01

Naive Bayes 3 90.81 3.53 2.04

Difference 3 5.68 0.98 0.57

95% Confidence Interval for mean difference: (3.244, 8.116)

T-Test of mean difference = 0(vs 6= 0): T-Value = 10.03 P-Value = 0.010

With only 15% data retention, the weighted ensemble of the statistical summary

decisions outperformed both KNN, Naive Bayes and Decision Tree algorithms for



Chapter 4. ClusterNN: A Clustering and Nearest Neighbour Based Classifier for
Activity Recognition 70

both the WISDM and HARS and Opportunity datasets. The weighted ensemble

is applied to the decision from each characteristic by assigning more weight to the

more accurate ensemble component and lesser weight to the less accurate ensemble

components. The results and the statical tests are presented in Table4.16and

statistical test 4.4.1,4.4.2 and 4.4.3 respectively.

The paired t-test on the result in Table 4.16, shows that WISDM dataset has lesser

accuracy under each algorithm compared with HARS and Opportunity datasets.

This can be attributed to the underlying features of the datasets. However, with

the statistical summaries, the accuracy of ClusterNN outperformed all the algo-

rithms that used the complete dataset. Also, the statistical summaries utilised

lesser training instances unlike the remaining algorithms that used all the avail-

able reference training dataset. In conclusion, the ClusterNN with its reduced

dataset is more accurate and robust for activity recognition.

4.5 Chapter Summary

This chapter has presented an approach for extracting statistical summaries and its

associated data from the original large dataset. The proposed statistical summary

are the centroid, maximum and minimum features extracted from the sub-clusters

created from each class of activity. The advantage of the extracted features and its

associated data is that they resulted in a reduced set of data for the instance-based

classification approach.

An instance-based classifier for activity recognition that uses the extracted char-

acteristic data as reference data for classifying new instances is presented. The

classifier computes the similarity between a new instance and the reference data

summaries and assigned the labels of the nearest similarity to the instance. The

decisions from each reference feature are combined using majority voting to arrive

at the final label. Evaluation of the approach shows that the accuracy of using each

of the characteristic for similarity measure depends on the number of sub-clusters

created in the dataset. Also, the weighted ensemble voting scheme of the classifier

outperforms all the benchmarked algorithms.



Chapter 5

Unsupervised Change

Detection Framework for

Activity Recognition

5.1 Introduction

The traditional approach for inertial sensors based activity recognition involves: i)

collection of labelled data from the subjects that perform sample activities to be

recognised ii) classification model generation by using collected data to train and

test classification algorithms iii) a model deployment stage where the learnt model

is transferred to the mobile device for identifying new unseen data.

This approach for activity recognition performed the model generation phase on

remote systems and pushed the generated model to the client applications to recog-

nise new user activities. The drawback of this approach is that the model is static

and does not reflect possible changes in the distribution of new evolving data.

Another approach that aims to eliminate this induced the model by using the

user self-annotated data from the device so that the model can be tuned to the

individual user.

However, the two approaches are still not immune from changes that may occur

in the underlying distribution of the unseen incoming data due to differences in

71
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user characteristics and drifts in sensor data [44]. This usually results in decreasing

performance in the accuracy of the model as new users with different characteristics

begin to use it. For example, a model that is trained to recognise walking activity

may take a new data from another slightly different distribution that corresponds

to jogging for another user and classify it as walking. At this point, the model has

suffered from the phenomenon called concept change. The source of the change

can be known or unknown. But for activity recognition problem, it has been shown

to be caused by some factors such as dissimilarities between the data of users used

during training and those using the activity recognition model. [44, 48]. It may

also be caused by the displacement of the sensors and orientation effect on the

sensor readings [11, 97].

Various approaches have been developed for activity recognition model adaptation

during online operation. All of these approaches [4, 48, 110] are blind in the sense

that they do not identify concept changes before they start the adaptation pro-

cess. In the field of stream mining, a related problem exists and two approaches

have been identified for handling concept drift. They are named the informed and

uninformed adaptation approaches [30]. The informed approaches react to the oc-

currence of concept drift by ensuring that the drift point is detected before taking

any action. In contrast to this, uninformed approaches incrementally and continu-

ously update the model each time a sample or set of samples are integrated into the

model. The drawback of the uninformed adaptation approaches is that they can

react slowly to concept drift and consume system resources as they continuously

adapt the old concept which may need to be replaced out-rightly or maintained

without adaptation [30]. Hence an informed adaptation scheme is better and well

suited for better management of concept drift.

Many of the approaches [28, 34, 91] for the detection of concept drift assume that

the data are labelled. But, in the domain of activity recognition, labels are not

easy to come by during online recognition. This is because users will be required

to provide a label for each activity being performed. This is impractical and

tedious to do. Hence, the approach that is based on unsupervised detection which

eliminates the need for ground truth to detect changes is highly desirable.
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This chapter presents a new approach called Unsupervised Change Detection for

Activity Recognition (UDetect) which unlike other approaches that use ground

truth [28, 34, 91], does not require the presence of labels to detect the drifts. The

approach extends the Shewart control charts[103] parameters used in statistical

process control domain, for change detection in activity recognition. The approach

aims to detect the variability between reference users data and the predicted data

from the same or another user. In particular, the contribution of the UDetect

approach is that it can detect changes in activity recognition model without using

ground truth for error monitoring unlike other approaches [28, 34, 91] that requires

ground truth for the detection of concept drift. Instead, the approach uses a data

discrimination method and a base classifier to detect the changes by using the

parameters computed from the reference data of each class to discriminate outliers

in the new data being classified to the same class.

The rest of this chapter is organised as follows: Section 5.2 presents the con-

cept change detection framework. Section 5.3 and 5.4 present the experimental

evaluation results and discussions. The summary of the chapter concludes the

presentation of this chapter.

5.2 Unsupervised Change Detection Framework

The proposed and implemented method of unsupervised change detection is a

technique that detects changes in the activity recognition model. The change in

the model manifests in the form of reduced model accuracy. In this case, the

detected change is viewed from the perspective of detecting incoherency between

the data that represents the original model of the activity and the new data that

are classified to the same activity. The central idea of the framework is that if

a classifier is trained on a set of data, the model obtained will continue to be

accurate if the new unseen data fit coherently with the training data with some

level of deviation; but if the new data classified to a particular class varies widely

from the pattern of the reference data, it means the data should belong to a

different class rather than where it is classified. Therefore, the technique relies



Chapter 5. Unsupervised Change Detection for Activity Recognition 74

on monitoring the variation between the reference data of a class and the new

data classified to the class. The method does not assume the presence of ground

truth with each arrival of new samples to be classified. Hence, it reflects a realistic

scenario for detecting concept drift in activity recognition. The method employs

the base classifier presented in the previous chapter. The classifier is pre-trained on

a set of target concept to classify new samples, and when the classifier is deployed

for recognition of new samples, batches of samples classified to the same class are

maintained. Intuitively, if the classifier is not misclassifying samples to a class, the

distribution of the attributes in the samples classified to the same class should be

stable. A change in the distribution of the samples classified to the same class is

signalled if the distribution parameters of the samples deviate significantly from

the previous reference parameters. The method relies on this assumption and

monitors the parameter computed from the batches of data that are classified to

the same class. If this parameter is within a threshold, no change is detected, but

if this parameter exceeds a threshold a change is signalled in that particular class

of data.

The realisation of the technique is formulated as a two level architectural frame-

work comprising of the off-line phase and the online phase. The off-line phase

extracts the change parameters from the reference dataset. It also performs the

function of converting the multidimensional data into uni-dimensional data. The

online phase functions include the classification of new samples and the detection

of changes in each class of activity present in the datasets. The details of these

two components are discussed further in the following sub-sections.

5.2.1 Conceptual Framework of the Offline Component

The functional components of the off-line phase of the framework is shown in

Figure 5.1. The main functions performed by the off-line component include (i)

Windowing and Segmentation (ii) Window summary computation (iii) Change

parameter computation and (iv) Model Generation.
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Figure 5.1: Off-line Components of the Unsupervised Change Detection Framework

5.2.1.1 Windowing

The windowing sub-component performs the function of partitioning and segment-

ing the incoming data into chunks of fixed sizes. Each multi-dimensional chunk

is passed to the next layer for further processing. Different windowing strategies

can be used. The experiment performed with overlapping and non-overlapping

windows suggests that non-overlapping window performs better.

5.2.1.2 Window Summary Computation

The window summary computation is the second layer of the off-line component

that is saddled with the function of converting each chunk of multidimensional

instances obtained from a window into a single summary value that will be used

as input to the change parameter computation. After accumulating a batch of

multidimensional data of a fixed size n from a given class of activity data in

the reference dataset, the summary value of the data is computed as the average

distance between each point in the batch of data and their mean. Algorithm 6 is

used for computing the summary values. The set of avgdtc statistic computed from

the different activity classes are then accumulated and used by the next component

to compute the change parameters according to each class of activity.
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Algorithm 6: Window Summary Computation

Input: D = {(x1, yi), (x2, yi), ..., (xn, yi)}
// D = Reference Dataset

Output: avgdtcyi,...,yk{1..m}
// set of window summary values computed for each class of activity yi to yk

1 foreach class yi in D do
2 while data ∈ class yi) 6= empty do
3 X = getWindowData(n, yi, D)

// obtained fixed non-overlapping data chunk of size n from the window of

activity of class yi

4 $c = Centroid(X,n)
// compute the centroid of n data items in X

5 avgdtcyi [k] = 1
n

n∑
i=1

√
(x(i) −$c)2

// x(i) ∈ Rn are the instances in the window and $c ∈ Rn is defined as the

centroid of the data in the window computed

6 end

7 end
8 return avgdtcyi,...,yk{1..m}

// set of window statistics computed for each class of activity.

5.2.1.3 Change Parameters Computation

The change parameter computation sub-component computes the change param-

eters for each class of activity present in the reference dataset. The computation

is done by making use of Algorithm 7. The input to the algorithm are the set of

window summary values computed from the preceding component for each class

of activity. The algorithm is based on the statistical process control method by

adapting the Shewhart individuals control chart parameters [65] to identify the

significant variations in the window summary values computed from the newly

classified incoming samples. The constants in the algorithm depend the nature of

the distribution and size of the data. Assume that the avgdtc statistic samples

follow a normal distribution with mean µ and standard deviation σavgtc = σ√
n

,

then 1−α is the probability that the mean value of any sample of avgdtc will fall

between:

µ+ zα
2
σavgdtc = µ+ zα

2

σ√
n

and µ− zα
2
σavgtc = µ− zα

2

σ√
n

(5.1)

Hence, Equation 5.1 can be used as upper and lower control limits for the avgdtc
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sample statistic. But, the entire population mean µ and standard deviation σ are

not known. However, they can be estimated from the preliminary set of avgdtc

values computed from the reference dataset that indicates the normal patterns of

the activities. The mean µ is estimated by computing the mean of the avgdtc

from the preliminary reference samples as avgdtcyi = 1
n

∑n
k=1 avgdtcyi The stan-

dard deviation σ can be estimated from the ranges of two successive samples i.e

Ravgdtc = avgdtci+1 − avgdtci.

An established relationship between the range R and standard deviation σ of a

sample from a normal distribution is W = R
σ [65]. The random variable W is called

the relative range. The parameters of the distribution of W are a function of the

sample size n. The mean of W is d2. Thus, an estimator of σ is R
d2

. The values for

d2 has been established and the table of values is given in Appendix B. Therefore,

the mean µ of the population is estimated with the average of the preliminary

samples and the standard deviation σ is estimated with
Ryi
d2

. Finally, the upper

control limit for the individual sample of avgdtc is computed from Equation 5.1

as:

UCLavgdtc = µ+ 3
σ√
n

= µ+
3Ryi
d2
√
n

(5.2)

Since the range is computed from 2 consecutive samples the equivalent value of d2

is 1.126. Also, since each avgdtc sample is treated individually
√

(1) = 1. Hence,

the UCLavgdtc becomes:

UCLavgdtc = µ+ 2.66Ryi (5.3)

Similarly, the LCLavgdtc is given as:

LCLavgdtc = µ− 2.66Ryi∗ (5.4)

The computed parameters for each class of activity are stored in a variable called

parameterList Algorithm 7 line 7. The parameters for each class are used sepa-

rately to monitor any change that may occur in the data classified to each of the

activity class during the online classification of new unseen instances.
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Algorithm 7: Change Parameter Computation

Input: avgdtcyi,...,yc{1..m}
// set of window summary values of different classes obtained from reference dataset

Output: parameterList
// change monitoring parameters for each class of data

1 foreach class yi in avgdtc{1..m} do

2 Ryi = 1
n

n−1∑
k=1

avgdtck+1 − avgdtck

3 avgdtcyi = 1
n

∑n
k=1 avgdtcyi

4 UCLavgdtcyi = avgdtcyi + 2.66×Ryi
5 LCLavgdtcyi = avgdtcyi − 2.66×Ryi
6 parameterList.append(UCLavgdtcyi , LCLavgdtcyi )

7 end
8 return parameterList

5.2.1.4 Model Generation

The final layer of the off-line component is responsible for building a classifier

prototype by making use of the reference dataset which represents the current

activity patterns codified into the model. The main essence of the model generation

is to train a learning model to be able to recognise the current pattern of activity

that is present in the system. The classifier accuracy is then monitored when it is

deployed to the online stage to recognise activity of the new set of data from the

same set of users who performed the sample activities or entirely new users whose

characteristics may totally diverge from those present in the training set.
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5.2.2 Conceptual Framework of the Online Components
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Figure 5.2: Online Components of the Unsupervised Change Detection Framework

Figure 5.2 shows the architecture of the online detection method. The compo-

nents of the framework consists of: (i) The Online Model (ii) Online Windowing

(iii)Online Window Summary Computation (iv)Online Detector.

5.2.2.1 Online Model

The online model is a classification model that has been pre-trained during the

off-line stage. The model is meant to classify new samples of activity data. As the

data are classified they are passed to the dedicated temporary buffers from where

they are sent to the appropriate window for the windowing and segmentation

operation to be performed on the data.

5.2.2.2 Online Windowing

The online windowing component performs the same functions as the offline win-

dowing module. They both perform the function of segmenting the data in the

window into fixed size chunks. There are separate windows dedicated to each

class of activity and the data in each of the window are processed when the pre-

determined number of samples are available in the window. Each fixed size mul-

tidimensional chunk of data obtained from the window is passed to the window
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summary computation component to convert the entire chunk into a single value

know as avgdtc statistic or window summary value.

5.2.2.3 Online Window Summary Computation

The online window summary calculation is carried out on the formed data of size

n. The computation is akin to the off-line format of the component because the

same parameter as the off-line component is required for the detection module.

Hence, Algorithm 6 is employed in computing the online window summary as it

was done in the off-line computation of the same parameter.

5.2.2.4 Online Detector

Algorithm 8: Online Change Detector

Input: UCLavgdtcyi , LCLavgdtcyi
// change parameters computed in the offline phase

Output: change signal
1 foreach instance xk classified to a stream of window activity do
2 xw = getWindowStep(n)

// Form a window Size from the Stream

3 wstatistic = computeWindowSummary(xw)
// Compute Window Summary

4 if (wstatistic >= LCLavgdtcyi ) and (wstatistic <= UCLavgdtcyi ) then

5 No change
6 end
7 else
8 change detected
9 initiate adaptation

10 end

11 end

The online detector module is the main component in the online detection frame-

work that determines when a change occur in the new instances being classified.

The change can manifest in different ways. One manifestation of change is the

diminishing accuracy of the online model that classifies the samples, but this re-

quires knowing the ground truth of the classified sample which is not realistic in

this scenario of activity recognition. Therefore, an indirect approach to detect the

change is to determine if the data classified to a class is divergent widely from

the original baseline data of the class. Base on this, the online detector uses the
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already computed change parameters from the training samples to decide whether

the new window summary fits coherently within the existing data in the samples

or whether it diverges widely from the baseline data. If the new summary value

fits coherently with the change parameters no change is detected and the sample is

said to be within control but if the value diverges widely then a change is signalled.

The online detection algorithm is presented in Algorithm 8. In this algorithm, as

new samples are classified into designated windows, and the window summary

statistic is computed on a fixed amount of window data, the static is compared to

the change parameters and a decision is taken to declare a change or no change.

5.3 Experimental Study

The objective of the experiments is to identify when the accuracy of the underlying

model begins to degrade without having access to the ground truth. This change

point is due to the differences between reference data used for training and new

unseen data during online activity recognition. To simulate this scenario, the data

of one user was used for training and another subject data for evaluating the

change point detection. In other words, a known amount of one user data is used

as training data to create a bespoke up-to-date model and also used to compute

change parameters. The training and the test data are then combined and passed

to the model so that if there are differences between the distributions of the activity

data between the users, the method should be able to identify the change points

after the first user data. Hence, the first set of data to test is from the original

user while the rest are from another user. This configuration is employed for all

the experiments in this section.

5.3.1 Experiment with HARS Dataset

The Human Activity Recognition Using Smartphone Dataset-HARS described in

Chapter 3 was used for this experiment. The configuration of the experiment

involved setting the data of one user as reference dataset to serve as training set

for the underlying model and to compute the change parameters (UCL and LCL).
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Another user data is then set as the test set. Each class of activity has its own

dedicated window for detecting the variability in the data classified to a given class.

A batch size of 3 was utilised to compute the window summary statistic (avgdtc)

from the window dedicated to each activity. The detection results obtained by

setting the data of the user with ID 19 as training set while the combination of

user 19 and 14 are set as test data are charted in Figures 5.3 to 5.8. The first 360

samples of the testing data belong to user 19 while the remaining 323 data points

of the total 683 belongs to user 14. Figure 5.3 shows the chart of the values of the

individual window summary statistic avgdtc that are obtained from the window of

activity class ‘walking’. A change is detected at the time step 489 and 647 on the

chart. These are the points where the values of avgdtc exceed the upper control

limit. and the distribution of the data changes from the initial data distribution

resulting in deterioration in the accuracy of the model. It also indicates that the

samples around these time steps are misclassified which makes their computed

parameter goes out of control limit. Table 5.2 shows that there is misclassification

error in this class amounting to error rate of 0.15.

The summary of the number of changes detected and the corresponding error rates

in each class of activity across the different pairing of one user with another user is

presented in Tables 5.1 and 5.2 respectively. The correlation test performed on the

two set of data from the two tables using Minitab [2] statistical analysis software

yields the result presented in statistical test result 5.3.1.

Statistical Test Result 5.3.1. Correlation: Number of Changes vs Error Rate

in HARS Dataset

Pearson correlation of Number of Changes and Error Rate = 0.934 P − V alue =

0.000

The result indicates that the Pearson correlation between error rates and the num-

ber of changes detected in each class of activity for this sample dataset is 0.934

while the p-value is 0.000. Since the p−value is smaller than 0.01, the null hypoth-

esis about the correlation between the error rate and number of changes detected

H0 = ρ = 0 can be rejected in favour of the alternative hypothesis H0 : ρ > 0. This

implies that there is sufficient statistical evidence at the α : 0.01 level to conclude
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that there is a significant relationship between the error rate and the number of

changes detected in a class of activity.

Number of Changes Detected per Class of Activity
Reference User Test User Walking Walking

Up-

stairs

Walking

Down-

stairs

Sitting StandingLying

19 14 2 2 0 3 5 0
30 2 4 0 5 2 1 0
3 4 2 0 0 1 2 0
5 6 0 1 0 3 1 0
7 8 1 3 3 1 2 0
9 10 1 2 0 2 2 1
11 12 1 5 0 1 2 0
13 15 3 0 0 0 2 0
16 17 3 2 0 3 0 0
18 20 4 4 0 2 1 0
21 22 0 2 0 0 2 0
23 24 5 0 5 1 1 0
25 26 0 0 0 0 0 0
27 28 0 1 0 3 0 1
29 30 1 0 1 2 0 0

Table 5.1: Summary of Detections in HARS Dataset

Error Rate per class of Activity
Reference User Test User Walking Walking

Up-

stairs

Walking

Down-

stairs

Sitting StandingLying

19 14 0.15 0.24 0 0.32 0.36 0
30 2 0.10 0.00 0.45 0.19 0.11 0.00
3 4 0.16 0.05 0.01 0.09 0.21 0.01
5 6 0.01 0.08 0.00 0.30 0.06 0.01
7 8 0.09 0.27 0.12 0.09 0.24 0.00
9 10 0.11 0.18 0.00 0.13 0.25 0.10
11 12 0.14 0.46 0.00 0.14 0.06 0.04
13 15 0.32 0.02 0.00 0.05 0.14 0.01
16 17 0.05 0.17 0.00 0.26 0.03 0.00
18 20 0.39 0.44 0.01 0.18 0.08 0.00
21 22 0.02 0.24 0.00 0.04 0.05 0.00
23 24 0.47 0.00 0.45 0.15 0.13 0.00
25 26 0.00 0.00 0.00 0.00 0.00 0.00
27 28 0.02 0.11 0.01 0.33 0.00 0.05
29 30 0.10 0.00 0.10 0.20 0.00 0.01

Table 5.2: Error Rates in HARS Dataset

Similarly, changes are detected in the activity class ‘Walking-Upstairs’, ‘Sitting’

and ‘Standing’ shown in Figures 5.4, 5.6 and 5.7 respectively. The change points

are indicated by the out of control limit points in the charts. The proportions of
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Figure 5.3: Parameter Chart of Walking Activity in User 19 Against 14

misclassified samples in these classes as shown in Table 5.2 corroborates the non-

homogeneity of the data that are classified to the window dedicated to each class.

Thus, the approach is able to detect changes in the distribution of the initial user

data that belongs to the original activity and those that comes from another user.

It should be noted that the points that are within control limits indicate instances

from test data have the same and correct class as the initial training data.

There is no change is detected in the activity class ‘Walking-Downstairs’ (Figure

5.5) and class ‘Laying’ ( Figure 5.8). This is evident by the absence of out of

control points in the two charts for the two classes. This is because there is no

variability in the training data of the user and the test data from another user

and hence the proportions of their misclassified samples are 0 for each of the two

classes as shown in Table 5.2.

5.3.2 Experiment with Opportunity Dataset

This experiment utilised the Opportunity activity recognition dataset that is de-

scribed in Chapter 3. The dataset has more data points and is obtained from

more inertia sensors than the HARS and WISDM dataset. The experiment was
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Figure 5.4: Parameter Chart of Walking-Upstairs Activity in User 19 Against 14
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Figure 5.5: Parameter Chart of Walking-Downstairs Activity in User 19 Against 14
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Figure 5.6: Parameter Chart of Sitting Activity in User 19 Against 14
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Figure 5.7: Parameter Chart of Standing Activity in User 19 Against 14
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Figure 5.8: Parameter Chart of Laying Activity in User 19 Against 14

performed by setting the data of ADL session of one user as reference data for

training the initial recognition model and another user data as the test data. The

summary of the number of changes detected and the corresponding error rates

in each class of activity across the different users is presented in Table 5.3 and

5.4 respectively. A correlation test was performed between the two tables using

Minitab [2] statistical software. The result of the test is shown in test result 5.3.2.

Statistical Test Result 5.3.2. Correlation: Number of Changes vs Error Rate

in Opportunity Dataset

Pearson correlation of Number of Changes and Error Rate = 0.972 P − V alue =

0.000

The result indicates that the Pearson correlation between error rates and the num-

ber of changes detected in each class of activity for this sample dataset is 0.972

while the p-value is 0.000. Since the p−value is smaller than 0.01, the null hypoth-

esis about the correlation between the error rate and number of changes detected

H0 = ρ = 0 can be rejected in favour of the alternative hypothesis H0 = ρ > 0.

This implies that there is sufficient statistical evidence at the α = 0.01 level to

conclude that there is a significant relationship between the error rate and the

number of changes detected in each class of activity. The implication is that the
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Number of Changes Detected Per
Class of Activity

Reference Data Test data Standing Walking Lying Sitting
S1ADL1 S2ADL1 3 5 2 3
S2ADL2 S2ADL2 3 4 1 1
S3ADL3 S3ADL3 3 3 1 1
S4ADL4 S4ADL4 2 3 1 1
S1ADL5 S2ADL5 2 4 1 1
S1DRILL S2DRILL 3 2 1 1
S3ADL1 S4ADL1 3 3 1 5
S3ADL2 S4ADL2 3 3 1 5
S3ADL3 S4ADL3 3 4 1 5
S3ADL4 S4ADL4 4 2 1 3
S3ADL5 S4ADL5 3 5 1 5
S3DRILL S4DRILL 2 3 2 1
S3ADL2 S1ADL2 6 5 5 0

Table 5.3: Summary of Detections in Opportunity Dataset

higher the error rate in a given class of activity window, the more the number of

changes detected. The change point indicates the points where instances are being

misclassified that leads to error of the model and wide inconsistencies in the data

classified to a class.

Sample charts of the change points in the data of one of the experiments are

presented in Figures 5.9 to 5.12. The experiment was performed by setting the

data of ADL session 2 of user 3 as reference training dataset while the combination

of this data and that of ADL session 2 of ser 1 were set as test data. The first

27825 samples of the testing data belong to ADL session 1 of user 4 while the

remaining 32224 data points of the total 60049 belongs to ADL session 1 of user

1. Figure 5.9 shows the chart of the computed window summary statistic (avgdtc)

obtained from the window designated for ‘Standing’ activity.

Error Rate Per Class of Activity
Reference Data Test data Standing Walking Lying Sitting
S1ADL1 S2ADL1 0.12 0.37 0.13 0.22
S2ADL2 S2ADL2 0.11 0.26 0.04 0.03
S3ADL3 S3ADL3 0.10 0.24 0.00 0.01
S4ADL4 S4ADL4 0.09 0.24 0.02 0.01
S1ADL5 S2ADL5 0.06 0.28 0.06 0.06
S1DRILL S2DRILL 0.14 0.11 0.01 0.00
S3ADL1 S4ADL1 0.13 0.19 0.03 0.39
S3ADL2 S4ADL2 0.15 0.19 0.04 0.38
S3ADL3 S4ADL3 0.18 0.27 0.02 0.42
S3ADL4 S4ADL4 0.21 0.13 0.02 0.27
S3ADL5 S4ADL5 0.16 0.37 0.02 0.38
S3DRILL S4DRILL 0.08 0.23 0.13 0.00
S3ADL2 S1ADL2 0.45 0.36 0.40 0.00

Table 5.4: Error Rates in Opportunity Dataset
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Figure 5.9: Parameter Chart of ‘Standing’ Activity in User 3 ADL 2 Against User1
ADL2
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Figure 5.10: Parameter Chart of ‘Walking’ Activity in User 3 ADL 2 Against User1
ADL2
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Figure 5.12: Parameter Chart of ‘Sitting’ Activity in User 3 ADL 2 Against User1
ADL2
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Figure 5.11: Parameter Chart of ‘Lying’ Activity in User 3 ADL 2 Against User1
ADL2

The figure shows that changes are detected at the data points 33520, 39633, 40045, 40246

and 54978. These are the points where the window summary statistic values

(avgdtc) exceed either the upper or lower control limits. These points indicate

where the data distribution changes from the initial reference data distribution

and the deterioration in the accuracy of the underlying classification model. It
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also indicates that the samples around these time steps are misclassified which

makes their computed statistic goes out of control limits. The more the out of

control points the more the proportions of the misclassified samples that are clas-

sified into this window.

Similarly, changes are detected in the activity class ‘Walking’, and ‘Lying’ as shown

in Figures 5.10 and 5.11 respectively. The change points are indicated by the out

of control limit points in the individual chart and moving range chart of the change

detection parameters. The changes detected show the variation in the activity of

the initial user and the test user data. However, there is no change detected in

the ‘Sitting ’ activity as shown in Figure 5.12. This is especially so as there is

no data from the other test users data are classified to this window of activity.

These results indicate the applicability and usefulness of the implemented method

in detecting concept change point in activity recognition that involves diverse user

characteristics and profiles.

5.3.3 Experiment with WISDM Dataset

This experiment used the Wireless Sensor Data Mining (WISDM) activity recogni-

tion dataset [44] that was described in Chapter 3. A batch size of 3 was utilised to

compute the window summary statistic for all the experiments in this part. Each

of the activity types has its own dedicated window for detecting the variability in

the data classified to a given class. The number of changes detected and the error

rates in each class of activity for different pairing of the users data are presented

in Table 5.5 and 5.6. The result in these tables were subjected to Pearson corre-

lation test to determine the relationship between the error rates and the number

of changes detected. The result of the test is presented in test result 5.3.3.

Statistical Test Result 5.3.3. Correlation: Number of Changes vs Error Rate

in WISDM Dataset

Pearson correlation of number of changes and error rate = 0.958 P-Value = 0.000

The result indicates that the Pearson correlation between error rates and the num-

ber of changes detected in each class of activity for this sample dataset is 0.958
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while the p-value is 0.000. Since the p−value is smaller than 0.01, the null hypoth-

esis about the correlation between the error rate and number of changes detected

H0 = ρ = 0 can be rejected in favour of the alternative hypothesis H0 = ρ > 0.

This implies that there is sufficient statistical evidence at the α = 0.01 level to

conclude that there is a significant relationship between the error rate and the

number of changes detected in a class of activity.

The charts of the avgdtc statistic values obtained from the window of each activity

against the sample numbers are presented in Figures 5.13 to 5.18. The charts in

were obtained by setting the data of the users with IDs 5 and 6 as reference data

while the combination of users 5&6 and 19&20 were used as test data.

Figure 5.13 shows the chart of the sequence of the individual window summary

statistic (avgdtc) obtained from the window of activity class ‘walking’. A change

is detected at the time step 518 and 530 on the chart. These are the points

where the sample statistic goes out of the upper control limit. It implies that the

distribution of the data has changed from the initial data distribution and points

to the deterioration in the accuracy of the model. Table 5.6 shows the error rates

indicating the proportions of misclassification for each class. It can be observed

that there is a classification error in this class. Similarly, changes are detected

in the activity class ‘Walking-Upstairs’, ‘Sitting’ and ‘Standing’ shown in Figures

5.15, 5.17 and 5.18 respectively. There are no changes detected in the jogging and

walking-downstairs activities as shown in Figures 5.14 and 5.16 respectively which

is corroborated by the absence of any misclassification and invariably zero error

rates in these class of activities for this experiment as shown in the 9th entry of

Table 5.6. The approach is able to detect changes between the distribution of the

initial user data and those that comes from another user.

5.3.4 Comparative Evaluation of UDetect with Adaptive Win-

dowing Technique (ADWIN)

The experiments here perform a comparative evaluation between the UDetect tech-

nique and adaptive windowing (ADWIN)[14] detection method. ADWIN relies on
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Amount of Change Points per Class of Activity
Reference
Data

Test data Walking Jogging Walking
Upstairs

Walking
Downstairs

SittingStanding

User3&1 User5&2 2 3 4 8 5 3
User7&8 User12&9 3 1 6 5 2 1
User19&14 User20&15 3 1 5 8 9 2
User27&22 User29&23 4 3 6 6 5 2
User13&10 User18&11 4 3 3 8 2 4
User6&4 User36&35 5 3 5 9 4 2
User21&16 User24&17 5 5 5 6 4 2
User33&28 User34&30 6 1 7 6 4 5
User32&26 User31&25 5 1 3 7 3 6
User5&6 User19&20 2 0 3 0 2 1

Table 5.5: Summary of Detections in WISDM Dataset

Error rate per Class of Activity
Reference
Data

Test data Walking Jogging Walking
Upstairs

Walking
Downstairs

SittingStanding

User3&1 User5&2 0.10 0.25 0.33 0.69 0.41 0.23
User7&8 User12&9 0.15 0.01 0.44 0.43 0.13 0.03
User19&14 User20&15 0.14 0.00 0.36 0.70 0.84 0.11
User27&22 User29&23 0.23 0.25 0.47 0.70 0.38 0.12
User13&10 User18&11 0.19 0.26 0.28 0.75 0.07 0.28
User6&4 User36&35 0.38 0.17 0.38 0.84 0.35 0.10
User21&16 User24&17 0.35 0.45 0.34 0.57 0.15 0.07
User33&28 User34&30 0.43 0.01 0.58 0.56 0.33 0.42
User32&26 User31&25 0.37 0.04 0.16 0.77 0.22 0.50
User5&6 User19&20 0.18 0.00 0.34 0.00 0.20 0.12

Table 5.6: Error Rates in WISDM Dataset
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Figure 5.13: Parameter Chart of Walking Activity in User 5&6 Against 19&20
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Figure 5.14: Parameter Chart of Jogging Activity in User 5&6 Against 19&20
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Figure 5.15: Parameter Chart of Walking-Upstairs Activity in User 5&6 Against
19&20
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Figure 5.16: Parameter Chart of Walking-Downstairs Activity in User 5&6 Against
19&20
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Figure 5.17: Parameter Chart of Sitting Activity in User 5&6 Against 19&20
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Figure 5.18: Parameter Chart of Standing Activity in User 5&6 Against 19&20

the assumption of the presence of ground truth label for each data sample that

is being classified by a classifier. Based on this, the error rate of the model is

used as input to the ADWIN window to determine the occurrence of change in the

underlying concept. In ADWIN, a window W containing the error rate from the

predictions of a learning model grows until there has been a change in the average

value inside the window. Therefore, when the algorithm succeeds at finding two

distinct sub-windows, the split point is considered as a concept change. UDetect

on the other hand, does not use error rate because it does not assume the presence

of ground truth to determine the classification error.

In other to compare these two methods, the initial accuracy of the KNN classifier

was recorded for each data pair used in the previous section. Then, the two meth-

ods were deployed to detect changes in the model accuracy. The detected changes

was subjected to active learning to provide the correct labels at the points where

the changes was detected. After the provision of the true labels at the different

points of detected changes, the correct labels was used for new classification and

the accuracy of the model is then recomputed to determine the efficacy of the cor-

rection made as a result of the changes detected by the two methods (UDetect and

ADWIN). The gains between the initial accuracy without change detection is then

compared with the accuracy after providing correct labels during detections. The

improvements to the classifier under the two change detectors with active learning
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intervention for each of the dataset are presented in Tables 5.7, 5.8 and 5.9 for the

Opportunity, WISDM and HARS dataset respectively.

Reference
Data

Test Data Accuracy
Before (%)

Accuracy
After UDe-
tect (%)

Accuracy
After AD-
WIN (%)

UDetect
Gain (%)

ADWIN
Gain (%)

S1ADL1 S2ADL1 63.57 96.61 90.53 33.04 26.96
S1ADL2 S2ADL2 73.52 96.07 91.58 22.55 18.07
S1ADL3 S2ADL3 75.59 95.91 93.57 20.32 17.98
S1ADL4 S2ADL4 76.49 97.18 90.86 20.68 14.37
S1ADL5 S2ADL5 76.44 95.63 90.26 19.19 13.81
S1DRILL S2DRILL 74.13 95.13 93.08 21.00 18.95
S3ADL1 S4ADL1 69.05 97.86 92.88 28.82 23.83
S3ADL2 S4ADL2 61.34 97.32 91.73 35.98 30.39
S3ADL3 S4ADL3 58.82 96.25 92.75 37.43 33.93
S3ADL4 S4ADL4 50.62 96.21 93.19 45.60 42.58
S3ADL5 S4ADL5 58.94 95.52 92.56 36.58 33.62
S3DRILL S4DRILL 54.71 95.50 91.32 40.79 36.61
S3ADL2 S1ADL2 68.30 96.56 91.27 28.27 22.98

Mean 30.02 25.70

Table 5.7: Comparative Evaluation of UDetect Against ADWIN in Opportunity
Dataset

Reference
Data

Test Data Accuracy
Before (%)

Accuracy
After UDe-
tect (%)

Accuracy
After AD-
WIN (%)

UDetect
Gain (%)

ADWIN
Gain (%)

User3&1 User5&2 54.17 93.62 90.77 39.45 36.60
User7&8 User12&9 67.24 94.18 90.94 26.94 23.70
User19&14 User20&15 56.97 95.11 90.43 38.15 33.47
User27&22 User29&23 46.71 93.67 90.39 46.96 43.68
User13&10 User18&11 50.93 93.27 90.72 42.33 39.79
User6&4 User36&35 52.54 93.92 91.57 41.38 39.03
User21&16 User24&17 32.38 95.88 91.36 63.50 58.98
User33&28 User34&30 29.17 93.97 91.78 64.81 62.61
User32&26 User31&25 52.25 93.58 91.42 41.33 39.17
User5&6 User19&20 69.92 93.51 90.83 23.59 20.91

Mean 42.84 39.79

Table 5.8: Comparative Evaluation of UDetect Against ADWIN in WISDM Dataset

The results for the HARS dataset show that the average gain in accuracy of the

classifier under UDetect is better than that of ADWIN. The results were fur-

ther subjected to paired t-test to determine whether to accept or reject the null

hypothesis that there is no difference in the performance of the two methods.

H0 = µADWIN − µUDetect = 0 i.e µd = 0 The result of the paired t-test for this

dataset is presented in statistical test result 5.3.4.
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Reference
User Data

Test Data Accuracy
Before (%)

Accuracy
After UDe-
tect (%)

Accuracy
After AD-
WIN (%)

UDetect
Gain (%)

ADWIN
Gain (%)

User19 User14 43.03 95.79 92.49 52.76 49.46
User30 User2 56.95 93.22 92.05 36.27 35.09
User3 User4 81.07 92.45 91.32 11.38 10.25
User5 User6 85.54 94.12 91.40 8.59 5.86
User7 User8 72.24 92.30 91.14 20.05 18.90
User9 User10 74.15 95.11 92.54 20.96 18.39
User11 User12 71.88 94.92 91.57 23.04 19.70
User13 User15 82.01 92.00 91.89 9.99 9.88
User16 User17 82.88 95.45 92.21 12.57 9.32
User18 User20 63.33 93.42 92.47 30.08 29.13
User21 User22 88.47 93.37 90.27 4.90 1.79
User23 User24 62.73 95.71 92.98 32.98 30.25
User25 User26 100.00 100.00 100.00 0.00 0.00
User27 User28 81.94 94.00 91.73 12.06 9.80
User29 User30 87.47 92.74 90.55 5.27 3.08

Mean 18.73 16.73

Table 5.9: Comparative Evaluation of UDetect Against ADWIN in Opportunity
Dataset

Statistical Test Result 5.3.4. Paired T for UDetect Gain vs ADWIN Gain

in HARS Dataset

N Mean StDev SE Mean

UDetect Gain 15 18.73 14.3 3.69

ADWIN Gain 15 16.73 14.04 3.63

Difference 15 1.999 1.152 0.297

95% CI for mean difference: (1.361, 2.636)

T-Test of mean difference = 0(vs 6= 0): T-Value = 6.72 P-Value= 0.000

Looking at the statistical test result 5.3.4 it can be asserted that the confidence

interval for the mean difference between the two methods does not include zero,

which suggests a difference between them. The small p-value (p = 0.000) further

suggests that the data are inconsistent with the null hypothesis H0 = µADWIN −

µUDetect = 0 i.e µd = 0, that is, the two methods do not perform equally.

Specifically, UDetect approach (mean = 18.73) performed better than ADWIN

(mean = 16.73) in terms of using their change detection to initiate adaptation by

active learning. A similar test was performed on the results from WISDM and

HARS dataset and the statistical test results obtained are presented in statistical

test results 5.3.5 and 5.3.6.
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Statistical Test Result 5.3.5. Paired T for UDetect Gain vs ADWIN Gain

in WISDM Dataset

N Mean StDev SE Mean

UDetect Gain 10 42.84 13.28 4.20

ADWIN Gain 10 39.79 13.21 4.18

Difference 10 3.049 0.905 0.286

95% CI for mean difference: (2.402, 3.697)

T-Test of mean difference = 0(vs 6= 0): T-Value= 10.66 P-Value = 0.000

The test results for WISDM and Opportunity datasets indicate that the confidence

interval for the mean difference between the two methods does not include zero,

which suggests there is a difference between the mean of UDetect and ADWIN in

the two datasets. The small p-value (p = 0.000) in both cases also suggests that the

data are inconsistent with the null hypothesis H0 : µADWIN−µUDetect = 0 i.e µd =

0, that is, the two methods do not perform equally. Thus, the null hypothesis can

be rejected at a confidence level α = 0.01 in favour of alternative hypothesis that

µUDetect > µADWIN in both datasets. Specifically, UDetect approach (mean =

30.02) performed better than ADWIN (mean = 25.70) for Opportunity dataset in

terms of using their change detection to initiate adaptation by active learning. In

the same vein, UDetect approach (mean = 42.84) performed better than ADWIN

(mean = 39.79) for WISDM dataset. It can thus be concluded that UDetect

change detection performance is better than ADWIN under the circumstances of

the experiment scenarios.

Statistical Test Result 5.3.6. Paired T-test for UDetect Gain vs ADWIN

Gain in Opportunity Dataset

N Mean StDev SE Mean

UDetect Gain 13 30.02 8.86 2.46

ADWIN Gain 13 25.7 9.14 2.53

Difference 13 4.321 1.428 0.396

95% CI for mean difference:(3.458, 5.183)

T-Test of mean difference = 0 (vs 6= 0): T − V alue = 10.91 P − V alue = 0.000
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5.4 Chapter Summary

This chapter has presented a new change detection method for activity recognition.

The method is based on extracting change parameters from the reference dataset

and training the initial model with the dataset during the offline stage. In the

online stage, new incoming unseen data are processed in chunks from the window

of data classified to the same class and a statistical summary called avgdtc that

characterised each chunk is computed. The average distance to centre statistic

computed from each batch is monitored by using the pre-computed UCL and LCL

parameters from the reference data of the associated class. Points that exceed

the control limits are the change points and correspond to the point where the

classifier performance degrades.

The change points that indicate where the model is misclassifying the samples

to the wrong class can be used to initiate the adaptation step thereby improving

the accuracy of the classifier. The main benefit of this method compared to the

traditional drift detection approach in data stream domain is that it does not

rely on the ground truth to detect drift in the data and thus is the more realistic

approach for activity recognition.

The method is evaluated using real activity recognition datasets obtained from

mobile phones of diverse subjects and another large dataset that is obtained from

more complex inertial sensors attached to users who perform the designated ac-

tivities. The results indicate that the method is able to identify the precise drift

point in the data. Also, comparison of the method with ADWIN approach reveals

that UDetect performance is better than the ADWIN method.



Chapter 6

Distance Based Change

Detection Technique for

Activity Recognition

6.1 Introduction

This chapter presents another novel technique for concept drift detection in ac-

tivity recognition. The problem of concept drift in activity recognition is a very

challenging and important task that requires an effective solution that is robust to

the multi-dimensional and multi-sensor nature of the activity recognition data The

previous chapter exploits the problem of change detection from the perspective of

the unidimensional stream by converting the multi-dimensional block of data to

the unidimensional summary that serves as input to the change detector. While

this approach is advantageous in its ability to employ many existing unidimen-

sional change detector methods, it does not leverage or exploits the peculiarities

of the original nature of the multi-dimensional sensors rich activity data.

The chapter details the newly developed technique for change detection in activity

recognition. It also presents the results of the evaluation and the performance of

the method on three real-life activity recognition datasets. The developed tech-

nique implements an ensemble change detection approach that applies a change

101
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detection test on the multidimensional data directly thereby yielding a high de-

tection accuracy.

The rest of this chapter is organised as follows: Section 6.2 discusses the overall

bird eye view of the method. In Section 6.3 details conceptual framework of the

detection methods, highlighting the key architectural and functional components

that form the realisation of the novel technique is presented. The last two sections,

Section 6.4 and Section 6.4.1 detail the experimental study and results obtained

with discussions.

6.2 Ensemble Detector Overview

The approach for concept change detection presented here is based on distance

similarities between the refrence data characteristics and the new classified sample.

The approach employs the n-dimensional attributes of the data to compute the

distance similarity. This results in allowing each feature to be considered in the

similarity computation.The curse of dimensionality is eliminated by ensuring that

most informative features of the sample are used in the comparison computation.

The key components of the approach are shown in Figure 6.1. The realisation of

the components is in a two-phase implementation framework. In the first phase,

the base classification framework presented in Chapter 5 is used to create a set

of reduced reference dataset that serves as reference data for the ensemble change

detection. The reference dataset represents various patterns that exist in each

of the class of activity. The patterns are indirectly encapsulated in the set of

cluster characteristics extracted from the training samples. In the second phase

dubbed the online phase, the system monitors the classification performance of a

recognition model by identifying misclassified samples through distance similarity

between the samples and the reference holistic dataset.

The assumption behind the comparison is that if the new incoming data is con-

sistent with the holistic reference data, then there is no change. Otherwise, the

change is declared and the process of adapting the model to the new change can be

initiated. The change detection problem is formulated as testing the similarities



Chapter 6. Distance Based Change Detection Technique for Activity Recognition 103

 

 

 

 
Offline Base Model 

Summarized Baseline 

Data 

Online Change Detector 

Offline Phase 

Figure 6.1: Overview of Components of Ensemble Detector

between the reference datasets and the new set of incoming classified samples to

see if there is consistency between them or not. Given the reference cluster char-

acteristics obtained from the training dataset as Xref = {(X1, Yi), (X
2, Yi)X

3, Yi}

and a new classified chunk or a single sample xk


change, if dmeasure(Xref , xk) ≥ threshold

¬change, otherwise

(6.1)

The template of the detection framework is given in Algorithm 9. The algorithm

shows the main steps involved in the detection framework.

Algorithm 9 gives the overview of the approach. The high-level description of

the detection algorithm is explicated and elaborated upon further in the following

sections.
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Algorithm 9: Template Change Detection

1 Build the base classifier model
2 X = Summaries from holistic baseline data
3 foreach instance xk classified to a stream of window activity do
4 xform = windowStep()

// Form a data chunk from the window

5 averageDistance = dmeasure(xform, X)
// Compute distances between incoming window summary and baseline summary

6 if (averageDistance < threshold) then
7 No change
8 end
9 else

10 change detected
11 initiate adaptation

12 end

13 end
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Figure 6.2: Main Components of Ensemble Detector

6.3 Conceptual Framework of the Detection Scheme

The ensemble change detection framework components is depicted in Figure 6.2.

The main components are: (i) Classifier Module and Reference Baseline Data

(ii)Ensemble Detector (iii)Window Management and Segmentation
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6.3.1 Classifier Module and Reference Baseline Data

This component is responsible for taking new example of activity and classified

them to the appropriate section of the window that is dedicated to each class of

activity. The classifier module which could incorporate any classification algorithm

to decide on the appropriate class to which an example should be classified. The

reference baseline data, on the other hand, are refinement and reduced form of the

original training set that was formulated during the off-line phase of the algorithm

as described in Chapter 5. Both elements are integrated into the online detection

framework, which utilised them in an efficient manner to decides if the new data

is consistent with the reference baseline data or not. If there is a consistency

between them, it means there is no change and the classifier is still consistent

with the original view of the activity. Otherwise, it means there is no consistency

between the reference data and the new set of data. In this case, the classifier

needs to be updated to reflect the regime in the activity recognition context that

resulted to the concept change.

6.3.2 Ensemble Detector Framework

The ensemble detector is a multi-view and multi-resolution change detection ap-

proach that combines the decisions of three individual change detectors to achieve

a high-level accuracy and precision in its change detection. The individual detector

is implemented by using the main scheme of the Algorithm 9.

In the beginning, the module extracts set of characteristic data from the original

training set. This is achieved by performing clustering on each class of activity

data to derive various patterns in the particular activity class. The definition of

the extracted characteristics is given formally in Definition 6.3.1.

Definition 6.3.1. Cluster Characteristics:

Given a set of training examples X1, , X2, X3, ...Xn with corresponding labels

y1, , y2, y3, ...yn with yi ∈ 1...c classes of activities. For every class c there is a

formation of optimal k sub-clusters with d − dimensional data points that rep-

resents the various patterns in the class. The three data characteristics obtained
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from each sub-cluster with m instances ∈ Rd consist Ccentermnandmx each ∈ Rd

. where:

Ccenter =
∑m
i=1Xi
m

mn = min(Xj
i...m) ∀ j = 1...d

mx = max(Xj
i..m) ∀ j = 1...d

Once these data summaries are in place, a classifier such as Naive Bayes or KNN

is used to classify new samples which, are kept in separate windows dedicated to

each type of activity. The window for each activity data is kept under the control

of window management module described in 6.3.3 to decide on how the window

of data are formed. The two repositories comprising the new classified sample

(xform) and the extracted characteristics (minimum (mn), maximum (mx), and

centroid (Ccenter) vectors) from each class of activity in the reference data become

the two inputs to the change detector. It should be noted that the data from the

window (xform) that will be used as a comparison to the reference data can be

formed in different ways depending on the scheme adopted. The scheme adopted

here is to compare each new instance classified to the window with the reference

data. Alternatively, a fixed amount of data from the window can be used for

distance similarity comparison with the reference data.

The main similarity function adopted here involves computing the Euclidean dis-

tance between the new classified instance and the set of characteristics. In essence,

for a particular characteristic in d- dimensional space with n samples, the aver-

age distance between the new instance and the n samples are computed. If this

value is greater than a threshold then a change is detected with respect to this

characteristic otherwise no change is detected. This routine is repeated for each

of the min max and center characteristics as illustrated in Algorithms 10, 11 and
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12 respectively.

Algorithm 10: minimumViewDetector

Input: minV ectors = {z(1), z(2), ..., z(n)}

// set of minimum vector charateristics

1 k = setWindowSize()

2 avgDistancemin = 0

3 while Data Stream != null do

4 xform = windowFormation(k)

// Form a window size k from the stream

5 xnew =
xform
k

// xnew new sample to test for change

// Form a window size k from the stream

6 avgDistancemin = 1
n

∑n
k=1Distance(xnew, z

(k))

7 if avgDistancemin < thresholdmin then

8 changeSignal = change

9 end

10 else

11 changeSignal = ¬change

12 end

13 end

To detect change from the perspective of the minimum characteristic, the average

distance between a new classified instance to a window of activity type and each of

the element of minimum characteristic data for that class is computed according

to Algorithm 10 line 6. Then, this average is compared with the pre-determined

threshold and if the condition of change is met, a change is declared from the

perspective of the minimum characteristic ( Algorithm 10 lines 7-9).

Similarly, the detection from the maximum and centroid characteristics is based

on computing the average distance between a new classified sample to a window of

activity type and the maximum or centroid data obtained from the training dataset

of that class accordingly. The average is compared with the pre-determined change

threshold using Algorithms 11 and 12 respectively.
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Algorithm 11: maximumViewDetector

Input: maxV ectors = {max1,max2, ...,maxn}
// set of maximum vector charateristics

1 avgDistancemax = 0
2 while Data Stream != null do
3 xform = windowFormation(k)

// Form a window of size k from the stream

4 xnew =
xform
k

// xnew new sample to test for change

5 avgDistancemax = 1
n

∑n
i=1Distance(xnew,max

(i))
6 if avgDistancemax < thresholdmax then
7 changeSignal = change
8 end
9 else

10 changeSignal = ¬change
11 end

12 end

Algorithm 12: centerV iewDetector

Input: centroidV ectors = {c1, c2, ..., cn}
// set of centroid vector charateristics

1 avgDistancecenter = 0
2 while Data Stream != null do
3 xform = windowFormation(k)

// Form a window of size k from the stream

4 xnew =
xform
k

// xnew new sample to test for change

5 avgDistancecenter = 1
n

∑n
i=1Distance(xnew, c

(i))
6 if avgDistancecenter < thresholdcenter then
7 changeSignal = change
8 end
9 else

10 changeSignal = ¬change
11 end

12 end

To enhance the confidence level of the change detected, the decisions from the

perspective of each characteristic are combined to arrive at a final change signal.

From the experiment conducted a majority decisions shows adequate performance

in the detection rate. The ensemble algorithm is depicted in Algorithm 13. Ac-

cording to the Algorithm 13, a change is declared only if two or more detectors

agree on the decision otherwise a no change is declared.
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Algorithm 13: EnsembleDetector

1 while true do
2 decisionmin = minmumV iewDetector()
3 decisionmax = minmumV iewDetector()
4 decisioncenter = centerV iewDetector()
5 changeSignal = majorityV ote(decisionmin decisionmax decisioncenter)
6 if changeSignal then
7 detect change
8 end
9 else

10 No change
11 end

12 end

Threshold Parameters

In other to the detect the change points, the threshold parameters are very impor-

tant as they determine the sensitivity of the detection module. The threshold used

in this case is the maximum inter-micro-cluster distance of each the characteristic.

The threshold parameter is computed for each class of activity data characteristic.

δ = max(d(Cji , Cj
i)) + ρ (6.2)

Equation 6.2 is the threshold employed in this method to determine whether the

new points classified to a class cohesively mesh within the baseline data of that

class. The data can be nearest to a class but not validly and cohesively belong to

the class due to the drifting concept emanating from user dissimilarity or sensor

misalignment and displacement. The additive control parameter ρ in the threshold

equation allowed the method to be adapted to outliers and regularised the space

of the allowable drift in the detection regime within a scope of time interval ti and

tj during which the model stability is experienced. Experimentally a value of 0.01

proofs to perform well for the accurate detection of the drift in the model.

6.3.3 Window Management

The window management component is a very important component of the frame-

work. Its primary responsibility is to regulate the flow of the data stream. It also
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caters for segmenting and adapting the window segment sizes to be used for the

detection test.

The formation of the data to be used for detection comparison can fall under

the various schemes of windowing. The first approach is the sequential sample

approach where each sample is a potential candidate to be used in detecting a

change. Other alternatives include using a fixed chunk of data that arrives in

the window as a unit and compute the characteristic to be used for the basis of

detection. The formation of the chunk of data can be in the form of an overlapping

window where a fixed amount of data is formed at time ti and the next data chunk

to be formed at time tj , (tj > ti) is composed of fixed points from the previous

points. Another approach is to use adjacent window model where there is no

overlapped between data used at time ti and another data at time tj (∀ tj > ti).

In the case of adjacent window, the data used are independent and fthere is no

reference to the previous data. The overlapping window is useful in a situation

whereby there is a dependency among the data in the stream and also where the

change being detected is within the confine of the data stream with no reference

dataset to compare with. The latter on the other hand is suitable where there is

a separate reference data for the data stream. The windowFormation() method

in the Algorithms 12 11 and 10 implements the functionality of the window man-

agement and caters for the size of data that is passed from the window to the

detection module.

The method presented here is not fixed to a particular adaptation module. The

aim is to produce a concept change detection that can be used for the basis of

any adaptation technique. Once a change is flagged in a class of activity, the

adaptation process can be initiated to correct the abnormality that leads to the

drift. The advantage of the approach is that it allow a fine-grained recognition of

which activity is affected so that the adaptation can be localised to the activity

instead of adapting the unaffected activity class. One commonly used approach

of adaptation is the active learning approach which employs the user in the loop

mechanism to query the user for the correct activity that is being performed at

the particular point in time when the change is detected. The corrected instances
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are added to update the classifier model and adapt to the current situation of the

user.

6.4 Experimental Evaluation

The evaluation of the approach presented in this chapter is carried out using

three publicly available activity recognition datasets. The datasets comprise of

the Opportunity, WISDM and HARS datasets. The details about the datasets are

given in Chapter 3.

6.4.1 Experimental Setup

The experiment was conducted in two modes of evaluation. The first mode of

the experiment is called cross user detection mode in which a user data is used

for generating baseline characteristics data and trained a classifier that recognises

new activity from other users. The purpose of the detector here is to detect

when the classifier performance degrades in terms of how many instances are be-

ing misclassified. The detector attempts to detect the instances that are being

misclassified into wrong activity class. The second mode of the experimental

setup is focused on detecting totally new and unseen activity that are not part

of the original set of existing activities. This mode is called leave-one-out detec-

tion experiment because one activity is left out of the existing activities and the

detector is set to detect the left out activity in the midst of all the activity data.

Software: The implementation and evaluation of the approach was carried out

using Anaconda python distribution [1]. This version of python distribution incor-

porates a number of open source packages for scientific and analytic data manipu-

lation and computations. The included packages that are employed include numpy,

scikit-learn, spyder and matplotlib. Other software packages used for analysing and

processing the result include spreadsheet package and Minitab statistical analysis

package [2].
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Hardware: The hardware platform for the experiment was configured with in-

tel corei7 processor with 8GB memory running Microsoft Windows 10 operating

system.

6.4.2 Opportunity Dataset Experiment Results

The result of the experiment with this dataset is presented in this section. As

stated earlier, there are two modes of the test experiments performed on the

dataset. The cross user evaluation is performed first followed by the leave-one-

out detection experimental evaluation. The next sub-sections present the details

of the experiments and their results.

Cross User Detection Mode for Opportunity Dataset

The cross user experiment was performed with the Opportunity dataset by using

disparate portions of the session of activity performed by one subject to generate

the baseline characteristics data and build the learning model while another portion

is used to test change detection method. The result of the experiment repeated

for 10 different cases is presented in Table 6.1. The number of instances detected

to be drifting away from the target class across each activity type is listed in the

table including the total detected instances for each case of the experiment.

Number of Changes Detected
Experiment No. Reference DataTest Data NullStandWalk Lie Sit Total
1 User1 ADL1 User2 ADL12487 4248 5614 2256517 15122
2 User2 ADL2 User3ADL4 1882 2909 5220 712 211712839
3 User3 ADL3 User4 ADL53770 2830 4972 132 900 12604
4 User4 ADL4 User1ADL3 2448 5242 2933 71 123 10817
5 User4 ADL1 User1 ADL53862 4580 2441 90 1 10974
6 User1 Drill User3 Drill 727 16982 4960 15570 24226
7 User2 Drill User4 Drill 263 6308 3442 14530 11466
8 User4 ADL2 User3 ADL52656 4606 2462 501 145411680
9 User3 ADL1 User2 ADL24044 1436 2121 453 797 8851
10 User2 ADL3 User3 ADL22373 3414 2047 137 840 8811

Table 6.1: Number of Changes Detected in Opportunity Dataset

The change detection performance metrics described in Chapter 3 are employed

to quantify the performance of the detection method for this dataset. Table 6.2

presents the results and Figure 6.3 graphically captured the relationships among

the various metrics for evaluating the change detector. The average true positive
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rate (TPR) also known as recall, hit rate or sensitivity of the detector is 0.96 while

the average true negative rate (TNR) or specificity is 0.96. The average positive

detective (PDV ) value also called precision in the parlance of information retrieval

is 0.93 while the average negative detective value (NDV ) which is the opposite of

precision is obtained to be 0.97. The average false alarm rate (FAR) or fall out

rate (FOR) of the detector is obtained to be 0.04 and the miss rate (MR) also

called false negative rate (FNR) is also 0.04 while the false discovery rate (FDR)

is 0.07 and the average detection accuracy is obtained as 0.96.

Exp. No. TP TN FP FN PDV NPV TPR TNR FAR MR FDR Acc.

1 15122 25845 1362 468 0.92 0.98 0.97 0.95 0.05 0.03 0.08 0.96

2 12839 13780 611 451 0.95 0.97 0.97 0.96 0.04 0.03 0.05 0.96

3 12604 16589 765 569 0.94 0.97 0.96 0.96 0.04 0.04 0.06 0.96

4 10817 17757 1566 3134 0.87 0.85 0.78 0.92 0.08 0.22 0.13 0.86

5 10974 17884 786 483 0.93 0.97 0.96 0.96 0.04 0.04 0.07 0.96

6 24226 43544 2111 1047 0.92 0.98 0.96 0.95 0.05 0.04 0.08 0.96

7 11466 31802 1644 548 0.87 0.98 0.95 0.95 0.05 0.05 0.13 0.95

8 11680 13701 621 493 0.95 0.97 0.96 0.96 0.04 0.04 0.05 0.96

9 8851 20077 875 379 0.91 0.98 0.96 0.96 0.04 0.04 0.09 0.96

10 8811 15239 702 379 0.93 0.98 0.96 0.96 0.04 0.04 0.07 0.96

Average 0.93 0.97 0.96 0.96 0.04 0.04 0.07 0.96

Table 6.2: Cross-User Change Detection Performance for Opportunity Dataset

The implications of these results for the performance of change detection method

are manifolds as indicated by the values of the performance metric. In the case

of positive detective value (PDV ) and negative detective value (NDV ) it can be

seen that the proportions of detected unchanged points that are truly unchanged

are high compared to the proportion of detected changed points that are truly

changed. On the other hand, in the case of true positive rate (TPR) and the true

negative rate, it is clear that the proportion of unchanged points that are truly

detected as unchanged are the same as the proportion of changed points that are

truly detected as changed. Similarly, the false alarm rate (FAR) and the miss rate

(MR) are the same indicating that the proportion of points detected as changed

point which are truly unchanged are more or less the same as the proportion of

unchanged points which are detected as changed points. It should be noted that

a near perfect sensitive change detector would have a true positive rate or hit
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rate of 1 and a false-alarm rate or fall out rate of 0. Looking at the detection

metrics results it is evident that the performance of the change detection is near

the absolute perfect sensitive change detector.

A closer look at the performance trends across each case of the experiment shows

that the positive detective value (PDV) has the highest value in the experiments

8 and 2 while the minimum value is at experiment 3. The negative predictive

value has the maximum value across four experiments and a minimum value for

the experiment number 4. In the case of true positive rate results across each

experiment, the largest value is obtained for the experiment number 1 and 2 while

the smallest value is obtained for experiment 4. The rest of the experiments have

the same true positive rates value. For the true negative rate, it is the experiment

4 that also has the smallest value whereas the highest value obtained is common

to all the other experiments except the experiment 1.

In the case of false alarm rate metric results across the experimental studies, it

is the experiments 4 that has the highest value while the minimum values are

obtained for the experiment 2, 3 and 5. The miss rate maximum is obtained at

experiment 4 indicating the worst performance of miss-detection in this experiment

while the minimum miss rate is obtained at experiment 1 and 2. False discovery

rate smallest value is obtained at experiment 2 while the maximum is at experiment

4 . As a result of these consistent performances, it is evident that the detection

accuracy is high and the same for all the experiments except the experiment 4

which has the worst miss rate and false alarm rate. The worst performance in

experiment 2 suggests that there is a sharp difference between the test subjects

for this experiment compared to the other experiments.

Leave One Activity Out Results for Opportunity Dataset

In the sequential leave-one-out detection, the accuracy of the detection algorithm

to correctly detecting novel activity from existing activities was evaluated. In this

regard, one activity was left out of the remaining set of activities and the detection

algorithm attempts to detect the new unseen activities from the pool of activities

that are streamed for novel activity detection.
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Figure 6.3: Performance of Cross User Detection for Opportunity Dataset

Standing Walking Lying Sitting Null

Standing
334344 5872 2072 2418 691
96.80% 1.70% 0.60% 0.70% 0.20%

Walking
3586 193237 1594 598 198

1.80% 97% 0.80% 0.30% 0.10%

Lying
958 1095 132610 2190 0

0.7% 0.8 % 96.9% 1.6 % 0%

Sitting
203 254 483 24455 0

0.80% 1% 1.90% 96.30% 0%

Table 6.3: Confusion Matrix for Leave One Activity Detection for Opportunity
Dataset

The base characteristic reference data are composed of only the known activities

while the test data from which novel activity is to be detected is composed of

both the already existing activities and unseen activity. Table 6.3 presents the

confusion matrix of the detection results. The first left out standing activity was

tested against the rest of the activities and the method is able to detect the left

out activity with accuracy up to 96.8%. This implies that the detector is able to

distinguish correctly the excluded activity from the pool of all the activities. It can

be observed that certain percentages of the excluded activities are mis-detected

to be other activities. For example, about 1.7% of the standing activity were

mis-detected as walking activity. In the same vain, just about 0.6% and 0.7% of
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the standing activity were mis-detected to be lying activity and sitting activity

respectively. The reason for the mis-detection can be attributed to the interleaved

of activity that may occur as the user attempts to perform the designated novel

activity. Also, the novel walking activity detection achieved an overall detection

accuracy of 97% with less than 1% mis-detection into lying and sitting activities

except the standing activity with mis-detection up to 1.8%. This slightly higher

mis-detection of walking into standing can be because of the intermittent standing

event and the rest-point in between the walking activity. This is particularly

common in the way some people walk especially old people with walking activity

that intermittently involves standing activity.

Furthermore, the detection accuracy of lying and sitting attained 96.9% and 96.3%

receptively. The mis-detections of lying activity and sitting activities are close to

each other indicating their level of similarity. Although, the sensor value during

lying will be different from sitting due to the gravitational component of the ac-

celerometer. Nevertheless, there is a tendency for a classifier to mis-classified a

sitting activity to lying activity, especially if the lying point is within the same

same level as the sitting point.

In conclusion, the leave-one-out detection experiment achieved a high accuracy

indicating the detection technique is robust to detect new activity from existing

activity thereby being able to detect when concept drift may occur whenever there

are differences in the way one subject perform an activity from the other subjects.

6.4.3 HARS Dataset Experiment Results

The result of the experiment with this dataset is presented in this section. Two

modes of experiment were performed on the dataset. The cross user evaluation

was performed followed by the leave-one-out experiment.

Cross User Detection Results for HARS Dataset

The cross user experiment is performed with the Human Activity Recognition with

Smartphone dataset by splitting the data into two portions. The data of user 19 to
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30 were used to generate the baseline characteristics data model and build different

learning models while users 1 to 18 dataset were used to test the change detection

method. The result of the experiment while detecting the changes experienced

under 4 different classifiers namely: KNN, Naive Bayes, SVM and Decision Tree

are presented in Table 6.4. The performance metrics results for detecting concept

changes in the classifiers are presented. The concept change is manifested by the

classification error of the classifiers and the detection framework is meant to detect

the misclassified instances of the test activity data.

According to Table 6.4, the average true positive rate (TPR) also known as recall,

hit rate or sensitivity of the detector spanning all the 4 test classification algo-

rithms is 0.96 while the average true negative rate (TNR) or specificity is 0.96.

The average positive detective value (PDV ) also called precision is 0.83 while the

average negative detective value (NDV ) which is the negative precision is obtained

to be 0.99. The average false alarm rate (FAR) or fall out rate (FOR) of the de-

tector is obtained to be 0.04 and the miss rate (MR) also called false negative rate

(FNR) is also 0.04 while the false discovery rate (FDR) is 0.17 and the average

detection accuracy is obtained as 0.96.

TP TN FP FN PDV NDV TPR TNR FAR MR FDR Acc.

KNN 793 4799 193 32 0.80 0.99 0.96 0.96 0.04 0.04 0.20 0.96

NAÏVE BAYES 1612 3991 143 71 0.92 0.98 0.96 0.97 0.03 0.04 0.08 0.96

SVM 519 5105 155 38 0.77 0.99 0.93 0.97 0.03 0.07 0.23 0.97

DTREE 1143 4388 253 33 0.82 0.99 0.97 0.95 0.05 0.03 0.18 0.95

Average 0.83 0.99 0.96 0.96 0.04 0.04 0.17 0.96

Table 6.4: Amount of Changes Detected in HARS Dataset

The implications of these results for the performance of change detection method

are manifolds by looking at each of the performance metric values. In the case

of positive detective value (PDV ) and negative detective value (NDV ) it can be

seen that the proportion of detected unchanged points that are truly unchanged

are more than the proportion of detected changed points that are truly changed.

This implies that the detector is more sensitive to detecting unchanged points

than the changed points. In other words, the detector can recognise instances

that are correctly classified more than those that are incorrectly classified. On the



Chapter 6. Distance Based Change Detection Technique for Activity Recognition 118

 

 

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1 2 3 4

EV
A

LU
A

TI
O

N
 P

A
R

A
M

ET
ER

 V
A

LU
ES

EXPERIMENT NUMBER

PDV NDV  TPR  TNR FAR MR FDR Accuracy

Figure 6.4: Performance of Cross User Detection in HARS Dataset

other hand, in the case of true positive rate (TPR) and the true negative rate,

it is obvious that the proportions of unchanged points that are truly detected as

unchanged are the same as the proportion of changed points that are truly detected

as changed. Similarly, the false alarm rate (FAR) and the miss rate are the same

(MR) indicating that the proportion of points detected as changed points which

are truly unchanged are more or less the same as the proportions of unchanged

point which are detected as changed points. It should be noted that a near perfect

sensitive change detector would have a true positive rate or hit rate of 1 and a

false-alarm rate or fall out rate of 0 . Looking at the detection metrics results it is

evident that the performance of the change detection is near the absolute perfect

sensitive change detector.

Furthermore, a closer look at the performance trends in detecting the classification

errors across each of the classification algorithms shows that the positive detective

value (PDV) has the highest value when detecting changes from the Naive Bayes

classifier while that of KNN has the minimum value. This indicates that the

error rate across each algorithm is different and the detector can detect them

regardless of the classifier being used. The negative predictive value is relatively
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uniform for all the detection in the classifiers, indicating that the detector can

detect consistently points that are unchanged.

In the case of true positive rate results across each experiment, the largest value is

obtained for detecting changes in decision tree while the smallest value is obtained

for SVM. The rest of the experiments have the same true positive rates value. For

the true negative rate, Naive Bayes and SVM shares the highest value whereas the

smallest value is under Decision Tree error detection.

In the case of false alarm rate metric results across the experimental studies, it

is the Decision Tree that has the highest value while the minimum values go to

detecting changes in SVM classifier. The miss- rate’s maximum is obtained under

SVM indicating the worst performance of misdetection in this experiment while

the minimum miss rate is obtained under the decision tree errors. False discovery

rate has the smallest value under Naive Bayes classifier error detection while the

highest value is obtained under SVM. As a result of these consistent performances

across the experiments, the detection accuracy of above 0.95 is obtained in all

the experiments except the experiment involving decision tree in which detector

accuracy is exactly 0.95.

Leave One Activity Out Results for HARS Dataset

In the leave-one-activity-out detection, the accuracy of the detection algorithm in

detecting novel activity from existing activities was evaluated. In this regard, one

activity was left out of the remaining set of activities and the detection algorithm

attempts to detect the new unseen activities from the pool of activities that are

streamed for novel activity detection. The base characteristic reference data

are composed of only the known activities while the test data from which novel

activity is to be detected is composed of both the already existing activities and

unseen activity.

Table 6.5 presents the confusion matrix of the detection results. The first left

out walking activity was tested against the rest of the activities and the detection

result can detect the left out activity with accuracy up to 94.1%. This implies
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Walking Upstairs Downstairs Sitting Standing Laying

Walking
1606 26 24 17 17 17
94.1 % 1.5% 1.4% 1 % 1% 1%

Upstairs
18 1460 26 9 8 12
1.2% 95.2% 1.7% 0.6% 0.5% 0.8%

Downstairs
14 20 1342 7 6 10
1% 1.4% 96% 0.5% 0.4% 0.7%

Sitting
14 11 9 1701 18 38
0.8% 0.6% 0.5% 95% 1% 2.1%

Standing
21 19 19 17 1811 19
1.1% 1% 1% 0.9% 95% 1%

Laying
14 12 8 35 19 1859
0.7% 0.6% 0.4% 1.8% 1% 95.5%

Table 6.5: Leave One Out Detection for HARS Dataset

that the detector can distinguish the excluded activity correctly from the pool

of all the activities. It can be observed that certain percentages of the excluded

activities were mis-detected to be other activities. For example, about 1.5% and

1.4% of the walking activity were mis-detected as walking upstairs and walking

downstairs respectively. This can be attributed to momentary nature of the two

activities that involves the elements of walking. In the same vain, just about 1% of

the walking activity were mis-detected to each of sitting activity , standing activity

and laying activity respectively. The reason for the misdetection can be attributed

to the interleaved of activity that may occur as the user attempts to perform the

designated novel activity.

Also, the novel walking-upstairs activity detection achieved an overall detection

accuracy of 95.2% with less than 1% misdetection each into sitting, standing and

laying activities except the walking and walking-downstairs activities with misde-

tection up to 1.2% and 1.7%. This slightly higher misdetection of walking-upstairs

into walking and walking-downstairs can be attributed to the relative interleaving

actions of walking that is common to all the three activities. Similarly, the de-

tection accuracy of walking-downstairs activity attained 96.0% with misdetection

into walking and walking-upstairs reaching up to 1%. This is due to the similarity

of walking component that is common them. The same 95% detection accuracy

is achieved for sitting and standing activities with while laying activity is slightly

higher than the two by 0.5%. It can be concluded that the leave-one-out activity

detection experiment for this dataset achieved a high accuracy indicating that the

detection technique is robust to detect new activity from existing activity thereby
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being able to detect when concept drift may occur whenever there are differences

in the way one subject perform an activity from the other subjects.

6.4.4 WISDM Dataset Experiment Results

The result of the experiment with this dataset is presented in this section. Two

modes of experiment were performed on the dataset. The cross user evaluation

was performed followed by the leave-one-out experiment.

Cross User Detection Results for WISDM Dataset

The cross user experiment for this dataset was performed by partitioning the

data into two. The first portion consists of data from 18 users while the second

portion also contain data from 18 users. But, due to the imbalance nature of

the dataset, the division was made in such way that the instances in the two

portions of the data are balanced. This was done by selecting the users in each

group according to the amount and type of data contributed to the entire dataset.

The first part of the data was used to generate the baseline characteristics data

and build different learning models while the second part was used to test the

change detection method. The result of the experiment while detecting the changes

experienced under 4 different classifiers namely: KNN, Naive Bayes, SVM and

Decision Tree are presented in Table 6.6.

According to Table 6.6, the average true positive rate (TPR) also known as recall,

hit rate or sensitivity of the detector spanning all the 4 classification algorithms

is 0.96 while the average true negative rate (TNR) or specificity is also 0.96.

The average positive detective value (PDV ) also called precision is 0.92 while

the average negative detective value (NDV ) which is the negative precision is

obtained to be 0.98. The average false alarm rate (FAR) or fall out rate (FOR)

of the detector is obtained to be 0.04 and the miss rate (MR) also called false

negative rate (FNR) is also 0.04 while the false discovery rate (FDR) is 0.08 and

the average detection accuracy is obtained as 0.96.
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TP TN FP FN PDV NDV TPR TNR FAR MR FDR Acc.

KNN 778 1691 64 57 0.92 0.97 0.93 0.96 0.04 0.07 0.08 0.95

NAÏVE BAYES 794 1688 84 24 0.90 0.99 0.97 0.95 0.05 0.03 0.10 0.96

SVM 655 1851 64 20 0.91 0.99 0.97 0.97 0.03 0.03 0.09 0.97

DTREE 804 1695 64 27 0.93 0.98 0.97 0.96 0.04 0.03 0.07 0.96

Average 0.92 0.98 0.96 0.96 0.04 0.04 0.08 0.96

Table 6.6: Cross User Change Detection in WISDM Dataset

By taking a look at each of the performance metric value, it is evident that the

method produce a sterling performance in detection accuracy. In the case of posi-

tive detective value (PDV ) and negative detective value (NDV ) , the results in-

dicate that the proportion of detected unchanged points that are truly unchanged

are more than the proportion of detected changed points that are truly changed.

This implies that the detector is more sensitive to detecting unchanged points than

the changed points. In other words, the detector can recognise instances that are

correctly classified more than those that are incorrectly classified. This is because

there are more unchanged points than changed points in the test data. On the

other hand, in the case of true positive rate (TPR) and the true negative rate, the

proportions of unchanged points that are truly detected as unchanged are close to

the proportion of changed points that are truly detected as changed. Similarly,

the false alarm rate (FAR) and the miss rate is the same (MR) indicating that

the proportion of points detected as changed points which are truly unchanged are

more or less the same as the proportions of unchanged point which are detected as

changed points. It should be noted that a near perfect sensitive change detector

would have a true positive rate or hit rate of 1 and a false-alarm rate or fall out rate

of 0 . Looking at the detection metrics results it is evident that the performance

of the change detection is near the absolute perfect sensitive change detector.

Furthermore, a closer look at the performance trends in detecting the classification

errors across each of the classification algorithms shows that the positive detective

value (PDV) has the highest value when detecting changes from the decision tree

classifier while that of Naive Bayes has the minimum value. This indicates that

the error rate across each algorithm is different and the detector can detect them

regardless of the classifier being used. The negative predictive value is relatively
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Figure 6.5: Performance of Cross User Detection in WISDM Dataset

uniform for all the detection in the classifiers, indicating that the detector can

detect consistently points that are unchanged.

In the case of true positive rate (TPR) results across each experiment, the same

value is obtained for detecting changes under decision tree, SVM and Naive Bayes

while the smallest value is obtained for kNN. For the true negative rate, SVM has

the highest value whereas the smallest value is under kNN error detection. In the

case of false alarm rate (FAR) metric results across the experimental studies, it is

the Naive Bayes that has the highest value while the minimum values is obtained

under SVM classifier. The miss-rate’s maximum is obtained under kNN indicating

the worst performance of mis-detection of mis-classified points while the same

amount of miss rate is obtained under the rest of the classifiers. False discovery rate

has the smallest value under decision tree classifier error detection while the highest

value is obtained under Naive Bayes. As a result of these consistent performances

across the experiments with the lowest accuracy obtained under kNN as 0.95 and

maximum obtained under SVM as 0.97.
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Leave One Activity Out Results for WISDM Dataset

In the leave-one-activity-out detection, the accuracy of the detection algorithm in

detecting novel activity from existing activities was evaluated. The setting of the

experiment involves one activity being left out of the remaining set of activities

and the detection algorithm attempts to detect the new unseen activities from

the pool of activities that are streamed for novel activity detection. The base

Walking Jogging Standing Sitting Upstairs Downstairs

Walking
2019 0 0 0 42 21

97% 0 % 0 % 0 % 2 % 1%

Jogging
16 1593 16 0 0 0
1 % 98 % 1 % 0 % 0 % 0%

Standing
2 0 230 1 1 1
1 % 0 % 97.5 % 0.5% 0.5 % 0.5 %

Sitting
0 0 3 300 3 0
0 % 0 % 1 % 98 % 1% 0 %

Upstairs
3 0 6 0 616 6
0.5% 0 % 1% 0 % 97.5% 1%

Downstairs
3 0 3 0 5 517
0.5 % 0% 0.5% 0 % 1% 98%

Table 6.7: Leave One Out Detection in WISDM Dataset

characteristic reference data are composed of only the known activities while the

test data from which novel activity is to be detected is composed of both the

already existing activities and unseen activity.

Table 6.7 presents the confusion matrix of the detection results. The first left out

walking activity was tested against the rest of the activities and the method can

detect the left out activity with accuracy of up to 97%. This implies that the

detector can distinguish the excluded activity correctly from the pool of all the

activities. It can be observed that certain percentages of the excluded activities

were mis-detected to be other activities. For example, 2% and 1% of the walking

activity were mis-detected as walking upstairs and walking downstairs respectively.

This can be attributed to momentary nature of the two activities that involves the

elements of walking.

Also, when the jogging activity was left-out and tested against the rest of the

activities, the detection method achieved an overall detection accuracy of 98% with

1% misdetection into walking and standing activities. This little misdetection of

jogging activity into walking and walking and standing activities can be attributed



Chapter 6. Distance Based Change Detection Technique for Activity Recognition 125

to the relative interleaving actions of standing that is common to all the three

activities. Similarly, the detection accuracy of standing activity attained 97.5%

with 1% mis-detection into walking and 0.5% mis-detection into walking-upstairs,

sitting and walking-downstairs.This is due to the similarity of walking component

that is common them. The sitting activity was detected up to 98% accuracy

while walking-upstairs and walking-downstairs detection attained up to 97.5% and

98% respectively. The little amount of mis-detections of one activity into another

activity are due to the transitioning period that exists from one activity to the

other.

It can be concluded that the leave-one-out activity detection experiment for this

dataset achieved a high accuracy indicating that the detection technique is robust

to detect new activity from existing activity thereby being able to detect when

concept drift may occur whenever there are differences in the way one subject

perform an activity from the other subjects.

6.4.5 Comparative Evaluation with Drift Detection Method (DDM)

This section compares the performance of the developed distance based change

detection (DBD) with DDM [28]. While the DMM assumes the presence of ground

truth in order to monitor the error rate of a model, the approach presented in this

chapter (Distance Based Change Detector (DBD)) does not assume the presence

of ground truth.

The comparative evaluation was carried out by taking the initial accuracy of a

base classifier for each data pair used in the previous section. Then, the two

methods were deployed to detect changes in the model accuracy, the detected

changes were then subjected to active learning to provide the correct label at

the points where the changes were detected and retrain the classifier. After the

provision of the true labels at the different points of detected changes, the accuracy

of the model is then recomputed to determine the efficacy of the correction made

as a result of the changes detected by the two methods. The gains between the

initial accuracy without change detection is then compared with the accuracy after
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providing correct labels during detections. The improvements to the classifier

under the two change detectors with active learning intervention are presented in

Table 6.8. The table shows that the accuracy gain in each experiment increases

when active learning strategy is invoked for adaptation at every step of the change

signal to the classification model inaccurate outputs. The accuracy gained ranges

between 22.95% to 43.35% yielding an average gain of 35.62%. This is an indication

that the change detector has enabled the adaptation process to take an informed

decision in updating the underlying model.

Reference
Data

Test Data Accuracy
Before
(%)

Accuracy
After
DBD (%)

Accuracy
After
DDM (%)

DBD
Gain (%)

DDM
Gain (%)

User2
ADL2

User3
ADL4

51.99 95.34 85.34 43.35 33.35

User3
ADL3

User4
ADL5

56.85 94.79 86.79 37.94 29.94

User4
ADL4

User1ADL3 62.78 98.68 88.68 35.9 25.9

User4ADL1 User1
ADL5

61.97 97.88 87.88 35.91 25.91

User1 Drill User3 Drill 64.37 96.83 88.83 32.46 24.46

User2 Drill User4 Drill 73.57 96.52 86.52 22.95 12.95

User4
ADL2

User3
ADL5

54.06 94.89 84.89 40.83 30.83

Mean 35.62 26.19

Table 6.8: Comparative Evaluation of DBD vs DDM in Opportunity Dataset

Statistical Test Result 6.4.1. Paired T-test for DBD vs DDM

N Mean StDev SE Mean

DBD Gain 7 35.62 6.62 2.5

DDM Gain 7 26.19 6.65 2.51

Difference 7 9.429 0.976 0.369

95% CI for mean difference is: (8.526, 10.331)

T-Test of mean difference = 0(vs 6= 0): T-Value= 25.56, P-Value= 0.000

The results were further subjected to paired t-test to determine whether to accept

or reject the null hypothesis that there is no difference in the performance of the

two methods. H0 = µDBD − µDDM = 0 i.e µd = 0. The result of the paired t-test

for this dataset is presented in statistical test result 6.4.1
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It can be seen that the confidence interval (CI) for the mean difference between

the two methods does not include zero, which suggests a difference between them.

The small p-value (p = 0.000) further suggests that the data are inconsistent with

the null hypothesis H0 = µDBD − µDDM = 0 i.e. population mean µd = 0, this

implies that the two methods do not perform equally. Specifically, DBD approach

with mean = 35.62 performs better than DDM with mean = 26.19 in terms of

using the change detection to initiate adaptation by active learning.

6.5 Chapter Summary

This chapter has presented a novel approach for change detection that is based

primarily on detecting classification error of an activity recognition model without

recourse to ground truth knowledge. The method relies on the data characteris-

tics extracted from the reference training set and the distance between the new

instances and the stored characteristics to determine the correct or incorrect classi-

fication of the instances. An incorporated threshold parameter control the decision

making of the detector. The threshold parameter is an important setting that make

or mar the correct detection of misclassified instances. Furthermore, the decision

of the detector is corroborated by incorporating a pluggable adaptation module

that updates the model in reaction to the change signal. The tested active learning

adaptation method indicates an average accuracy increase of 35.62% in the recog-

nition model which outperforms the well cited DDM[28]. Finally, experimental

evaluation of the approach shows a consistent average detection accuracy of up to

95% across the three datasets.



Chapter 7

Conclusion

This chapter summarises the major contributions of this thesis towards addressing

the problem of change detection in the classification model for activity recognition.

This problem is a challenging task and the approaches presented have been exper-

imented and confirmed to produce favourable performance in solving the problem.

In addition to the contributions of the thesis, this chapter also highlights and

proposed future work that emanate from this thesis.

7.1 Conceptual Layered Framework for Activity Recog-

nition System

The techniques developed in this thesis are codified into a conceptual layered

architectural framework shown in Figure 7.1. The proposed 5 layered architecture

for activity recognition system model adaptation consists of: (i) Data Acquisition

and Pre-processing, (ii) statistical data summaries formation, (iii) Classification

model, (iv) Change detectors and (v) Pluggable adaptation module.

Although, layered architectural frameworks are not new to other research domain,

such as in inferential measurement systems [66, 78], nonetheless, this thesis pro-

poses the layered framework to the domain of activity recognition model adapta-

tion. The novelty of the proposed codified layered framework is exhibited in the

organisation and implementation of the components that made up the framework.

128
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The functions of each layer and how they achieved their objectives are described

as follows:

Layer 1: Raw Sensor Data Acquisition and Pre-processing: The function

of the first layer is to acquire raw data from the sensors. It also process this

raw data through standard techniques such as segmentation of the sensor

into fixed size chunks, and feature extraction to extract features that are

more discerning than the raw sensor data. Other functions performed by this

layer include feature scaling and normalisation, replacing missing values and

feature selection.

Since existing publicly available real life activity recognition datasets were

utilized, some of these functions were not implemented from scratch. The

dataset used in this research namely: (WISDM, HARS and Opportunity)

were pre-processed to replace missing values in some part of the dataset. The

approach employed replaced the missing values in a column with the means of

the remaining data in the columns. But if the entire column or a substantial

part of it are missing, the feature is deselected from the dataset.

Layer 2: Statistical Data Summary Formation: The second layer of the frame-

work is saddled with the function of creating statistical data summaries from

the dataset that emerged from layer 1. The statistical data summaries are

more meaningful and concise representation of the original large dataset. The

reduced dataset is important for the mobile environment where there is re-

source constraints challenges. The proposed statistical data summaries were

obtained from the sub-clusters created from each class of activity. The sub-

clusters in a given type of activity data are obtained by applying clustering

to the data. The clustering yielded different patterns that are present in the

type of activity. Once this is done, the centroid statistical data summary and

its data points was computed by finding the centroids of the sub-clusters.

The amount of centroids data obtained depends on the percentage of data to

be retained in the dataset. Similarly, the minimum and maximum statistical

data summaries were obtained by finding the minimum and maximum along
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each column of the d-dimensional data points that are present in a given sub-

cluster. While the centroid statistical data summary represents the centre of

the sub-cluster, the minimum and maximum statistical data summaries serve

as the upper and lower boundary of the data points in the sub-cluster With

this, the pattern exhibited by a given sub-cluster is summarised by the three

statistical data summaries.

Layer 3: Classification method: The purpose of this layer is to use the sub-

cluster data formed in the previous layer 2 as the basis for classifying new

instances. Thus, a classification algorithm termed ‘CKNN’ was implemented.

This classifier for activity recognition classifies new instances by computing

the similarity between each instance and the statistical data summaries data

from Layer 1. label of the most similar data to the instance is then assigned

to the instance.

The evaluation of the approach shows that the accuracy of the classifier de-

pends on the amount of statistical data summaries obtained from the sub-

clusters. Also, each statistical data summary has a varying degree of classifi-

cation power. The centroid characteristic was found to exhibit the best clas-

sification power followed by minimum and maximum. However, the weighted

ensemble of the individual decisions gives the overall best accuracy. The re-

sult shows that there is performance improvements over the KNN, Decision

tree and Naive Bayes classifiers. Thus, it can be concluded that the devel-

oped approach with the reduced statistical data summaries data can enable

superior classification accuracy compared with the benchmarked state of the

art algorithms that utilised all the entire datasets.

Layer 4: Change Detection: The change detector stage is focused on methods

to detect changes in the data source while the base learner is classifying

new unseen instances. The implemented methods are different from existing

approaches in that they do not rely on the assumption of the presence of

ground truth to diagnose the presence of a change in the data source. The

method relies on the reference data from the training set to detect variations
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in the new set of classified samples. Chapter 5 and 6 details the developed

techniques.

Layer 5: Informed Model Adaptation The final layer is the model adapta-

tion layer that relies on the decision from the previous layer to adapt the

underlying model once a change has been signalled. The framework can work

with different type of model adaptation techniques because there is decou-

pling between the change detector and the model adaptation in the proposed

approach. Active learning adaptation module is incorporated to show the

applicability of the proposed change detector.

7.2 Contributions

Based on the implemented components of the derived layered framework, the fol-

lowing contributions to knowledge have emerged from this research.

• The thesis proposed and developed three statistical summaries that can be

generated from any dataset to yield more discerning and reduced dataset.

The data derived from the summaries summarised the patterns in the original

dataset and the resulting reduced data is used for similarity based classifi-

cation of new samples. Their major benefit is that they can be harnessed

for instance-based classification in a resource constraint environment such as

mobile phone based activity recognition.

• Another significant contribution of this thesis is the developed classifier for

activity recognition. The classifier employed the statistical summaries to

compute the similarity between new instances and the referenced data. The

weighted ensemble combination of the classification decisions from each sta-

tistical summary results in a better performance than three existing bench-

marked classification algorithms widely used for activity recognition. Statisti-

cal test of the results in Chapter 5 test results 4.4.1, 4.4.2 and 4.4.3 show that

there is significant statistical evidence that the algorithm performs better.

• This thesis also contributes to knowledge by proposing the incorporation of

change detection in activity recognition model prior to its adaptation. The
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implemented approach called ‘UDetect’ can detect classification model de-

graded accuracy without access to the ground truth label of the classified

instances. This is unlike existing approaches [14, 28, 34, 91] that require

the presence of labels to detect the change. The proposed approach is more

suitable for activity recognition where labels are scarce and tedious for users

to provide label with each data instance. Also, constant provision of labels

during online activity recognition is impractical and unrealistic. Therefore,

this contribution eliminates this challenge.

• Another main contribution of this thesis is the development of a distance

based change detection technique that relies on the developed statistical sum-

maries for comparing new classified samples and detects any drift in the orig-

inal class of the activity. The proposed approach uses distance function and

a threshold parameter to detect the accuracy change in the classifier that is

classifying new instances. This is unlike existing approaches [14, 28, 34, 91]

that require the presence of labels to detect the change. The distance based

approach eliminates the requirement for providing labels. It is more suitable

for activity recognition domain where labels are tedious to provide by the

user during online recognition.

7.3 Future Work

The following future work are worthy extensions and direction from this research

(a) An important future development work is the development of a holistic activ-

ity recognition system that integrates the proposed layered framework into a

real life application. Such system will incorporate informed model adaptation

so that there will be a detection of changes before initiating the adaptation

process.

(b) Development of window management strategy for deciding on the optimal

amount of window to use in the formation of a sample to be passed to the

detection routine. This problem is important because with the current meth-

ods the sample sizes are manually tuned based on the size of the data and
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the trade-off of the delay in detection. An automated approach that opti-

mises the selection and formation of the window size based on some system

parameters such as memory requirements and processing time to ensure that

the window formed is adequate and produced on time before the arrival of

more instances.

(c) Another important future work with respect to this thesis is the development

of adaptation methods other than the active learning approach proposed in

this thesis. The adaptation technique can rely on the detection framework to

decide on when, and how to adapt the base model to cater for the changes

that is detected in the underlying distribution of the model. There are many

possible actions that can be taken to adapt the base model such actions in-

clude collecting all instances from the point of detection at time tk up till time

tk+1 with set of samples collected within the interval time tk+1− tk denoting

the new activity regime that should be adapted to. However, method should

be incorporated to determine the actual class of activity without resorting to

inquiry from the user.
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T. Starner. Recognizing workshop activity using body worn microphones

and accelerometers. In Pervasive, volume 3001, pages 18–32. Springer, 2004.



Bibliography 146

[60] E. Martin, O. Vinyals, G. Friedland, and R. Bajcsy. Precise indoor localiza-

tion using smart phones. In Proceedings of the international conference on

Multimedia, pages 787–790. ACM, 2010.

[61] M. M. Masud, J. Gao, L. Khan, J. Han, and B. Thuraisingham. Classifica-

tion and novel class detection in concept-drifting data streams under time

constraints. Knowledge and Data Engineering, IEEE Transactions on, 23

(6):859–874, 2011.

[62] S. Matsui, N. Inoue, Y. Akagi, G. Nagino, and K. Shinoda. User adaptation

of convolutional neural network for human activity recognition. In Proceed-

ings of the 25th European Signal Processing Conference (EUSIPCO), pages

783–787, 2017.

[63] U. Maurer, A. Smailagic, D. P. Siewiorek, and M. Deisher. Activity recog-

nition and monitoring using multiple sensors on different body positions.

In International Workshop on Wearable and Implantable Body Sensor Net-

works, 2006. BSN 2006., pages 4–pp. IEEE, 2006.

[64] E. Miluzzo, N. D. Lane, K. Fodor, R. Peterson, H. Lu, M. Musolesi, S. B.

Eisenman, X. Zheng, and A. T. Campbell. Sensing meets mobile social

networks: the design, implementation and evaluation of the cenceme ap-

plication. In Proceedings of the 6th ACM conference on Embedded network

sensor systems, pages 337–350. ACM, 2008.

[65] D. C. Montgomery. Introduction to statistical process control. John Wily&

Sons, New York, NY, 2001.

[66] R. R. Moya. Multi-tier Framework for the Inferential measurement and Data-

driven Modeling. PhD thesis, 2008.

[67] V. Natale, M. Drejak, A. Erbacci, L. Tonetti, M. Fabbri, and M. Martoni.

Monitoring sleep with a smartphone accelerometer. Sleep and Biological

Rhythms, 10(4):287–292, 2012.



Bibliography 147

[68] Y. Oguri, S. Matsuno, and M. Ohyama. Activity estimation using device

positions of smartphone users. In International Conference on Network-

Based Information Systems, pages 1126–1135. Springer, 2017.

[69] E. Page. Continuous inspection schemes. Biometrika, 41(1/2):100–115, 1954.

[70] J. Parkka, M. Ermes, P. Korpipaa, J. Mantyjarvi, J. Peltola, and I. Ko-

rhonen. Activity classification using realistic data from wearable sensors.

IEEE Transactions on Information Technology in Biomedicine, 10(1):119–

128, 2006.

[71] M. Philipose, K. P. Fishkin, M. Perkowitz, D. J. Patterson, D. Fox, H. Kautz,

and D. Hahnel. Inferring activities from interactions with objects. Pervasive

Computing, IEEE, 3(4):50–57, 2004.

[72] R. Poppe. A survey on vision-based human action recognition. Image and

Vision Computing, 6(28):976–990, June 2010.

[73] S. J. Preece, J. Y. Goulermas, L. P. Kenney, and D. Howard. A comparison

of feature extraction methods for the classification of dynamic activities from

accelerometer data. IEEE Transactions on Biomedical Engineering, 56(3):

871 – 879, 2009.

[74] Z. Prekopcsák, S. Soha, T. Henk, and C. Gáspár-Papanek. Activity recogni-

tion for personal time management. Springer, 2009.

[75] J. R. Quinlan. C4.5: programs for machine learning, volume 1. Morgan

Kaufman, 1993.

[76] K. K. Rachuri, M. Musolesi, C. Mascolo, P. J. Rentfrow, C. Longworth, and

A. Aucinas. Emotionsense: a mobile phones based adaptive platform for

experimental social psychology research. In Proceedings of the 12th ACM in-

ternational conference on Ubiquitous computing, pages 281–290. ACM, 2010.

[77] S. Ranasinghe, F. Al Machot, and H. C. Mayr. A review on applications

of activity recognition systems with regard to performance and evaluation.

International Journal of Distributed Sensor Networks, 12(8):155–175, 2016.



Bibliography 148

[78] P. Rattadilok and A. Petrovski. Inferential measurements for situation aware-

ness. In Computational Intelligence and Virtual Environments for Measure-

ment Systems and Applications (CIVEMSA), 2013 IEEE International Con-

ference on, pages 93–98. IEEE, 2013.

[79] I. Renz. Adaptive information filtering: Learning in the presence of concept

drifts.

[80] H. Sagha, S. T. Digumarti, J. d. R. Millán, R. Chavarriaga, A. Calatroni,
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ity recognition in a home setting. In Proceedings of the 10th international

conference on Ubiquitous computing, pages 1–9. ACM, 2008.

[99] A. Wald. Sequential tests of statistical hypotheses. The Annals of Mathe-

matical Statistics, 16(2):117–186, 06 1945.

[100] G. M. Weiss and J. W. Lockhart. The impact of personalization on

smartphone-based activity recognition. In AAAI Workshop on Activity Con-

text Representation: Techniques and Languages, 2012.

[101] G. M. Weiss, J. W. Lockhart, T. T. Pulickal, P. T. McHugh, I. H. Ronan, and

J. L. Timko. Actitracker: A smartphone-based activity recognition system

for improving health and well-being. pages 682–688, 2016.

[102] B. L. Welch. The generalization ofstudent’s’ problem when several different

population variances are involved. Biometrika, 34(1/2):28–35, 1947.

[103] D. J. Wheeler. Understanding Variation: The Key to Managing Chaos. SPC

Press, second edition edition, 1993.



Bibliography 151

[104] G. Widmer and M. Kubat. Learning in the presence of concept drift and

hidden contexts. Machine learning, 23(1):69–101, 1996.

[105] I. H. Witten and E. Frank. Data Mining: Practical machine learning tools

and techniques. Morgan Kaufmann, 2005.

[106] C. R. Wren and E. M. Tapia. Toward scalable activity recognition for sensor

networks. In Location-and context-awareness, pages 168–185. Springer, 2006.

[107] D. Xu and Y. Tian. A comprehensive survey of clustering algorithms. Annals

of Data Science, 2(2):165–193, 2015.

[108] J. Yang. Toward physical activity diary: motion recognition using simple

acceleration features with mobile phones. In Proceedings of the 1st interna-

tional workshop on Interactive multimedia for consumer electronics, pages

1–10. ACM, 2009.

[109] J. Yang, H. Lu, Z. Liu, and P. P. Boda. Physical activity recognition with

mobile phones: challenges, methods, and applications. In Multimedia Inter-

action and Intelligent User Interfaces, pages 185–213. Springer, 2010.

[110] Z. Zhao, Y. Chen, J. Liu, Z. Shen, and M. Liu. Cross-people mobile-phone

based activity recognition. In Proceedings of the Twenty-Second international

joint conference on Artificial Intelligence-Volume Volume Three, pages 2545–

2550. AAAI Press, 2011.


	coversheetTheses
	Bashir_Sulaimon_PhD_Thesis.pdf
	Abstract
	Declaration of Authorship
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Problem Context
	1.2 Aim and Objectives of the Research
	1.3 Key Contributions of the Thesis
	1.4 Thesis Structure

	2 Literature Review
	2.1 Introduction
	2.2 Definition and Types of Activities
	2.3 Supervised Machine Learning Approach to Activity Recognition
	2.3.1 Sensor Sampling and Pre-processing
	2.3.2 Segmentation and Feature Extraction
	2.3.3 Model Generation and Deployment

	2.4 Sensor Modalities for Activity Recognition Systems
	2.5 Approaches to Model Adaptation in Activity Recognition
	2.5.1 Model Re-training
	2.5.2 On-the-Phone Personalised Model Generation
	2.5.3 Incremental Model Adaptation

	2.6 Change Detection in Unlabelled Data Stream
	2.6.1 Sequential Change Detection
	2.6.2 Distributional Change Detection on Two Different Windows

	2.7 Change Detection in Labelled Data Stream
	2.7.1  Types of Changes in Labelled Data Stream

	2.8 Conclusion from the Literature
	2.9 Chapter Summary

	3  Benchmark Algorithms and Datasets
	3.1 Introduction
	3.2 Benchmark Supervised Machine Learning Algorithms
	3.3 Justification for the Selected Benchmark Algorithms
	3.4 Activity Recognition Datasets
	3.4.1 WISDM Dataset
	3.4.2 Human Activity Recognition Using Smartphone Dataset-HARS
	3.4.3 Opportunity Dataset Description

	3.5 Chapter Summary

	4  ClusterNN: A Clustering and Nearest Neighbour Based Classifier for Activity Recognition
	4.1 Introduction
	4.2 Formation of the Reduced Data 
	4.3 ClusterNN Online Classification
	4.4 Experiments
	4.4.1 ClusterNN Performance on WISDM Dataset
	4.4.2 ClusterNN Performance on HARS Dataset
	4.4.3 ClusterNN Performance on Opportunity Dataset
	4.4.4 Comparative Evaluation of Weighted Ensemble ClusterNN with other Algorithms

	4.5 Chapter Summary

	5 Unsupervised Change Detection Framework for Activity Recognition
	5.1 Introduction
	5.2 Unsupervised Change Detection Framework
	5.2.1 Conceptual Framework of the Offline Component
	5.2.1.1 Windowing
	5.2.1.2 Window Summary Computation
	5.2.1.3 Change Parameters Computation
	5.2.1.4 Model Generation

	5.2.2 Conceptual Framework of the Online Components
	5.2.2.1 Online Model
	5.2.2.2 Online Windowing
	5.2.2.3 Online Window Summary Computation
	5.2.2.4 Online Detector


	5.3 Experimental Study
	5.3.1 Experiment with HARS Dataset
	5.3.2 Experiment with Opportunity Dataset
	5.3.3 Experiment with WISDM Dataset
	5.3.4 Comparative Evaluation of UDetect with Adaptive Windowing Technique (ADWIN)

	5.4 Chapter Summary

	6 Distance Based Change Detection Technique for Activity Recognition
	6.1 Introduction
	6.2 Ensemble Detector Overview
	6.3 Conceptual Framework of the Detection Scheme
	6.3.1 Classifier Module and Reference Baseline Data
	6.3.2 Ensemble Detector Framework
	6.3.3 Window Management

	6.4 Experimental Evaluation
	6.4.1 Experimental Setup
	6.4.2 Opportunity Dataset Experiment Results
	6.4.3 HARS Dataset Experiment Results
	6.4.4 WISDM Dataset Experiment Results
	6.4.5 Comparative Evaluation with Drift Detection Method (DDM)

	6.5 Chapter Summary

	7 Conclusion
	7.1 Conceptual Layered Framework for Activity Recognition System
	7.2 Contributions
	7.3 Future Work

	A Publications
	B Table of Control Chart Parameters
	Bibliography


	OA Logo: 
	AUTHOR: BASHIR, S.A.
	TITLE: Change detection for activity recognition.
	YEAR: 2017
	OpenAIR citation: BASHIR, S.A. 2017. Change detection for activity recognition. Robert Gordon University, PhD thesis.
	Degree: Doctor of Philosophy,  School of Computing Science and Digital Media.
	License: BY-NC 4.0
	License URL: https://creativecommons.org/licenses/by-nc/4.0
	CC Logo: 
		2018-08-31T16:00:16+0100
	OpenAIR at RGU




