

AUTHOR(S):

TITLE:

YEAR:

Publisher citation:

OpenAIR citation:

Publisher copyright statement:

OpenAIR takedown statement:

 This publication is made
freely available under
________ open access.

This is the ___________________ version of proceedings originally published by _____________________________
and presented at __
(ISBN __________________; eISBN __________________; ISSN __________).

This publication is distributed under a CC ____________ license.

__

Section 6 of the “Repository policy for OpenAIR @ RGU” (available from http://www.rgu.ac.uk/staff-and-current-
students/library/library-policies/repository-policies) provides guidance on the criteria under which RGU will
consider withdrawing material from OpenAIR. If you believe that this item is subject to any of these criteria, or for
any other reason should not be held on OpenAIR, then please contact openair-help@rgu.ac.uk with the details of
the item and the nature of your complaint.

INTERNATIONAL CONFERENCE ON ENGINEERING DESIGN
ICED 01 GLASGOW, AUGUST 21-23, 2001

VERIFICATION OF REDESIGN MODELS: A CSP APPROACH

Inés Arana and Hatem Ahriz

Keywords: Design representations, product modelling, constraint-based design, knowledge
representation.

1 Introduction

One of the initial stages in the manufacturing of an article is the production of a design which
satisfies a set of user requirements. Much of the design work carried out in manufacturing
companies can be classified as redesign, i.e. producing a new variant of a known product
family which satisfies a slightly different specification. This type of redesign application is
particularly well suited to computer support since: (i) the knowledge used is well-understood;
(ii) solutions are highly reusable. Redesign support systems often involve the creation of a
model, which is then used by the advisory system. These models rely on constraints to
express a substantial amount of design knowledge, e.g. design laws, principles, company
restrictions, international standards and customer requirements. Although a lot of effort has
been devoted to the verification of rule-based knowledge [1], little effort appears to have been
spent on constraint verification. This paper presents a methodology to verify constraints in a
redesign model and argues that verification can be seen as a Constraint Satisfaction Problem
(CSP).

The MAKUR methodology [2] provides a systematic approach to the construction of
customised knowledge based systems which support the redesign of a family of products.
MAKUR consists of three tools:

 Design Analysis Methodology (MADAM): a tool aimed at eliciting and analysing a
company's expertise in the redesign of a family of products.

 Design Description Language (MADD): a formal specification language that is used to
represent the knowledge acquired through MADAM. A Graphic Editor (MAGE) is used
in order to support the knowledge engineer in the construction of redesign product
models.

 Design Advisory System (MADAS): an interactive problem-solving tool, which provides
particular design solutions for a product, given a set of requirements. It is a generic tool,
and is customised by the use of a specific product model, which is described using the
Design Description Language. The core of MADAS is a constraint engine, which ensures
that the design is consistent at all times. As the designer makes decisions, their effects are
propagated throughout the model, ensuring that all constraints are satisfied. Hence, if the
designer makes an unsatisfactory decision, MADAS warns him about it. In this way,
MADAS prevents the designer from making invalid choices.

The remainder of this paper describes a CSP approach to redesign knowledge verification.
Section 2 presents the design description language MADD. Next, section 3 defines and
explains the benefits of CSP approaches. The use of CSP techniques in redesign model
verification is discussed in section 4. Finally, section 5 presents some conclusions.

2 MADD: a design description language

MADD provides a three-view representation of the design of a product family:

 Physical model: describes the product in terms of:

– Assemblies: collections of parts, e.g. a cylinder head

– Parts: non-decomposable physical elements, e.g. a pipe. Part-types are generic
descriptions of particular kinds of parts and, thus, a part may be associated with a
part-type.

– Design features: characteristics of a part which give them some functionality, e.g.
a pin-hole.

Thus, an article is composed of one or more assemblies which, in turn are collections
of parts. Each part may have design features, which give it some functionality.

 Functional model: presents the product functionality in terms of:

– Concepts which it must satisfy, e.g. join two pipes.

– Technical solutions which implement a concept, e.g. two pipes which are screwed
together.

– Design features used in a technical solution (e.g. the pipes have some threads so
that they can be screwed together) link this model with the physical one.

Thus, an article satisfies one or more concepts. Each of these concepts is implemented
by means of a technical solution which may use some design features in order to
provide the desired functionality.

 Process model: describes the

– Tasks which need to be executed in order to obtain a product design, e.g. establish
a joint between two pipes

– Methods which can be used in order to perform each task, e.g. screw two pipes,
weld them together, join them using a flange, etc. Tasks and methods are related to
entities in the functional/physical model.

Thus, an article is designed by carrying out one or more tasks. Each task can be
achieved by several methods, each of which is implemented by carrying out a set of
tasks.

The properties of all model entities (e.g. assemblies, parts, concepts, etc.) are
described by parameters which are represented by their type and their domain.
Constraints are used to specify the relationships between parameters: (i) of the same
entity, e.g. two properties of a part; (ii) of various entities within the same (physical,
functional or process) model, such as a parameter from a concept and a parameter
from a technical solution; (iii) between entities in different models such as two
parameters, one from a part and one from a concept. Both parameters and constraints
are owned by an entity [3]. For example, the entity pipe1 may have, among other
parameters and constraints, the following:

 A parameter pipe1.diameter which can take values between 10mm and 2000 mm.

 A parameter pipe1.material which can take values in the set [aluminum, brass, copper,
carbon steel].

 A constraint pipe1.diameter = pipe2.diameter specifying that this pipe must have the same
diameter as pipe2 (another entity in the physical model).

Models which use the MADD methodology have been used to support the redesign of
manufacturing articles. Before a product model can be used in an advisory system to reason
about new designs, it has to go through a verification procedure, i.e. a series of checks which
ensure that the knowledge used meets the specified requirements of the users [4]. Thus, a
system may be measured by the following [5]:

 Did we get it right? I.e. does it meet the user requirements?

 Can we keep it right? I.e. will the system by reasonably easy to maintain?

 Can we do it again? I.e. can the same mechanism be successfully used in other projects?

Redesign models must, therefore, be tested in order to ensure their accuracy, completeness
and maintainability. The techniques used in order to check the models must be general, i.e,
applicable to a variety of models.

Unfortunately, although the MAKUR methodology guides the knowledge elicitation process,
it does not yet provide a verification tool which ensures the correctness of the model.

3 Constraint satisfaction problems (CSPs)

A constraint satisfaction problem is a system which can be defined in terms of [6]:

 A finite set of variables X = {x1, x2, x3, …,xn}

 A function which maps each of the variables to a finite domain. I.e., for each variable xi it
associates a domain Di of possible values.

 A finite set of constraints (logical relations between variables), which restrict the values
that the variables may take.

 A solution to the CSP assigns each of the variables a value in its domain. This assignment
satisfies all the constraints simultaneously. CSPs are, therefore, combinatorial problems
which can be solved using search techniques. However, conventional search algorithms are
very time-consuming and, therefore, current research focuses in reducing the expense of CSP
solving. It should be noted that some CSPs are computationally intractable, i.e. NP-hard.

The use of CSPs (as opposed to mathematical programming) has the following advantages
[6]:

 The description of the problem is often much closer to the real problem. For example, the
variables on the CSP correspond to parameters in a redesign problem, and constraints
correspond to actual restrictions in the problem at hand.

 CSP algorithms are at times, quicker than integer programming methods.

A substantial amount of effort has been devoted to the development of techniques which solve
CSPs efficiently.

4 Redesign model verification

The MAKUR product model describes the various alternatives available in the design of a
product family and the conditions (constraints) which must be met for each of these choices to
be a suitable option. In order to verify a model, the validity of each of the options available to
the designer must be checked, i.e. there must be at least one valid solution which takes that
option. This verification process is not straightforward since each alternative is usually highly
connected (related through constraints) to other choices in the same and other models
(physical, functional and process). These other options are in turn connected to other
alternatives and so on, so the constraints associated to all these choices must be satisfied
simultaneously. Model verification can, therefore, be seen as a constraint satisfaction problem
(CSP), where the feasibility of each design alternative is checked by ensuring that there is at
least one set of parameter values (i.e. solution) which satisfies all the constraints related (in
some way) to that choice. Hence, we have used CSP techniques [7] and a constraint library
(Ilog Solver) [8] in order to verify redesign product models.

A simplified version of our algorithm is as follows:

Let P be the set of all paths (from the root to the leaves) in all the models (physical, functional
and process).

Repeat

Take a path p P, and collect all the entities involved in it in a set E
Let Par = (the set of parameters collected to date)

Cons = (the set of constraints which have to be checked)
Inv = (the set of parameters involved in selected constraints)

Repeat

Take an entity e E, Par = Par + e.parameters, Cons= Cons + e.constraints
where e.parameters are all the parameters belonging to entity e and
e.constraints are all the constraints belonging to entity e

For every constraint c Cons, Inv= Inv + c.parameters
Where c.parameters are all the parameters involved in constraint c

For every parameter i Inv such that i Par, take its owner (i.e. the entity it
belongs to) and all its predecessors (and siblings for tasks) and add them to E

 Until all entities in E have been considered

Pass Par and Cons (i.e. a CSP) to the constraint problem solver which will check
whether there is a solution for that CSP

 If the constraint problem solver detects constraint insatisfiability, then the option
(path) p is not consistent, and the knowledge engineer is informed of this

Until all paths in P have been considered

Fig. 1 illustrates a simplified model of redesign. The ‘dotted arrows’ represent constraints
between entities. In order to keep this example as simple as possible, we have only included a
few constraints between entities and internal constraints (relating parameters in the same
entity) are not represented. Assume that our algorithm selects the path p =[Ph1, Ph2, Ph5,
P10]. For each of the entities in this path, they are included in E, its parameters are included
in Par and its constraints in Cons. Hence, Cons will contain a constraint which relates Ph5 to
Ph7 though their parameters. Ph7 will, therefore, be included in E.

Figure 1: A path selected for checking (represented by shadowed nodes)

Since Ph7 E, all its predecessors (Ph3 and Ph1) are inserted into E, their parameters are
included in Par and their constraints in Cons. Also, because Ph7 is related to F4, the latter
entity will be included in E (and its parameters are included in Par and its constraints in
Cons).

Similarly, since F4 E, all its predecessors (F2 and Ph1) are inserted into E, their parameters
are included in Par and their constraints in Cons. Also, because F4 is related to Pr7, the latter
entity will be included in E (and its parameters are included in Par and its constraints in
Cons).

Since Pr7 E, all its predecessors (Pr4, Pr2 and Pr1) and sibling tasks for each of these (Pr
5) are inserted into E, their parameters are included in Par and their constraints in Cons.

Also, because Pr4 E is related to Ph11, the latter entity will be included in E (and its
parameters are included in Par and its constraints in Cons).

 Since Ph11 E, all its predecessors (Ph6, Ph2 and Ph1) are included in E, their parameters
are included in Par and their constraints in Cons.

Through the above process, we have collected in Cons all the constraints related to the
original path (user option) and in Par all the parameters which may be involved in constraints
contained in Cons. Fig. 2 shows the entities related to this path. Thus, a constraint solver can
be used to check whether the chosen user option is satisfiable, by asking it to check whether
there is any solution for Par (assignment of a value to each parameter) which satisfies all the
constraints in Cons. If there is such a solution, the selected user option is viable; otherwise,
this option is incorrect.

The following anomalies may be found in a product model:

 Conflict or incoherence: there are no valid parameter values which can satisfy a single
constraint. Our verification tool detects this error, and informs the knowledge engineer so
that the model can be corrected. This may involve further knowledge acquisition and
analysis. E.g. if the parameter pipe1.diameter can take values between 10mm and 2000
mm, the constraint pipe1.diameter > 2100 is not satisfiable.

 Partial conflict: a whole set of the values of a parameter’s domain are never valid. In this
situation, our verification tool reduces that parameter’s domain to exclude that set of
values, thus correcting the anomaly. E.g. if the parameter pipe1.diameter can take values
between 10mm and 2000 mm and there is a constraint pipe1.diameter > 1500 the domain
of. pipe1.diameter is reduced to between 1501mm and 2000 mm.

 Incompatible entities: two (or more) entities must be selected together but they have
incompatible constraints. Our verification tool detects this error, and informs the
knowledge engineer, who is responsible for correcting the error. E.g. if the parameter
pipe1.diameter can take values between 10mm and 2000 mm and the parameter
pipe2.diameter can take values between 2100mm and 3500 mm and there is a constraint
pipe1.diameter = pipe2.diameter which is active when both pipe1 and pipe2 are selected,
then pipe1 and pipe2 are incompatible.

Figure 2: Entities related to [Ph1,Ph3, Ph5, Ph11] (represented by shadowed nodes)

 Deficiency or incompleteness: some of the values within a numeric parameter’s domain,
represented by its minimum and maximum value, are not valid. Although strictly
speaking, this information is not invalid, it is misleading, since it implies that there are
more options (parameter values) available than there really are. Our verifier does not
detect this problem. It should be noted that the specification of all the valid parameter
values may, overall, be more confusing for the user. E.g. if the parameter pipe1.diameter
can take values between 10mm and 2000 mm if the parameter pipe1.length can take values
between 30mm and 6000 mm and there is a constraint pipe1.length = pipe1.diameter * 3
then only some of the values in the domain pipe1.length are valid (30, 33, 36, 39, …
6000).

 Redundancy ("equivalent" constraints): two entities contain equivalent constraints. It
should be noted that this is perfectly reasonable if there are solutions where only one of
the entities is selected. Hence, our verifier does not detect this anomaly. Even if two
constraints were identical and appeared to be always be used together in the same
solutions, this might change if the product model was extended to incorporate more
alternatives. It should be noted that this “anomaly” does not affect the use of the design
support system. E.g. the constraints pipe1.diameter pipe2.diameter and pipe1.diameter
pipe2.diameter are equivalent to constraint pipe1.diameter = pipe2.diameter.

5 Conclusion

The success of support systems often depends on the quality of the domain knowledge they
use and thus, domain models should be verified. Redesign problems are well suited to the
construction of support systems, since they have well-understood domains and the knowledge
required to solve them is highly reusable. In this paper, we have explained a representation for

redesign knowledge and presented a constraint-based approach to verifying that a redesign
product model is "right”.

References

[1] Gupta, U.G., “Validating and Verifying Knowledge-based Systems”. IEEE Press, Los
Alamitos, CA, 1990.

[2] Arana, I., Ahriz, H. and Fothergill, P. “Improving Re-Design Support.” In Proceedings
of IDPT’2000 – The Fifth International Conference on Integrated Design and Process
Technology, Texas, 8 pages, Society for Design and Process Science (SDPS), June
2000.

[3] Ahriz, H., Arana, I. and Fothergill, P. “Using Constraints in Modelling for Re-Design.”
In Proceedings of EIS2000, Second International Symposium on Engineering of
Intelligent Systems, 27-29 June 2000, Scotland, pp. 314-319. Published by: ICSC
Academic Press.

[4] Preece, A. “Building the Right System Right.” In AAAI-98 Workshop on Verification
and Validation of Knowledge-Based Systems, Technical Report WS-98-11, AAAI Press,
1998.

[5] Preece, A. “Evaluating Verification and Validation Methods in Knowledge
Engineering. ” In Industrial Knowledge Management: A Micro-level Approach,
Springer-Verlag, London, 2000, pp. 91-104.

[6] Tsang, E.P.K., “Foundations of Constraint Satisfaction. ” Academic Press, London and
San Diego, 1993.

[7] Barták, R. “Constraint Programming: In pursuit of the Holy Grail.” In Proceedings of
WDS99 (invited lecture), Prague, June 1999.

[8] ILOG Solver 4.4 Reference Manual, June 1999.

Corresponding Author:

Inés Arana (Dr.)
School of Computer and Mathematical Sciences
The Robert Gordon University,
St Andrew Street
Aberdeen
AB25 1HG,
U.K.

Telephone: (+44) 01224 262729
Fax: (+44) 01224 262727
E-mail: ia@scms.rgu.ac.uk

	coversheetConferences
	ICED01

	OA: GREEN
	OA Logo:
	AUTHORS: ARANA, I. and AHRIZ, H.
	TITLE: Verification of redesign models: a CSP approach.
	YEAR: 2001
	Publisher citation: ARANA, I. and AHRIZ, H. 2001. Verification of redesign models: a CSP approach. In the Proceedings of the 13th international conference on engineering design (ICED'01), 21-23 August 2001, Glasgow, UK. Glasgow: Professional Engineering Publishing, pages 283-290.
	OpenAIR citation: ARANA, I. and AHRIZ, H. 2001. Verification of redesign models: a CSP approach. In the Proceedings of the 13th international conference on engineering design (ICED'01), 21-23 August 2001, Glasgow, UK. Glasgow: Professional Engineering Publishing, pages 283-290. Held on OpenAIR [online]. Available from: https://openair.rgu.ac.uk
	Version: AUTHOR ACCEPTED
	Publisher: PROFESSIONAL ENGINEERING PUBLISHING
	Conference: the 13th international conference on engineering design (ICED'01), 21-23 August 2001, Glasgow, UK
	ISBN: 186058563
	eISBN:
	ISSN:
	Set statement:
	License: BY-NC-ND 4.0
	License URL: https://creativecommons.org/licenses/by-nc-nd/4.0
	CC Logo:
		2016-09-21T09:38:30+0100
	OpenAIR at RGU

