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Abstract 
 

Atherosclerosis is a multifactorial, chronic inflammatory condition characterised by endothelial 

dysfunction, hyperlipidaemia and the accumulation of fatty deposits within the tunica intima of 

medium-to-large sized muscular arteries. This disease can prove fatal with patients suffering lethal 

myocardial infarction or stroke. Recently, two studies investigating the role of G-protein-coupled 

receptor 55 (GPR55) in atherosclerosis reported conflicting results; one reported a pro-atherogenic 

role for GPR55 and the other, an anti-atherogenic role for this receptor. Interestingly, another study 

demonstrated that the activation of GPR55 by lysophosphatidylinositol (LPI) in cultured rat neonatal 

ventricular cardiomyocytes provokes distinct cellular functions that are dependent on the location of 

GPR55, leading to suggestions that GPR55 may regulate cardiomyocyte function at two cellular sites 

and be a potential therapeutic target for cardiac disorders. While it has been demonstrated that 

GPR55 is important in the maintenance of cardiac function of healthy mice, what is currently 

unknown is if GPR55 has a role in the cardiovascular remodelling and cardiac function of 

atherosclerosis prone mice. To address this, the present studies were conducted to investigate 1) the 

role of GPR55 in atherogenesis, 2) if GPR55 has a role in the cardiac function of mice suffering from 

atherosclerosis, 3) the signalling pathway by which LPI activates cardiomyocytes, 4) the impact of 

GPR55 activation on the outcome of myocardial ischaemia/reperfusion (I/R) injury and, 5) the 

signalling mechanisms by which GPR55 elicits any observed effects on the myocardium in response 

to such injury. Using C57BL/6 (wildtype; WT), apolipoprotein E knockout (ApoE-/-; mouse model of 

atherosclerosis), GPR55 knockout (GPR55-/-) and novel ApoE-/-/GPR55-/- mice, this study has 

established that in the presence of high fat feeding (to accelerate atherosclerosis), GPR55 has a 

complex role whereby it both regulates risk factors associated with atherosclerosis (i.e. body weight 

and fat mass) yet promotes the development of fatty streaks within the vasculature, via a lipid 

independent mechanism. In terms of cardiac function, GPR55 exerted a protective role by 

maintaining the systolic function of high fat fed ApoE-/- mice, yet negatively affected the contractile 

reserve of these mice. With regard to infarct size, the present study established that LPI-induced 

activation of GPR55 (pre-global ischaemia) exacerbates myocardial tissue injury via a Rho-associated 

protein kinase (ROCK) dependent mechanism. Finally, this study established that LPI signals through 

the same signalling pathway as it did in the isolated heart, in both mouse and human-induced 

pluripotent stem cell-derived cardiomyocytes thus suggesting a translational role for GPR55 in the 

human heart. In conclusion, despite further research being required, the data presented within this 

thesis provides evidence that GPR55 may have the potential to be targeted for therapeutic gains in 

atherosclerosis and myocardial I/R injury.   
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1.1.  GPR55/LPI system 

 

1.1.1.  G-protein-coupled receptors  

 

G-protein-coupled receptors (GPCRs) form the largest subgroup of the receptor family. The y are 7-

transmembrane-spanning receptors. G-proteins are heterotrimeric protein complexes each 

consisting of an alpha (α), beta (β) and gamma (γ) subunit. The G-protein is situated on the 

intracellular surface of the plasma membrane and its subunits are secured through a fatty acid chain 

coupled to them via prenylation. The G-protein remains unattached and guanosine diphosphate 

(GDP) remains bound to the α subunit’s binding site until a substrate binds to the GPCR. When a 

substrate does associate with the GPCR, the GPCR undergoes a conformational change causing the 

cytoplasmic domain to have a high affinity for the G-protein and consequently the α, β and γ 

subunits collectively couple to the GPCR. This results in GDP dissociation from the α subunit and the 

subsequent binding of guanosine triphosphate (GTP); a process known as GDP-GTP exchange. GDP-

GTP exchange causes the α, β and γ trimer to dissociate releasing the GTP bound α subunit (α -GTP) 

and the β and γ subunits together as a complex (βγ). These dissociated forms of the G-protein are 

now ‘active’ and can freely bind to plasma membrane effector proteins such as enzymes or ion 

channels, in turn instigating the cell’s next intracellular response(s). It should be noted that various 

forms of the G-protein’s α subunit exist therefore the effector protein targeted is dependent on the 

form of α subunit involved (i.e. Gαs, Gαi, Gαo, Gαq; Rang et al., 2007 and Widmaier et al., 2006). 

 

The human genome contains genes that encode for approximately 800 GPCRs, of which 

approximately 350 exhibit non-sensory functions. A number of GPCRs were classified as “orphan” 

receptors due to the lack of a known endogenous ligand. Among the orphan receptors is G-protein-

coupled receptor 55 (GPR55). Although there are multiple reports that GPR55 can be activated in 

vitro by lysophosphatidylinositol (LPI), there is limited evidence of LPI-induced activation of GPR55 in 

vivo. Consequently, GPR55 has retained its orphan status (Alexander et al., 2015). 

 

1.1.2.  GPR55  

 

1.1.2.1.  Discovery 

  

The gene for GPR55 was first identified ‘in silico’ through the expressed sequence tags (EST) 

database. A partial complimentary deoxyribonucleic acid (cDNA) clone (clone identification: 248165) 
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of GPR55 (acquired from the I.M.A.G.E. Consortium) was utilised to screen a human genomic library 

to obtain the full length gene which was subsequently cloned (Sawzdargo et al., 1999). GPR55 is 

comprised of 319 amino acids and has been located on chromosome 2q37 through fluorescence in 

situ hybridization (Sawzdargo et al., 1999).  

 

1.1.2.2.  Tissue expression and distribution 

 

In 1999, GPR55 messenger ribonucleic acid (mRNA) transcripts (4.3, 7.0 and 10-kb) were first 

identified in human caudate and putamen through Northern blot analysis (Sawzdargo et al., 1999) 

and subsequent studies in rat brain revealed that GPR55 mRNA is also present in the hippocampus, 

various thalamic nuclei and parts of the midbrain (Sawdargo et al., 1999). More recently, it has been 

established that GPR55 is widely expressed (mRNA and/or protein) in the periphery, includi ng human 

adipose tissue (visceral and subcutaneous) and the liver (Moreno-Navarrete et al., 2012). Such 

expression has also been detected in the murine spleen, adrenal glands, jejunum and ileum (Ryberg 

et al., 2007). In terms of the cardiovascular system, GPR55 expression has been reported in human 

endothelial cells (Waldeck-Weiermair et al., 2008, Kargl et al., 2013, Wilhelmsen et al., 2014, 

Kremshofer et al., 2015 and Al Suleimani and Hiley, 2016), human heart tissue (Henstridge et al., 

2011), rat neonatal ventricular cardiomyocytes (Yu et al., 2013) and, through the use of 

immunostaining, Walsh and colleagues (2014) recently demonstrated the presence of GPR55 in the 

ventricular tissue of C57BL/6 (wildtype; WT) mice and its absence in that of GPR55 knockout (GPR55-

/-) mice. Interestingly, earlier studies involving quantitative polymerase chain reaction (qPCR) failed 

to detect GPR55 in the murine (Ryberg et al., 2007) and human heart (Oka et al., 2010), however, 

despite the reported differences in expression, it has been proposed that GPR55 may be involved in 

the regulation of a number of physiological processes as a consequence of its extensive expression 

throughout the body (Henstridge et al., 2011). On the other hand, an alternative proposal is that 

GPR55 may lie dormant under normal physiological conditions and become activated in pathological 

situations; for example, GPR55 expression is relatively low in the visceral and subcutaneous adipose 

tissue of humans who are within the normal weight range but is markedly increased in those 

exhibiting an obese phenotype (Moreno-Navarrete et al., 2012).  

 

1.1.3.  Pharmacology of GPR55 

 

Originally, it was thought that cannabinoid receptors (CB1 and CB2) were responsible for the majority 

of actions elicited by the endocannabinoid system (ECS). However, animal models deficient in the 
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genes encoding these two receptors responded to cannabinoids even in their absence (reviewed by 

Mackie and Stella, 2006) suggesting the existence of another or other unidentified cannabinoid  

receptor(s). Due to the fact that GPR55 is activated by some endocannabinoid ligands such as 

anandamide and virodhamine (Ryberg et al., 2007), it was proposed as a CB3 receptor. However, the 

lack of homology with CB1 and CB2 receptors and the finding that non-cannabinoid ligands activate 

GPR55 has led to a decline in this concept. 

 

Over recent years, L-α-lysophosphatidylinositol (L-α-LPI), derived from soybean (for chemical 

structure see Figure 1.1.) has been used as a tool to investigate if this lysophospholipid subspecies 

could be the endogenous ligand of GPR55. Oka and colleagues (2007) first demonstrated that L-α-LPI 

activated GPR55 in human embryonic kidney (HEK293) cells expressing GPR55 (GPR55-HEK293 cells) 

which consequently resulted in the rapid phosphorylation of extracellular signal -regulated kinase 

(ERK), Ca2+ transients and the stimulation of [35S]guanosine-5’-O-(3-thio)triphosphate ([35S]GTPγS) 

binding. It has since been demonstrated that L-α-LPI activates GPR55 in other cell types such as 

cardiomyocytes (Yu et al., 2013), endothelial cells (Al Suleimani and Hiley, 2015) and breast cancer 

cells (Andradas et al., 2016).  

 

LPI is generated from phosphatidylinositol hydrolysis by the action of the Ca 2+-independent 

phospholipase A1 (PLA1) and Ca2+-dependent phospholipase A2 (PLA2) (Piñeiro and Falasca, 2012). 

For an extensive and comprehensive review of LPI’s synthesis and metabolism see Yamashita and 

colleagues (2013). Several endogenous species of LPI exist including 1-stearoyl LPI and 2-

arachidonoyl LPI. However, 2-arachidonoyl LPI (for chemical structure see Figure 1.2.) has been 

proposed as the natural ligand of GPR55 as it was the second most prominent LPI species in rat brain 

(8.3nmol/g tissue; 22.1% of total LPI present) and provoked the highest level of biological activity 

(EC50=30nM) in GPR55-expressing HEK293 cells, which was 8-15 times greater than the other 

endogenous LPI species present in this tissue (Oka et al., 2009). Nevertheless, this particular species 

is challenging to synthesise due to its complex synthesis pathway (for diagram of pathway see Figure 

1.3.), therefore in relation to GPR55 activation in studies, L-α-LPI has been most widely utilised.  

 

 

 

 

 

 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Piñeiro%20R%5BAuthor%5D&cauthor=true&cauthor_uid=22285325
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Figure 1.1. Molecular structure of L-α-LPI.  

 

 

 

 

 

 

 

Figure 1.2. Molecular structure of 2-arachidonoyl LPI. 
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Figure 1.3. The endogenous synthesis of LPI. Diagram modified from Yamashita and colleagues 

(2013). CDP; cytidine diphosphate, CTP; cytidine triphosphate, CoA; coenzyme A, LPI; 

lysophosphatidylinositol and PI, phosphatidylinositol.  
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1.1.4.  Signalling pathways 

  

Despite the complex pharmacology and lack of selective ligands for GPR55, a number of downstream 

signalling pathways have been reported upon its activation (Figure 1.4.).  

 

1.1.4.1.  Activation of GPR55 by synthetic and endocannabinoid ligands  

 

Studies with synthetic (i.e. O-1602) and endocannabinoid (i.e. anandamide) ligands have 

demonstrated that GPR55 signals through Gα13 with the subsequent activation of the Rho subfamily 

of small GTPases; Ras homolog gene family member A (RhoA), cell division control protein 42 

homolog (cdc42) and Ras-related C3 botulinum toxin substrate 1 (rac1) (Ryberg et al., 2007), as 

demonstrated by a GTPγS binding assay using GPR55-HEK293 cells and Western blotting. Moreover, 

in HEK293 cells transiently expressing human GPR55, several cannabinoids (JWH015, Δ9-

tetrahydrocannabinol (Δ9-THC) and methanandamide) have been shown to increase intracellular Ca2+ 

([Ca2+]i) via a pathway involving Gαq, Gα12 and RhoA activation, resulting in the downstream 

activation of the actin cytoskeleton and phospholipase C (PLC), consequently increasing [Ca2+]i via 

inositol 1,4,5-trisphosphate (IP3) receptor-gated stores (Lauckner et al., 2008). In addition, activation 

of GPR55 by anandamide has been shown to require integrin clustering in a human umbilical vein 

derived endothelial cell line (EA.hy926; Waldeck-Weiermair et al., 2008). When the αvβ3 and α5β1 

integrins are clustered, anandamide activates the phosphoinositide 3 kinase -bone marrow kinase X-

linked/epithelial and endothelial tyrosine kinase-PLC (PI3K-Bmx/Etk-PLCγ) pathway through GPR55, 

which consequently triggers the production of IP3 resulting in the release of Ca2+ from the 

endoplasmic reticulum and the subsequent activation of ERK1/2 and nuclear factor of activated T-

cells (NFAT). However, when αvβ3 and α5β1 are inactive (unclustered), anandamide initiates 

signalling via CB1 to activate spleen tyrosine kinase (Syk), which in turn inhibits PI3K and therefore 

blocks anandamide-induced GPR55 signalling in these cells. Therefore, in this setting, GPR55 

signalling is negatively regulated by CB1 when the latter is activated.  

 

Limited reports of crosstalk between GPR55 and other receptors have been documented. However, 

using human neutrophils, human promyelocytic leukaemia (HL60) cells and GPR55-HEK293 cells, 

Balenga and colleagues (2011) observed crosstalk between GPR55 and CB2 at the level of the small 

GTPases, cdc42 and Ras-related C3 botulinum toxin substrate 2 (rac2). Such crosstalk between 

receptors reduced CB2 mediated inflammatory responses associated with tissue injury while 

recruiting neutrophils to inflammatory regions more efficiently. Furthermore, crosstalk between CB 1 

https://en.wikipedia.org/wiki/Botulinum_toxin
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and GPR55 has been reported in HEK293 cells co-expressing both receptors (GPR55+CB1-HEK293 

cells). These receptors formed heteromers which influenced the signalling processes of each; the 

signalling of GPR55 was inhibited in the presence of CB1 (only when CB1 was in the inactive state), 

whereas, in the presence of GPR55, CB1 signalling was enhanced (Kargl et al., 2012). 

 

1.1.4.2.  GPR55 activation by LPI 

 

The downstream signalling pathways of LPI-induced GPR55 activation have also been investigated. 

Oka and colleagues (2007) first reported that GPR55 activation by LPI in GPR55-HEK293 cells elicited 

a dose dependent Ca2+ transient in addition to the rapid phosphorylation of ERK. Similar findings in 

the same cell type were later reported by Oka and colleagues (2009) who documented that multiple 

species of LPI (1-Palmitoyl LPI, 1-Stearoyl LPI, 1-Oleoyl LPI, 2-Oleoyl LPI, 2-Linleoyl LPI and 2-

Arachidonoyl LPI), other than the previously reported L-α-LPI species, could elicit dose-dependent 

Ca2+ transients as well as the rapid phosphorylation of ERK. It has also been reported in GPR55-

HEK293 cells, that the LPI/GPR55 system signals via Gα13 with the subsequent activation of RhoA and 

Rho-associated protein kinase (ROCK). Such activation stimulates the activity of PLC resulting in an 

oscillatory and prolonged IP3-mediated Ca2+ release from intracellular stores, which consequently 

leads to the activation of NFAT and its subsequent nuclear translocation (Henstridge et al., 2009). 

Further investigation regarding the signalling of the LPI/GPR55 system in GPR55-HEK293 cells was 

conducted by Oka and colleagues (2010) who reported that LPI-induced GPR55 activation resulted in 

the activation of RhoA and ROCK and that downstream of this, the rapid phosphorylation of p38 

mitogen-activated protein kinase (MAPK) and activating transcription factor 2 (ATF-2) took place.  

 

1.1.4.3.  Activation of GPR55 by LPI in the cardiovascular system  

 

Al Suleimani and Hiley (2015) observed that the LPI/GPR55 system mediated endothelium-

dependent relaxation of the rat mesenteric artery, an effect which involved the activation of the PLC-

IP3 pathway, RhoA-ROCK and intermediate conductance, Ca2+-activated, K+ channels (IKCa). In another 

study, it was reported that LPI induced a biphasic increase in [Ca2+]i in EA.hy926 endothelial cells. The 

initial phase was GPR55-dependent, mediated by the activation of large conductance, Ca2+-activated, 

K+ channels (BKCa) and resulted in temporary membrane hyperpolarization. However, the second 

phase occurred independently of GPR55 and involved the activation of non-selective cation channels 

and inhibition of the sodium-potassium adenosine triphosphatase (Na+-K+-ATPase), culminating in 

sustained membrane depolarization (Bondarenko et al., 2010). Additionally, Al Suleimani and Hiley 

https://en.wikipedia.org/wiki/Sodium
https://en.wikipedia.org/wiki/Potassium
https://en.wikipedia.org/wiki/Adenosine
https://en.wikipedia.org/wiki/Triphosphatase
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(2016) reported that LPI mediated a biphasic increase in [Ca2+]i in human brain microvascular 

endothelial cells (hCMEC/D3), the first phase of which involved the activation of the PLC-IP3 pathway 

and the latter, the activation of RhoA-ROCK. Taken together, the vascular data pertaining to the 

LPI/GPR55 system suggest that GPR55 may have a role in the control of vascular tone. In terms of 

GPR55 signalling in the heart, Yu and colleagues (2013) reported that LPI-induced GPR55 activation in 

cultured rat neonatal ventricular cardiomyocytes provokes distinct signalling pathways and cellular 

functions that are dependent on the cellular location of GPR55 i.e. at the sarcolemma or the 

membrane of intracellular organelles (discussed in detail in section 1.1.5.3.). Furthermore, studies 

investigating the role of LPI-induced GPR55 activation in the cardiovascular system have utilised 

exogenous LPI, however, it has been suggested that the endogenous source of LPI  within the 

cardiovascular system is activated platelets at the site of atherosclerotic plaque rupture (Kurano et 

al., 2015). For a diagram illustrating the proposed source of endogenous LPI release see Figure 1.5. 
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Figure 1.4. Signalling pathways of GPR55. AEA; anandamide, ATF-2; activating transcription factor 2, Ca 2+; calcium, CB1; cannabinoid receptor 1, cdc42; cell division control protein 42 homolog, 

EA.hy926; human umbilical  vein derived endothelial cell line, ERK; extracellular signal -regulated kinase, GPR55-HEK293; human embryonic kidney cells expressing G-protein-coupled receptor 55, 

IP3R; inositol 1,4,5-trisphosphate receptor, NFAT; nuclear factor of activated T-cells, LPI; lysophosphatidylinositol, LTCC; L-Type calcium channel, p38 MAPK; p38 mitogen-activated protein kinase, 

PI3K-Bmx/Etk-PLCγ; phosphoinositide 3 kinase -bone marrow kinase X-linked/epithelial and endothelial tyrosine kinase-phospholipase C gamma, PLC; phospholipase C, Rac1; Ras-related C3 

botulinum toxin substrate 1, RhoA; Ras homolog gene family member A, ROCK; Rho-associated protein kinase and ∆9-THC; ∆9-tetrahydrocannabinol. The ‘?’ symbolises that involvement of Gq in the 

study was neither confirmed nor excluded and ‘(-)’ signifies an inhibitory effect. References (Refs) 1-8 refer to Waldeck-Weiermair et al., 2008, Lauckner et al., 2008, Ryberg et al., 2007, Henstridge 

et al., 2009, Oka et al., 2007, Oka et al., 2009, Oka et al., 2010 and Yu et al., 2013, respectively. Diagram modified from Ross, 2009. 
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Figure 1.5. The proposed site of endogenous LPI release within the cardiovascular system. 

Endogenous LPI release from activated platelets at the site of atherosclerotic plaque rupture within a 

coronary artery. Heart diagram modified from WebMD®, 2017 and coronary artery diagram modified 

from Heart Diseases, 2017. 
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1.1.5.  The role of GPR55 in physiology and pathophysiology 

 

1.1.5.1.  General overview 

 

Many of the studies conducted on GPR55 have focussed on elucidating its pharmacological 

properties whilst searching for its endogenous ligand. However, a number of studies have provided 

insight into the physiological role of GPR55. For example, it has been demonstrated that GPR55 is 

involved in the regulation of colonic motility (Li et al., 2013), has a role in regulating osteoclast 

number and function in bone physiology (Whyte et al., 2009) and has a pro-inflammatory role in 

innate immunity (Chiurchiù et al., 2015). 

 

1.1.5.2.  Metabolism and energy balance 

 

Over recent years, an increasing number of studies have reported a function for GPR55 in energy 

metabolism. Romero-Zerbo and colleagues (2011) were first to publish on the role of GPR55 in the 

homeostatic control of glucose and documented that it could be a potential target for the 

management of type 2 diabetes and associated conditions as it was demonstrated that a GPR55 

agonist (O-1602) mediated insulin release, in part through activation of GPR55 in isolated islets of 

Langerhans. Since this report, several studies have investigated the role of GPR55 in glucose 

homeostasis, the results of which have unanimously indicated that the activation of GPR55 by 

agonists (abnormal cannabidiol (Abn-CBD), AM-251, oleoylethanolamide (OEA), O-1602 and 

palmitoylethanolamide (PEA)) in islets of Langerhans stimulates insulin secretion (McKillop et al., 

2013; Liu et al., 2016 and McKillop et al., 2016). 

 

An orexigenic action of GPR55 has also been suggested since O-1602 increases food consumption 

and adiposity in rats (Diaz-Arteaga et al., 2012), although the augmented food intake was also 

evident in GPR55-/- mice, suggesting that the orexigenic effects of O-1602 are likely to occur via 

actions independent of GPR55; indeed O-1602 is also a well described agonist of G-protein-coupled 

receptor 18 (GPR18; McHugh et al., 2012 and Console-Bram et al., 2014). However, it has been 

demonstrated that GPR55 and LPI are associated with human obesity as GPR55 mRNA expression is 

increased in both the visceral and subcutaneous adipose tissue of obese subjects when compared to 

lean subjects and even more so in obese subjects suffering from type 2 diabetes (Moreno -Navaratte 

et al., 2012). Moreover, the concentration of circulating plasma LPI of obese subjects is increased and 

correlates with the body weight, fat percentage and the body mass index (BMI) of females. 
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Furthermore, this study revealed that LPI increases the expression of genes associated with 

lipogenesis in visceral adipose tissue and also increases [Ca2+]i in differentiated visceral adipocytes.  

 

GPR55 expression in gonadal fat and serum LPI levels are also affected by factors such as nutritional 

status, pregnancy and gender in rats (Imbernon et al., 2014). In male mice fed a normal diet, GPR55 

deletion leads to an increased fat mass (epididymal fat, inguinal fat and brown adipose tissue), 

insulin resistance and liver steatosis (Meadows et al., 2016). Moreover, while a lack of GPR55 did not 

modify food consumption or feeding patterns of the mice, there was a reduction in their 

spontaneous and voluntary physical activity, implying that the reduced physical activity of GPR55 -/- 

mice results in diminished energy expenditure, which in turn, increases the ir adiposity. In contrast, a 

study in male GPR55-/- mice fed a café diet (a normal chow diet with high fat diet options) reported 

no differences between the body weights or fat masses of WT and GPR55 -/- mice after short (2 

months) or long term (7 months) feeding of this diet (Bjursell et al., 2016). Moreover, GPR55-/- mice 

fed normal chow exhibited only subtle reductions in both diurnal and nocturnal energy expenditure 

which led the authors to conclude that GPR55 does not appear to be a critical requ irement for 

overall metabolism. With the exception of the latter study, reports suggest an important role for 

GPR55 in metabolism and energy balance, although further studies are required to gain a more 

comprehensive understanding of the role of GPR55 in these settings. 

 

1.1.5.3.  GPR55 and cardiovascular physiology  

 

As previously mentioned, low levels of GPR55 mRNA expression in the human heart have been 

detected (Henstridge et al., 2011) and immunostaining has demonstrated the presence of GPR55 in 

the murine heart (Walsh et al., 2014). Despite this, little research has been carried out to investigate 

the role of GPR55 in cardiac physiology. As previously mentioned in section 1.1.4.3., Yu and 

colleagues (2013) reported that LPI-mediated GPR55 activation in cultured rat neonatal ventricular 

cardiomyocytes provokes distinct signalling pathways and cellular functions that are dependent on 

the cellular location of GPR55. Activation of GPR55 located on the sarcolemma increases [Ca2+]i via 

Ca2+ influx through L-Type Ca2+ channels (LTCCs) and IP3-dependent Ca2+ release. [Ca2+]i is further 

enhanced by Ca2+-induced Ca2+ release (CICR) via ryanodine receptors (RyRs) located on the 

membrane of the sarcoplasmic reticulum (SR). Despite the activation of GPR55 at the sarcolemma 

increasing [Ca2+]i, activation at this site mediates Ca2+-independent membrane depolarisation. On the 

other hand, activation of GPR55 at the membrane of intracellular organelles promotes Ca2+ release 

via endolysosomal nicotinic acid adenine dinucleotide phosphate (NAADP)-sensitive two-pore 
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channels with [Ca2+]i being further augmented by CICR via RyRs. The pathways triggered by the 

activation of GPR55 on the membrane of intracellular organelles converge  consequently causing 

membrane hyperpolarisation. Together, these findings suggest that GPR55 may regulate cardiac 

function at two distinct cellular sites. To gain insight into the physiological role of GPR55 in cardiac 

function, Walsh and colleagues (2014) utilised pressure-volume loop (PVL) analysis to determine the 

cardiac function of GPR55-/- mice at differing ages (see section 1.5.5. for further details).  

 

1.2.  Atherosclerosis 

 

1.2.1.  Overview 

 

Coronary heart disease (CHD) is the umbrella term for diseases that arise when the walls of the 

coronary arteries become constricted by fatty deposits, otherwise known as atheroma. It is one of 

the principal causes of death in the United Kingdom with the most recent statistics published by the 

British Heart Foundation (BHF) revealing that CHD was responsible for 69,163 deaths in 2014; that is 

15% and 10%, of all male and female deaths, respectively (Townsend et al., 2015). Atherosclerosis, 

one of the main risk factors for CHD, is a multifactorial, chronic inflammatory condition characterised 

by endothelial dysfunction, hyperlipidaemia and the accumulation of fatty deposits (lesions or 

plaques) within the tunica intima of medium-to-large sized muscular arteries. Without intervention, 

this disease can prove fatal with patients suffering lethal myocardial infarction or stroke, depending 

on the artery affected. 

 

1.2.2.  Lipid homeostasis 

 

The liver plays a key role in lipid homeostasis by stabilising the concentration of plasma cholesterol 

through two major pathways: 1) stimulation of the hepatic synthesis and release of  cholesterol when 

the plasma concentration falls below the optimal physiological concentration, and 2) removal of 

cholesterol when it is present in excess in the plasma. Plasma cholesterol circulates as various 

lipoprotein complexes; chylomicrons i.e. triglycerides (TGs), very low density lipoprotein (VLDL), low 

density lipoprotein (LDL) and high density lipoprotein (HDL). In humans, LDL is the main carrier of 

cholesterol within the circulation and delivers it to the appropriate cell types throughout the body. 

HDL has an opposing function to LDL as it is responsible for the removal of surplus cholesterol by 

transporting its excess to the liver for conversion into bile salts. In a healthy individual, LDL and HDL 
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work in conjunction to maintain a homeostatic level of circulating cholesterol; thus if the 

concentration of one increases or decreases, the other adjusts accordingly (Widmaier et al., 2006).  

 

1.2.3.  Hyperlipidaemia 

 

Several lifestyle factors such as smoking (reviewed by Messner and Bernhard, 2014) and physical 

inactivity (Laufs et al., 2005) increase the likelihood of developing atherosclerosis. Other risk factors 

for this condition include obesity, diabetes and hyperlipidaemia (reviewed by Rafieian-Kopaei et al., 

2014). Hyperlipidaemia is defined as an elevated concentration of one or more plasma 

lipids/lipoproteins (HDL excluded). Clinically, four plasma lipid/lipoprotein concentrations are 

typically reported when investigating the cholesterol status of a human; total cholesterol (TC), TGs, 

LDL and HDL, with normolipidaemic concentrations deemed as being less than 4, 1.7, 2 and more 

than 1 mmol/l, respectively (BHF, 2017). Consequently, maintenance of cholesterol homeostasis 

within the circulation is fundamental with regard to preventing or reducing the severity of 

atherosclerosis.  

 

1.2.3.1.  Vascular impact of hyperlipidaemia 

 

Endothelial cells of the tunica intima serve to regulate its vascular tone in response to physiological 

and pathophysiological stimuli and do so by releasing agents capable of  signalling to the smooth 

muscle cells of the tunica media, which in turn, trigger their contraction or relaxation accordingly. For 

example, an increase in blood flow within the tunica intima of an artery prompts endothelial cells to 

release vasodilators such as prostaglandin I2 (PGI2) and nitric oxide (NO) while reducing the secretion 

of the vasoconstrictor, endothelin-1 (ET-1), resulting in the relaxation of the arterial smooth muscle 

and consequently, dilatation of the artery (Widmaier et al., 2006). In instances of hyperlipidaemia, 

there is an increased generation of reactive oxygen species (ROS) which conse quently react with NO 

and reduce its bioavailability. Moreover, in this pathophysiological setting, ROS also interferes with 

the activity of endothelial nitric oxide synthase (eNOS), the enzyme primarily responsible for the 

generation of NO within the vascular endothelium, and impairs NO production (reviewed by Kim et 

al., 2012). Consequently, endothelial dysfunction ensues and a pro-atherogenic environment is 

formed i.e. leukocyte adherence (Kubes et al., 1991) and platelet activation (Schäfer et al., 2004).  
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1.2.3.2.  Cardiac impact of hyperlipidaemia   

 

Prolonged hyperlipidaemia causes cellular lipotoxicity, which is characterised by an excessive 

accumulation of intracellular lipids and the over activation of lipid signalling pathways. Insulin 

resistance (Sheu et al., 1993) and/or endoplasmic reticulum stress (Borradaile et al., 2006) are just 

two examples of the cellular dysfunction that occur in response to lipotoxicity. With regard to cardiac 

lipotoxicity, myocardial lipid deposition occurs in instances where the uptake of fatty acids (FAs) 

exceeds oxidation (Chiu et al., 2001). Consequently, there are excess FAs for non-oxidative metabolic 

pathways and the accumulation of FA metabolites such as ceramides (Park et al., 2008), 

diacylglycerols (Basu et al., 2009) and long-chain acyl-CoAs (Chiu et al., 2001) which are toxic to 

cardiac cells as they cause inflammation, mitochondrial dysfunction, defective intracellular signalling 

and/or apoptosis (Drosatos and Schulze, 2013). TGs are also increased in instances of cardiac 

lipotoxicity (Zhou et al., 2000), although it remains unresolved as to whether they are cytotoxic or 

simply a marker of cardiac lipotoxicity. 

 

Myocardial fibrosis, defined as a significant increase in the collagen volume fraction (CVF) of 

myocardial tissue (Mewton et al., 2011) also occurs in response to hypercholesterolaemia (Zhu et al., 

2007), resulting in electrical (McLenachan and Dargie, 1990; Kawara et al., 2001), mechanical (López 

et al., 2012) and vasomotor dysfunction (Schwartzkopff et al., 2000), all of which provide the 

environment for progression to heart failure (reviewed in detail in Gyöngyösi et al., 2017).  

 

1.2.4.  The atherosclerotic plaque 

 

Endothelial dysfunction is generally regarded as the initiating factor in terms of atherosclerotic 

plaque development. In instances of such dysfunction, monocytes are encouraged to bind to the 

endothelial cells via adhesion molecules such as vascular cell adhesion molecule 1 (VCAM-1) and 

intercellular adhesion molecule 1 (ICAM-1). Monocyte chemoattractant protein 1 (MCP-1) then 

recruits these monocytes into the sub-endothelial space, where they subsequently develop into 

macrophages. Furthermore, LDL is transported via transcytosis across the endothelium into the sub -

endothelial space where it binds to proteoglycans of the extracellular matrix and undergoes 

oxidation (ox-LDL). Macrophages of the vessel wall phagocytose the ox-LDL via endocytosis and 

consequently become lipid laden foam cells. The subsequent failure of macrophages to remove ox -

LDL from the sub-endothelial space instigates their apoptotic death consequently releasing ox-LDL 

back into the vessel wall and releasing pro-inflammatory substances which degrade the extracellular 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Gyöngyösi%20M%5BAuthor%5D&cauthor=true&cauthor_uid=28157267
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matrix (reviewed by Toth, 2008). For a diagram detailing atherosclerotic plaque development see 

Figure 1.6. 

 

The progression and severity of an atherosclerotic plaque is influenced by a wide range of factors 

including gender (Lansky et al., 2012), age (Van Oostrom et al., 2005), activity level (Shimada et al., 

2007), smoking (Kangavari et al., 2004), plaque composition (Kwon et al., 2010) and the presence of 

systemic risk factors such as hypertension (Beaussier et al., 2008). The American Heart Association 

(AHA) compiled two reviews which separated morphologically distinct lesions into different groups. 

These groups were categorised as follows: type I; the initial lesion, type II; the fatty streak, type III; 

the intermediate lesion, type IV; atheroma and, type V; fibroatheroma (Stary et al., 1994 and Stary et 

al., 1995). The latter review, which predominantly focussed on lesion types IV and V, further 

segregated type V lesions into subtypes; Va, Vb and Vc; the fibroatheroma, the calcified lesion and 

the fibrotic lesion, respectively. The same review also detailed that complications associated with 

lesion types IV and V can occur and may manifest as disruptions to the surface of the lesion, 

haematoma, haemorrhage and/or the deposition of a thrombus. The authors consequently defined a 

type VI lesion as a type IV or V lesion exhibiting at least one of the aforementioned complications.  

 

1.2.4.1.  Vascular impact of atherosclerosis 

 

Sabaté and colleagues (1999) demonstrated that atherosclerosis affecting the coronary arteries 

varies according to the composition and location of the plaque and the latter two variables influence 

both the pattern and severity of vascular remodelling that is to follow. Moreover, it has been  

demonstrated in animal models such as the cynomolgus monkey (Armstrong et al., 1985) and 

humans (Glasgov et al., 1987) that during the early stages of plaque development, the diameter of 

the lumen remains unaffected due to positive remodelling of the artery wall. In such instances, the 

artery wall compensates for the plaque volume by bulging outwards, rendering blood flow through 

the artery unchanged. However, this positive remodelling cannot be sustained indefinitely but delays 

luminal compromise until a plaque inhabits approximately 40% of the internal elastic lamina (Glasgov 

et al., 1987). From this point onwards, negative remodelling of the artery wall ensues and the plaque 

progressively encroaches on the area that the lumen would normally occupy. Consequently, this 

negative remodelling increases the shear stress at the proximal end of the stenosis and instigates a 

host of undesirable events such as angiogenesis, intraplaque haemorrhage(s) and an increase in the 

likelihood of plaque rupture (reviewed by Wang et al., 2016).  
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Figure 1.6. Atherosclerotic plaque development. In instances of endothelial dysfunction, monocytes 

are encouraged to bind to endothelial cells via adhesion molecules i.e. VCAM-1. MCP-1 consequently 

recruits these monocytes into the sub-endothelial space, where they develop into macrophages. LDL 

is transported via transcytosis across the endothelium into the sub-endothelial space where it binds 

to proteoglycans of the extracellular matrix and undergoes oxidation (ox -LDL). Macrophages of the 

vessel wall phagocytose the ox-LDL via endocytosis and consequently, become lipid laden foam cells. 

The subsequent failure of macrophages to remove ox-LDL from the sub-endothelial space instigates 

their apoptotic death consequently releasing ox-LDL back into the vessel wall and releasing pro-

inflammatory substances which degrade the extracellular matrix. LDL; low density lipoprotein, MCP-

1; monocyte chemoattractant protein 1, ox; oxidised and VCAM-1; vascular cell adhesion molecule 1. 
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1.2.4.2.  Cardiac impact of atherosclerosis 

 

In instances of atherosclerotic plaque formation where positive remodelling of a coronary artery  wall 

can no longer be sustained and negative remodelling ensues, the flow of oxygen rich blood to the 

corresponding area of the myocardium becomes reduced. As a result, the myocardial oxygen 

demand exceeds supply. This condition is termed ‘angina pectoris’, three forms of which exist; stable, 

unstable and variant angina. Symptoms of angina include chest pain, breathlessness, sweating and 

nausea and is clinically detectable via an electrocardiogram (ECG) i.e. ST segment depression, if 

conducted during an angina attack (Levick, 2010). 

 

1.2.5.  GPR55 and atherosclerosis 

 

To date, only two studies have been published on the role of GPR55 in atherosclerosis. The first study 

reported that the activation of GPR55 with O-1602, augmented ox-LDL-induced lipid accumulation 

and inflammatory responses, while reducing the efflux of cholesterol from human foam cells (Lanuti 

et al., 2015), suggesting a pro-atherogenic role for this receptor. In contrast, in an in vivo model of 

atherogenesis, the GPR55 antagonist, CID16020046, mediated an increase in neutrophil activation 

and recruitment in the early stages of atherogenesis and degranulation in the later stages of 

atherosclerosis (Montecucco et al., 2016), suggesting an anti-atherogenic role for GPR55. Considering 

that atherosclerosis is a multifactorial disease, these studies suggest a complex role for GPR55 in this 

condition and highlight the need for further investigation.  

 

1.3.  Myocardial ischaemia 

 

The word ischaemia is derived from the Greek words ‘isch’ and ‘haema’ meaning ‘restriction’ and 

blood’, respectively. Myocardial ischaemia occurs when there is an imbalance between myocardial 

oxygen demand and supply (Hoffman and Buckberg, 1978) and typically arises when the flow of 

oxygen rich blood through a coronary artery becomes restricted due to the development of an 

atherosclerotic plaque or the formation of a thrombus at the site of plaque rupture. Myocardial 

ischaemia manifests itself in a number of different ways, the critical events being a switch from 

aerobic to anaerobic metabolism resulting in adenosine triphosphate (ATP) depletion and a 

consequent reduction in contractile function, the build-up of metabolic end products, sarcolemmal 

disruption and cell swelling, myocardial necrosis, ion disturbances and arrhythmias .  
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1.3.1.  Energy reduction-induced contractile dysfunction 

 

In the normal myocardium, aerobic respiration takes place allowing for all three metabolic pathways 

(glycolysis, the tricarboxylic acid (TCA) cycle and oxidative phosphorylation) to function and generate 

ATP from the breakdown of fuel molecules. Briefly, fatty acids are transported in the form of acyl -

Coenzyme A (CoA) to mitochondria which leads to the β-oxidation and release of acetyl-CoA, the 

latter then enters the TCA cycle, generating ATP, CO2 and H2O. In addition, glucose molecules 

undergo glycolysis, a metabolic pathway that breaks down each glucose molecule into two molecules 

of pyruvate. Upon entering mitochondria, pyruvate is converted to acetyl -CoA and CO2. The newly 

generated acetyl-CoA enters the TCA cycle producing ATP, CO2 and H2O (Sambandam and Lopaschuk, 

2003).  

 

As the TCA cycle and oxidative phosphorylation are only able to function under aerobic conditions, 

both pathways are inhibited during myocardial ischaemia. Fortunately, glycolysis can function 

anaerobically therefore making it the only pathway capable of producing ATP during ischaemic 

periods. However, this pathway on its own is inefficient with regard to ATP production as it only 

produces two ATP molecules per glucose molecule in comparison to the 38 molecules of ATP which 

are generated per glucose molecule during aerobic respiration (Widmaier et al., 2006). This lack of 

energy consequently reduces the contractile function of the heart and depresses cardiac function. 

Additionally, under anaerobic conditions, pyruvate generated from glycolysis does not enter the TCA 

cycle and is converted to lactate which has deleterious cellular effects (discussed in section 1.3.2.).  

 

1.3.2.  Metabolite accumulation 

 

The anaerobic respiration of cardiomyocytes triggers a cascade of biochemical and metabolic 

reactions which ultimately manifest in the intracellular accumulation of toxic metabolic end 

products. Under such conditions, the intracellular production of lactate increases, augmenting 

intracellular H+ ([H+]i) (Khandoudi et al., 1990), both of which occur proportionally to the restriction 

of blood flow (Neely et al., 1975). Elevated [H+]i reduces the intracellular pH (pHi) of affected 

cardiomyocytes causing acidosis which inhibits cardiomyocyte myofibril contracture and protects the 

membrane permeability transition pore (MPTP) from opening and mediating damage  (Halestrap, 

1991). In an attempt to counteract the intracellular acidosis and maintain ion homeostasis, the 

sarcolemmal Na+-H+ exchangers (NHX) each begin extruding a H+ ion in return for the importation of 

a Na+ ion. However, intracellular Na+ ([Na+]i) consequently becomes elevated, causing each of the 
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sarcolemmal Na+-Ca2+ exchangers (NCX) to work in reverse mode to extrude 3Na+ ions from the cell, 

in return for a Ca2+ ion. The NCXs working in reverse mode successfully reduces [Na+]i, however, the 

resultant importation of Ca2+ increases [Ca2+]i and causes [Ca2+]i overload (Piper et al., 2004). See 

Figure 1.7. depicting the response of the cardiomyocyte to ischaemia. 

 

1.3.3.  Cell swelling and sarcolemmal disruption 

 

The duration and severity of myocardial ischaemia are the two key factors which determine whether 

injury to a cardiomyocyte is ‘reversible’ or ‘irreversible’. Either way, injury occurs as a transmural 

wavefront which begins in the subendocardium and extends towards the epicardium (Reimer et al., 

1977). For timescales regarding reversible and irreversible injury see Figure 1.8. Irreversible injury is 

characterised by many features including: 1) a reduced ATP concentration (<10% of control), 2) 

increased concentrations of H+, adenosine monophosphate (AMP), inosine (INO), lactate and alpha 

glycerol phosphate (αGP), 3) an increased osmolar load, 4) the termination of anaerobic g lycolysis, 5) 

the swelling of mitochondria, and 6) sarcolemmal disruption (Jennings and Reimer, 1991). 

Sarcolemmal disruption occurs during myocardial ischaemia as a consequence of cell swelling caused 

by fluid uptake and an increase in the tissue’s water volume (Tranum-Jensen et al., 1981). There are 

two major consequences of this disruption; excessive Ca2+ entry which disturbs cellular metabolism 

and the leaking of cellular components into the extracellular space (Jennings and Reimer, 1981). Such 

consequences generally result in lethal injury manifesting as cell rupture and necrosis.  

 

1.3.4.  Cell necrosis 

 

The homeostatic imbalance caused by ischaemia in cardiomyocytes ultimately causes cell death 

(necrosis) and prompts a local inflammatory response, the activation of endothelial cells, monocyte 

chemoattraction and infiltration (Anselmi et al., 2004) and differs to apoptosis in that the latter is 

highly regulated, requires caspase activation and is a process that requires energy (Ansemi et al., 

2004). Furthermore, cell necrosis is generally associated with myocardial ischaemia and apoptosis 

with that of delayed myocardial ischaemia/reperfusion injury (discussed in section 1.4.2.). 

Interestingly, cell necrosis was originally reported as an unregulated proce ss (Sun and Wang, 2014), 

however, studies over recent years have reported a programmed form of cell necrosis and coined it 

‘necroptosis’ (reviewed by Oberst, 2016). Nevertheless, the extent to which necroptosis is involved 

during myocardial ischaemia still  remains to be elucidated.  
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Figure 1.7. The response of the cardiomyocyte to ischaemia. During acute myocardial ischaemia, the 

lack of oxygen shifts cellular metabolism from aerobic to anaerobic respiration. This induces an 

increase in the intracellular production of lactate and a resultant reduction in the pH i, the latter 

inhibiting myofibril contracture and preventing the MPTP pore from opening. To reduce the [H+]i, the 

NHX extrudes a H+ ion in exchange for a Na+ ion, however, this results in [Na+]i overload. The [Na+]i 

overload triggers the NCX to work in reverse mode to extrude 3Na+ ions in exchange for a Ca2+ ion, 

however, [Ca2+]i overload consequently ensues. Ca2+; calcium, H+; hydrogen, MPTP; mitochondrial 

permeability transition pore, Na+; sodium, NCX; Na+-Ca2+ exchanger, NHX; Na+-H+ exchanger, pH; 

potential of hydrogen and SR; sarcoplasmic reticulum. Diagram modified from Hausenloy and Yellon 

(2013). 
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Figure 1.8. The wave front phenomenon of cardiomyocyte death in response to the duration of 

ischaemia. Cardiomyocyte death occurs as a transmural wave front which begins in the 

subendocardium and extends towards the epicardium. Reversible injury occurs in instances where 

the ischaemic period is less than 20 minutes (followed by reperfusion), whereas injury is irreversible 

with reperfusion at time points thereafter. Diagram modified from Kloner and Jennings (2001) and 

Kloner (2013).  
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1.4.  Myocardial ischaemia/reperfusion Injury 

 

While the reperfusion of an occluded artery is vital to salvage the myocardium affected by ischaemia, 

the re-introduction of blood and oxygen paradoxically causes further injury and cardiomyocyte death 

(Ferrari et al., 2017). This phenomenon is termed myocardial ischaemia/reperfusion (I/R) injury and 

occurs in stages. Immediate “lethal” reperfusion injury occurs within the first few minutes of 

reperfusion and delayed reperfusion injury occurs over a period of several hours to days (Hausenloy 

and Yellon, 2013). Immediate I/R injury manifests itself in a number of different ways, the critical 

early events being an increase in oxidative stress, [Ca2+]i overload, the restoration of the physiological 

pH, the normalisation of tissue osmolality, and the opening of the MPTP (summarised in Figure 1.9.), 

while delayed injury involves the activation of the complement system, resulting in neutrophil 

migration, adherence and activation. Moreover, apoptotic cell death also contributes to the loss of 

cardiomyocytes during delayed injury. 

 

Reperfusion promptly reactivates aerobic respiration, the consequence being a ‘respiratory burst’ 

involving the rapid production of ROS (Zweier et al., 1987). Such oxidants include superoxide anions 

(O2
.-), hydrogen peroxide (H2O2), hydroxyl radicals (OH.), and hypochlorous acid (HClO) (Kurian et al., 

2016), which are generated by xanthine oxidase, nicotinamide adenine dinucleotide phosphate 

(NADPH) oxidase and the mitochondrial electron transport chain (Mozaffari et al., 2013). Suppression 

of the endogenous antioxidant defences (i.e. catalase and superoxide dismutase) during ischaemia 

(Mozaffari et al., 2013) results in excessive amounts of ROS, inducing cellular damage via 

mechanisms such as protein denaturation (Zhou et al., 2015), the activation of matrix 

metalloproteinases (MMPs) (Kurian et al., 2016), and DNA damage (Zhou et al., 2015). ROS 

production also triggers the opening of the MPTP which further contributes to cellular damage by 

instigating ROS-induced ROS release from the mitochondria (Zorov et al., 2006). 

 

 

 

 

 

 

 

 

 



25 
 

 

 

 

 

 

Figure 1.9. The response of the cardiomyocyte to reperfusion. During reperfusion, the pHi of 

affected cardiomyocytes is rapidly restored by the washout of lactate and the activation of the NHX. 

Consequently, the acidosis-mediated inhibition on myofibril contracture and MPTP opening is lifted. 

Reperfusion also causes a ‘respiratory burst’ involving the rapid production of ROS. ROS act as a 

neutrophil chemoattractant and further promote the opening of the MPTP which in turn instigates 

ROS-induced ROS release from mitochondria. ROS also mediates dysfunction of the SR which 

contributes to [Ca2+]i overload, promoting myofibril hypercontracture and MPTP opening, both of 

which lead to reperfusion injury. Ca2+; calcium, H+; hydrogen, MPTP; mitochondrial permeability 

transition pore, Na+; sodium, NCX; Na+-Ca2+ exchanger, NHX; Na+-H+ exchanger, pH; potential of 

hydrogen, ROS; reactive oxygen species and SR; sarcoplasmic reticulum. Diagram modified from 

Hausenloy and Yellon (2013).  
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1.4.1.  Mechanisms of immediate myocardial ischaemia/reperfusion injury 

 

1.4.1.1.  Oxidative stress 

 

1.4.1.2.  Intracellular Ca2+ overload 

 

Myocardial ischaemia results in [Ca2+]i overload which is partly due to ATP depletion-induced 

suppression of the sarcoplasmic/endoplasmic reticulum calcium-adenosine triphosphatase 2a 

(SERCA2a) and Na+-K+-ATPase pumps, both of which are important for cellular ion homeostasis. 

However, upon reperfusion, reoxygenation leads to the reactivation of both SERCA2a and Na+-K+-

ATPase pumps (Murphy and Steenbergen, 2008). Consequently, cytosolic Ca2+ is driven into the SR by 

SERCA2a, reducing the [Ca2+]i. Despite this, cardiomyocytes may still suffer from [Ca2+]i overload and 

in such instances, further Ca2+ extrusion from the cell is reliant upon the NCX working in forward 

mode. However, the NCX working in forward mode is dependent on [Na+]i, the homeostasis of which 

is maintained by the sarcolemmal Na+-K+-ATPase pumps. In situations where the Na+-K+-ATPase 

pumps have not been irreversibly damaged and [Ca2+]i is restored to within the physiological range, 

cardiomyocyte myofibril hypercontracture may occur, consequently deformi ng the cytoskeleton and 

altering cell shape, causing irreversible cell shortening and cardiomyocyte death (Ladilov et al., 1997).  

 

1.4.1.3.  Restoration of the physiological pH 

 

The pHi of affected cardiomyocytes is rapidly restored by the washout of lactate and the activation of 

the NHX upon reperfusion of the occluded coronary artery, thus lifting the acidosis-mediated 

inhibition of myofibril contracture. However, myofibril hypercontracture consequently ensues and 

severely distorts cell architecture, resulting in cell death (Hausenloy and Yellon, 2013). 

 

1.4.1.4.  Normalisation of tissue osmolality 

 

As mentioned in section 1.3.2., anaerobic respiration of cardiomyocytes triggers a multitude of 

biochemical and metabolic reactions which ultimately manifest in the intracellular accumulation of 

toxic metabolic end products. The accumulation of such end products increases the osmotic load in 

both the intracellular and interstitial space (Grinstein et al., 1992). Reperfusion consequently causes 

the rapid washout of the extracellular surplus of osmotically active molecules causing an osmotic 

gradient to form between the intra- and extracellular space (Garcia-Dorado and Oliveras, 1993). This, 

https://en.wikipedia.org/wiki/Adenosine
https://en.wikipedia.org/wiki/Triphosphatase
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in combination with [Na+]i overload (mediated by the NHX) causes the influx of water into affected 

cells. Consequently, the intracellular pressure increases and stretches the sarcolemma of cells which 

have previously become fragile as a consequence of ATP depletion during ischaemia (Piper et al., 

1998). Cell rupture may occur as a consequence, however, this is dependent on the severity of cell 

swelling and cellular fragility. Also, hypercontracture can spread to adjacent cardiomyocytes via the 

passage of Na+ through gap junctions from cardiomyocytes exhibiting hypercontracture and ruptured 

sarcolemma. The NCX also contributes to this propagation of hypercontracture by working in reverse 

mode and increasing [Ca2+]i (Ruiz-Meana et al., 1999). 

 

1.4.1.5.  The opening of the mitochondrial permeability transition pore 

 

Under physiological conditions, the mitochondrial permeability transition pore (MPTP), a non-

selective pore of the inner mitochondrial membrane is either not present or closed  (Heusch et al., 

2010). However, under pathological conditions the MPTP opens and is permeable to any molecule 

with a molecular weight less than 1.5kDa (Halestrap et al., 2004). Despite ischaemia being a 

pathological state, the MPTP remains closed (Griffiths and Halestrap, 1995) due to acidosis inhibiting 

its opening (Halestrap, 1991). Reperfusion restores the pHi (Bond et al., 1991) and increases the 

mitochondrial calcium concentration (Allen et al., 1993 and Varadarajan et al., 2001), both of which 

mediate the opening of the MPTP (reviewed by Halestrap et al., 2004). Consequently, there is a 

sudden influx of water through the MPTP into the mitochondria resulting in mitochondrial swelling 

and rupture (Kalogeris et al., 2012). Moreover, the opening of the MPTP mediates mitochondrial 

membrane depolarization and the uncoupling of oxidative phosphorylation, leading to a reduction in 

ATP and cell necrosis (Hausenloy and Yellon, 2013). 

 

1.4.2.  Mechanisms of delayed myocardial ischaemia/reperfusion Injury 

  

Inflammatory responses are mediated by both the complement system and activation of the 

endothelium in response to the reperfusion of an occluded artery. Complement is ‘’a system of 

serum and cell surface proteins that interact with one another and other molecules of the immune 

system to generate important effectors of innate and adaptive immune responses’’  (Abbas et al., 

2007 p. 494) that can be activated by three pathways; the classical pathway, the alternative pathway 

and the lectin pathway. Walsh and colleagues (2005) established that mice deficient in mannose -

binding lectin, which are devoid of lectin pathway activation but have fully functional classical and 

alternative pathways, are protected from myocardial I/R injury and have preserved cardiac function. 
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It has also been established in mice, that complement component 5 (C5) which is involved in both 

the classical and alternative pathways of the complement system, is involved in the pathogenesis of 

myocardial I/R injury (Busche and Stahl, 2010). Together, these findings suggest the involvement of 

all three pathways in the development of such injury. 

 

Under normal physiological conditions, endothelial cells form a protectant barrier against 

inflammation by preventing the activation of both neutrophils and platelets. However, during 

myocardial I/R injury, endothelial cells become activated. According to Hunt and Jurd (1998), there 

are five key changes associated with endothelial cell activation: 1) loss of vascular integrity, 2) the 

expression of leukocyte adhesion molecules, 3) a shift from an anti -thrombotic to pro-thrombotic 

phenotype, 4) an upregulation of human leukocyte antigen (HLA) molecules and, 5) the production of 

cytokines. Cytokines stimulate the expression of adhesion molecules (i.e. ICAM-1) on 

cardiomyocytes, consequently causing neutrophils to adhere to these cells (Smith et al., 1991) and 

mediate injury. For an extensive review on the role of neutrophils in this type of injury see Hansen, 

1995.  

 

Programmed cell death, more commonly referred to as ‘apoptosis’, contributes to the loss of 

cardiomyocytes in the pathophysiological setting of myocardial I/R injury. Unlike necrosis, apoptosis 

is ATP-dependent (Leist et al., 1997), highly regulated (Krijnen et al., 2002) and does not mediate an 

inflammatory response in response to stimuli (Saraste and Pulkki, 2000). Additionally, due to 

apoptosis being energy dependent, it seems likely that the upsurge of apoptotic activity during 

reperfusion is due to the restoration of energy. Studies have established specific mediators of 

apoptosis associated with myocardial I/R injury such as caspase-3 and/or -9 (McCully et al., 2004) and 

components of the complement system including C5a and C5b-9 (Vakeva et al., 1998). Despite this, 

the exact role of apoptosis in myocardial I/R injury remains to be elucidated.  

 

1.4.3.  LPI and myocardial ischaemia/reperfusion injury 

 

While the role of GPR55 in myocardial I/R injury has not been directly investigated, it has been 

demonstrated that the plasma concentration of total LPI increases two-fold (from 1.5µM to 3µM) in 

patients undergoing coronary angiography at the time of an acute coronary event (Kurano et al., 

2015). Moreover, in an experimental setting, a direct correlation between myocardial ischaemia and 

LPI release was observed in a rat model of asphyxia-induced cardiac arrest (Kim et al., 2015a). In this 

study, the relative abundance of cardiac lysophospholipids was normalised to the content of the 
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corresponding phospholipids in the heart, revealing that the 18:0 species of LPI increased 

approximately six-fold. Moreover, resuscitation (reperfusion) significantly reduced the relative 

abundance of this LPI species. A later study by the same group using the same model (Kim et al., 

2016) demonstrated a 5.5 fold increase in the ratio of LPI (18:0 species) to phosphatidylinositol (PI; 

18:0, 22:4 species) and that the LPI/PI ratio was proportional to the duration of the ischaemic period 

(up to 60 minutes). Together, this data raises the notion that measurement of LPI (18:0 species) in 

patients presenting with symptoms of myocardial infarction, may be an indicator of the duration of 

ischaemia that has preceded the point of intervention. However, further research is now required to 

investigate if LPI activates GPR55 in this pathophysiological setting and if so, what the 

consequence(s) of this may be.  

 

1.5.  Cardiac function 

 

1.5.1.  Excitation-contraction coupling 

 

Excitation-contraction (E-C) coupling (reviewed by Bers, 2002) instigates the contraction of cardiac 

muscle through a number of intracellular events which are provoked by the electrical excitation of 

the cardiomyocyte. An action potential prompts Ca2+ movement over the cardiomyocyte membrane 

via LTCCs, which in turn activates the many RyRs located on the membrane of the SR, prompting 

CICR. Consequently, there is an increased concentration of cytosolic Ca2+ which binds to troponin C 

and instigates contraction by causing cross bridging of actin and myosin filaments. 

 

With regard to cardiomyocyte relaxation (also reviewed by Bers, 2002), SERCA2a transports Ca2+ into 

the SR from the cytosol of the cell. To further reduce the cytosolic Ca2+ concentration, the NCX works 

in forward mode to expel a Ca2+ ion in exchange for 3 Na+ ions. Consequently, troponin C and Ca2+ 

unbind resulting in cell relaxation. See Figure 1.10. depicting the transport of Ca2+ in a ventricular 

cardiomyocyte. 
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Figure 1.10. The transport of Ca2+ in a ventricular cardiomyocyte. With regard to cardiomyocyte 

contraction, an action potential triggers Ca2+ movement over the cell membrane via LTCCs, which in 

turn activates RyR2s located on the SR and prompts Ca2+-induced Ca2+ release. This newly released 

Ca2+, which is now in the cytosol of the cell, instigates contraction by binding to the myofilament 

protein troponin C, in turn causing cross bridging of actin and myosin filaments. In terms of cell 

relaxation, SERCA2a drives Ca2+ from the cytosol of the cell into the SR. To further reduce the 

cytosolic Ca2+ concentration, the NCX works in forward mode to extrude a Ca2+ ion in exchange for 

3Na+ ions. Ca2+ consequently becomes unbound from troponin C resulting in relaxation of the cell. 

ATP; adenosine triphosphate, Ca2+; calcium, H+; hydrogen K+; potassium, LTCC; L-Type Ca2+ channel, 

Na+; sodium, NCX; Na+-Ca2+ exchanger, PLB; phospholamban, RyR2; ryanodine receptor 2, SERCA2a; 

sarcoplasmic/endoplasmic reticulum calcium-adenosine triphosphatase 2a and SR; sarcoplasmic 

reticulum. Diagram modified from Bers (2002). 

 

 

 

https://en.wikipedia.org/wiki/Adenosine
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1.5.2.  Control of cardiac contractility 

 

1.5.2.1.  α1-adrenoceptor activation 

 

The activation of α1-adrenoceptors in the vasculature indirectly contributes to the ventricles 

contracting with increased force (positive inotropy). Activation of α1-adrenoceptors causes this 

adrenoceptor subtype to couple to Gq, which activates PLC. PLC then splits phosphatidyl inositol 

bisphosphate (PIP2) into IP3 and diacylglycerol (DAG). IP3 subsequently binds to IP3Rs causing Ca2+ 

release from the SR, increasing [Ca2+]i and causing vasoconstriction. Vasoconstriction consequently 

increases afterload, therefore the ventricles have to contract with a greater force to maintain cardiac 

output (Levick, 2010). To do so, the sympathetic nervous system releases noradrenaline and/or 

adrenaline to activate β1-adrenoceptors on cardiomyocytes. An increased inotropic response 

consequently ensues, as detailed below. 

 

1.5.2.2.  β1-adrenoceptor activation 

 

β1-adrenoceptors are the adrenoceptor subtype principally involved in cardiac contractility. Upon 

activation, their cytoplasmic domain has a high affinity for the G-protein, Gs. The subsequent release 

of this G-protein’s α subunit activates adenylyl cyclase, catalysing the conversion of ATP to cyclic 

adenosine monophosphate (cAMP). cAMP has a number of actions i ncluding activating protein 

kinase A (PKA) in atrial and ventricular cardiomyocytes, which catalyses the phosphorylation of 

LTCCs, increasing their open state probability and duration, in turn augmenting the Ca2+ current and 

contributing to the inotropic response. In cardiomyocytes of the sinoatrial (SA) node, LTCCs are also 

phosphorylated by cAMP-induced PKA activation. The augmented Ca2+ current consequently 

accelerates the pacemaker potential decay and contributes to the chronotropic response. In terms o f 

lusitropy, PKA (activated by cAMP) phosphorylates phospholamban (PLB), a protein which in the 

unphosphorylated state inhibits the uptake of Ca2+ into the SR by SERCA2a. The phosphorylation of 

PLB therefore reduces the inhibitory effect on SERCA2a thus increasing the uptake of Ca2+ into the SR 

and enhancing the rate of relaxation (positive lusitropy) (Levick, 2010). 

 

1.5.3.  The Frank-Starling principle 

  

In instances of increased metabolic demand i.e. during exercise, the end-diastolic volume (EDV) of a 

ventricle increases causing the ventricle to expand, augmenting the ventricle’s length-tension 
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relationship. Assuming all other factors remain constant, the ventricle consequently recoils with 

increased inotropy upon systole, resulting in a greater stroke volume (SV) – a relationship known as 

the Frank-Starling principle, which is imperative for maintaining cardiac output (CO). SV is also 

influenced by the degree of afterload (aortic pressure) which opposes the ejection of blood from the 

ventricle. In the absence of compensatory changes to enhance the inotropic response i.e. increased 

sympathetic activity, a greater afterload will reduce the SV and attenuate the CO (Levick, 2010).  

 

1.5.4.  Cardiac function in health and disease 

 

In health, the heart functions at its optimal capacity, however, in pathophysiological settings such as 

hypertension, dyslipidaemia and post-myocardial infarction, cardiac function becomes altered. 

 

1.5.4.1.  Hypertension and cardiac function 

 

Hypertension can progress to hypertensive heart disease (HHD) which encompasses a spectrum of 

abnormalities such as left ventricular (LV) hypertrophy, systolic and diastolic dysfunction, as well as 

their clinical manifestations i.e. arrhythmias (Drazner, 2011). In this disease state, LV hypertrop hy 

typically occurs as a compensatory response in an effort to reduce LV wall stress. However, over 

time, LV dilatation occurs with a gradual decline in ejection fraction, leading to dilated heart failure. 

However, as with every disease, there is a considerable amount of inter-individual variability. HHD 

may therefore manifest itself differently in some patients but not others i.e. patients with this 

condition can develop ‘diastolic dysfunction’ or ‘heart failure with preserved ejection fraction’ as a 

consequence of extracellular matrix (ECM) remodelling and augmented LV filling pressures (Hoey et 

al., 2014). 

 

1.5.4.2.  Dyslipidaemia and cardiac function 

 

It is well established that hypercholesterolaemia is a risk factor for the development of endothelial 

dysfunction (Stokes et al., 2002) and coronary heart disease (Castelli et al., 1992), however, studies 

have demonstrated that hypercholesterolaemia can also impair cardiac function both in vivo (Huang 

et al., 2004 and Varga et al., 2013) and clinically (Dalen et al., 2011), independently of coronary heart 

disease (CAD). Huang and colleagues (2004) conducted an in depth study and reported that in the 

absence of CAD, a diet high in cholesterol causes both systolic and diastolic function. This study also 

reported findings suggesting that such dysfunction is linked to an increase in the membrane 
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cholesterol content, a reduction in SERCA2a mRNA/protein expression and a reduction in the uptake 

of Ca2+ into the SR. Furthermore, hypercholesterolaemia reportedly mediates an increase in 

myocardial oxidative and nitrative stress, contributing to cardiac dysfunction (Csont et al., 2007). The 

effects of dyslipidaemia on cardiac function vary from species to species - for a brief summary see 

Table 1.1. 

 

1.5.4.3.  Post-myocardial infarction and cardiac function 

 

Cardiac dysfunction and heart failure are often observed post-myocardial infarction, although the 

extent of such dysfunction is dependent upon a number of variables including the degree of 

ischaemia, the duration of the ischaemic period, the degree of reperfusion injury and the extent of 

scar formation (reviewed by Minicucci et al., 2011). Post-myocardial infarction, cardiac dysfunction 

may manifest itself as an increased susceptibility to ventricular arrhythmias due to disturbances in 

electrical conduction and ventricular stiffness due to scar formation. What’s more, those who suffer 

from another health condition i.e. diabetes, and concurrently suffer a myocardial infarction, often 

have a worse prognosis (Mak et al., 1997 and Donnan et al., 2002). In contrast, an ‘obesity paradox’ 

exists whereby obese patients are often associated with improved short (Bucholz et al., 2012) and 

long term (Bucholz et al., 2016) survival post-acute myocardial infarction, however, the mechanisms 

by which this paradox occurs are not yet clear and remain to be elucidated.  

 

1.5.5.  GPR55 and cardiac function 

  

To gain insight into the role of GPR55 in the control of cardiac function, previous work from this 

laboratory utilised both pressure volume loop (PVL) and histological analysis to examine cardiac 

function and cardiac morphology/composition in GPR55-/- mice at 10 weeks (young) and 8 months 

(mature) (Walsh et al., 2014). This study revealed that GPR55-/- mice exhibit age-related systolic 

dysfunction and adverse ventricular remodelling, and assessment of cardiac reserve by the α 1/β1-

adrenoceptor agonist, dobutamine, demonstrated that both young and mature GPR55-/- mice exhibit 

maladaptive adrenergic signalling. Beyond this, no other studies have explored the role of GPR55 in 

cardiac function. 
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Table 1.1. The impact of dyslipidaemia on cardiac function. ApoE-/-; Apolipoprotein E knockout, HDL; high density lipoprotein, LDL; low density lipoprotein 

and TC; total cholesterol. 

Lipid/ 

lipoprotein 

Species Gender Diet Impact Method of measurement Reference 

↑TC, ↑LDL &  

↓HDL 

Human Unreported N/A Systolic & diastolic 

dysfunction 

Echocardiography & pulsed 

wave tissue Doppler imaging 

Talini et al., 2008 

↑ TC, ↑LDL  

& ↓HDL 

ApoE-/- mouse Unreported High fat 

(8 or 16 weeks) 

Normal systolic function 

 

Echocardiography Hans et al., 2011 

↑TC LDLR-/-ApoE100/100 

Mouse 

Male & 

Female 

High fat 

(3 months) 

Severe systolic dysfunction  Echocardiography Heinonen et al., 2011 

↑TC & ↑LDL New Zealand 

Rabbit 

Male High fat 

(2 or 3 months) 

Systolic dysfunction Speckle-tracking 

echocardiography 

Liu et al., 2014 

3
2
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1.6.  Hypothesis 

 

Over recent decades, it has been widely documented that obesity and diabetes are risk factors for 

the development of atherosclerosis. Given that the causative mechanisms by which atherosclerosis 

occur remain to be fully elucidated and that previous studies have demonstrated that GPR55 plays a 

role in obesity (Moreno-Navarette et al., 2012), diabetes (Romero-Zerbo et al., 2011) and the control 

of cardiac function (Walsh et al., 2014), it is plausible that this receptor may play a role in 

atherogenesis. The present study was therefore carried out to firstly, elucidate any role of GPR55 in 

the cardiovascular remodelling and the cardiac function of mice suffering from atherosclerosis. 

Secondly, due to the plasma (Kurano et al., 2015) and cardiac (Kim et al., 2015a and Kim et al., 2016) 

concentrations of LPI (the most widely reported agonist of GPR55) being increased in cases of 

myocardial ischaemia, an event often associated with atherosclerosis, the latter part of this study 

aimed to determine the role of GPR55 in myocardial I/R injury. 

 

1.7.  Objectives 

 

The objectives of the present study were to test the following hypotheses:  

  

1. GPR55 promotes atherogenesis by negatively affecting one or more of the following in the 

 ApoE-/- mouse model of atherosclerosis: endothelium-dependent relaxation of the carotid 

 artery, plasma lipid profiles, lipid deposition within the thoracic aorta and/or the heart 

 (Chapter 3). The involvement of GPR55 will be confirmed using the novel ApoE -/-/GPR55-/- 

 mouse  model of atherosclerosis. 

 

2. GPR55 is detrimental to the cardiac function of ApoE-/- mice (Chapter 4). This will be tested 

 by conducting PVL analysis on ApoE-/- and ApoE-/-/GPR55-/- mice which have been fed a 

 normal or high fat chow diet for 12 weeks.  

 

3. LPI activates mouse and human induced pluripotent stem cell -derived cardiomyocytes via a 

 GPR55/ROCK/IP3R-dependent signalling pathway (Chapter 5). 

 

4. The exogenous administration of LPI to the isolated heart increases myocardial I/R injury via 

 a GPR55/ROCK-dependent mechanism (Chapter 5). 
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Chapter 2: 

General Methods 
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2.1.  In vitro studies 
 

2.1.1.  Cell culture 

 

2.1.1.1.  Mouse and human induced pluripotent stem cell-derived cardiomyocytes 

 

Mouse induced pluripotent stem cell (miPSC)-derived cardiomyocytes (Cor.At® CL-i cardiomyocytes; 

source tissue: mouse tail tip) and human induced pluripotent stem cell (hiPSC) -derived 

cardiomyocytes (iCell® cardiomyocytes; batch number: 1099441) were seeded (7,500 and 12,000 per 

well, respectively) in an Epic® 384 well, fibronectin coated, cell assay microplate (Corning Life 

Sciences, UK) using a Multi-drop Combi cell dispenser (Thermo Electron Corporation, UK). miPSC and 

hiPSC-derived cardiomyocytes were  cultured in Dulbecco’s Modified Eagle’s Medium (DMEM) and 

incubated at 37oC in a 5% CO2 atmosphere for 7 days and 12 hours, respectively until a cell monolayer 

had formed and the cells had reached a confluent state of 80-100% per well. As miPSC-derived 

cardiomyocytes had been genetically modified (prior to purchase) to be resistant to the antibiotic 

puromycin (resistance gene driven by the Myh6 (alpha-myosin heavy chain, αMHC/Myh6) promoter), 

the latter (10mg ml -1) was included in DMEM to prevent the growth of any cell type other than 

miPSC-derived cardiomyocytes. With regard to the hiPSC-derived cardiomyocytes, the company from 

which they were purchased provided assurance that such cardiomyocytes were a 95% pure 

population of ventricular, atrial and nodal cells. 

 

2.1.2.  Corning® Epic® technology 

 

Corning Epic® technology is a label-free and non-invasive, high throughput screening method for the 

identification of compound hits on different cell types. Using this technology, receptor activation can 

be identified by the optical detection of dynamic changes in cellular density (dynamic mass 

redistribution; DMR), a variable measured in real time following the application of a compound. 

Changes in the DMR activity of cells is indicated by a change in wavelength (Figure 2.1.).  

 

The microplate containing the cultured miPSC or hiPSC-derived cardiomyocytes and the microplate 

containing the relevant compounds (compound source plate) to be added to the card iomyocytes 

were incubated in the Epic® System (Corning®, UK) at 26oC for 1 hour. This allowed the compounds on 

the source plate and the cells on the microplate to reach thermal equilibrium prior to the compounds 

being added to the appropriate wells of the microplate; a step intended to minimise the effect of 

temperature on assay variability. The wells of the compound source plate contained increasing 
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concentrations of GPR55-related ligand(s) and compounds that may inhibit GPR55’s signalling 

pathways. Baseline readings were recorded every minute for a 3-minute period, the microplate 

removed and the relevant compounds from the source plate added to the appropriate wells of the 

microplate using a Biomek® NMP laboratory automated workstation (Beckman Coulter, Sweden). The 

microplate was then reinserted into the Epic® System and the DMR activity of the cells within each 

well recorded at 1-minute intervals over a 90-minute period. These studies were performed in the 

laboratories of AstraZeneca (Mölndal, Sweden). Due to time constraints, Dr Erik Ryberg performed 

the study with the hiPSC-derived cardiomyocytes, but I was responsible for analysing and 

interpreting the data generated from these experiments. 

 

2.2.  In vivo studies 

 

2.2.1.  Animal ethics and husbandry 

 

Studies undertaken were in accordance with the Animals (Scientific Procedures) Act 1986 under the 

Home Office project license number (PPL) 60/4231 and the personal license number (PIL) 60/13552. 

Prior to the commencement of experiments, a research ethics: student and supervisor appraisal 

(RESSA) form was submitted to and approved by the animal ethics committee of Robert Gordon 

University (RGU). Mice were bred and/or housed at the Medical Research Facility (MRF), University of 

Aberdeen, UK where they were grouped according to their gender and genotype and housed in 

temperature and humidity (19-23oC and 45-65%, respectively) controlled rooms on a 12-hour 

light/dark cycle (7am-7pm). The mice were housed according to the husbandry guidelines set by the 

UK Home Office in groups not exceeding eight with unlimited access to water and food in pellet form. 

In addition to mice being housed at the MRF, all dietary intervention studies and EchoMRI TM body 

scanning studies were conducted there also. Mice were transported from the MRF to RGU at the start 

of the week where all in vivo/ex vivo experimentation took place. Mice were housed at RGU for a 

maximum of 5 days and allotted a minimum period of 30 minutes to acclimatise to their new 

surroundings prior to the commencement of any experiments. All in vivo work in this document is 

reported in accordance with the ARRIVE guidelines (Kilkenny et al., 2010). 
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Figure 2.1. The methodology of Corning® Epic® Technology. Diagram from Genetic Engineering & 

Biotechnology News (GEN, 2017). 
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2.2.2.  Breeding program 

 

2.2.2.1.  Strains 

 

All strains of mice utilised were on the JAX background. C57BL/6 and apolipoprotein E knockout 

(ApoE-/-) mice were purchased from Charles River Laboratories International Inc. (Margate,  UK) and 

housed at the MRF, where a breeding colony of ApoE-/- mice was established. Homozygous GPR55 

knockout (GPR55-/-) mice were obtained from an existing colony maintained at the MRF under PPL 

60/4231. Furthermore, heterozygous double knockout (ApoE-/-/GPR55+/-) breeding pairs were kindly 

gifted (under a material transfer agreement) to RGU by AstraZeneca (Mölndal, Sweden) and inter-

bred at the MRF to generate a colony of homozygous ApoE-/-/GPR55-/- mice. Mice from the different 

colonies were bred in advance of when they were scheduled for use. 

 

2.2.2.2.  Genotyping protocol 

 

Genotyping of mice was conducted according to a protocol developed by AstraZeneca. In brief, DNA 

was isolated from mouse ear clips using a QIAmp® DNA Mini Kit as per manufacturer’s instructions. 

Polymerase chain reaction (PCR) was subsequently carried out using a mix of the isolated DNA (50-

100ng/µl) from each mouse, REDtaq® ReadyMixTM PCR Reaction Mix, sterile H2O and primers (at a 

final concentration of 2μM) directed at the gene mutations for ApoE or GPR55 (Table 2.1.). The ApoE 

and GPR55 PCR samples were then subjected to various cycles (Table 2.2.) in the thermocycler 

(Biometra, Germany) and run at 123V for 60 minutes on 1.6% agarose gels (all contained GelRedTM 

nucleic acid gel stain and were made up with UltraPure TM TBE buffer) against a PCR marker in 

electrophoresis tanks containing TBE buffer. Gels were photographed using fluorescent imaging 

(Peqlab Ltd, UK) and genotypes determined according to the band size(s) present (Table 2.3.).  

 

2.2.3.  High fat dietary intervention 

 

Control groups of male and female C57BL/6 (wildtype; WT), ApoE-/- (model of atherosclerosis), 

GPR55-/- and ApoE-/-/GPR55-/- mice, aged 4-7 weeks were fed pellets of CRM (P) chow (normal chow; 

NC) for 12 weeks. In the high fat feeding groups, age-matched mice of both genders were fed pellets 

of Western diet R638 semi-synthetic feed containing 0.15% cholesterol and 21% fat (high fat chow; 

HFC) for the 12 week period (for the full nutritional details of the NC and HFC diets see Chapter 3, 

Figures 3.1. and 3.2., respectively). 
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Primer Sequences 

ApoE GPR55 

5´- CAGAAAGCGAAGGAGCAAAG - 3´ 5´- ATGCGGAATTCCTGTTACCCA - 3´ 

5´- AAAAACTCGGGATGAGCCTT - 3´ 5´- CACCCTAGGGCCTCAGTTGTA - 3´ 

5´- CAGCTCCCTCTCCTAGGGTT - 3´ 5´- GGAAAGCTGAGATACAGACTT - 3´ 

 

Table 2.1. ApoE and GPR55 primer sequences for the genotyping of mice. 

 

 

 ApoE Protocol GPR55 Protocol 

Name of Cycle No. of 

Cycles 

Temp  

(oC) 

Time  

(sec) 

No. of 

Cycles 

Temp  

(oC) 

Time  

(sec) 

Initialisation 1 95 120 1 94 120 

Denaturation 28 95 30 30 94 30 

Annealing 28 60 30 30 60 30 

Extension/elongation 28 68 120 30 72 60 

Final elongation 1 68 600 1 72 420 

 

Table 2.2. PCR thermocycler sequence for the genotyping of mice with gene mutations for ApoE 

and GPR55. oC; degrees Celsius and sec; seconds. 

 

 

Genotype Band size (bp) 

WT 288 

ApoE-/- 462 

ApoE+/- 288 & 462  

WT 330 

GPR55-/- 550 

GPR55+/- 330 & 550 

 

Table 2.3. Genotypes of mice according to band size(s) present in gels. bp; base pairs. 
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2.2.4.  Measurement of cardiodynamics 

 

2.2.4.1.  Pressure-volume loop analysis 

 

Pressure-volume loop (PVL) analysis is based on the principle that blood volume is directly 

proportional to its electrical conductance, or inversely proportional to its resistance. A pressure-

tipped conductance catheter (Figure 2.2.) is composed of four platinum electrodes which are 

arranged in two pairs and a pressure sensor which is situated between each. Upon insertion of a 

conductance catheter into the left ventricle (LV), the proximal and distal electrode pairs should be 

located under the aortic valve and at the apex of the LV, respectively. The proximal electrode pair 

emit a constant current signal which flows to the distal electrode pair, consequently generating an 

electric field within this chamber. The cardiac cycle induces changes in the resistance of the blood 

pool within the LV accordingly and the electrodes of the catheter detect the resultant voltage 

potentials which are inversely proportional to the volume of the LV. During the cardiac cycle, the 

catheter simultaneously measures pressure changes within the LV. Data are collected and processed 

in real time by a computer software program (LabChart; ADInstruments, UK) which generates PVLs 

for cardiac function to be accurately assessed. 

 

2.2.4.2.  Surgical procedure for pressure-volume loop analysis 

  

Mice were anaesthetised with a mixture of 120mg kg -1 ketamine & 16mg kg-1 xylazine via 

intraperitoneal (i.p.) injection. Monitoring of anaesthesia was achieved by conducting the pedal 

withdrawal reflex test every 15 minutes and, if necessary, maintained by the i.p. administration of 

50µl 25g-1 (body weight) of the anaesthetic mixture. All surgical procedures were performed using 

aseptic techniques, which included swabbing the skin with 70% ethanol prior to incision. In advance 

of any surgery, the tidal volume (ml) and respiratory rate (bpm) of the mouse was calculated 

according to the equations below and the ventilator (Harvard small animal respiration pump; 

Edenbridge, Kent, UK) adjusted accordingly.  

 

Tidal Volume = 6.02 x Mass1.01 (kg) 

Respiratory Rate = 53.5 x Mass-0.26 (kg) 
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Figure 2.2. Diagram of a pressure-tipped conductance catheter.  
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All mice were artificially ventilated via tracheostomy. Furthermore, throughout each experiment, 

core body temperature was maintained at 37-38oC using a Vetcare heat pad (Harvard Apparatus Ltd, 

UK) in conjunction with a rectal probe (Fisher Scientific Ltd, UK). Following an incision in the neck, the 

right jugular vein was cannulated with a saline-filled heat-stretched cannula (Portex polythene tubing 

(internal and outer diameter; 0.58mm and 0.96mm, respectively); Smiths Medical International Ltd., 

Hyde, Kent, UK) and secured in place using size 5/0 silk suturing thread (InterFocus LTD, UK) for 

future saline/drug administration. The chest wall was subsequently cut either side of the xiphoid 

process to expose the underside of the diaphragm. During this procedure, blood loss was mi nimised 

by the use of a cauteriser (Interfocus LTD, UK). The pericardium was then removed and a piece of size 

5/0 silk suturing thread (InterFocus LTD, UK) placed loosely around the inferior vena cava (IVC) for its 

later partial occlusion. To measure indices of cardiac function, the apex of the LV was punctured using 

a 27 gauge (G) needle to allow for smooth insertion of the 1.4-Fr pressure-tipped conductance 

catheter (SPR-839; Millar Instruments, USA) into this ventricle (pressure and volume calibrations of 

the catheter were conducted prior to commencing each experiment via the MPVS -Ultra Single 

Segment Foundation System (Millar Instruments, USA)). The placement of the catheter was adjusted 

until the largest stroke volume on the PVL recording software (LabChart) was observed. PVL data was 

recorded for the duration of each experiment and  analysis later conducted using PVAN UltraTM 

software (Millar Instruments, USA). 

 

2.2.4.3.  Parallel conductance 

 

Parallel conductance refers to the conductance of the cardiac muscle enveloping the blood pool of 

the LV. Ideally, the current applied through a catheter’s electrodes should only flow through the 

blood, however, some of this current radiates into the surrounding cardiac muscle, which is also a 

conductor. Consequently, this often leads to an overestimation of the LV blood volume. To acquire 

the absolute LV volume measurements in the present study, the blood conductance within the LV 

was measured (calibrated conductance) and the contribution of the ventricular wall (parallel 

conductance; Vp) subtracted from the calibrated conductance. The Vp for each mouse was calculated 

by conducting a saline calibration during each experiment. This involved administering a bolus of 

saline (0.9% NaCl; 10µl) to each mouse at the start of an experiment via the pre-inserted cannula in 

the right jugular vein. The PVLs generated during this calibration were subsequently exported into 

PVAN UltraTM software and the Vp value for each mouse automatically generated.  
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2.2.4.4.  Post-experimental volume calibration of the PVL catheter 

 

During the PVL experiments, blood volume was measured in relative volume units (RVU) therefore 

blood volume had to be converted from RVU to µl at the time of data analysis. For accuracy, volume 

calibration of the PVL catheter was conducted once per mouse group. To do this, a calibration 

cuvette containing wells of known diameters (Millar instruments, USA) was warmed on a Vetcare 

heat mat (Harvard Apparatus Ltd, UK) for 20 minutes (37oC). On completion of the in vivo protocol, 

blood was collected via cardiac puncture and the wells of the cuvette immediately filled with this 

blood. The catheter was then placed in each well for 5-10 seconds during which time  the MPVS-Ultra 

Single Segment Foundation System recorded changes in conductance. Subsequently, the conductance 

output (RVU) of each well was correlated with the known volume of the associated well using the 

MPVS-Ultra Single Segment Foundation System and converted to µl.  

 

2.3.  Ex vivo studies 

 

2.3.1.  Tissue harvest 

 

Upon completion of the in vivo PVL procedure, blood was withdrawn from each mouse via cardiac 

puncture of the ventricles using a 29G needle, collected in an Eppendorf containing heparinised 

saline (0.9% NaCl; final heparin concentration of 20U ml -1), inverted twice to mix the blood and 

heparin and the mixture centrifuged at 13,000 revolutions per minute (rpm) for 3 minutes (room 

temperature). The plasma fraction was then removed, transferred to an Eppendorf which was snap 

frozen in liquid nitrogen and stored at -80oC for future plasma lipid profiling. The heart was excised, 

the atria removed, the ventricular tissue weighed, snap frozen in liquid nitrogen and stored at -80oC 

for future cryosectioning and histological staining. Post blood extraction, the carotid arteries were 

removed and stored in Kreb’s Henseleit solution  (KHS; 119mM NaCl, 4.7mM KCl, 1.18mM KH2PO4, 

2.41mM MgSO4, 25mM NaHCO3, 2.52mM CaCl2 and 10.88mM C6H12O6) overnight (4oC) for small-

vessel myography experiments the following day. Following the harvesting of the carotid arteries, the 

abdomen was cut longitudinally for the liver, spleen, kidneys and abdominal fat to be removed and 

weighed. These tissues were then snap frozen in liquid nitrogen and stored at -80oC for future 

analysis. To determine fatty streak deposition, the thoracic aorta was dissected, cleaned thoroughly 

and stored in 10% neutral buffered formalin (Formal FixxTM; Thermo Scientific, UK) prior to staining. 
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2.3.2.  Plasma lipid analysis 

 

Analysis of the plasma lipid fraction of blood was carried out using a Konelab 30 discrete clinical 

analyser (Thermo Scientific, UK). The analyser was calibrated with standards for HDL, LDL, TGs and TC 

prior to plasma samples (60µl) being placed inside the analyser. Pre -programmed lipid profiling 

assays were then conducted to detect the aforementioned lipid concentrations (mmol/l) within each 

sample. 

 

2.3.3.  Small-vessel myography 

 

The purpose of conducting small-vessel myography on the murine carotid artery was to assess the 

endothelial and smooth muscle function of these vessels. Prior to experimentation, the force 

transducers of the dual wire myograph system; Model 410 A (Danish Myo Technology, Denmark)  

were calibrated using a 2g weight. One carotid artery ring (mean diameter; 296.6±6.1µm) was 

subsequently mounted between each jaw of the myograph chamber (containing KHS) by inserting 

two intra-luminal wires (Tungsten; 40µm) and manoeuvring either end of these wires underneath the 

corresponding screw and tightening it (Figure 2.3.). Moreover, isometric tension was recorded 

throughout each experiment using a PowerLab in conjunction with LabChart software (both 

ADInstruments, UK). Carotid arteries were first normalised to the target transmural pressure of 

100mmHg (13.3kPa) by gradually increasing the distance between the intra-luminal wires. Vessels 

were then left to stabilise for 45 minutes prior to sensitisation with potassium chloride (KCl) solution 

(80mM) which was subsequently washed out of the myograph chamber using KHS (process repeated 

3 times). Following sensitisation to KCl, the rings were left for 15 minutes to allow time for vessels to 

recover prior to experimentation.  
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Figure 2.3. Dual wire myograph system. Carotid artery ring mounted to the system via intra-luminal 

wires. 
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2.3.4.  Histology 

 

2.3.4.1.  Oil Red O staining of the thoracic aorta 

 

Oil Red O (ORO), a lysochrome diazo dye, was used to stain for lipid deposition within the lumen of 

thoracic aortae (Figure 2.4.). 1% ORO stock solution was prepared in 100% isopropanol and stirred 

for 3 hours at room temperature. Subsequently, the stock solution was filtered using 110mm 

diameter, grade 1 filter paper (Whatman®, UK) and diluted 3:2 with deionised H2O (dH2O) to produce 

the working solution (0.6%). The working solution was only used on the day it was made and prior to 

use, it was filtered using grade 1 filter paper (Whatman®, UK) and refiltered using 33mm diameter, 

0.22µm syringe driven filter units (Millipore, Ireland). Each individual thoracic aorta was p laced in a 

well of a 96-well plate (Sigma Aldrich, UK) and taken through the ORO staining protocol (Table 2.4.), 

after which they were cut longitudinally and pinned out on a gel mounting board. Images of stained 

thoracic aortae were then captured using an EOS 1100D camera (Canon, UK) attached to a Leica S4E 

microscope (Leica Microsystems Ltd, UK), coded for blinded analysis and the percentage area of fatty 

streaks within the lumen measured via computerised planimetry (ImageJ software, National Institute 

of Health, Rockville Pike Bethesda, Maryland) where red staining identified lipid deposition  (fatty 

streaks) within the vessel wall. 

 

2.3.4.2.  Cryosectioning of ventricular tissue  

 

Frozen ventricular tissue (for removal and storage see section 2.3.1.) was transferred to the Shandon 

Cryotome FSE (Thermo Electron Corporation, USA) where chamber, specimen and cryobar 

temperatures were set to -23oC, -17oC and -35oC, respectively. Tissue acclimatised to chamber 

temperature for 30 minutes prior to being mounted onto individual cryocassettes (Thermo Electron 

Corporation, USA) using Tissue-Tek® Optimal Cutting Temperature (O.C.T.) compound (setting time 

approximately 1 minute). Longitudinal sections (10µm) were cut and mounted onto 0.8-1.0mm 

superfrost slides (Fisher Scientific, USA) which were subsequently air dried for 30 minutes and stored 

at -80oC. Prior to staining, the slides were removed from storage and left at room temperature for 

approximately 5 minutes. Slides were then submerged in buffered zinc formalin f or 15 minutes to fix, 

after which they were rinsed in running tap H2O for 5 minutes, air dried and stored at 4oC until 

stained. 
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Figure 2.4. ORO staining of a thoracic aorta from a high fat fed ApoE-/- mouse. Red staining is 

indicative of lipid deposition (fatty streaks). 
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2.3.4.3.  Haematoxylin and Eosin staining of ventricular tissue 

 

Cardiac tissue sections were manually stained with Haematoxylin and Eosin dyes (for staining 

protocol see Table 2.5.) which stain the nuclei blue/black and the cytoplasm and/or connective tissue 

pink/orange/red for the visualisation of cardiac structure. Following staining, tissue sections were left 

to air dry prior to a Menzel-Gläser coverslip (Thermo Scientific, Germany) being mounted onto each 

stained slide using Pertex Mounting Solution. Photomicrographs of cardiac tissue were captured using 

a high resolution Mirax Scan automated imaging system (Carl Zeiss MicroImaging GmbH, Germany) at 

a magnification of 20x and then coded for blinded analysis. For gross morphology, multiple 

measurements of the right ventricular (RV) wall, the left ventricular (LV) wall and that of the 

intraventricular septum (IVS) were calculated via computerised planimetry (ImageJ software) and 

subsequently averaged. 

 

2.3.4.4.  Picrosirius Red staining of ventricular tissue 

 

Picrosirius Red, a linear anionic dye was used to detect collagen. Cardiac tissue sections were stained 

(for staining protocol see Table 2.6.) using an intelliPATHTM autostainer (BioCare, USA), left to air dry 

prior to a coverslip being mounted onto each slide using Pertex Mounting Solution. Under light 

microscopy, collagen was stained red and muscle fibres and cytoplasm both stained yellow. 

Photomicrographs of cardiac tissue were captured using the Mirax Scan automated imaging system 

at a magnification of 20x and coded for blinded analysis. The total collagen present in each cardiac 

tissue section was subsequently quantified using computerised planimetry (BioPix, Sweden) and 

calculated as a percentage of the total ventricular area. 

 

2.3.4.5.  Oil Red O staining of ventricular tissue 

 

Cardiac tissue sections were manually stained for lipid deposition using ORO (staining as described in 

Table 2.7.) and left to air dry. A coverslip was then mounted onto each slide using Mount-Quick 

“Aqueous” solution (a H2O soluble mounting medium) and photomicrographs of slides captured 

using the Mirax Scan automated imaging system at a magnification of 20x. Images were coded for 

blinded analysis prior to using computerised planimetry (BioPix software) to quantify lipid deposition. 

The total lipid deposition was subsequently calculated as a percentage of the total ventricular area.  
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Step  Constituent Time  

1 dH2O 1 min 

2 60% isopropanol 10 sec 

3 ORO working solution (made from ORO powder) 30 min 

4 60% isopropanol 10 sec 

5 dH2O 30 sec 

 

Table 2.4. ORO staining protocol for the identification of lipid deposition within the lumen of 

thoracic aortae. 

 

 

Step Constituent  Time  

1 Distilled H2O 5 sec 

2 Mayer’s haematoxylin 1 min 

3 Distilled H2O 5 sec 

4 Bluing in warm tap H2O 5 min 

5 0.1% Eosin Y disodium salt (in 95% ethanol) 10 sec 

6 95% Ethanol 5 sec 

7 95% Ethanol 5 sec 

8 Xylene 5 sec 

9 Xylene 5 sec 

 

Table 2.5. Haematoxylin and Eosin staining protocol used to visualise the cardiac structure of 

cardiac tissue sections. 
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Step  Constituent Time 

1 Distilled H2O  5 sec 

2 Tap H2O  5 min 

3 Tap H2O  5 min 

4 Picrosirius Red  1 hour 

5 1% acetic acid 3 min 

6 1% acetic acid 3 min 

7 1% acetic acid 3 min 

8 100% ethanol  3 min 

9 100% ethanol  3 min 

10 100% ethanol  3 min 

11 Xylene 3 min 

12 Xylene 3 min 

 

Table 2.6. Picrosirius Red staining protocol for the detection of collagen in cardiac tissue sections. 

 

 

Step  Constituent Time  

1 Distilled H2O 5 sec 

2 ORO working solution (made from purchased  

pre-made ORO solution) 

10 min 

3 Distilled H2O 5 sec 

4 60% isopropanol 5 sec 

5 Mayer’s haematoxylin 30 sec 

6 Running tap H2O 10 min 

 

Table 2.7. ORO staining protocol for the identification of lipid deposition in cardiac tissue sections. 
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2.3.5.  Isolated Langendorff-perfused heart studies 

 

Mice were anaesthetised with a mixture of ketamine & xylazine (120mg kg-1 & 16mg kg-1, 

respectively, i.p.) and anaesthesia confirmed via the absence of the pedal withdrawal reflex. Each 

heart was rapidly excised and arrested in ice cold KHS. The aorta was cannulated with a 23G needle 

and the needle attached to the mounting head (Figure 2.5.) of Langendorff retrograde perfusion 

apparatus (ADInstruments LTD, UK). KHS was immediately perfused (37oC; 2-2.5ml min-1) through the 

cannula into the heart and a 15-minute stabilisation period allotted for the adoption of sinus rhythm. 

Post stabilisation, each heart was subjected to 30 minutes global ischaemia (GI) follo wed by 30 

minutes reperfusion, induced by ceasing and resuming the flow of KHS to the heart, respectively. The 

heart was then stored at -20oC (for a minimum of 24 hours) prior to the measurement of infarct size.  

 

2.3.6.  Measurement of myocardial infarct size 

 

Frozen hearts were sectioned into 4 slices (2-3mm thickness), the 3rd slice (from the apex) incubated 

in 1% 2,3,5-Triphenyl-tetrazolium chloride (TTC) solution for 30 minutes at 37oC and the remaining 

slices stored at -20oC for future analysis. The 3rd slice from the apex was chosen for infarct analysis as 

it was deemed to be the slice where viable and infarcted tissue could be most clearly observed. The 

TTC stained slices were subsequently fixed in 10% neutral buffered formalin (Formal Fixx TM; Thermo 

Scientific, UK) for 2 hours prior to being imaged with an EOS 1100D camera (Canon, UK) attached to a 

Leica S4E microscope (Leica Microsystems Ltd, UK). Images were subsequently coded for blinded 

analysis and infarct size determined via computerised planimetry (ImageJ software) where red and 

peach staining was indicative of viable and infarcted tissue, respectively.  

 

2.4.  Statistical analysis 

 

Power calculations for group sizes and statistical analysis for each study are discussed within the 

relevant chapter. However, in general, data are expressed as mean±S.E.M. Differences between 

paired and unpaired data were established by conducting a paired or unpaired t-test, respectively. 

Multiple comparisons were performed using a one-way analysis of variance (ANOVA) test followed 

by a ‘Bonferroni’ post-hoc test. Where appropriate, multiple comparisons were performed using a 

two-way ANOVA followed by a ‘Bonferroni’ post-hoc test. All statistical tests were carried out using 

GraphPad Prism® 4 software (GraphPad Software, Inc., USA) and differences between data deemed 

as significant where P<0.05.           
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Figure 2.5. Langendorff retrograde perfusion apparatus. 
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2.5.  Materials 

 

Drugs, solutions and diets were purchased from various sources (see Table 2.8.).  

 

Drug/Solution Source 

Acetic Acid Merck Millipore, USA 

Agarose Sigma-Aldrich®, UK 

ATP Sigma-Aldrich®, UK 

BSA (essentially fatty acid free; ≥96%) Sigma-Aldrich®, UK 

CaCl2 Sigma-Aldrich®, UK 

Cor.At® CL-i cardiomyocytes (miPSC-derived) 1M kit with 

Puromycin and medium 

Sigma-Aldrich®, UK 

CRM (P) chow pellets Special Diets Services, UK 

(-)-Cannabidiol Tocris Bioscience, UK 

DMEM Invitrogen, UK 

DMSO Fisher Scientific, Ireland 

Dobutamine Hydrochloride Sigma-Aldrich®, UK 

Eosin Y disodium salt Sigma-Aldrich®, UK 

Formal FixxTM (ShandonTM 10% Neutral buffered formalin) Thermo Scientific, UK 

GelRedTM Nucleic Acid Gel Stain Biotium, UK 

Glacial Acetic Acid Fisher Scientific, UK 

Glucose (D-(+)-Glucose) Sigma-Aldrich®, UK 

HBSS Sigma-Aldrich®, UK 

HDL/LDL calibrator Thermo Scientific, UK 

Heparin sodium Roche, UK 

HEPES Invitrogen, UK 

iCell® Cardiomyocytes Cellular Dynamics, USA 

Isopropanol Fisher Scientific, UK 

KCl Sigma-Aldrich®, UK 

Ketamine (VetalarTM) Pfizer, UK 

KH2PO4 Sigma-Aldrich®, UK 

LPI sodium salt from Glycine max (soybean) Sigma-Aldrich®, UK 

Mayer’s Haematoxylin HistoLab®, Sweden 

Methacholine (Acetyl-β-methylcholine chloride)  Sigma-Aldrich®, UK 
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MgSO4 Sigma-Aldrich®, UK 

Mount-Quick “Aqueous” mounting medium Daido Sanyo Co., Ltd, Japan 

NaCl Fisher Scientific, Ireland 

NaHCO3 Fisher Scientific, Ireland 

ORO powder Sigma-Aldrich®, UK 

95% O2 and 5% CO2 Boc, UK 

PBS (Dulbecco A) Tablets Oxoid Limited, UK 

PCR Marker, 250µl (50 lanes) Promega, UK 

PERTEX® mounting medium HistoLab®, Sweden 

Picrosirius Red HistoLab®, Sweden 

Primers (ApoE and GPR55) Sigma-Aldrich®, UK 

QIAmp® DNA Mini Kit Qiagen, UK 

REDTaq® ReadyMixTM PCR Reaction Mix Sigma-Aldrich®, UK 

sCal (lipid calibrator) Thermo Scientific, UK 

Sodium Nitroprusside Dihydrate Sigma-Aldrich®, UK 

Tissue-Tek® O.C.T. Compound Sakura Finetek UK Ltd, UK 

TTC powder Sigma-Aldrich®, UK 

TTC solution (pre-made; 1%) Sigma-Aldrich®, UK 

UltraPureTM TBE Buffer  Life Technologies, UK 

U-46619 Enzo Life Sciences, UK 

Western diet R638 semi-synthetic feed Lantmannen, Sweden 

(-)-Xestospongin C Tocris Bioscience, UK 

Xylazine (Rompun®) Bayer Healthcare, UK 

Xylene VWR Chemicals, Sweden 

Y-27632 Dihydrochloride Tocris Bioscience, UK 

Zinc Formalin (buffered; Thermo ScientificTM Richard-Allan 

ScientificTM) 

Fisher Scientific, UK  

 

Table 2.8. Source of drugs, solutions and diets. 
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2.5.1.  Composition of drugs and solutions  

 

 1% Acetic acid (1% v/v): 1ml of acetic acid and 99ml of dH2O 

 

 Agarose gels: 1.6% w/v agarose in 100ml dH2O 

 

 Anaesthesia: 600µl VetalarTM (100mg/ml ketamine hydrochloride with 0.01% w/v 

benzethonium chloride as a preservative) and 400µl Rompun® (23.32mg/ml xylazine 

hydrochloride and 1.5mg methyl 4-hydroxy-benzoate) were mixed with 4ml dH2O  

 

 CBD stock solution (1mM): 10mg CBD in 31.8ml 100% DMSO 

- For 1µM CBD (0.1% DMSO): A 1 in 1000 dilution of CBD stock solution (1mM) in KHS 

was carried out. 0.1% DMSO was used as the vehicle 

 

 Dobutamine hydrochloride (10µg kg-1): 10µg/1ml saline; injection volume: 10µl per 10g body 

weight 

 

 Eosin (0.1% v/v): 1ml Eosin Y in 999ml 95% ethanol 

 

 70% ethanol (70% v/v): 70ml absolute ethanol and 30ml dH2O 

 

 95% ethanol (95% v/v): 95ml absolute ethanol and 5ml dH2O 

 

 100% ethanol (100% v/v): 100ml absolute ethanol  

 

 Heparinised saline: 1000U ml-1 heparin sodium diluted with 0.9% saline  

 

 60% isopropanol (60% v/v): 60ml absolute isopropanol (molecular biology grade) and 40ml 

dH2O 

 

 98% isopropanol (98% v/v): 98ml absolute isopropanol and 2ml dH2O 

 

 KCl (80mM): 2.982g KCl in 500ml dH2O 
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 KHS: 119mM NaCl, 4.7mM KCl, 1.18mM KH2PO4, 2.41mM MgSO4, 25mM NaHCO3, 2.52mM 

CaCl2 and 10.88mM C6H12O6; pH7.4 via bubbling with 95% O2 and 5% CO2  

 

 LPI stock solution (100µM): 1mg LPI in 27.2ml 1% DMSO 

- For 10µM LPI (0.1% DMSO): A 1 in 10 dilution of LPI stock solution (100µM) in KHS 

was carried out. 0.1% DMSO was used as the vehicle 

 

 MCh stock solution (100mM): 100mg MCh in 5.1ml dH2O 

- For 10-9-10-4M: 1 in 10 serial dilutions (starting with MCh stock solution; 100mM) in 

KHS were carried out 

 

 ORO stock solution: (1% w/v): 5g Oil Red O in 500ml 98% isopropanol (stored at 4oC) 

- ORO working solution: Dilute ORO stock solution 3:2 with dH2O 

 

 Phosphate buffered saline (PBS): 1 PBS tablet dissolved in 100ml of dH2O. Final PBS 

concentration; 136.9mM NaCl, 8.1mM Na2HPO4, 1.5mM KH2PO4 and 2.7mM KCl (pH7.3±0.2 

at 25oC) 

 

 Primers (ApoE stock solution; 100µM):  

- 5’- CAGAAAGCGAAGGAGCAAAG - 3’: 411.6µg in 659µl dH2O 

- 5’- AAAAACTCGGGATGAGCCTT - 3’: 472.6µg in 768µl dH2O 

- 5’- CAGCTCCCTCTCCTAGGGTT - 3’: 490µg in 813.5µl dH2O 

 

 Primers (GPR55 stock solution; 100µM): 

- 5´- ATGCGGAATTCCTGTTACCCA - 3´: 615.3µg in 963.8µl dH2O 

- 5´- CACCCTAGGGCCTCAGTTGTA - 3´: 515.2µg in 806.9µl dH2O 

- 5´- GGAAAGCTGAGATACAGACTT - 3´:465.2µg in 714.9µl dH2O 

 

 Saline: 0.9% w/v NaCl in 100ml dH2O (stored at room temperature) 

 

 SNP stock solution (100mM): 200mg SNP in 6.7ml dH2O 

- For 10-9-10-4M: 1 in 10 serial dilutions (starting with SNP stock solution; 100mM) in 

KHS were carried out  
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 TBE buffer: 0.1M Tris, 0.09M Boric Acid and 1mM EDTA (pH 8.4±0.1 at 25oC) 

 

 1% TTC (1% w/v): 1g TTC in 100ml of PBS 

 

 U-46619 stock solution (1mM): 1mg U-46619 in 2.9ml PBS 

- For 10-9-10-5M: 1 in 10 serial dilutions (starting with U-46619 stock solution; 1mM) in 

KHS were carried out 

 

 Y-27632 dihydrochloride stock solution (1mM): 10mg Y-27632 dihydrochloride in 31.2ml KHS 

- For 10µM Y-27632 dihydrochloride: A 1 in 100 dilution of Y-27632 dihydrochloride 

stock solution (1mM) in KHS was carried out  

- For 50µM Y-27632 dihydrochloride: A 1 in 20 dilution of Y-27632 dihydrochloride 

stock solution (1mM) in KHS was carried out  
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Chapter 3:   

Effect of a high fat diet in ApoE-/- and 

ApoE-/-/GPR55-/- mouse models of 

atherosclerosis 
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3.1.  Introduction 

 

3.1.1.  GPR55 and risk factors associated with atherosclerosis 

 

Increasing evidence is emerging that GPR55 is associated with risk factors that are linked with the 

development of atherosclerosis (e.g. obesity and diabetes). For example, Moreno-Navarette and 

colleagues (2012) reported that GPR55 mRNA expression was increased in the visceral and 

subcutaneous adipose tissue of obese human subjects when compared to those with a lean 

phenotype. Additionally, the plasma LPI (16:0, 18:0 and 20:4 species) concentration was also 

increased in the obese subjects. With regard to diabetes, several studies have investigated the role of 

GPR55 in glucose homeostasis, the results of which have unanimously ind icated that GPR55 

activation in the islets of Langerhans stimulates insulin secretion (Romero-Zerbo et al., 2011, 

McKillop et al., 2013, Liu et al., 2016 and McKillop et al., 2016). In light of these findings, GPR55 may 

represent a potential therapeutic target for obesity and diabetes, which may indirectly reduce the 

prevalence of atherosclerosis. What is not known is whether GPR55 has a role in the development of 

risk factors for vascular disease such as hyperlipidaemia and/or inflammation, which ultimately 

influence the development of atherosclerosis.   

 

3.1.2.  GPR55 and atherosclerosis 

 

To date, few studies have investigated the direct role of GPR55 in atherosclerosis per se, and two 

recent studies have shown conflicting results. Lanuti and colleagues (2015) demonstrated that GPR55 

activation with O-1602 augmented ox-LDL-induced lipid accumulation and inflammatory responses, 

while reducing the efflux of cholesterol from human foam cells, suggesting a pro-atherogenic role for 

GPR55. In contrast, GPR55 antagonism with CID16020046, increased neutrophil activation and 

recruitment in the early stages of atherogenesis and neutrophil degranulation in the later stages of 

atherosclerosis (Montecucco et al., 2016), suggesting an anti-atherogenic role for this receptor. The 

opposing findings may be due to the conclusions of  the first study being based upon data that was 

generated using O-1602, which has previously been reported to mediate effects beyond GPR55 

(Schicho et al., 2011). On this basis, a more targeted approach to assessing the importance of GPR55 

in atherogenesis would be beneficial, for example, through the genetic deletion of GPR55.  
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3.1.3.  Rodent models of atherosclerosis 

 

C57BL/6 mice fed an atherogenic diet (1.25% cholesterol, 15% fat and 0.5% cholic acid) develop 

atherosclerotic lesions (Paigen et al., 1987a and Paigen et al., 1987b), however, their lesions differ 

from those of humans, both histologically and in terms of their location within the vasculature 

(Jawień et al., 2004). On this basis, the C57BL/6 mouse is not used to study the development  of 

atherosclerosis. As other strains of wildtype mice are highly resistant to the development of 

atherosclerotic lesions (Meyrelles et al., 2011) the manipulation of the murine genome has proven 

necessary to generate more clinically relevant models of atherosclerosis. Consequently, a number of 

mouse models are now available, however, the apolipoprotein E (ApoE) knockout (ApoE -/-) and the 

LDL receptor knock out (LDLR-/-) are the two most frequently used in the research of atherosclerosis 

(Getz and Reardon, 2012). 

 

3.1.3.1.  ApoE-/- mouse 

 

ApoE is a glycoprotein which is predominantly synthesised in the liver and brain of mice and humans 

and is a component of all lipoproteins with the exception of LDL (Jawień et al., 2004). It functions as a 

ligand for lipoprotein receptors (e.g. LDLR), triggering the hepatic uptake of lipoproteins from the 

circulation. Thus, mice lacking the gene for ApoE fail to remove circulatory lipoproteins. When fed a 

normal chow diet, ApoE-/- mice exhibit an elevated plasma cholesterol concentration of 606mg/dL 

(34mmol/l) compared to control mice with 109mg/dL (6mmol/l) (Nakashima et al., 1994) and 

develop fatty streaks (type II lesions; lesion classification is defined in Chapter 1, section 1.2.4.) at 

approximately 4-5 months of age, which subsequently progress to type V lesions at 10 months of age 

onwards (Whitman, 2004). Plaque development in ApoE-/- mice is histopathologically similar to that 

of humans (Coleman et al., 2006) making this model particularly attractive for the research of 

atherosclerosis. Atherogenesis can also be accelerated in the ApoE-/- mouse by the feeding of a high 

fat diet which consequently elevates the plasma cholesterol concentration of these mice to 1085-

4402mg/dL (60-244mmol/l) depending on the duration (6-40 weeks) of the dietary period 

(Nakashima et al., 1994). Unsurprisingly, ApoE-/- mice develop fatty streaks throughout the arterial 

tree at an earlier time point, approximately 8-10 weeks, in response to high fat feeding and 

progression to the type V lesion is usually reported within 18-20 weeks of starting this diet 

(Whitman, 2004). However, ApoE-/- mice do present with limitations; for example, their plasma 

cholesterol is mostly carried on lipoprotein remnants rather than LDL, as it is in humans (Getz and 

Reardon, 2012). Additionally, plaque development within the coronary vasculature occurs in human 
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sufferers of atherosclerosis and not in ApoE-/- mice, regardless of the diet with which they are fed 

(Coleman et al., 2006), therefore this model is not suitable for studies investigating the association of 

coronary plaque rupture and myocardial infarction. 

 

3.1.3.2.  LDLR-/- mouse 

 

The LDLR is responsible for lipoprotein uptake from the circulation to the liver, therefore genetic 

ablation of the LDLR increases the plasma lipoprotein concentration. However, the response of LDLR-

/- mice to a normal chow diet is not as severe as that of ApoE -/- mice, with the total plasma 

cholesterol concentration only reaching approximately 240mg/dL (13mmol/l) at approximately 7 

weeks of age (Ishibashi et al., 1993). Consequently, lesion development within the vasculature of 

these mice is limited, even in 6 month old LDLR-/- mice (Hasty et al., 2001). However, Ma and 

colleagues (2012) demonstrated that the LDLR-/- mouse is diet responsive, as high fat feeding of this 

strain for 12 months increased their total plasma cholesterol concentration from 180mg/dL 

(10mmol/l) to 400mg/dL (22mmol/l) and caused lesion development which worsened with th e 

duration of high fat feeding. Akin to ApoE-/- mice, LDLR-/- mice do not develop coronary 

atherosclerosis, however, the simultaneous deletion of the gene s for both ApoE and LDLR in the 

same mice results in lesion development within the coronary arteries and myocardial infarction 

(Caligiuri et al., 1999).  

 

The present study required a model of progressive atherosclerosis to investigate the role of GPR55 in 

the development of this condition. As ApoE-/- mice develop atherosclerosis even on normal chow and 

exhibit similarities to humans with regard to the way in which they develop lesion s, the ApoE-/- 

mouse was deemed the more appropriate model for use in the present study.  

 

3.1.4.  GPR55 knockout models 

 

GPR55 knockout (GPR55-/-) mouse models have aided in the investigation of the role of GPR55 in 

physiology for a number of years (Johns et al., 2007, Whyte et al., 2009, Romero-Zerbo et al., 2011, 

Walsh et al., 2014, Bjursell et al., 2016, Meadows et al., 2016, and Carey et al., 2017). However, 

advances in genetics have introduced double knockout mouse models allowing for more complex 

studies to take place to further characterise the role of a gene in the absence of another. In recent 

years, a novel mouse model of atherosclerosis has been generated by AstraZeneca (Mölndal, 

Sweden) where both the ApoE and GPR55 genes have been deleted (ApoE-/-/GPR55-/-). Rather than 
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administering GPR55 antagonists to mice deficient only in the gene for ApoE,  research involving the 

ApoE-/-/GPR55-/- mouse model will rule out the possibility of such antagonists mediating any off 

target effects and will provide a more accurate insight into the role of GPR55 in atherosclerosis.  

 

3.1.5.  Aims 

 

The principle aims of this study were to characterise the phenotype of the novel ApoE -/-/GPR55-/- 

mouse in response to high fat feeding and to investigate the role of GPR55 in the development of 

atherosclerosis. In order to do this, C57BL/6 (wildtype; WT), ApoE -/- (model of atherosclerosis), 

GPR55-/- and ApoE-/-/GPR55-/- mice were fed a normal chow (NC) or high fat chow (HFC) diet for 12 

weeks to determine the effect(s) of gene deletion and/or high fat feeding on the following 

parameters 1) body weight, 2) fat and lean mass composition, 3) tissue weights, 4) endothelial and 

smooth muscle function of the carotid artery, 5) plasma lipid profiles, 6) fatty streaks within the 

thoracic aorta, and 7) cardiac remodelling. 

 

3.2.  Methods 

 

3.2.1.  Study design  

 

Male and female WT, ApoE-/-, GPR55-/- and ApoE-/-/GPR55-/- mice, aged 4-7 weeks (approximately 5 of 

each gender per strain) were purchased or bred according to Chapter 2, section 2.2.2.1. The mice 

within each strain were randomly assigned to NC or HFC groups and received either CRM (P) chow 

pellets (Special Diets Services, UK) or Western diet R638 semi-synthetic pellets (0.15% cholesterol 

and 21% fat; Lantmannen, Sweden), respectively for a 12 week period (full nutritional details of each 

diet are detailed in Figure 3.1. and 3.2., respectively). Groups starting each diet were staggered over 

a 6 month period, during which time the mice were housed at the MRF in accordance with the 

animal ethics and husbandry guidelines set by the Home Office (Chapter 2, section 2.2.1). Following 

completion of the 12 week dietary period, animals were transported to RGU where all in vivo/ex vivo 

studies were conducted. On arrival at RGU, mice were allotted a minimum period of 30 minutes to 

acclimatise to their new surroundings prior to the commencement of any experiments.  
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Figure 3.1. Full nutritional details of the CRM (P) pellets (NC Diet). 
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Figure 3.2. Full nutritional details of the Western diet R638 semi-synthetic pellets (HFC Diet). 

 



 

67 
 

3.2.2.  Body weight measurements 

 

All mice were weighed the day on which they commenced either the NC or HFC diet (Week 0) and 

fortnightly thereafter for the duration of the dietary period by technicians at the MRF. 

 

3.2.3.  Assessment of fat and lean mass composition 

 

To determine the fat and lean mass composition of mice throughout the dietary period, conscious 

mice were coaxed into a translucent tube where they were body scanned at 0, 6 and 12 weeks by 

trained technicians at the MRF using an EchoMRITM Body Composition Analyser (EchoMRITM
 LLC, 

USA). For accuracy, each mouse was scanned in triplicate at each time point and the values for each 

variable subsequently averaged. 

 

3.2.4.  Assessment of endothelial and smooth muscle function of the carotid artery 

 

Small vessel myography was conducted with murine carotid arteries to assess their endothelial and 

smooth muscle function. For removal and storage of these vessels see Chapter 2, section 2.3.1. 

Primarily, the force transducers of the dual wire myograph system were calibrated, the carotid 

arteries mounted between each jaw of the myograph chamber and normalised to the target 

transmural pressure of 100mmHg (13.3kPa) as described in Chapter 2, section 2.3.3. All 

vasoconstrictors /vasodilators used throughout the study were serially diluted on experimental days 

from stocks previously prepared and stored at -20oC. 

 

3.2.4.1.  Contractile responses to U-46619 

 

Post mounting and normalisation of the vessels, sensitisation to KCl was carried out as described in 

Chapter 2, section 2.3.3. and each vessel left to stabilise for 15 minutes. A concentration response 

curve (CRC) was then carried out with the vasoconstrictor U-46619 (10-9-10-5M), which was 

administered in cumulative concentrations allowing for the tension to plateau prior to the addition of 

the next concentration. The data regarding vessel contraction was calculated as the mean±S.E.M. of 

the response (mN) produced by each concentration. Moreover, the maximal (Emax) change (∆) in 

tension (mN) to U-46619 was calculated from the CRC for each strain. The logEC50 values were also 

calculated from the CRC for each strain by applying a nonlinear curve fit using a variable Hill slope. 

Any vessels which failed to contract by 3mN were excluded from the associated data analysis. 
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Subsequently, the EC80 of U-46619 was calculated for each individual vessel and that concentration 

used for the following vasorelaxant studies. Carotid arteries were washed 6 times using KHS and left 

to equilibrate for a 45-minute period prior to any vasorelaxant studies being conducted. 

 

3.2.4.2.  Assessment of vasorelaxant responses to MCh and SNP 

 

In order to assess endothelial function, carotid arteries were pre -constricted with U-46619 (EC80 

value) and vessel tension left to plateau. A CRC was then carried out with the endothelium 

dependent vasodilator, methacholine (MCh; 10-9-10-4M), which was administered in cumulative 

doses allowing for the tension to plateau prior to the addition of the next concentration.  The carotid 

arteries were subsequently washed 6 times using KHS and allowed to equilibrate for a 45 minute 

period. Vessels were then pre-constricted with U-46619 (EC80 value) and a CRC carried out with the 

endothelium independent vasodilator, sodium nitroprusside (SNP; 10-9-10-4M) to assess smooth 

muscle function. Furthermore, the order in which the vasodilators were applied to the bath was 

alternated from one experiment to the next to remove any influence of order of delivery on the 

responsiveness of the vessels to each agent. Finally, vessel relaxation was calculated as the 

mean±S.E.M. of the percentage relaxation of the U-46619-induced contraction. Moreover, the Emax ∆ 

in % relaxation to either MCh or SNP was calculated from the respective CRC for each strain. The 

logEC50 values for either MCh or SNP were also calculated from the respective CRC for each strain by 

applying a nonlinear curve fit using a variable Hill slope. Any vessels which failed to contract by 3mN 

in response to the EC80 value of U-46619 were excluded from the associated data analysis.  

 

3.2.5.  Assessment of plasma lipid profiles 

 

Blood samples were extracted from anaesthetised mice via cardiac puncture of the ventricles and the 

plasma fraction harvested according to the protocol described in Chapter 2, section 2.3.1. 

Subsequently, lipid profiling assays referred to in Chapter 2, section 2.3.2. were conducted to 

determine the concentration (mmol/l) of TC, LDL, HDL and TGs within the plasma.  

 

3.2.6.  Histological assessment of the deposition of fatty streaks within the thoracic aorta 

 

The thoracic aorta of each mouse was removed, cleaned and stored according to the protocol 

detailed in Chapter 2, section 2.3.1. Each thoracic aorta was placed in a well of a 96 well plate and 
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subsequently stained with Oil Red O, imaged and analysed for the deposition of fatty streaks 

according to the protocol described in Chapter 2, section 2.3.4.1.   

 

3.2.7.  Histological assessment of ventricular structure/composition 

 

Frozen ventricular tissue from mice (for removal and storage see Chapter 2, section 2.3.1.) was 

cryosectioned longitudinally (10µm), mounted onto slides and subsequently fixed for histological 

staining according to the protocol detailed in Chapter 2, section 2.3.4.2. Haematoxylin & Eosin (H & 

E) staining of the tissue was carried out to enable measurement of the LV and RV wall thickness and 

that of the IVS. Additionally, Picrosirius Red and Oil Red O staining of the ventricular tissue were 

conducted to determine collagen and lipid deposition, respectively (subsequently calculated as a 

percentage of the total ventricular area). For details regarding the staining, imaging and analysis of 

the ventricular tissue using H & E, Picrosirius Red and Oil Red O see Chapter 2, sections 2.3.4.3., 

2.3.4.4. and 2.3.4.5., respectively. 

 

3.2.8.  Statistical analysis 

 

To ensure that the studies planned within this chapter had sufficient statistical power, power 

calculations were conducted prior to experiments taking place and were based on data from 

previous experiments performed in the lab. With the exception of the isolated vessel studies where 

power calculations recommended an n=9, an n=5 was recommended for all other variables 

measured in this chapter. Examples of power calculations performed for studies conducted within 

this chapter: 

 

Cardiac morphology studies: Pooled standard deviations from data for both LV wall thickness and 

HW:BW were 0.11 and 0.14, respectively. With a sample size for each experimental group of n=5, a 

one-way ANOVA would detect differences of 0.26mm (LV wall thickness; 80% power) and 0.39mg/g 

(HW:BW; 92% power) between the group means. 

 

Isolated vessel studies: Pooled standard deviations from pilot data for vasoconstriction (U-46619) 

and vasorelaxation (MCh and SNP) responses were 1, 14 and 9, respectively. With a sample size for 

each experimental group of n=9, a one-way ANOVA would have 80% power to detect differences of 

1.65mN/mm (active wall tension), 86% power to detect a 25% change in relaxation to MCh and a 

13% change in relaxation to SNP between the intervention means. 
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In addition to any experiment specific exclusion criteria already detailed, data was excluded if it was 

outwith the mean±2x(standard deviations). Data are expressed as mean±S.E.M throughout. Multiple 

comparisons were performed using a two-way ANOVA followed by a ‘Bonferroni’ post hoc test to 

examine: 1) the influence of gene deletion, and 2) the impact of high fat feeding on all indices 

measured. All statistical tests were carried out using GraphPad Prism® 4 software (GraphPad 

Software, Inc., USA) and differences between data deemed significant where P<0.05. 

 

3.3.  Results 

 

3.3.1.  Impact of gene deletion and/or a high fat diet on body weight 

 

Mice within each strain were randomly allocated to an NC or HFC diet group (approximately 5 of 

each gender per strain) and were weighed the day on which they commenced their allotted diet 

(Week 0). In terms of the male mice, all experimental groups were of similar starting weights with 

the exception of the ApoE-/- mice allocated to the NC diet which were lighter compared to NC fed 

C57BL/6 mice (P<0.05; Table 3.1). Similarly in the female mice, all experimental groups were of 

similar starting weights with the exception of the ApoE-/-/GPR55-/- mice allocated to the HFC diet, 

which were heavier compared to their NC fed counterparts (P<0.001; Table 3.1). Mice were weighed 

on the day in which they ended the dietary period (week 12). For both male and female mice, the 

HFC fed GPR55-/- and ApoE-/-/GPR55-/- groups were heavier than their NC fed counterparts (P<0.05; 

Table 3.2).  

 

Weight gain in response to both the NC and HFC diets was calculated every two weeks as the change 

(∆) in body weight of each animal from week 0. All male mice gained weight throughout the study as 

expected, and weight gain was enhanced in each strain of mice fed a HFC diet with the exception of 

the ApoE-/- mice (Figure 3.3. A-D). When compared to their NC fed counterparts, HFC fed C57BL/6 

male mice significantly gained weight at weeks 10 and 12 (P<0.05, Figure 3.3. A), whereas HFC fed 

male GPR55-/- and ApoE-/-/GPR55-/- mice exhibited significantly greater and earlier increases in weight 

gain (from week 4; P<0.05; Figure 3.3. C and D, respectively) compared to C57BL/6 HFC fed mice. In 

female mice, weight gain over the duration of the dietary intervention study was of a smaller 

magnitude than observed in male mice, regardless of diet. Furthermore, only high fat feeding in 

female GPR55-/- mice resulted in a significant weight gain (compared to NC fed counterparts) at 

weeks 10 and 12 of the dietary period (P<0.001; Figure 3.4. C).  
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 Weight (g) 

Week 0 

 Male Female 

 NC HFC NC HFC 

C57BL/6 22.7±0.5 (4) 21.4±0.7 (6) 17.9±0.2 (6) 18.9±0.4 (4) 

ApoE-/- 18.1±1.8* (5) 22.4±0.9 (5) 17.9±0.7 (5) 19.2±0.7 (5) 

GPR55-/- 22.8±0.6 (5) 23.4±0.6 (5) 19.4±0.6 (5) 19.2±0.9 (5)  

ApoE-/-/GPR55-/- 20.1±1.4 (3) 21.2±1.7 (7) 16.2±0.6 (7) 19.1±0.3# (10) 

 

Table 3.1. Body weight of male and female mice at week 0. Data are expressed as mean±S.E.M; n-

numbers are in brackets. *P<0.05 vs. male C57BL/6 NC and #P<0.001 vs. female ApoE-/-/GPR55-/- NC; 

2-way ANOVA and a ‘Bonferroni’ post hoc test. 

 

 

 

 Weight (g) 

Week 12 

 Male Female 

 NC HFC NC HFC 

C57BL/6 32.7±0.7 (4) 34.4±1.6 (6) 23.4±0.4 (6)  26.0±1.2 (4) 

ApoE-/- 29.9±0.9 (5) 33.6±1.0 (4) 23.8±0.2 (5) 23.3±0.3 (5) 

GPR55-/- 31.4±1.2 (5) 40.8±1.7# (5) 24.8±0.5 (5) 27.9±1.1# (5) 

ApoE-/-/GPR55-/- 30.3±1.3 (3) 40.6±1.4# (6) 24.3±0.4 (7) 28.6±0.8# (11) 

 

Table 3.2. Body weight of male and female mice at week 12. Data are expressed as mean±S.E.M; n-

numbers are in brackets. # indicates a significant effect (P<0.05) of diet within the same strain and 

gender; 2-way ANOVA and a ‘Bonferroni’ post hoc test. 
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Figure 3.3. Weight gain over time in male mice. Data are expressed as mean±S.E.M. *P<0.001 vs. 

normal chow, #P<0.01 vs. normal chow and ~P<0.05 vs. normal chow; 2-way ANOVA and a 

‘Bonferroni’ post hoc test. 
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Figure 3.4. Weight gain over time in female mice. Data are expressed as mean±S.E.M. *P<0.001 vs. 

normal chow; 2-way ANOVA and a ‘Bonferroni’ post hoc test. 
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3.3.2.  Impact of gene deletion and/or a high fat diet on body mass composition 

 

3.3.2.1.  Fat mass 

 

EchoMRITM body scanning was conducted at weeks 0, 6 and 12 of the dietary period to identify 

changes in fat and lean mass composition. With the exception of female GPR55-/- mice, which 

exhibited a lower starting fat mass (P<0.001; Table 3.3), all strains assigned to an NC diet had similar 

fat masses (% body weight; BW) at week 0 compared to NC fed C57BL/6 mice. After 6 and 12 weeks 

of NC consumption, strain had no effect on fat mass, regardless of gender (Figure 3.5. A-D). In 

contrast, HFC significantly increased the fat mass of male C57BL/6, GPR55-/- and ApoE-/-/GPR55-/-, but 

not ApoE-/- mice, at both 6 and 12 weeks of dietary intervention when compared to their NC fed 

equivalents (P<0.05, Figure 3.5. A and C, respectively). The high fat feeding of female mice only 

increased fat mass by the 6 week time point in the ApoE-/-/GPR55-/- mice (P<0.05; Figure 3.5. B). 

However, consumption of this diet for an additional 6 weeks significantly increased the fat masses of 

C57BL/6, GPR55-/- and ApoE-/-/GPR55-/- mice (P<0.05; Figure 3.5. D). Group sizes at week 0 are 

indicated in brackets in Table 3.3., while group sizes for weeks 6 and 12 are detailed in Table 3.4.  

 

3.3.2.2.  Lean mass 

 

At week 0, female ApoE-/- and GPR55-/- mice allocated to eat NC exhibited greater lean masses than 

their WT counterparts (P<0.05; Table 3.4.). At this time point, male ApoE-/- mice and female C57BL/6 

and ApoE-/-/GPR55-/- mice assigned to eat HFC also had greater lean masses than their counterparts 

allotted to the NC diet (P<0.05; Table 3.4.). By week 6, the lean mass of NC fed male ApoE-/-/GPR55-/- 

mice was reduced when compared to male C57BL/6 mice on NC (P<0.01; Figure 3.6. A). In addition, 

high fat feeding of male C57BL/6 and ApoE-/- mice reduced and increased their lean masses 

(compared to their NC fed counterparts), respectively at the 6 week time point (P<0.05; Figure 3.6. 

A). At week 12, lean mass was significantly reduced in both male GPR55-/- and ApoE-/-/GPR55-/- mice 

fed NC compared with C57BL/6 mice on the same diet (P<0.01; Figure 3.6. C). Additionally, high fat 

feeding of male C57BL/6 mice significantly reduced their lean mass by week 12 compared to their NC 

fed counterparts (P<0.05; Figure 3.6. C) and the HFC induced increase in lean mass observed in male 

ApoE-/- mice at 6 weeks was no longer present by week 12 of this study (Figure 3.6. C). Finally, the 

lean mass of female mice was not altered by strain and/or diet at either the 6 or 12 week time points 

(Figure 3.6. B and D, respectively). Group sizes at week 0 are indicated in brackets in Table 3.5., while 

group sizes for weeks 6 and 12 are detailed in Table 3.6. 
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 Fat Mass (% BW) 

Week 0 

 Male Female 

 NC HFC NC HFC 

C57BL/6 7.7±0.3 (4) 9.1±0.3 (6) 10.2±0.6 (6) 9.3±0.7 (4) 

ApoE-/- 8.5±0.6 (5) 8.5±0.5 (4) 10.2±0.7 (5) 8.9±0.2 (5) 

GPR55-/- 7.1±0.2 (5) 8.2±0.5 (5) 7.2±0.2* (5) 7.8±0.5 (5) 

ApoE-/-/GPR55-/- 8.0±0.2 (3) 7.9±0.5 (4) 9.9±0.4 (7) 8.4±0.4 (6) 

 

Table 3.3. Fat mass (% of body weight; BW) of male and female mice at week 0, measured via 

EchoMRITM body scanning. Data are expressed as mean±S.E.M; n-numbers are in brackets. *P<0.001 

vs. female C57BL/6 NC; 2-way ANOVA and a ‘Bonferroni’ post hoc test. 

 

 

 

  Group Sizes for Fat Mass (% BW) 

  Male Female 

  Week 6 Week 12 Week 6 Week 12 

C57BL/6 NC 4 4 6 5 

 HFC 6 6 4 4 

ApoE-/- NC 5 5 5 5 

 HFC 4 4 5 5 

GPR55-/- NC 3 5 3 5 

 HFC 5 5 5 5 

ApoE-/-/GPR55-/- NC 3 3 7 7 

 HFC 4 4 6 6 

 

Table 3.4. Group sizes for fat mass (% of body weight; BW) of male and female mice at weeks 6 and 

12, measured via EchoMRITM body scanning.  See Figure 3.5. for the corresponding graphs. 
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Figure 3.5. Fat mass (% of body weight; BW) of male and female mice at weeks 6 and 12, measured 

via EchoMRITM body scanning. Male and female mice at week 6; A and B, respectively. Male and 

female mice at week 12; C and D, respectively. Data are expressed as mean±S.E.M. # indicates a 

significant effect (P<0.05) of diet within the same strain; 2-way ANOVA and a ‘Bonferroni’ post hoc 

test. 
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 Lean Mass (g) 

Week 0 

 Male Female 

 NC HFC NC HFC 

C57BL/6 15.9±2.0 (4) 17.5±0.9 (6) 13.3±0.5 (6) 15.6±0.2# (4) 

ApoE-/- 14.8±0.8 (5) 19.4±0.8# (5) 15.1±0.4* (5) 15.2±0.4 (5) 

GPR55-/- 19.0±0.6 (5) 19.6±0.4 (5) 15.3±0.5* (5) 15.7±0.6 (5) 

ApoE-/-/GPR55-/- 15.4±1.7 (3) 14.6±1.8 (4) 12.7±0.6 (7)  14.8±0.3# (6) 

 

Table 3.5. Lean mass (g) of male and female mice at week 0, measured via EchoMRITM body 

scanning. Data are expressed as mean±S.E.M; n-numbers are in brackets. *P<0.05 vs. female 

C57BL/6 NC and #P<0.05 vs. same strain (NC) and gender; 2-way ANOVA and a ‘Bonferroni’ post hoc 

test. 

 

 

 

  Group Sizes for Lean Mass (g) 

  Male Female 

  Week 6 Week 12 Week 6 Week 12 

C57BL/6 NC 4 4 6 5 

 HFC 6 6 4 4 

ApoE-/- NC 5 5 5 5 

 HFC 5 4 5 5 

GPR55-/- NC 3 5 3 5 

 HFC 5 5 5 5 

ApoE-/-/GPR55-/- NC 3 3 7 7 

 HFC 4 4 6 6 

 

Table 3.6. Group sizes for lean mass (g) of male and female mice at weeks 6 and 12, measured via 

EchoMRITM body scanning. See Figure 3.6. for the corresponding graphs. 
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Figure 3.6. Lean mass (g) of male and female mice at weeks 6 and 12, measured via EchoMRI TM 

body scanning. Male and female mice at week 6; A and B, respectively. Male and female mice at 

week 12; C and D, respectively. Data are expressed as mean±S.E.M. * indicates a significant effect (vs. 

C57BL/6 normal chow; P<0.01) of strain and # indicates a significant effect (P<0.05) of diet within the 

same strain; 2-way ANOVA and a ‘Bonferroni’ post hoc test.  
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3.3.3.  Impact of gene deletion and/or a high fat diet on tissue weights 

 

Following completion of in vivo protocols, tissues were harvested, weighed and calculated as the 

ratio of tissue weight to final body weight (BW). The liver weights (LW) of both male and female mice 

were not altered by either strain or diet (Figure 3.7. A and B, respectively). Conversely, ventricular 

weight (VW) was significantly reduced in male ApoE-/- mice on the NC diet compared to their WT 

counterparts (P<0.05; Figure 3.7. C). Interestingly, high fat feeding significantly reduced the VW:BW 

ratio in male C57BL/6, GPR55-/- and ApoE-/-/GPR55-/- and female ApoE-/-/GPR55-/- mice compared to 

the NC fed strain equivalent (P<0.05; Figure 3.7. C and D, respectively). Additionally, abdominal fat 

weight (AFW) of mice was similar across the strains, regardless of gender, when compared to their 

WT counterparts (Figure 3.7. E and F). However, high fat feeding caused an increase in AFW in all 

strains of male mice and an increase in female GPR55-/- and ApoE-/-/GPR55-/- mice compared to their 

NC fed strain equivalent (P<0.05, Figure 3.7. E and F, respectively). The ratio of spleen weight (SW) 

and kidney weight (KW) to the final BW of male and female mice was also calculated. With regard to 

these two tissues, the only difference between NC fed strains was exhibited in female ApoE -/- mice 

whose spleens were heavier than those of WT mice fed this diet (P<0.01; Table 3.8.). Furthermore, 

high fat feeding of female ApoE-/- mice induced a further increase in spleen weight when compared 

to those of the same strain who were fed NC (P<0.05; Table 3.8.). Finally, high fat feeding resulted in 

a significant reduction in kidney weight of male ApoE-/-/GPR55-/- and female GPR55-/- and ApoE-/-

/GPR55-/- mice compared to their NC fed counterparts (P<0.05; Table 3.8.). Group sizes for LW:BW, 

VW:BW and AFW:BW are detailed in Table 3.7., while group sizes for SW:BW and KW:BW are 

indicated in brackets in Table 3.8. 
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  Group Sizes for tissue weights 

  LW:BW VW:BW AFW:BW 

  Male Female Male Female Male Female 

C57BL/6 NC 7 6 6 7 7 6 

 HFC 5 3 5 3 5 3 

ApoE-/- NC 7 5 7 5 6 5 

 HFC 5 5 5 5 5 5 

GPR55-/- NC 5 5 5 5 5 3 

 HFC 5 3 3 3 4 3 

ApoE-/-/GPR55-/- NC 5 7 5 6 5 6 

 HFC 4 6 4 5 4 6 

 

Table 3.7. Group sizes for tissue weights of mice. AFW; abdominal fat weight, BW; final body weight, 

LW; liver weight and VW; ventricular weight. See Figure 3.7. for the corresponding graphs. 
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Figure 3.7. Ratio of Liver weight (LW), ventricular weight (VW) and abdominal fat weight (AFW) to 

final body weight (BW). Tissues from male and female mice; A, C, E and B, D, F, respectively. Data 

are expressed as mean±S.E.M. * indicates a significant effect (vs. C57BL/6 normal chow; P<0.05) of 

strain and # indicates a significant effect (P<0.05) of diet within the same strain; 2-way ANOVA and a 

‘Bonferroni’ post hoc test. 
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  Normal Chow High Fat Chow 

  SW:BW 

(mg/g) 

KW:BW 

(mg/g) 

SW:BW 

(mg/g) 

KW:BW 

(mg/g) 

Male C57BL/6  2.8±0.2 (6) 12.2±0.6 (7) 2.3±0.4 (5) 10.7±0.7 (5) 

 ApoE-/-  3.8±0.4 (6) 12.8±0.4 (6) 3.9±0.5 (5) 10.8±0.7 (5) 

 GPR55-/-  2.4±0.2 (5) 13.0±0.3 (5) 2.8±0.5 (5) 10.5±1.6 (5) 

 ApoE-/-/GPR55-/- 2.7±0.2 (5) 12.8±0.6 (5) 2.5±0.2 (4) 8.6±0.3# (4) 

      

Female  C57BL/6 3.2±0.1 (6) 11.2±0.3 (6)  3.2±0.4 (3) 10.0±0.3 (3) 

 ApoE-/- 4.6±0.3* (5) 11.1±0.3 (5) 5.9±0.7# (5) 10.5±0.3 (5) 

 GPR55-/- 3.7±0.1 (3) 11.4±0.4 (3) 3.3±0.2 (3) 8.7±0.6# (3) 

 ApoE-/-/GPR55-/- 3.6±0.3 (7) 10.9±0.2 (6) 3.9±0.2 (6) 8.8±0.6# (6) 

 

Table 3.8. Ratio of spleen and kidney weight (SW and KW, respectively) to final body weight (BW). 

Data are expressed as mean±S.E.M; n-numbers are in brackets. * indicates a significant effect (vs. 

female C57BL/6 normal chow; P<0.01) of strain and # indicates a significant effect (P<0.05) of diet 

within the same strain and gender; 2-way ANOVA and a ‘Bonferroni’ post hoc test. 
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3.3.4.  Impact of gene deletion and/or a high fat diet on endothelial and smooth muscle 

  function of the carotid artery  

 

Vascular function was assessed in carotid arteries from all experimental groups to determine the 

impact of strain and/or diet on the contractile, endothelial and smooth muscle function of these 

vessels. To perform meaningful statistical analysis, data from both male and female mice of each 

strain were combined. To assess contractile activity, increasing concentrations of U-46619 (10-9-10-

5M) were added to the myograph bath. High fat feeding in control (C57BL/6) mice resulted in a 

rightward shift of the CRC and a significant attenuation of the contractile response at 10-7, 3x10-7, and 

10-6M U-46619 compared with vessels from NC fed C57BL/6 mice (P<0.05; Figure 3.8. A), while the 

high fat feeding of GPR55-/- mice resulted in a significant augmentation of the contractile response at 

10-7M compared to vessels from GPR55-/- mice fed an NC diet (P<0.01; Figure 3.8. C). In contrast, high 

fat feeding did not significantly alter U-46619-induced vasoconstriction in vessels from ApoE-/- or 

ApoE-/-/GPR55-/- mice (Figure 3.8. B and D). With regard to Emax ∆ in tension, the only difference was 

seen in NC fed GPR55-/- mice, where the Emax value was lower than that of WT mice fed an NC diet 

(P<0.05; Table 3.9). LogEC50 values revealed that U-46619 was less potent in vessels from HFC fed 

C57BL/6 mice compared to NC fed C57BL/6 mice (P<0.05; Table 3.9) and that U-46619 was more 

potent in the carotid arteries of HFC fed GPR55-/- mice than GPR55-/- mice fed an NC diet (P<0.05; 

Table 3.9). Group sizes for the contractile responses to U-46619 are indicated in brackets in Figure 

3.8., while the group sizes for the Emax ∆ in tension and logEC50 values to this agent are indicated in 

brackets in Table 3.9. 

 

To examine the impact of strain and/or diet on both endothelium-dependent and -independent 

vasorelaxation, vessels were pre-constricted with U-46619 (EC80 concentration) and CRCs to both 

MCh (10-9-10-4M) and SNP (10-9-10-4M) carried out (for exemplar traces of MCh and SNP-induced 

relaxations see Figure 3.9. A and B, respectively). High fat feeding did not alter the MCh (Figure 3.10.) 

or SNP-induced (Figure 3.11.) relaxation of vessels from any strain of mice. Additionally, neither 

strain nor diet altered the Emax ∆ in relaxation or the logEC50 values to either MCh or SNP (Tables 3.10. 

and 3.11., respectively). Group sizes for the vasorelaxant responses to MCh and SNP are indicated in 

brackets in Figures 3.10. and 3.11., respectively, while the group sizes for the Emax ∆ in relaxation and 

logEC50 values to MCh and SNP are indicated in brackets in Tables 3.10 and 3.11., respectively. 
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Figure 3.8. The effect of high fat feeding on the contractile responses of the murine carotid artery 

to U-46619 (10-9-10-5M). Data are expressed as mean±S.E.M. #P<0.001 vs. normal chow, ~P<0.01 vs. 

normal chow and *P<0.05 vs. normal chow; 2-way ANOVA and a ‘Bonferroni’ post-hoc test. Data 

from both male and female mice were combined in the analysis of responses to U-46619.  
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  U-46619 

  Emax ∆ in Tension (mN) logEC50 Value (M) 

C57BL/6 NC 12.7±1.1 (10) -7.0±0.1 (10) 

 HFC 10.2±0.8 (10) -6.4±0.1# (10) 

ApoE-/- NC 9.7±1.3 (7) -6.7±0.1 (7) 

 HFC 7.5±1.1 (10) -6.7±0.1 (10) 

GPR55-/- NC 9.1±1.0* (10) -6.4±0.1 (10) 

 HFC 9.0±1.0 (10) -6.8±0.1# (10) 

ApoE-/-/GPR55-/- NC 9.1±1.4 (8) -6.3±0.1 (8) 

 HFC 9.1±1.2 (9) -6.6±0.1 (9) 

 

Table 3.9. The effect of gene deletion and/or diet on the maximal (Emax) ∆ in tension of the murine 

carotid artery to U-46619 (10-9-10-5M) and the associated logEC50 values. Data are expressed as 

mean±S.E.M; n-numbers are in brackets. * indicates a significant effect (vs. C57BL/6 normal chow; 

P<0.05) of strain and # indicates a significant effect (P<0.05) of diet within the same strain; 2-way 

ANOVA and a ‘Bonferroni’ post hoc test. Data from both male and female mice were combined in the 

analysis of the Emax responses of the murine carotid artery to U-46619 and the associated logEC50 

values.
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Figure 3.9. Exemplar traces of vasodilator-induced relaxations of the murine carotid artery. Relaxations induced by MCh; A and SNP; B.  

A 

 

B 
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Figure 3.10. The effect of high fat feeding on the endothelium-dependent vasorelaxant responses 

of the murine carotid artery to MCh (10-9-10-4M). Data are expressed as mean±S.E.M. 2-way ANOVA 

and a ‘Bonferroni’ post-hoc test. Data from both male and female mice were combined in the 

analysis of vasorelaxant responses to MCh.  
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  MCh 

  Emax ∆ in relaxation (%) logEC50 (M) 

C57BL/6 NC 45.4±6.2 (10) -7.5±0.1 (10) 

 HFC 38.9±5.5 (10)  -7.1±0.1 (10) 

ApoE-/- NC 37.3±6.8 (7) -7.3±0.3 (7) 

 HFC 37.8±5.7 (10) -7.4±0.2 (10) 

GPR55-/- NC 40.9±6.1 (8) -7.4±0.2 (8) 

 HFC 44.5±3.1 (10) -7.2±0.1 (10) 

ApoE-/-/GPR55-/- NC 48.9±8.5 (8) -7.2±0.2 (8) 

 HFC 48.5±7.0 (7) -7.3±0.2 (7) 

 

Table 3.10. The effect of gene deletion and/or diet on the maximal (Emax) ∆ in % relaxation of the 

murine carotid artery to MCh (10-9-10-4M) and the associated logEC50 values. Carotid arteries were 

pre-constricted with U-46619 (EC80 concentration) prior to being relaxed with MCh. Data are  

expressed as mean±S.E.M; n-numbers are in brackets. 2-way ANOVA and a ‘Bonferroni’ post-hoc 

test. Data from both male and female mice were combined in the analysis of Emax responses to MCh 

and the associated logEC50 values. 
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Figure 3.11. The effect of high fat feeding on the endothelium-independent vasorelaxant responses 

of the murine carotid artery to SNP (10-9-10-4M). Data are expressed as mean±S.E.M. 2-way ANOVA 

and a ‘Bonferroni’ post-hoc test. Data from both male and female mice were combined in the 

analysis of vasorelaxant responses to SNP.  
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  SNP 

  1st Emax ∆ in Relaxation  

(%) 

1st logEC50  

(M) 

2nd Emax ∆ in Relaxation 

(%) 

C57BL/6 NC 20.9±4.6 (10) -7.4±0.2 (10) 36.8±7.6 (10) 

 HFC 13.8±1.9 (10) -7.3±0.2 (10) 24.7±3.1 (10) 

ApoE-/- NC 10.4±4.5 (5) -7.2±0.3 (5) 25.9±6.9 (5) 

 HFC 18.7±2.0 (10) -7.5±0.1 (10) 35.4±3.1 (10) 

GPR55-/- NC 33.2±5.4 (10) -7.5±0.2 (10) 50.6±7.3 (10) 

 HFC 25.2±4.2 (10) -7.3±0.2 (10) 44.6±6.4 (10) 

ApoE-/-/GPR55-/- NC 21.9±4.3 (8) -7.4±0.2 (8) 43.1±6.3 (8) 

 HFC 17.6±3.7 (9) -7.3±0.2 (9)  46.0±5.4 (9) 

 

Table 3.11. The effect of gene deletion and/or diet on the maximal (Emax) ∆ in % relaxation of the 

murine carotid artery to SNP (10-9-10-4M) and the associated logEC50 values. Carotid arteries were 

pre-constricted with U-46619 (EC80 concentration) prior to being relaxed with SNP. Data are  

expressed as mean±S.E.M; n-numbers are in brackets. 2-way ANOVA and a ‘Bonferroni’ post-hoc 

test. As the CRCs to SNP were biphasic, the statistics were inconclusive. However, the Emax ∆ in % 

relaxation and the logEC50 value of the first phase of each CRC could be calculated as this phase was 

sigmoidal and are reported as ‘1st Emax ∆ in relaxation (%)’ and ‘1st logEC50’, respectively. The Emax ∆ in 

% relaxation of the second phase for each CRC was also calculated and is reported as ‘2nd Emax ∆ in 

relaxation (%)’, however, the associated logEC50 values could not be determined. Data from both 

male and female mice were combined in the analysis of Emax responses to SNP and the associated 

logEC50 values. 
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3.3.5.  Impact of gene deletion and/or a high fat diet on plasma lipid profiles 

 

Lipid profiling assays were conducted to determine the plasma concentration (mmol/l) of TC, TGs, 

LDL and HDL and the LDL:HDL ratio. As male mice exhibited the most profound phenotypic changes 

(i.e. increased body weight and fat mass), plasma lipid profiles were only assessed in mice of this 

gender. TC, TGs, LDL, HDL and the LDL:HDL ratio were increased in NC fed ApoE-/- and ApoE-/-/GPR55-

/- mice compared to C57BL/6 mice fed the same diet (P<0.05; Figure 3.12. A-E). In contrast, the 

plasma lipid profile of NC fed GPR55-/- mice was similar to that of NC fed C57BL/6 mice (Figure 3.12. 

A-E). Unfortunately, despite having assayed 6 plasma samples from NC fed ApoE-/- mice using the 

Konelab 30 discrete clinical analyser (Thermo Scientific, UK) , LDL readings were only generated for 

two of these samples. However, Stapleton and colleagues (2007) reported an increase in the 

concentration of plasma LDL from NC fed ApoE-/- mice compared to NC fed C57BL/6 mice (15.8 vs. 2.9 

mmol/l), which is in line with the results of the two readings obtained in the present study. High fat 

feeding for 12 weeks did not alter lipid profiles in either C57BL/6 or GPR55-/- mice (Figure 3.12. A-E), 

however, the concentrations of TC, LDL and HDL were further elevated in both HFC fed ApoE-/- and 

ApoE-/-/GPR55-/- mice compared to their NC fed equivalents (P<0.05; Figure 3.12. A, C and D). 

Consumption of a high fat diet did not alter the LDL:HDL ratios in any mouse strain (Figure 3.12. E) 

but did reduce the concentration of TGs in the plasma of ApoE-/- and ApoE-/-/GPR55-/- mice (P<0.05; 

Figure 3.12. B). Group sizes for the plasma lipid profiles of each strain are detailed in Table 3.12. 

 

3.3.6.  Impact of gene deletion and/or a high fat diet on the deposition of fatty streaks 

  within the thoracic aorta 

 

Oil Red O staining of the murine thoracic aorta was conducted to identify fatty streaks within this 

vessel (for representative images of Oil Red O stained thoracic aortae from HFC fed ApoE-/- and ApoE-

/-/GPR55-/- mice see Figure 3.13. A and B, respectively). As there were no apparent gender-related 

differences in fatty streak deposition, data from both male and female mice of each strain were 

combined. When compared to NC fed C57BL/6 mice, only NC fed ApoE-/- mice exhibited an increased 

deposition of fatty streaks (P<0.05; Figure 3.13. C). In response to high fat feeding, fatty streak 

deposition was significantly enhanced in ApoE-/- mice (P<0.05; Figure 3.13. C) whereas ApoE-/-/GPR55-

/- mice developed fewer fatty streaks in response to this diet ( P<0.05; Figure 3.13. C). Neither 

C57BL/6 nor GPR55-/- mice developed significant fatty streaks in their thoracic aortae in response to 

HFC (Figure 3.13. C). Group sizes for the deposition of fatty streaks within the thoracic aortae of mice 

from each strain are detailed in Table 3.13. 
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  Group Sizes of plasma Lipids 

  TC TGs LDL HDL LDL:HDL 

C57BL/6 NC 5 5 4 5 4 

 HFC 5 5 5 5 5 

ApoE-/- NC 6 6 2 6 2 

 HFC 7 7 4 7 4 

GPR55-/- NC 5 5 5 5 5 

 HFC 5 5 5 5 5 

ApoE-/-/GPR55-/- NC 5 5 5 5 5 

 HFC 4 4 4 4 4 

 

Table 3.12. Group sizes of the plasma lipids of mice. HDL; high density lipoprotein, LDL; low density 

lipoprotein, LDL:HDL; ratio of LDL to HDL, TC; total cholesterol and TGs; triglycerides. Data are from 

male mice only. See Figure 3.12. for the corresponding graphs.  
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Figure 3.12. Lipid profiling of mouse plasma. Data are expressed as mean±S.E.M. * indicates a 

significant effect (vs. C57BL/6 normal chow; P<0.05) of strain and # indicates a significant effect 

(P<0.05) of diet within the same strain; 2-way ANOVA and a ‘Bonferroni’ post-hoc test. Data are from 

male mice only. 
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  Group Sizes for Oil Red O Staining of Fatty Streaks in the Thoracic Aorta 

C57BL/6 NC 11 

 HFC 8 

ApoE-/- NC 10 

 HFC 9 

GPR55-/- NC 10 

 HFC 10 

ApoE-/-/GPR55-/- NC 12 

 HFC 8 

 

Table 3.13. Groups sizes for Oil Red O staining of fatty streaks in the lumen of the thoracic aorta. 

Data from both male and female mice were combined. See Figure 3.13. for the corresponding graphs. 
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Figure 3.13. Fatty streaks within the thoracic aortae of mice. Exemplar images of Oil Red O stained 

thoracic aortae from (A) a HFC fed ApoE-/- mouse and, (B) a HFC fed ApoE-/-/GPR55-/- mouse. 

Percentage area of fatty streaks within the lumen of thoracic aortae; C. Data are  expressed as 

mean±S.E.M. * indicates a significant effect (vs. C57BL/6 normal chow; P<0.05) of strain, # indicates a 

significant effect (P<0.05) of diet within the same strain and † indicates a significant effect (vs. ApoE-/- 

high fat chow; P<0.05); 2-way ANOVA and a ‘Bonferroni’ post-hoc test. Data from both male and 

female mice were combined in the analysis of the % area of fatty streaks.  
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3.3.7.  Impact of gene deletion and/or a high fat diet on cardiac structure 

 

As male mice exhibited the most profound phenotypic changes (i .e. increased body weight and fat 

mass), cardiac structure, collagen content and lipid deposition were only assessed in mice of this 

gender. Ventricular tissue sections were stained with H & E for the assessment of cardiac structure 

(for a representative image of an H & E stained ventricular tissue section illustrating the regions of 

cardiac structure measured see Figure 3.14. A). The wall thickness of the IVS did not differ with strain 

and/or diet (Figure 3.14. B). RV wall thickness was unaffected by strain (Figure 3.14. C), however, 

high fat feeding of ApoE-/- mice increased the RV wall thickness (P<0.05; Figure 3.14. C). With regard 

to LV wall thickness, hearts from NC fed ApoE-/-/GPR55-/- mice exhibited a reduced LV wall thickness 

compared to NC fed WT mice (P<0.05; Figure 3.14. D). High fat feeding did not alter the LV wall 

thickness of any mouse strain with the exception of C57BL/6 mice, where their LV wall thickness was 

reduced in response to HFC (P<0.05; Figure 3.14. D). Group sizes for the H & E staining of cardiac 

structure in the ventricular tissue of each strain are detailed in Table 3.14. 

 

3.3.8.  Impact of gene deletion and/or a high fat diet on ventricular collagen deposition 

 

Ventricular tissue sections were stained with Picrosirius Red for the  detection and quantification of 

collagen within this tissue. In NC fed mice, collagen deposition was less than 1% of the total 

ventricular area, an amount which was further reduced in the ventricles of GPR55 -/- mice (P<0.05; 

Figure 3.15.). Moreover, high fat feeding did not significantly alter collagen deposition in any strain of 

mice involved in this study (Figure 3.15.). Group sizes for the Picrosirius Red staining of collagen in 

the ventricular tissue of each strain are detailed in Table 3.15. 

 

3.3.9.  Impact of gene deletion and/or a high fat diet on ventricular lipid deposition 

 

Ventricular tissue sections were stained with Oil Red O to identify and quantify lipid deposition 

within this tissue. However, significant lipid deposition was not detectable i n ventricular tissue from 

any of the mice examined in this study. To confirm the effectiveness of the staining protocol, a 

section of human abdominal fat was also stained and used as a positive control. For representative 

images of an Oil Red O stained murine ventricular tissue section and a section of human abdominal 

fat see Figure 3.16. A and B, respectively. Group sizes for the Oil Red O staining of lipid deposition in 

the ventricular tissue of each strain are detailed in Table 3.16. 
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  Group Sizes for H & E Staining of Ventricular Tissue 

C57BL/6 NC 4 

 HFC 5 

ApoE-/- NC 5 

 HFC 5 

GPR55-/- NC 5 

 HFC 3 

ApoE-/-/GPR55-/- NC 5 

 HFC 4 

 

Table 3.14. Groups sizes for Haematoxylin and Eosin (H & E) staining of ventricular tissue. See 

Figure 3.14. for the corresponding graphs. Data are from male mice only. 
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Figure 3.14. H & E staining in murine ventricular tissue for the detection of cardiac structure. An 

exemplar H & E stained section of ventricular tissue detailing the location of the LV and RV walls and 

that of the IVS; A. Measurements of IVS thickness, RV wall thickness and LV wall thickness; B, C and 

D, respectively. Data are expressed as mean±S.E.M. * indicates a significant effect (vs. C57BL/6 

normal chow; P<0.05) of strain and # indicates a significant effect of (P<0.05) of diet within the same 

strain; 2-way ANOVA and a ‘Bonferroni’ post-hoc test. Data are from male mice only. H & E; 

haematoxylin and eosin, IVS; intraventricular septum, LV; left ventricle and RV; right ventricle. 
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  Group Sizes for Picrosirius Red Staining of Ventricular Tissue 

C57BL/6 NC 4 

 HFC 5 

ApoE-/- NC 5 

 HFC 5 

GPR55-/- NC 5 

 HFC 3 

ApoE-/-/GPR55-/- NC 5 

 HFC 4 

 

Table 3.15. Groups sizes for Picrosirius Red staining of ventricular tissue. See Figure 3.15. for the 

corresponding graphs. Data are from male mice only.  

 

  

 

 

Figure 3.15. Picrosirius Red staining of murine ventricular tissue for the detection of collagen. An 

exemplar Picrosirius Red stained section of ventricular tissue where red s taining is indicative of 

collagen deposition; A (calibration bar = 100µm). Percentage area of collagen within ventricular 

tissue; B. Data are expressed as mean±S.E.M. * indicates a significant effect (vs. C57BL/6 normal 

chow; P<0.05) of strain; 2-way ANOVA and a ‘Bonferroni’ post-hoc test. Data are from male mice 

only. 
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  Group Sizes for Oil Red O Staining of Ventricular Tissue 

C57BL/6 NC 4 

 HFC 5 

ApoE-/- NC 5 

 HFC 5 

GPR55-/- NC 5 

 HFC 3 

ApoE-/-/GPR55-/- NC 5 

 HFC 4 

 

Table 3.16. Groups sizes for Oil Red O staining of ventricular tissue. See Figure 3.16. for the 

corresponding graphs. Data are from male mice only.  

 
 

 

 

Figure 3.16. Oil Red O staining of murine ventricular tissue for the detection of lipid deposition. A 

representative image of an Oil Red O stained murine ventricular tissue section from a male mouse; A, 

and a human abdominal fat section; B (calibration bar = 2000µm).  
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3.4.  Discussion 

 

The principle aims of this study were to characterise the phenotype of the novel ApoE -/-/GPR55-/- 

mouse in response to high fat feeding and to investigate the role of GPR55 in the development of 

atherosclerosis. Analysis of the data revealed that GPR55 has a complex role whereby it both 

regulates risk factors associated with atherosclerosis (i.e. body weight and fat mass) while promoting 

the development of fatty streaks within the vasculature, via a lipid independent mechanism.  

 

3.4.1.  The impact of gene deletion on mouse phenotype 

 

When fed NC, few phenotypic differences existed between the strains. Male and female ApoE-/-, 

GPR55-/- and ApoE-/-/GPR55-/- mice exhibited similar weight gain as their WT counterparts and fat 

mass remained similar across the groups, regardless of gender. Despite this, a trend of increased fat 

mass in male GPR55-/- and ApoE-/-/GPR55-/- mice was observed, while the lean mass of these mice 

was significantly reduced, indicating that male mice deficient in the gene for GPR55 alter their body 

composition in order to maintain overall body weight. The findings of Meadows and colleagues 

(2016) differ in that their male, NC fed GPR55-/- mice exhibited a trend of increased body weight and 

a significant increase in fat mass. The increase in the fat mass of their GPR55-/- mice was only 

detected from 18-19 weeks of age and although the GPR55-/- mice of the present study were 16-19 

weeks of age at the time of analysis, it may be that this group contained a greater number of younger 

mice which could explain why the increased fat mass of these mice did not reach statistical 

significance. Meadows and colleagues (2016) also reported that GPR55-/- mice had a similar food 

intake and eating pattern to that of C57BL/6 mice fed the same diet, therefore the trend of increased 

fat mass in GPR55-/- mice observed in the present study is unlikely to have occurred as a consequence 

of increased food intake. Although the present study suggests a role for GPR55 in the regulation of 

obesity, this effect was more profound in HFC fed animals and so will be discussed in detail in section 

3.4.2.1.  

 

Plasma lipids (TC, TGs, LDL and the LDL:HDL ratio) were augmented in both ApoE-/- and ApoE-/-

/GPR55-/- mice whereas the concentrations of these lipids in the plasma of GPR55-/- mice were similar 

to those of C57BL/6 mice. ApoE-/- mice exhibiting elevated plasma lipid profiles has previously been 

reported (Stapleton et al., 2007) and occurs due to the inability of ApoE to act as a ligand for 

lipoprotein receptors, thus the hepatic uptake of lipoproteins from the circulation cannot be 

instigated. Hyperlipidaemic plasma profiles negatively impact the vasculature by causing endothelial 
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dysfunction, which occurs in response to a reduced availability of vasodilators i.e. NO (Bonetti et al., 

2003). As previously mentioned in Chapter 1, section 1.2.3.1, in instances of hyperlipidaemia, there is 

an increased generation of ROS which consequently react with NO and reduce its bioavailability. In 

this pathophysiological setting, ROS also interferes with the activity of eNOS, the enzyme primarily 

responsible for the generation of NO within the vascular endothelium, and impairs NO production 

(reviewed by Kim et al., 2012). Consequently, endothelial dysfunction ensues and a pro-atherogenic 

environment is formed i.e. leukocyte adherence (Kubes et al., 1991) and platelet activation (Schäfer 

et al., 2004). In terms of cardiac function, hyperlipidaemia leads to cellular toxicity, in turn causing 

secondary conditions i.e. insulin resistance. Myocardial fibrosis also occurs in response to 

hyperlipidaemia causing electrical (McLenachan and Dargie, 1990; Kawara et al., 2001), mechanical 

(López et al., 2012) and vasomotor dysfunction (Schwartzkopff  et al., 2000), all of which provide the 

environment for the progression to heart failure (reviewed in detail in Gyöngyösi et al., 2017). 

Importantly, as ApoE-/- but not GPR55-/- mice of the present study exhibited dyslipidaemic plasma 

profiles, this would indicate that the dyslipidaemia exhibited by the ApoE-/-/GPR55-/- mice was a 

characteristic of the ApoE gene deletion and that GPR55 does not regulate lipid levels in the early 

stages of atherosclerosis. Consequently, any influence GPR55 has on atherogenesis in NC fed mice is 

independent of circulating lipids.  

 

Additionally, fatty streaks were almost undetectable in the thoracic aortae of both GPR55-/- and 

C57BL/6 mice. However, there was a significant increase in the deposition of fatty streaks in the 

thoracic aortae of ApoE-/- mice, which was not evident in ApoE-/-/GPR55-/- mice, therefore this is the 

first piece of evidence to demonstrate a pro-atherogenic role for GPR55 in the present study. 

Although there was a pro-atherogenic effect of GPR55 in NC fed ApoE-/- mice, this effect was more 

profound in HFC fed animals and so will be discussed in section 3.4.4.2.  

 

NC fed ApoE-/-/GPR55-/- mice exhibited a reduced LV wall thickness compared to their WT 

counterparts. A reduction in the thickness of a ventricular wall is often associated with the death of 

cardiomyocytes due to myocardial infarction (Kehat and Molkentin, 2010). However, the ApoE-/- 

mouse model of atherosclerosis is resistant to the development of coronary artery lesions, even 

when fed a high fat diet, thus making cell death from myocardial infarction improbable (Coleman et 

al., 2006). Nevertheless, other possibilities include matrix metalloproteinase (MMP)-induced 

extracellular matrix degradation (Spinale et al., 1998, McElmurray et al., 1999 and Chancey et al., 

2002) or volume overload resulting in eccentric hypertrophy (reviewed by Dorn, 2007). However, as 

this is the first study to document any experimental data pertaining to the novel ApoE-/-/GPR55-/- 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Gyöngyösi%20M%5BAuthor%5D&cauthor=true&cauthor_uid=28157267
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mouse model, further research is therefore required to accurately determine the cause of such 

remodelling. 

 

The ventricular tissue of GPR55-/- mice exhibited a reduced deposition of the structural protein, 

collagen, whereas the ventricular tissue of ApoE-/- and ApoE-/-/GPR55-/- mice exhibited a similar 

deposition of this protein to that of C57BL/6 mice. Collagen can influence the compliance of a 

ventricle to contract, as evidenced by Yamamoto and colleagues (2002) who demonstrated that 

myocardial stiffening in hypertensive rat hearts is linked to collagen accumulation, in addition to  a 

shift in collagen phenotype and augmented collagen cross-linking (for an extensive review on 

myocardial collagen deposition see Fan et al., 2012). The finding that ventricular tissue of GPR55-/- 

mice was characterised by a reduced collagen deposition in the present study is not entirely in line 

with that reported by Walsh and colleagues (2014), in which GPR55-/- mice exhibited an increase in 

LV collagen deposition. However, the authors of this study reported that there was an increased 

loss/death of cells from the hearts of GPR55-/- mice compared to their WT counterparts. On this 

basis, it was suggested that the increased collagen deposition within the LV of the GPR55 -/- hearts 

may only appear to be increased in light of the cell loss/death. Additionally, the present study stained 

for collagen using Picrosirius Red, a stain which specifically targets collagen I and III fibers whereas 

Walsh and colleagues (2014) stained for collagen using Masson Trichrome (MT) stain, which can also 

detect muscle fibers and amongst other proteins, keratin. It therefore seems likely that the results of 

the present study more accurately represent the collagen deposition within the hearts of GPR55 -/- 

mice, although another possibility for consideration is the age of the mice at the time in which 

ventricular collagen deposition was measured. In the present study, collagen deposition was 

assessed when mice were 16-19 weeks of age whereas those of the study conducted by Walsh and 

colleagues (2014) were 8 months old. Therefore, it may also be possible that in the absence of 

GPR55, interstitial collagen deposition increases with age, however, this remains to be investigated. 

Another possibility is that the genetic ablation of GPR55 increases MMP expression/activity, 

consequently reducing the ventricular collagen deposition in GPR55-/- mice. In support of this, 

Montecucco and colleagues (2016) reported that the GPR55 antagonist, CID1602004, increased the 

intraplaque content of MMP-9 in NC and HFC ApoE-/- mice. However, as MMP-9 degrades type IV 

collagen fibers (reviewed by Yabluchanskiy et al., 2013) and the present study demonstrated that the 

ventricular tissue of GPR55-/- mice is characterised by a reduction in type I and III collagen fibers, 

MMP-9 involvement seems unlikely. Investigation is now required to confirm or deny if another or 

other MMPs are responsible for the reduced collagen deposition within the ventricular tissue of 

these mice.  
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To summarise, the present study suggests a regulatory role for GPR55 in energy metabolism yet a 

pro-atherogenic role for GPR55 in terms of the deposition of fatty streaks within the thoracic aorta, 

via a lipid independent mechanism. The structural changes in the hearts of ApoE-/-/GPR55-/- mice 

were fairly minor, but may suggest that GPR55 plays an important role in maintaining tissue structure 

in the hyperlipidaemic heart, possibly through extracellular matrix regulation. However, with the 

exception of Montecucco and colleagues (2016) reporting an increase in the intraplaque content of 

MMP-9 in NC and HFC fed ApoE-/- mice, there is no data regarding GPR55 and MMP activity and so 

opens up possible new avenues of enquiry. 

 

3.4.2.  The impact of a high fat diet on mouse phenotype  

 

3.4.2.1.  Body weight and composition 

 

Male C57BL/6 mice fed HFC exhibited an obesogenic response, as shown by a modest (but 

significant) increase in weight gain which correlated with an increase in fat mass. In contrast, the 

body weight and adiposity of ApoE-/- mice was unaffected by high fat feeding. Some studies have 

previously reported that weight gain in ApoE-/- mice is exacerbated in response to a HFC diet (Sinha-

Hikim et al., 2011, Han et al., 2015 and Kim et al., 2015b), while Fukao and colleagues (2010) have 

reported that it is unchanged. Interestingly, some studies have documented a reduction in the body 

weight of ApoE-/- mice in response to a diabetogenic high fat diet (Gao et al., 2007 and Hofmann et 

al., 2008), although the mechanisms underlying this apparent ‘anti-obesity’ effect in ApoE-/- mice are 

not entirely clear. However, a number of mechanisms have been proposed including decreased food 

intake and increased energy expenditure (Gao et al., 2007), impaired delivery of liver-derived VLDL to 

adipocytes (Pendse et al., 2009) and the modulation of adipocyte triglyceride storage (Huang et al., 

2006). ApoE-/-/GPR55-/- mice also developed an obese phenotype and exhibited increased weight gain 

when fed a HFC diet, similar to that seen in the HFC fed GPR55-/- mice. Taken together, the data 

suggests that the diet-induced obesity observed in both strains is due to the deletion of GPR55 and 

that GPR55 has a regulatory role in energy metabolism. In the present study food intake was not 

measured therefore it cannot be definitively concluded if the GPR55-/- mice were consuming more 

food. However, a parallel study from this laboratory (Hair, 2016; unpublished data) measured food 

intake in male C57BL/6 and GPR55-/- mice that were fed the same HFC diet for 12 weeks and 

established that food intake did not differ between the strains, therefore it is unlikely that the 

GPR55-/- and ApoE-/-/GPR55-/- mice of the present study consumed a greater quantity of HFC than 

their C57BL/6 and ApoE-/- counterparts. A plausible hypothesis for the increase in fat mass and the 
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associated weight gain of the HFC fed GPR55-/- and ApoE-/-/GPR55-/- mice is that these mice exhibited 

a reduced energy expenditure. Indeed, indirect calorimetry and wheel running tests in male GPR55-/- 

mice have revealed that these mice exhibit decreased spontaneous and voluntary physical activity, 

consequently leading to diminished energy expenditure and increased fat accumulation (Meadows et 

al., 2016). However, while it has been suggested that the increased adiposity in these mice occurred 

due to the lack of movement, increased adiposity may well be the reason for the reduced physical 

activity. While the precise cause for the reduced movement in GPR55-/- mice is not yet known, it has 

previously been reported that these mice are characterised by impaired motor coordination (Wu et 

al., 2013) which may account for this finding. Alternatively, as wheel running is associated with the 

brain reward system i.e. incentive salience whereby there is motivation in return for a rewarding 

stimulus (e.g. neurochemicals), it may be that the brain reward system of GPR55-/- mice is impaired.  

 

Other roles for GPR55 in energy metabolism have been suggested with studies unanimously 

reporting that the activation of GPR55 by agonists in the islets of Langerhans stimulates insulin 

release (McKillop et al., 2013; Liu et al., 2016, McKillop et al., 2016 and Romero-Zerbo et al., 2011). 

On the other hand, it has been reported that GPR55-/- mice have higher basal insulin levels, however, 

upon stimulation with glucose, these mice release less insulin (Meadows et al., 2016). Furthermore, 

the Meadows study conducted insulin tolerance tests and established that GPR55-/- mice suffer from 

insulin resistance which is likely caused by an increased fat mass and liver steatosis in these animals. 

 

Interestingly, in terms of energy regulation it would appear that GPR55 exhibits differential effects on 

adiposity in humans compared to mice. GPR55 mRNA expression is increased in both the visceral and 

subcutaneous adipose tissue of obese subjects compared to lean subjects and even more so in obese 

subjects suffering from type 2 diabetes (Moreno-Navarette et al., 2012). Moreover, the 

concentration of circulating plasma LPI of obese subjects is increased and correlates with body 

weight, fat percentage and the BMI of females. Furthermore, this study revealed that LPI increases 

the expression of genes associated with lipogenesis in visceral adipose tissue and also increases 

[Ca2+]i in differentiated visceral adipocytes.  

 

Female mice, on the other hand, exhibited a much smaller increase in fat mass and body weight than 

male mice. One explanation for this could be the role of oestrogen, which has been previously 

reported to protect against obesity in female C57BL/6 mice, potentially through modulation of the 

expression of genes regulating adipogenesis, lipogenesis and lipolysis (Stubbins et al., 2012).  

 



106 
 

3.4.3.  The impact of a high fat diet on lipid profiles  

 

Both ApoE-/- and ApoE-/-/GPR55-/- mice exhibited marked dyslipidaemia in response to HFC feeding, 

whereas GPR55-/- mice exhibited plasma profiles similar to those of C57BL/6 mice. This data 

therefore indicates that the severe hyperlipidaemic profiles exhibited by the HFC fed ApoE-/-/GPR55-/- 

mice were due to the lack of ApoE and that GPR55 does not regulate lipid levels, which is in 

agreement with the data from the NC fed animals. Elevated total plasma cholesterol (Fukao et al., 

2010, Raman et al., 2011, Sinha-Hikim et al., 2011, Han et al., 2015, Lin et al., 2015 and Kim et al., 

2015b) and LDL (Fukao et al., 2010, Han et al., 2015 and Kim et al., 2015b) in response to high fat 

feeding in ApoE-/- mice is well documented, although it is an elevated plasma LDL concentration 

which is most commonly associated with the development of atherosclerosis (Bentzon et al., 2014). 

Moreover, in line with the findings of the present study, Kim and colleagues (2015b) reported that 

ApoE-/- mice are characterised by an elevated plasma HDL concentration in response to high fat 

feeding. However, other studies have reported that plasma HDL is unaltered in high fat fed ApoE-/- 

mice (Fukao et al., 2010 and Han et al., 2015), although it is suspected that differences in the 

composition of the high fat diet and/or the duration of the dietary period are to account for the 

inconsistency between studies. Furthermore, as LDL and HDL work in conjunction to maintain a 

homeostatic level of circulating cholesterol (Widmaier et al., 2006), it is therefore likely that the 

increased plasma HDL concentration observed in the present study occurred as a means to combat 

the increasing concentration of LDL. Interestingly, the plasma concentration of TGs was reduced in 

response to high fat feeding in both ApoE-/- and ApoE-/-/GPR55-/- mice. While other studies have 

reported no change (Fukao et al., 2010 and Raman et al., 2011) or an increase in plasma TGs (Sinha-

Hikin et al., 2011, Han et al., 2015, Kim et al., 2015b and Lin et al., 2015), it can be speculated as to 

why this may have occurred. It may be that the HFC fed ApoE-/- mice in this study were suffering from 

a condition known as hepatic steatosis, a condition where there is an abnormal retention of hepatic 

TGs due to an imbalance between lipid acquisition and removal . Interestingly, Schierwagen and 

colleagues (2015) reported that high fat feeding ApoE-/- mice for 7 weeks induced this condition. In 

terms of the present study demonstrating that ApoE-/- and ApoE-/-/GPR55-/- mice exhibit a reduced 

concentration of plasma TGs, it may be that 12 weeks of high fat feeding exacerbates hepatic 

steatosis to a degree where the plasma concentration of TGs is significantly reduced.  
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3.4.4.  The impact of a high fat diet on vascular function and fatty streak development 

 

3.4.4.1.  Vascular function  

 

Endothelial dysfunction is a key event in the development of atherosclerosis (Freiman et al., 1986, 

Verbeuren et al., 1990, Zeiher et al., 1991, d’Uscio et al., 2001, Crauwels et al., 2003 and Cola et al., 

2010) and refers to the impairment of endothelium-dependent vasodilation, which occurs in 

response to a reduced availability of vasodilators i.e. NO (Bonetti et al., 2003). On this basis, the 

present study set out to investigate the involvement of GPR55 in endothelial dysfunction associated 

with atherosclerosis development, as well as any involvement that GPR55 may have in terms of 

contractile function. The contractile function of the carotid artery was attenuated in C57BL/6 mice 

fed a HFC diet, but modestly increased in HFC fed GPR55-/- mice. In contrast, the contractile function 

of the carotid artery of ApoE-/- and ApoE-/-/GPR55-/- mice was unaffected by diet. With regard to the 

ApoE-/- mice, this is in line with published findings where the contractile function of the thoracic 

aortae from ApoE-/- mice is unaffected after 21 weeks of being fed an NC or HFC diet (Yaghoubi et al., 

2000). Moreover, endothelial function was unaffected by gene deletion and/or diet in the present 

study. The lack of endothelial dysfunction in NC fed mice lacking ApoE is also in line with the findings 

of Yaghoubi and colleagues (2000). Their study demonstrated that endothelium dependent 

relaxation of the thoracic aortae of ApoE-/- mice remains unaffected after 35 weeks of being fed an 

NC diet. However, the lack of effect of HFC on endothelial function in the present study is somewhat 

in contrast to the findings of the Yaghoubi study where thoracic aortae of ApoE-/- mice fed HFC for 21 

weeks exhibit a reduced sensitivity to NO, despite a normal response to acetylcholine (ACh) and that 

with 35 weeks of high fat feeding, these vessels exhibited a reduced sensitivity to both agents. 

Together, the findings of the present study and those reported by Yaghoubi and colleagues (2000) 

suggest that short-term high fat feeding does not affect endothelial function, yet long-term feeding 

does. In support of this, endothelial dysfunction in the carotids of ApoE-/- mice has been reported 

following 26 weeks of high fat feeding (d’Uscio et al., 2001). Additionally, an important point for 

consideration here is that while endothelium dependent relaxation was not affected in the carotid 

artery of the present study, vasorelaxation may be affected in another vessel type. Furthermore, for 

all that muscarinic receptor mediated relaxation does not appear to be affected in the current study, 

other vasorelaxant receptors may be involved. However, further investigation is required to confirm 

or refute this suggestion.  
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Endothelial dysfunction is normally exacerbated by obesity due to the generation o f pro-

inflammatory cytokines (e.g. interleukin 6 (IL-6) and tumour necrosis factor alpha (TNF-α)) by 

endothelial cells and pre-adipocytes (Iantorno et al., 2014). It may therefore have been expected that 

HFC fed GPR55-/- and ApoE-/-/GPR55-/- mice, which both developed an obese phenotype, would 

exhibit endothelial dysfunction, however, this was not the case. Perivascular adipose tissue (PVAT) 

promotes endothelial dysfunction via mechanisms that are linked to increased NADPH oxidase -

derived oxidative stress and an increased generation of pro-inflammatory cytokines (Ketonen et al., 

2010). Interestingly, studies have demonstrated that the vasodilator response to ACh is reduced in 

aortic ring preparations with PVAT isolated from diet-induced obese mice, while aortic ring 

preparations isolated from diet-induced obese mice which were free of PVAT exhibited a normal 

vasodilator response to this agent (Ketonen et al., 2010 and Xia et al., 2016a) thus indicating a role 

for PVAT in obesity-induced endothelial dysfunction. On this basis, it may be that endothelial  

dysfunction was not evident in the present study due to the carotid arteries being devoid of PVAT, 

which was removed during their isolation. For an extensive review on the role of PVAT in obesity-

induced vascular dysfunction see Xia and Li., 2016b. 

 

3.4.4.2.  Fatty streak development 

 

In agreement with the literature (Zhao et al., 2015 and Kumar et al., 2016), C57BL/6 mice fed HFC did 

not develop fatty streaks within their thoracic aortae. Furthermore, HFC fed GPR55-/- mice similarly 

did not develop fatty streaks, which in both instances may be in part due to their normolipidaemic 

plasma profiles. On the other hand, HFC fed ApoE-/- mice developed fatty streaks within their thoracic 

aortae, particularly at branch points, which are sites characterised by disturbed blood flow and low 

shear stress. Genes and proteins of endothelial cells (i.e. MCP-1) are generally upregulated at these 

branch points promoting atherogenesis (reviewed by Chiu and Chien, 2011). This finding is consistent 

with other studies that have shown atheroma development within the vasculature of ApoE -/- mice 

(Beattie et al., 2009 and Lin et al., 2015). However, in HFC fed ApoE-/-/GPR55-/- mice, the extent of 

fatty streak formation was significantly less than in the ApoE-/- mice fed this diet, suggesting that the 

presence of a functioning GPR55, while not initiating atherogenesis per se, may contribute in some 

way to atheroma development. This data supports that of Lanuti and colleagues (2015) who reported 

that the activation of GPR55 with O-1602 in foam cells exacerbates ox-LDL-induced lipid 

accumulation and inflammatory responses, while reducing cholesterol efflux from human 

macrophages - processes which suggest a pro-atherogenic role for GPR55. However, the finding that 

GPR55 may be pro-atherogenic in terms of the development of fatty streaks is somewhat in conflict 
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to reports that the GPR55 antagonist, CID16020046, does not reduce lesion size in the thoraco-

abdominal aortas of HFC fed ApoE-/- mice (Montecucco et al., 2016). However, Montecucco and 

colleagues (2016) did not demonstrate that the dose of CID16020046 administered to their ApoE-/- 

mice was sufficient to antagonise GPR55. On this basis, it cannot be definitively concluded that 

CID16010046 was blocking GPR55 and having no effect on plaque size. In support of this, the authors 

advise that the limited exposure to CID16020046 (one dose per day, five days per week for a 

maximum of three weeks) may not have been sufficient to produce long-term and complete 

blockade of GPR55. 

 

The precise mechanism(s) by which GPR55 contributes to atheroma development was not addressed 

in the present study, although it is likely to be via a lipid independent mechanism, since a lack of 

GPR55 did not influence the lipid profiles in response to HFC, but did suppress the development of 

fatty streaks. Atherogenesis is initiated by endothelial dysfunction and a high circulating 

concentration of plasma LDL. Monocytes are subsequently encouraged to bind to dysfunctional 

endothelial cells via adhesion molecules such as VCAM-1 and ICAM-1 (Toth, 2008). LPI has been 

shown to upregulate VCAM-1 and ICAM-1 in rabbit aortic endothelial cells and human umbilical vein 

endothelial cells, respectively (Kume et al., 1992), although whether or not this is via an action at 

GPR55 was not investigated. Following monocyte binding, MCP-1 encourages the recruitment of 

monocytes to the subendothelial space where they subsequently develop into  macrophages (Toth, 

2008). The GPR55 antagonist, CID16020046, protects against intestinal inflammation by reducing the 

migration of macrophages (Stančić et al., 2015). Although this observation was not in the 

vasculature, as atherosclerosis is also an inflammatory condition, GPR55 may play a role in 

monocyte/macrophage migration associated with the early development of fatty streaks. 

 

3.4.5.  The impact of a high fat diet on cardiac remodelling  

 

3.4.5.1.  Wall thickness of the LV, RV and IVS 

 

Ventricular tissue sections were stained with H & E and Oil Red O to determine the effects of diet on 

cardiac structure and lipid accumulation, respectively. IVS wall thickness was not affected by diet. 

However, an increase in the RV wall thickness (RV hypertrophy) of HFC fed ApoE -/- mice was detected 

and would suggest that these mice may have been suffering from the early stages of pulmonary 

hypertension, a condition which has previously been reported in ApoE-/- mice fed a high fat diet 
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(Hansmann et al., 2007). However, as yet, no other reports have provided evidence  to support a role 

for GPR55 in this condition.  

 

The LV wall thickness remained similar within each strain of mouse in response to HFC, with the 

exception of C57BL/6 mice which exhibited a reduced LV wall thickness compared to their NC fed 

equivalents. This finding is in contrast to that of Naresh and colleagues ( 2016) who demonstrated 

that high fat feeding in C57BL/6 mice for 18 and 24 weeks augmented LV wall thickness. As 

previously mentioned in section 3.4.1., a reduced ventricular wall thickness is often associated with 

the death of cardiomyocytes due to myocardial infarction (Kehat and Molkentin, 2010). However, 

this seems an unlikely cause in the case of the HFC fed C57BL/6 mice as these mice exhibited plasma 

profiles within the normal range and showed no evidence of fatty streak development within their 

thoracic aortae. Interestingly, Wang and colleagues (2012a) investigated the mRNA expression of 

MMP-9 in the LV of C57BL/6 mice and reported that its expression was increased in response to a 

high fat diet. Whether this expression translates to protein within the LV of these mice remains to be 

determined, however, increased MMP-9 activity poses a plausible mechanism by which the LV wall 

thickness became reduced in the HFC fed C57BL/6 mice of the present study. 

 

3.4.5.2.  Ventricular lipid deposition 

 

Lipid deposition was not detected within the ventricular tissue of any HFC fed mouse strain involved 

in the present study. To test the staining protocol, a section of human abdominal fat was used as a 

positive control and demonstrated a high level of lipid deposition therefore it seems unlikely that the 

lack of ventricular lipid deposition was due to a problem with the protocol. Interestingly, a small 

number of individual lipid droplets in the cardiac tissue of C57BL/6 mice were previously reported in 

response to high fat feeding (Ge et al., 2012). A likely reason for the contrast in findings is the 

differing amounts of fat contained within the high fat diet of each study. The diet utilised by Ge and 

colleagues (2012) contained 35% fat whereas the high fat diet used in the present study contained 

less fat (21%). A further explanation is the difference in the detection method as Ge and colleagues 

(2012) utilised both light microscopy and transmission electron microscopy (TEM) and reported that 

lipid droplets were more visible using TEM as this method captures images at a higher resolution. 

The present study utilised light microscopy, which may therefore account for the contrast in findings. 

Despite a thorough literature search, it appears that previous studies have (perhaps surprisingly) not 

investigated lipid accumulation in ventricular tissue of ApoE-/- mice and therefore the results of the 

present study are a novel finding.  
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3.4.6.  Conclusion 

 

In conclusion, the results of Chapter 3 indicate that in the ApoE -/- mouse model of high fat diet-

induced atherosclerosis, GPR55 plays a complex role, whereby it regulates risk factors associated 

with this condition (i.e. body weight and fat mass). GPR55 is expressed in the mouse hypothalamus 

(Ryberg et al., 2007), however, it has not yet been investigated if GPR55 is involved in the satiety 

centre; an area of the hypothalamus associated with the regulation of food intake. If GPR55 were to 

positively affect this centre in mice, this may explain GPR55’s ability to regulate the body weight and 

fat mass of the atherosclerosis prone mice of the present study. If future studies find this to be the 

case, GPR55 may be a potential target for the central regulation of food intake.  

 

Intriguingly, GPR55 promoted the development of fatty streaks within the vasculature, via a l ipid-

independent mechanism. In humans, elevated plasma lipids contribute to the development of fatty 

streaks within the vasculature (Newman et al., 1986), as does maternal hypercholesterolaemia 

(Napoli et al., 1997). On this basis, it may be that this finding is one which is species dependent.  

 

Finally, having established a detrimental role for GPR55 in atherogenesis, and a protective role in fat 

accumulation, it was of interest to see what role (i f any) GPR55 may play on the cardiac function of 

HFC fed ApoE-/- and ApoE-/-/GPR55-/- mice. 
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Chapter 4:   

Effect of a high fat diet on cardiac 

function in ApoE-/- and ApoE-/-/GPR55-/-

mouse models of atherosclerosis     
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4.1.  Introduction 

 

4.1.1.  Assessment of cardiac function 

 

Several technologies are employed clinically and within research to assess cardiac function, however, 

two of the most widely utilised technologies include Doppler echocardiography and pressure -volume 

loop (PVL) analysis.  

 

4.1.1.1.  Doppler echocardiography 

 

Doppler echocardiography is often used as a diagnostic test in cardiology as it is a non -invasive 

method which can image the heart. In brief, a transceiver placed on the chest area above the heart, 

emits ultrasound waves which are reflected back to the transceiver on coming into contact with 

cardiac tissue. These returning waves are then passed to and processed by a computer software 

program to generate real-time images of the heart. Using this technology, the velocity, the direction 

in which blood is flowing and the dimensions of the heart can be determined.  

 

4.1.1.2.  PVL analysis 

 

Cardiac function can be effectively illustrated by the pressure -volume loop; a plot of LV blood 

pressure against LV blood volume. Each corner of a loop represents the mitral or aortic valve opening 

or closing and each side of a loop represents a phase of  the cardiac cycle (see Figure 4.1. illustrating 

exemplar PVL loops and the various stages of the cardiac cycle). From these loops, a wide range of 

indices of cardiac function can be accurately determined to develop a comprehensive understanding 

of LV performance and how such performance can be affected by certain variables, for example, 

gene deletion and/or high fat feeding.  
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Figure 4.1. The cardiac cycle illustrated in the form of pressure-volume loops. The loops illustrate 

the points at which the relevant valves open or close during the cycle and the different phases of the 

cycle. EDPVR; end-diastolic pressure-volume relationship, ESPVR; end-systolic pressure-volume 

relationship, mmHg; millimetres of mercury and RVU; relative volume units – normally converted to 

blood volume post experiment. 
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PVL analysis of LV function is generally regarded as the ‘gold standard’ in the assessment of load-

dependent and load-independent indices of cardiac function in both humans and animals. It is an 

invasive technique requiring the careful insertion of a conductance catheter into the LV. In patients, 

the conductance catheter is introduced through either of the femoral arteries and gently advanced 

up the thoraco-abdominal aorta and aortic arch and down through the aortic valve into the LV. In 

experimental animals, there are two ways in which a catheter can be inserted into the LV, one of 

which is via the right carotid artery and gently pushed down through the aortic valve and into the LV. 

However, this method of insertion can disrupt atherosclerotic plaques, therefore the second method  

of insertion is often utilised in atherosclerosis prone mice. The second method involves opening the 

chest, removing the pericardium and inserting the catheter into the LV via its apex . Regardless of the 

route of entry, a conductance catheter will measure the pressure and the electrical conductance of 

blood within the LV and generate pressure-volume loops to accurately assess LV function.  

 

4.1.2.  GPR55 and cardiac function 

 

LPI-mediated GPR55 activation in cultured rat neonatal ventricular cardiomyocytes provokes distinct 

cellular functions that are dependent on the cellular location of GPR55 i.e. at the sarcolemma or the 

membrane of intracellular organelles (Yu et al., 2013), suggesting that GPR55 may regulate 

cardiomyocyte activity at these two sites. To gain insight into the role of GPR55 in the control of 

cardiac function, Walsh and colleagues (2014) utilised PVL analysis to examine cardiac function in 

GPR55-/- mice at 10 weeks (young) and 8 months (mature) of age. While young GPR55-/- mice 

demonstrated a similar baseline cardiac function to that of age-matched WT mice, mature GPR55-/- 

mice demonstrated signs of systolic dysfunction in both load-dependent and -independent indices of 

cardiac function, alongside a reduced free LV wall thickness, reduced myocardial nuclei number and 

an approximate 3-fold increase in collagen deposition. This study also demonstrated a reduced 

contractile reserve (response to the α1/β1-adrenoceptor agonist, dobutamine) in young and mature 

GPR55-/- mice, suggesting that GPR55-/- mice exhibit maladaptive adrenergic signalling. Collectively, 

the data suggests that GPR55 plays an important role in cardiac function. 

 

4.1.3.  ApoE and cardiac function 

 

Several studies have investigated the cardiac function of ApoE-/- mice. In the resting state, aged NC 

fed ApoE-/- mice (16 month old) exhibit an augmented peak aortic flow velocity acceleration rate (an 

index of LV contractility), elevated aortic flow velocity and stoke volume (indices of cardiac output) , 
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suggesting enhanced systolic function in these mice (Vincelette et al., 2006). Despite this, 

dobutamine stress testing revealed an impaired contractile reserve compared to WT mice, which was 

proposed to be due to coronary insufficiency arising from atherosclerosis and endothelial 

dysfunction. In contrast, young (9 week old) ApoE-/- mice fed a high cholesterol diet over a short term 

period (4 weeks) do not appear to have altered cardiac function (Johansson et al., 2005), while more 

prolonged high fat feeding (8 and 16 weeks) similarly had no effect on ejection fraction and fractional 

shortening (indices representative of LV systolic function; Hans et al., 2011). Overall, it would appear 

that genetic ablation of ApoE in NC fed mice improves baseline systolic function but impairs 

contractile reserve, while high fat feeding has no effect on the systolic function of these mice.  

 

4.1.4.  Aims 

 

In light of the fact that GPR55 plays an important role in maintaining cardiac performance but a 

detrimental role in the development of atherosclerosis, it was of i nterest to investigate if GPR55 

plays a role in the cardiac function of ApoE-/- mice. To address this aim, C57BL/6 (wildtype; WT), 

ApoE-/-, GPR55-/- and ApoE-/-/GPR55-/- mice were fed an NC or HFC diet for 12 weeks. Post the dietary 

period, PVL analysis was conducted on all groups to assess the impact of gene deletion and/or diet 

on 1) baseline cardiac function, and 2) contractile reserve. 

 

4.2.  Methods 

 

4.2.1.  Study design 

 

Male and female WT, ApoE-/-, GPR55-/- and ApoE-/-/GPR55-/- mice, aged 4-7 weeks (approximately 5 of 

each gender per strain) were purchased or bred as previously described (Chapter 2, section 2.2.2.1.). 

Mice within each strain were randomly assigned to NC or HFC groups as described in Chapter 3, 

section 3.2.1. For the final body weights of each mouse strain see Chapter 3, Table 3.2.  

 

4.2.2.  Assessment of cardiac function via PVL analysis 

 

Each mouse was anaesthetised and ventilated as described in Chapter 2, section 2.2.4.2. Following 

this, a cannula was inserted into the right jugular vein for drug administration and a pressure -tipped 

conductance catheter (SPR-839; Millar Instruments, USA) inserted via the apex of the LV for the 

measurement of a range of indices of cardiac function (for full details of the surgical procedure see 
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Chapter 2, section 2.2.4.2.). Following a stabilisation period of approximately 15 minutes, a bolus 

injection of saline (10µl) was administered via the right jugular vein to obtain a parallel conductance 

(Vp) value (detailed in Chapter 2, section 2.2.4.3.). This process was repeated 3 times and the Vp value 

for each mouse calculated as an average of the 3 saline boluses. Hemodynamic variables (pressure, 

composite volume, the rate of pressure change in the ventricle (dP/dt) and heart rate) were then left 

to stabilise for approximately 5 minutes prior to baseline variables being recorded for 10 minutes (for 

an exemplar trace of baseline haemodynamic variables from an NC fed C57BL/6 mouse see Figure 

4.2.). To assess contractile reserve, dobutamine (α1/β1-adrenoceptor agonist; 10µg/kg) was 

administered intravenously as a bolus dose and its affects compared with a bolus administration of 

vehicle (0.9% NaCl). Following the recovery of haemodynamic parameters, venous return (left 

ventricular pre-load) was altered via the transient occlusion of the inferior vena cava (IVC) to acquire 

the slopes of both the end-systolic pressure-volume relationship (ESPVR) and end-diastolic pressure-

volume relationship (EDPVR). Post completion of the in vivo protocol, blood was collected via cardiac 

puncture to conduct a catheter volume calibration. In brief, this involved the blood being 

immediately distributed into wells of a known volume in a calibration cuvette and the catheter being 

placed in each well for 5-10 seconds while the MPVS-Ultra Single Segment Foundation System 

(ADInstruments, UK) recorded the changes in conductance output (RVU). Subsequently, the 

conductance output of each well was correlated with the known volume of the associated well and 

converted to µl (for a full description of the volume calibration of the catheter see Chapter 2, section 

2.2.4.4.). For definitions of the load-dependent and -independent indices of cardiac function that 

were recorded throughout each experiment, see Tables 4.1. and 4.2., respectively. 
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Figure 4.2. Trace of baseline haemodynamic variables from an NC fed C57BL/6 mouse. bpm; beats per minute, composite vol; composite volume, dP/dt; 

the rate of pressure change in the ventricle, mmHg; millimetres of mercury, RVU; relative volume units and s; seconds. 
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Indices of Systolic Function Abbreviation Units Definition 

Heart Rate  HR bpm Number of beats per minute 

End-systolic volume  ESV µL Volume of blood present in the ventricle at the end of systole 

End-diastolic volume  EDV µL Volume of blood present in the ventricle at the end of diastole  

End-systolic pressure  ESP mmHg The pressure in the ventricle at the end of systole 

End-diastolic pressure  EDP mmHg The pressure in the ventricle at the end of diastole 

Stroke Volume  SV µL Volume of blood ejected per contraction (EDV – ESV) 

Ejection Fraction  EF % Fraction of blood ejected from a ventricle per contraction ((SV/EDV) x 100) 

Cardiac Output  CO µL/min Volume of blood ejected by one ventricle in one minute (SV x HR) 

Stroke Work  SW mmHg*µL The work done by the ventricle to eject a volume of blood (SV x mean arterial pressure)  

Arterial elastance  Ea mmHg/µL Elastance of artery (ESP/SV) 

dP/dtmin   - mmHg/s Minimum first derivative of left ventricular pressure 

dP/dtmax - mmHg/s Maximum first derivative of left ventricular pressure 

Table 4.1. Load-dependent indices of cardiac function and their definitions. 

 

Indices of Systolic Function Abbreviation Units Definition 

End-systolic pressure-volume relationship  ESPVR mmHg/µL The maximal pressure developed by the ventricle at any given LV volume 

End-diastolic pressure-volume relationship  EDPVR mmHg/µL A measure of ventricular chamber stiffness (indicative of the relaxation rate) 

Table 4.2. Load-independent indices of cardiac function and their definitions. 
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4.2.3.  Statistical analysis 

 

To ensure that the studies planned within this chapter had sufficient statistical power, power 

calculations were conducted prior to experiments taking place and were based on data from  

previous experiments performed in the lab. Power calculations recommended an n=10 for PVL 

studies. Examples of power calculations performed for the PVL studies conducted within this 

chapter: 

 

Using existing systolic function data, pooled standard deviations for both ejection fraction (EF) and 

the end-systolic pressure-volume relationship (ESPVR) were 7.1 and 2, respectively. With a sample 

size for each experimental group of n=10, a one-way ANOVA would have 82% power to detect a 

difference of 11.4% (EF) and 99% power to detect a difference of 4.8mmHg/µL (ESPVR) between the 

means for each group. 

 

PVL analysis was conducted using PVAN UltraTM software (Millar Instruments, USA). Data from both 

male and female mice of each strain were combined in order to perform meaningful statistical 

analysis. Throughout the chapter, data from a mouse was excluded if said mouse had a baseline 

EF<30% (C57BL/6 and GPR55-/- mice) or <25% (ApoE-/- and ApoE-/-/GPR55-/- mice). Data was also 

excluded if it was outwith the mean±2x(standard deviations). Data are expressed as mean±S.E.M 

throughout. Comparisons were performed using either a paired t-test (two-tailed) or an unpaired t-

test (two-tailed) and multiple comparisons were performed using a one- or two-way ANOVA followed 

by a ‘Bonferroni’ post-hoc test. All statistical tests were carried out using GraphPad Prism® 4 software 

(GraphPad Software, Inc., USA) and differences between data deemed significant where P<0.05. Of 

note, Emax, a measure of intrinsic ventricular contractility was not reported in the present study. Emax 

values were excluded for two reasons: 1) such values are influenced by body size and there was 

significant variation in the fat mass between the groups of mice involved, 2) such values are also 

influenced by heart size and the present study did not perfuse fix the hearts to preserve them in their 

end-diastolic state, therefore, their maximum dimensions in the diastolic phase could not be 

determined or compared with those of WT mice. 
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4.3.  Results 

 

4.3.1.  Impact of gene deletion on load-dependent and -independent indices of baseline 

  cardiac  function 

 

4.3.1.1.  Systolic function 

 

From the measurements of load-dependent indices of cardiac function, in particular, HR, CO and 

dP/dtmax, systolic function was found to be enhanced in both NC fed ApoE-/- and GPR55-/- mice 

compared to their NC fed WT counterparts (P<0.05; Table 4.3.). ApoE-/- mice also exhibited an 

augmented ESV, while GPR55-/- mice were further characterised by an elevated ESP and SW (P<0.05; 

Table 4.3.). In contrast, none of the load-dependent indices of systolic function recorded in NC fed 

ApoE-/-/GPR55-/- mice differed significantly from their WT counterparts (Table 4.3.). Load-

independent measurements were obtained by transiently occluding the inferi or vena cava (to alter 

pre-load) and, with the exception of NC fed GPR55-/- mice which exhibited a significantly increased 

ESPVR (P<0.01; Table 4.5.), indicative of increased contractility/inotropy, the ESPVR of both NC fed 

ApoE-/- and ApoE-/-/GPR55-/- mice remained similar to that of NC fed WT mice (Table 4.5.). For 

exemplar PVL loops with the ESPVR slope indicated, see Figure 4.1. In summary, load-dependent 

systolic function was enhanced in ApoE-/- and GPR55-/- mice but not in ApoE-/-/GPR55-/- mice, while 

load-independent indices of systolic function were only increased in GPR55-/- mice.  

 

4.3.1.2.  Diastolic function 

 

Both NC fed ApoE-/- and GPR55-/- mice were characterised by a positive lusitropic response when 

compared to NC fed WT mice, as evidenced by an augmented dP/dtmin (P<0.05; Table 4.4.). In 

contrast, indices of load-dependent diastolic function were not different in NC fed ApoE-/-/GPR55-/- 

mice compared to WT controls fed NC (Table 4.4.). In terms of load-independent diastolic function, 

NC fed ApoE-/- mice exhibited a significantly increased EDPVR compared to NC fed WT mice (P<0.01), 

however, the EDPVR was unaffected in NC fed GPR55-/- and ApoE-/-/GPR55-/- mice (Table 4.5.). For 

exemplar PVL loops with the EDPVR slope indicated, see Figure 4.1. To summarise, load-dependent 

diastolic function was enhanced in both ApoE-/- and GPR55-/- mice and unaffected in ApoE-/-/GPR55-/- 

mice. Moreover, load-independent diastolic function was enhanced in ApoE-/- mice and unaffected in 

GPR55-/- and ApoE-/-/GPR55-/- mice.  
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4.3.2.  Impact of high fat feeding on load-dependent and -independent indices of baseline 

  cardiac function 

 

4.3.2.1.  Systolic function 

 

High fat feeding of C57BL/6 mice improved load-dependent systolic function as evidenced by an 

increased HR, ESV and CO (P<0.05), while that of high fat fed ApoE-/- mice was not different from 

ApoE-/- mice fed NC (Table 4.3.). High fat feeding of GPR55-/- mice slightly reduced systolic function, as 

evidenced by a reduced ESP and dP/dtmax (P<0.05; Table 4.3.). Moreover, ApoE-/-/GPR55-/- mice fed a 

HFC diet were characterised by an elevated ESV and a significantly reduced EF, indicative of marginal 

systolic dysfunction (P<0.05; Table 4.3.). In terms of load-independent systolic function, the ESPVR of 

high fat fed WT, ApoE-/-, GPR55-/- and ApoE-/-/GPR55-/- mice remained similar to that of their 

respective NC fed counterparts (Table 4.5.). In summary, HFC fed C57BL/6 mice exhibited enhanced 

load-dependent systolic function. In contrast, GPR55-/- and ApoE-/-/GPR55-/- were characterised by 

slightly reduced systolic function in response the HFC diet, while HFC fed ApoE-/- mice exhibited 

similar load-dependent systolic function to that of NC fed ApoE-/- mice. Furthermore, high fat feeding 

did not affect the load-independent systolic function of any group of mice. 

 

4.3.2.2.  Diastolic function 

 

High fat feeding of WT, ApoE-/- and GPR55-/- mice had no effect on load-dependent indices of diastolic 

function (Table 4.4.), however, ApoE-/-/GPR55-/- mice fed the HFC diet exhibited a significantly 

increased EDV (P<0.01; Table 4.4.) which is most likely responsible for the reduced EF of these mice 

reported above (EF = (SV/EDV) x 100). Since the increased EDV was not accompanied by an increase 

in EDP or dP/dtmin, it is unlikely that the overall load-dependent diastolic function of HFC fed ApoE-/-

/GPR55-/- mice was significantly impaired. Load-independent measurements of diastolic function 

were similarly unaffected by high fat feeding in WT, ApoE-/- and GPR55-/- mice (Table 4.5.). In contrast, 

HFC fed ApoE-/-/GPR55-/- mice exhibited a reduction in EDPVR indicating that these mice are 

characterised by load-independent diastolic dysfunction (P<0.05; Table 4.5.). To summarise, load-

dependent and -independent diastolic function was unaffected by high fat feeding in WT, ApoE-/- and 

GPR55-/- mice. In contrast, high fat feeding resulted in a load-independent decrease in diastolic 

function in ApoE-/-/GPR55-/- mice.  

 

 



 

123 
 

 

 

 

 

Table 4.3. Effect of gene deletion and/or high fat feeding on load-dependent indices of systolic function of mice. Data are expressed as mean±S.E.M; n-

numbers are in brackets. * indicates a significant effect (vs. C57BL/6 NC; P<0.05) of strain and # indicates a significant effect (P<0.05) of diet within the same 

strain; 2-way ANOVA and a ‘Bonferroni’ post-hoc test. The red framed boxes highlight the values most relevant. 

 

 C57BL/6 ApoE-/- GPR55-/- ApoE-/-/GPR55-/- 

  NC (9-10) HFC (7-8) NC (9-10) HFC (7) NC (8-9) HFC (7-8) NC (13-14) HFC (7) 

HR (bpm) 324±19 413±17# 375±15* 429±18 423±14* 406±14 351±15 378±12 

ESV (µL) 14.5±1.2 19.2±1.1# 19.0±1.3* 20.2±2.5 17.3±0.8 17.8±1.0 16.7±0.8 25.0±0.9# 

ESP (mmHg) 80±4.3 89±5.2 86.5±1.6 81±4.4 101.8±2.4* 77.7±4.6# 77.7±2.8  74.5±3.1 

SV (µL) 11.6±0.6 13.9±1.7 14.1±1.0 10.8±1.3 13.3±0.6 12.4±1.6 13.2±0.7 14.7±1.7 

EF (%) 49±2.0 44.6±1.6 45.6±2.1 37.4±3.1 47.3±1.1 44.0±3.4 47.1±2.1 37.9±2.3# 

CO (µL/min) 3733±304 6175±410# 5261±419* 4589±555 5601±234* 5221±674 4750±286 5467±536 

SW (mmHg*µL) 726±61 980±150 939±66 704±133 1072±73* 792±128 788±58 845±106 

Ea (mmHg/µL) 6.7±0.5 6.3±0.6 6.2±0.3 8.3±1.2 7.6±0.4 7.0±1.0 6.1±0.4 5.6±0.7 

dP/dtmax (mmHg/s) 4572±297 5999±670 6289±353* 5706±577 7795±710* 5592±676# 5254±317 4787±425 
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 C57BL/6 ApoE-/- GPR55-/- ApoE-/-/GPR55-/- 

  NC (10) HFC (8) NC (10) HFC (7) NC (8-9) HFC (7-8) NC (13-14) HFC (7) 

EDV (µL) 24.6±1.9 30.8±2.6 29.6±1.9 28.6±3.5 27.4±1.5 26.3±2.0 26.2±1.2 36.5±2.5# 

EDP (mmHg) 5.9±0.7 7.6±0.9 5.9±0.3 6.7±0.8 5.5±0.5 6.5±0.2 4.6±0.3 4.6±0.5 

dP/dtmin (mmHg/s)  -4770±390 -6169±711 -6349±413* -6021±625 -7839±315* -6086±673 -3037±329 -4941±397 

 

Table 4.4. Effect of gene deletion and/or high fat feeding on load-dependent indices of diastolic function of mice. Data are expressed as mean±S.E.M; n-

numbers are in brackets. * indicates a significant effect (vs. C57BL/6 NC; P<0.05) of strain and # indicates a significant effect (P<0.01) of diet within the same 

strain; 2-way ANOVA and a ‘Bonferroni’ post-hoc test. 

 

 C57BL/6 ApoE-/- GPR55-/- ApoE-/-/GPR55-/- 

   NC (7-8) HFC (5) NC (8) HFC (7) NC (8) HFC (8) NC (8-9) HFC (7) 

ESPVR (mmHg/µL) 4.3±0.6 4.7±1.0 6.0±0.9 5.8±0.5 6.8±0.5* 7.0±0.5 4.0±0.3 4.8±1.3 

EDPVR (mmHg/µL) 0.2±0.0 0.1±0.0 0.2±0.0* 0.2±0.0 0.2±0.0 0.2±0.0 0.2±0.0 0.1±0.0# 

 

Table 4.5. Effect of gene deletion and/or high fat feeding on load-independent indices of cardiac function of mice. Data are expressed as mean±S.E.M; n-

numbers are in brackets. * indicates a significant effect (vs. C57BL/6 normal chow; P<0.01) of strain and # indicates a significant effect (P<0.05) of diet within 

the same strain; 2-way ANOVA and a ‘Bonferroni’ post-hoc test. The red framed box highlights the value most relevant. 
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4.3.3.  Impact of gene deletion on contractile reserve 

 

4.3.3.1.  Systolic function 

 

In NC fed C57BL/6 mice, dobutamine induced the classical changes in systolic function seen upon 

adrenoceptor activation, these included an increase in EF, CO (as a consequence of increased SV and 

HR, respectively), SW and dP/dtmax, with a concomitant decrease in ESV (P<0.05; Table 4.6.). Changes 

of a similar magnitude were seen in response to dobutamine in NC fed ApoE-/-, GPR55-/- and ApoE-/-

/GPR55-/- mice (P<0.05; Table 4.6), indicating no influence of genetic status on contractile reserve.  

 

4.3.3.2.  Diastolic function 

 

Dobutamine induced a lusitropic response in NC fed GPR55-/- and ApoE-/-/GPR55-/- mice as evidenced 

by an augmented dP/dtmin (P<0.05) but had no effect on the dP/dtmin of C57BL/6 or ApoE-/- mice fed 

the same diet (Table 4.7). In terms of EDV and EDP, adrenoceptor activation had no effect on these 

indices in NC fed WT mice but did however, reduce both indices in NC fed ApoE -/-, GPR55-/- and ApoE-

/-/GPR55-/- mice (P<0.05; Table 4.7). 

 

4.3.4.  Impact of high fat feeding on contractile reserve 

 

4.3.4.1.  Systolic function 

 

Dobutamine induced positive chronotropic (↑ HR) and inotropic responses (↑ EF and dP/dtmax) in all 

HFC fed mice (P<0.05; Tables 4.8.-4.11.). Additionally, ESV was reduced while CO, SV and SW were all 

increased by dobutamine in all mice fed the HFC diet (P<0.05; Tables 4.8.-4.11.). Dobutamine also 

increased ESP in both HFC fed ApoE-/- and GPR55-/- mice (P<0.05; Tables 4.9. and 4.10., respectively) 

but had no effect on that of HFC fed C57BL/6 and ApoE-/-/GPR55-/- mice (Tables 4.8. and 4.11., 

respectively). Finally, Ea was unchanged in response to dobutamine in all groups (Tables 4.8.-4.11.). 

 

Systolic indices of contractile reserve in HFC fed C57BL/6 mice did not significantly differ from those 

in NC fed WT mice (Table 4.8.). In contrast, HFC fed ApoE-/- mice were characterised by a reduced 

contractile reserve, as evidenced by attenuated increases in SV, CO and EF, when compared to their 

NC fed counterparts (P<0.05; Table 4.9.). HFC fed GPR55-/- mice were characterised by an increased 

inotropic response (augmented increase in dP/dtmax) compared to NC fed GPR55-/- mice (P<0.05; 
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  C57BL/6 NC (6-7) ApoE-/- NC (8-9) GPR55-/- NC (8-9) ApoE-/-/GPR55-/- NC (10-11) 

∆ HR (bpm) veh 3±3 -4±2 -5±8 -10±5 

 dob 57±11• 76±13• 93±17• 55±9• 

∆ ESV (µL) veh 4.9±1.2 8.8±1.0 8.1±1.0 9.1±0.8 

 dob -1.9±1.3• -1.1±1.3• -2.7±1.3• -1.5±1.6• 

∆ ESP (mmHg) veh 12.9±3.2 10.8±2.0 16.3±5.3 11.7±1.4 

 dob 25.6±8.6 15±3.5 11.7±5.6 21.6±2.2• 

∆ SV (µL) veh 3.3±0.4 6.1±1.0 3.6±0.6 5.8±0.4 

 dob 8.2±1.2• 10±0.8• 8.7±1.2• 9.7±0.7• 

∆ EF (%) veh -2.3±0.5 1.1±1.0 -4.1±1.0 -1.2±1.2 

 dob 16.2±3.3• 14.1±1.8• 15.7±2.1• 19.7±3.5• 

∆ CO (µL/min) veh 1031±152 2053±341 1165±205 1792±236 

 dob 3906±648• 5001±771• 5541±834• 4926±459• 

∆ SW (mmHg*µL) veh 270.7±45.5 437±60.8 364.3±64.8 364.0±33.5 

 dob 1019.7±260.6• 882.9±112.4• 910.8±136.2• 1006.6±57.0• 

∆ Ea (mmHg/µL) veh -1.3±0.3 -1.7±0.3 -0.8±0.2 -1.8±0.3 

 dob -1.5±0.5 -1.5±0.4 -1.5±0.4• -1.7±0.3 

∆ dP/dtmax (mmHg/s) veh 925±235 1008±120 737±381 795±152 

 dob 5611±1256• 3851±382• 4246±511• 5181±320• 

 

Table 4.6. Effect of gene deletion on the systolic indices of contractile reserve in mice. Contractile reserve was assessed by the change from baseline 

cardiac function in response to the α1/β1-adrenoceptor agonist, dobutamine (vehicle; saline). Data are expressed as mean±S.E.M; n-numbers are in 

brackets. • indicates a significant effect (P<0.05) of dobutamine (dob) vs. vehicle (veh) within the same strain (paired t-test; two tailed). A one-way ANOVA 

followed by a ‘Bonferroni’ post-hoc test was also conducted to assess the impact of strain (vs. C57BL/6 NC) on each index in response to dobutamine, 

however, all indices were unaffected by strain.  
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  C57BL/6 NC (6-7) ApoE-/- NC (9) GPR55-/- NC (8-9) ApoE-/-/GPR55-/- NC (10-11) 

∆ EDV (µL) Veh 9.0±1.1 14±1.7 11.1±1.5 14.1±0.9 

 Dob 6.6±1.8 8.2±1.3• 5.2±0.9• 7.5±1.1• 

∆ EDP (mmHg) Veh 2.0±0.2 2.7±0.2 2.0±0.2 2.1±0.2 

 Dob 1.7±0.5 1.2±0.4• 0.4±0.2• 0.5±0.3• 

∆ dP/dtmin (mmHg/s) Veh -1122±366 -663±191 -1063±470 -764±198 

 Dob -3385±1229 -1486±474 -2933±926• -3334±258• 

 

Table 4.7. Effect of gene deletion on the diastolic indices of contractile reserve in mice. Data are expressed as mean±S.E.M; n-numbers are in brackets. • 

indicates a significant effect (P<0.05) of dobutamine (dob) vs. vehicle (veh) within the same strain (paired t-test; two-tailed).  

  127 



128 
 

Table 4.10.). There was also an increase in the ESP of HFC fed GPR55-/- mice (P<0.05) which did not 

occur in NC fed GPR55-/- mice in response to adrenoceptor activation (Table 4.10.). Furthermore, HFC 

fed ApoE-/-/GPR55-/- mice exhibited an increased inotropic response to dobutamine  (augmented 

increase in CO) compared to their NC fed counterparts (P<0.05; Table 4.11.). To summarise, the 

systolic indices of contractile reserve in HFC fed C57BL/6 mice were similar to those of NC fed WT 

mice. HFC fed ApoE-/- mice were characterised by a reduced contractile reserve, while HFC fed 

GPR55-/- and ApoE-/-/GPR55-/- mice exhibited augmented contractility in response to dobutamine.   

 

4.3.4.2.  Diastolic function  

 

Dobutamine induced positive lusitropic responses in all groups of HFC fed mice, as evidence by an 

augmented dP/dtmin (P<0.05; Tables 4.12.-4.15.). Additionally, all groups of HFC fed mice were 

characterised by a significantly reduced EDV and EDP (P<0.05; Tables 4.12.-4.15.).  

 

HFC fed C57BL/6 mice exhibited a reduced EDV and EDP and an increased dP/dtmin in response to 

dobutamine, while adrenoceptor activation did not affect these indices in C57BL/6 mice fed NC 

(Table 4.12.). While HFC fed ApoE-/- mice exhibited an enhanced lusitropic response, as evidenced by 

an increase in dP/dtmin (P<0.01), this was not apparent in NC fed ApoE-/- mice in response to 

dobutamine (Table 4.13.). Adrenoceptor activation in HFC fed GPR55-/- mice induced an increased 

lusitropic response (augmented increase in dP/dtmin) when compared to NC fed GPR55-/- mice 

administered dobutamine (P<0.05; Table 4.14.). Furthermore, diastolic indices of contractile reserve 

in HFC fed ApoE-/-/GPR55-/- mice did not significantly differ from those of ApoE-/-/GPR55-/- mice fed an 

NC diet (Table 4.15). To summarise, adrenoceptor activation induced a lusitropic response in HFC fed 

C57BL/6, ApoE-/- and GPR55-/- mice compared to their NC fed counterparts, while high fat feeding did 

not alter the rate of relaxation in ApoE-/-/GPR55-/- mice. 
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C57BL/6 

  NC (6-7) HFC (6-7) 

∆ HR (bpm) veh 3±3 -3±3 

 dob 57±11• 76±12• 

∆ ESV (µL) veh 4.9±1.2 11.2±1.3 

 dob -1.9±1.3• -1.6±1.2• 

∆ ESP (mmHg) veh 12.9±3.2 12.6±3.1 

 dob 25.6±8.6 19.1±5.0 

∆ SV (µL) veh 3.3±0.4 4.6±0.8 

 dob 8.2±1.2• 9.6±1.3• 

∆ EF (%) veh -2.3±0.5 -3.3±2.3 

 dob 16.2±3.3• 15.5±2.2• 

∆ CO (µL/min) veh 1031±152 1423±153 

 dob 3906±648• 5741±779• 

∆ SW (mmHg*µL) veh 270.7±45.5 338.8±23.5 

 dob 1019.7±260.6• 928.0±152.2• 

∆ Ea (mmHg/µL) veh -1.3±0.3 -1.3±0.3 

 dob -1.5±0.5 -1.6±0.1 

∆ dP/dtmax (mmHg/s) veh 925±235 658±232 

 dob 5611±1256• 4515±794• 

 

Table 4.8. Effect of a high fat diet on the systolic indices of contractile reserve in C57BL/6 mice.  

Data are expressed as mean±S.E.M; n-numbers are in brackets. • indicates a significant effect 

(P<0.05) of dobutamine (dob) vs. vehicle (veh) within the same dietary group (paired t-test; two-

tailed). An unpaired t-test (two-tailed) was also conducted to assess the impact of HFC on each index 

in response to dobutamine, however, all indices were unaffected by high fat feeding.   
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ApoE-/- 

  NC (8-9) HFC (6-7) 

∆ HR (bpm) veh -4±2 -3±4 

 dob 76±13• 52±9• 

∆ ESV (µL) veh 8.8±1.0 6.2±0.8 

 dob -1.1±1.3• 1.8±0.7• 

∆ ESP (mmHg) veh 10.8±2.0 11.8±2.4 

 dob 15±3.5 18±3.3• 

∆ SV (µL) veh 6.1±1.0 3.1±0.8 

 dob 10±0.8• 4.8±1.0•# 

∆ EF (%) veh 1.1±1.0 0±1.3 

 dob 14.1±1.8• 6.5±1.9•# 

∆ CO (µL/min) veh 2053±341 1203±315 

 dob 5001±771• 2774±593•# 

∆ SW (mmHg*µL) veh 437±60.8 305.6±76.0 

 dob 882.9±112.4• 568.4±120.5• 

∆ Ea (mmHg/µL) veh -1.7±0.3 -1.80±0.4 

 dob -1.5±0.4 -1.7±0.6 

∆ dP/dtmax (mmHg/s) veh 1008±120 908±216 

 dob 3851±382• 3813±708• 

 

Table 4.9. Effect of a high fat diet on the systolic indices of contractile reserve in ApoE-/- mice. Data 

are expressed as mean±S.E.M; n-numbers are in brackets. • indicates a significant effect (P<0.05) of 

dobutamine (dob) vs. vehicle (veh) within the same dietary group (paired t-test; two-tailed) and # 

indicates a significant effect (P<0.05) of diet (unpaired t-test; two-tailed). The red framed boxes 

highlight the values most relevant.  
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GPR55-/- 

  NC (8-9) HFC (7-8) 

∆ HR (bpm) veh -5±8 -3±5 

 dob 93±17• 66±9• 

∆ ESV (µL) veh 8.1±1.0 11.1±0.8 

 dob -2.7±1.3• -0.9±0.8• 

∆ ESP (mmHg) veh 16.3±5.3 18.6±2.3 

 dob 11.7±5.6 31.3±5.7•# 

∆ SV (µL) veh 3.6±0.6 5.0±1.1 

 dob 8.7±1.2• 8.3±0.7• 

∆ EF (%) veh -4.1±1.0 -3±1.8 

 dob 15.7±2.1• 13.4±0.9• 

∆ CO (µL/min) veh 1165±205 2070±451 

 dob 5541±834• 5121±442• 

∆ SW (mmHg*µL) veh 364.3±64.8 646.3±69 

 dob 910.8±136.2• 1167.4±117.3• 

∆ Ea (mmHg/µL) veh -0.8±0.2 -0.7±0.3 

 dob -1.5±0.4• -1.2±0.2 

∆ dP/dtmax (mmHg/s) veh 737±381 1290±63 

 dob 4246±511• 7009±873•# 

 

Table 4.10. Effect of a high fat diet on the systolic indices of contractile reserve in GPR55-/- mice. 

Data are expressed as mean±S.E.M; n-numbers are in brackets. • indicates a significant effect 

(P<0.05) of dobutamine (dob) vs. vehicle (veh) within the same dietary group (paired t-test; two-

tailed) and # indicates a significant effect (P<0.05) of diet (unpaired t-test; two-tailed). The red 

framed boxes highlight the values most relevant. 

 

 

 

 

 

 



132 
 

 

 

 

 

 

 

 

ApoE-/-/GPR55-/- 

  NC (10-11) HFC (7) 

∆ HR (bpm) veh -10±5 -8±6 

 dob 55±9• 82±12• 

∆ ESV (µL) veh 9.1±0.8 11.2±1.5 

 dob -1.5±1.6• -4.7±2.0• 

∆ ESP (mmHg) veh 11.7±1.4 17.5±2.8 

 dob 21.6±2.2• 19.9±2.9 

∆ SV (µL) veh 5.8±0.4 5.1±1.3 

 dob 9.7±0.7• 11.1±1.0• 

∆ EF (%) veh -1.2±1.2 -1.6±2.1 

 dob 19.7±3.5• 18.4±3.0• 

∆ CO (µL/min) veh 1792±236 1798±437 

 dob 4926±459• 6875±866•# 

∆ SW (mmHg*µL) veh 364.0±33.5 473.6±110.7 

 dob 1006.6±57.0• 1252.4±116.1• 

∆ Ea (mmHg/µL) veh -1.8±0.3 -0.7±0.6 

 dob -1.7±0.3 -1.6±0.3 

∆ dP/dtmax (mmHg/s) veh 795±152 1244±171 

 dob 5181±320• 6457±783• 

 

Table 4.11. Effect of a high fat diet on the systolic indices of contractile reserve in ApoE-/-/GPR55-/- 

mice. Data are expressed as mean±S.E.M; n-numbers are in brackets. • indicates a significant effect 

(P<0.01) of dobutamine (dob) vs. vehicle (veh) within the same dietary group (paired t-test; two-

tailed) and # indicates a significant effect (P<0.05) of diet (unpaired t-test; two-tailed). The red 

framed box highlights the value most relevant. 
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Table 4.12. Effect of a high fat diet on the diastolic indices of contractile reserve in C57BL/6 mice. 

Data are expressed as mean±S.E.M; n-numbers are in brackets. • indicates a significant effect 

(P<0.05) of dobutamine (dob) vs. vehicle (veh) within the same dietary group (paired t-test; two-

tailed).  

 

 

ApoE-/- 

  NC (9) HFC (7) 

∆ EDV (µL) veh 14±1.7 9.9±1.5 

 dob 8.2±1.3• 7.4±1.1• 

∆ EDP (mmHg) veh 2.7±0.2 2.7±0.1 

 dob 1.2±0.4• 1.2±0.3• 

∆ dP/dtmin (mmHg/s) veh -663±191 -980±252 

 dob -1486±474 -3140±534•# 

 

Table 4.13. Effect of a high fat diet on the diastolic indices of contractile reserve in ApoE-/- mice. 

Data are expressed as mean±S.E.M; n-numbers are in brackets. • indicates a significant effect 

(P<0.01) of dobutamine (dob) vs. vehicle (veh) within the same dietary group (paired t-test; two-

tailed) and # indicates a significant effect (P<0.05) of diet (unpaired t-test; two-tailed).  

 

 

 

 

 

C57BL/6 

  NC (6-7) HFC (7) 

∆ EDV (µL) veh 9.0±1.1 16.1±1.6 

 dob 6.6±1.8 8.1±1.7• 

∆ EDP (mmHg) veh 2.0±0.2 3.5±0.4 

 dob 1.7±0.5 0.9±0.2• 

∆ dP/dtmin (mmHg/s) veh -1122±366 -746±338 

 dob -3385±1229 -3350±848• 
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GPR55-/- 

  NC (8-9) HFC (7-8) 

∆ EDV (µL) veh 11.1±1.5 16.2±1.8 

 dob 5.2±0.9• 8.4±1.3• 

∆ EDP (mmHg) veh 2.0±0.2 2.3±0.2 

 dob 0.4±0.2• 0.6±0.2• 

∆ dP/dtmin (mmHg/s) veh -1063±470 -1602±144 

 dob -2933±926• -5934±652•# 

 

Table 4.14. Effect of a high fat diet on the diastolic indices of contractile reserve in GPR55-/- mice. 

Data are expressed as mean±S.E.M; n-numbers are in brackets. • indicates a significant effect 

(P<0.05) of dobutamine (dob) vs. vehicle (veh) within the same dietary group (paired t-test; two-

tailed) and # indicates a significant effect (P<0.05) of diet (unpaired t-test; two-tailed).  

 

 

ApoE-/-/GPR55-/- 

  NC (10-11) HFC (6-7) 

∆ EDV (µL) veh 14.1±0.9 16.9±1.8 

 dob 7.5±1.1• 7.8±1.5• 

∆ EDP (mmHg) veh 2.1±0.2 2.2±0.3 

 dob 0.5±0.3• 0.3±0.2• 

∆ dP/dtmin (mmHg/s) veh -764±198 -1059±107 

 dob -3334±258• -3871±615• 

 

Table 4.15. Effect of a high fat diet on the diastolic indices of contractile reserve in ApoE-/-/GPR55-/- 

mice. Data are expressed as mean±S.E.M; n-numbers are in brackets. • indicates a significant effect 

(P<0.05) of dobutamine (dob) vs. vehicle (veh) within the same dietary group (paired t-test; two-

tailed). An unpaired t-test (two-tailed) was also conducted to assess the impact of HFC on each index 

in response to dobutamine, however, all indices were unaffected by high fat feeding.  
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4.4.  Discussion 

 

4.4.1.  The impact of gene deletion on baseline cardiac function 

 

The load-dependent and -independent indices of baseline cardiac function of C57BL/6 mice were 

relatively low compared to those previously reported for this strain in studies which also adopted the 

open chest model for PVL analysis (Lips et al., 2004 and Walsh et al., 2014). In the present study, PVL 

data generated from both male and female mice of each strain were combined in order to perform 

meaningful statistical analysis, however, female mice had a tendency to exhibit lower values of 

cardiac function. As Lips and colleagues (2004) conducted PVL analysis in only male C57BL/6 mice 

and Walsh and colleagues (2014) conducted this type of analysis in C57BL/6 mice where the balance 

was slightly in favour of males, it is possible that the inclusion of PVL data from female and male 

C57BL/6 mice in the present study may account for the relatively low indices  of baseline cardiac 

function. Another possibility is that while the study conducted by Walsh and colleagues (2014) was 

also conducted at RGU, it was done so at a different site on campus where mice could not be held 

overnight. Consequently, the mice of the Walsh study were transported to RGU and used for 

experimentation on the same day. In contrast, the mice involved in the present study were housed in 

the biological services unit (BSU) where mice could be held for a period of up to 5 working days. It is 

therefore possible that the mice of the Walsh study were more stressed due to the shorter 

acclimatisation period prior to experimentation, causing their load-dependent and -independent 

indices of cardiac function to be augmented. Other factors which may have attenuated the cardiac 

function of the C57BL/6 mice in the present study have also been considered, for example, the 

anaesthetic mixture administered to mice (ketamine and xylazine), which is reportedly cardiac 

depressive (reviewed by Pacher et al., 2008). However, the dosing of ketamine and xylazine in the 

current study was comparable with that of the Walsh study, therefore  this possibility seems unlikely. 

The maintenance of mouse body temperature during each experiment may also have influenced 

cardiac function, however, great care was taken to minimise the influence of this variable. 

Furthermore, the relatively low values of baseline cardiac function in the present study are unlikely 

to have been caused by the early application of the PVL technique as C57BL/6 mice were not the first 

strain to have their cardiac function assessed using this method.  

  

PVL analysis revealed that baseline systolic and diastolic function of ApoE-/- mice was significantly 

enhanced compared to WT mice. A different method (Doppler echocardiography) similarly reported 

that ApoE-/- mice exhibit significantly enhanced systolic function (Vincelette et al., 2006). The HR of 
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the ApoE-/- mice used in the current study was also significantly elevated, although studies previously 

reporting this index in the ApoE-/- mouse have been somewhat confounding. According to Vasquez 

and colleagues (2012), studies which have utilised implanted telemetry devices to wirelessly record 

HR over short and long-term periods most accurately represent the HR of mice. Telemetric 

monitoring of the HR of ApoE-/- mice aged 6-8 weeks revealed an increased mean HR (Pelat et al., 

2003), which is in line with the findings of the present study. While the present study did not 

investigate the mechanism(s) via which HR was elevated, the increased basal HR in ApoE-/- mice is 

thought to be a consequence of augmented sympathetic activity in the presence of normal vagal 

tone (Hans et al., 2009). However, other studies have reported that ApoE-/- mice are characterised by 

a defective parasympathetic drive to the heart (Pelat et al., 2003). If the latter is the case, then this 

would also contribute to an elevated HR in these mice. With regard to the enhanced CO exhibited in 

the ApoE-/- mice of the present study, it is likely that this index was increased as a direct consequence 

of the augmented HR (CO=SV x HR). In addition to the enhanced CO, dP/dtmax was also greater in the 

ApoE-/- mice compared to C57BL/6 mice, suggesting an increased inotropic response. Again, this 

could be due to increased sympathetic drive to the heart rather than any changes in the thickness or 

collagen deposition within the LV wall (Chapter 3, sections 3.3.7. and 3.3.8., respectively), since these 

were not altered in ApoE-/- mice. 

 

The present study also demonstrated that the baseline systolic and diastolic function of GPR55-/- 

mice aged 16-19 weeks was significantly enhanced compared to age-matched WT mice. These 

findings are in contrast to those reported in the only other study to determine the cardiac function of 

GPR55-/- mice (Walsh et al., 2014). The Walsh study demonstrated that, while young (10 week old) 

GPR55-/- mice were characterised by an increased HR, all other load-dependent and -independent 

indices of cardiac function were unaltered. However, systolic dysfunction was found to develop with 

age as mature (8 month old) mice were characterised by a significantly attenuated EF and inotropy as 

evidenced by a reduction in the ESPVR and Emax values compared to age-matched WT mice. 

Considering that compensatory mechanisms (i.e. increased sympathetic activity and circulating 

catecholamines) are often initiated to maintain systolic function and meet metabolic demands  

(reviewed by Jackson et al., 2000), it may be that the enhanced systolic function observed in the 

present study was a compensatory mechanism in response to the early stages of systolic dysfunction.  

Consequently, the age of the GPR55-/- mice used in the present study (16-19 weeks) may represent a 

turning point at which compensation occurs. However, as enhanced/compensatory systolic function 

cannot be maintained indefinitely, systolic dysfunction would ensue with time, which would ali gn 

with the findings of the Walsh study. 
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This is the first study to investigate the cardiac function of ApoE-/-/GPR55-/- mice therefore all results 

reported herein represent innovative findings. Given that the baseline systolic and diastolic function 

of both ApoE-/- and GPR55-/- mice was enhanced, it may have been expected that the cardiac function 

of ApoE-/-/GPR55-/- mice would be further enhanced, although this was not the case since ApoE-/-

/GPR55-/- mice exhibited similar cardiac function to that of WT mice. The reasons for this are 

particularly difficult to explain considering that the ApoE-/-/GPR55-/- mouse is so novel. Unfortunately, 

it was outwith the scope of the thesis to explore the underlying mechanism(s) but it poses an 

intriguing question that is worthy of further study. 

 

 4.4.2.  The impact of high fat feeding on baseline cardiac function 

 

The baseline values of cardiac function for the HFC C57BL/6 mice are more in line with those 

reported in other PVL studies for C57BL/6 mice fed an NC diet (Lips et al., 2004 and Walsh et al., 

2014). However, as previously mentioned, the mice were randomised as to when they underwent 

PVL analysis, therefore the data are regarded as an accurate reflection of events. The present study 

demonstrated that the systolic function of C57BL/6 mice was improved in response to high fat 

feeding, which is in contrast to the findings of Louwe and colleagues (2012) who reported a 

reduction in the systolic function of HFC fed C57BL/6  male, but not female mice. The duration of the 

dietary period was similar in each study (12 weeks) and while the mice of the Louwe study were 

slightly older (3-6 weeks), it is not thought that this would account for the contrast in findings. It is 

suspected that differences in the composition of diet fed to the mice in each study may account for 

the inconsistencies as the mice of the present study were fed a 21% fat/0.15% cholesterol diet 

whereas the mice of the Louwe study were fed a diet higher in fat (39.5%/5.5% soy bean oil). 

 

The main change in the HFC fed C57BL/6 mice was an increase in HR, which would account for the 

increased CO exhibited by these mice. If this had occurred in response to an increase in sympathetic 

activity, an increase in other variables such as dP/dtmax would have been expected. As this was not 

the case, it seems more likely that a reduced vagal input may have contributed to the increase in 

chronotropy. In support of this, Hartnett and colleagues (2015) demonstrated that high fat feeding of 

C57BL/6 mice impairs parasympathetic vagal control of the heart.  

 

High fat feeding of ApoE-/- mice had no impact on cardiac function despite the presence of 

hyperlipidaemia and fatty streak deposition in the thoracic aortae of these mice (Chapter 3, sections 

3.3.5. and 3.3.6., respectively). These findings are in agreement with other studies in which ApoE-/- 
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mice fed a HFC diet for 4 (Johansson et al., 2005) or 16 weeks (Hans et al., 2011) exhibited cardiac 

function similar to that of NC fed ApoE-/- mice. While fatty streaks were observed within the thoracic 

aortae of HFC fed ApoE-/- mice, the degree of and encroachment into the vessel lumen was not 

investigated. Additionally, coronary atherosclerosis would have likely had a negative impact on the 

contractile function of these mice, however, as expected in this strain, there was no evidence of 

coronary atherosclerosis (Chapter 3, section 3.3.9.). While the development of fatty streaks in the 

aortic root of each mouse group was not assessed, significant narrowing of the aortic root would 

have been expected to increase the LV contractile force to sustain the flow of blood to 

organs/tissues. Since the present study did not demonstrate an increase in LV contractility in HFC 

ApoE-/- mice, it seems unlikely that any fatty streak deposition within the aortic root of these mice 

would have been of a sufficient size/severity to alter cardiac function.   

 

This is the first study to investigate the effects of high fat feeding on cardiac function in both GPR55-/- 

and ApoE-/-/GPR55-/- mice. High fat feeding of GPR55-/- and ApoE-/-/GPR55-/- mice, aged 4-7 weeks for 

a 12 week period resulted in minor reductions in baseline systolic function, however, such reductions 

indicate a role for GPR55 in maintaining cardiac function in atherosclerosis. One potential 

explanation for the reduced systolic performance in mice with the gene deletion for GPR55 is that 

both strains display an obese phenotype. However, obesity is associated more with diastolic ( Pascual 

et al., 2003) rather than systolic dysfunction, yet neither GPR55-/- or ApoE-/-/GPR55-/- mice 

demonstrated any alterations in baseline diastolic function. However, BP measurements in conscious 

GPR55-/- mice have shown that these mice are hypertensive (Walsh et al., 2015), and since 

hypertension has been linked to systolic dysfunction (Verdecchia et al., 2005 and Ogah et al., 2011), 

this could represent the underlying mechanism for the observed changes in some of the indices of 

systolic function in both strains with a deletion of GPR55. However, the  apical approach for PVL 

analysis used in the present study precludes the measurement of arterial blood pressure and 

therefore it is not possible to say whether or not the presence of hypertension may have contributed 

to the observed changes. Additionally, plasma lipid profiling demonstrated that HFC fed GPR55-/- 

mice exhibited normal profiles whereas those of the ApoE-/-/GPR55-/- mice fed HFC were extremely 

dyslipidaemic. As a result, changes in the cardiac function of HFC fed mice with the genetic deletion 

of GPR55 are not linked to the degree of hyperlipidaemia.  
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4.4.3.  The impact of gene deletion on contractile reserve  

 

Stress tests are commonly used to detect cardiac dysfunction in humans and in animals. In humans, 

this is typically carried out by means of exercise testing. However, in animals, stress tests are more 

commonly induced by pharmacological agents, as controlled exercise in animals can prove 

challenging. Dobutamine, an α1/β1-adrenoceptor agonist is the pharmacological agent often used in 

studies (Wiesmann et al., 2001, Kreissl et al., 2006 and Tyrankiewicz et al., 2013) as it stimulates 

cardiac function but has minimum peripheral haemodynamic effects.  

 

In the present study, dobutamine induced positive chronotropic and inotropic responses of a similar 

magnitude in all groups therefore gene deletion had no significant impact on contractile reserve. In 

terms of the ApoE-/- mice, this finding is in contrast to that of Vincelette and colleagues (2006) who 

reported that 16 month old ApoE-/- mice are characterised by a reduced contractile reserve 

(determined by Doppler echocardiography). Although the ApoE-/- mice in the present study exhibited 

modest hyperlipidaemia and a marked deposition of fatty streaks within the thoracic aorta (Chapter 

3, sections 3.3.5. and 3.3.6. respectively), these mice were much younger (16-19 weeks of age) at the 

time of analysis and therefore it is likely that the extent of atherosclerotic lesion development in 

these mice had not yet reached a severity capable of impairing their contractile reserve. While 

Vincelette and colleagues (2006) did not investigate the mechanisms which led to a reduced 

contractile reserve in the ApoE-/- mice, they did however speculate that the impairment may have 

been the result of endothelial dysfunction and coronary atherosclerosis, reducing the supply of blood 

to the heart. However, as ApoE-/- mice do not develop coronary artery plaques (Coleman et al., 

2006), the latter seems highly unlikely.  

 

The finding that the contractile reserve of GPR55-/- mice aged 16-19 weeks was unaltered in the 

present study is again inconsistent with the findings of Walsh and colleagues (2014)  who conducted a 

dobutamine (10µg/kg) stress test on young (10 week old) and mature (8 month old) GPR55-/- mice 

and reported that GPR55-/- mice at either age were characterised by an impaired contractile reserve. 

While compensatory mechanisms i.e. increased sympathetic activity and circulating catecholamines 

are initiated to maintain systolic function and meet metabolic demands, chronic β1-adrenoceptor 

stimulation during the compensatory period leads to the downregulation (Bristow et al., 1986) and 

uncoupling of β1-adrenoceptors, the latter commonly referred to as ‘desensitisation’ (Takahashi et 

al., 1992). Unfortunately, the downregulation and desensitisation of β1-adrenoceptors leads to 

systolic dysfunction and with its progression, an impaired contractile reserve (reviewed by 
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Lymperopoulos et al., 2013). As previously mentioned in section 4.4.1., the age of the mice used in 

the present study may represent a mid-point between ‘compensation’ and the progression to systolic 

dysfunction. It is therefore possible that this applies to the contractile reserve data and if so, would 

explain the differences between the contractile reserve data of the present study and that of the 

Walsh study. Moreover, as both the ApoE-/- and GPR55-/- mice of the present study exhibited a 

normal contractile reserve, it is not surprising that the contractile reserve of ApoE -/-/GPR55-/- mice 

was unaltered.  

 

4.4.4.  The impact of high fat feeding on contractile reserve  

 

While high fat feeding did not alter the contractile reserve of WT mice, it impaired the contractile 

reserve of ApoE-/- mice. In contrast, high fat feeding of both GPR55-/- and ApoE-/-/GPR55-/- mice 

enhanced their contractile reserve. 

 

The finding of an unaltered contractile reserve in response to high fat feeding in WT mice is in 

contrast to the findings of Fu and colleagues (2017) who reported that 12 weeks of high fat feeding 

impaired the contractile reserve of C57BL/6 mice. It is suspected that the disparity in findings may be 

due to the mice of the Fu study consuming a diet containing a higher percentage of fat (34.9% vs. 

21% fat). Calligaris and colleagues (2013) also reported a reduced contractile reserve in C57BL/6 mice 

in response to high fat feeding, however, the duration of the dietary period had been considerably 

longer (8 or 16 months) which is likely to account for the contrast in findings.    

 

In terms of HFC fed ApoE-/- mice, Vincelette and colleagues (2006) also demonstrated an impaired 

contractile reserve in their ApoE-/- mice, however, the mice involved in the Vincelette study were 

aged (16 months) and had been fed an NC diet. Interestingly, Heinonen and colleagues (2011) 

reported a preserved but reduced contractile reserve in a different HFC fed model of atherosclerosis 

(LDLR-/-ApoB100/100 mice). As this model is characterised by a plasma total cholesterol concentration 

lower than that of ApoE-/- mice (Véniant et al., 2000), this may explain why the contractile reserve of 

these mice was ‘preserved’, although reduced. As the HFC fed ApoE-/- mice of the present study were 

highly dyslipidaemic, it may be that dyslipidaemia leads to a downregulation in β1-adrenoceptor 

expression or sensitivity in the heart thus impairing the contractile reserve of these mice. Despite 

conducting a thorough literature search, it would appear that the potential relationship between 

dyslipidaemia and cardiac β1-adrenoceptor function has not yet been investigated. Consequently, 

this poses an exciting new line of enquiry and is worthy of future investigation. 
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GPR55-/- and ApoE-/-/GPR55-/- mice exhibiting an enhanced contractile reserve indicates that in the 

latter stages of atherosclerosis, GPR55 is involved in maladaptive adrenergic signalling of the heart. 

Despite the initial suggestion that the impaired contractile reserve of ApoE-/- mice may have occurred 

as a consequence of their dyslipidaemic plasma profile negatively impacting cardiac β1-adrenoceptor 

function, it would appear that the impaired contractile reserve of these mice occurred via a lipid-

independent mechanism as both ApoE-/- and ApoE-/-/GPR55-/- mice exhibited similar dyslipidaemic 

plasma profiles.  

 

It was initially thought that obesity per se may increase β-adrenoceptor sensitivity and increase the 

contractile reserve of HFC fed mice with a gene deletion for GPR55 as these mice exhibited an obese 

phenotype. However, a study conducted in rats reported that the expression of β1-adrenoceptors 

and the G-protein (Gs) to which it binds are unaffected by obesity in the isolated papillary muscle, as 

is the overall sensitivity of β-adrenoceptors in this tissue (Ferron et al., 2015). Moreover, Carroll and 

colleagues (2002) reported in the isolated rabbit heart that obesity-induced reductions in 

responsiveness to the non-selective β-adrenoceptor agonist, isoproterenol, are not linked to changes 

in the sensitivity or expression of β-adrenoceptors in this tissue. Together, these reports suggest that 

obesity per se is unlikely to be responsible for the enhanced contractile reserve exhibited by the mice 

deficient in the gene for GPR55. Further investigation is now required to elucidate in what way(s) the 

genetic deletion of GPR55 leads to an enhanced contractile reserve. 

 

4.4.5.  Conclusion 

 

In summary, the current study set out to determine the role of GPR55 in the cardiac function of 

atherosclerosis prone mice. While the present study utilised PVL analysis, an invasive method to 

determine the cardiac function of mice, non-invasive imaging such as cardiac MRI and 

echocardiography are more routinely used in the clinical setting. As a reduced EF (≤35% or ≤40% 

depending on the trial) has been the most common index of cardiac function used for entry criteria 

to recruit patients into clinical trials investigating systolic heart failure (SOLVD investigators et al., 

1991, Cohn et al., 2001, Pitt et al., 1999 and McMurray et al., 2014), a reduced EF was used as the 

main indicator of systolic dysfunction within the present study. HFC fed ApoE-/-/GPR55-/- mice 

exhibited systolic dysfunction (a reduced EF as a consequence of an increased ESV; EF = ((EDV-

ESV)/EDV) x 100), while HFC fed ApoE-/- mice exhibited a normal EF. From these findings, it can 

therefore be determined that GPR55 exhibits a protective role in terms of maintaining baseline 

systolic function in atherosclerosis prone mice. In contrast, GPR55 contributed to the impaired 



142 
 

contractile reserve of these mice. The latter therefore indicates that in the later stages of 

atherosclerosis, GPR55 is involved in maladaptive adrenergic signalling of the heart.  
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Chapter 5: 

The impact of GPR55 activation in 

myocardial ischaemia/reperfusion injury 
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5.1.  Introduction 

 

Ex vivo observations have determined that GPR55 promotes the development of fatty streaks in the 

thoracic aortae of mice suffering from atherosclerosis (Chapter 3). In contrast, an important role for 

GPR55 in the maintenance of cardiac function of these mice, in vivo, has been demonstrated (Chapter 

4). Together, these findings suggest a complex role for GPR55 in atherosclerosis. 

 

A recent study by Kurano and colleagues (2015) measured the plasma concentration of a range of 

lysophospholipids, including LPI, in patients undergoing coronary angiography at the time of an acute 

coronary event. Circulating levels of total plasma LPI were increased at this time, the source of which 

was suggested to be activated platelets at the site of plaque rupture. Considering that GPR55 is the 

only reported LPI receptor in mammalian tissue (Oka et al., 2007), that GPR55 is expressed on 

ventricular cardiomyocytes and GPR55 activation increases [Ca2+]i in these cells (Yu et al., 2013), the 

presence of an increased concentration of LPI in the vicinity of cardiomyocytes may have important 

implications for the pathogenesis of myocardial I/R injury. In support of this, it has been 

demonstrated that the administration of a GPR55 antagonist,  cannabidiol (CBD), to rats in vivo, 

reduces infarct size (Durst et al., 2007 and Walsh et al., 2010) and suppresses ischaemia-induced 

cardiac arrhythmias (Walsh et al., 2010). Additionally, it has recently been demonstrated that CBD is 

protective in a rat model of cerebral ischaemia, through a mechanism thought to involve the 

upregulated expression of the Na+-Ca2+ exchanger (NCX) proteins 2 and 3 (NCX2 and NCX3, 

respectively) (Khaksar and Bigdeli, 2017).  

 

5.1.1.  GPR55 signalling in the cardiomyocyte 

 

Several studies have attempted to define the signalling mechanisms of GPR55. However, due to its 

complex pharmacology and lack of selective ligands, characterising just how this GPCR elicits its 

effects has proved challenging. It would appear that the pathway via which GPR55 signals varies 

based upon the cell/tissue type and also by the ligand with which it is activated. Interestingly, the 

application of LPI to HEK293 cells stably expressing GPR55 has been reported to induce an oscillatory 

and prolonged Ca2+ release from the SR as a result of PLC activation (Henstridge et al., 2009). Further 

investigation concluded that such Ca2+ release was dependent on Gα13 and that signalling 

downstream of this G-protein subunit was via RhoA/ROCK - a pathway recognised for its important 

role in various fundamental cellular processes that lead to cardiovascular disease (reviewed by Satoh 

et al., 2011). More recently and for the first time, the signalling of the LPI/GPR55 system on and 
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within cardiomyocytes was investigated (Yu et al., 2013), where it was reported that LPI can initiate 

separate signalling pathways via GPR55 which are dependent on the location of this GPCR. The first 

pathway demonstrated that LPI-induced GPR55 activation at the sarcolemma mediates an increase in 

[Ca2+]i via Ca2+ influx through LTCCs and IP3-dependent Ca2+ release. Secondly, it was demonstrated 

that GPR55 activation by LPI at the membrane of intracellular organelles promotes Ca2+ release via 

endolysosomal NAADP-sensitive two-pore channels. [Ca2+]i was further enhanced in each pathway by 

CICR via RYRs. On the basis that LPI induces [Ca2+]i release via a GPR55-dependent mechanism in 

cardiomyocytes and that [Ca2+]i overload of cardiomyocytes is a key event in myocardial I/R injury 

(Hausenloy and Yellon, 2013), it is possible that LPI-mediated activation of GPR55 may contribute to 

this type of injury. Thus, the present study was conducted to investigate this. Moreover, as activation 

of ROCK (Henstridge et al., 2009 and Oka et al., 2010) and IP3 receptors (IP3R) (Lauckner et al., 2008, 

Henstridge et al., 2009 and Yu et al., 2013) have commonly been reported in the signalling of the 

LPI/GPR55 system, the present study investigated the involvement of the ROCK/IP3R pathway in any 

observed changes to myocardial tissue injury mediated by LPI-induced activation of GPR55.  

 

5.1.2.  Aims 

 

Taken together, the evidence suggests that activation of GPR55 during an acute coronary event may 

contribute to myocardial tissue injury. To test this hypothesis, this study investigated 1) if the 

ROCK/IP3R signalling pathway was involved following GPR55 activation in mouse and human 

cardiomyocytes, 2) the impact of GPR55 activation on infarct size by administering exogenous LPI to 

the coronary circulation of isolated C57BL/6 (wildtype; WT) and GPR55-/- mouse hearts during an I/R 

protocol, and 3) if the ROCK/IP3R signalling pathway was involved in any observed changes to infarct 

size, using the same I/R protocol and challenging WT mouse hearts with LPI in the absence and 

presence of various protein inhibitors. 

 

5.2.  Methods 

 

5.2.1.  Effect of GPR55 activation on the DMR activity of cultured cardiomyocytes and 

  investigation of the signalling pathway following GPR55 activation  

 

miPSC and hiPSC-derived cardiomyocytes were cultured as outlined in Chapter 2, section 2.1.1.1. 

Following cell culture, the wells of each microplate were gently washed with buffer 1 ( HBSS, HEPES 

(20mM), 0.01% BSA and <0.1% DMSO; pH7.4) using an ELx Microplate Washer (Bio-Tek, Sweden). 
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Separate plates containing each cell line, along with the corresponding compound source plates were 

then incubated in the Corning® Epic® system and the high throughput screening of co mpounds 

conducted as described in Chapter 2, section 2.1.2. Such screening of compounds involved the 

application of L-α-Lysophosphatidylinositol (LPI; 1nM-30µM) to the cells. To confirm that cellular 

responses to LPI were as a consequence of GPR55 activation, the effect of LPI (10µM; approximate 

EC50) in the presence of CBD (1µM) was determined. Finally, the ROCK inhibitor, Y-27632 

dihydrochloride (Y-27632; 10µM & 50µM) and the IP3R inhibitor, xestospongin C (xest C; 3µM, 5µM & 

10µM) were used to investigate the signalling mechanisms involved in the cellular response to GPR55 

activation. Moreover, vehicle controls (<0.1% DMSO) were included in each set of experiments.   

 

5.2.2.  Isolated heart studies 

 

The Langendorff isolated heart model has been widely util ised over the years to investigate the 

mechanisms via which myocardial I/R injury mediates it deleterious effects on the myocardium 

(Chocron et al., 1996, Temsah et al., 1999, Bopassa et al., 2005 and Griecsová et al., 2015). This 

particular model was chosen for use in the present study as it allows for a wide range of 

physiological, biochemical, morphological and pharmacological parameters to be assessed in the 

absence of effects mediated by other organs. For an extensive review of this technique see Liao and 

colleagues (2012). 

 

Male/female WT (24.4±0.5g) and GPR55-/- mice (23.0±0.5g) were age matched (9-12 weeks) and 

randomised into appropriate experimental groups using random number generator software ( Stat 

Trek, 2013) prior to commencing experimental protocols. Mice were anaesthetised and isolated 

heart experiments performed according to the protocol detailed in Chapter 2, section 2.3.5. Hearts 

from WT (n=14) and GPR55-/- (n=5) mice were utilised in the initial I/R studies (30 minutes no-flow 

global ischaemia (GI) followed by 30 minutes reperfusion) to determine the effect of an absence of 

GPR55 on myocardial infarct size. Subsequently, to determine the effect of GPR55 activation on 

infarct size, WT (n=15) and GPR55-/- (n=7) hearts were challenged with LPI (10µM) either 10 minutes 

prior to the onset of ischaemia or during the early reperfusion period. A further series of experiments 

were then conducted using hearts from WT mice to determine if pharmacological blockade of GPR55 

(with CBD; 1µM (n=5)) or ROCK inhibition (with Y-27632 dihydrochloride; 10µM and 50µM (n=6 for 

each concentration)), 5 minutes prior to myocardial GPR55 activation could attenuate any GPR55 

mediated effects on infarct size. Contemporaneous vehicle controls (0.1% DMSO; n=14) were  
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included throughout. Infarct size was then measured according to the protocol described in Chapter 

2, section 2.3.6. 

 

5.2.3.  Statistics 

 

To ensure that the studies planned within this chapter had sufficient statistical power, power 

calculations were conducted prior to experiments taking place and were based on data from 

previous experiments performed in the lab. Power calculations recommended an n=8 for isolated 

heart studies. See below for the power calculation conducted for the assessment of drug 

intervention on myocardial infarct size: 

 

To assess the effect of two compounds (X and Y), there would be three randomly assigned 

experimental groups: vehicle control, compound X and compound Y. For myocardial infarct size, 

power calculations for a one-way ANOVA to detect a 30% reduction in infarct size compared to 

control values (e.g. 42% of left ventricular volume in treated animals vs. 60% in controls, equating to 

a reduction in 18 percentage points of left ventricular volume), with a standard deviation of 10% 

indicates that a group size of 8 would have 85% power to detect this difference.  

 

Within this chapter, data was excluded if a heart suffered any arrhythmic activity or if data was 

outwith the mean±2x(standard deviations). Data are expressed as mean±S.E.M throughout (unless 

otherwise stated). Comparisons were performed using an unpaired t-test (two-tailed) and multiple 

comparisons performed using a one-way ANOVA followed by a ‘Bonferroni’ post-hoc test. All 

statistical tests were carried out using GraphPad Prism® 4 software (GraphPad Software, Inc., USA) 

and differences between data deemed significant where P<0.05.       

 

5.3.  Results 

  

5.3.1.  Effect of GPR55 activation on the DMR activity of cultured miPSC-derived  

  cardiomyocytes and investigation of the signalling pathway following GPR55  

  activation 

 

LPI induced a concentration-dependent increase in DMR activity (indicative of changes in cell activity) 

in miPSC-derived cardiomyocytes (Figure 5.1.). The response to LPI (10µM; approximate EC50) was 

rapid, with an immediate onset, and reached peak activity after 10 minutes (Figure 5.2. A). When 
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compared to the DMR activity induced by vehicle, LPI (10µM) significantly increased the DMR activity 

of the miPSC-derived cardiomyocytes (185.9±16.3 vs. 29.4±2.6; P<0.001; Figure 5.2. A and B). Co-

application of CBD (1μM) completely blocked the LPI response (36.9±8.9 vs. 185.9±16.3; P<0.001; 

Figure 5.2. A & B), confirming an action of LPI through GPR55. Y-27632 dihydrochloride (10µM and 

50µM) also inhibited the cellular response to LPI (26.4±2.1 and 34.1±3.3 vs. 185.9±16.3, respectively; 

P<0.001; Figure 5.2. C & D), whereas xest C (5µM) did not (147.1±5.4 vs. 140±1.0; Figure 5.2. E).  

Unfortunately, due to an error in the compound plate, LPI (10µM) was only present in two of the 

three plates run through the Corning® Epic®system (Figure 5.2. E), however, it is clear from the 

responses in Figure 5.2. B and D that LPI (10µM) mediates a statistically significant increase in the 

DMR activity of miPSC-derived cardiomyocytes. Moreover, cellular application of all individual agents 

alone (excluding LPI) induced changes in DMR activity similar to that observed with the vehicle.  

 

5.3.2.  Effect of GPR55 activation on the DMR activity of cultured hiPSC-derived  

  cardiomyocytes and investigation of the signalling pathway following GPR55  

  activation 

 

The DMR response of hiPSC-derived cardiomyocytes was concentration dependent when challenged 

with LPI (Figure 5.3.). Moreover, LPI (10µM; approximate EC50) significantly increased the DMR 

activity of the hiPSC-derived cardiomyocytes when compared to that induced by vehicle (128.5±5.3 

vs. 32.2±2.9; P<0.001; Figure 5.4. A). Co-application of CBD (1μM) fully inhibited the response to 

10µM LPI (33.3±2.1 vs. 128.5±5.3; P<0.001; Figure 5.4. A), demonstrating GPR55 activation via LPI. Y-

27632 dihydrochloride (10µM and 50µM) also inhibited the cellular response to LPI (35.0±2.1 and 

30.8±1.2 vs. 128.5±5.3, respectively; P<0.001; Figure 5.4. B), however, the IP3R antagonist, xest C 

(5µM & 10µM) failed to do so (127.3±3.9 and 129.8±3.3 vs. 128.5±5.3, respectively; Figure 5.4. C). 

Moreover, cellular application of all individual agents alone (excluding LPI) induced changes in DMR 

activity similar to that observed with the vehicle. 
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Figure 5.1. DMR activity of miPSC-derived cardiomyocytes in response to LPI (1nM-30µM). Each 

concentration of LPI was examined in duplicate samples in each plate and four independent 

experiments (i.e. four individual plates) assessed by the Corning® Epic® system. Data are expressed 

as the mean±S.E.M. of all four plates combined. The mean peak cellular response to LPI (10µM) 

occurred at 10 minutes (see Figure 5.2. A) therefore data was extracted at this time point. AU; 

arbitrary units. 
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Figure 5.2. Investigation of the signalling pathway following receptor activation with LPI (10µM) in 

miPSC-derived cardiomyocytes. miPSC-derived cardiomyocytes were challenged with LPI (10µM) in 

the absence and presence of protein inhibitors and the consequent DMR activity plotted against time 

(mins); A and C. The peak DMR response to LPI (10µM) in the absence and presence of protein 

inhibitors; B, D and E. Each compound was examined in duplicate samples in each plate. Data are 

expressed as the mean DMR responses of plates; A and C or mean±S.E.M of plates; B, D and E. n=4; A 

& B, n=4-5; C & D and n=2-3; E. *P<0.001 vs. Vehicle and #P<0.001 vs. LPI (10µM); one-way ANOVA 

followed by a ‘Bonferroni’ post-hoc test.  
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Figure 5.3. DMR activity of hiPSC-derived cardiomyocytes in response to LPI (1nM-30µM). Data are 

expressed as the mean±S.E.M. of plates; n=3. The mean peak cellular response to LPI (10µM) 

occurred at 20 minutes therefore data was extracted at this time point.  
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Figure 5.4. Investigation of the signalling pathway following receptor activation with LPI (10µM) in 

hiPSC-derived cardiomyocytes. The peak DMR response to LPI (10µM) in the absence and presence 

of protein inhibitors; A, B and C. Data are expressed as mean±S.E.M. of plates; n=3. *P<0.001 vs. 

Vehicle and #P<0.001 vs. LPI (10µM); one-way ANOVA followed by a ‘Bonferroni’ post-hoc test.  

 



 

153 
 

5.3.3.  Effect of GPR55 activation on myocardial I/R injury and investigation of the   

  signalling pathway following GPR55 activation 

 

Infarct size did not significantly differ between the hearts of WT and GPR55-/- mice when subjected to 

30 minutes of no-flow GI followed by 30 minutes reperfusion (37.6±3.5 vs. 37.0±3.2%; Figure 5.5 A). 

However, WT hearts challenged with LPI (10µM) prior to GI had significantly larger infarcts (51.4±4.1 

vs. 37.6±3.5%; P<0.05; Figure 5.5. B), a finding which was not seen when LPI was administered post -

GI (38.1±3.3 vs. 37.6±3.5%; Figure 5.5. B). Representative images of vehicle (0.1% DMSO) and LPI 

(10µM administered prior to GI) treated hearts are shown in Figures 5.5. C and D, respectively. LPI 

(10µM) administration to GPR55-/- hearts, prior to GI, did not significantly alter infarct size (48.0±5.4 

vs. 37.0±3.1%; Figure 5.5. E), confirming that LPI increases infarct size via a GPR55-dependent 

mechanism. CBD (1µM) failed to inhibit the injury induced by LPI (47.0±2.7 vs. 51.4±4.1%) although 

hearts challenged with CBD (1µM) alone, had significantly larger infarcts when compared to those 

treated with vehicle (54.5±5.9 vs. 37.6±3.5%; P<0.05; Figure 5.6. A). Conversely, Y-27632 

dihydrochloride (10µM & 50µM) prevented LPI from mediating an increase in infarct size (42.4±7.4 

and 35.5±7.8% vs. 37.6±3.5%, respectively; Figure 5.6. B) compared to vehicle treated hearts.  

 

5.4.  Discussion 

 

The findings of Chapters 3 and 4 indicate a complex role for GPR55 in atherosclerosis. On the basis 

that atherosclerotic plaque rupture within the coronary vasculature often precedes myocardial I/R 

injury (Virmani et al., 2005), the principal aims of this study were to determine the impact of GPR55 

activation on the outcome of myocardial I/R injury and to establish the signalling pathway(s) through 

which any observed changes occurred. These aims were addressed by investigating the signalling 

mechanisms following GPR55 activation at the level of the cardiomyocyte and subsequently by 

conducting an I/R protocol in hearts isolated from WT and GPR55-/- mice and challenging them with 

LPI in the absence and presence of protein inhibitors.  
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Figure 5.5. Effect of GPR55 gene deletion and GPR55 activation on myocardial I/R injury. Infarct size 

was measured as a % of the total ventricular area. The effect of GPR55 gene deletion on myocardial 

I/R injury; A. I/R injury sustained in WT hearts administered LPI (10µM) pre- or post-GI; B. Pre-GI, 

vehicle and LPI (10µM) treated heart sections; C and D, respectively. The red and peach areas denote 

viable and infarcted tissue, respectively. I/R injury sustained in GPR55-/- hearts, administered LPI 

(10µM) pre-GI; E. Data are expressed as mean±S.E.M. A; n=14 & 5 for WT and GPR55-/- hearts, 

respectively. B (pre-GI); n=14 & 15 for vehicle and LPI (10µM) treated hearts, respectively. B (post-

GI); n= 14 & 9 for vehicle and LPI (10µM) treated hearts, respectively. E; n=5 & 7 for vehicle and LPI 

(10µM) treated hearts, respectively. *P<0.05 vs. vehicle; unpaired t-test (two-tailed).  

E 
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Figure 5.6. Investigation of the signalling pathway following GPR55 activation in myocardial I/R 

injury. I/R injury sustained in WT hearts administered LPI (10µM) pre-GI in the absence and presence 

of protein inhibitors; A and B. Data are expressed as mean±S.E.M. A; n=14, 15, 7 & 5 for vehicle, LPI 

(10µM), CBD (1µM) and LPI (10µM) + CBD (1µM), respectively and B; n=14, 6 & 6 for vehicle, LPI 

(10µM) + Y-27632 (10µM) and LPI (10µM) + Y-27632 (50µM), respectively. *P<0.05 vs. vehicle; one-

way ANOVA followed by a ‘Bonferroni’ post-hoc test.  
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5.4.1.  Investigation of the signalling pathway following GPR55 activation in miPSC and 

  hiPSC-derived cardiomyocytes 

 

The activation of GPCRs within a cell membrane triggers the cytoskeletal reorganisation of cellular 

proteins which can be detected optically, in real-time, by changes in cellular density (measured as 

DMR activity). In the present study, Corning® Epic® technology, a label-free and non-invasive method 

designed to monitor the DMR activity of biologically relevant cells was employed to explore the 

signalling pathway of GPR55 in cardiomyocytes following its activation. The time course of cellular 

DMR in miPSC-derived cardiomyocytes in response to LPI was rapid with immediate onset. Analysis 

of the time course not only indicated GPCR activation but ascertained that the DMR activity in 

response to LPI peaked at 10 minutes. The information regarding peak activity was consequently 

used as an indicator of the time point at which LPI should be administered to the isolated hearts of 

WT mice prior to the induction of GI in the studies investigating the impact of GPR55 activation on 

myocardial I/R injury (results discussed in section 5.4.2). 

 

Confirmation that LPI was acting via GPR55 in miPSC-derived cardiomyocytes to mediate the increase 

in DMR activity was obtained by blocking the cellular response to LPI with the GPR55 antagonist, 

CBD. Previously, Yu and colleagues (2013) reported that the intra- or extracellular application of LPI 

to cardiomyocytes increased [Ca2+]i by initiating separate signalling pathways via GPR55 which were 

dependent on the cellular location of this receptor. One of the signalling pathways mediated an 

increase in [Ca2+]i via LTCCs and IP3-dependent Ca2+ release in response to LPI-induced GPR55 

activation at the sarcolemma. Moreover, Ali and colleagues (2015) reported in cardiomyocytes that 

CBD depressed contractility by suppressing LTCCs and inhibiting excitation-contraction coupling (E-C 

coupling). Taking these findings together, it may be possible that under physiological conditions, the 

LPI/GPR55 system has a role in Ca2+ homeostasis within the cardiomyocyte and consequently, in the 

E-C coupling of such cells.  

 

With regard to the signalling of the LPI/GPR55 system in miPSC-derived cardiomyocytes, the ROCK 

inhibitor, Y-27632 dihydrochloride confirmed the downstream involvement of this kinase by 

inhibiting the DMR response to LPI. While the involvement of ROCK, downstream of LPI-induced 

GPR55 activation has been documented in GPR55-HEK293 cells (Henstridge et al., 2009) and the rat 

mesenteric artery via an endothelial site of action (Al Suleimani and Hiley, 2015), this is the first time 

its involvement has been reported in the signalling of this system in cardiomyocytes. Downstream 

from ROCK, GPR55 has been shown to signal through numerous second messengers including PLC  
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and IP3 (reviewed by Ross, 2009). As both GPR55 (Yu et al., 2013) and IP3R signalling (Signore et al., 

2013) have been shown to be important in the E-C coupling of ventricular cardiomyocytes, the role of 

IP3R in LPI-mediated changes in DMR activity was then investigated. Co-application of the IP3R 

antagonist, xestospongin C with LPI to miPSC-derived cardiomyocytes failed to attenuate the GPR55 

mediated increase in DMR activity suggesting that LPI-induced GPR55 activation of these cells does 

not involve IP3Rs. This is in contrast to the findings of Yu and colleagues (2013) who demonstrated 

IP3-dependent Ca2+ release upon GPR55 activation with LPI in rat neonatal ventricular 

cardiomyocytes. However, it is noteworthy that confirmation of the involvement of IP 3Rs in the LPI-

mediated increase in [Ca2+]i of this study was done so via the dual blockade of IP3Rs with 

xestospongin C and heparin, the latter a competitive antagonist of all IP 3R subtypes (Saleem et al., 

2014). Moreover, it has been reported in DT40 cells stably expressing single subtypes of the 

mammalian IP3R that xestospongin C is not an effective inhibitor of IP3-induced Ca2+ release (Saleem 

et al., 2014). Therefore, the sole application of xestospongin C with LPI to the miPSC-derived 

cardiomyocytes in the present study may represent a limitation of this research and consequently, 

IP3R participation, downstream of LPI-induced GPR55/ROCK activation in this cell type cannot be 

definitively ruled out. In another study, Al Suleimani and Hiley (2015) reported that activation of 

GPR55 by LPI in rat endothelial cells mediated a biphasic increase in [Ca2+]i where ROCK was involved 

in each phase, although more so in the latter. IP3Rs were also reportedly involved in both phases as 

inhibiting this receptor with 2-aminoethoxydiphenil borate (2-APB) caused a reduction in [Ca2+]i. 

However, 2-APB has targets other than IP3Rs, for example, store operated Ca2+ channels (Bootman et 

al., 2002) therefore this study does not conclusively determine the extent to which IP3Rs are involved 

in the LPI/GPR55 mediated increase in [Ca2+]i. Together, these findings suggest that the involvement 

of IP3Rs downstream of LPI-induced GPR55 activation in the cardiovascular system requires further 

investigation.  

 

Importantly, the finding that the LPI-induced increase in DMR activity of miPSC-derived 

cardiomyocytes, mediated via a GPR55/ROCK dependent mechanism, was replicable in hiPSC-derived 

cardiomyocytes, suggests the possibility of a translational role for the LPI/GPR55 system in the 

human heart.  

 

5.4.2.  The impact of GPR55 activation on myocardial I/R injury 

 

To determine whether endogenously produced LPI activated GPR55 and altered cardiac tissue injury, 

control hearts from WT and GPR55-/- mice were subjected to GI followed by reperfusion. In the 
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present study, infarct size did not differ between control hearts from WT and GPR55-/- mice, which 

may suggest that sufficient endogenous LPI was not produced by the heart to alter tissue injury. A 

recent study conducted in rats demonstrated a six-fold increase in the cardiac LPI (18:0) 

concentration following asphyxia-induced cardiac arrest (Kim et al., 2015a), however, this study was 

conducted in vivo and did not measure myocardial infarct size. It is therefore unclear whether there 

is a correlation between the cardiac LPI concentration alone and any myocardial tissue injury in this 

model. Moreover, a recent clinical study by Kurano and colleagues (2015) which measured the 

plasma concentration of a range of lysophospholipids in patients undergoing coronary angiography, 

demonstrated a positive correlation between plasma LPI and patients with acute coronary syndrome 

(ACS). In this study, the authors recorded plasma concentrations of 3µM LPI in ACS patients and 

suggested that the primary source of LPI was activated platelets at the site of plaque rupture. As the 

data from the present study demonstrated a tissue damaging effect of exogenous LPI in the 

micromolar range, it is possible that in the absence of other organs and tissues (perhaps contributing 

to the plasma LPI concentration) that the isolated WT hearts alone do not have the capacity to 

generate micromolar concentrations of LPI in response to ischaemia and may explain the comparable 

infarcts between control and GPR55-/- hearts. 

 

The administration of LPI to WT hearts, prior to GI, mediated an increase in myocardial tissue 

damage which was subsequently attributed to LPI-induced activation of GPR55 as no significant 

increase in infarct size was observed in response to this lysophospholipid in the hearts from GPR55-/- 

mice. Pre-treatment with the GPR55 antagonist, CBD, at the concentration previously used in the 

studies involving the miPSC-derived cardiomyocytes and Corning® Epic® technology, failed to 

attenuate the myocardial tissue injury induced by LPI. Moreover, the administration of CBD alone to 

WT hearts mediated an increase in infarct size, however, this was not entirely unexpected as Durst 

and colleagues (2007) reported that the cardioprotective effect of CBD in myocardial I/R injury in vivo 

is not replicated in the isolated heart. The authors suggested that the cardioprotective effect of CBD, 

in vivo, may be due to a systemic immunomodulatory effect such as a reduction in IL-6 levels. 

However, due to only residual inflammatory cells being present in the isolated heart, the inability of 

CBD to attenuate injury is not surprising and would suggest that the myocardial tissue injury is due to 

a detrimental effect on the cardiomyocytes themselves. Additionally, it has been demonstrated that 

CBD acts on receptors other than GPR55, however, this appears to be dependent  on the situation 

(Walsh et al., 2015) therefore it may be possible that CBD acts as an antagonist of GPR55 under 

physiological conditions and an antagonist of another or other receptor(s) such as CB2 in the 

pathological setting of myocardial I/R tissue injury. The activation of CB2 receptors during such injury 
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is reportedly protective both in vivo (Wang et al., 2012b) and in vitro (Lépicier et al., 2003 and 

Lépicier et al., 2007). As CBD reportedly exhibits high potency as an antagonist of the CB2 receptor 

agonists in membranes from Chinese hamster ovary (CHO) cells transfected with human CB2 

receptors (Thomas et al., 2007), it may be that such antagonism extends to the cardiomyocyte, 

however, this remains to be investigated. If CB2 receptors are activated in the isolated heart during 

I/R injury, this notion supports why the administration of CBD alone to the isolated, WT hearts of the 

present study mediated an increase in myocardial tissue damage and poses a reason as to why CBD 

did not reduce infarct size when administered with LPI.  

 

The time at which LPI was administered to the hearts of WT mice proved critical in the development 

of the myocardial tissue damage as injury was only exacerbated when LPI was administered pre -GI. 

Such a finding is indicative that GPR55 activation during the ischaemic period is pivotal in mediating 

such damage. As [Ca2+]i overload is one of the main mediators of ischaemic damage and LPI-induced 

activation of GPR55 has previously been reported to mediate an increase in [Ca2+]i in ventricular 

cardiomyocytes, it is a possibility that the LPI/GPR55 system mediated the increase in myocardial 

tissue damage pre-GI by contributing to [Ca2+]i overload. Moreover, a key instigator of damage during 

reperfusion is the generation of ROS from both the myocardium and inflammatory cells 

(Braunersreuther and Jaquet, 2012). As GPR55 activation has previousl y been reported to exert 

antioxidant effects in human neutrophils by inhibiting CB2 receptor-mediated respiratory burst 

(Balenga et al., 2011), the lack of a post-GI effect on infarct size in response to LPI-induced GPR55 

activation, may be due to the LPI/GPR55 system mediating antioxidant activity within the 

myocardium as only residual inflammatory cells are present in the isolated heart. However, as 

neither [Ca2+]i nor oxidative stress have been investigated in the present study,  the possible 

involvement of these mechanisms requires confirmation. 

 

With regard to the myocardial tissue injury observed in the current study, it seems improbable that 

such damage would have been mediated as a consequence of LPI-induced coronary artery 

constriction as perfusion pressure from a similar study conducted in our lab was unchanged by the 

exogenous administration of LPI (data not shown). Furthermore, Marichal -Cancino and colleagues 

(2013) demonstrated that LPI inhibited vasopressor responses induced by both electrical nerve 

stimulation and noradrenaline in pithed rats via a GPR55-dependent mechanism, indicating that LPI 

itself is vasodepressive. This therefore suggests that the administration of LPI would lead to an 

increased rather than decreased coronary flow. Conversely, a study observed that the administration 

of LPI to cultured rat coronary artery smooth muscle cells (SMCs) mediated an increase in Ca2+ influx 
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(Smani et al., 2007) which suggests that LPI may induce vasoconstriction of the coronary artery in an 

in vivo model.  This however, is yet to be demonstrated and it remains to be established whether the 

LPI-induced increase in Ca2+ influx of the SMCs involved in this study was via a GPR55-dependent or 

independent mechanism. Furthermore, endothelial cells also play an important role in vascular tone 

therefore the effect of the LPI/GPR55 system on both SMCs and endothelial cells must be 

considered. With regard to the latter cell type, LPI exerted both GPR55-dependent and independent 

effects on EA.hy296 endothelial cells (Bondarenko et al., 2010). The GPR55-dependent effects of LPI 

in this study mediated temporary membrane hyperpolarisation suggesting that the LPI/GPR55 

system may induce arterial vasodilation. On this basis, it again seems unlikely that vasoconstriction of 

the coronary artery would be linked to the LPI-induced GPR55 activation which exacerbated 

myocardial tissue injury in the present study. In support of this, Al Suleimani and Hiley (2015) 

reported that LPI relaxed the rat mesenteric artery in a GPR55 and endothelium-dependent manner.  

 

Through the use of the ROCK inhibitor, Y-27632 dihydrochloride, it was deduced that following LPI-

induced GPR55 activation, a ROCK-dependent mechanism was responsible for the exacerbation of 

the myocardial I/R injury mediated in the present study. It is assumed that while Y-27632 

dihydrochloride is capable of inhibiting both isoforms of ROCK, its protective effect on the 

myocardium most likely occurred as a result of inhibition of ROCK II, as this is the predominant 

isoform in the heart (Nakagawa et al., 1996). The involvement of a ROCK-dependent mechanism in 

this setting seems plausible as its association with myocardial I/R injury has been well documented 

(Bao et al., 2004, Hamid et al., 2007 and Zhang et al., 2014). In particular, the pharmacological 

inhibition of ROCK has proven pivotal in determining the role of this kinase in the setting of 

myocardial I/R injury and has established that amongst many other cardioprotective effects, ROCK 

inhibition can reduce infarct size by activating the PI3K/protein kinase B (Akt)/endothelial nitric oxide 

synthase (eNOS) pathway (Wolfrum et al., 2004). Moreover, such inhibition can preserve post-

infarction cardiac systolic function through various mechanisms including increased collateral blood 

flow to the myocardium resulting from eNOS preservation (Yada et al., 2005). In contrast to the 

frequently observed cardioprotective effects of ROCK inhibition using hydroxyfasudil and fasudil, the 

administration of Y-27632 dihydrochloride alone to WT hearts did not affect infarct size in the 

present study (data not shown). However, this finding is not entirely unexpected as the protective 

effects associated with ROCK inhibition are more commonly associated with events that occur after 

several hours of myocardial reperfusion (Wolfrum et al., 2004 and Zhang et al., 2014), whereas the 

reperfusion period in the present study was relatively short (30 minutes).  
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Overall, the present study established that LPI-induced GPR55 activation, pre-GI, exacerbates 

myocardial tissue injury via a ROCK-dependent mechanism. As it has previously been reported that 

activation of the LPI/GPR55 system increases the [Ca2+]i of ventricular cardiomyocytes (Yu et al., 

2013) and that the inhibition of ROCK prevents LPI-mediated Ca2+ signalling in GPR55-HEK293 cells 

(Henstridge et al., 2009), it is possible that changes in [Ca2+]i may be responsible for the exacerbated 

tissue injury in LPI treated, WT hearts. [Ca2+]i overload of cardiomyocytes is widely recognised as one 

of the key events in myocardial I/R injury (Mozaffari et al., 2013) with such overload following a 

series of biochemical and metabolic changes within the myocardium in response to ischaemia 

(discussed in Chapter 1, section 1.3.2.). Upon reperfusion of ischaemic myocardium, cardiomyocytes 

become re-energised, however, the re-energisation of cardiomyocytes suffering from [Ca2+]i overload 

often results in cardiomyocyte hypercontracture due to the uncontrolled contraction of myofibrils 

within these cells. Consequently, deformation of the cytoskeleton occurs and cell shape is altered, 

leading to irreversible cell shortening and cardiomyocyte death (Ladilov et al., 1997). Interestingly, Yu 

and colleagues (2013) demonstrated that the LPI/GPR55 system increased [Ca2+]i partially via LTCCs 

in rat neonatal ventricular cardiomyocytes, therefore, it may be that Ca2+ entry via these channels 

represents a possible mechanism via which the myocardial I/R injury observed in the present study 

was exacerbated. Mocanu and colleagues (1999) investigated the effects of mibefradil, an L-Type and 

T-Type Ca2+ channel blocker on myocardial I/R injury and reported that it attenuated infarct size,  

however, the LTCC blocker, amlodipine, failed to mediate such cardioprotection suggesting that the 

activation of T-Type Ca2+ channels in myocardial I/R injury is more likely to mediate damage. On this 

basis, it may be that the LPI/GPR55 system contributes to [Ca2+]i overload via the activation of T-Type 

Ca2+ channels. This, however, remains to be investigated. 

 

Finally, myocardial I/R injury is reduced when antagonists of the NHX are administered either prior to 

ischaemia or pre-reperfusion (Rohmann et al., 1995 and Linz et al., 1998). It has been suggested that 

LPI does not directly affect the NHX (Goel et al., 2003), therefore it seems unlikely that the LPI-

induced exacerbation of myocardial tissue injury in the present study is due to increased activity of 

this antiporter. However, lysophosphatidycholine (LPC), a closely related lysophospholipid has been 

found to increase cardiac injury by activating the NHX (Hoque et al., 1997) via an indirect mechanism 

involving a second messenger pathway (Goel et al., 2003). As Wallert and colleagues (2015) have 

shown that the activation of the NHX in fibroblasts is dependent on RhoA/ROCK activation, it is 

possible that LPI may exacerbate myocardial I/R injury via an indirect action on the NHX, subsequent 

to its activation of ROCK, however, this requires further investigation. Moreover, the effects of LPI on 

the expression and activation of the NCX in cardiomyocytes has not been investigated, therefore it is 
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possible that LPI, via either a direct or indirect action on this antiporter, may increase its reverse 

mode activity, consequently contributing to [Ca2+]i overload and the exacerbation of myocardial 

tissue injury. However, doubt has been cast upon this theory as Bondarenko and colleagues (2017) 

recently reported that LPI inhibits endothelial cell hyperpolarization to histamine and ACh by 

suppressing Ca2+ entry driven by the reverse mode of the NCX and that such inhibition occurs 

independent of GPCRs and superoxide anions. While this has not been demonstrated in 

cardiomyocytes, should it be the case, then the LPI/GPR55 system causing the NCX to work in reverse 

mode to contribute to [Ca2+]i overload and the exacerbation of myocardial tissue injury seems 

improbable, however, further investigation is required to confirm or deny this. 

 

5.4.3.  Conclusion 

 

In summary, the current study set out to investigate the role of GPR55 in myocardial I/R injury in the 

isolated mouse heart. LPI-induced GPR55 activation, pre-GI, mediated an increase in myocardial 

infarct size through a ROCK-dependent mechanism. Most importantly, the finding that GPR55 signals 

through this mechanism in hiPSC as well as miPSC-derived cardiomyocytes illustrates that both 

species adopt the same signalling pathway and suggests the possibility of a translational role for the 

LPI/GPR55 system in the human heart.  
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Chapter 6: 

General Discussion 
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6.1.  Key findings 

 

Very little information on the role of GPR55 in cardiovascular physiology and pathophysiology exists 

and the two studies which have investigated the function of GPR55 in atherosclerosis have reported 

conflicting findings. The present study therefore sought to investigate 1) the role of GPR55 in the 

development of atherosclerosis, 2) if GPR55 has a role in the cardiac function of mice suffering from 

atherosclerosis, 3) the signalling pathway by which LPI activates cardiomyocytes, 4) the impact of 

GPR55 on the outcome of myocardial I/R injury, and 5) the signalling mechanisms by which GPR55 

elicits any observed effects on the myocardium in response to such injury.  

 

6.1.1.  GPR55 regulates fat deposition in atherosclerosis 

 

The present study has determined that HFC fed ApoE-/-/GPR55-/- mice were characterised by an 

obese phenotype that occurred as a consequence of the genetic deletion of GPR55. Furthermore, 

tissue weight analysis indicated that the increased adiposity in these mice was predominantly due to 

an augmented deposition of abdominal fat. Despite this being the first report linking GPR55 to the 

regulation of fat deposition in atherosclerosis, Meadows and colleagues (2016) have reported that 

GPR55 regulates the fat mass of healthy mice, a finding which was also observed in the present 

study. While the current study did not investigate the root cause of the increased fat mass, evidence 

from literature and an unpublished study conducted in the Wainwright laboratory provide a basis for 

speculation. These studies reported that NC or HFC fed GPR55-/- mice had a food intake comparable 

to that of C57BL/6 mice fed NC (Meadows et al., 2016) or HFC (Hair, 2016; unpublished data), 

respectively. Additionally, evidence of GPR55-/- mice exhibiting decreased spontaneous and voluntary 

physical activity has also been reported (Meadows et al., 2016). Taken together, it seems likely that 

the HFC fed ApoE-/-/GPR55-/- mice of the present study did not consume a greater quantity of food 

than HFC fed ApoE-/- mice but were less physically active which consequently resulted in their 

increased adiposity. However, in order to confirm or deny this, further experimental investigation is 

required. 

 

6.1.2.  The hyperlipidaemic plasma profile associated with atherosclerosis occurs  

  via a GPR55-independent mechanism 

 

This study has been the first to investigate if a relationship exists between GPR55 and  the 

hyperlipidaemic plasma profile of the ApoE-/- mouse. An augmented TC and LDL concentration in the 
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plasma of NC and HFC fed ApoE-/- mice was observed in the present study, which is in agreement 

with several other studies where ApoE-/- mice have been fed an NC (Stapleton et al., 2007) or HFC 

diet (Fukao et al., 2010, Han et al., 2015 and Kim et al., 2015b). With the aid of the novel ApoE-/-

/GPR55-/- mouse, this study has established that regardless of diet, the hyperlipidaemic plasma 

profile of the ApoE-/- mouse is as a consequence of the deletion of the gene for ApoE and is not 

associated with GPR55. This study is therefore the first to report that GPR55 does not regulate or 

contribute to the hyperlipidaemic plasma profile evident in the setting of atherosclerosis.   

 

6.1.3.  GPR55 promotes the development of fatty streaks within the vasculature 

 

It was also established that GPR55 promotes the development of fatty streaks within the thoracic 

aorta of the HFC fed ApoE-/- mouse. On the basis of the previously discussed plasma lipid data, it was 

determined that the increased deposition of fatty streaks occurred via a lipid-independent 

mechanism. Unfortunately, it was outwith the scope of  the present study to investigate the 

mechanism(s) by which GPR55 mediated such fatty streak deposition, however, other literature 

which has suggested a pro-atherogenic role for GPR55 can provide a basis for conjecture. It is well 

established that during the early stages of plaque development, macrophages of the vessel wall 

phagocytose ox-LDL via endocytosis and consequently, become lipid laden foam cells. The study 

conducted by Lanuti and colleagues (2015) demonstrated that  GPR55 activation with O-1602, 

aggravated oxidised LDL-induced lipid accumulation and inflammatory responses, while reducing 

cholesterol efflux from human foam cells. The endogenous activation of GPR55 in the ApoE-/- mouse 

may therefore mediate the same processes, in turn promoting the development of fatty streaks 

within the thoracic aortae of these mice. However, further investigation is required to prove or 

disprove this. 

 

6.1.4.  GPR55 maintains systolic function but impairs contractile reserve in atherosclerosis 

 

Investigating the role of GPR55 in the cardiac function of the ApoE-/- mouse model of atherosclerosis 

has revealed that when atherosclerosis has been exacerbated by high fat feeding, GPR55 exhibits a 

protective role in terms of maintaining baseline systolic function. Furthermore, the administration of 

the α1/β1-adrenoceptor agonist, dobutamine, revealed that GPR55 contributes to the impaired 

contractile reserve of these mice. Together, these findings indicate that there may be a role for 

GPR55 in the control of adrenergic signalling in the atherosclerotic heart and possibly a role for this 
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receptor in the development of heart failure. Further experiments are now required to establish the 

interaction between GPR55 and cardiac α1/β1-adrenoceptors in atherosclerosis. 

 

6.1.5.  LPI signals via a GPR55/ROCK-dependent mechanism in cardiomyocytes 

 

Perhaps most importantly, this study has determined that upon activation with LPI, GPR55 signals 

through ROCK in hiPSC, as well as miPSC-derived cardiomyocytes, illustrating that both mice and 

humans adopt the same signalling pathway. Consequently, this suggests the possibility of a 

translational role for the LPI/GPR55 system in the human heart. Furthermore, while Yu and 

colleagues (2013) demonstrated that the LPI/GPR55 system signalled via L-type Ca2+ channels and 

IP3Rs in cardiomyocytes, this is the first study to report the signalling of this system through ROCK in 

this cell type.  

 

6.1.6.  LPI exacerbates myocardial I/R injury via a GPR55/ROCK-dependent mechanism 

 

In the isolated heart, LPI exacerbated myocardial tissue injury via a GPR55/ROCK dependent 

mechanism. Cardiomyocyte ROCK activation in response to LPI represents a plausible mechanism as 

there is strong evidence that ROCK activation is an important event in the damage mediated by 

myocardial I/R injury (Bao et al., 2004 and Hamid et al., 2007). As [Ca2+]i overload is one of the key 

mechanisms via which this type of injury occurs (Hausenloy and Yellon, 2013) and LPI-induced GPR55 

activation reportedly increases [Ca2+]i in GPR55-HEK293 cells (Oka et al., 2007, Henstridge et al., 2009 

and Oka et al., 2009) and rat neonatal ventricular cardiomyocytes (Yu et al., 2013), it seemed logical 

to investigate first in cardiomyocytes, if the antagonism of IP3R-induced [Ca2+]i release, downstream 

of ROCK activation, would prevent LPI signalling. Despite the present study having demonstrated that 

xestospongin C (an IP3R antagonist) blocked LPI signalling in miPSC- and hiPSC-derived 

cardiomyocytes, it was subsequently reported by Saleem and colleagues (2014) that xestospongin C 

is an ineffective inhibitor of IP3-induced Ca2+ release. Consequently, the present study cannot confirm 

nor rule out the involvement of IP3Rs in LPI/GPR55 signalling in these cells. Further studies utilising a 

more selective IP3R antagonist are now required to investigate the involvement of IP3Rs in the 

signalling of the LPI/GPR55 system in cardiomyocytes. 

  

The present study also observed that the GPR55 antagonist, CBD, failed to prevent the exacerbation 

of myocardial tissue injury mediated by the LPI/GPR55 system in the isolated mouse heart. However, 

this finding is in agreement with Durst and colleagues (2007) who reported that CBD only reduced 
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myocardial I/R injury in their in vivo rat model and not in the isolated rat heart. On this basis, CBD 

cannot be r000uled out as a potential inhibitor of the myocardial I/R injury exacerbated by the 

LPI/GPR55 system. Further studies are consequently required to establish if 1) LPI exacerbates 

myocardial I/R injury in vivo and, 2) if CBD can mitigate such injury in vivo.  

 

6.2.  Clinical relevance 

 

Since the findings of the present study indicate that GPR55 is a double-edged sword, it may be that 

targeting GPR55 to improve one condition may exacerbate another. This should be an important 

consideration in terms of the clinical relevance of this study’s findings, discussed below.  

 

6.2.1.  Obesity 

 

GPR55 is involved in the regulation of fat mass (predominantly abdominal fat), therefore this 

receptor may represent a new drug target in obesity. Furthermore, as an increased abdominal 

circumference is deemed a risk factor for the development of type 2 diabetes (Wang et al., 2005), 

targeting GPR55 with the aim of reducing obesity, may also reduce the prevalence of type 2 diabetes.  

 

6.2.2.  Atherosclerosis development 

 

The observation that GPR55 promotes the development of fatty streaks within the thoracic aorta, via 

a lipid independent mechanism suggests that lipid lowering drugs alone i.e. statins, would not be 

sufficient in terms of preventing the deposition of such streaks. However, clinically, an antagonist of 

GPR55 may reduce the incidence of fatty streaks and/or halt their development.  

 

6.2.3.  Myocardial I/R injury 

 

Myocardial tissue injury was exacerbated upon GPR55 activation by LPI, pre-GI. On this basis, the 

administration of a GPR55 antagonist pre-myocardial infarction may reduce myocardial I/R injury. 

However, this treatment would not be practical from a clinical perspective as it is not possible to 

predict the exact time point at which a myocardial infarction will occur. Nevertheless, GPR55 

antagonism may be useful in instances where it is necessary to cease circulatory function, for 

example, heart transplantation during which I/R injury routinely occurs.  
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6.3.  Future studies 

 

6.3.1.  Examination of the mechanism(s) via which the LPI/GPR55 system contributed 

  to fatty streak development within the vasculature 

 

The present study demonstrated that GPR55 is involved in the development of fatty streaks within 

the thoracic aortae of HFC fed ApoE-/- mice, however, the mechanism(s) via which GPR55 contributed 

to such development were not investigated. Recently, Stančić and colleagues (2015) demonstrated 

that the GPR55 antagonist, CID16020046, protected against intestinal inflammation by reducing the 

migration of macrophages. As atherosclerosis is also an inflammatory condition, GPR55 may be 

involved in the monocyte/macrophage migration associated with the early development of fatty 

streaks within the vasculature. It would therefore be of interest to examine monocyte/macrophage 

migration in HFC fed ApoE-/- and ApoE-/-/GPR55-/- mice to determine if this is the case.  

 

6.3.2.  Studies to confirm or deny the involvement of [Ca2+]i overload in the myocardial I/R 

  injury exacerbated by the LPI/GPR55 system 

 

While the current study demonstrated that the pre-GI activation of GPR55 by LPI exacerbates 

myocardial tissue injury, the underlying mechanisms via which this occurred were not investigated. 

Considering that [Ca2+]i overload of cardiomyocytes is one of the key events in mediating myocardial 

I/R injury (Mozaffari et al., 2013) and that the LPI/GPR55 system increases [Ca2+]i in a variety of cell 

types such as EA.hy926 endothelial cells (Waldeck-Weiermair et al., 2008), GPR55-HEK293 cells 

(Henstridge et al., 2009, Oka et al., 2007 and Oka et al., 2009) and rat neonatal ventricular 

cardiomyocytes (Yu et al., 2013), it would be interesting to investigate if a link exists between the 

two. I/R injury could be simulated in isolated cardiomyocytes via hypoxia/reoxygenation injury. Using 

the ratiometric dye, Fura-2, the [Ca2+]i of the cardiomyocytes could be monitored in response to the 

activation of GPR55 by LPI during the hypoxic period.  

 

6.4.  Limitations 

 

The use of a conditional knockout mouse, where GPR55 deletion was limited to the heart would have 

proven extremely useful in this study, however, GPR55 floxed mice are not yet available. 

Consequently, the present study utilised the global GPR55 knockout mouse model as it currently 
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represents the most accurate means of gaining insight into the role of GPR55 in cardiovascular 

physiology and pathophysiology.  

 

6.5.  Conclusions 

 

This study has determined that in terms of atherosclerosis, GPR55 is double-edged sword. In the 

presence of high fat feeding, GPR55 regulates risk factors associated with atherosclerosis (i.e. body 

weight and fat mass) while promoting the development of fatty streaks within the vasculature, via a 

lipid independent mechanism. In terms of cardiac function, in vivo experiments demonstrated that 

GPR55 exerts a protective role in atherosclerosis by maintaining systolic function, yet negatively 

affects contractile reserve. Moreover, isolated heart experiments revealed that LPI-induced GPR55 

activation augments myocardial infarct size through a ROCK-dependent mechanism. Excitingly, this 

study also demonstrated that the LPI/GPR55 system signals through ROCK in hiPSC, as well as miPSC-

derived cardiomyocytes, therefore suggesting the possibility of a translational role for the LPI/GPR55 

system in the human heart. On the basis of such findings, GPR55 may represent a promising new 

target in the prevention or treatment of atherosclerosis and myocardial I/R injury.   
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