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Abstract 
 

Model based reasoning about physical systems deals with 
diagnosis, supervision, interpretation, explanation, etc. 
Most of the contributions to this domain do not pay much 
attention to model construction, and it was generally 
accepted that a model was available or could be easily 
obtained. This assumption is no more valid when we 
tackle real industrial problems rather than toy examples. 
The situation is even worst since there is no standard 
methodology or approach to making models. In this paper 
we provide a framework to elaborate models which are 
suitable for model based reasoning in general, and for 
fault diagnosis in particular. The framework relies on the 
bond graphs notation, which allows a uniform approach 
for the different physical domains and offers 
compositional view of the system.  

  

Introduction 
 
It is generally accepted that three stages of work are 
involved in the model-based approach to analysing a 
system [Weld & de Kleer 1989]. Firstly, a model of the 
system is built. Secondly, a solution is solicited from 
the model. Finally, a conclusion about the system is 
reached based on the interpretation of the solution. The 
importance of using a good model is obvious because 
building a model is the starting point in the whole 
process  ([Dague & al. 1987], [Falkenhainer & Forbus 
1991], [Nayak 1994]). 
Traditionally, models are constructed by hand and are 
then used in experiments to ensure acceptable results. 
Models produced in this manner tend to include 
everything, including issues irrelevant to an application, 
and require solid competencies in mechanical, 
hydraulics, electricity and thermodynamics. These 
considerations indicate the need for new approaches to 
modeling, based on more rigorously defined modeling 
processes. Automated modeling is such an approach 
[Xia & al. 1993]. It attempts to generate models, which 
are parsimonious and accurate for model-based 
reasoning. 
 
Few research works have already addressed this issue, 
or part of it. We can quote GoM (Graph of Models) 
[Addanki & al. 1991], which represents a collection of 
models built by an expert in a particular domain. The  

 
 
collection is represented in terms of a graph in which 
each node represents a model, whereas an edge is 
labeled with an assumption (simplification or 
refinement). The Prompt  
 
system [Weld 1992] allows for navigation through this 
kind of graphs. A most significant work is CM 
(Compositional Modeling) [Falkenhainer & Forbus 
1991], which is devoted to generate qualitative and 
quantitative answers to queries about physical systems. 
Other works have been derived from the latter, namely 
"Automated Model Selection for Simulation" [Iwasaki 
& Levy 1993] and "Causal Approximations" [Nayak 
1994]. MM [Amsterdam 1993], is also a very related 
work to ours since he was introducing bond graphs as a 
modeling language. Biswas and Yu [Biswas & Yu 
1993] propose a formal modeling scheme that also use 
bond graphs as modeling language. The main 
distinction of our approach is its non-deterministic 
nature. Actually we consider that modeling process 
requires the exploration of a search space. This search 
space could have several solutions (i.e. models), could 
accept several cost criteria (e.g. parsimonious notion) 
and could be explored with various search strategies. 
The explicit use of modeling hypotheses and behaviour 
constraints is a means to limit the exploration of the 
search space. 
 
Our work intends to introduce more automation in the 
different modeling tasks, and led to the system: AIMD 
(Automated Intelligent Modeller for Diagnosis). 
Modeling and diagnosis are the two main functions of 
AIMD. In this article we focus on modeling, the 
diagnosis process is outside the scope of the present 
article. In section 2 we introduce a case study that is 
used along this paper. In section 3 we present an 
overview of the modeling approach, process and 
language. Section 4 describes what kind of generic 
knowledge AIMD is going to use, while section 5 
describes the knowledge specific to a particular 
scenario. The different tasks constituting the modeling 
process are presented in detail in section 6. Section 7 
presents the results obtained on our case study. 

 



 

Case study 

Before going through the details of our work, let’s give 
an overview of what kind of results AIMD is expected 
to provide given some specific entries. Let us consider 

along this paper the following pump system1 as a case 
study (figure 1): a motor is driven by a voltage source 
and, in turn, drives a pump, and then pumps fluid from 
tank 1 to tank 2. 

voltage motor pump

source
tank 1

target
tank 2

 

Figure 1: Case study system 
 
The specific inputs (scenario dependent) for the pump 
system are:  
1. A structure description of the pump system. Figure 

2 illustrates a schematic description of the 
structure. The structure describes a decomposition 
of the system in terms of primary components, 
which are related by physical (hydraulic, 
mechanical, electric) connections. 

2. A set of hypotheses (eventually empty) about the 
components of this system. An example of a 
hypothesis is "consider the friction in the motor". 

3. Optionally, an expected behaviour of the system, 
like "when the source tank becomes empty, the 
motor speed increases". The behaviour is given in 
terms of qualitative constraints. The user has the 
choice of the variables and the interval of time to 
be considered. 

 

 

 

 

 

 

 

Figure 2: Schematic description of the case study 

system 
 
Given such entries, AIMD is able to elaborate a 
parsimonious model representing the system. This 
model is given in terms of a bond graph, a set of 
qualitative and quantitative equations and a causal 
graph. We describe later the details of the obtained 

                                                           
1 This test-case has been introduced for the first time in [Xia 
& al. 1993] 

model. This result is in turn exploited by AIMD to 
perform diagnosis, proving in this way the adequacy of 
the model. Diagnosis is achieved trough a dialog 
between AIMD and the user. Previously, the set of 
measurable variables of the system must be specified. 
An example of a diagnosis session for the case study is 
the following: 
 
USER > observation: flow of (tank-2) is 
below_normal. 
AIMD > candidates: (r-3, +), (c-6, +),  

(r-7, +), (c-4,-)2 
what is the value of - pressure - tank-1?  
(above, below, normal) 
USER > bellow. 

AIMD > a single candidate3 remains:  
(c-6, +) 
Interpretation of diagnosis:  
(tank-1, leak)4 

 
Modeling Framework 

Overview of the Modeling Process 

The modeling process is based upon the consideration 
of two groups of inputs, which feed the modeling 
process: the scenario dependent ones, and the scenario 
independent ones (by scenario we mean the modeling 
session tackled by the designer). As stated before, this 
group is constituted by the description of the physical 
system, a set of modeling hypotheses and a set of 
behaviour constraints, whereas the second group is 
constituted by a library of generic model fragments, as 
long as other generic knowledge concerning physical 
systems. Observations and measurements from the 
physical system concern the diagnosis part. 
The modeling process consists of the following tasks 
(see figure 3 below):  
1) Fragment selection. Each component has a set of 
model fragments stored in a library. Successive 
selections are made increasing the degree of 

complexity5 of fragments starting with the least 
complex fragments. 
2) Fragment assembling. Fragment assembling is made 
according to the structural description and some 
compositional rules.  

                                                           
2 r-3, c-6, r-7, c-4 represent internal variables of the model. 
We describe later the correspondence between internal 
variables and the parameters and measurements of the system. 
- and + stand for below and above normal respectively. 
3 The discrimination capacity of the diagnosis depends on the 
number of measurable variables and their position on the 
system. 
4 (c-6, +) stands for: the capacity of tank-1is above normal. 
One possible interpretation of this fact is a leak in the tank. 
5 The complexity degree will be defined latter. 
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3) Model verification. The purpose of this task is to 
verify that the obtained model could really exhibit the 
expected behaviour. This is done by comparing the  
simulated behaviour (using the qualitative equations 
obtained in the precedent task) to the expected one. 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3: The modeling process 

 
The diagnostic function is intrinsically related to the 
modeling function and they are integrated in AIMD. 
The model produced from the modeling process will be 
used as a reference against any malfunction on the 
physical system.  

 
Modeling language 

Bond graphs [Rosenberg & Karnopp 1983] are based on 
modeling energy flow, power, between system 
components and inherently enforce continuity of power 
and conservation of energy. This provides a systematic 
framework for building consistent and well-constrained 
models of dynamic physical systems across multiple 
domains (e.g., electrical, mechanical, hydraulic). Bond 
graphs rely on effort variables (e) to represent 
generalised voltage, pressure, temperature, etc., and on 
flow variables (f) to represent generalised current,  
 

volume flow, entropy flow, etc. The topological 
character of bond graphs allows for compositional 
modeling and makes them directly applicable to 
qualitative processing. This renders them useful in 
situations where precise numerical information may not 
be available. However, analytic system models derived 
from bond graphs are also amenable to quantitative 
simulation and analysis. Furthermore, bond graphs 
embody a direct relation between state variables and 
physical component parameters, and their causality 
constraints provide the mechanisms for effective and 
efficient diagnosis. More detailed presentation of bond 
graphs are given in [Rosenberg & Karnopp 1983]. 
 
Implementation 

As we pointed out, the modeling approach aims to be 
modular and declarative. On the other hand the nature 
of modeling is intrinsically non-deterministic. In fact 
the three tasks of the modeling process are highly non-
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deterministic. For these reasons Prolog was used for 
implementation, this choice allows for a declarative 
representation of the different kinds of knowledge in 
terms of logical relations and is naturally adapted for 
the exploration of a search space. A counterpart of this 
choice is the performance of execution, but this point 
becomes secondary since the model construction part of 
AIMD is made off line.  

 

Scenario-independent inputs 
 
Library of fragments 

Ideally, a library of generic components should consist 
of "context-free" component models that adhere to the 
"no function in structure" principle [de Kleer & Brown 
1984]. The definition of the library of components 
respects this principle. This is possible since the 
modeling process takes into account, explicitly, other 
sources of knowledge. That means that for a given 
component the fragment selection task could pick up 
one specific fragment of model in the library even if 
this selection is aberrant from a global point of view. 
That doesn't matter, the fragment will be rule out in the 
successive tasks and other fragment of the same 
component will be considered. 
Each component, in a given domain, has one or more 
associated model fragments, from the simplest one to a 
most complex one. Complexity is defined as the 
number of bond graph elements from which a model 
fragment is composed. It forms a partial order relation.  
For example, a motor can be represented by 5 model 
fragments, one of complexity 1 (GY), one of 
complexity 2 (GY+R), two of complexity 3 (GY+R+C 
and GY+R+I) and finally one of complexity 4 
(GY+R+C+I). The previous elements stand for GY= 
gyrator, R= coil resistance, C= coil capacitance, I= coil 
inductance.  
The complexity of a whole model, will be the sum of 
the complexities of all its fragments. 
The following “component” predicates are used to 
represent these model fragments of a motor in the 
electric-mechanical domain: 
 
component(motor, electric-mechanical, 1,  

description(input(A),output(A),[A],[A-gy])). 
 
component(motor, electric-mechanical, 2, 

description(input(A),output(B),[A,B,C], 
[bond(A-gy,B-1), bond(B-1,C-r)])). 

 
component(motor, electric-mechanical, 3,  

description(input(A),output(B), 
[A,B,C,D],[bond(A-gy,B-1),bond(B-1,C-r), 
bond(B-1,D-c)])). 
 

component(motor, electric-mechanical, 3, 
description(input(A),output(D),[A,B,C,D,E], 
[bond(A-1,B-i),bond(A-1,C-gy),bond(C-gy,D-
1), bond(D-1,E-r)])). 

 
component(motor, electric-mechanical, 4,   

description(input(A),output(B), 
[A,B,C,D,E],[bond(A-gy,B-1), 
bond(B-1,C-r),bond(B-1,D-i),bond(B-1,E-

c)])). 
 
Each fragment is represented by: 
 a name: the same one must be used for the 

component in the device description; 
 a domain: simple physical domain, or joined 

domains to represent a transformation from one 
domain to another as in the example of the motor. 
A component could be presented in different 
domains. For example a tank could be present in 
the hydraulic domain and in the thermal domain; 

 an integer representing the fragment complexity; 
 a description (i.e. bond graph) composed by: (a) 

input and output of the bond graph, in order to be 
linked to other component' fragments, (b) the list of 
Prolog variables each of which refers to a node in 
the bond graph, and, finally, (c) a list of bonds 
between nodes. A node is represented by a couple 
name-type, where name is a Prolog variable and 
type is the type of the element (i, c, r, gy) or the 
junction (1, 0). For example the fourth fragment of 
the motor corresponds to the bond graph of figure 
4. 

 

   
 
 

Figure 4: A fragment model of the component: motor 
 
Knowledge about modeling hypotheses of 

physical systems  

As we mentioned before, a component may have 
several model fragments corresponding to various 
situations of use, and depending on the presence or not 
of particular physical phenomena.  
In each model fragment there is an indication on the 
subjacent modeling hypothesis implicitly used. This 
indication is obtained from the elements presented in 
the bond graph. All we need to do, thus, is to provide a 
correspondence about these elements and the physical 
phenomena. This is achieved by defining a set of 
« corresponds » relation. Some of these relations are 
given below:  
 
 corresponds(friction,r). 
 corresponds(dissipation,r). 
 corresponds(compressibility,c). 
 
Furthermore, we don't need the library to contain, for a 
particular component, all the possible model fragments. 
A tube, for example, can be represented either by one 

component(motor, electric-mechanical, 3, 
 
description(input(A),output(D),[A,B,C,D,E], 
    [bond(A-1,B-i), bond(A-1,C-gy), 
     bond(C-gy,D-1),bond(D-1,E-r)])). A-1

B-i



 

of the following elements: C, I, or R, which correspond 
to three modeling hypotheses, or by one of their 
combinations (see figure 5 below). Actually, these 
hypotheses do mean respectively:  
H1: compressible fluid (flexible walls); H2: inviscid 
liquid (long and narrow tube); H3: viscous liquid 
(rough walls). 
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Figure 5: Graph of the possible model fragments of a 

tube 

 
It appears that beyond the second level of the above 
graph (starting from the bottom), it is unnecessary to 
encumber the library with the rest of the fragments, 
which can be obtained by combining the basic ones. 
This choice constitutes an improvement compared to 
the graph of models in [Addanki & al. 1991], which 
enumerates and represents all the combinations. The 
mutually exclusive hypotheses are grouped in a same 
class [Falkenhainer & Forbus 1991], in such a way that 
all the combinations involving both hypotheses are 
discarded. For example: 

class(tube,[corresponds(viscosity,r),  

corresponds(compressibility, c)]). 

 

Scenario dependent inputs 
 
The device structure 

The device structure representation is an abstracted 
view (model) of the physical system. It is Component-
Connection oriented, and, thus, contains the description 
of system components, relations (including 
connections) between component terminals, and the 

specification of the inputs as well as the outputs of the 
system.  
Let us, consider the structure description of our case 
study presented in figure 1. The declarative description 
(equivalent to the schematic description of figure 2) is 
given below: 
 
input ([]). 
output (tank2-hydraulic). 
set_of_relations([ 
connection(electric,[battery-1],[motor-
1]), 
connection(mechanical,[motor-1], [pump-
1]), 
connection(hydraulic, [pump-1],  [pipe-
2]), 
connection(hydraulic, [pipe-1],  [pump-
1]), 
connection(hydraulic, [tank-1],  [pipe-
1]), 
connection(hydraulic, [pipe-2],  [tank-
2])          

]). 
 
In addition to the “connection” relation, other kinds 
of relations can be used in AIMD, to allow someone to 
represent relations such as a heat transfer.  

 
Modeling Hypotheses 

The variety of model fragments of each component are 
due to the various modeling hypotheses one can 
consider when representing a physical system. The user 
is allowed to state explicitly such modeling hypotheses 
about the device at hand: an a-priori set can be stated, 
using “consider” predicates like in [Falkenhainer & 
Forbus 1991]. For example: “consider the friction in the 
motor”, which is represented as following:  
 
consider(mechanical,friction, motor-1). 
 
These hypotheses are used to index the model 
fragments in the library. It means that, they are 
explicitly represented in each model (in terms of bond 
graph elements).  When such information is available, 
AIMD do not explore all the possible combinations of 
model fragments, but picks out those with the 
appropriate elements to meet hypotheses. In our case 
study, since there exist a knowledge that states a 
correspondence between friction and "r", AIMD will 
consider only the model fragments associated to the 
motor component in the mechanical domain that 
contain the element "r" in their description. 

 
Behaviour Constraints 

In addition to the description of the system’s structure 
and the modeling hypotheses, inputs to AIMD could 
include a set of behaviour constraints. A behaviour 



 

constraint describes in qualitative terms one possible 
dynamic behaviour of some device variables.  
The representation of these expected behaviours is done 
through a “constraint” predicate: 
 
constraint(<component>,<variable>, 

<segment>). 
 
 It specifies the physical component and the concerned 
variable within it, as well as an ordered list of couples 
(value, derivative) for this variable, describing its 
expected dynamic behaviour in qualitative terms 
(segment). The qualitative space considered in our 
study is {-, 0, +}. 
For example, the following constraint: “when the 
source tank becomes empty, the motor speed 
increases”, is represented by the couple of constraints: 
 
constraint(motor-1,speed,  

[(0,+),(+,+),(+,+)]). 
constraint(tank-1,volume, 

[(0,–),(–,–),(–,0)]). 
 

Figure 6 shows graphically the evolution of these 
variables. 
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Figure 6: Graphical representation of the pump 

constraints 
 
Each segment is a succession of time points and time 
intervals, such as in QSIM representation [Kuipers 
1986]. All the couples of values for each variable are 
represented for the same times. 
Each time point has the 0 value for at least one variable 
or for his derivative. This point time corresponds to a 
change for the sign or evolution of a variable. 
 
 

Modeling Process 
 
The modeling process consists of the following tasks: 
 
Selection of model fragments 

The inputs to this task are the structural description of a 
system to be modelled and a set of modeling 
hypotheses. For each component in a given domain, the 
model selection procedure consists in choosing the 
simplest model that doesn’t contradict the set of the 
modeling hypotheses. Initially, this set may include an 
a-priori list of explicit modeling hypotheses; otherwise, 
the selection procedure takes the simplest model of 
each component. Successive selections are made 
increasing the degree of complexity of fragments 
starting with the least complex ones.  
If we consider a device with n components, and an 
average complexity degree of p, then the search space 

will cover all the pn combinations. Fortunately, these 
combinations are not explored totally, and AIMD 
allows for the application of two research strategies. 
The modeling process could produce either: 
 The first parsimonious model (least complex) 

satisfying the criteria, by the application of a 
branch and bound search, or 

 The first model (not necessarily parsimonious) 
satisfying the criteria by the application of a depth-
first search. The depth-first search means that one 
component, at a time, has to be made more 
complex. 

 
Fragment Assembling 

Fragment assembling is made according to the 
structural description and some compositional rules. 
Once the assembling is performed, AIMD analyses the 
whole model to detect if it could be acceptable from the 
point of view of causality (i.e. the obtained model must 
have a plausible causality). If it is not the case, a 
component is chosen to be altered and its actual 
fragment is replaced with the next more complex one. 
The obtained model is given in terms of a bond graph 
(with an affected causality) from which a set of 
qualitative equations is derived. 
Furthermore, AIMD uses the following compositional 
rules: 
1. a connection between two components is 

considered as a serial one:  
connection(domain, [o1], [i1]) 
a serial connection is represented by a bond 
relating the model fragments of the two 
components; 

2. a connection involving many-to-many components:  
connection(domain,[o1,o2,...,on], 
    [i1,i2, ..., in]) 



 

is considered as a serial connection between the 
two lists of components, and as a parallel one 
between the components of each list; 

3. a parallel connection is represented by a junction (0 
or 1 depending on the domain); 

4. when a component is declared in the list of inputs 
(structure description), a source of effort or flow is 
added to it's model fragment (exogenous variable); 

5. when a component is declared in the list of outputs, 
a resistive element is added to it's model fragment;  

6. when different perspectives (domains) are possible 
for the same component, an information bond is 
introduce between the different points of view. 

 
At this stage, AIMD tries to assign the causality bars to 
the bond graph. This procedure, described in 
[Rosenberg & Karnopp 1983] and in [Top & Akermans 
1991], may lead to two cases:  
1. a conflict of causalities: we must, thus, loop 

(backtrack) to the selection task to pick up other 
fragments (we choose a more complex fragment 
for one component); 

2. the procedure is successful: we continue with the 
next task (if there are many solutions, we have to 
cope with all these possible models (i.e. this 
represents a non deterministic point during the 
modeling process). 

 
Model verification 

In a nutshell, the purpose of verification is to get 
confident about the device model. This is crucial to 
handle the diagnosis task: when a discrepancy between 
what is observed and what is intended is detected, there 
is no doubt that something is wrong with the device, so 
we never incriminate the model in use. 
For the purpose of verification, a set of qualitative 
differential equations is derived from the bond graph. 
We can now provide the following definition: A model 
is said to satisfy a (or a set of) behaviour constraint(s), 
if we find a matching between one of the possible 
simulated behaviours and the expected one. 
 
In order to be able to compare simulated behaviours 
with the expected one, AIMD uses a table of 
correspondences between external variables used to 
state the behaviour constraint (like speed) and the 
internal variables of the bond graph (like "f"). Some or 
this correspondences are described in table1. 
 

 
 
 
 
 
 
 
 
 
 

TABLE 1: Correspondence relation 
 
We use a QSIM [Kuipers 1986] like simulation in order 
to simulate the behaviour(s) of a model. Adapting to the 
bond graph formalism, we elaborated the following 
qualitative differential equations (QDEs): 
 add(Y, [(X1, s1), …, (Xn, sn)]): represents the 

sum of efforts or flows in a junction, 
Y =  (si) Xi, where si are the signs (+, –) of each 

Xi variable; 

 equal([X1, …, Xn]): represents the equality of 
efforts or flows in a junction, X1 =…= Xn; 

 int(Y, X): integration relation used in the case of a 
C or I element (Y and X are either efforts or 
flows), Y =  X dt; 

 mon(Y, X): a monotonic function used for a R, TF 
or GY element.  

 
We adopt the time alternation between time points and 
time intervals [Kuipers 1986], and adapt it to the 

qualitative variables domain {–, 0, +}6. As a result, we 
obtain 15 P-transitions and 15 I-transitions which are 
valid between each ([x], [x'])1 state and a next ([x], 
[x'])2 state. 
 
The verification algorithm can be described as 
following: 
1. Input: 

 the set of qualitative differential equations 
(obtained from the bond graph); 

 the expected dynamic behaviour 
(segment);  

 a partial initial state (represented by the 
first state of the segment).  

2. Simulation/Comparison: 
 If the current (or initial) state is 

incomplete7  
Then complete this state by 

propagating its values through the QDEs; 

                                                           
6 We also allow the “?” value. 
7This is the case in most of the situations, either because 
we’ve got “?” values, or because the segment does not 
concern all the system variables. 

correspondence(hydraulic, pressure,  e). 
correspondence(hydraulic, flow,   f). 
correspondence(mechanical, force,   e). 
correspondence(mechanical, speed,   f). 
correspondence(electric, tension,   e). 
correspondence(electric, courant,   f). 
correspondence(thermal, temperature, e). 
correspondence(thermal, energy_flow, f). 



 

 A next state is determined following these 
stages: 

a) We apply the simulation algorithm 
inspired from QSIM [Kuipers 1986] 
to produce a set of new current 
qualitative states; 
b) Compare the current state in the 
segment with the current qualitative 
states. Eliminate those states from the 
current qualitative states, which do 
not match the segment.  

3. Output/Loop: 
 If the set of current qualitative states is 

empty (i.e. there is no state that can match 
the current state in the segment) then 
verification fails and the process 
backtracks to the last non-deterministic 
point, 

 Else, if the simulation reaches a state 
corresponding to the last state in the 
segment, then stop, the model satisfies the 
constraints, 

 Else go to 2 (Simulation/Comparison). 
 

Results 
 
Let us consider several modeling scenarios of our case 
study. Each modeling scenario corresponds to a 
combination of modeling hypotheses and behaviour 
constraints, which are as following: 
 
Modeling hypotheses: 
Hy1: consider(dissipation,hydraulic, 

pipe-1). 
Hy2: consider(dissipation,hydraulic, 

pipe-2). 
 
Behaviour constraints: 
Cst1: constraint(pressure,tank-1, 
   [(0, -), (-, -), (-, 0)]). 
Cst2:  constraint(flow,tank-2,   

[(0, +), (+, +), (+, 0)]). 
 
Table 2 summarises the results obtained for each 
scenario (we present here 8 scenarios). For each 
scenario AIMD produce a parsimonious model. The 

crosses mean that a hypothesis or a constraint has been 
considered: 
Models obtained for the scenarios are shown below. 
We remark that different scenarios may give rise to 
identical models: a) for scenarios 1, 4 and 7, b) for 
scenarios 2, 5 and 6, and finally c) for scenarios 3 and 
8. These models are presented in figure 7. 
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Figure 7: Obtained models 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 



 

 Scenario 

1 

Scenario 

2

Scenario 

3 

Scenario 

4

Scenario 

5

Scenario 

6

Scenario 

7 

Scenario 

8 

Hy1         

Hy2         

Ct1         

Ct2         

Time (sec) 1,18 0,62 1 4,22 400,87 14,68 3,80 28,93 

Inferences 23493 12715 20998 73141 7368638 268714 64053 534983 

Obtained 

Model 

a b c a b b a c 

TABLE 2: Modeling scenario 
 

To ease the understanding of the graphs, note that C1 and 
C2 represent tank 1 and tank 2, R1 and R2 represent pipe 
1 and pipe 2, TF represents the pump and GY the motor, 
whereas Se is used for the tension. 
These modeling scenarios were very instructive, and as 
we can see from the table 2, we can point out the 
following conclusions: 
 As much as we consider modeling hypotheses, as fast 

as is the modeling process. Indeed, the model 
fragments are, in that case, picked up more 
accurately; 

 The model verification, and particularly the 
qualitative simulation, is the most time consuming 
task; 

 
Diagnosis session presented in section 2 is based on the 
use of model c and its derived causal graph (figure 8). For 
more details about the diagnosis task as handled by 
AIMD the reader can refers to [Ahriz & Xia 1997]). 
Others causal-model based diagnosis systems are 
described in  [Mosterman & Biswas 1996], [Tomasena & 
al.1992] and  [Console & al. 1989]. 

 A modeling hypothesis may be equivalent to the 
specification of a behaviour constraint (the same 
model can be obtained). As a future work, we are 
going to look closely to the relation between 
behaviour constraints and hypotheses in order to 
avoid simulation when an equivalence can be found; 

 Even in the absence of modeling hypotheses and 
behaviour constraints, the modeling process doesn’t 
lead necessarily to the simplest model, as the 
causality assignment can fail when applied on the 
latter. It appears, then, that the causality assignment 
is, implicitly, considering modeling hypotheses, 
which may be forgotten by the user of AIMD. This 
characteristic is quite interesting, as we are able to 
present the missing hypotheses to the user. 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8: Bond graph and causal graph corresponding to 
model c 
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Conclusion 
 
The Compositional point of view of the modeling task is 
the basis of our modeling framework. This approach 
requires first to break a physical system into smaller parts 
(components) and then to assemble the system from the 
parts. Bond graphs modeling greatly facilitates this 
requirement since it reposes on the structure of the system 
and offers an uniform formalism for the definition of 
generic component models which is an important step 
through a library of reusable models. The nature of our 
modeling approach is intrinsically non-deterministic and 
requires the exploration of a search space. Different 
models are checked to be consistent with a set of 
behaviour constraints and modeling hypotheses provided 
by the user. Results show that there is a close relation 
between behaviour constraints and modeling hypotheses, 
further studies are necessary to understand this relation in 
order to avoid simulation during the model verification. 
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