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Abstract 

Air borne or liquid-laden solid particle transport is a common phenomenon in 

various industrial applications.  Solid particles, transported at severe operating 

conditions such as high flow velocity, can cause concerns for structural integrity through 

wear originated from particle impacts with structure. To apply Acoustic Emission (AE) in 

particle impact monitoring, previous researchers focused primarily on dry particle 

impacts on dry target plate and/or wet particle impacts on wet or dry target plate. For dry 

particle impacts on dry target plate, AE events energy, calculated from the recorded free 

falling or air borne particle impact AE signals, were correlated with particle size, 

concentration, height, target material and thickness. For a given system, once calibrated 

for a specific particle type and operating condition, this technique might be sufficient to 

serve the purpose. However, if more than one particle type present in the system, 

particularly with similar size, density and impact velocity, calculated AE event energy is 

not unique for a specific particle type. For wet particle impacts on dry or wet target plate 

(either submerged or in a flow loop), AE event energy was related to the particle size, 

concentration, target material, impact velocity and angle between the nozzle and the 

target plate. In these studies, the experimental arrangements and the operating 

conditions considered either did not allow any bubble formation in the system or even if 

there is any at least an order of magnitude lower in amplitude than the sand particle 

impact and so easily identifiable. In reality, bubble formation can be comparable with 

particle impacts in terms of AE amplitude in process industries, for example, sand 

production during oil and gas transportation from reservoir. Current practice is to 

calibrate an installed AE monitoring system against a range of sand free flow conditions. 

In real time monitoring, for a specific calibrated flow, the flow generated AE 

amplitude/energy is deducted from the recorded AE amplitude/energy and the difference 

is attributed to the sand particle impacts. However, if the flow condition changes, which 

often does in the process industry, the calibration is not valid anymore and AE events 

from bubble can be misinterpreted as sand particle impacts and vice versa.   

In this research, sand particles and glass beads with similar size, density and 

impact velocity have been studied dropping from 200 mm on a small cylindrical stepped 

mild steel coupon as a target plate. For signal recording purposes, two identical 

broadband AE sensors are installed, one at the centre and one 30 mm off centred, on 

the opposite of the impacting surface. Signal analysis have been carried out by 

evaluating 7 standard AE parameters (amplitude, energy, rise time, duration, power 

spectral density(PSD), peak frequency at PSD and spectral centroid) in the time and 

frequency domain and time-frequency domain analysis have been performed applying 
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Gabor Wavelet Transform. The signal interpretation becomes difficult due to reflections, 

dispersions and mode conversions caused by close proximity of the boundaries. So, a 

new signal analysis parameter - frequency band energy ratio - has been proposed.  This 

technique is able to distinguish between population of two very similar groups (in terms 

of size and mass and energy) of sand particles and glass beads, impacting on mild steel 

based on the coefficient of variation (𝐶𝑣) of the frequency band AE energy ratios. To 

facilitate individual particle impact identification, further analysis has been performed 

using Support Vector Machine (SVM) based classification algorithm using 7 standard 

AE parameters, evaluated in both the time and frequency domain. Available data set has 

been segmented into two parts of training set (80%) and test set (20%). The developed 

model has been applied on the test data for model performance evaluation purpose. The 

overall success rate of individually identifying each category (PLB, Glass bead and Sand 

particle impacts) at S1 has been found as 86% and at S2 as 92%. 

To study wet particle impacts on wet target surface, in presence of bubbles, the 

target plate has been sealed to a cylindrical perspex tube. Single and multiple sand 

particles have been introduced in the system using a constant speed blower to impact 

the target surface under water loading. Two sensor locations, used in the previous sets 

of experiments, have been monitored.  From frequency domain analysis it has been 

observed that characteristic frequency for particle impacts are centred at 300-350 kHz 

and for bubble formations are centred at 135 – 150 kHz. Based upon this, two frequency 

bands 100 – 200 kHz (E1) and 300 – 400 kHz (E3) and the  frequency band energy ratio 

(
E3

E1,
) have been identified as optimal for identification particle impacts for the given 

system. 
E3

E1,
 > 1 has been associated with particle impacts and 

E3

E1,
 <1 has been associated 

with bubble formations. Applying these frequency band energy ratios and setting an 

amplitude threshold, an automatic event identification technique has been developed for 

identification of sand particle impacts in presence of bubbles.  The method developed 

can be used to optimize the identification of sand particle impacts. The optimal setting 

of an amplitude threshold is sensitive to number of particles and noise levels. A high 

threshold of say 10% will clearly identify sand particle impacts but for multiparticle tests 

is likely to not detect about 20% of lower (impact) energy particles. A threshold lower 

than 3% is likely to result in detection of AE events with poor frequency content and 

wrong classification of the weakest events. Optimal setting of the parameters used in the 

framework such as thresholds, frequency bands and ratios of AE energy is likely to make 

identification of sand particle impacts in the laboratory environment within 10% possible. 

For this technique, once the optimal frequency bands and ratios have been identified, 

then an added advantage is that calibration of the signal levels is not required.  
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Chapter 1 Introduction 

1.1 Background and Motivation 

Transport of solid particles in gas or liquid flow is widespread in different industrial 

applications. For example, pharmaceutical, chemical, food processing, cement 

industries, transportation of Pulverised Fuel (PF) in coal-fired power plants and 

petrochemical (1,2) applications. A simple and reliable method for monitoring solid 

particle flow in fluid is required for system diagnosis as well as for performance 

monitoring of operations and processes. Under severe corrosive, high pressure/ 

temperature conditions non-intrusive monitoring systems, such as, acoustic emission, 

are more suitable (1,3) . In processes involving the movement of solid particles, acoustic 

emissions from the stress wave of the confining material can be generated from 

impingement or sliding of the moving particles among  themselves or with the wall and 

from dynamics of the carrier fluid (3,4) . Acoustic emission sound generated in this way 

is a manifestation of the process operating system and hence can be used for monitoring 

purposes (4) . 

Various Acoustic Emission (AE) parameters have been used to interpret the 

acquired AE signals obtained from the sensors monitoring the processes under 

consideration.  In case of particle fluidization in a small fluidized bed granulator, mean 

AE amplitude value has been used for detecting fluidization activity by correlating with 

dimensionless excess gas velocity and dimensionless expanded bed height (4) . In a 

study (5) , a particle size distribution model is developed from the quantitative 

relationship between energy percentage of AE signals for different Wavelet scales and 

the particle sizes. In another study (6) , it has been shown that the frequency of the peak 

pressure is inversely proportional to the particle size and particle density and directly 

proportional to the particle impact velocity. A quantitative model, based on statistical 

parameters in the time domain (maximum, minimum, mean, standard deviation, Root 

mean square (RMS), skew and kurtosis) & the first 52 spectral characteristics of power 

density spectrum (0-200 Hz in the frequency domain), deduced a relationship for feed 

pressure, solid concentration, volume flow rate and mass flow rate from AE signals in a 

hydro cyclone (7) .  RMS of the AE signals have been used for identifying the end point 

of solid-solid binary mixing processes and for the drying condition of wet particles or 

coating of solid particles with a liquid (8) . In petrochemical industry, where erosion due 

to sand particles, produced from the reservoir along with different petroleum fluid, is a 

major concern for equipment integrity, an unacceptable amount of sand production can 

in some cases be marked by an acoustic emission signal threshold once the system is 

calibrated for different sand concentration with corresponding AE amplitude/energy (2) . 
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For liquid/gas flow, AE signal variation from hydrodynamic pressure fluctuations can be 

used for flow regime identifications (8–10) .   

A change in the operating condition results in calibrated AE signals being 

inaccurately interpreted. For example, in the case of sand monitoring in the petroleum 

industry, it is necessary to chart the background noise level over a representative flow 

range for a sand free condition and tabulation of sand injection at a reference rate in the 

fluid flow for sand noise. A fitted function curve or some form of look up table is prepared 

based on the obtained data. The level of noise exceeding a set look up value of 

background noise level is thus ascribed to sand production. The main drawback of this 

procedure is if the calibration drifts off by changing flow regime or flow composition, 

which it often does in practical cases in the form of bubble formation or other contaminant 

production,  the calibrated background noise level is no longer a true representation of 

the scenario and hence the calculated sand rate from the output will be over or under 

estimated (11,12).  

Particle impacts using AE techniques have drawn the attention of many 

researchers (13–19). From literature, the focus of the studies can be broadly divided into 

dry particle impacts on dry target plate and wet particle impacts on wet or dry target 

plate.  

In case of dry particle impacts on dry target plate, free falling or air borne particle 

impacts were studied varying particle size, concentration, height, target material and 

thickness (13,15,20). Recorded AE signals were analysed evaluating detected AE 

events energy and correlated with the considered variables. For a given system, once 

calibrated for a specific particle type and condition, this technique might be sufficient to 

serve the purpose. However, if more than one particle type present in the system, 

particularly with similar size, density and impact velocity, calculated AE event energy is 

not unique for a specific particle type and any AE energy based technique fails to 

distinguish between different particle types in the system, as identified in (16). From 

literature, in the earlier research works, attempt on distinguishing different particle types, 

with similar size, density and impact velocity, has not been observed. 

In case of wet particle impacts on dry or wet target plate (either submerged or in a 

flow loop), studies were performed varying particle size, concentration, target material, 

impact velocity and angle between the nozzle and the target plate (16,17,19,21,22). In 

these researches also, AE event energy was related to varying physical properties of the 

system. Due to the experimental arrangements considered in these studies, AE events 

from bubble formations were either absent or easily identifiable for lower than particle 

impacts’ amplitude characteristics. No methodical effort to study the particle impacts in 

presence of bubbles has been noticed.  
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For dry particle impacts on dry target plate, an AE technique to differentiate 

particles with similar size, density and velocity and for wet particle impacts on wet target 

plate, identifying particle impacts in presence of bubble formations will facilitate the 

monitoring of processes involving solid particle movements in presence of more than 

one flow constituents. These will enhance the current state of the art knowledge in the 

related field and have been considered in this research. 

1.2 Research Aim 

As mentioned in the previous section, typical AE systems calibration is based on 

amplitude or energy of the event and can be misleading if the calibration condition 

changes. The simplest possible change is the presence of more than one flow 

constituent.  

The aim of the current research is to develop AE monitoring techniques to 

differentiate particles with similar size, density and velocity, for dry particle impacts on 

dry target plate and to identify particle impacts in presence of bubble formations, for wet 

particle impacts on wet target plate. In these cases, for a given system and operating 

condition, methods for establishing optimum performance are also considered in this 

research. 

1.3 Research Methodology  

To accomplish the aim of the research, a small mild steel target plate has been 

chosen. To study dry particle impacts, with similar size, density and impact velocity on 

dry target plate, similar sized sand and glass beads are dropped from the same height 

on the target plate under gravitational force in air. To study wet particle impacts in 

presence of bubbles, a separate set of experiments have been carried out introducing 

air laden sand particle impingement in water in the presence of bubbles. Opposite to the 

impacting surface on the target plate, two sensor positions, one at the centre and one 

30 mm off centred, have been considered. The acquired signals have been analysed 

following a general framework established in this research, as presented in the Figure 

1.1, which is divided into three major steps: 

Step A: Source specific AE tests have been carried out at this stage. Signals are 

recorded at the two sensor positions using two identical sensors. 

Step B: Acquired particle impacts AE signals have been analysed evaluating 7 

standard Time and Frequency domain parameters (amplitude, energy, rise time, 

duration, power spectral density(PSD), peak frequency at PSD and spectral centroid). 

Gabor Wavelet Transform have been applied for Time-Frequency domain analysis. 
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Figure 1.1: General analysis framework followed in this research. 

 

Step C: Classification of sources have been performed. A frequency band energy 

ratio analysis technique has been proposed for source differentiation. For particle 

impacts in presence of bubbles experiments this technique has shown promising results 
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(Chapter 5). However, in case of particle impacts (glass beads and sand particles) with 

very similar properties (size, mass and energy) this can be useful to distinguish a 

population of particle impacts (Chapter 4). For individual similar type particle impact 

source identification, a further analysis, based on a Support Vector Machine (SVM) 

classification algorithm, has shown more potential.  

1.4 Outline of the thesis 

The thesis is outlined in the following manner 

Chapter 1: Introduction 

An overview of the brief background and motivation of the research is mentioned 

along with the research scope, aim & objectives. Research methodology and outcome 

of the research has been summarized.  

Chapter 2: Literature Review 

This chapter reviews published work related to the thesis topics. It includes 

standard AE system description, AE parameters, Frequency band signal analysis, and 

AE from particle impacts, AE from Bubble formations, Implication of wavelet transform 

in identifying different source types and Classification algorithm (Support Vector 

Machine) application in differentiating source types. 

Chapter 3: Preliminary tests 

A set of preliminary Pencil lead break (PLB) tests have been carried out for 

characterizing the sensor response on the target impact material used in this work. 

Sensor responses have been recorded & analysed for different fixtures and 

environments.  

Chapter 4: Distinction of population of similar sized particle impacts on mild 

steel. 

Similar sized sand particles and glass beads impacts with the mild steel surface, 

originated from free fall of the particles under gravitation from the same height in air is 

studied along with PLB. A frequency band energy ratio based signal analysis technique 

has been proposed to differentiate the population of the similar sized particles. The 

feasibility of SVM classification algorithm in identifying individual particles has been 

studied.   

Chapter 5: An AE technique to distinguish sand particle impacts on mild 

steel target plate with fluid loading and air bubbles 

Sand particle impacts on the mild steel target plate in the presence of bubbles is 

studied for both single and multiple particles. Sensitivity of the frequency band energy 

ratio, with respect to amplitude threshold, has been fully discussed in this experimental 

context. 
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Chapter 6: Discussion, Conclusion & Further recommendations 

General discussions of the obtained results of the experiments are highlighted and 

conclusions are drawn. Further recommendations for future research has been made. 

1.5 Highlights of the research 

• Study of complex wave propagation on small thick, circular mild steel target 

plate with different fixtures and environments.  

• Development and optimisation of a new frequency band energy ratio AE 

parameter. 

• Discrimination between populations of particle impacts for sand and glass 

beads applying frequency band energy ratio. 

• Identification of individual particle impacts for glass beads and sand 

particles using SVM classification algorithm. 

• Discrimination of single and multiple sand particles from bubbles 

implementing frequency band energy ratio technique. 

• Sensitivity study for quantification of sand particles using frequency band 

energy ratio and identification of optimum amplitude thresholds for the 

considered experimental setup. 

• Evaluating an optimum sensor position on a short cylindrical mild steel 

surface under particle impacts. 
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Chapter 2 Literature Review 

 

2.1 Introduction 

This chapter introduces fundamentals of acoustic emission (AE), its advantages, 

limitations and the basic components of a data acquisition system (DAQ) used in 

acoustic emission testing (AET). A brief discussion on the acoustic wave propagation 

methods through the structure and various sources responsible for these wave 

generations is presented. Previous research works, related to particle impacts and 

bubble activities, are reviewed. A general discussion on various AE signal analysis 

techniques is followed by literature review on frequency and time frequency based AE 

signal analysis of particle impacts and bubble activities.  

2.2 Acoustic Emission 

Acoustic Emission (AE) refers to the transient elastic waves generated by the 

sudden internal stress redistribution of the materials due to changes in the internal 

structure. A structure subjected to an external stimulus like a change in pressure, load 

or temperature triggers a localized energy release in the form of stress waves. These 

stress waves propagate to the surface and with sensors and data acquisition equipment, 

can be recorded (23) . Figure 2.1 shows the basic of Acoustic emission detection 

principle. 

 
Figure 2.1: Acoustic Emission detection principle (23) 

Acoustic emission is different from many other non-destructive testing (NDT) 

techniques in two aspects. First, with respect to origin of sources, AET is passive, 

sensing the wave energy released by the source, while other technics might involve 

external excitation of an object under examination. Second, AET deals with dynamic 

processes, or change, in a material, highlighting active features (e.g. crack growth) only 

(24) . AET monitors the sources of AE associated with processes or faults as opposed 

to the symptoms such as vibration response.   
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2.2.1 Advantages and Limitations 

Like any other Non - destructive testing techniques, AET has its own advantages 

and limitations. The following are the major advantages of AET:  

• Most of the machinery generated noise frequencies are less than 50 KHz. 

Using AE sensors of higher resonant frequencies than the mechanical 

noise frequencies ensure isolation from machinery related vibration signals 

which results in high signal to noise ratio (SNR) (25–27).  

• AET can be used to monitor dynamic processes in real time without 

interrupting the normal operating condition (22,26–31). 

• AET can be applied using a small number of sensors mounted on the 

surface of the structure or the specimen under consideration (29). Since 

the AE waves travel from the source to the sensor, event mapping is 

possible using AE testing procedures (29,32). In addition, inaccessible 

remote sources can be monitored using this technique (22,26). 

The following are the main drawbacks of AET: 

• In practice, high frequency resonant AE sensors are used predominantly 

as these are more sensitive than the broadband sensors. However, these 

narrow band sensors detect a small portion of the broad band signals 

emitted by an AE event (25). Also, High frequency signal sources, e.g., 

turbulence, electromagnetism, can interfere with signal acquisition (26). 

• AE waves attenuate while propagating through the medium under test. In 

the near field, close to the source, due to geometric spreading a stress 

wave will attenuate.  In the far field, absorption or conversion of elastic or 

kinetic energy of the acoustic wave into heat is prominent. Dissipation to 

adjacent media or scattering within the same medium due to 

inhomogeneity or geometric discontinuities can cause attenuation as well 

(25,33,34). 

• AE events, in a bounded medium, can generate several wave modes in the 

medium which can propagate at the same time. Due to dispersion, wave 

modes of different frequencies travel through the medium at different 

speeds which can affect the acquired signal characteristics with respect to 

change in signal recording location (33,34). 

In the following section, AE wave propagation through structures is discussed. 

2.3 AE data acquisition system 

Figure 2.2, shows a typical AE Data acquisition system; not all of these are 

mandatory for a given AE Data Acquisition System. Based upon specific requirement, 
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one or more component functionality can be merged together; even some components 

might be eliminated totally.  

AE transducers: This transforms a local dynamic material displacement produced 

by a stress wave to an electrical signal. AE sensors are typically piezoelectric sensors 

made from special ceramic elements like lead zirconate titanate (PZT). Piezoelectric 

elements generate electric signals when mechanically strained. Other types of sensors 

include capacitive transducers, laser interferometers (35) .  

Preamplifiers: Typically AE signals are very weak. So, to prevent signal loss a 

preamplifier is connected immediately after the transducer. Sometimes pre-amplifiers 

are embedded into the transducers (23) . 

Filters: Signals are passed through filters to remove the environmental noise. 

Amplifiers: Signals are amplified by an amplifier before sending it to the signal 

conditioning unit. 

 

Figure 2.2: Typical AE Data Acquisition System (23) 

 

Signal Conditioning Unit: Signal conditioning unit enhances the performance 

and the accuracy of the data acquisition system. Signal conditioning technologies 

include: amplification, attenuation, isolation, filtering, excitation, linearization, cold 

junction compensation, bridge completion (36) . 

2.4 Wave propagation through structure 

Impacts between two contacting bodies can cause local elastic deformation which 

in turn can propagate from the contact region as elastic waves. For an infinite media, 

only two types of waves are present: Longitudinal and Shear Waves. If the particles 

motion of the medium conveying the wave are back and forth along the direction of 
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propagation, it is called Longitudinal Wave (Primary or P-Wave) (37) , as shown in 

Figure 2.3 (a). 

 

 

(a)                                                         (b) 
 

Figure 2.3 : (a) Longitudinal Wave, (b) Shear Wave (38) of an infinite solid medium 

 

The speed (𝑐𝑙) of the Longitudinal Wave is given by (39) : 

 

 

𝑐𝑙 = √
𝐸(1 − 𝜈)

𝜌(1 + 𝜈)(1 − 2𝜈)
 

             

           (2.1) 

                   

 

Where 𝐸 is Young’s modulus of elasticity, 𝜌  is the and 𝜈 is Poisson’s ratio of the 

material. 

If the particles’ motions of the medium conveying the wave are perpendicular to 

the direction of propagation of the wave itself, as shown in Figure 2.3 (b) then it is called 

Shear Wave (Transverse Wave, Secondary Wave or S-Wave) (37) .  

The speed of the Shear Wave (𝑐𝑠) is given by (39) : 

 

𝑐𝑠 = √
𝐸

2𝜌(1 + 𝜈)
 (2.2) 

In the case of semi-infinite media, surface acoustic waves, named Rayleigh Waves 

(Figure 2.4), propagate along the surface of the medium. For Rayleigh Waves, particles 

in the surface layer move both up-down and back-forth tracing out elliptical paths (38) . 
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Figure 2.4: Rayleigh Wave in a semi infinite medium (38) . 

A good approximation of the Rayleigh wave speed (𝑐𝑅) is given by (40) : 

 

 
𝑐𝑅 ≅

0.862 + 1.14𝜈

1 + 𝜈
𝑐𝑠 

   

(2.3) 

 

The Rayleigh wave travels about at 90% of the shear wave speed (40) . 

For double bounded media, e.g., plates, etc., transverse waves are trapped 

between the finite thickness of the media and called Lamb Waves. The relationship 

between the thickness and the wavelength induces different modes. Two main families 

of modes observed are : the symmetric (extensional) modes 𝑆𝑛 and anti symmetric 

(flexural) modes 𝐴𝑛, where 𝑛 is mode number (41) . In the first family, the motion is 

symmetrical (Figure 2.5 (a)) about the median plane of the plate while for the second 

wave type it is asymmetrical (Figure 2.5 (b)). For practical purposes, the lowest order 

(fundamental or parent) members of these families, denoted as 𝑆0 and 𝐴0 respectively, 

are the most important (42) . 

 

 

(a)                                          (b) 
 

Figure 2.5: (a) Symmetric Lamb Wave, (b) Anti Symmetric Lamb Wave  in a double 

bounded media (40) 
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To produce 𝑆0 type of wave motion, the exciting force needs to be directed parallel 

to the plate. A sudden release of in plane tension can produce the same as well. On the 

other hand, exciting forces perpendicular to the plate or the forces parallel to the plate 

but offset from the centre line are responsible for producing 𝐴0 type wave motions (23)  

For elastic waves, having wavelengths shorter than the thickness of the plate, 

higher order symmetric and antisymmetric modes become available dependent on the 

plate thickness (43). Figure 2.6 is an example of a typical dispersion curve for steel plate 

(44). At high frequencies, the velocities of both zero order modes approach the Rayleigh 

velocity. All other modes appear at a certain cut off frequency and approach the shear 

velocity at very high frequencies (40). For a fixed plate thickness, due to dispersion, the 

elastic wave with different frequency modes will travel at different velocities. While 

travelling through the medium, these modes may gradually change due to attenuation 

or convert to different modes if it encounters a boundary (44). Various sources can 

generate different modes combinations in plates (44).  

 

Figure 2.6: Dispersion curve of a steel plate (45). Depending upon the thickness of the 

plate & wavelength of the elastic wave, various plate modes with characteristic group 

velocities are possible (44). 

Lamb waves provide the best estimation for propagation from the source at 

distances many times greater than the plate thickness. Close to the source, i.e., within 

one or two plate thicknesses longitudinal and shear waves are more likely to be dominant 

(23). 

2.4.1 Thick circular plate response due to point impact 

Sansalone et. Al (46) have carried out an extensive Finite Element (FE) analysis 

of a point impact at the centre of a thick circular plate. The diameter was varied between 
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1-2 m and thickness between 0.2-0.5m. The analysis was performed for aspect ratios 

(diameter to thickness) of 4.5 and 6.5. Contact times of 25 and 62 µs have been used 

for the study. These values simulate a small diameter (5 - 10 mm) steel sphere dropping 

onto concrete. Results obtained from the FE analysis was compared with Green’s 

function solution for point impact on an infinite plate. Initial portion (0 – 400 µs) of the 

circular plate response was similar to the infinite plate response. Afterwards, 

displacements due to the waves reflected back and forward between the top and bottom 

surface were superimposed by reflected and mode converted waves from the plate side 

boundaries. Changing the aspect ratio was reflected in the spectrum shift of the obtained 

displacement signal at a point 0.05m from the impact point on the top surface. For a 

specific aspect ratio, detailed analysis on monitoring locations at different locations of 

the top and bottom surface showed that in general the major mode frequencies were the 

same but the contribution of these modes from point to point varied significantly along 

with absence of few modes at certain locations. Also, shorter impact duration excited 

higher plate modes resulting in more complicated response. 

2.5 AE Sources 

When a loaded material undergoes plastic deformation atomic planes slip past 

each other through the movement of dislocations. These release energy in the form of 

elastic waves i.e. AE signals. In the case of an existing crack in a metal, stress level in 

front of the crack tip is several times higher than the surroundings. Therefore, when this 

crack tip undergoes plastic deformation, AE activity is observed (23,47).  

For fatigue, emissive particles (e.g. non-metallic inclusions) at the origin of the 

crack tip are less ductile than the surrounding material. These tend to break more easily 

when the metal is strained, resulting in an AE signal. Small-scale cleavage produced by 

triaxial stresses can act as an AE source in this regard (47) .In composite materials, 

matrix cracking, disbanding and fibre fracture can act as AE sources (24) . 

Other than the sources mentioned above, other mechanisms produce AE signals 

which can be detected by AE equipment. Examples includes friction (as in rotating 

bearings), solid-solid phase transformation, liquefaction and solidification, leaks, flow 

noise, cavitations and realignment or growth of magnetic domains (Barkhausen effect). 

These are also referred as Secondary or Pseudo sources to distinguish from the 

classical AE caused by mechanical deformation of materials under stress (24,47–49) . 

The following two sections are concentrated on a review on the AE generated from 

particle impacts & bubble activities. 
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2.5.1 AE from particle impacts 

When a hard, solid particle strikes a target, the incident kinetic energy (KE) of the 

particle is converted into plastic strain energy (causing permanent deformation of the 

target and/or the impacting particle), elastic strain energy (rebound kinetic energy) and 

elastic waves which propagate through the target material (15). For the plastic impact a 

rigid spherical erodent on a massive target, Hutchings (50,51) has approximated 1-5% 

of the incident KE is radiated as elastic waves, 90% is used in plastic deformation and 

the remaining portion recovered through rebounding KE  as shown in Figure 2.7. 

 

Figure 2.7: Schematic of AE energy release from a solid particle impact with a solid 

surface. (50,51). 

Hunter (52) determined less than 1% of the incident KE is converted into elastic 

waves during normal impact of a hard steel sphere on a steel target whereas Reed (53) 

suggested about 4.5% of the KE is converted into elastic waves. Applying finite element 

analysis, Wu (54) showed that less than 1% of the incident KE is converted to elastic 

waves if there is more than one reflection occurs during the impact whereas 

approximately 6% of the incident KE is dissipated as elastic waves if there  are no 

reflections at all. Ferrer et al. (19) used individual glass beads of 720 µm diameter, in a 

solution of Na2SO4at velocity between 1 – 16 m/s, to impinge on a 304L stainless steel 

target with AE sensor attached on the rear surface. They have found that KE radiated 

as elastic waves is below 1%. 

Despite the theoretical deduction of a little amount of incident KE conversion into 

elastic waves, due to high temporal resolution, AE originated from impacts can be used 
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as a measurement tool for characterizing impacts (13–15,21,33,55) . In a study, Scruby 

et al. (13)  dropped small spherical bronze and glass particles of nominal diameters of 

53 – 63 µm and 75 – 90 µm respectively in vacuum onto steel or aluminium target plate 

at velocities between 2.5 – 7.1 m/s. Mounting broadband sensors on the opposite 

surface of the plate AE signals were acquired at the impact epicentre. Applying Green’s 

theorem, they calculated impact forces by deconvolution from acquired AE signals and 

measured particle size distributions. Petersen (14)  dropped four different sized steel 

spheres of radius within 2.5 – 11 mm from three different heights of 0.1 – 0.3 m on 

aluminium alloy plate and acquiring signal at a distance of 20 mm from the source on 

the same surface, correlated the first two peaks of the signals to the loading and 

unloading of the impacting bodies. Droubi et al (15) investigated the amount of recorded 

AE energy due to particle impacts by correlating AE energy with different particle 

diameters and velocities in dry and wet particle conditions. They proposed that AE 

energy increases with the third power of particle diameter, i.e. the mass, and with the 

second power of the velocity. They observed that the diameter exponent was only valid 

up to particle sizes of around 1.5 mm, while for velocity exponent the general level of the 

energy were lower for multiple impacts than for single impacts due to particle interactions 

in the guide tube and/or near the surface. Similar type of conclusion was reached by 

Duclos et al. (17) monitoring streams of various sized particle impacts at different 

concentrations and flow rate in a water loop. They showed the AE energy per particle 

was approximately proportional to the cube of the particle diameter except for the large 

particles attributable to the particle drop out following Stokes law. In an environment of 

nonsaline solution saturated with nitrogen, Ukpai et al. (18) used a submerged 

impingement jet on X65 carbon steel material to measure particle impacts. Subtracting 

baseline AE event count rate from count rate of various flow velocity and sand loading. 

At 7 and 10 m/s, measured particle impact counts agreed well with theory. Deviations 

for 15 m/s flow velocities were attributed to rebounding particles which have been 

detected with sand impacts and the overlapping of the AE events difficult to separate in 

time. Hou et al. (7) used a stepwise regression analysis technique to derive relationships 

between concentration, mass flow rate, volume flow rate and the statistical and spectral 

characteristics of the recorded AE. In another study, Droubi et al (21) developed a log 

normal distribution function for the AE energy from particle impacts which related the 

nominal mass and nominal speed of the impinging particles. Pecorari (55) proposed a 

statistical model to measure particle flow numbers which used average signal power, 

flow velocity and a function dependent on system parameters, such as, plate or pipe wall 

thickness, sensitivity and bandwidth of the transducer.  For successful application of this 

procedure a proper calibration process for the function is required. 
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2.5.2 AE and sounds from bubble activities 

The sound generated by the presence of  bubbles was reported in the literature as 

early as 1921 (56,57) . Since then many researchers have done lots of researches which 

enriches the knowledge of bubble acoustics (26,27). The acoustics caused by the bubble 

is mainly associated with different phases of a bubble as described below. 

 

a) Bubble formation 

In laboratory, generally,  bubbles  are created by injecting air into a fluid using 

nozzle or nozzle like equipments (e.g. syringes). There is a minimum flow rate (termed 

as ‘incipient fluidization rate’) when the bubble starts to develop as a void surrounded by 

the fluid. Once the void reaches its size limit the void wall is pressurized by the 

surrounding fluid. The ‘neck’ of the void becomes the weakest region of the interface 

and eventually bubble pinch-off takes place (58) as shown in Figure 2.8 .  

 

 

Figure 2.8 : Photography of an air bubble just before pinch-off from a nozzle (59) 

Minnaret first theoretically showed that at pinch off every bubble releases sound 

(57). Strasberg (60) observed bubble inception at an underwater nozzle using high 

speed camera and synchronised simultaneously recorded oscillograph of the sound 

accompanying with the event. The recorded work presented in Figure 2.9 shows that at  

pinch off from the nozzle tip, the bubble generated the highest sound pressure pulse.  
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Figure 2.9 : Sound pulse Oscillogram of an individual bubble leaving a nozzle. The 

highest pressure pulse noted at the bubble pinch off (60). 

 

Similar type of results have been obtained by Manasseh et al. (61). Using high 

speed camera and underwater microphone, Deane et al. (62) also recorded different 

stages of bubble pinch off and associated pressure signal as shown in Figure 2.10. 

However, the highest pressure pulse was recorded not at the pinch off but 320µs after 

detachment from the nozzle tip, as in b(iii) of Figure 2.10,  showing a small re-entrant 

water jet forming within the collapsing neck.  

 

Figure 2.10 :  (a) Recorded acoustic pressure amplitude associated with (b) bubble 

detachment from an underwater nozzle. Marked points I, II & III on Figure (a) represents 

observed pressure amplitudes for different stages of a bubble release  corresponding to 

Figure (b) (62). 
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After formation of the bubble, before reaching equilibrium state, it undergoes 

volumetric oscillation which generates pressure waves (26) . Also the oscillation might 

be of different types (60) . Four major oscillation orders are presented in Figure 2.11. 

 

Figure 2.11: Four modes of spherical bubble oscillations (60). 

In Figure 2.11, the zeroth mode (n=0), corresponds to the volume pulsation, i.e. 

change in volume, with fixed shape. The first mode (n=1), represents translational 

oscillation with fixed shape and volume about a fixed point. The second and third modes 

(n= 2 & 3, respectively), resemble complex shape changes with fixed volume. 

 

The natural frequency of the zeroth mode volume pulsation is calculated by 

Minnaert’s model (57) : 

 
𝑓0 =

(3𝛾𝑃0/𝜌)
1

2⁄

2𝜋𝑅0
 

 

(2.4) 

And natural frequencies of other three oscillation modes are calculated according 

to Lamb’s model (63) : 

 

𝑓𝑛 =
((𝑛2 − 1)(𝑛 + 2)𝑇/𝜌𝑅0)

1
2⁄

2𝜋𝑅0
 

 

(2.5) 

Where 

𝑓0 is the natural frequency of oscillation for zeroth mode volume pulsation 

𝑓𝑛 is the frequency for the nth mode 

𝑃0 is the static pressure 

𝛾 is the ratio of the specific heat of the gas in the bubble 

𝑅0 is the mean radius of the bubble 

𝜌𝑙 is the density of the liquid 

𝑇 is the surface tension 
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Many researchers have investigated the sound generated during the oscillations 

of the bubble after the pinch off when  it goes through different shape changes as shown 

in Figure 2.11. Meyer and Tamm (60) first experimentally associated the emitted sound 

to volumetric bubble pulsations. Pandit et al. (64) suggested that bubbles, entrained in 

water or liquid, when subjected to external pressure fluctuation can generate large sound 

due to the volume pulsations originated from the oscillatory motion of the bubble walls. 

Leighton et al. (65) observed that the recorded emitted sound was dominated by the 

zero order mode pulsations of the bubble while the other higher order modes contributed 

little to the recorded pressure signal. Applying micro – PIV velocity field measurement 

on the recorded photographs, Tho et al. also detected a similar type of effect.  

b) Bubble Coalesce and Splits 

     Following bubble formation or pinch off, the bubble rises with a velocity known 

as ‘Bubble terminal velocity’ (58) . Sometimes during this ascent of the bubble, splitting 

as well as coalesce could occur (58) . The existing hydrodynamic stresses and surface 

tensions at the bubble region influence the bubble split by stretching of the bubble due 

to viscous shear at the bubble surface.  When the split occurs it results in an emission 

of a decaying pressure pulse (27) . Similarly, if two bubbles are formed in quick 

succession, as shown in Figure 2.12, their coalescence can become a source of bubble 

acoustic as well (61) . The recorded sound amplitude during coalescence was an order 

of magnitude higher than the primary bubble pinch – off. Also, the sound intensity 

increased with the increasing size of secondary bubble, for a given primary bubble 

diameter. 

 

 

Figure 2.12: Bubble formation and coalescence sequence from a nozzle under static 

height of water column using a high speed camera (61) . 
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Kracht et al. (66) studied coalescence of air bubbles, injected through a submerged 

capillary glass tube. From the recorded hydrophone signals, a decaying sinusoid was 

observed for a single non coalescing bubble production. For the bubble coalescence 

event, the primary decaying sinusoid, associated with the initial bubble formation, was 

followed by a secondary decaying sinusoid of higher amplitude. The hydrophone used 

in the study was having an operating frequency range of 0 – 85 kHz. No comparable 

results have been noticed in the literature using AE systems. 

c) Bubble burst at free surfaces 

     The final evaluation in bubble life cycle is bubble burst which takes place at the 

free surfaces. This phenomenon is widely known in any industrial set up in various 

terminologies. During collapse, bubbles do not vanish but rather form micro bubbles with 

2-10% of the original bubble radius (67,68). At the moment of bubble burst, surrounding 

liquid gets compressed and a high pressure wave front radiates from the collapse centre 

(69). If the liquid compression due to bubble burst is high enough, it can cause shock 

waves in the surrounding liquid as well (67,70,71). About 10 to 15% of the bubble energy 

contributes to the generation of pressure pulse during bubble collapse (72). Energy 

released by the bubble bursting is related to the bubble size and liquid properties (27) . 

Using wall mounted AE sensors, Shuib et al. (27,58) studied single bubble 

activities by introducing bubbles through a submerged nozzle at the bottom of a 

rectangular tank. They observed that AE amplitude of the bubble burst at the free surface 

increases with an increase in the bubble size. Also, it was noticed that, for a given bubble 

size, higher viscosity increases the bubble burst AE amplitude. In a different study, 

involving bubble burst at the free surface of a non-Newtonian fluid, Divoux et al. (73) 

detected that, different bubble burst amplitude recorded from the same experimental 

conditions. They concluded that due to high sensitivity to the film bursting dynamics,  to 

characterise bubble burst events, frequency is more reliable indicator than the amplitude 

and energy of the recorded signal (73). 

2.6 AE signal analysis 

To identify correlations between recorded AE signals and the physical events 

associated with it, AE signals are analysed using different signal analysis procedures. 

AE signal analysis can be broadly divided into time domain and frequency domain 

analysis. The following sections provide a brief overview of these techniques. 

2.6.1 Time domain based analysis 

For time domain signal analysis, real time captured AE signal records are used. 

Analysing different parameters of the recorded signal, corresponding to physical events 
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are characterised. Referring to Figure 2.13, definitions of the most widely used AE signal 

analysis parameters in the time domain are listed below. (28,47,74) . 

 

Figure 2.13: Standard AE parameters used for time domain signal analysis (75) 

Hit: A signal that exceeds the threshold and causes a system channel to 

accumulate data. It is frequently used to show the AE activity with counted number for a 

period (rate) or accumulated numbers. In Figure 2.13, one waveform correspond one 

“hit”. 

Counts: It refers to the number of times a signal crosses the threshold within a 

duration. It is dependent on the set threshold and operating frequency. In the Figure 

2.13, four counts are observed.  

Amplitude: This is the greatest measured voltage in a waveform. Amplitudes are 

usually expressed on a decibel scale. It is closely related to the magnitude of the source 

event and often analyzed with frequency distribution. It also determines the detectability 

of the signal. Signals with amplitude below the threshold will not be detected. 

Duration: It is the time interval between the first and the last interval crossing. It 

can be used to identify different types of sources and noise. 

Rise Time: It is the time interval between the first threshold crossing and the peak 

signal. It relates the wave propagation of AE source and sensor. 

Energy: The true energy of an AE event in a material is proportional to the area 

under the AE waveform. The advantage of energy over ring down count is that it can be 

directly related to important physical parameters (such as mechanical energy in the 

emission hit, strain rate or deformation mechanisms). It also improves AE measurement 

when the signal amplitudes are low. 



41 
 

2.6.2 Frequency and Time-Frequency based analysis 

Advanced mathematical transformation based Frequency domain analysis, e.g., 

Fourier Transform (FT), Short Time Fourier Transform(STFT) and Wavelet Transform 

(WT), enables additional feature extractions, other than the information obtained from 

time domain analysis, of the recorded signal which aids in characterising associated AE 

events (24,27).  

Fourier Transform decomposes the recorded signal into various frequency 

components and estimates energy distribution of the components from the time series 

data (76). Frequency spectrum of the decomposed signal can be used as a diagnostic 

tool or can be used for improving signal to noise ratio by removing noise from the signal, 

provided the noise has a distinct frequency signature than the event (16).  

STFT involves truncation of the signal into sections (windowing) and analysing 

each section at a time by using Fourier transform. It maps the time series data to a 

frequency – time domain and provides information about the time and frequency of the 

event. STFT is based on fixed window width and the precision of the obtained information 

is  dependent on the window size (76).  

Wavelet Transform (WT) is similar to STFT except incorporating variable window 

lengths. Longer time interval provides more precise low-frequency information and 

shorter time interval provides high frequency information (76). 

2.6.2.1 Frequency and Time Frequency based analysis of particle impact signals 

AE waves propagate through a structure in a variety of modes. Separation of these 

modes at the sensors can retrieve information about the source which produced the 

wave (77) . Prosser et al (33) conducted experiments on small aluminium and composite 

plates on which steel and cylindrical nylon balls were fired. For all the cases, plate 

extensional and/or flexural modes were detected and the amplitude of the modes 

increased with a change in velocity. For steel bars, Dunegan (78) identified two 

frequency bands of 100kHz-1MHz and 20KHz-70 kHz that would allow the separation of 

the extensional and flexural waves respectively Similarly, Holford et al (79) separated 

signals into extensional (above 100 kHz) and flexural  (below 100 kHz) modes for source 

location on a 12m long steel beam.  

For simple geometrical structures, a large lateral dimension along the wave 

propagation direction facilitates identification of propagating wave modes clearly. 

However, for complex structures, with small dimension and/or structural joints or 

discontinuities, reflection, dispersion, mode conversion significantly complicate the 

propagated waves and hence the identification of modes become difficult (33,80) .  

For wave propagation in dispersive media, identification of the same frequency 

mode at more than one sensor (81) or different frequency modes at single sensor (77,82)  
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can improve the source location accuracy. Due to inherent time frequency representation 

characteristics, WT is a natural candidate for such an application and executed 

promisingly in the studies observed in (81,83) . 

Modal analysis and WT in dispersive media have been used to characterize 

different source types (82) . Hamstad (84) used a Finite Element Modelled(FEM) 

database of monopole and dipole AE signal sources to compare with experimental pencil 

lead break (PLB) tests. The entire FEM signals were numerically processed with 40 kHz 

(four pole Butterworth) high pass filter and a similar typed band pass filter of 100-300 

kHz. Two modes were clearly identified on the WT and peak amplitude ratios of flexural 

modes to extensional modes were used for different source types. In another study (82) 

, FEM was used to distinguish different source types. However, the ratio did not uniquely 

classify the AE source types. 

For a plate-like test specimen, the propagating waves in the far field are governed 

by Lamb waves. For thin plates, typically only fundamental symmetric and anti symmetric 

wave modes are present (81,85) and their dispersion characteristics can be predicted 

(77) and for a wide plate geometry the reflection effects are minimised. However, in thick 

plates, additional higher order Lamb modes contribute to the signals (85) and this is 

verified by Dunegan (78) . Also Hamstad (82) showed that for a small coupon specimen, 

edge and surface reflections distort the signals and hence individual modes cannot be 

easily identified on the time-frequency plane of WT. Ding et al (80) showed a generic 

way of determining important wave modes arrival by applying wavelet packets for source 

location on CFRP laminates. Contaminations of signals by reflections are observed. For 

current research, where specimen thickness supports higher order lamb wave modes 

and reflections distort the acquired signals, applying WT does not help to identify 

different wave modes. Also, for each particle impact wavelet packet based analysis 

cannot identify any distinct particle properties. For example, AE energy or amplitude 

would not be unique to a specific particle impact because energy could vary due to other 

physical properties such as impact angle and velocity. So, for two similar sized different 

types of particles, energy or amplitude cannot distinguish between particles. This work 

is focused on developing a novel technique using frequency band energy ratios to 

distinguish different particle types for impacts on a small mild steel stepped cylindrical 

plate. 

2.6.2.2 Frequency and Time Frequency based analysis of bubble activities signals 

Attaching a steel plate to a steel tube of an existing hydraulic loop, Hutton 

experimentally studied the applicability of AET in differentiating plastic deformation of 

the plate from the flow and cavitation originated noise (86). It was observed that plastic 
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deformation had a frequency content of above 1.5 MHz and the flow or cavitation had a 

spectral content predominantly below 1 MHz. 

Mounting a 500 kHz resonant AE transducer on a high pressure piston pump, 

Darlington and Johnston conducted a cavitation test (87). It was noted that introduction 

of cavitation increased the mean AE signal output and the collapse of the bubbles 

caused wide band noise upto 1 MHz.     

To study bubble acoustics, Leighton et al. (88) introduced a single bubble at a time 

using a vertical syringe at the bottom of a tank. To record bubble activities, an underwater 

microphone and a high speed camera, along with an illuminating lamp, were used. They 

have observed that higher gas flow rates produced higher frequency sound from smaller 

bubbles. 

 With a similar arrangement of hydrophone, high speed camera and water tank, 

Boyd and Varley (8) have used water jet aimed vertically downward to generate bubbles. 

A shift to the lower frequency in the spectrum was noticed from larger bubbles associated 

with increasing height. In another study (89) of bubble cloud generation under a water 

fall and a water jet entrainment, lower frequency in the spectrum was observed for larger 

bubble sizes. In this study, a time frequency based GWT was applied for signal analysis.  

Shuib et al. (58) have carried out a detailed analysis on single bubble activities. 

They have used four different size of metal nozzle between 1.4 mm – 8.4 mm at the 

bottom of a rectangular tank, full of either water, salt water or glycerine, to introduce 

bubbles in the tank and recorded the bubble activities using both intrusive and non-

intrusive AE sensors at different height along the wall of the tank. AE signals were 

recorded at the time of bubble formation and bubble burst at the free surface and time-

frequency based Gabor wavelet transformation (GWT) was applied for bubble activity 

analysis.  

Figure 2.14 & Figure 2.15 shows recorded AE signal (top) and wavelet analysis 

(bottom) of bubble activities obtained from 8.4mm nozzle in a water filled tank. From 

Figure 2.14, during bubble formation the highest intensity of frequency observed around 

250 kHz whereas from Figure 2.15 during bubble burst at free surface, the peak activity 

occurred around 150 kHz. 
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Figure 2.14: Typical waveform (top) and Gabor wavelet transform (bottom) of bubble 

inception from nozzle size of 8.4mm in water (58). 

Comparing Figure 2.14 & Figure 2.15, higher amplitude and longer event duration 

were observed for AE waves associated with bubble burst both on the time domain signal 

and wavelet transform. Also, the beginning of the AE wave, for both bubble formation 

and burst, is associated with wide frequency content between 100 – 750 kHz. 
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Figure 2.15: Typical waveform (top) and Gabor wavelet transform (bottom) of bubble 

burst example. The bubble was originated from nozzle size of 8.4mm in water (58). 

2.6.3 Pattern recognition in AE analysis 

If the recorded signals are influenced by source position, dispersion or attenuation 

within the specimen, interpretation of recorded AE signal based on conventional 

standard AE parameters evaluation in time and frequency domain or correlation plot of 

time-frequency domain becomes difficult (90). Multivariate analysis technique, e.g., 

Pattern recognition, is required for such cases (91).  

AE signal based pattern recognition techniques have been successfully applied in 

many disciplines. For example, monitoring various failure mechanisms in composite 

materials using k – means, k-Nearest Neighbours (k-NN), Self-organizing map (SOM), 

fuzzy C-means and Principal Component Analysis (PCA) based pattern recognition 

algorithms (90,92–98); for rotating machine condition (99), machine coolant system 

diagnostics (100), bearing (101) and gearbox faults detections (102) using artificial 

neural network based algorithms; various engine fault detections using generic algorithm 

(103).  
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In particle impact related AE applications, implementation of pattern recognition 

based analysis has been noticed primarily for loose particle detection tests in sealed 

electronic devices (104–108). In Particle Impact Noise Detection (PIND) tests, the sealed 

electronic device under observation is vibrated with a shaker and AE signals recorded 

by the mounted sensors (within typical range of 10 – 200 kHz) on the shaker base for 

identification of loose particles with considerable mass (106). Standard practice is 

human expertise dependent and accuracy of particle detection is around 44% (104). 

Neural network based detection methods proposed in (104,105) improves the 

performance but subjected to successful misjudgement reduction of the neural network 

due to environmental noise and electromagnetic noise (105). A recent work has 

implemented Principal Component Analysis (PCA) and Support Vector Machine (SVM), 

using nine features in time and frequency domain, to classify 250 samples each for Wire, 

Aluminium and Tin, from 0.5 - 2 mg particle impact signals, with better environmental 

noise handling capabilities resulting in a detection success rate reported between 90-

95% (106). However, no literature has been noticed related to smaller particle, in the 

diameter range of ~µm commonly found in different process industries, related impacts 

identification detection based on acquired AE signal analysis. 

2.6.3.1 Basic steps of pattern recognition and classification 

 Figure 2.16 shows the basic steps of a pattern recognition and classification 

technique (109).First step of pattern recognition and classification is measurement of 

physical variables. For superior quality data, bandwidth, sensitivity, signal to noise ratio, 

resolution of the data acquiring devices are important. In the second step, acquired data 

are represented in terms of features to characterize the measured physical event. 

 

 

         Figure 2.16: Basic steps of pattern recognition and classification. 

 The next step is processing the data into usable format for different classification 

techniques. Pre-processing step can include feature selections, additional feature 
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calculation from the extracted features, normalizing the data to scale within the same 

range and transforming the data with zero mean or unit variance (110). Sometimes, for 

reducing very large feature space, dimensionality reduction method, e.g., principal 

component projection, is applied in addition. In classification step, two main methods are 

followed: Unsupervised and Supervised. For Unsupervised classification, without the 

prior knowledge about the data origin, measured data sets are grouped into similar 

categories. For example, K-means and hidden Markov model based classification. 

Supervised classification directly implements previous knowledge or a derived rule from 

the previous knowledge of measured data sets to categorize newly available data. For 

example, k-NN, Neural Network and SVM classification. The last step of pattern 

recognition and classification is the evaluation of the developed classifier. For 

Unsupervised classification, performance is assessed based on the rank assigned to 

resulting classes for being distinct and compact after several runs of the clustering 

algorithm (110). For Supervised classification, the accuracy of the developed classifier 

is evaluated by applying it to categorize the known portion of acquired data which has 

not been used for classifier development (110). 

There are various algorithms available to perform a  classification job. There is not 

a unique universal best classification technique which fits all purposes (111,112). 

However, in the International Conference on Data Mining (ICDM) in December 2006 by 

IEEE, top 10 data mining algorithms have been identified (112).  Among these 10 

algorithms, Support Vector Machine (SVM) has been termed as a ‘must try’ considering 

its accuracy and robustness among all the algorithms available (112).  It’s further 

supported by seminal research work by Fernandez et al. (111) who evaluated 179 

classifiers from 17 different families on 121 data sets and concluded that Random forest 

is the best performing with SVM as the second best without any statistically significant 

difference. research,  

In this research, populations of particle impacts on a mild steel target plate from 

glass beads and sand particles with similar size, density and velocity were studied and 

presented in Chapter 4. Analysis was performed using standard AE parameters in the 

time and frequency domain and included in the Appendix C. Further statistical analysis 

was done introducing frequency band energy ratio for different particle impact types and 

shown in the section 4.4.  It has been observed that, for the off centred sensor position 

(S2), the coefficient of variation analysis can distinguish the type of the particle impacts 

for a given experimental population. However, due to similar size, density and velocity, 

the signal features obtained from these analyses are highly overlapped for the glass 

beads and sand particle impacts and are insufficient to identify each impact event 

individually in the population. SVM is a robust and reliable supervised statistical learning 
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technique which can distinguish highly overlapping features data set by nonlinear 

mapping of the features in the higher dimension followed by separation of each category 

constructing a hyperplane in the higher dimension. So, SVM has been implemented in 

this research for classification of each individual particle impact type in a given 

population. 

 

2.6.3.2 SVM as a classification technique 

Let us consider a data set separable into two classes in a two dimensional feature 

space, as shown in Figure 2.17 by circles (class A) and squares (class B). SVM tries to 

separate the two classes by placing a boundary (a hyperplane - for 2D, a line) between 

the two class, shown as solid line in Figure 2.17. To ensure maximum separability 

between the two classes, two parallel hyperplanes (in 2D, a line) are created going 

through the nearest data points, as shown in Figure 2.17 by the dotted lines going 

through the gray circle and square. These two hyperplanes are called ‘Margin’ and the 

points going through the hyperplanes are called ‘Support vectors’ (SV). SVM attempts 

to orient the boundary to maximize the Margin between SVs (101,113,114). 

 

 

 

 
Figure 2.17: Demonstration of SVM algorithm applied on a completely separable two 
class data set with two features 𝑥1 and 𝑥2 (114). 
 

The boundary differentiating two classes can be defined as (101,113,114): 

 (𝐰. 𝐱) + b = 0, 𝐰 ϵ RN, b ϵ R  (2.6) 
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Where, the vector 𝐰 describes the boundary, 𝐱 is the feature vector (input vector) 

of dimension N and b is the scalar bias (threshold). 

For the two classes A & B, at the margins, the equations are defined respectively 

by (101,113,114): 

 (𝐰. 𝐱) + b = 1 (2.7) 

 

 (𝐰. 𝐱) + b = − 1 (2.8) 

SVs are the extreme points of the two classes. So, for all the data points, belonging 

to either A or B, the decision function can be expressed as (101,113,114): 

 𝑓(𝑥) = 𝑠𝑖𝑔𝑛((𝐰. 𝐱) + b) (2.9) 

The optimum hyperplane can be constructed by minimizing the function 

(101,113,114) 

 

 

                

        

                𝛿 (𝑥) =
1

2
 ‖𝑤‖2  Subjected to 

yi((𝐰.  𝑥𝑖) + b ≥ 1), 𝑖 = 1, … … , 𝑛 
 

(2.10) 

Where 𝑛 is training sets number. 

Unique solution for this constrained quadratic problem can be formulated by 

(101,113,114): 

 𝑤 = ∑𝛼𝑖𝑥𝑖 
 

(2.11) 

Where 𝛼𝑖 is a weighting factors to determine the data points from the training set 

to be used as SVs.  

From Equation (2.9) and (2.11), the decision function can be expressed as: 

 

 
𝑓(𝑥) = 𝑠𝑖𝑔𝑛 (∑ 𝛼𝑖(𝑥. 𝑥𝑖)

𝑛

𝑖=1

+ b) (2.12) 

If linear hyperplane is not sufficient to differentiate the two classes, higher 

dimensional feature space conversion of the input data can be possible through 

transformation function 𝛽 (𝑥). 

From Equation (2.12), replacing transformation function, the decision function can 

be presented as:  

 
𝑓(𝑥) = 𝑠𝑖𝑔𝑛 (∑ 𝛼𝑖(𝛽(𝑥). 𝛽(𝑥𝑖))

𝑛

𝑖=1

+ b) (2.13) 

The transformation into higher dimensional space can be performed by evaluating 

a simpler kernel function (101,113,114). For example, for a higher dimensional 
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transformation involving any two vectors 𝐱  and 𝐲 , the kernel function can be defined by 

(101,113,114): 

 𝐾(𝐱. 𝐲) = 𝜷(𝐱). 𝜷(𝐲) (2.14) 

The decision function is represented by: 

 
𝑓(𝑥) = 𝑠𝑖𝑔𝑛 (∑ 𝛼𝑖𝐾(𝑥. 𝑥𝑖)

𝑛

𝑖=1

+ b) (2.15) 

Different kernel functions can be used to formulate SVM. However, the most 

common four are: linear, polynomial, radial basis function (RBF) and sigmoid (115). In 

this work, radial basis function has been used. A general definition of radial basis kernel 

involving two variables 𝑥 & 𝑦 can be presented as (101,113,114): 

 𝐾(𝑥, 𝑦) = exp(−𝛾(𝑥 − 𝑦)2) (2.16) 

Where 𝛾  is a constant related to the width of the radial basis function. 

Selection of the parameter 𝛼𝑖 affects the data points to be used as SVs and the 

error allowed in training the classification model. For a completely separable data set, 

0 < 𝛼𝑖 < ∞. However, for non-separable data set, 0 < 𝛼𝑖 < 𝐶 , where 𝐶 is a constant. 

For radial basis function based SVM, 𝐶 & 𝛾 are the two parameters available for tuning 

a model. 

SVM has the following advantages and limitations (112,116–120): 

• Performance of SVM is not directly dependant upon the dimension of the training 

data set. 

• Comparing to other methods, (e.g., Artificial Neural Network), SVM is less prone 

to data overfitting. 

• SVM uses a technique called ‘kernel trick’ which can operate, using appropriate 

kernel functions, in lower dimensional space on the training data points to 

evaluate the relationship among the data points in the higher dimensional space 

without calculating complex transformation functions. 

• Applying quadratic programming method involves large matrix calculation which 

is computationally expensive. 

• Larger training time required due to slow learning method.  

• With the number of training data points, training time increases quadratically 

requiring larger memory. 

2.6.3.2.1 Model Performance Evaluation 

To evaluate the reliability of a classification model various performance 

assessment methods are available, e.g., ROC (Receptor Operating Characteristic) 

curve, misclassification error, mean misclassification cost and confusion matrix (121). In 
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this research, Confusion Matrix based evaluation procedure has been implemented as 

this provides a comprehensive performance measurement of the classification model’s 

ability to predict a particular class when some of classes are more difficult to predict than 

others (121). 

For example, in a two-class prediction task, after building the classification model 

based on training data set, the model is applied on a test data set to evaluate the 

performance of the model. In this case, to evaluate the performance of the model on one 

of the classes can be represented by the confusion matrix, shown in Table 2.1 (121–

123). The convention used here is: ‘Positive’ or ‘Negative’ denotes to the class labels 

predicted by the model and ‘True’ or ‘False’ associated with the actual labels of the 

predictions based on prior observations.  

                   Table 2.1: Confusion Matrix of a two class classification task. 

Observed Class 

Predicted Class 

True False 

True TP FN 

False FP TN 

 

From this confusion matrix, the following performance measurement parameters 

can be evaluated (121–123). 

Sensitivity: The ratio of successfully classifying True instances as Positive out of 

all True observed instances: 

 
Sensitivity =  

TP

TP + FN
 

  (2.17) 

Specificity: The ratio of labelling all False events successfully as Negative out of 

all observed False instances.  

 
Specificity =  

TN

TN + FP
 

  (2.18) 

Accuracy: The ratio of correctly classifying all ‘True’ instances as ‘Positive’ and 

all ‘False’ instances as ‘Negative’ out of all observed instances by the model. 

 
Accuracy =  

TP + TN

TP + TN + FP + FN
 

  (2.19) 

Positive Prediction Value (PPV): This is the reliability of all the ‘Positive’ labelled 

instances and defined by the ratio of ‘True’ observed instances classed as ‘Positive’ to 

all the instances classed as ‘Positive’. 

 
PPV =  

TP

TP + FP
 

(2.20) 

 

TP: True Positive 

TN: True Negative 

FP: False Positive 

FN: False Negative 
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Negative Prediction Value (NPV): This is the reliability of all the ‘Negative’ 

labelled instances and defined by the ratio of ‘False’ observed instances classed as 

‘Negative’ to all the instances classed as ‘Negative’. 

 
NPV =  

TN

TN + FN
 

  (2.21) 

2.7 Conclusion 

Many researchers have studied acoustic emission generated from particle impacts 

on a target plate. Test environments considered are: (i) dry particle impacts on dry target 

plate (15), (ii) wet particle impacts on dry target plate (16) and (iii) wet particle impacts 

on wet target plate (16,18). Effect of varying particle types, particle sizes, flow rates, 

impact angles and concentrations were studied for each case.  

For case (i), it was observed that for a specific particle type, over a particle size 

range (125 – 1500 µm) and particle impact velocities (0.9 – 16 m/s), AE energy is 

proportional to the incident kinetic energy (15). Though AE event energy has been 

successfully correlated with particle diameter upto 1.5 mm (15), no attempts have been 

noticed to correlate with the particle types from the literature. In this thesis, analysis has 

been carried out to discriminate similar sized different particle types using conventional 

time series based AE parameters, introducing a new frequency based parameter – 

frequency band energy ratio and using SVM based classification algorithm. 

 For case (ii) & (iii), in general, the measured AE energy was found to be 

proportional to concentration, velocity squared, particle size cubed and sin² of the 

nominal impact angle (16). Weaker relationships for smaller and slower particles were 

observed. 

For case (ii) and (iii), AE energy can be originated from bubble activities in addition 

to particle impacts. For the controlled test conditions, AE energy from bubbles were 

found to be lower than AE energy from particle impacts (17,19). However, in practical 

case, e.g., in petroleum production, AE energy based monitoring technique 

misinterpreted sand particle impacts as bubbles and vice versa (11, 12). This thesis 

shows the viability of frequency band energy ratio to distinguish particle impacts from 

bubble events on a steel plate in a laboratory environment. 
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Chapter 3 Preliminary pencil lead break 

experiments 

3.1 Introduction 

This chapter focuses on preliminary pencil lead break tests (Hsu Nielsen sources) 

on the target plate (test specimen) which were carried out at the beginning of each set 

of experiments (distinction of similar sized particle impacts on mild steel target plate, 

described in chapter 4 and distinction of sand particle impacts on mild steel target plate 

in presence of bubbles, described in chapter 5). This chapter begins with the description 

of the data acquisition (DAQ) system used in this research followed by a brief overview 

of Hsu Nielsen test procedure. Standard range of time and frequency domain acoustic 

emission signal features are analysed. The chapter ends with a discussion of the 

suitability of those AE parameters in relation to the test specimen and informs a new 

analysis framework developed in the following chapters. 

3.2 Acoustic emission data acquisition system 

Figure 3.1 shows the AE DAQ system used for all the experiments conducted in 

this research. The major components of the system include: A pair of sensors, couplant, 

a pair of Preamplifiers, Power supply unit, DAQ Card and Operating Software.  

The sensors are of type Micro-80D from Physical Acoustics. The built in differential 

preamplifier results in lower noise output eliminating common mode noise.  The wide 

band sensors have relatively flat frequency response output over the range 175 kHz to 

900 kHz and an operating range between -65 to 177°C. An in house designed magnetic 

clamp was used to hold down the sensors on the test surface. Silicon grease was used 

as a couplant to ensure good AE transmission by filling any gaps between the sensor 

and the test surface, caused by surface roughness.   

To amplify acquired signals at the sensors, additional preamplifiers (type PAC 

1220A) were installed between the sensors and the data acquisition card. These 

preamplifiers have internal high pass filters of 20kHz. A switchable gain of 20dB, 40dB 

and 60dB facilitates magnifications of 10x,100x and 1000x of the acquired signal at the 

sensors. An in house built 28 V power supply unit was used to power the sensors as well 

as the preamplifiers. A connector block (from National Instruments) was used to feed in 

multiple sensor signal output to the DAQ card. For all the connections between the 

preamplifiers and the power supply unit and between the preamplifiers and the connector 

block, BNC cables were used. 

To record the acquired signals from the sensors a National Instruments’ PCI-6115 

card was installed on the PC. This DAQ card is an analog to digital converter (ADC) with 
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a capability of recording 4 channels of signals simultaneously with a maximum speed of 

10M samples/s for 4 channels cumulatively or 1 channel individually. 

LABVIEW, from National instruments, was used for controlling DAQ card to record 

signals on the PC hard drive and for on screen interface to view real time signal 

acquisition and to define signal acquisition features e.g., sampling frequency, threshold, 

pre trigger samples, number of samples.  

 

 

Figure 3.1: Acoustic emission data acquisition system and its various components used 

for the research 

3.3 Test Specimen and setup 

The test specimen (target plate) used for this research was a circular stepped mild 

steel disc with dimensions shown in Figure 3.2. The disc was placed on wooden blocks 

to isolate it from the surroundings. Sensor S1 was held down by the magnetic clamp at 

the epicentre and Sensor S2, at a radius of 30 mm on the target plate as shown in Figure 

3.2.  

PC with DAQ  
card 

BNC cables 

Connector 
Block 

Preamplifier 

Power Supply 
unit 

Sensors with 
Magnetic  
Clamp 
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Figure 3.2: Schematic diagram of the mild steel target plate used in the experimental 

set up (dimensions in mm). 

At the centre of the test specimen, 15 pencil lead were broken one at a time 

following standardised Hsu Nielsen test procedure (124) as shown in Figure 3.3. The 

propelling pencil consists a graphite lead of hardness 2H, diameter 0.5 mm and length 

3 mm. The guide ring was used to ensure the same pencil lead breaking angle at each 

test. Manual pencil lead break (PLB) by pressing it against the test surface generates a 

pulsed AE source.  

 

Figure 3.3: Hsu Nielsen source (124) 

 

Signals were recorded at the sensors attached on the opposite surface. The 

sensors were detached and mounted again to repeat the same procedure 3 times. 

Further experiments were carried out attaching the target plate, fixing it into the 

end of a Perspex cylinder bottom cover as shown in Figure 3.4.  
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Figure 3.4: Target plate attached to the bottom cover of a Perspex cylindrical tube. 

Sensors were attached at the opposite, outside, surface of the target plate, one at 

the centre and another 30 mm from the centre, similar to free target plate experiments. 

PLB were applied at the centre of the target plate on the inner surface. Two experiments, 

each repeated 10 times, were performed - one in air and another one loading the target 

plate with a 30 mm water column inside the cylinder. To analyze the effect of masking, 

the target surface was masked with plastic tape leaving a 30 mm² rectangular area at 

the centre uncovered and two experiments, each repeated 10 times, were carried out – 

one in air and another one loading the masked fixed target plate with a 30 mm water 

column. Between the experiments, the sensors were removed and re-attached. Table 

3.1 summarizes description of all the performed PLB experiments. 
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Table 3.1: Summary of all the performed PLB experiments. 

Experiment 
Description 

Abbreviation No of 
Experiments 
performed 

No of tests per 
Experiment 

Total Signal 
records 

(including 
S1 & S2) 

Target plate resting 
freely on the wooden 

blocks 

Free 4 15 120 

Target plate attached 
to the Perspex 

cylinder 

Fixed 1 10 20 

Target plate attached 
to Perspex cylinder 
and loaded under 

water 

Fixed - Water 1 10 20 

Target plate attached 
to Perspex cylinder 
and target surface 

masked 

Masked 1 10 20 

Target plate attached 
to Perspex cylinder, 

target surface masked 
and loaded under 

water 

Masked - 
Water 

1 10 20 

 

3.4 Signal Analysis 

The acquired AE signals were analysed in the time domain, frequency domain and 

time frequency domain. The following sections summarise the findings for different signal 

analysis performed. 

3.4.1 Time domain signal analysis 

Figure 3.5 shows typical AE signals acquired at Sensor 1 (S1) and Sensor 2 (S2) 

from PLB on the mild steel target plate while resting on the wooden blocks. Figure 3.6 

(a) & (b) shows the AE signals for the first 0.1 ms. For comparison, Figure 3.7 presents 

typical AE signals (0.1 ms) at S1 and S2, acquired from PLB on the fixed target plate. 

For sensor S1 a low amplitude fast wave is observed, quickly followed by a high 

amplitude slow wave which arrives about 0.015 ms after the fast wave. Signals are 

slightly more highly damped as would be expected when the target is attached to the 

cylinder structure. At sensor S2 the presence of two wave types is more difficult to 

observe due to the different path lengths, reflections and mode conversions causing 

more complex wave fields.  
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Figure 3.5: Typical AE signal from PLB at (a) S1 and at (b) S2 on free target plate. 

 

(a) 

(b) 

(a) 
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Figure 3.6: First 0.1 ms of the Figure 3.5 AE signal at sensor  (a) S1 and  (b) S2. 

 

                 (a) 

 

(b) 

Figure 3.7: Typical AE signal from PLB at (a) S1 and at (b) S2 on fixed target 

plate. 

(b) 
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Similar signal characteristics are observed in all PLB tests carried out in this work 

and previously published work by other researchers (16,29,125). Appendix A shows the 

results obtained for other fixed target plate PLB experiments performed in different 

environments: Fixed – water, Masked & Masked – Water, as described in Table 3.1.  

For all the PLB AE signal records, 4 time based parameters have been evaluated: 

Maximum Amplitude, Duration, Rise time and AE Energy. Detailed results are presented 

in Appendix B. For all the experiments, signals at S1 are stronger than S2 as observed 

from Maximum Amplitude and AE energy. For duration and rise time it was found to be 

fairly consistent for both sensors and for free or fixed support conditions. The variations 

in the experiment results when the target plate was fixed in the end of the cylinder were 

found to be higher than that where the target plate was freely supported. The reasons 

behind these findings are discussed in the following section.  

3.4.2 Frequency domain analysis 

Figure 3.8 presents the power spectral density (PSD) of 4 PLB experiments, each 

repeated 15 times on the free target plate for 800 µs records and from 100 kHz to 500 

kHz at S1 & S2. Signals are 10 - 20 times stronger at S1 than signals at S2.  

 

     

Figure 3.8: PSD of filtered signals on free target plate at S1 and S2 for 4 experiments. 
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From Figure 3.8, for a given experiment, at S1, there are 15 dominating peaks in 

the PSD between 0.1 MHz and 0.4 MHz. At S2, the relative amplitude of the peaks in 

the PSD have changed. From Figure 3.8, within an experiment, signal PSD is found to 

be more repeatable for all the records than comparing records across different 

experiments. The variations between experiments can be attributed to the change in 

coupling conditions due to detaching and remounting of sensors between experiments 

which is consistent with findings from other researches. 

Figure 3.9 & Figure 3.10 show PSD of AE signals recorded at S1 and at S2, 

respectively, for four experiments performed in different environments with the target 

plate fitted into the end of the cylinder, fixed. Fewer peaks are observed for signals 

recorded at both the sensor positions when compared to the plate test when the plate is 

freely supported, Figure 3.8. At S1, from Figure 3.9, unlike free target plate PLB, as 

shown in Figure 3.8, the dominating frequency contents are found primarily above 300 

kHz. Maximum amplitudes above 300 kHz are 2- 5 times stronger than for freely 

supported target plate signal components.  
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Figure 3.9: PSD of the filtered AE signals reorded at S1 on fixed target plate for four 

different experimental environments.  
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Figure 3.10:  PSD of the filtered AE signals reorded at S2 on fixed target plate for four 

different experimental environments. 

 

At S2, as shown in Figure 3.10, for unmasked experiments, above 300 kHz, 

maximum amplitudes of the signal components are either similar (Masked in air) or 

halved (Masked Water loaded experiment conditions) and between 100 – 200 kHz, 

similar maximum amplitudes are observed. For masked experiments, the maximum 

PSD, at S2, as shown in Figure 3.10, is an order of magnitude smaller in comparison 
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with free target plate signal components shown in Figure 3.8. Three peaks have been 

noticed between 100 – 200 kHz for four experiments, at S2, with the target plate fixed at 

the end of the cylinder which is similar to when it is freely supported for PLB experiments, 

as in Figure 3.8, but varying in amplitudes. In general, at S2, below 300 kHz, more 

variations in frequency content and in amplitudes, have been observed for signal 

components among four experimental conditions for the fixed target plate experiments 

(Figure 3.10) in comparison with free supported plate experiments (Figure 3.8).  

The change in relative amplitudes of the signal peaks for fixed target plate 

experiments, can be attributed to the change in experimental set up and change in PLB 

procedure. Earlier research showed that changing the circular disk fixture from free to 

fixed can change both the relative amplitude and frequency response of the signal (126). 

Also, for PLB on the free target plate, the guide ring was rested on the target surface as 

shown in  

Figure 3.11, as per Tsu-Nielsen test procedure described in section 3.3. 

However, for PLB on the fixed target plate, the Cylindrical Perspex tube wall shown in 

Figure 3.4 restricts the pencil/guide ring assembly to be placed at the same angle (θ) 

on the target surface along with possible slight change in orientation between the 

experiments. Previous research work (127) showed that a change in PLB angle and 

orientation can affect the frequency content and amplitude of the observed signals.                                                                          

 
 
 
 

Figure 3.11: For PLB on free target plate, the guide ring was rested on the target surface at an 
angle 𝛉.  

 

Less repeatability of PLB due to above mentioned restrictions of cylindrical 

Perspex glass wall and changes in coupling due to attaching and dismounting of sensors 

between the experiments on fixed target plate, causes larger variation in PSD, both in 
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amplitude and frequency contents. These variations were found to be greater for water 

loaded fixed target plates due to additional complexity in placing the pencil tip on slippery 

target surface.  

3.4.3 Time Frequency domain analysis 

In this section, time frequency analysis results have been presented. For this 

analysis, GWT method has been implemented using AGU Vallen Wavelet software 

(82,128).  

Figure 3.12 shows GWT of acquired AE signal from PLB on free  target plate. 

From Figure 3.12 (a), for S1, at the beginning of the signal, frequency contents are 

concenrated between 300 - 350 kHz and around 170 kHz which shifts mainly towards 

170 kHz after 150 µs.  

                                     

 
 
 
 

                         
 
 
                                                                              

Figure 3.12: GWT of  typical PLB AE signal at (a) S1 and at (b) S2 on free target plate. 
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From Figure 3.12 (b), for S2, at the beginning of the signal, the main frequency 

contents begin at frequencies around 300 kHz and 150 kHz and then predominantly 

shifts towards 300 kHz after 150 µs. 

Figure 3.13 and Figure 3.14 shows GWT of typical AE signal, at S1 and S2 

respectively, from PLB in four different experimental conditions: (a) Fixed, (b) Fixed – 

Water, (c) Masked and (d) Masked – Water, as described in Table 3.1.   
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Figure 3.13: Wavelet transform of  typical AE signal of PLB at S1 for four different 

experimental environments: (a) Fixed, (b) Fixed – Water, (c) Masked and (d) Masked – 

Water.  
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Figure 3.14: GWT of  typical AE signal of PLB at S2  for four different experimmental 
environments: (a) Fixed, (b) Fixed – Water, (c) Masked and (d) Masked- Water 
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experiments, at S1, as shown in Figure 3.14 (c) & (d),  strongest signal activites are 

noticed within first 150 µs. 

From Figure 3.14, for four experiment conditions, at S2, primary frequency 

contents are found at 150 kHz with weaker components around 325 kHz. The weaker 

components at 325 kHz decay quickly after first 0.25 ms. 

For analysis purposes these results indicate that for PLB the important signal 

parameters to consider are the first 0.4 ms and three frequency bands around 0.1 - 0.2 

MHz, 0.2 - 0.3 MHz and 0.3 - 0.4 MHz. These signal parameters are used in this 

research. 

3.5 Summary 

This chapter presents the analysis of PLB experiments on the target plate. The 

target plate was freely supported for four experiments and fixed on the bottom cap of a 

Perspex cylindrical tube for another 4 experiments. When the target plate was fixed, two 

PLB experiments were carried out: one in air and the other one loading the target plate 

with water. Then the target plate was masked and the same PLB experiments on the 

fixed target plate, in air and water, were performed. Each experiment was carried out at 

least 10 times. All the AE signals were acquired at two different locations: one at the 

centre and one off-centre position. Acquired AE signals for both the locations have been 

analysed using different signal analysis procedures and compared for different 

experimental conditions. 

For any PLB test, a stronger signal was obtained at the centre which is directly 

underneath the PLB location but on the opposite surface. This is evident from amplitude, 

event energy or power spectral density analysis.  

Within an experiment, among different tests, the frequency contents were 

repeatable. However, variations in frequency contents have been noticed between the 

experiments for both sensor locations of about 1.5 in signal strength. This has been 

apparent through the frequency domain PSD analysis and from GWT of the acquired 

signals. 

Though the frequency contents have been changed for different set ups, the peak 

frequencies were detected at few specific frequencies. It is identified from the peak PSD 

analysis and from GWT. This can be ascribed to the sensor response characteristics. 

The sensors are wide band in nature although at certain frequencies these are more 

responsive.   

The effect of fixing the target plate was apparent from the event duration and rise 

time analysis. Shorter event duration for fixed target plate can been identified from the 

time frequency representations (GWT) of the analysed AE signals. 
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For fixed target plate experiments, from all the performed signal analysis results, 

it is evident that in water PLB experiments showed more variations than that of in air 

experiments. It can be attributed to the fact of usual in water experimental challenges, 

such as difficulties in placing the pencil lead at the same location each time PLB carried 

out in water. This variation is not unusual but does reinforce the need to analyse sets of 

repeated tests before making any comparisons. 

In general, variation among different test results within an experiment, is due to 

deviation in PLB from one test to another while keeping all the other test conditions the 

same. Between the experiments, the sensors were dismounted and attached again 

which changed the coupling condition of the setup. 



72 
 

Chapter 4 Distinction of populations of 

similar sized particle impacts on mild steel  

4.1 Introduction 

In this chapter, a technique to distinguish between two very similar populations of 

particles, sand particles and glass beads of similar size, mass and velocity, impacting 

on mild steel is presented. This laboratory work involves characterisation of acoustic 

emission on a target disc made of mild steel. In the laboratory, sets of individual particles 

are dropped onto the target disc. The acquired AE is then analysed in the time and 

frequency domain. A study of the AE energy in three broad frequency bands is carried 

out and frequency band energy ratios are identified to distinguish the populations of 

particles. Investigation of the coefficient of variation of these frequency band ratios 

enables development of a new framework for the distinction between populations of 

these very similar particles for these tests. SVM classification algorithm based analysis 

has been performed to evaluate individual glass beads and sand particle impact event 

identification with greater success.  

4.2 Experimental setup and methodology 

The circular stepped mild steel disc, as shown in Figure 3.2, was used as the 

target plate and was freely supported, placed on wooden blocks to isolate it. The sensors 

and data acquisition system, described in Section 3.3, was used. A small perspex tube 

of 10 mm diameter was fixed vertically above the centre of the top surface of the target 

plate to facilitate particle dropping at the centre of the target plate. 

The experiments carried out involved dropping individual particles on the small 

mild steel target plate. For each test 15 sand particles and 15 glass beads were selected 

and dropped, one at a time, from a height of 205 mm onto  the target plate reaching a 

velocity of around 2 m/s. The whole test procedure, including replacement of sensors 

and new populations of particles, was repeated four times so that effects of experimental 

variations relating to changing sensor coupling and different populations of sand and 

glass particles could be observed. 

Glass beads and sand particles used in the experiments were sieved and the 

particle size fraction of 300-425 μm was used in these tests. During each of the four 

tests, 45 AE events (15 pencil lead breaks (PLB), 15 sand particles, 15 glass beads) 

were acquired at two sensor positions. During a specific test the experimental set up 

was not changed and sensors were not moved during a test. Between each test the 

experimental setup was dismantled. 
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4.3 Time domain signal analysis 

Typical acquired AE signals for individual AE records of 0.01 seconds duration are 

shown in Figure 4.1) and (4.2) for PLB, single glass bead and single sand particle 

impacts at Sensor 1 and Sensor 2 respectively.  

 
             (a) 

 

               (b) 

 
              (c) 

Figure 4.1: Typical time domain signal recorded at Sensor 1 for (a) PLB, (b) Single Glass 

bead impact & (c) Single sand particle impact 
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                  (a) 

 

                   (b) 

 

                  (c) 

Figure 4.2: Typical time domain signal recorded at Sensor 2 for (a) PLB, (b) Single Glass 

bead  impact & (c) Single sand particle impact 

Each acquired record includes 25000 data points. The first 1000 data points were 

pre-trigger.  Sensor 1 was located directly on the opposite surface of the AE event 
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occurrence and hence the recorded amplitudes are higher than the ones recorded at 

Sensor 2 for all the three cases. Also, the pencil lead breaks generated stronger AE 

signals than the glass bead and sand particle impacts. The signals acquired at sensor 2 

are more diffuse. To analyse all the recorded signals, a series of detailed analysis 

procedures were applied which are described in the following sections.  

For each record, standard AE parameters that have been evaluated are: for time 

domain analysis, maximum amplitude, event duration, rise time & event energy and for 

frequency domain analysis, maximum power spectral density, peak frequency & 

frequency centroid. Calculations were carried out according to the definition presented 

in the literature review (Section 2.6.1). For each parameter, to compare the variation in 

obtained results within each experiment set (consists of 15 repeats each for PLB, Glass 

bead and sand particle impacts) and across 4 experiments, statistical analysis were 

performed by calculating mean, standard deviation and coefficient of variance. The 

results of most interest are described here and all the results are presented in Appendix 

C.  

In this chapter, it is shown that among the seven AE parameters mentioned above, 

for both Sensor 1 and Sensor 2, maximum amplitude, event energy and maximum power 

spectral density distinguishes PLB events from glass bead and sand particle impacts 

very easily. However, for glass bead and sand particle impacts the parameters 

overlapped for all the experimental sets and hence they cannot be used to distinguish 

between populations of these very similar particles. Similar trends of difficulties in 

differentiability between glass beads and sand particles, based on standard AE 

parameters calculations, have been found in other researchers works as well (16). 

4.4 Time Frequency domain analysis 

AGU Vallen Wavelet software has been used to carry out a GWT to produce 

frequency/time/amplitude data for each record. An example of the wavelet transform, for 

S1 and S2, obtained from PLB, a glass bead and a sand particle impact at the centre of 

the specimen is shown in Figure 4.3. 
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Figure 4.3:  Time frequency analysis using GWT of PLB, glass bead and sand 

particle for 500 μs, after trigger, at sensor S1 and sensor S2. 

 

This shows the diffusion of the waves in the time/frequency domain and enables 

identification of the important time window and frequency bands. For clarity, wavelets of 

only the first 500 µs, after trigger, are shown for frequencies between 100- 500 kHz. 

There are no significant frequency contents in the signals above 500 kHz, and a 100 kHz 
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high pass Chebychev filter has been applied to remove low frequency structural vibration 

components. So for all successive signal processing, records are passed through 100-

500 kHz Chebychev band pass filter.  

For both sensors there are significant broad frequency components around 150 

kHz and 350 kHz of high amplitude, just after triggering. The amplitude then fluctuates 

and disperses due to effects of wave modes, speed, reflections and conversions. For S1 

the frequency dispersion moves towards a broad band of energy around 300 kHz after 

about 200 µs. For S2 the frequency dispersion moves towards two broad bands of 

energy at around 350 kHz and 150 kHz. 

Figure 4.4 shows 15 examples of frequency spectra obtained for each of the 

sources being PLB, glass or sand particles and for both sensors S1 and S2. The results 

again suggest that there are three broad frequency bands which can be considered for 

this laboratory setup, being, 1. 100 - 200 kHz, 2. 200 - 300 kHz, 3. 300 - 400 kHz. 

In Figure 4.4, for S2 and for sand particles, the three frequency bands selected 

are labelled 𝐸1, 𝐸2 and 𝐸3. 
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Figure 4.4: Power spectral density of the acquired signals for PLB, Glass and sand 

particles at sensors S1 and S2. 

The energy in each frequency band was calculated for every record. For example 

for the energy in the frequency band from 100 – 200 kHz, 𝐸1, the record has been band 

passed through Chebychev 100 – 200 kHz band pass filter. Similarly, for 𝐸2 and 𝐸3 

corresponding filters have been used. The AE energy is then calculated using the 

equation [21] , 

 

𝐸 =  ∫ [𝑉(𝑡)]2𝑑𝑡

∆𝑡

0

 
  (4.1) 

Where, 𝐸 is the acoustic emission energy estimation 𝑉(𝑡) is the sensor output 

voltage at any time 𝑡, and ∆𝑡 is the time window. 

The AE energy has been calculated for each of the three frequency bands 𝐸1, 𝐸2 

and 𝐸3 and also for the frequency range of 100 kHz – 500 kHz (𝐸𝑎). It is observed, in  

Figure 4.3 & Figure 4.4, that the amplitudes and the energy levels in each of the three 

frequency bands 𝐸1, 𝐸2 and 𝐸3 vary and that the various possible ratios of the AE 

energies also vary for every individual record. However, between records, while the 

PLB       Glass beads       Sand particles 

S1 

S2 

𝐸1 

𝐸2 

𝐸3 
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amplitude might vary considerably, the energy ratios are more repeatable. Table 4.1  

shows seven frequency bands which have been considered in this work. 

Table 4.1: Frequency bands used for signal energy calculations. 

 𝐸1 𝐸2 𝐸3 𝐸12 𝐸13 𝐸23 𝐸𝑎 

Frequency 
range(kHz) 

100-200 200-300 300-400 100-200 
+200-300 

100-200 
+300-400 

200-300 
+300-400 

100-500 

 

There are twelve combinations of energy ratios that can be considered. For each 

event the frequency band energy ratios were calculated varying the window length ∆𝑡 

from the first 10 μs up to 1000 μs. The standard deviation (𝜎), the mean (𝜇) and the 

coefficient of variation (𝐶𝑣) were calculated [21] for all the frequency ratios and time 

windows. For each population of events it was found that for ∆𝑡 ≥ 400μs, the ratio of 𝐶𝑣 

for glass beads and sand particles stabilizes around a specific value for any specific 

frequency band energy ratio. For example, in Test 4, this ratio stabilizes at around 1.5 

for 
E23

E1
. So, for all further calculations, ∆𝑡 = 400 μs was used. The values of these energy 

ratios are plotted individually for each of the three sources for each of the twelve 

frequency bands (giving 12x45=540 data points for each test). For Test 4, the obtained 

results are shown in Figure 4 for both the sensors. Also for the population of events, σ  

and μ  of AE energy ratios are indicated on the Figure 4.5 (a). 

For sensor S1, from Figure 4.5 (a), data overlap for all the three sources PLB, 

sand and glass particles, whereas for sensor S2, from Figure 4.5 (b), particle impact 

and PLB events can be independently clustered, with very few or no overlapped events, 

for 8 out of the 12 frequency band energy ratios and for these ratios the mean value for 

PLB events are easily distinguishable from that of particle impact events.  So, in this 

study, sensor position S2 is more suitable for distinguishing particle impacts from PLB 

events based on mean value of frequency band energy ratios. However, when 

comparing glass beads and sand particles, the data points are overlapped in such a way 

that the particles are not individually distinguishable even for sensor S2. Similar trends 

have been identified for all other tests. 
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(a) Sensor S1 

 
(b) Sensor S2 

Figure 4.5: Frequency band energy ratios for test 4, (a) at S1 and (b) at S2. Blue, Black 

and Red data points indicate Glass beads, PLB and Sand particles respectively. Mean 

(μ) and standard deviation (σ) is shown graphically in (a) and 𝑪𝒗  is denoted in (b) for 

corresponding population.  

μ 

𝐶𝑣=0.26 

(Glass beads) 

𝐶𝑣 = 0.17 

(PLB) 

𝐶𝑣  = 0.34 

(Sand Particles) 
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In this work, the amount of acquired data enables consideration of populations of 

events. In Figure 4.5 (b), the 𝐶𝑣 for the three populations of PLB, glass beads and sand 

particles are labelled for  
E23

E1
. For all the experiments, the 𝐶𝑣 for all the three categories 

are plotted in Figure 4.6 (a) and (b) for S1 and S2, respectively. From Figure 4.6 (b), 

for S2, the 𝐶𝑣 for sand impact is found to be greater than glass bead impact and PLB, 

for all four experiments. The geometry and structure of the glass particles would be 

expected to be more regular than for sand particles. It might be expected that the 

variation in results for sand would be slightly greater than for glass particles, and this is 

the case. Analysis of all the data for the twelve frequency band ratios shows that other 

frequency ratios (
E3

E1,
,

E2

E3
,

E12

E3
,

E13

E2
) shows similar trend. 

 

(a) 

 
(b) 

Figure 4.6: (a) 𝑪𝒗 of 
𝐄𝟐𝟑

𝐄𝟏
 for S1 for four tests, (b) 𝑪𝒗 of 

𝐄𝟐𝟑

𝐄𝟏
 for S2 for four tests. Here P,G 

and S stands for PLB, Glass bead and Sand particle respectively. 
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From Figure 4.6 (b), for any test, the data of  
E23

E1
 for PLB is independent of that for 

glass or sand particles and the 𝐶𝑣 is very small. Within any individual test the 𝐶𝑣 for sand 

is always highest. But between tests, the 𝐶𝑣 for sand and glass beads show more 

variations. Normalising the ratios for sand or glass beads, with respect to the PLB results 

does not reduce the variation between tests. The main reason behind this is PLB tests 

are much more repeatable than the particle impact tests, as shown in all of the data. For 

any specific experimental setup this technique can distinguish between a population of 

glass beads and sand particles even when they are of similar size, mass and density 

and velocity.  

4.5 Classification using SVM 

In section 4.3, it has been shown that the standard time and frequency domain 

AE parameters , namely, amplitude, event energy, event duration, rise time, PSD, 

maximum frequency at PSD and spectral centroid, and time-frequency domain analysis 

(GWT), considered in this research, are unable to distinguish similar sized glass beads 

and sand particle impacts. In section 4.4, populations of similar sized glass beads and 

sand particle impacts were identified using coefficient of variations of proposed 

frequency band energy ratio technique. This method is appropriate for a system involving 

a population of more than one type of particle impacts, even with similar size, density 

and impact velocity. To facilitate each individual event identification in the population, 

further analysis has been performed applying a supervised machine learning algorithm, 

Support Vector Machine-Radial basis function (SVM-RBF), described in the section 

2.6.3.2. 

4.5.1 Model construction  

For SVM analysis, the above mentioned 7 AE parameters, described in the 

section 2.6.3.1 and calculated in the section 4.3, have been considered for the model 

training.  AE event energy and event duration are directly related to the physical 

properties of the AE generating source (24,48,49). Amplitude reflects the detectability of 

the signal for a given coupling condition and background noise (24,48,49). Rise time, 

PSD and maximum frequency at PSD are affected by the geometry of the target plate 

and the sensor characteristics (24,48,49). Change in the spectral centroid associated 

with the change in the AE energy distribution in the considered frequency range 

(24,48,49). All of these AE parameters together provide a comprehensive monitoring of 

the given system under consideration and have been used as features for training the 

method.  

 For each sensor, per file, 7 data points associated with 7 AE parameters, are 

generated for the feature space of the supervised classification algorithm training. There 
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are 45 files from each experiment: 15 each from PLB, glass beads and sand particle 

impacts. Out of 180 available AE records, 80% records (144) were used for training the 

classification algorithm while the rest (36) were used for testing. For 7 AE parameters, 

each sensor generates 45*7 = 315 data points in the feature space resulting a total of 

4*315 = 1260 data points from four experiments.  

Open source R language based Classification and Regression Training package 

(‘Caret’) has been used for this analysis (129,130). For example, Figure 4.7 shows the 

code snippet used for reading the data for S1, from an .csv file containing the 7 AE 

parameters data, originated from all the experiments, described in the section 4.2. In 

the .csv file, the 7 AE parameters are arranged in the columns with the associated 

parameter headings and an extra 8th column was added at the end with the 

corresponding class identity. So, each row of the .csv file corresponds to the value of the 

AE parameters in a single observation. The function createDataPartition, shown 

in the Figure 4.7 and defined in the Caret package has been applied to divide the data 

obtained from the file into the training and test sets (126,127).   

 

 

 

 

 

 

 

 

Figure 4.7: Code snippet used in R programming language for data reading and 

partitioning. 

Figure 4.8 presents the code snippet used for training the model and tuning the 

model parameter. From the Figure 4.8, the function train, described in the caret 

package, has been applied for training the classification model (112,113). In the function 

train, arguments are used for: adopting previously partitioned data for training 

purpose; scaling and centering the data; choosing SVM-Radial basis function for training 

the model and setting the model tuning parameter sigma & C, representing 𝐶 & 𝛾 , 

respectively, of the Radial basis function for the SVM method, as described in the 

section 2.6.3.2. Performing linear grid search iteration and cross validation technique 

(115), the optimum values for the tuning parameters 𝐶 & 𝛾, were set as : For S1, 𝛾  = 0.4 

and 𝐶 = 8 and for S2, 𝛾 = 0.67 and 𝐶 = 7.7.  

 

#Read Data file  

stdAEdata = read.csv(file="S1_stdAEpara.csv",head=TRUE,sep=","); 

#Create Partition in the data into training and test set 

trainIndex <- createDataPartition(stdAEdata$Class,p=.8,list=T) 

trainData <- stdAEdata[trainIndex,] 

testData  <- stdAEdata[-trainIndex,] 
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Figure 4.8: Code snippet used in R programming language for training the model 

and setting the tuning parameter. 

 

4.5.2 Model Evaluation 

The trained model has been evaluated using the partitioned test data set of 36 (12 

each for PLB, Glass beads and Sand particle impacts). The test data set has not been 

used in the model training and shows the probable performance of the trained model on 

any unseen future data acquired from the given system. The obtained results are 

summarized in the following Confusion Matrix in Table 4.2 (a) & (b) for S1 and S2 

respectively : 

                             Table 4.2: (a) Confusion matrix for S1 

 

Predicted 

Observed 

Glass PLB Sand 

Glass 10 0 3 

PLB 0 12 0 

Sand 2 0 9 

                                               (b) Confusion matrix for S2 

 

Predicted 

Observed 

Glass PLB Sand 

Glass 10 0 1 

PLB 0 12 0 

Sand 2 0 11 

 

From Table 4.2, for both the sensors, all the expected 12 PLB events were 

successfully identified without any error. Out of 12 Glass particle impacts, 10 were 

detected correctly at both the sensors. Out of 12 sand particle impacts, 9 were noticed 

at S1 and 11 were noticed at S2 correctly. At S1, 3 Sand impacts were identified as 

Glass impacts and 2 Glass impacts were identified as Sand impacts wrongly. At S2, 1 

Sand impact was identified as Glass impact and 2 Glass impacts were identified as Sand 

impacts erroneously.  

# Use the expand.grid to specify the model parameters 

grid <- expand.grid(sigma = c(0.4), 

                    C = c(8)) 

# Train the model 

svm.model <- train(Class~ ., data = trainData, 

                  preProc = c("center","scale"), # Centering & Scaling       

                  method = "svmRadial",   # Radial kernel 

                  tuneGrid = grid, # The model parameter 

                  ) 
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Table 4.3 shows performance parameters of the applied SVM algorithm.  The 

definition and formula for these parameters are described in section 2.6.3.2.1.  For all 

the calculated performance parameters, shown in Table 4.3, PLB is completely 

separable.  As shown in Appendix C for all the calculated 7 standard AE parameters, 

PLB found to be distinctive in nature even for single parameter analysis. For the applied 

SVM algorithm, a higher dimensional feature space created from 7 AE parameters has 

differentiated all the PLB events completely from the rest of the particle impact events. 

Considering the overlapping in calculated 7 AE parameters data, for glass bead and 

sand particle impacts, the obtained performance is encouraging. For this research, with 

the given target plate & sensor arrangement, S2 performs better for the applied SVM 

algorithm. It may be attributed to the larger variations in calculated AE parameters of the 

obtained signals at S2.  

Table 4.3: (a) Performance parameters of applied SVM algorithm on data set for S1. 

 Glass PLB Sand 

Sensitivity 0.83 1 0.75 

Specificity 0.87 1 0.92 

PPV 0.77 1 0.82 

NPV 0.91 1 0.88 

Accuracy 0.83 1 0. 75 

         (b) Performance parameters of applied SVM algorithm on data set for S2 

 Glass PLB Sand 

Sensitivity 0.83 1 0.92 

Specificity 0.96 1 0.92 

PPV 0.91 1 0.85 

NPV 0.92 1 0.96 

Accuracy 0.83 1 0.92 

 

4.6 Summary 

For many applications simple AE parameters such as number of events, peak AE 

or AE Energy may be sufficient [21]  to distinguish sources. To use such parameters 

usually requires some form of calibrations, standardisation or normalisation. However, 

for small coupon geometries, typical in engineering applications, the presence of close 

boundaries makes the interpretation difficult if not invalid due to reflections, dispersions 

and mode conversions. So, a unique frequency band energy analysis technique has 

been proposed.  For this technique, once the optimal frequency bands and ratios have 

been identified, then an added advantage is that calibration of signal levels is not 

required. This technique is able to distinguish between population of two very similar 

groups (in terms of size and mass and energy) of sand particles and glass beads, 

impacting on mild steel based on the 𝐶𝑣 of the frequency band AE energy ratios. 
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Further analysis has been performed using SVM based pattern recognition 

algorithm using 7 standard AE parameters. Available data set has been segmented into 

two parts of training set (80%) and test set (20%). The developed model has been 

applied on the test data for model performance evaluation purpose. The overall success 

rate of individually identifying each category (PLB, Glass bead and Sand particle 

impacts) at S1 was found as 86% and at S2 as 92%. 

In these tests, the target plate material, geometry, particle impact velocity, impact 

angle, particle size, the experimental fluid medium (air) and the sensors were the same. 

A change in any of the above mentioned parameter along with more varied particle type 

investigation will establish the robustness of the technique. It has been shown that for 

nominally identical sensors, the frequency content can vary widely and based upon the 

driving frequency, the same sensor response signal amplitudes can differ. In this study, 

the sensors used are broad brand and analysis is based on broad frequency bands as 

well, rather than choosing a single frequency. In addition, the analysis is centred on 

frequency band energy ratios, not on amplitude. So, the proposed technique can 

overcome the issues of variation in peak frequency amplitude with respect to different 

driving frequency &  variation in frequency contents among nominally identical sensors. 

However, for other sensor type, target material and geometry, other frequency bands or 

associated energy ratios might be optimal. 
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Chapter 5 An AE technique to distinguish 

sand particle impacts on mild steel target 

plate with fluid loading and air bubbles 

5.1 Introduction 

In this chapter, an AE technique to distinguish sand particle impact, on a mild steel 

plate, in presence of another AE source (bubble) has been developed. Individual air 

bubble insertion on a water loaded target plate and individual sand particle impact on 

the same target plate in air have been studied in time and frequency domain to identify 

bubbles’ and sand particles’ signature characteristics from associated AE signals 

respectively. In frequency domain, for PSD, a repeatable trend of higher frequency 

contents for sand particles between 300 – 400 kHz and for bubbles between 100 - 200 

kHz has been observed. Based on this knowledge, frequency band energy ratio 

parameters were developed in Chapter 4 which can be used for automatic event 

identification technique for sand particle impacts in the presence of bubbles. The 

developed technique has been implemented in the analysis of single and multiple sand 

particle impacts experiments, in a bubbly environment. In analysis, varying threshold 

settings, the performance of the technique has been monitored comparing sand counts 

logged from the recorded AE signals using the developed technique with the known 

amount of sand particles inserted in the system. 

5.2 Experimental setup and methodology 

A schematic diagram of the experimental test rig used for these experiments is 

shown in Figure 5.1. A Perspex cylinder, 270 mm in length & 130 mm in diameter, is 

used with the target plate at the base. A centre hole in the top plate has a 420 mm 

vertical mild steel tube of 3 mm inner diameter which is connected to a plastic 90° 

connector tubing bend and a second horizontal, 440 mm steel guide tube of 3 mm inner 

diameter. The mild steel, circular stepped-specimen target plate, used for preliminary 

pencil lead break calibration experiments (Chapter 3) and for distinction of similar sized 

particles impacts experiments (Chapter 4), was sealed into the fixed lower plastic cap of 

the Perspex cylinder using silicon glue.  Liquid can be poured inside the cylinder by 

removing the upper cap. The experimental rig rested upon two wooden blocks to isolate 

the equipment from the lab environment. Table 5.1 shows all the experiments 

performed. 
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(a) 

 

 

 
(b) 

 

Figure 5.1: (a) Schematic diagram of the experimental set up and (b) close up of target 

plate and sensors arrangements. 
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Table 5.1: Summary list of all the particle fluid loaded experiments performed 

Experiment Description Abbreviation 
No of 

Experiments 
performed 

No of tests per 
Experiment 

Total Signal 
records 

(including 
S1 & S2) 

Single bubble generation in 
Perspex tube water column 

SBG 1 5 10 

Single sand particle impact on 
the target plate in air 

SSPI - Air 1 5 10 

Single sand particle impact 
tests without masking the water 

loaded target plate 
SSPI - Water 1 10 20 

Multiple (three) sand particle 
impact tests without masking 
the water loaded target plate 

MSPI - Water 1 10 20 

Single sand particle impact 
tests after masking the whole 
target plate except 10 mm² at 
the centre to allow the particle 

impacts. 

SSPI - Masked 1 10 20 

Multiple (ten) sand particle 
impact tests after masking the 
whole target plate except 10 

mm² at the centre to allow the 
particle impacts. 

MSPI- Masked 1 8 16 

 

For all the experiments, except the single sand particle impact on target plate in 

air (SSPI - Air), the Perspex tube was filled with 30 mm depth of water. The free end of 

the vertical tube was dipped 10 mm under the standing water column inside the Perspex 

tube and cleared by 20 mm from the target plate top surface. For all the experiments, 

except the single bubble generation (SBG) experiment, the end of the horizontal guide 

tube a nozzle - held by a clamp - directs a flow of air driven by a compressor through the 

assembly towards the centre of the target plate surface. The compressor produces a 

constant air flow of 0.6 litre/min at 250 psi. To maintain a constant atmospheric pressure 

inside the Perspex tube, at the top end cap, a small vertically through thickness hole of 

1 mm diameter was created.  

For single bubble generation, the air flow injection end of the horizontal guide tube 

was coupled with a 10 cc plastic syringe via a 20 mm length of plastic tubing. Slowly 

depressing the syringe plunger introduces a single bubble at the free end of the vertical 

tube under water and generates AE signals.  
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For sand particle experiments, at the air flow injection end of the horizontal guide 

tube, sand particles are placed using tweezers. Introduction of air flow, from the 

compressor at this end drives the particles and air through the guide tubes and then 

through the fluid to hit the mild steel target. This results in particle impacts on the target 

plate. Except for SSPI-Air, other particle impacts experiments were associated with air 

bubble generations in presence of water column.  

AE data was recorded at 2.5MHz sampling frequency rate with a preamplifier gain 

of 60dB. In every case the experiment was repeated several times as shown in the Table 

5.1. Sensor positions & preamplifier gain were kept constant for all the experiments.  The 

data acquisition system used for these experiments was same as described in section 

3.2. 

5.3 Signal analysis 

5.3.1 Single bubble signal analysis 

5.3.1.1 Time domain signal analysis 

Figure 5.2 (a) & (b) show typical single bubble signals at S1 and S2 respectively, 

originated from inserting air at the flow injection area, shown in  

Figure 5.1. For this experiment, over 5 performed tests, maximum amplitude of 

single bubble event for S1 varied between 0.5×10−4 - 1.4×10−4 V and for S2 between 

2×10−5 - 6×10−5 V. Shuib et al. reported typical single bubble inception amplitudes in 

the order of  2.5×10−3 −  10×10−3  V , varying nozzle sizes between 1.4 – 8.4 mm in a 

standing water column where the AE signals were generated by depressing a syringe 

using compressed cylinder air and recorded at the sensors mounted on aluminum side 

wall of a large rectangular structure containing the water column (27). AE event energy, 

event duration and rise time are calculated following the method described in section 

2.6.1. For S1, AE event energy varied between 0. 2×10−13 - 1×10−13 V²s and for S2 

between 0. 5×10−14 - 3×10−14 V²s. Event duration for the recorded signals are 800 µs 

with a signal rise time of 100 µs for both S1 and S2. For all the recorded single bubble 

signals, these four calculated time domain parameter values are presented graphically 

in Appendix D. 
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                         (a)                                                                 (b) 

 

Figure 5.2: Typical single bubble insertion AE signal at (a) S1 and (b) S2 

5.3.1.2 Frequency domain signal analysis 

Figure 5.3 (a) & (b) shows PSD of the 5 single bubble tests at S1 & S2 

respectively. From Figure 5.3, the major frequency contents are observed between 100 

– 200 kHz for both S1 and S2, with S2 PSD being an order of magnitude smaller than 

S1 PSD. From other research work, similar major frequency characteristics were 

associated with single air bubble insertion through nozzles in a water column (27).   For 

S1, above 200 kHz, a few other smaller peaks are noticed between 200 – 400 kHz while 

for S2 above 200 kHz, the predominant peaks are concentrated between 300 – 400 kHz. 

For this experiment, calculated Spectral centroid for S1, is between 175 – 210 kHz and 

for S2 is between 190 – 210 kHz. For S1, Maximum PSD obtained between 0. 2×10−14 −

 2×10−14 V2/Hz and for S2 between 0. 5×10−15 −  3×10−15 V2/Hz. Maximum PSD 

obtained between 110 – 170 kHz for S1 and between 110 – 160 kHz for S2. All these 

frequency domain parameter values for this experiment are graphically presented in 

Appendix D.  
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                       (a)                                                            (b) 

Figure 5.3: Frequency domain representations of single bubble insertion signals at (a) 

S1 and (b) S2 

5.3.1.3 Time Frequency domain signal analysis 

Figure 5.4 (a) & (b) shows the GWT of the typical time domain single bubble signal 

of Figure 5.2 (a) & (b) respectively.  For this specific AE signal, the maximum frequency 

content for S1 is found at 130 kHz and dominant between 100 – 525 µs. For S2, the 

maximum frequency content at 140 kHz is found mainly between 150 – 500 µs. These 

results are in agreement with other research work where major frequency contents in 

spectrogram analysis of single bubble inception in a standing water column was 

observed between 100 – 200 kHz (27). 

 
 

 

 

Time (µs) 
     (a) 
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Figure 5.4: GWT of a typical single bubble insertion signal at (a) S1 and (b) S2. The 

major frequency content was observed between 100 – 200 kHz for both the cases. 

5.3.2 Single sand particle impact (in air) signal analysis 

5.3.2.1 Time domain signal analysis  

Single sand particle (SSPI-air) introduced at the end of the horizontal tube was 

transported by the constant air flow from the compressor and upon impacting the target 

surface generated typical AE signals as shown in Figure 5.5 (a) & (b) for S1 and S2 

respectively. For the SSPI-air experiment, maximum amplitude of single sand particle 

impact for S1 varied between 5.2×10−3 – 6.1×10−3  V and for S2 between 3×10−3 – 

5.5×10−3 V. AE event energy, for S1, varied between 1×10−6 - 9×10−6 V²s and for S2 

between 1×10−6 – 5.5×10−6 V²s. Event duration for the recorded signals are between 

500 - 800 µs for S1 and between 740 – 780 μs for S2. Signal rise time for both S1 and 

S2 varied between 40 – 140 µs. These four calculated time domain parameters for all 

the single sand particle impact records are included in Appendix E. 

 

Time (µs) 
     (b) 
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(a)                                                  (b) 

 

Figure 5.5: Typical single sand particle impact on fixed target plate signal at (a) S1 

and (b) S2 

Frequency domain signal analysisFigure 5.6 (a) & (b) shows PSD of the 5 SSPI-air tests 

at S1 & S2 respectively. From Figure 5.6, for S1, the major frequency contents 

concentrated around 325 kHz with several minor frequency contents below 300 kHz. For 

S2, the dominant frequency contents are spread over 300 – 400 kHz and at 225 kHz 

and 150 kHz other major frequency contents are observed. Spectral centroid for both 

the sensor signals are between 230 – 250 kHz. For S1, Maximum PSD obtained between 

0. 4×10−10 −  1.2×10−10 V2/Hz and for S2 between 0. 5×10−11 −  2.5×10−11 V2/Hz. For 

this experiment, the evaluated frequency domain parameter values are presented in 

Appendix E. 

 

 

                            (a)                                                           (b) 

Figure 5.6: Frequency domain representations of single sand particle impacts on fixed 

target plate signals at (a) S1 and (b) S2 
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5.3.2.2 Time Frequency domain signal analysis 

Figure 5.7 (a) & (b) shows the GWT of the typical time domain SSPI-air signal of 

Figure 5.5 (a) & (b) respectively.  

  

                                                                               

                                                             

 

 

 

Figure 5.7: GWT of a typical single sand particle impact on fixed target plate in air signal 

at (a) S1 and (b) S2. The major frequency content was observed between 300 – 400 

kHz for both the cases. 

Time (µs) 
     (a) 

Time (µs) 
     (b) 
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From Figure 5.7 (a), the maximum frequency content for S1 is at 325 kHz and 

dominant between 50 – 100 µs and slowly fades away by 300 µs. A weaker frequency 

content around 130 kHz is observed between 50 - 200 µs.  

For S2, Figure 5.7 (b), two major frequency bands are noticed: one between 250 

– 400 kHz and the other between 100 – 200 kHz. The first frequency band signal 

components are dominant between 50 – 450 µs, slowly fading away afterwards and the 

later frequency band signal components observed mainly between 50 - 200 µs. 

5.3.3 Single sand particle impact (in water) signal analysis 

For the SSPI-Water experiment, constant air flow from the compressor carried the 

single sand particle and hit the target plate under 30 mm water column. Figure 5.8 (a) 

& Figure 5.9 (a) shows a typical single sand particle impact on the target plate under 

water loading. From Figure 5.8 (a) & Figure 5.9 (a), a high amplitude event, denoted as 

Event 2 in both the figures, was recorded in the middle of lots of smaller amplitude 

events. In sections 5.3.1.1 and 5.3.2.1 it has been shown that the amplitude of particle 

impacts in air (SSPI-air) were 10 - 100 times higher, depending on sensor position S1 

or S2, than bubble generated AE amplitude in SGB experiments. For this experiment, 

only one sand particle was introduced to the system which was expected to be of higher 

amplitude than bubble events, and there would be many bubble events. So, the recorded 

highest amplitude event, which is Event 2 in Figure 5.8 (a) & Figure 5.9 (a), is expected 

to be associated with the sand particle impact and the rest are potentially the bubble 

events. To verify this, from all the recorded signals, the expected sand event or similar 

to Event 2 in Figure 5.8 (a) & Figure 5.9 (a) and a possible bubble event from the rest 

of the lower amplitude events, in this case the first recorded event or similar to Event 1 

in Figure 5.8 (a) & Figure 5.9 (a) , are considered for further analysis in the following 

sections. Obtained results are compared with the analysis performed in previous 

sections for single bubble and SSPI-Air experiments.  
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                                                                       (a) 

                                            
                 (b) Bubble                                                             (c) Particle 

                     

                   

Figure 5.8: (a) At S1, typical single sand particle impact on fixed target plate in presence 

of bubbles.  Event 1 is a potential bubble event and Event 2 is a potential sand particle 

impact event. Event 1 & Event 2 are shown in figure (b) & (c) respectively.  

Event 2 Event 1 
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                                                                              (a) 

                              
                          (b) Bubble                                                              (c) Particle 

 

Figure 5.9: (a) At S2, typical single sand particle impact on fixed target plate in presence 

of bubbles.  Event 1 is a potential bubble event and Event 2 is a potential sand particle 

impact event. Event 1 & Event 2 are shown in figure (b) & (c) respectively.  

 

 

 

 

Event 2 

Event 1 
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5.3.3.1 Time domain signal analysis  

 

In this section, the expected bubble and sand events from all the records, similar 

to Event 1 & Event 2 respectively in Figure 5.8 (a) & Figure 5.9 (a), are analysed for 

four standard time domain AE signal parameters: Maximum amplitude, AE event energy, 

AE event duration and Event rise time as described in the section 2.6.1. 

Figure 5.10 (a) & (b), shows the maximum amplitude variations, between 10 tests 

for S1 & S2 respectively, in the SSPI-Water experiment for expected bubble and sand 

events. 

 
(a) 

 
(b) 

Figure 5.10: Variation in maximum amplitude over 10 test records in SSPI-Water 

experiment for potential single bubble and single sand particle impact events at (a) S1 

and (b) S2. 

For S1, as shown in Figure 5.10 (a), the maximum amplitude for considered bubble like 

events varies between 0.3×10−3 − 2.8×10−3 V for expected sand like events varies 

between 2.8×10−3 − 7.1×10−3 V. For S2, for considered bubble like events the 
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maximum amplitude varies between 0.36×10−3 − 1.2×10−3 V and for expected sand 

events, varies between 4×10−3 − 7.12×10−3 V as shown in Figure 5.10 (b).  The change 

in amplitude of considered bubble like events than the single bubble amplitude observed 

SBG experiment, discussed in section 5.3.1.1, can be attributed to the higher air velocity 

used for bubble generation in the later experiment. Other research work confirmed that 

increase in air velocity can increase in AE energy due to increase in bubble contents 

and for bubble dynamics associated with it (131). 

Figure 5.11 (a) & (b) shows AE event energy for considered bubble and expected 

sand events at S1 & S2 respectively for all the records.  

 
(a) 

 

 
(b) 

Figure 5.11: Variation in AE energy over 10 test records in SSPI-Water experiment for 

potential single bubble and single sand particle impact events at (a) S1 and (b) S2. These 

plots are in Logarithmic scale. 
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For S1, as shown in Figure 5.11 (a), bubble events’ energy varies between 

1.38×10−12 − 1.42×10−10 V²s and expected sand events energy varies between 

7×10−11 − 1.5×10−9 V²s. For S2, bubble events’ energy varies between  2×10−12 −

2.5×10−11 V²s and expected sand events’ energy 0.9×10−11 − 7×10−10 V²s, as shown 

in Figure 5.11 (b). 

Figure 5.12 (a) & (b), shows considered bubble and expected sand event 

durations for all the records at S1 & S2 respectively. From Figure 5.12 (a), at S1, 

considered bubble events’ duration is between 350 – 800 µs and for expected sand 

impact events 320 – 600 µs. At S2, as shown in Figure 5.12 (b), for bubbles, event 

duration is recorded predominantly between 600 – 800 µs and for sand events, 300 – 

600 µs. 

 
(a) 

 

 
(b) 

Figure 5.12: Variation in AE event rise time over 10 test records in SSPI-Water 

experiment for potential single bubble and single sand particle impact events at (a) S1 

and (b) S2. 
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Figure 5.13 (a) & (b), shows considered bubble and sand like events’ rise time for 

all the records at S1 & S2 respectively. At S1, as shown in Figure 5.13 (a), considered 

bubble like events’ rise time is between 38 – 122 µs and for expected sand impact like 

events 28.4 – 120 µs. From Figure 5.13 (b), at S2, for bubble like events, rise time is 

recorded predominantly between 39.6 – 263.6 µs and for sand like events between 4 – 

67.2 µs. 

 
(a) 

 
(b) 

Figure 5.13: Variation in rise time over 10 test records in SSPI- Water experiment for 

potential single bubble and single sand particle impact events at (a) S1 and (b) S2.  

5.3.3.2 Frequency domain signal analysis 

This section presents considered bubble and sand like events’ frequency domain 

analysis performed for all the records. Figure 5.14 (a) & (b) shows PSD for all the 

considered bubble events at S1 and S2 respectively and Figure 5.14 (c) & (d) shows 

the PSD for all the expected sand events at S1 and S2 respectively.  
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(a)                                                       (b) 

    

                       (c)                                                                    (d) 

Figure 5.14: Frequency domain representations of considered bubble and sand events 

at S1 and S2 for all records in SSPI-Water experiment.  

From Figure 5.14 (a) & (b), for bubbles at S1 & S2 respectively, the major 

frequency content is centred at 150 kHz. For S1, 8 frequency peaks observed between 

200 -400 kHz with amplitude an order of magnitude or even smaller.  Same frequency 

peaks for S2 noticed with a change in relative amplitudes. For sand events, as shown in 

Figure 5.14 (c) & (d) for S1 and S2 respectively, the main frequency contents are found 

between 300 – 400 kHz. For S1, between 100 – 300 kHz, an order of magnitude smaller 

frequency peaks are observed from Figure 5.14 (c). For S2, shifts in the frequency 

contents between 100 – 300 kHz with change in relative amplitude noticed. 

As a part of frequency domain analysis three standard AE parameters were 

calculated: Spectral Centroid, Maximum PSD and Frequency at maximum PSD. Figure 

5.15 (a) and (b) shows spectral centroid of considered bubble and sand like events for 

S1 and S2 respectively. For S1, from Figure 5.15 (a), spectral centroid for bubble like 

events vary between 150 – 220 kHz and for sand like events vary between 220 – 250 
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kHz. At S2, as shown in Figure 5.15 (b), spectral centroid for bubble like events vary 

between 170 – 210 kHz and for sand like events between 230 – 250 kHz. 

 
(a) 

 

 
(b) 

Figure 5.15: Variation in spectral centroid over 10 test records in SSPI-Water 

experiment for potential single bubble and single sand particle impact events at (a) S1 

and (b) S2. 

Figure 5.16 (a) & (b) shows variations in Maximum PSD for considered bubble 

and sand events for S1 and S2 respectively. For S1, maximum PSD for bubble events 

vary between 2.25×10−13 − 2.04×10−11 V²/Hz and for sand events between 6.39×

10−12 − 1.34×10−10 V²/Hz. For S2, maximum PSD for bubble events are between 

2.31×10−13 − 2.1×10−12 V²/Hz and for sand events between 3.78×10−13 − 3.89×10−11 

V²/Hz.  
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(a) 

 

 
(b) 

Figure 5.16: Variation in maximum PSD over 10 test records in SSPI-Water experiment 

for potential single bubble and single sand particle impact events at (a) S1 and (b) S2. 

Large variations in AE energy for both potential bubble and sand events over 10 

records can be attributed to the spreading effect of the flow. From previous research 

works, associated with slurry impingement on a target plate, it was observed that due to 

spreading of the flow, practical impingement angle can be different from normal 

impingement angle which can cause significant change in particle impact energy 

(18,19,132,133). 

Figure 5.17 (a) & (b) shows, at S1 and S2 respectively, the frequency at which 

maximum PSD occurs.  



106 
 

 
(a) 

 

 
(b) 

Figure 5.17: Variation in maximum PSD frequency over 10 test records in SSPI-Water 

experiment for potential single bubble and single sand particle impact events at (a) S1 

and (b) S2. 

At S1, from Figure 5.17 (a), maximum PSD frequency for bubbles is at 150 kHz 

and for sand vary between 300 – 350 kHz. From Figure 5.17 (b), at S2, maximum PSD 

frequency for bubbles is predominantly at 150 kHz and for sand events primarily between 

300 – 350 kHz. Ferrer et al. also has noticed  higher frequency contents associated with 

particle impacts and lower frequency contents associated with bubbles in an 

impingement flow of glass beads on a stainless steel target (19).  
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5.3.3.3 Time Frequency domain signal analysis 

GWT has been used for analyzing recorded bubble and sand events of SSPI-

Water experiment in time frequency domain.  

Figure 5.18 (a) & (b) shows GWT of a typical bubble event, logged at S1 & S2 and 

shown in Figure 5.8 (b) & Figure 5.9 (b) respectively.  

               

 

 

 

 

Figure 5.18: GWT of the typical bubble event at (a) S1 and (b) S2 of Figure 5.8 (b) & 

Figure 5.9 (b) respectively. 

Figure 5.19 (a) & (b) shows GWT of the typical sand event considered in Figure 

5.8 (c) & Figure 5.9 (c) for S1 and S2 respectively. Both for S1 and S2, the major 

Time (µs) 
     (a) 

Time (µs) 
     (b) 
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frequency contents are spread between 300 – 400 kHz with presence of shorter and 

weaker frequency contents between 100 – 200 kHz and between 200 – 300 kHz.  

 

 

 

 

 

 

 

Figure 5.19:  GWT of the typical sand event at (a) S1 and (b) S2 of Figure 5.8 (c) & 

Figure 5.9 (c) respectively. 

5.4 Automatic event identification technique 

Establishing a robust and repeatable AE signature of bubble and sand events is a 

prerequisite for developing a general event identification technique. In previous sections 

Time (µs) 
     (b) 

Time (µs) 
     (a) 
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5.3.1- 5.3.3 recorded AE signals, from single bubble, SSPI-Air, SSPI-Water experiments, 

have been analyzed in time domain, frequency domain and time frequency domain to 

characterize various AE features of bubble and sand events. From these analysis, a 

repeatable trend in frequency domain has been noticed for bubble and sand events. For 

bubbles, the major frequency contents are found to be between 100 – 200 kHz and for 

sand impact events broadly between 300 - 400 kHz for both the sensors. Based on this 

observation, calculating energy for frequency band 100 – 200 kHz (denoted as E1) and 

for frequency band 300 – 400 kHz (denoted as E3) creates options for formulating a 

simple ratio 
E3

E1
 >1 for identifying sand events and 

E3

E1
<1 for identification of bubble events. 

This framework is summarized in Figure 5.20. 

                                                       AE signal 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.20 : Automatic event identification framework. 

 

Based upon this technique, all the signals have been analysed. For example, a 

typical single sand particle impact test signal at S1 is shown in Figure 5.21 (a). For event 

identification, signal was squared and threshold was set at 10% of the maximum 

amplitude, as shown in Figure 5.21 (b). Identified events’ energy are calculated for 

different frequency bands, as described in section 4.4. Implementing the frequency band 

energy ratio technique, i.e., the event with  
E3

E1
> 1 as Sand and other detected events with 

E3

E1
< 1 as bubbles, the events are identified. A lower threshold setting will detect more 

events to be identified. 

Setting event identification amplitude threshold  

Identify Frequency bands energy (E1, 

E3) calculation for each detected event 

   

       Event identification  

          
E3

E1
>1 as sand  

          
E3

E1
<1 as bubble 
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            (a) 

 
             (b) 

   
             (c) 

Figure 5.21: (a) Typical single sand particle impact test signal at S1, (b) Event threshold 

setting & (c) Event identification of the detected events (S for Sand, O for Bubble) 

If the threshold had been set lower than 10% of peak then more events would be 

identified. The number of events identified is sensitive to the setting of the threshold 

which is therefore very important and is investigated in the following sections. 

Threshold 
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5.4.1 Sensitivity Analysis of automatic event identification technique 

Referring to the framework defined in Figure 5.20, in the first step of the automatic 

event identification process, a percentage of maximum amplitude is set as threshold for 

event detections. To check the sensitivity of the process, with respect to setting the 

amplitude threshold, all the recorded signals from single and multiple sand particle 

impact experiments have been analyzed. The obtained results are tabulated and 

discussed in the following sections. 

5.4.1.1 Single sand particle impacts in water 

Table 5.2 (a) & (b) shows the effect of changing amplitude threshold between 10% 

~ 1% on total event and sand event counts for all the considered bubble and sand event 

signals, recorded at S1 and S2 respectively, in the SSPI-Water experiment.  From Table 

5.2 (a), for S1, at 10% threshold, 22 AE events are logged from 10 records. Out of these 

22 events, 10 events are detected as sand, one per record, as expected. Lowering the 

threshold to 7% & 5% increases the number of logged events with the anticipated 

number of sand events still being 10. Decreasing threshold to 3% increases both the 

bubble event and sand event counts. A potential reason of detecting more than expected 

sand events might be the circulation of other foreign particles, rust formed on the water 

loaded steel target plate or even recirculation of the same sand particle, which due to 

lower impact energy were not identified as events when higher amplitude threshold was 

used.  
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Table 5.2: At different amplitude thresholds, event detections from all the records of 

SSPI in water experiments, for (a) S1 and (b) S2. 

(a) S1 

  

File  

No  

  

                                    Event detection amplitude threshold  

         10%            7%            5%            3%            1% 

Event Sand Event Sand Event Sand Event Sand Event Sand 

1 2 1 2 1 6 1 7 2 19 6 

2 1 1 1 1 2 1 4 1 10 7 

3 2 1 2 1 3 1 3 2 8 4 

4 1 1 1 1 2 1 2 1 9 2 

5 1 1 1 1 1 1 3 1 12 8 

6 1 1 2 1 2 1 5 1 9 5 

7 1 1 1 1 1 1 2 1 6 1 

8 2 1 2 1 2 1 4 1 11 4 

9 10 1 12 1 14 1 18 2 30 9 

10 1 1 2 1 2 1 2 1 11 4 

Total 22 10 26 10 35 10 50 13 125 50 

 

(b) S2 

  
File  
No  

  

                                    Event detection amplitude threshold  

         10%            7%            5%            3%            1% 

Event Sand Event Sand Event Sand Event Sand Event Sand 

1 1 1 1 1 1 1 1 1 3 1 

2 1 1 1 1 1 1 3 1 13 5 

3 1 1 1 1 2 1 3 2 4 2 

4 1 1 1 1 1 1 2 1 2 1 

5 1 1 1 1 1 1 1 1 15 5 

6 2 1 2 1 2 1 4 1 15 5 

7 1 1 1 1 2 1 2 1 6 2 

8 1 1 1 1 1 1 1 1 6 3 

9 5 1 8 1 11 1 26 1 50 4 

10 1 1 2 1 2 1 5 1 12 5 

Total 15 10 19 10 24 10 48 11 126 33 

 

A further reduction in threshold to 1% sets the threshold very close to the 

background noise level and the fidelity of the frequency domain analysis is even more 
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dubious in this region.For S2, the event identification trend due to change in amplitude 

threshold is similar to that for S1 as shown in Table 5.2 (b). Since the general trend of 

event signal strength is to get weaker at S2, as found in 5.3.3.1, fewer total events are 

registered but without affecting sand event counts performance at higher thresholds 

(10% ~ 5%).Table 5.3 (a) & (b) shows the effect of changing amplitude threshold 

between 10% ~ 1% on total event and sand counts for all signals, recorded at S1 and 

S2 respectively, in SSPI-Mask experiment. Setting threshold between 10% ~ 5% detects 

the expected one sand event per record with an increase in total event counts with 

decreasing threshold. At 3% threshold, more than expected sand counts are observed 

due to the possible sources of unintended presence of foreign particles, rust or 

secondary impact of the same particle within the recording time. Further reduction of 

threshold to 1% sets the threshold close to background noise level and performance of 

frequency domain analysis becomes very poor. This trend of event detection also 

observed in SSPI-Water experiments as shown in Table 5.2 (a) & (b). However, 

introduction of the mask reduced the total events registered, in comparison with the 

threshold sensitivity analysis performed for the SSPI-Water experiment, without affecting 

performance in sand event counts. 

 

Table 5.3: At different amplitude thresholds, event detections from all the records of 

SSPI-Mask experiments, for (a) S1 and (b) S2. 

(a) S1 

  
File  
No  

  

                                    Event detection amplitude threshold  
  

         10%            7%            5%            3%            1% 

Event Sand Event Sand Event Sand Event Sand Event Sand 

1 1 1 1 1 1 1 2 1 5 2 

2 2 1 2 1 2 1 3 1 6 3 

3 2 1 2 1 2 1 2 1 3 1 

4 1 1 2 1 2 1 2 1 11 4 

5 2 1 2 1 2 1 2 1 7 1 

6 1 1 1 1 1 1 1 1 5 3 

7 2 1 2 1 6 1 9 2 23 7 

8 1 1 1 1 1 1 1 1 8 3 

9 1 1 1 1 1 1 1 1 4 1 

10 1 1 2 1 3 1 5 1 9 3 

Total 14 10 16 10 21 10 28 11 81 28 
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(b) S2 

  
File  
No  

  

                                    Event detection amplitude threshold  
  

         10%            7%            5%            3%            1% 

Event Sand Event Sand Event Sand Event Sand Event Sand 

1 2 1 2 1 2 1 3 2 10 2 

2 2 1 3 1 3 1 3 1 12 3 

3 2 1 3 1 3 1 3 1 16 3 

4 1 1 2 1 2 1 5 1 12 5 

5 1 1 2 1 2 1 3 1 11 3 

6 1 1 1 1 2 1 3 1 6 2 

7 1 1 1 1 1 1 1 1 4 1 

8 1 1 1 1 1 1 1 1 5 2 

9 1 1 1 1 1 1 1 1 4 1 

10 1 1 1 1 1 1 4 1 11 1 

Total 13 10 17 10 18 10 27 11 91 23 

 

5.4.1.2 Three sand particles impact in water 

 

Table 5.4 (a) & (b) shows summary of threshold sensitivity analysis performed on 

all the records obtained at S1 & S2 respectively in MSPI-Water experiment. For 8 

records, 24 sand events were expected. From Table 5.4 (a), at S1, for 10% threshold, 

26 events were logged in. Out of these 26 events, 22 are detected as sand. From Table 

5.4 (b), at S2, for 10% threshold, out of 24 expected sand events 19 are detected. One 

possible reason of lower sand count might be due to interaction among the particles the 

amplitude of some sand impacts decreased below threshold. Lowering the threshold to 

7% & 5% increases the total event count for both S1 and S2 and increase in sand events, 

from 19 to 20, are noticed for S2. Further lowering of threshold to 3% increases the sand 

counts beyond expectation. As described for single sand particle impact tests in the 

previous section, the chance of other non-sand foreign particle, formed rust or 

recirculation of the same particle event detection increases at this threshold reduces and 

is a possible cause of higher than expected sand counts. Lowering the threshold to 1% 

sets the possibility of poor fidelity of frequency domain analysis due to proximity of 

background noise level. 
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Table 5.4: At different amplitude thresholds, event detections from all the records of 

SSPI-Mask experiments, for (a) S1 and (b) S2. 

 

(a)S1 

 

 File 
  No 

  

                                    Event detection amplitude threshold  
  

         10%            7%            5%            3%            1% 

Event Sand Event Sand Event Sand Event Sand Event Sand 

1 3 3 4 3 5 3 7 3 10 3 

2 3 3 4 3 5 3 6 3 8 4 

3 4 3 5 3 5 3 5 3 11 6 

4 2 2 2 2 2 2 3 2 10 3 

5 3 2 4 2 4 2 7 5 11 8 

6 3 3 4 3 4 3 5 3 6 5 

7 5 3 5 3 5 3 5 3 9 6 

8 3 3 4 3 4 3 4 3 12 8 

Total 26 22 32 22 34 22 42 25 77 43 

 

(b)S2 

 

 File 
  No 

  

                                    Event detection amplitude threshold  
  

         10%            7%            5%            3%            1% 

Event Sand Event Sand Event Sand Event Sand Event Sand 

1 3 3 3 3 3 3 3 3 4 3 

2 3 2 3 2 3 2 3 2 4 3 

3 3 3 3 3 4 3 5 3 6 5 

4 2 2 2 2 2 2 3 2 10 3 

5 1 1 2 2 2 2 3 2 5 4 

6 2 2 2 2 2 2 3 2 4 3 

7 3 3 3 3 3 3 3 3 5 3 

8 3 3 3 3 3 3 4 4 6 5 

Total 20 19 21 20 22 20 27 21 44 29 

 

5.4.1.3 Ten sand particles impact in water 

Table 5.5 (a) & (b) shows summary of threshold sensitivity analysis performed on 

all the records obtained at S1 & S2 respectively in MSPI-Mask experiment. For 8 records, 

total 80 sand events were expected. From Table 5.5 (a), at S1, for 10% threshold, 44 
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sand events and for S2, as shown in Table 5.5 (b), 49 sand events were recorded. 

Lowering the threshold increases the sand counts for both the sensors. However, at 1% 

threshold, some unanticipated particle like events possibly from foreign particles, rust or 

recirculating particle are identified in a few individual signals, for example, file numbers 

3 & 7 in Table 5.5 (a).   

Table 5.5: At different amplitude thresholds, event detections from all the records of 

MSPI-Mask experiments, for (a) S1 and (b) S2. 

(a) S1 

 File 

  No 

                                    Event detection amplitude threshold  

  

         10%            7%            5%            3%            1% 

  Event Sand Event Sand Event Sand Event Sand Event Sand 

1 6 6 7 7 7 7 8 8 10 8 

2 4 4 4 4 8 8 9 9 9 9 

3 6 6 8 8 9 9 9 9 14 12 

4 4 4 6 6 6 6 7 7 8 8 

5 5 5 6 6 6 6 7 7 8 8 

6 7 7 8 8 8 8 8 8 9 9 

7 8 7 9 8 9 8 11 9 17 14 

8 5 5 5 5 5 5 5 5 8 7 

Total 45 44 53 52 58 57 64 62 83 75 

 

(b) S2 

 File 
  No 
  

                                    Event detection amplitude threshold  
  

         10%            7%            5%            3%            1% 

Event Sand Event Sand Event Sand Event Sand Event Sand 

1 5 5 5 5 7 7 8 8 8 8 

2 7 7 7 7 8 8 8 8 10 9 

3 6 6 7 7 7 7 9 9 16 12 

4 6 6 6 6 6 6 7 7 8 8 

5 7 7 8 7 8 7 8 7 7 6 

6 5 5 6 6 8 8 9 9 9 9 

7 9 8 9 7 9 7 9 7 20 9 

8 6 5 7 5 8 6 9 6 25 14 

Total 51 49 55 50 61 56 67 61 103 75 
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5.5 Summary  

This chapter has presented all of the results for the experiments listed in Table 5.1 

The main findings have been that the values of the simplest AE parameters for sand 

particle impacts can vary widely making them difficult to identify in the presence of other 

sources of AE like bubbles and noise. Two main sources of AE have been considered 

in the laboratory experiments carried out, being sand particle impact and bubbles. They 

have been found to have distinct frequency signatures and this has been used to develop 

a new automatic identification framework which has been tested in the laboratory. The 

method developed can be used to optimize the identification of sand particle impacts. 

The optimal setting of an amplitude threshold is sensitive to number of particles and 

noise levels. A high threshold of say 10% will clearly identify sand particle impacts but 

for multiparticle tests is likely to not detect about 20% of lower (impact) energy particles. 

A threshold lower than 3% is likely to result in detection of AE events with poor frequency 

content and wrong classification of the weakest events. Optimal setting of the 

parameters used in the framework such as thresholds, frequency bands and ratios of 

AE energy is likely to make identification of sand particle impacts in the laboratory 

environment to within 10% possible. 
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Chapter 6 Discussion 

The findings from all the experiments performed in this research, are discussed in 

this chapter within the context of previous research works and established theories. The 

chapter is divided according to the three major contributing areas of the research: 

Preliminary pencil lead break experiments, Similar sized particle impacts test and 

Particle impacts in presence of bubble experiments.  

6.1 Preliminary pencil lead break experiments 

For a given AE monitoring system, the recorded signals are influenced by the AE 

generating source, wave propagation methods present in the system and the 

characteristics of the monitoring sensors (134). PLB Tests (Hsu-Nielsen Tests), as 

described in the Section 3.3, has been used widely as a standard AE generating source 

in the experimental AE studies  (24,84). In this research, PLB has been used for studying 

and comparing the signal characteristics across different test environments.   

Elastic wave propagation methods in a solid is primarily affected by the geometry 

of the structure under consideration (126). Earlier research works in the AE used 

specimen geometries and sensor positions to record longitudinal bulk waves in several 

radiation directions (84). Later AE researches involved plate like test specimens where 

far field AE signal observations are dominated by Lamb waves for which analytical 

results are available for infinite plate (85,135,136). In a thin plate like specimen, 

generated AE signals are propagated in fundamental symmetric and anti symmetric 

Lamb wave modes of particular characteristic frequencies (33,136). Identifying these 

wave propagation modes facilitate characterizing the AE signals as shown by numerous 

researchers (33,84,136–138). A thick small stepped cylindrical mild steel coupon 

specimen has been considered in this research, as shown in the Figure 3.2. In addition 

to the fundamental symmetric and anti symmetric wave modes, as found in the thin 

plates, due to the thickness of the plate, the higher order Lamb modes become available 

to contribute to the recorded AE signals (85). Also, close boundaries initiate multiple 

reflections and mode conversions, as described in (80,85,135). So, presence of different 

modes, their reflections and mode conversions due to close boundaries make identifying 

individual wave propagation modes unachievable in this regard for further analysis. 

However, AE sensors, with wide frequency band response, used in this research made 

it possible to identify two specific frequency bands,100 - 200 kHz, 200 – 300 kHz & 300-

400 kHz, as described in the Section 3.4.2, which facilitated further signal analysis. 

Based upon the structural geometry and the sensor response characteristics, for another 

physical arrangements, some other frequency bands might be optimal. However, this 

forms the basis for a more general approach of considering frequency bands based 
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analysis technique whenever complex geometry makes it difficult to identify single mode 

or frequency for analysis purpose. 

Two AE sensor locations, one at the epicentre of the impact point (S1) and another 

off centred by 30 mm (S2), were considered, as shown in the Figure 3.2.  In general, the 

signals obtained at S1 are stronger than the signals recorded at S2, as observed from 

the amplitude, event energy or PSD analysis included in the Appendix B. Earlier 

researcher showed that, on a circular thick specimen, at different recording locations, 

the major frequencies remain the same though the relative contributions may vary (46). 

Similar trends have been observed in this research, as shown in the Figure 3.8. In the 

same study (46), it was shown that, at a certain location on a thick circular plate, any 

particular mode might disappear if the location happens to be the point of zero 

displacement for that particular mode. In this research, frequency bands have been 

considered rather than a particular frequency or a specific mode. So, the change in the 

relative contributions of different modes or disappearance of any particular mode, if any, 

has not affected the analysis. 

In this research, two boundary conditions of the target plate were considered: free, 

simply supported on the wooden block and sealed at the bottom of a cylindrical perspex 

tube, as shown in the Figure 3.4. At a specific location on a circular specimen, varying 

the boundary condition changes the contributing wave propagation modes’ 

characteristics, as shown in (126). Even though particular modes or their individual 

contributions have not been studied in this research, changes in frequency contents 

have been observed for Free and Fixed boundary conditions, as shown in the Figure 3.9 

and Figure 3.10, for S1 and S2 respectively. Also, shorter event durations and rise times, 

associated with fixed target plate experiments, have been observed, as shown in the 

Figure B-6. 

Couple of target plate loading environments, i.e. air and water, have been 

considered in this research for fixed plate experiments. Due to usual challenges faced 

in water experiments, such as difficulties in placing the pencil lead at the same location, 

attributed to the wider variations observed in the frequency contents of the signals 

recorded at both sensor positions, as presented in the Figure 3.9 and Figure 3.10.  

In general, within an experiment, among different tests, good repeatability in 

frequency contents have been noticed. Between the experiments, sensors were 

dismounted and attached again which contributed to the relative change in the signal 

strength due to change in coupling conditions. This supports earlier research findings 

that variability among different experiments due to coupling is higher than the variability 

among different tests within an experiment for a given sensor coupling arrangement (16). 
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6.2 Similar sized particle impact test 

Several researchers have studied free falling or airborne particle impacts on the 

target plate using AE sensors. Dropping the free falling or air borne stream of particles 

from different height on plates with varying thickness, earlier researchers correlated the 

calculated average power of the recorded AE signals to the plate thickness, to the 

second power of the impact velocity and the third power of particle diameter (13,15,55). 

For a given system, calibrating AE energy with the particle impact across the operating 

range, as presented in the above mentioned researches (13,15,55), might be sufficient 

for monitoring a single particle type present in the system. However, if several particle 

types, with similar size, velocity and density is present in the system, the AE energy 

or  amplitude would not be unique for the particle types and hence evaluating AE impact 

energy can not distinguish different particle types, as noticed in (16) .  

A number of previous research works attempted to use frequency informations, 

derived from acquired signal analysis, to relate with impacting particle size and velocity 

(6,55). Other researchers used plate like specimens with large lateral dimensions which 

facilitated particular modes identification in the specimens according to Lamb wave 

theory and performed signal analysis related to specific modes for source 

characterization (33,84,137,138). Of these studies, a particular important one related to 

the current research is performed by Hamstad et al. (84) where they used an FEM data 

of an aluminium plate to study the surface response of dipole sources buried at different 

depths. Obtaining peak WT coefficients of the anti symmetric and symmetric modes, 

they have found that, the ratio of the modes differentiate different sources when they are 

buried at the same depth of the plate and the observations are made at the same 

propagation distance. However, the ratio overlaps for different source types buried at 

different depths with varied propagation distances and impossible to uniquely identify 

each source type when mixed depths and propagation distances are present.  

In this research, a thick small stepped cylindrical mild steel coupon specimen has 

been used for studying the glass beads and sand particles dropping under gravitational 

force from the same height. Geometry of the coupon specimen makes individual mode 

identification for signal analysis impossible due to dispersion, reflection or multiple mode 

conversions. The complex geometry, along with the particle impacts with similar size, 

density and impact velocity, makes it difficult to differentiate the particle types either 

analysing the impact signals in the time domain, considering 4 standard time domain 

parameters (Amplitude, AE event Energy, Rise Time and Event Duration) or in the 

frequency domain, considering 3 standard frequency domain parameters (PSD, Peak 

frequency at PSD and Spectral Centroid), as shown in the Appendix C. In this research, 

the response characteristics of the sensors, helped to formulate frequency band energy 
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energy ratio, a new AE parameter introduced in this research, as described in the section 

4.4. It has been found that the coefficient of variation of the frequency band energy ratio 

for the experimental population can distinguish the glass beads and sand particle 

impacts with similar size, density and velocity, as shown in the section 4.4.  

The above mentioned technique can be used for discriminating a given population 

of particle impacts present in a system. However, it is inadequate in identifying each 

individual particle impacts. To facilitate each particle impact event identification, SVM 

classification technique, as described in the section 2.6.3.2, implemented in the section 

4.5. The application of the classification techniques in AE based particle impact 

monitoring systems is relatively new and have been studied primarily for loose 

particle/object impact identification  (104–108). For example, in a research, to study 

loose material types identification, a sealed device filled with Wire, Aluminium & Tin of 

0.5 - 2 mg was vibrated by an automated shaker (106). A wall mounted AE sensor was 

used for recording the loose particle impacts. No prior research has been noticed related 

to the application of classification techniques in particle impacts identification with similar 

size, density and velocity. To perform SVM based classification algorithm, 7 standard 

AE parameters, in the time and frequency domain, as mentioned above, have been 

considered. Available data set has been segmented into two parts of the training set 

(80%) and test set (20%). The developed model has been applied on the test data for 

model performance evaluation purpose. The overall success rate of individually 

identifying each category (PLB, Glass bead and Sand particle impacts) at S1 was found 

as 86% and at S2 as 92%. 

6.3 Particle impacts in presence of bubble experiments  

To study the abrasive potential of particle laden fluid, earlier researchers have 

used AE for studying particle streams in a water-flow loop or slurry jet impinging at a 

target surface (16–19,22). The measured AE energy was related linearly with the 

impacting particle’s concentration, velocity squared, diameter and the impact angle 

between the nozzle and the target plate.  

The experimental conditions considered in the above mentioned researches 

facilitate with no or very low amplitude bubble formations. An AE event amplitude or 

energy based analysis technique is sufficient enough for these cases to differentiate 

between the particle impacts and the generated bubbles, if any, present in the system. 

However, in real industrial cases, AE amplitude or energy generated from the bubbles 

can be high enough to be comparable with the particle impacts present in the system 

(11). In this research, particle impacts in presence of bubbles were considered. To 

differentiate bubble events from sand particles impact events, frequency band energy 
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ratio of recorded AE events, introduced in section 4.4, has been applied instead of AE 

amplitude, energy or peak frequency.  

Before preforming experiments on particle impacts in presence of bubbles, 

individual bubble formation and single particle impacts on a fixed target plate has been 

studied, as presented in the section 5.3.1 & 5.3.2 respectively. Time and Frequency 

domain analysis of the acquired signals were performed evaluating 7 standard AE 

parameters and time-frequency domain analysis has been carried through GWT. From 

frequency domain analysis of the single bubble events, as shown in the Figure 5.3 & 

Figure 5.4, it has been observed that, for the considered two sensor positions, the 

primary frequency contents were centred between 135 - 150 kHz. At the beginning of 

the signals, the higher frequency contents, upto 500 kHz, were observed though quickly 

dissipated (after first 150 µs) to the primary frequency contents. In a similar study of 

single bubble activities by Shuib et al. (27,58,131), for the acquired bubble events’ 

signals, frequency contents of upto 700 kHz were observed at the beginning of the 

signals. In the same study, it was noticed that 120 kHz was the most sensitive frequency 

for all the bubble sizes and all the viscosities considered in the study.  

Similar to the single bubble signal analysis, time, frequency and time-frequency 

domain analysis has been performed for all the single sand particle impact AE signals. 

While single bubble events were generating primary frequency contents between 135 - 

150 kHz, the single particle impacts were generating primary frequency contents 

between 300 – 350 kHz, as shown in the Figure 5.6 & Figure 5.7, for both the sensor 

positions. Similar frequency characteristics observed in a study of slurry impingement jet 

particle impacts at a target surface where Ferrer et al. (19) attributed the higher 

frequency contents (>300 kHz) associated with the particle impacts (glass bead) and 

lower frequency contents (< 200 kHz) associated with the bubbles generated in the 

system. 

To study particle impacts in presence of bubble events, the next experiment was 

performed introducing single particle at a time at a constant compressor air flow rate to 

hit the water loaded target plate. For all the AE signals, obtained from SSPI-Water 

experiment, it has been noticed that one event with higher amplitude in the middle of lots 

of smaller amplitude events. From previous experiments, it was observed that single gas 

bubble events are of lower amplitude and lower frequency contents than single particle 

impacts in air. So, in the recorded signals from SSPI_Water experiments,the higher 

amplitude are expected sand particle impacts and other lower amplitude events are 

potential bubble events. To verify this, for all the recorded signals from SSPI experiment, 

the corresponding higher amplitude events and one of the lower amplitude events have 

been selected for further time, frequency and time-frequency domain signal analysis. 
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From the frequency domain and time frequency domain analysis, the higher amplitude 

events showed the same frequency characteristics as observed from the SSPI-Air 

experiment and the lower amplitude events showed the same frequency characteristics 

of single gas bubble events as noticed in SGB experiment, as presented in the sections 

5.3.3.2 & 5.3.3.3. 

Further analysis has been carried out for each events in SSPI-Water experiment 

by calculating energy for the frequency bands 100 – 200 kHz (E1) and 300 – 400 kHz 

(E2). It has been found that, the energy ratio 
E3

E1
 >1 can be associated with all the 

analyzed sand events while 
E3

E1
 <1 can be attributed to the analyzed bubble events.  

Based upon this observation, an automatic event identification technique has been 

proposed to differentiate sand particle impacts in presence of bubbles. For any given 

signal, 10% of the maximum amplitude has been set as a threshold for event 

identification purpose. Each identified event then passed through 100 – 200 kHz & 300 

– 400 kHz band pass filters separately and the frequency band energy ratio (
E3

E1
) have 

been calculated for each filtered event signal. If 
E3

E1
 >1, the event is detected as sand 

particle impacts and if 
E3

E1
 <1, it is detected as bubble events. 

To observe the efficiency of this technique in case of multi particle impacts, two 

other experiments, each consisted of eight repeated tests, have been carried on 

introducing three and ten sand particles respectively. The threshold set at 10% of the 

maximum amplitude can identify all the sand events incase of single particle impacts but 

unlikely to detect 20% of the lower impact energy particles for multiple particle impacts. 

To find an optimum threshold for multiple particle impacts, further analysis has been 

performed setting thresholds at 7%,5%,3% and 1%. It has been noticed that, threshold 

set at 3% or lower is likely to detect weak rebounded particle impacts or due to close 

proximity of the background noise level result in poor frequency content leading to wrong 

classification of detected AE events. For this research, threshold setting at 5% found to 

be optimal. 

For any given system, the successful application of this developed technique 

depends upon the identification of optimum frequency bands for the sensors used, 

finding an optimum relationship among the frequency bands, for example the frequency 

band energy ratio in this research, related to the different source types present in the 

system and obtaining an optimum threshold for events detection.  
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Chapter 7 Conclusions and Future 

Recommendations 

This chapter summarizes all the major findings from this work including 

discrimination of similar sized particle impacts on a freely supported target plate and 

identifying sand particles in the presence of bubbles on a fixed target plate. These 

laboratory experiments were preceded by pencil lead break tests performed on the target 

plate in varied environments.  

In general, this work shows the potential of an alternative, frequency band energy 

ratio based AE technique which has advantages over more basic amplitude based AE 

techniques currently in practice for different industrial applications such as sand 

monitoring in oil and gas, for particle detection in nuclear reactor or in process 

industries(8,9,12).  

The main findings from these experiments are presented below. 

7.1  Preliminary pencil lead break experiments 

• For any PLB test, higher amplitude signals were obtained at sensors positioned 

at the centre of the target plate (S1) than the off-centred sensor position (S2). 

This is also evident from event energy and power spectral density analysis.  

• The effect of fixing the target plate into the end of a cylinder is to shorten PLB 

event duration and cause changes in the time frequency representations (PSD 

& GWT) of the analysed AE signals. 

• For any particular set of tests the frequency content is repeatable. However, 

between tests the frequency content shifts for both sensor locations. This is 

observed through the frequency domain PSD analysis and from GWT of the 

acquired signals. 

• Though the frequency content in signals between tests have been changed the 

peaks in the frequency spectra remain the same due to the broad band frequency 

response of the sensors used.   

• For experiments where the target plate is fixed in the end of a cylinder, from all 

the performed signal analysis results, the results of PLB tests in water are slightly 

more varied than in air.  

• For any specific sensor location, the changes in frequency content and amplitude 

can be attributed to the variations in coupling, test set up, test environment and 

PLB procedure among different tests.  
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• For a specific test, variations in signal characteristics between two sensor 

locations are associated with the signal travel path differences, reflections and 

mode conversions due to varying boundary conditions. 

• For calibration, the variation in PLB AE signal strength means that an average 

response is needed for calibration for every test. Techniques using frequency 

response ratios offered a way around this problem. However some calibration of 

every individual application, be it in the laboratory or industry, will be required. 

7.2 Similar sized particle impact test 

• Applying standard AE parameters such as number of events, peak AE or AE 

Energy may be sufficient to distinguish sources for many simple applications. 

However, for small coupon geometries, typical in engineering applications, the 

presence of close boundaries makes the interpretation difficult if not invalid due 

to reflections, dispersions and mode conversions.  

• A unique frequency band energy ratio analysis technique has been proposed to 

distinguish between two very similar groups (in terms of size, mass and energy) 

of sand particles and glass beads, impacting on mild steel. Optimum Frequency 

band AE energy ratio to distinguish the particles has been identified for this 

experimental set up.  

• For applying standard AE parameters, in applications, usually requires some 

form of calibrations, standardisation or normalisation. For the developed 

technique in this research, once the optimal frequency bands and ratios have 

been identified, then an added advantage is that calibration of signal levels is not 

required. However the proposed framework for applying this new technique must 

be carried out with initial experimentation to characterize the optimum frequency 

band for any particular industrial application. 

• The symmetrical structure of the cylindrical target plate facilitates two main 

sensor position consideration: centred and off-centred. Among these two sensor 

positions it has been found that the off-centred sensor position (S2) is more 

suitable for differentiating populations of two very similar particle impact types 

(glass beads and sand particle) originated at the centre of the cylindrical surface 

for this experiment.  

• Part of the available data set (80%) has been used for developing a classification 

technique implementing SVM classification algorithm based on standard AE 

parameters. The developed model has been tested on the rest of the data set. 

The overall success rate of individual particle impact classification (glass beads 

and sand particles) for S1 is 86% and for S2 is 92%.  
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7.3 Particle impacts in presence of bubble experiments  

• Two main sources of AE, sand particle impact and bubbles, have been 

considered in the laboratory experiments. For this specific experimental 

arrangement and used sensors characteristics, lower frequency contents have 

been found to be associated with bubble events and higher frequency contents 

have been related to sand particle impacts.  

• The distinct frequency signatures of bubble and sand particle impact events have 

been used to develop a new automatic event identification technique and has 

been tested on the acquired laboratory signals.  

• The developed technique is sensitive to the amplitude threshold settings for 

event identification. Higher threshold, e.g., 10% of the maximum amplitude, will 

clearly identify sand particle impacts but for multiparticle tests is likely to not 

detect about 20% of lower (impact) energy particles. Lower threshold, e.g., 3% 

of the maximum amplitude, is likely to result in detection of AE events with poor 

frequency content and wrong classification of the weakest events.  

• Increasing the number of particles for multiparticle testing increases the chances 

of particle interactions which can result in lower particle impact energy or non-

separable impact events. 

• For this experimental set up and sensors used, the performance of the developed 

method has not been affected by the sensor locations considered. 

• Optimising the particle impacts identification has been achieved dependent upon 

setting optimum threshold, finding optimum frequency bands and establishing 

optimum relation among the frequency bands. 

7.4 Contributions and Future Recommendations 

• Large lateral dimension along the direction of wave propagation, for thin simple 

structures, enables individual wave modes detection present in the structure 

(23,76). However, for thick small coupon specimen with close boundary, signal 

distortion due to dispersion, reflection  and mode conversion becomes prominent 

making individual mode identification very difficult (74,78,81). For such 

structures, any signal analysis technique based on individual mode 

characterization in time, frequency or time-frequency domain, as described in 

(76,77), will not work. In this research, a small cylindrical stepped specimen with 

close boundary has been considered. It has been found that though mixing of 

different wave modes makes the signal interpretation difficult but also due to 

frequency response characteristics of the sensors used in the research, certain 

frequency bands become more reactive to the physical sources that generated 
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the received AE signal. This frequency band information can be used for 

appropriate signal processing to characterize the sources.  

• Prior researches involving particle impacts on small coupon specimen 

established relationships between AE energy with particle diameters and 

velocities for different particle sizes and different environmental conditions (wet 

and dry) (40,47,48,49,51,52). However, this does not assure impacted particle 

type identification if there is more than one type of particles present since AE 

energy is not unique to a particle type and can be dependent upon various factors 

such as velocity and impact angle. A frequency band energy ratio based 

parameter evaluation, developed in this research, helps to identify populations of 

very similar type (size, mass and energy) particle impacts. Also, an SVM 

classification algorithm based technique, implementing standard AE parameters, 

has been discussed which has shown significant success. 

• In a laboratory set up like the one considered in this research and previous 

research works (40,50,52), generally the amplitude of particle impacts is higher 

than the bubble related AE signals. However, in practical case (11), bubble 

energy is comparable to the particle impacts energy and can be misinterpreted if 

the condition of the system calibration, based on signal amplitude or energy, 

changes. In this research, an automatic particle impact event identification in 

presence of bubbles is presented. The success of this  technique, based on 

frequency band energy ratio, depends upon detection of optimum frequency 

bands and establishing a classification relationship between these frequency 

bands as well as setting an optimum amplitude threshold to identify the actual 

amount of impacts correctly.  

The following points can be considered for any future research work carried: 

• For performed experiments, sensors characteristic frequency behaviours 

facilitates identification of different types of constituents. Sensors with different 

frequency characteristics should be the next step. 

• In this research, one classification algorithm (SVM) has been implemented. Other 

classification algorithm, such as Random Forest, Neural Network can be 

considered for similar sized particle impacts identification. 

• To validate the developed frequency band AE energy based technique, a real 

life application, for example, AE records from sensors mounted on petroleum 

flow line subjected to sand production will be possible. 

• More different fluid types and constituents for more varied conditions can verify 

the robustness of the technique in a wider perspective. 
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• With a better controlled environment, identification of various bubble formation 

stages and interaction among different bubbles can be studied and could aid in 

better understanding of particle impact identifications in the presence of 

bubbles in practical cases. 
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Appendix A : Time domain AE signals for various fixed target plate experimental 

environments 

A1. Fixed – Water PLB experiment 

 

                       (a) 

 

                            (b) 

 

Figure A - 1: Typical AE signal from PLB at (a) S1 and at (b) S2 for Fixed – Water 

experiment. 
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A2. Masked PLB experiment 

 

                                                                       (a) 

 

                                                                        (b) 

 

Figure A - 2: Typical AE signal from PLB at (a) S1 and at (b) S2 for Masked experiment. 
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A3. Masked – Water PLB experiment 

 

             (a) 

 

            (b) 

Figure A - 3: Typical AE signal from PLB at (a) S1 and at (b) S2 Masked – Water 

experiment. 

  



132 
 

 

Appendix B : Standard time domain AE parameter analysis for PLB 

B1. Maximum Amplitude 

 

(a) 

 

(b) 

Figure B - 1: At (a) S1 and (b) S2, variation of maximum amplitude for recorded AE 

signals for all the experiments. 
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(a) 

 

(b) 

 

Figure B - 2: At sensor positions, (a) S1 and (b) S2, the variation of maximum amplitudes 

for all the recorded AE signals for four different test environments.  
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B2. Duration 

 
(a) 

 

 
(b) 

Figure B - 3: At (a) S1 and (b) S2, variation in event duration of the recorded AE signals 

for all  experiments. 
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(a) 

 

(b) 

Figure B - 4: At sensor positions, (a) S1 and (b) S2, the variation of event duration for all 

the recorded AE signals at different test environments. 
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B3. Rise Time 

 

(a) 

 

 
(b) 

 

Figure B - 5: At (a) S1 and (b) S2, variation in rise time of the recorded AE signals for all 

the experiments on free target plate. 

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
is

e
 t

im
e

 (
μ

s
)

Test Number

Exp 1

Exp 2

Exp 3

Exp 4

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
is

e
 t

im
e

 (
μ

s
)

Test Number

Exp 1

Exp 2

Exp 3

Exp 4



137 
 

 

(a) 

 

(b) 

Figure B - 6: At sensor positions, (a) S1 and (b) S2, variation of rise time for all the 

recorded AE signals with masked and without masked target plate, in air and water. 
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B4. AE Energy 

 

(a) 

 

(b) 
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(c) 

Figure B - 7: At (a) S1 and (b) S2, variation in AE energy of the recorded AE signals for 

all the experiments. (c) Normalised AE energy of the sensors. E1 and E2 refers to energy 

at S1 and S2 respectively. 
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(b) 

 

Figure B - 8: At sensor positions, (a) S1 and (b) S2, variation of AE energy for all the 

recorded AE signals with masked and without masked target plate, in air and water. 
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(b) 

Figure B - 9: At (a) S1 and (b) S2, variation in event duration of the recorded AE signals 

for all the experiments. 
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(b) 

Figure B - 10: At sensor positions, (a) S1 and (b) S2, variation of spectral centroid for all 

the recorded AE signals with masked and without masked target plate, in air and water. 

B6. Power Spectral Density 
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(b) 

 

(c) 

Figure B - 11: At (a) S1 and (b) S2, variation in PSD of the recorded AE signals for all 

the experiments. (c) Normalsied PSD (P2/P1). P1 and P2 refers to PSD for S1 and S2 

respectively. 
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(a) 

 

 

(b) 

Figure B - 12: At sensor positions, (a) S1 and (b) S2, variation of PSD for all the recorded 

AE signals in the experiments performed in  four environments: Fixed, Fixed – Water, 

Masked and Maksed - Water. 
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B7. Maximum PSD Frequency  

 

(a) 

 

(b) 

Figure B - 13: At sensor positions, (a) S1 and (b) S2, variation in peak PSD frequency 

for all the recorded AE signals performed in  four experimental environments: Fixed, 

Fixed – Water, Masked and Maksed - Water. 
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Appendix C : Standard AE parameters analysis for populations of similar sized 

particle impacts with PLB on mild steel target plate 

C1. Maximum Amplitude  

 
(a) 

 
(b) 

Figure C -  1:  Variations in maximum amplitude of similar sized particle impacts populations  with 
PLB in four experiments on mild steel target plate for (a) S1 & (b) S2. 
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C2. Event Duration  

 
(a) 

 
(b) 

Figure C -  2:  Variations in event durations of similar sized particle impacts populations  with PLB 
in four experiments on mild steel target plate for (a) S1 & (b) S2. 
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C3. Event Energy 

 
(a) 

 
(b) 

Figure C -  3:  Variations in event energy of similar sized particle impacts populations  with PLB 
in four experiments on mild steel target plate for (a) S1 & (b) S2. 
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C4. Maximum Power Spectral Density   

 
(a) 

 
(b) 

Figure C -  4:  Variations in maximum PSD of similar sized particle impacts populations  with PLB 
in four experiments on mild steel target plate for (a) S1 & (b) S2. 
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C5. Maximum Frequency 

 
(a) 

 
(b) 

Figure C -  5:  Variations in maximum Frequency of similar sized particle impacts populations  
with PLB in four experiments on mild steel target plate for (a) S1 & (b) S2. 
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C6. Frequency Centroid  

 
(a) 

 
(b) 

Figure C -  6:  Variations in Frequency centroid of similar sized particle impacts populations  with 
PLB in four experiments on mild steel target plate for (a) S1 & (b) S2. 
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Appendix D Standard AE parameter analysis of single bubble signals 

D1. Maximum Amplitude 

 

(a) 

 

(b) 

Figure D -  1: Maximum amplitude of single bubble signals at (a) S1 & (b) S2. 
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D2. Event Duration 

 

(a) 

 

(b) 

Figure D -  2: Event duration for single bubble signals at (a) S1 & (b) S2. 
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D3. Rise Time 

 

(a) 

 

(b) 

Figure D -  3: Rise time of single bubble signals at (a) S1 & (b) S2. 
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D4. Event Energy 

 

(a) 

 

(b) 

Figure D -  4: AE event energy for single bubble signals at (a) S1 & (b) S2. 
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D5. Spectral centroid 

 

(a) 

 

(b) 

Figure D -  5: Spectral centroid of single bubble signals at (a) S1 & (b) S2. 
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D6. Maximum PSD 

 

(a) 

 

(b) 

Figure D -  6: Maximum PSD of single bubble signals at (a) S1 & (b) S2. 
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D7. Maximum PSD Frequeny 

 

(a) 

 

(b) 

Figure D -  7: Maximum PSD frequency of single bubble signals at (a) S1 & (b) S2 
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Appendix E Standard AE parameter analysis of single particle impacts on fixed 

target plate in air 

E1. Maximum Amplitude 

 
(a) 

 
(b) 

Figure E -  1: Maximum amplitude of single sand particle impact on target plate signals at (a) S1 

& (b) S2 
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E2. Event Duration 

 
(a) 

 
(b) 

Figure E -  2: Event durations of AE records for single sand particle impacts on fixed 

target plate in air at (a) S1 & (b) S2. 
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E3. Rise Time 

 

(a) 

 

(b) 

Figure E -  3: Rise times of AE records for single sand particle impacts on fixed target 

plate in air at (a) S1 & (b) S2. 
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E4. Event Energy 

 
(a) 

 
(b) 

 

Figure E -  4: Event energy of AE records for single sand particle impacts on fixed target 

plate in air at (a) S1 & (b) S2. 
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E5. Spectral centroid 

 

(a) 

 

(b) 

Figure E -  5: Spectral centroid of single sand particle impact on target plate signals at 

(a) S1 & (b) S2. 
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E6. Maximum PSD 

 
(a) 

 
(b) 

Figure E -  6: Maximum PSD of single sand particle impacts on target plate signals at (a) 

S1 & (b) S2. 
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E7. Maximum PSD Frequency 

 

(a) 

 

(b) 

Figure E -  7: Maximum PSD Frequency of AE records for single sand particle impacts on 

fixed target plate at (a) S1 & (b) S2. 
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