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 21 

Abstract: The low-concentration photovoltaic (LCPV) system has been identified as one of 22 

the potential solutions in lowering the overall installation cost of a building integrated 23 

photovoltaic (BIPV) system. This paper evaluates the performance of a novel type of LCPV 24 

concentrator known as the rotationally asymmetrical compound parabolic concentrator 25 

(RACPC). A specific RACPC design with a geometrical concentration ratio of 3.6675x was 26 

fabricated and integrated with a 1 cm by 1 cm monocrystalline laser grooved buried contact 27 

silicon solar cell. This design was tested indoors to evaluate its current-voltage (I-V), angular 28 

response and thermal characteristics. Under standard test conditions, it was found that the 29 

RACPC increases the short circuit current by 3.01x and the maximum power by 3.33x when 30 

compared with a bare solar cell. The opto-electronic gain from the experiment showed good 31 

agreement when compared with the simulation results, with a deviation of 11%.  32 

 33 

Keywords: solar photovoltaic; solar concentrator; rotationally asymmetrical compound 34 

parabolic concentrator. 35 

 36 



1. Introduction 37 

  38 

Solar photovoltaic (PV), which is one of the technologies that harnesses solar energy 39 

by converting the sunlight directly into electricity, grew by more than 100 folds from 2000 to 40 

2013, with a cumulative capacity of 139 GW by the end of 2013 [1]. One of the reasons for 41 

this growth has to do with the fact that the governments of several countries have taken the 42 

right steps to stimulate the adoption of solar PV technologies. With regards to policy one of 43 

the most effective ones is known as the feed-in tariff (FiT) scheme [2–13]. This scheme pays 44 

a consumer a specific tariff per kWh of electricity generated from solar PV technology for a 45 

duration of time [8], and is now being enacted in more than 80 countries [2]. 46 

Despite the growth of solar PV, the Intergovernmental Panel on Climate Change 47 

(IPCC) indicates that ‘its share of primary energy supply has remained relatively constant’ 48 

[14]. Therefore more needs to be done to ensure that renewable technologies, especially solar 49 

PV, are more widely adopted in order to reduce climate change. 50 

One of the problems that surrounds the PV technology is its high cost of 51 

implementation, which according to the recent data from the International Energy Agency 52 

(IEA) ranged between £830 and £16,000 per kW 1 [15]. The largest proportion of the cost 53 

(approximately 45%) was due to the expensive PV material used in the fabrication of the 54 

module [15]. It is argued that by reducing the usage of PV material in a PV module, it is 55 

possible to achieve a cheaper PV system, which could further attract more consumers into 56 

opting and installing this technology [16–18].  57 

A possible way to reduce the amount of expensive PV material and therefore the cost 58 

of the PV modules and the PV systems is by using a solar concentrator – a device (mainly 59 

constructed from a low cost refractive and/or reflective material) that focuses the solar 60 

radiation from a large entrance aperture area into a smaller exit aperture where a solar cell is 61 

attached [16–18]. This allows the system to generate a similar or higher electrical output than 62 

a conventional PV system, while at the same time using only a fraction of the PV material.  63 

Several researchers have explored various concentrator designs since the late 1960s. 64 

A low-concentration photovoltaic (LCPV)2 system is more suitable for building integration 65 

since it has a wider half-acceptance angle which eliminates the need for any 66 

                                                            
1 Based on the conversion rate carried out on 10/11/2014, USD1.00 is equivalent to £0.63 [50]. This value is 

used throughout this paper. 
2 An LCPV is as a system that incorporates a concentrator with a geometrical gain of less than 10x. 



electromechanical tracking of the sun [19,20],  it increases the optical gain under both direct 67 

and diffuse radiation [19] and it does not require any active cooling requirement [21]. 68 

Uematsu et al. [22] developed a flat-plate static concentrator (FPSC) that was able to increase 69 

the maximum power output by 2% when compared with a conventional PV module.  Gajbert 70 

et al. [23] studied a reflective parabolic concentrator and calculated that the design could 71 

boost the annual electricity production by 72% compared to a non-concentrating design. 72 

Garcia et al. [24], on the other hand, experimented on a V-trough concentrator and obtained a 73 

maximum power gain of up to 1.5 when compared with a non-concentrating panel.  Yoshioka 74 

et al. [25] constructed a 3D refractive static concentrator and obtained an optical gain of 2.3x 75 

when compared with a bare cell. Muhammad-Sukki et al. [18,26–31] investigated the 76 

performance of an extrusion of a dielectric totally internally reflecting concentrator (DTIRC) 77 

and concluded that their design could increase the electrical output by nearly 5 times when 78 

compared with a non-concentrating system. Ramirez-Iniguez et al. [32] patented a variation 79 

of the DTIRC, which is a rotationally asymmetrical DTIRC and have demonstrated that their 80 

design could achieve an opto-electronic gain of 4.2x when compared with a bare PV cell [33–81 

36]. Mallick and Eames [37] investigated a reflective asymmetrical compound parabolic 82 

concentrator (CPC) which improved the power concentration ratio of the panel by 2.1 times 83 

when compared with a similar non-concentrating panel. Another CPC design studied by 84 

Mammo et al. [37] known as the crossed compound parabolic concentrator (CCPC) 85 

generated 3 times more maximum power than the one generated by a non-concentrating 86 

system. 87 

This paper proposes a new variation of CPC design for use in building integrated 88 

photovoltaic (BIPV) systems. This concentrator is known as a rotationally asymmetrical 89 

compound parabolic concentrator (RACPC). This paper aims at evaluating the electrical 90 

performance of the concentrator under standard test conditions. The process to design the 91 

concentrator as well as the theoretical and simulation work related to this concentrator design 92 

have already been covered in detail by the authors in [38]. Section 2 summarises the steps 93 

involved in the design of the concentrator. The fabrication and assembly of the prototype is 94 

discussed in section 3. The experimental setup is discussed in Section 4. Section 5 presents a 95 

discussion of the results from the experiments, and finally the conclusions are presented at 96 

the end of the paper. 97 

 98 

 99 



2. RACPC Design 100 

 101 

The RACPC is a new variation of the CPC. The design utilised similar algorithms to 102 

generate the dielectric totally internally reflecting concentrator (DTIRC) by Ning et al. [39], 103 

in which they proved that the CPC is a DTIRC with a flat entrance aperture. A MATLAB® 104 

code was written to create the RACPC by taking into account the desired input parameters: 105 

the total height of the concentrator, (HTot), the half-acceptance angle (θa), the length of the 106 

PV cell (LPV), the width of the PV cell (WPV), the trial width of the entrance aperture (d1), the 107 

index of refraction of the material (n) and the number of extreme rays (N).  108 

The steps in producing this design has been presented in detail in [38]. Figure 1 helps 109 

to explain the process to design the RACPC. Based on the input parameters, the MATLAB® 110 

programme produces the first 2D-symmetrical design, which is plotted at ‘Position 1’ in 111 

Figure 1. Then , a new CPC design is produced, with each new design is computed by 112 

incrementing the angle of rotation of the cross-sections by 1º and by using the predetermined 113 

exit aperture value (see ‘Positions 2, 3 and 4’ in Figure 1). The process stops when a 180º 114 

rotation around the y-axis is completed. The programme generates the point cloud 115 

coordinates of the RACPC and obtains some important parameters of the design, i.e. the 116 

geometrical concentration gain, the half-acceptance angle and the maximum width of the 117 

entrance aperture of the concentrator.  118 

 119 

 120 

Figure 1: Demonstration of the angular rotation of the 2-D cross-sections to produce the 121 

RACPC. 122 



3. Prototype Fabrication and assembly 123 

 124 

As explained above, a MATLAB® code was written to generate the point cloud 125 

coordinates of the RACPC and these Cartesian coordinates were then transferred into the 126 

GeoMagic® software to produce a Computer-Aided Design (CAD) file. The CAD file was 127 

sent to UK Optical Plastics Limited, United Kingdom [40] for the fabrication of a prototype 128 

using a single-point diamond turning process. Photographs of the prototype of the 129 

concentrator are presented in Figure 2. This design has a geometrical concentration ratio of 130 

3.6675, a total height of 3cm, an exit aperture of 1cm by 1cm and an entrance aperture width 131 

of 2.0598cm along both the x and z-axis.  132 

The material for the fabrication of the prototype was Altuglas® V825T,  a variation of 133 

the polymethyl methacrylate acrylic (PMMA) resin, which has a refractive index of 1.49 [41]. 134 

PMMA is a widely used material for optical concentrators due to its high transmittance (92%) 135 

and good resistance to photo degradation [42].  136 

The RACPC has unique features and advantages when compared with conventional 137 

CPC designs. These include [38]: 138 

1. It has a flat entrance aperture with four axis of symmetry (see Figure 2(b)), unlike 139 

the 3-D rotationally symmetry CPC or the CCPC which has a circular and 140 

square/rectangular shape respectively. By having a flat entrance aperture, an array 141 

of these concentrators can be moulded with a thin layer of material (the same 142 

material that produces the concentrators) joining them together. This will ease the 143 

assembly process [20,43] and potentially reduce the assembly cost of the system. 144 

2. It has a square exit aperture, as presented in Figure 2(d), which could easily 145 

match a square solar cell. A square or rectangular cell is easier to manufacture 146 

[37] and therefore it is the most commonly available shape in the market, unlike a 147 

circular cell needed by a rotationally symmetry CPC design.  148 

3. It is also considered as a 3D design, hence it provides concentration on both 149 

planes perpendicular to the propagation of light along the concentrator axis and a 150 

higher geometrical concentration gain than the 2D linear CPC design. 151 



 152 

Figure 2: The RACPC prototype fabricated for experimental purposes, where (a) is the 153 

isometric view; (b) is the top view; (c) is the side view, and (d) the bottom view of the 154 

concentrator. 155 

 156 

Two solar cells were used for the test of the RACPC. These were supplied by Solar 157 

Capture Technologies Ltd, United Kingdom [44] and each one has an active area of 1 x 1 cm. 158 

These monocrystalline Laser Grooved Buried Contact (LGBC) silicon solar cells are suitable 159 

for  LCPV applications [44]. The cells were tabbed with a lead free wire of 0.1mm thickness 160 

and 1mm width using a soldering iron of 81W and a heat temperature of 350°C. To ensure 161 

that the active area for each cell is 1 x 1 cm, the tabbing wire was placed as close to the edge 162 

as possible. The cells were then glued on two separates glass substrates (70mm x 70mm x 163 

4mm) and one of them was assembled permanently with the RACPC. 164 

To mount the RACPC on the solar cell, a silicon elastomer Sylgard-184® from Dow 165 

Corning was chosen as the binding material. This material also acts as an encapsulation 166 

material for the solar cell and as an index matching gel between the concentrator and the cell 167 

[34]. It has a high transmittance value (90%) and can be cured using a simple process 168 

[20,34,42]. The Sylgard-184® was prepared by mixing the supplied base and curing agent in 169 

a 10:1 weight ratio in a small beaker. The mixture was then placed in a vacuum chamber for 170 

15 minutes to eliminate air bubbles. A Dow Corning Primer 92-023 was then applied on the 171 

solar cell for a better adhesion between the Sylgard and the cell.  Once the Sylgard was free 172 



from air bubbles, the mixture was poured on top of the tabbed cell. Afterwards, the RACPC 173 

was placed carefully on top of the solar cell and the elastomer was left to cure for 48 hours 174 

under room temperature to ensure good binding between the RACPC and the cell. Figure 3 175 

shows the prototype of the RACPC-PV structure. 176 

 177 

 178 

Figure 3: The prototype of RACPC-PV structure. 179 

 180 

 181 

4. Experimental setup 182 

 183 

  184 

The indoor experimental setup to evaluate the characteristic of the RACPC is 185 

illustrated in Figure 4. A Class AAA solar simulator (Oriel® Sol3A Model 94083A) from 186 

Newport Corporation equipped with an AM 1.5G filter, was used to reproduce the spectral 187 

emission of the sun at the earth surface, providing a uniform illumination with a marginal 188 

error of ±2%. A variable slope base was placed approximately 38cm beneath the solar 189 

simulator’s lamp and within the uniform illumination area (20cm x 20cm) of the lamp. The 190 

variable slope base was used together with a digital tilt meter to accurately measure the tilt 191 

angle of the base. A Keithley source meter (Model 2440) with 4-wire connections was 192 

utilised here to act as a high accuracy loading circuit [34,36]. The source meter was 193 

connected to a computer which has already been installed with the Lab Tracer software from 194 



National Instruments® to measure the electrical output from the PV cells. The RACPC was 195 

placed on the variable slope base set at 0º inclination. Under standard test conditions (STC), 196 

the solar simulator was configured to produce an irradiance of 1,000 W/m2 and the room 197 

temperature was maintained at 25°C. The door and windows of the room were closed to 198 

avoid unwanted air flow and minimise temperature variations and the room windows had 199 

blinds to prevent unwanted light from entering the room. In order to obtain the current-200 

voltage and power voltage curves of the concentrated-PV cell (and of the bare cell), and from 201 

these characterise the angular variation of the optoelectronic gain of the concentrator, the 202 

sample (RACPC-PV or the non-concentrating cell) was exposed to the solar simulator light 203 

for short periods of time (approximately 5s) using a shutter. This was done to minimise the 204 

increase in the solar cell’s temperature which would have affected the readings of the open 205 

circuit voltage and the fill factor. For each measurement, the short circuit current (Isc), the 206 

open circuit voltage (Voc), the maximum current (Imax), the maximum voltage (Vmax), the 207 

maximum power (Pmax) and the fill factor (FF) were determined and recorded. The 208 

performance of the RACPC and the non-concentrating cell were evaluated for these cases: (i) 209 

under STC at 0º inclination; (ii) under STC at different angle of incidences between -60º and 210 

60º, (iii) under various solar radiations at 0º inclination, and (v) under long exposure to 211 

constant radiation of 1000W/m2 at 0º inclination. 212 

 213 

 214 
Figure 4: Indoor experimental setup. 215 

 216 

5. Results and discussions 217 

5.1 The characteristic of the RACPC under STC at 0º inclination 218 



 219 

 Figure 5 shows the current-voltage (I-V) characteristic and the power-voltage (P-V) 220 

characteristic of the RACPC under STC. From Figure 5, the short circuit current of the bare 221 

cell was recorded at 35.5mA. However, the introduction of the RACPC in the design 222 

increased the short circuit current by a factor of 3.01 when compared with the bare cell, 223 

generating 107.0mA. As indicated earlier, the concentrator was concentrating the irradiance 224 

from the entrance aperture to the exit aperture. This increased the intensity of the light that 225 

impinged on the solar cell linearly [45], resulting in a higher short circuit current than the one 226 

produced from the bare cell. The open circuit voltage was also increased from 0.560V to 227 

0.565V when the RACPC was compared with a non-concentrating cell. Unlike the short 228 

circuit current, the open circuit voltage increased logarithmically with irradiance 229 

concentration [45]. The maximum power on the other hand was increased from 0.015W to 230 

0.050W when the RACPC was compared with the bare cell, giving a maximum power ratio 231 

of 3.33. The experiment showed that the RACPC increased the fill factor from 77% to 79%. 232 

The fill factor increased due to an increase in both the short circuit current and the open 233 

circuit voltage of the concentrator. 234 

 235 

 236 

Figure 5: (I-V) and (P-V) characteristics of the RACPC and the bare cell under standard test 237 

conditions. 238 

 239 



5.2 The angular response of the RACPC under STC 240 

 241 

The next part of the experiment consisted in characterising the angular response of the 242 

RACPC. This experiment evaluates the electrical performance of the system when the sun 243 

path varies throughout the day. Instead of tilting the source, the variable slope base was tilted 244 

from 0° to 60° at increments of 5°, with each tilt angle measured using the digital level meter.  245 

Figure 6 compares the short circuit current generated by the RACPC with the ones 246 

generated by the bare cell for angles of incidence within the ±60º range. In general, the short 247 

circuit current showed a decreasing trend when the angle of incidence increased. In Figure 6, 248 

at normal incidence, the RACPC generated the maximum value of short circuit current, 249 

107.0mA, which was 3.01x higher than the 35.5mA short circuit current generated by the 250 

non-concentrating cell. The short circuit current from the RACPC reduced to 50% of its peak 251 

value when the angle of incidence was ±43º, and continued to drop when the angle of 252 

incidence increased. However, it was observed that the short circuit current generated from 253 

the RACPC was always higher than the one generated from the bare cell when the angle of 254 

incidence was within ±50º. As for the bare cell, although the short circuit current value 255 

reduced when the angle of incidence increased, it showed a gradual dropped from its peak 256 

value. It achieved 50% of its maximum short circuit current value when the angle of 257 

incidence was approximately ±60º. This reduction was contributed mainly due to the cosine 258 

effect3 [20,46]. 259 

 260 

                                                            
3 The cosine angle effect occurs when the surface of a flat solar cell is not normal to the sun radiation (in this 

case the solar simulator’s radiation), the effective value of the sun radiation exposed to the cell will be reduced 

by the cosine of the angle between the sun and the cell’s normal [46]. 



 261 

Figure 6: The short circuit current variation of the RACPC and the bare cell at different 262 

angles of incidence. 263 

There are two ways to investigate the performance of the concentrator. One is by 264 

looking at the opto-electronic gain of the concentrator, and the other is by analysing its 265 

optical efficiency. The opto-electronic gain measures the ratio of short circuit current 266 

produced from an LCPV device to the one generated from a non-concentrating cell 267 

[20,34,39]. The optical efficiency, on the other hand, is obtained by dividing the opto-268 

electronic gain by the RACPC’s geometrical concentration ratio value [37,47]. A higher opto-269 

electronic gain is desirable since it translates into a higher short circuit current, while a higher 270 

optical efficiency means that a higher percentage of the rays that fall on the front surface area 271 

are transmitted to the exit aperture of the concentrator. From the opto-electronic gain, the 272 

half-acceptance angle of the RACPC was determined, which is defined as the angle where the 273 

gain reached 90% of its peak value [37]. The opto-electronic gain and the optical efficiency 274 

of the RACPC are presented in Figures 7 and 8 respectively.  275 



 276 

Figure 7: The opto-electronic gain of the RACPC at different angles of incidence. 277 

 278 

As it can be observed in Figure 7, the opto-electronic gain value remains fairly 279 

constant at approximately 3 when the angle of incidence increased from 0 to ±40º, and 280 

dropped to 90% of its peak value when the angle of incidence reached ±43º. Beyond this 281 

angle, the opto-electronic gain suffered a sudden drop to almost 0. According to Sarmah et al. 282 

[20], the short circuit current of a concentrator drops when the angle of incidence is getting 283 

closer to (and higher than) the value of half-acceptance angle of the concentrator because of 284 

rays escaping from the side profile of the concentrator as well as at the concentrator-285 

encapsulation interface. It was also observed that some the instantaneous opto-electronic gain 286 

readings within the acceptance angle were higher than the ones recorded at normal incidence. 287 

This was contributed to the rays impinging the side profile of the concentrator arrived at the 288 

solar cell. The opto-electronic gain variation was compared with the optical gain obtained 289 

from the simulations. The simulations were carried out using an optical analysis software 290 

ZEMAX® and the detail simulation steps have been presented in [38]. The opto-electronic 291 

and the optical gain were plotted together in Figure 7. A similar trend was observed in the 292 

ray-tracing simulation. Here, the half-acceptance angle was recorded to be ±42º, which shows 293 

good agreement between the experimental and the simulation results. Interestingly, the half-294 



acceptance angles of the RACPC determined from the experiment and the simulation were 295 

also very close to value calculated from the MATLAB® program, which was ±42.9578º. 296 

Table 1 shows the comparison of the most important parameters obtained from the 297 

MATLAB® programme, the experimental work and the ray-tracing simulations.  298 

 299 

Table 1: Comparison of parameters obtained from MATLAB®, ZEMAX simulation and 300 

experiment. 301 

 MATLAB Simulation Experiment 

Geometrical gain 3.6675 - - 

Optical/Optoelectronic gain (at 0°) - 3.4 3.0 

Optical efficiency  (at 0°) - 92% 84% 

Acceptance angle (°) ±42.9578 ±42 ±43 

 302 

 The variation of the optical efficiency of the RACPC with angle of incidence is 303 

presented in Figure 8. From the experiments, the RACPC achieved an 84% optical efficiency 304 

at normal incidence, and this value dropped to 90% of its maximum value when the angle of 305 

incidence of the rays was ±43º. Outside this range of incidence angle, the optical efficiency 306 

dropped to 0%. The optical efficiency trend from the experiments was compared with the 307 

simulations carried out in ZEMAX® [38]. The experiments show good agreement with the 308 

ray-tracing simulations, with a deviation of 11%. The deviation occurred due to several 309 

factors including (i) manufacturing errors causing the dimensions of the concentrator to differ 310 

from the actual design dimensions, uneven surfaces of the entrance aperture and over 311 

polishing on the profile of the side wall; (ii) assembly errors during the soldering of the 312 

tabbing wire on the solar cells, which reduced the effective area of each cell, and 313 

misalignment between the solar cell and the exit aperture of the concentrator, and (iii) errors 314 

associated with the rays such as scattering, absorption of the material and reflection on the 315 

front surface of the concentrator which reduces the number of rays reaching the exit aperture 316 

of the RACPC. 317 



 318 

Figure 8: The optical efficiency of the RACPC at different angles of incidence. 319 

 320 

In terms of the variation of the maximum power output with angle of incidence, a 321 

similar trend to the one obtained for the short circuit current was observed, as illustrated in 322 

Figure 9. The peak value of the maximum power was recorded at 0.050W and 0.015W from 323 

the RACPC and the non-concentrating cell respectively. This translated to a maximum power 324 

ratio (power gain) of 3.33. The maximum power generation of the RACPC reached 50% of 325 

its peak value when the angle of incidence was ±44º, before gradually dropping to 0W when 326 

the angle of incidence continued to increase. As for the maximum power from the bare cell, 327 

the reduction of the maximum power was more gradual, achieving a 50% of the peak value 328 

when the angle of incidence was closer to ±60º. 329 



 330 

Figure 9: The maximum power variation of the RACPC and the bare cell at different angles 331 

of incidence. 332 

 333 

5.3 Variation of solar irradiance at 0º inclination at 25°C. 334 

 335 

The experiment was repeated to evaluate the variation of the I-V and P-V 336 

characteristics under various level of solar radiation. This investigation is helpful to evaluate 337 

the performance of the RACPC in locations that have higher or lower average levels of solar 338 

irradiance. This was done by turning the variable attenuator control of the solar simulator to 339 

change its output from 800 W/m2 to 1100W/m2, at increments of 100W/m2.  The results are 340 

presented in Figures 10 and 11. When the intensity of the solar simulator increased from 800 341 

W/m2 to 1100W/m2, the short circuit current from both samples increased from 0.085A to 342 

0.117A for the RACPC and from 0.028A to 0.039A for the bare cell. In terms of maximum 343 

power, the change in the simulator’s intensities caused the reading from the samples to rise 344 

from 0.040W to 0.056W and from 0.012W to 0.017W for the RACPC and the bare cell 345 

respectively. In general, the RACPC produces a higher short circuit current and a higher 346 

maximum power when exposed to higher level of solar radiation, as expected, which is more 347 

desirable by the consumers that want to reap higher financial return from the FiT scheme. 348 



However, a long exposure to high irradiance increases the cell’s temperature, and 349 

reduces the maximum power generated from the cell [34]. The next section evaluates the 350 

effect of temperature on the cell’s performance when exposed to the same irradiance over a 351 

long period of time. 352 

 353 

 354 

Figure 10: The I-V characteristic of the RACPC and the bare cell under various levels of 355 

irradiance.  356 



 357 

Figure 11: The P-V characteristic of the RACPC and the bare cell under various levels of 358 

irradiance. 359 

 360 

5.4 The thermal characteristic of the RACPC 361 

  362 

 This section evaluates the effect of temperature on the performance of the RACPC 363 

panel. Two thermocouples were utilised; one was attached to the back of the glass substrate 364 

exactly beneath the solar cell to measure the cell temperature, and another one exposed to the 365 

air to measure the room temperature. Each thermocouple was connected to an ammeter. Next, 366 

the RACPC was placed at 0° of inclination. The solar simulator was then configured to 367 

produce 1000 W/m2 and the room temperature was set at 25°C. The RACPC was exposed to 368 

the same radiation for a period of 4.5 hour and a set of reading was taken every 15 minutes. 369 

Figure 12 shows the effect of temperature on the maximum power of the RACPC. 370 

The temperature of the cell increased sharply from 25°C to 57°C and stabilised after 2.75 371 

hours. The maximum power was reduced from 51mW to 44mW, a reduction of 13.7%. Table 372 

2 presented the variations of parameters throughout the duration of the experiment. The 373 

maximum voltage showed a large fall from 0.51V to 0.44V. The increase in temperature 374 

caused the semiconductor band gap to decrease [48]. This enabled more incident energy to be 375 

absorbed by the semiconductor which translated to a lower energy needed to move the 376 



carriers into the conduction band [48]. As a result, this phenomenon produced more 377 

photocurrent through the semiconductor which consequently reduced the open circuit voltage 378 

[48]. No change was recorded to the maximum current value. As for the fill factor, the value 379 

dropped from 80% to 77% which occurred due to the drop in open circuit voltage reading. 380 

It is therefore crucial for an LCPV system to have the right RACPC design and 381 

cooling system to ensure that the performance of the solar cell is at its optimum. If an 382 

RACPC design with higher gain is needed, the solar cell could be cooled by introducing a 383 

hybrid/thermal system (either using air or water), that utilises the co-generated heat to 384 

produce hot water and stimulate ventilation [26,33,49]. 385 

 386 

 387 

 388 

Figure 12: The variation of the maximum power and the RACPC cell temperature with 389 

illumination time. 390 

 391 

 392 

 393 

 394 

 395 



Table 2: Effect of temperature on the RACPC output. 396 

Time  
(hour) 

Room 
Temperature 

(°C) 

CPV 
Temperature 

(°C) 

Vmax 
(V) 

Imax 
(A) 

Pmax 
(W) 

Voc 
(V) 

Isc  
(A) 

FF 

0.00 25 25 0.51 0.10 0.051 0.60 0.11 0.80 
0.25 25 46 0.47 0.10 0.047 0.56 0.11 0.78 
0.50 26 51 0.46 0.10 0.046 0.55 0.11 0.77 
0.75 26 53 0.46 0.10 0.046 0.55 0.11 0.77 
1.00 26 54 0.46 0.10 0.045 0.54 0.11 0.77 
1.25 27 54 0.46 0.10 0.045 0.54 0.11 0.77 
1.50 27 55 0.44 0.10 0.045 0.54 0.11 0.77 
1.75 27 56 0.44 0.10 0.045 0.54 0.11 0.77 
2.00 27 56 0.44 0.10 0.045 0.54 0.11 0.76 
2.25 27 56 0.44 0.10 0.045 0.54 0.11 0.77 
2.50 27 56 0.44 0.10 0.045 0.54 0.11 0.77 
2.75 27 57 0.44 0.10 0.045 0.54 0.11 0.76 
3.00 27 57 0.44 0.10 0.045 0.54 0.11 0.77 
3.25 27 57 0.44 0.10 0.045 0.54 0.11 0.76 
3.50 27 57 0.44 0.10 0.044 0.54 0.11 0.76 
3.75 27 57 0.44 0.10 0.044 0.54 0.11 0.76 
4.00 28 57 0.44 0.10 0.044 0.54 0.11 0.76 
4.25 28 57 0.44 0.10 0.044 0.53 0.11 0.77 
4.50 28 57 0.44 0.10 0.044 0.53 0.11 0.77 

 397 

 398 

 399 

From the results obtained from the experiment, the temperature coefficient for the 400 

maximum current, the maximum voltage and the maximum power were determined. This was 401 

carried out by computing the ratio of change in each parameter with respect to the change in 402 

temperature [34,37]. It was calculated that the maximum current coefficient was 403 

0.000mA/°C, the maximum voltage coefficient was 2.1875mV/°C and the maximum power 404 

coefficient was 0.2188mW/°C.  405 

 406 

Conclusions 407 

  408 

 A new family of CPC known as the RACPC has been proposed and one specific 409 

designed was fabricated and tested indoors. The steps to assemble a RACPC-PV cell 410 

structure have been explained in detail. This prototype underwent a series of indoor 411 

experiments and the results were compared with those of a non-concentrating panel. It has 412 

been found that the RACPC increased the maximum power ratio of the system by up to 3.33x 413 

when compared with the non-concentrating cell. Within the half-acceptance angle of the 414 

RACPC, the electrical output was always higher than the one obtained from a non-415 



concentrating cell, with a value of 3.01x and an optical efficiency of 84% at normal 416 

incidence. The opto-electronic gain was also compared with the simulation results and the 417 

results from the experiment showed good agreement with the ZEMAX® simulation analysis.  418 

In terms of the thermal performance of the RACPC, it was demonstrated that the maximum 419 

steady state temperature of the panel for the experimental setup used was 57°C, achieved 420 

within 2.75 hours of exposure to the sun. The corresponding maximum power during the 421 

steady state was recorded at 0.044W. The maximum voltage coefficient, the maximum 422 

current coefficient and the maximum power coefficient were determined to be 2.1875mV/°C, 423 

0.000mA/°C and 0.2188mW/°C. It can be concluded that the RADTIRC has the potential to 424 

increase the electrical output from a non-concentrating system. Within the half-acceptance 425 

angle of the RACPC, the short circuit current and the maximum power are always higher than 426 

the ones generated from a non-concentrating system.  427 
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