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Abstract: The transport behaviour of carrier gases with inorganic catalytic ceramic membrane used for ethyl lactate production and 
VOC (volatile organic compound) recovery in the gauge pressure range of 0.10-1.00 bar and temperature range of 333 K was 
investigated. The gases include Ar (argon), N2 (nitrogen) and CO2 (carbon dioxide). The gas kinetic diameter with respect to permenace 
was found to occur in the order of Ar > CO2 > N2, which was not in agreement with molecular sieving mechanism of transport after the 
first dip-coating of the support. However, gas flow rate was found to increase with gauge pressure in the order of Ar > CO2 > N2, 
indicating Knudsen mechanism of transport. The porous ceramic support showed a higher flux indicating Knudsen transport. The 
surface image of the dip-coated porous ceramic membrane was characterised using SEM (scanning electron microscopy) to determine 
the surface morphology of the porous support at 333 K.  
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1. Introduction 

VOCs (volatile organic compounds) are a large 

group of organic compounds that have high vapour 

pressure which means they can easily evaporate into 

the atmosphere. Light hydrocarbons such as methane, 

ethane, propane and butane are considered as a part of 

this group [1].  

In this context, VOC refers to the mixture of 

hydrocarbon gasses ranging from methane to butane. 

The main component is methane which is considered a 

greenhouse gas with a GWP (global warming potential) 

of 21, while CO2 has GWP of 1; hence the effect of 1 

unit of methane emitted is equivalent to the effect of 21 

units of CO2 emitted. The other components of VOC 

which mainly consists of propane and butane are 

commonly referred to NMVOC (non-methane volatile 
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organic compound) and they react chemically with 

nitrous oxides that result in the formation of ground 

level ozone [2], which has detrimental effects to the 

environment and to human health as well. Emission of 

VOC to the atmosphere from shuttle tankers worldwide 

has not been systematically measured and observed. 

The emission has great impacts on the environment as 

well as on causing great monetary loss.  

There are various measures in place for the control 

of VOCs emitted from shuttle tankers. However, the 

main problem in the recovery of VOCs from tankers is 

that the evaporated hydrocarbons are diluted in vast 

amounts of inert gasses when the gas mixture is 

displaced by the inflow of oil during loading of the 

cargo tanks [3]. Storage, production and transportation 

of crude oil and gasoline results in the emission of 

VOC, mainly from the loading and offloading 

operations [1]. 

The global increase in the development of remote oil 
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fields has increased the need for the use of shuttle 

tankers as a means for transporting crude oil as well as 

motivated research into the use of membrane 

technology as a viable option for the recovery of 

hydrocarbons from crude oil during shuttle tanker 

loading and offloading operations. In the last few years, 

the potentialities of membrane operations had been 

widely recognized. In some preliminary investigations, 

polymeric membranes such as silicone rubber have 

been used [4]. The membranes that are more permeable 

to lighter hydrocarbons are the polyacetylene polymers, 

the micro porous absorbent carbon and the silicon 

rubber [4]. Though they have high selectivity, they 

cannot withstand harsh chemical environments as well 

as high temperatures, while ceramic membranes have 

adequate thermal and chemical durability [2].  

The factors considered for the selection of 

membranes for a given application are strongly related 

to several factors like the separation efficiency, 

productivity, durability and mechanical integrity [5]. 

Different aspects need to be investigated in-depth in 

order to maintain good separation process including 

[6]:  

 structure and material of the membrane; 

 membrane transport properties which include 

permeability, permeance and selectivity; 

 module and process design. 

Gas separation membranes are used for numerous 

applications. Table 1 shows the various applications of 

membranes. 

Membranes  used  for  gas  separations  can  be 

generally classified into organic polymeric membranes 

and inorganic membranes. The organic polymeric 

membranes that are used for gas separations are hollow 

asymmetric and nonporous. An important feature in the 

preparation of polymer membrane for gas separations 

is the process of spinning them into hollow fiber 

membranes, which due to its large area is suitable for 

large  scale  industrial  applications [8]. The  major 

drawback for the use of these polymeric membranes is 

that they can not stand high temperatures and harsh 

chemical conditions. In petrochemical plants, natural 

gas treatment of plants and refineries, feed gas streams 

of  heavy  hydrocarbons  can  be a  problem  as  the 

polymer membranes can be plasticised or become 

swollen [9]. The development of inorganic membranes 

is riveting as they can stand high temperatures and 

harsh chemical conditions. The major drawback for 

these membranes is their high cost, brittleness, low 

membrane area and low permeability in the case of 

highly  selective  dense  membranes 
 [9].  Inorganic 

membranes based on alumina, zeolites, carbon and 

silica have been used for the capture of CO2 at elevated 

temperatures [10]. For the separation of hydrocarbons, 

zeolite membranes have shown interesting separation 

characteristics, although their separation efficiency is 

depended on the operating conditions like temperature, 

composition and total pressure [11]. In a membrane 

separation unit, the temperature and pressure are 

 

Table 1  Applications of gas separation membranes (adapted from Abedini and Nezhadmoghadam) [7]. 

No. Common gas separation Applications 

1 O2/N2 Oxygen enrichment and inert gas generation 

2 H2/Hydrocarbons Refinery hydrogen recovery 

3 H2/N2  Ammonia purge gas 

4 H2/CO Syngas ratio adjustment 

5 CO2/Hydrocarbons Acid gas treatment and landfill gas upgrading 

6 H2O/Hydrocarbons Sour gas treatment 

7 

He/Hydrocarbons  
He/N2 

Hydrocarbons/Air 
H2O/Air 

Helium separation 
Helium recovery 
Pollution control and recovery of hydrocarbons 
Air humidification 
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including the addition of alcohol to the reaction and 

increasing the temperature. Also, employing a ceramic 

membrane as catalyst can help to shift the equilibrium 

to the more product side by selective removal of water. 

Compared to other membranes, ceramic membrane can 

withstand the effect of thermal, mechanical and 

chemical stability. The ceramic membranes are 

recently used to possess an asymmetric structure which 

consists of a support layer such as α-alumina and 

zirconia with fine pores which controls the permeation 

flux [18]. This membrane can be categorised into 

different types depending on the pore size including 

microporous with the pore size � 2nm, mesoporous 

2-50nm, macroporous � 50nm and dense ceramic 

membrane [19]. Materials including SiO2, Al2O3, ZrO2 

and TiO2 are the most frequently used materials for 

ceramic membrane. Basically, the macroporous layer 

provides the mechanical support, while the 

mesoporous layer which is the middle layer links the 

pore size differences between macroporous (support 

layer) and the microporous (top layer) where the actual 

separation occurs [20]. Inorganic membrane can be 

prepared using different separation methods including 

sol-gel, sintering, chemical deposition and dip-coating 

methods [21]. The dip-coating has been widely 

employed to fabricate ceramic membrane with 

macroporous to microporous level based on the porous 

support and is also a convenient membrane preparation 

technology. Generally, the conventional dip-coating 

process involves two major steps: support dipping and 

support withdrawal [22]. The suitability of a ceramic 

membrane depends on the membrane selectivity and 

permeability [23]. However, gas transport through 

porous ceramic membrane can be explained using 

different mechanism of transport including surface 

diffusion, viscous flow, molecular sieving and 

Knudsen diffusion [24]. Viscous flow occurs if the 

pore radius of the membrane is larger than the mean 

free path of the permeating gas molecule, in this case, 

more collision will take place between the pore wall of 

the membrane than that between the permeating gas 

molecule. Knudsen diffusion is likely to be mechanism 

controlling the rate of transport if the mean free path of 

the permeating gas molecule is greater than the pore 

size of the membrane [25]. Molecular sieve occurs 

when the diameter of the gas molecule is roughly the 

same as the pores of the membrane. Surface diffusion 

mechanism enables permeation rate relative to 

Knudsen diffusion in such a way that the gas is strongly 

adsorbed on the pores of the membrane [25]. 

2. Experiment 

The carrier gas permeation test through a porous 

inorganic ceramic membrane was carried out using 

four different gases namely He (helium), N2 (nitrogen), 

Ar (argon) and CO2 (carbon dioxide). The membrane 

pore size was 15 nm, the length of the membrane was 

36.6 cm, while the inner and outer radiuses of the 

membrane were 7 mm and 10 mm, respectively. The 

gas flow rate was determined using the digital flow 

meter (L/min). The gas pressure was measured 

between pressure range of 0.10-1.00 bar and 

temperature range of 333-433 K. Fig. 2 shows the 

schematic diagram of the gas permeation temperature 

setup. The gases were purchased form BOC, Aberdeen, 

UK. The commercial porous ceramic membrane was 

supplied by CTI, France. 

The membrane preparation was carried out by 

dipping as shown in Fig. 3. A certain amount of 

isopentane was measured into a 1,000 mL glass 

cylinder and a known amount of silicon elastomer was 

added to the solution together with a known amount of 

sylgard. The mixture was allowed to stir for 30 min. 

After 30 min, the support was immersed into the 

solution and allowed in the solution. After 30 min, the 

support was taken out from the bulk of solution 

(sol-solution) and air dried for 30 min. The support was 

transferred to the oven and allowed in the oven for 2 h 

at a programmed temperature of 65 oC before the 

analysis with the different gases at different 

temperatures [26]. Fig. 3 shows the schematic setup of 

the membrane dip-coating process. The membrane was 
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Fig. 2  Gas permeation temperature setup. 
 

 
Fig. 3  Schematic setup for membrane preparation process.  
 

coated once to determine the effect of the membrane 

coating with temperature. The membrane preparation 

process was carried out in a clean room environment to 

obtain a defect-free ceramic support.  

The support was weighed before and after 

modification to determine the amount of deposited 

membrane. The membrane thickness was then 

calculated using Eq. (4).  

ܮ ൌ
ௐమష ௐభ

஺ఘሺଵିఌሻ
                 (4) 

where, L = membrane thickness (m), W2 is total weight 

of the support and membrane (g), W1 is weight of the 
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result was in agreement with a review by Ref. [23]. The 

gas flux (mol·m-2·s-1) against gauge pressure (Pa) is 

shown in Fig. 7. 

The surface image of the porous ceramic membrane 

was also investigated to determine the surface 

morphology of the dip-coated membrane. The surface 

examination of the dip-coated membrane was focused 

at the magnification of 150 x with the scale of 100 μm. 

From the result obtained for the interior surface image 

in Fig. 8, it was observed that a shiny crystalline 

surface indicating the effect of the silica layer in which 

the membrane was coated with. Although the 

membrane showed a crystalline surface, there was no 

noticeable crack on the surface indicating that the layer 

was free from defect. 

4. Conclusions 

The carrier gas transport of ceramic membrane was 

achieved. Knudsen flow mechanism of transport plays 

a major role in the gas transport through a ceramic 

membrane. The membrane thickness was found to 

increase after the dip-coating process which was 

attributed to the silica solution that was used in the 

membrane preparation. The gas Kinetic diameter in 

relation to the gauge pressure did not completely 

support the molecular sieving mechanism of transport. 

The low permeance of CO2 was attributed to the effect 

of its molecular size. The inverse of the square root of 

the gas molecular weight did not follow the trend of a 

straight line graph as was expected. The gas flux graph 

showed a good correlation value R2 of up to 0.9916 and 

a large positive slope indicating dominant Knudsen 

flow mechanism at the temperature of 333 K. The low 

permeance of CO2 indicated the effect of the gas 

molecular size as a result of surface adsorption 

mechanism. The interior surface image examination 

showed a whitish surface on the exterior surface which 

was attributed to the silica solution that was used in 

coating the membrane surface. There was no noticeable 

crack on the surface of the membrane indicating a 

defect-free layer supporting Knudsen diffusion as the 

dominant mechanism of transport.  
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