

AUTHOR(S):

TITLE:

YEAR:

Publisher citation:

OpenAIR citation:

Publisher copyright statement:

OpenAIR takedown statement:

 This publication is made
freely available under
________ open access.

This is the ______________________ version of an article originally published by ____________________________
in __
(ISSN _________; eISSN __________).

This publication is distributed under a CC ____________ license.

__

Section 6 of the “Repository policy for OpenAIR @ RGU” (available from http://www.rgu.ac.uk/staff-and-current-
students/library/library-policies/repository-policies) provides guidance on the criteria under which RGU will
consider withdrawing material from OpenAIR. If you believe that this item is subject to any of these criteria, or for
any other reason should not be held on OpenAIR, then please contact openair-help@rgu.ac.uk with the details of
the item and the nature of your complaint.

Evaluating Degrees of Isolation between Tenants
enabled by Multitenancy Patterns for Cloud-hosted

Version Control Systems (VCS)

Laud Charles Ochei, Andrei Petrovski

School of Computing Science and Digital Media
Robert Gordon University

Aberdeen, United Kingdom
Emails: {l.c.ochei,a.petrovski}@rgu.ac.uk

Julian M. Bass

School of Computing, Science and Engineering
University of Salford

Manchester, United Kingdom
Email: J.Bass@salford.ac.uk

Abstract
When implementing multitenancy for cloud-hosted appli-

cations, one of the main challenges to overcome is how
to enable the required degree of isolation between tenants
so that the required performance, resource utilization, and
access privileges of one tenant does not affect other tenants.
This paper applies COMITRE (COmponent-based approach
to Multitenancy Isolation Through request RE-routing) to
empirically evaluate the degree of isolation between tenants
enabled by multitenancy patterns for cloud-hosted Version
Control System (VCS). We implemented three multitenancy pat-
terns (i.e., shared component, tenant-isolated component, and
dedicated component) by developing a multitenant component
using the FileSystem SCM plugin integrated within Hudson.
The study confirmed that dedicated component provides the
highest degree of isolation between tenants (compared to
shared component and tenant-isolated component) in terms of
error% (i.e., the percentage of errors with unacceptably slow
response times) and throughput. The system load of tenants
showed no variability, and hence did not influence the degree of
tenant isolation for all the three multitenancy patterns. We also
provide a summary of recommended multitenancy patterns for
optimizing performance and utilization of resources for cloud-
hosted software services, as well as recommendations to guide
an architect in implementing multitenancy isolation on similar
VCS tools like Subversion and CVS.

Keywords—Degree of Isolation, Cloud Deployment Pattern,
GSD tools, Multitenancy, Tenant, Version Control System.

1. Introduction

One of the main challenges of implementing multitenancy
is how to ensure that there is isolation between tenants (here-
after referred to as multitenancy isolation) sharing components
of an application, for example, a cloud-hosted application [1]
[2] [3]. As software tools are increasingly being deployed on
the cloud for software development, there is need to properly
isolate a tenant’s code files and processes so that the required
performance, resource utilization, and access privileges of one
tenant does not affect other tenants.

There are varying degrees of isolation between tenants

when sharing application components. For example, special
configurations of individual tenants, laws and corporate reg-
ulations may impose a higher degree of isolation between
tenants sharing a particular component. The challenge for a
cloud deployment architect would be how to select the right
multitenancy patterns(or combinations of patterns) to resolve
the trade-offs between the required performance, systems re-
sources and access privileges at different levels of a cloud-
hosted application.

Motivated by this problem, this paper applies COMITRE
(Component-based approach to Multitenancy Isolation through
Request Re-routing (COMITRE) [2] to empirically evaluate
the degree of isolation between tenants enabled by multite-
nancy patterns under different cloud deployment conditions.
Fehling et al [1], captured the degree of isolation between
tenants in three multitenancy patterns, and also proposed that
the degree of isolation between tenants is the main difference
between these patterns. However, these patterns have never
been evaluated to measure the actual degree of tenant isolation
for applications within the domain of cloud-hosted VC sys-
tems, such as Subversion, CVS, and Perforce. Version control
is a key software development practice used to support teams
involved in Global Software development [4][2][5].

The research question this paper addresses is: “How can
we evaluate the degree of isolation between tenants enabled
by multitenancy patterns for cloud-hosted Version Control
System”. By evaluating the degrees of multitenancy isolation,
we mean comparing the effect of performance (e.g., response
times) and resource utilization (e.g., CPU) on tenants accessing
an application component deployed based on different mul-
titenancy patterns when one of the tenants experiences high
workload. Three multitenancy patterns (i.e., shared component,
tenant-isolated component and dedicated component) were
implemented by exposing the functionality of each pattern as
a plugin integrated with Hudson deployed on a private cloud.
(i.e., Ubuntu Enterprise Cloud). Thereafter, we evaluated the
degree of isolation for each pattern both at the process isolation
and data isolation levels, as it affects tenants’ interaction with
Version control system.

The main contributions of this paper are:
1. Applying COMITRE to implement multitenancy isolation
for cloud-hosted version control system.

2. Empirically evaluating the degree of isolation between
tenants enabled by multitenancy patterns under different cloud
deployment conditions.
3. Presenting a summary of recommended multitenancy pat-
terns and their implications for GSD tools and processes based
on different cloud deployment scenarios.
4. Presenting recommendations and best practice guidelines to
guide a cloud deployment architect when implementing mul-
titenancy isolation on a cloud-hosted Version Control system.

The rest of the paper is organized as follows - Section two
gives an overview of the basic concepts related to deployment
patterns for Cloud-hosted GSD tools, with particular reference
to multitenancy patterns, and tenant isolation. In Section
three, we discuss the research methodology including GSD
tool selection and the application of COMITRE to implement
multitenancy isolation. Section four presents the evaluation
which covers the experimental design, setup and procedure.
In Section five, we present the results of the study and then
go on to discuss the implications of the results in Section
six. The recommendations and limitations of the study are
detailed in Section seven and eight respectively. Section nine
concludes the paper with future work.

2. Multitenancy Patterns for Cloud-hosted GSD Tools

In this section, we discuss the concept of Global
Software Development tools, Cloud-hosted GSD tools, and
Multitenancy isolation. We also present some definitions
related to these concepts.

2.1. Cloud-hosted GSD Tool and Software Processes

Definition 1: Global Software Development. Global Software
Development means the splitting of the development of the
same software product or service among globally distributed
sites [6].
Definition 2: Cloud-hosted GSD tools. “Cloud-hosted GSD
tools” are collaboration tools used to support GSD processes in
a cloud environment [5]. We adopt the: (i) NIST Definition of
Cloud Computing to define properties of cloud-hosted GSD
tools; and (ii) ISO/IEC 12207 as a classification frame for
defining the scope of a GSD tool. Three examples of widely
used Global software development processes are: continuous
integration, version control and issue/error tracking [4] [5]. In
the next section, we will discuss about version control which
is the focus of this paper.

2.2. Relevance of Version Control Process in Global
Software Development

Definition 3: Version Control. Version control is the process
of tracking incremental versions of files and, in some cases,
directories over time, so that specific versions can be recalled
later [7]. In Global software development, version control
systems are being relied upon as a communication medium
for developers in a software development team. For example,
viewing past revisions and changesets is a valuable tool to see
how a project has evolved and for reviewing teammates code.

Cloud-hosted software services play an important role
in Software Development Life Cycle. In Global Software
Development, cloud-hosted Version Control Systems are used

to ensure that changes happening across different environments
(some of which may be static data centres) are properly mon-
itored and controlled across various layers and environments
of an application software [8].

There are two main categories of version control systems:
centralized (e.g., Subversion) and distributed (Git and Mer-
cury). This paper focuses on the centralized version control
system, which works in a client and server relationship. That
is, the repository is located in one place and provides access
to many clients. It can be likened to a scenario where an FTP
client connects to an FTP server. All changes and commits by
users are sent and received from the central repository.

2.3. Cloud Deployment Patterns for Multitenancy
Isolation

Definition 4: Cloud deployment patterns. “Cloud deploy-
ment patterns” are architectural patterns which embody de-
cisions as to how elements of the cloud application will
be assigned to the cloud environment where the application
is executed [5]. The notion of Cloud deployment pattern is
similar to the concept of (architectural) deployment patterns
[9], cloud computing patterns [1]. Architectural and design
patterns have long been used to provide known solutions to
a number of common problems facing a distributed system
[10, 9].
Definition 5: Multitenancy isolation. We define “Multi-
tenancy isolation” as a way of ensuring that the required
performance, stored data volume and access privileges of one
tenant does not affect other tenants accessing the compo-
nent/functionality of a shared application component.
Definition 6: Application Component. We present an in-
formal definition of an “Application Component” as an en-
capsulation of a functionality that is shared between multiple
tenants. An application component could be a communication
component (e.g., message queue), data handling component
(e.g., databases, tables), processing component (e.g., load
balancer), or a user interface component (e.g., AJAX).

2.4. Evaluating Degree of Multitenancy Isolation

Multitenancy isolation can be captured in three main cloud
patterns: shared component (i.e., tenants share the same re-
source instance, and are unaware of other tenants), tenant-
isolated component (tenants share the same resource and their
isolation is guaranteed) and dedicated component (i.e., tenants
do not share resource, though each tenant is associated with
one instance (or certain number of instances) of the resource)
[1].

The three main aspects of tenant isolation are: performance,
stored data volume and access privileges [1]. For example,
in performance isolation, other tenants should not be affected
by the workload created by other tenants. Any of the three
multitenancy patterns can be used to achieve varying degrees
of isolation between tenants. The dedicated component gives
the highest degree of isolation but at a high running cost and
high resource consumption. The shared component gives the
lowest degree of isolation but allows for better resource sharing
leading to better resource utilization.

The lack of performance guarantee (i.e., performance iso-
lation) is one of the major challenges facing users of cloud-
hosted applications. Guo et al [11] evaluated different isolation

capabilities related to authentication, information protection,
faults, administration etc. A closely related work to ours is
that of Walraven et al. [12] where they implemented a mid-
dleware framework for enforcing performance isolation. The
authros used a multitenant implementation of a hotel booking
application deployed on top of a cluster for illustration. Krebs
et al [13] implemented a multitenancy performance benchmark
for web application based on the TCP-W benchmark. Krebs
et al. [14] acknowledged that performance related issues are
often caused by a minority of tenants with high workloads.

The focus of this paper is providing empirical evidence
of the effect of performance and resource utilization on
other tenants due to high workload created by one of the
tenants. We implemented multitenancy component using the
FileSystem SCM plugin integrated into Hudson in a real cloud
environment. The implementation represents a typical cloud
deployment of a version control system based on a particular
multitenancy pattern.

3. Methodology

This section presents the methodology used in this study:
the selection of GSD tools and processes, application of the
COMITRE to implement multitenancy isolation and validation
of the implementation.

3.1. Selecting the GSD Tools and Software Processes

There are several software processes that have been found
to have the highest impact on Global Software Development.
Examples of three key processes are: continuous integration,
source/version control and issue/bug tracking [5, 15]. We
conducted an empirical study in a previous study to select three
open-source GSD tools (i.e., Hudson, Subversion and Bugzilla)
to represent these software processes (see Ochei et al. [5]).
The empirical study was conducted to find out: (1) the type of
GSD tools used in large-scale distributed enterprise software
development projects; and (2) what tasks/software processes
they utilize the GSD tools for. See Ochei et al [5] and Bass [15]
for details. This paper focuses on applying our approach (i.e.,
COMITRE) to implement multitenancy in a version control
system.

3.2. Applying COMITRE to Implement Multitenant
Isolation

We applied COMITRE to evaluate multitenancy Isolation
in a Version Control system. Fig. 1 shows the structure
of COMITRE. It captures the essential properties required
for the successful implementation of multitenancy isolation,
while leaving large degrees of freedom to cloud deployment
architects depending on the required degree of isolation be-
tween tenants. The actual implementation of the COMITRE
is anchored on shifting the task of routing a request from the
server to a separate component (e.g., Java class or plugin) at
the application level of the cloud-hosted GSD tool. The full
explanation of COMITRE plus the step-by-step procedure and
the algorithm that implements it is given in Ochei et al [2].

In this study, we used the File System SCM plugin to illus-
trate the version control process because we wanted to simulate
the process on a local development machine. Specifically, we
want to point the build configuration to the locally checked out

Figure 1. COMITRE Architecture

code and modified files on a shared repository residing on a
private cloud. Filesystem SCM plugin can be used to simulate
the file system as a source control management (SCM) system
by detecting changes such as the file system’s last modified
date [16]. This plugin can be integrated into several GSD tools:
continuous integration systems (e.g., Hudson), version control
systems (e.g., perforce, Git) and error/issue tracking system
(e.g., JIRA). Other options to implement multitenancy are: (i)
SVNKit, an open-source library; and (ii) Subversion repository
hooks (i.e., a script invoked by a repository event) [7].

We integrated the Filesystem SCM plugin into Hudson
because we are assuming a scenario where a code file is
checked into a shared repository for Hudson to build. Multi-
tenancy implementation is achieved by modifying this plugin
within Hudson. This involved introducing a Java class into
the plugin which accepts a file path and the type of file(s) that
should be included when checking out from the repository into
Hudson workspace. During execution, the plugin is loaded into
a separate class loader to avoid conflict with Hudson’s core
functionality.

3.3. Validating the Implementation of Multitenancy
Isolation

We validated our approach (i.e., COMITRE) for imple-
menting multitenancy isolation both in theory and in practice.
We first validated each multitenancy pattern in theory as
follows: (i) carefully analyzed the class diagrams and descrip-
tion of the implementation of the three multitenancy pattern
as presented by Fehling et al [1] and other related sources
[17] [18]; (ii) systematically cross-checked our implementation
against that proposed by other researchers; and (iii) Examined
that our implementation is compliant with how clients (i.e.,
tenants) access a multitenant component.

We also demonstrate the practicality of our approach by
applying it to implement the three multitenancy patterns on
FileSystem SCM plugin integrated within Hudson., a widely
used open-source GSD tool for continuous integration. Experts
and researchers in the field of cloud deployment patterns
and Global Software Development have confirmed that the
implementation of multitenancy isolation, together with the
output, represents the behaviour of tenants interacting with a
shared functionality/component of a cloud-hosted application.

4. Evaluation

In this section, we present the experimental design, setup
and procedure used for the study.

4.1. Experimental Design and Statistical Analysis

A set of four tenants (T1, T2, T3, and T4) are configured
into three groups to access an application component deployed
using three different types of multitenancy patterns (i.e., shared
component, tenant-isolated component, and dedicated compo-
nent). Each pattern is regarded as a group in this experiment.
We also created two different scenarios for all the tenants
(see section 4.3 for details of the two scenarios). In addition,
we also created a treatment for configuring T1 (see section
4.2 for details of the treatment). For each group, one of the
four tenants (i.e., T1) is configured to experience a demanding
deployment condition (e.g., large instant loads) while access-
ing the application component. Performance metrics (e.g.,
response times) and systems resource consumption (e.g., CPU)
of each tenant are measured before the treatment (pre-test) and
after the treatment (post-test) was introduced.

Based on this information, we adopt the Repeated Mea-
sures Design and Two-way Repeated Measures (within-
between) ANOVA for the experimental design and statistical
analysis respectively, as previously used by Ochei et al [2]. The
aim of the experiment is to evaluate the degrees of isolation of
multitenancy patterns for cloud-hosted Version Control system.
The hypothesis we are testing is that the performance and
system’s resource utilization experienced by tenants accessing
an application component deployed using each multitenancy
pattern changes significantly from the pre-test to the post test.

4.2. Experimental Setup and Procedure

The experimental setup consist of a private cloud setup
using Ubuntu Enterprise Cloud (UEC), an open-source private
cloud software that comes with Eucalyptus. The private cloud
consist of six physical machines- one headnode and five sub-
nodes based on the typical minimal Eucalyptus configuration.
A summary of the experimental procedure we adopted can be
seen in Ochei et al [2].

A typical version control process during Global Software
Development involves a combination of continuous integration
(i.e., building a code file), checkouts (i.e., file download),
checkins (i.e., file upload), and updating and synchronizing
files with the latest version from the repository. A detailed
experimental procedure considered in this paper translates into
the following steps:
1. The first step is to put a new file to the repository for the
first time. To achieve this, we used the HTTP request sampler
in JMeter to send request to Hudson to trigger a build. Within
Hudson, we used the ”Execute Shell” feature to execute a shell
script. This shell script simply selects the initial contents of a
MySQL database (i.e., used here to represent a shared data
handling component) and then outputs it into two separate
files (referred to as file1 and file2). The first file (i.e., file1)
represents the local working copy and the second file (i.e.,
file2) represent the main copy.
2. The second step is to checkout the copy of the new file
to the local machine. To implement this in JMeter, we used
the FTP request sampler and then selected the get (RETR)

to download the file from the repository. In effect, this action
downloads file1 from the repository into a local machine and
saves it as file3.
3.The third step involves making changes to the file by
inserting records into the Mysql database and then outputting
the latest content to the local working copy. To simulate this we
used a BeanShell Sampler in JMeter to invoke a custom Java
class. This Java class is specifically written to insert records
into MySQL database, and then to update file3 with the latest
content of the database.
4.The last step is to checkin file3 back into the repository with
a timestamp message (”Row added at 2015-01-01-00.00.01”).
To implement this in JMeter, we again used the FTP request
sampler and then selected the put (STOR) to upload the file
to the repository and append the content to file2.

To measure the effect of tenant isolation, we introduce a
tenant that experiences a demanding deployment condition. We
configured tenant 1 to simulate a large instant load by:
(i) increasing the number of requests using the thread count
and loop count; (ii) increasing the size of the requests by
attaching a large file to it; (iii) increasing the speed at which
the requests are sent by reducing the ramp-up period by one-
tenth, so that all the requests are sent ten times faster; and (iv)
creating a heavy load burst by adding the Synchronous Timer
to the Samplers in order to add delays between requests, such
that a certain number of request are fired at the same time.
This treatment type is similar to unpredictable (i.e., sudden
increase) workload [1] and aggressive load [12].

Each tenant request is treated as a transaction composed
of the three types of request: HTTP request, FTP request, and
File I/O operation. JMeter Transaction controller is introduced
to take the aggregate measurement of all the requests involved
in the end-to-end action sequence of the scenario. The setup
values for the experiment are as follows: (1) No of threads
= 2; (2) Thread Loop count = 5; (3) Loop controller count
= 4 for tenant 1, and 2 for all other tenants for each type of
request sent (i.e., HTTP request, Beanshell, and FTP request
samplers); (4) Ramp-up period of 6 seconds for tenant 1 and 60
seconds for all other tenants; and (5) Total number of expected
requests = 480. With this setup, it means tenant 1 sends two
times the number of requests of the other tenants, and also 10
times faster to simulate an aggressive load.

We perform 10 iterations for each run and used the values
reported by JMeter as a measure for response times, throughput
and error%. The error% is computed as the percentage of the
total number of request (i.e., in the end-to-end sequence of
version control process) whose response time is unacceptably
slow and above which the request is considered a failure.
Statistically, this translates to response time greater than the
upper bound of the 95% confidence interval of the average
response time of all requests. For system activity, we reported
the average CPU, memory, disk I/O and system load usage at
one-second interval.

4.3. Problem Scenarios for Illustrating Multitenancy
Isolation

We present two scenarios to evaluate the effect of multite-
nancy isolation at both data level and process level during
an automated version control process. Fig. 2 captures the
architecture of multitenancy Isolation at the data level. For
multitenancy isolation at the process isolation, the component

that is being shared is a lock object [2]. The two scenarios are
explained as follows:

1) Scenario 1 - Process Isolation during Version Control:
We used scenario 1 (i.e., Variation in request arrival rate) to
simulate process isolation. It represents a case where there
is variation in the frequency with which code changes are
committed to the source code to trigger a build process. To
simulate this behaviour in JMeter, we simply add the Gaussian
Random Timer to the Samplers.

2) Scenario 2 - Data Isolation during Version Control:
We simulate data isolation using scenario 2 (i.e., Lock dura-
tion) by configuring the data handling component in a way that
isolates the data of different tenants (see Fig. 2). This is related
to the concept of (i) locking used internally in version control
system (e.g., subversion) to achieve mutual exclusion between
users to avoid clashing commits or to prevent clashes between
multiple tenants operating on the same working copy [7]; and
(ii) database isolation level which is used to control the degree
of locking that occurs when multiple tenants or programs
are attempting to access a database used by a cloud-hosted
application [19]. In scenario 2, a tenant that first accesses an
application component locks (or blocks) it from other tenants
until the transaction commits. To simulate this behaviour in
JMeter, we use the JMeter Beanshell sampler to invoke a
custom Java class that runs a query that sets the database
transaction isolation level to SERIALIZABLE (i.e., the highest
isolation level).

Figure 2. Multitenancy Data Isolation Architecture

Figure 3. Changes in response time for each pattern relative to other
patterns-1

5. Results

We first performed the two-way (within-between) ANOVA
to determine if the groups had significantly different changes

Figure 4. Changes in error% for each pattern relative to other patterns-1

Figure 5. Changes in throughput for each pattern relative to other patterns-1

Figure 6. Changes in CPU for each pattern relative to other patterns-1

Figure 7. Changes in memory for each pattern relative to other patterns-1

from Pre-test to Post-test. Thereafter, we carried out planned
comparisons involving the following:
(i) a one-way ANOVA followed by Scheffe post hoc tests to de-
termine which groups showed statistically significant changes
relative to the other groups. The Dependent variable used in
the one-way ANOVA test was determined by subtracting the
Pre-test from Post-test values.
(ii) a paired sample test to determine if the subjects within any
particular group changed significantly from pre-test to post-
test measured at 95% confidence interval. This would give an
indication as to whether or not the workload created by one
tenant has affected the performance and resource utilization of

Figure 8. Changes in disk I/O for each pattern relative to other patterns-1

Figure 9. Changes in system load for each pattern relative to other patterns-1

other tenants. We used the “Select Cases” feature in SPSS
to select the three tenants (i.e., the T2,T3,T4 that did not
experience large instant loads) for each pattern and for each
deployment scenario giving a total of 6 cases for each metrics
which was measured.

To answer the questions outlined above, we analyzed the
plots of estimated marginal means of change shown in Fig.
3 to Fig. 9 in combination with ANOVA (plus post hoc test)
and paired sample test results from SPSS output. The quasi-
independent variable is nominally scaled in SPSS, and so
we changed the interpolation line to a bar chart to give a
meaningful interpretation of the result. Table 1 summarizes
the effect of Tenant 1 (i.e., the tenant that experiences high
load) on the other three tenants (T2, T2, T4). The key used
in constructing the table is as follows: YES - represents a
significant change between the metrics from pre-test to post
-test. NO - represents some level of change which cannot be
regarded as significant; no significant influence on the tenants.
The symbol “-” implies that the standard error of the difference
is zero and hence no correlation and t test statistics can be
produced. This means that the difference between the pre-test
and post test values are nearly constant with no chance of
variability. In the following, we present a brief discussion the
findings of the study based on the estimate of the marginal
means of change and paired sample test for scenario 1 and
scenario 2.
(1) Response times: The Post hoc test revealed that none of
the patterns showed significant change relative to the other
patterns. However, Table 1 (i.e., the paired sample t test)
showed that the response times of tenants changed significantly
from pre-test to post test for all the patterns, except tenant-
isolated under scenario 2. As the tenant-isolated component
is in the middle, most times the results are either close to
the shared component or dedicated component. As expected,
the plot of the estimated marginal means of change shows
that response times for shared component and tenant-isolated

component changed significantly the most for tenants exposed
to the deployment conditions of both scenarios.
(2) Error%: The patterns did not show significantly different
changes from pre to post test. The post hoc test showed that
that the groups did not change significantly in comparison to
the other groups. The paired t-test also showed that tenants also
did not change significantly from pre test to post test under all
the scenarios.
(3) Throughput: The statistical analysis showed that the pat-
terns had significantly different changes from Pre to Post for
tenants exposed to only the deployment conditions of scenario
1. None of the patterns showed a significant change relative to
the other patterns for scenario 2 (i.e., effect of lock duration).
Further analysis using the Post hoc test showed that there was
no significant difference between the Shared component and
the dedicated component. However, the paired sample t-test
revealed that the throughput of tenants changed significantly
from pre-test to post test for all the patterns in both scenarios.
(4) CPU and Memory usage: The statistical analysis of CPU
showed that the patterns had significantly different changes
from Pre to Post for both scenarios. The paired sample t-test
also showed that the CPU of tenants changed significantly from
pre-test to post test for all the patterns.

For memory, none of the patterns showed a significant
change relative to each other. The paired sample t-test revealed
that the memory of tenants changed significantly from pre-test
to post test only for theshared component.
(5) Disk I/O: The statistical analysis of disk IO showed that
the patterns had significantly different changes from Pre to
Post. Further analysis using the Post hoc test showed that the
change the shared component showed was not significant in
comparison to the change the dedicated component showed.
The paired sample t-test revealed that the disk I/O of tenants
changed significantly from pre-test to post test for all the
patterns under all the scenarios.
(6) System Load: Table 1 showed that system load (measured
as one-minute load average reported by SAR-ldavg) did not
show any variability in the values from pre-test to post-test.
This is similar to the result obtained in Ochei et al [2] where
the authors evaluated the degrees of multitenancy isolation for
cloud-hosted continuous integration using Hudson.

Figure 10. Changes in response time for each pattern relative to other
patterns-2

6. Discussion

(1) Response times: The results show that while none
of the patterns changed significantly in comparison to the
other patterns, the tenants within all the groups (i.e., the
patterns) changed significantly from pre-test to post-test when

TABLE 1. PAIRED SAMPLES TEST ANALYSIS FOR SCENARIO 1-VARIATION IN REQUEST ARRIVAL RATE

Pattern Response times Error% Throughput CPU Memory Disk I/O System Load
Scenario 1

Shared YES NO YES YES YES YES YES
Tenant-isolated YES NO YES YES NO YES -
Dedicated YES NO YES YES NO YES -

Scenario 2
Shared YES NO YES YES YES YES -
Tenant-isolated NO NO YES YES YES YES YES
Dedicated YES NO YES YES YES YES -

Figure 11. Changes in error% for each pattern relative to other patterns-2

Figure 12. Changes in throughput for each pattern relative to other
patterns-2

Figure 13. Changes in CPU for each pattern relative to other patterns-2

Figure 14. Changes in memory for each pattern relative to other patterns-2

Figure 15. Changes in disk I/O for each pattern relative to other patterns-2

Figure 16. Changes in system load for each pattern relative to other
patterns-2

one of the tenants is exposed to large instant workloads during
version control. From Fig. 3, one would recommend dedicated
component for carrying out version control process since it is
the least influenced among the three patterns. That is, we do
not recommend using shared component and tenant-isolated
component to improve response time.
(2) Error%: Based on Fig. 4, the error% of tenants accessing
the shared patterns changed the least among the three other
patterns for both scenarios. One would therefore recommend
the shared component when there is low bandwidth or slow
network connection. The most expensive part of a typical
version control system is retrieving data (e.g., FTP downloads)
from a shared repository [7]. The response times of key
individual components of the end-to-end action sequence of
the version control process, such as FTP upload and FTP
download, may have contributed to the extremely slow re-
sponse times for tenant-isolated and dedicated component. It
may be challenging to know what can be regarded as very
slow or extremely slow response times. Bauer and Adams
[20] recommend that the maximum acceptable service latency
(i.e., response time) should be 10-20 times greater than the
50th percentile for users of a cloud-hosted application. To
further avoid high response times which could lead to other
forms of errors, users of subversion, a widely used version
control system, are advised to access the shared repository

using accounts setup using svnserve or Apache HTTP server
with the right ownership and file permissions [7].
(3) Throughput: The plot of the estimated marginal means of
change from Fig. 5 showed a negative change. This means
that the throughput of other tenants actually decreased in
response to an increase in response times when one of the
tenants is exposed to large instant loads. We therefore would
recommend a dedicated component for tenants accessing a
shared application component since the estimated marginal
means of change remained unchanged in both scenarios in
comparison with the other patterns.
(4) CPU and Memory usage: Fig. 6 and Fig. 7 shows that
the magnitude of change in CPU consumption for scenario 1
was not consistent, although it was slightly more for shared
component than the other patterns. For scenario 2, response
times increased steadily across the three patterns with the
dedicated component being the most influenced. The dedicated
component is therefore not recommended as the multitenancy
pattern of choice for applications involved in a process that
may lock/block other tenants from accessing a shared ap-
plication component. For memory, the magnitude of change
for the shared component was clearly higher than the other
three patterns. Therefore we would not recommend the shared
component when using memory intensive applications or when
there is a need for a better memory utilization.
(5) Disk I/O: The change in disk I/O consumption for tenant-
isolated component and dedicated component was nearly the
same for tenants accessing the shared application component
deployed under scenario 1. Therefore there would be not
much difference if either of them is used. The change in
disk I/O consumption for shared component and dedicated
component was also nearly the same for tenants accessing a
shared application component deployed under scenario 2. Al-
though, there was no significant difference between the shared
and dedicated component we would still recommended the
dedicated component, since each tenant would have exclusive
access to the shared application component, thereby reducing
contention and high disk I/O consumption rate.
(6) System Load: From Table 1, it can be seen that system
load showed no chance of variability, especially for dedicated
component. This means that system load did not influence
any of the patterns when tenants were exposed to all the
deployment conditions considered in this study. This implies
that with a reasonably high-speed network connection, there
should be no problem with system load when a version control
system is used to send data across a shared repository residing
in a company’s LAN or VPN.

7. Summary of Recommended Multitenancy Patterns and
Implications for GSD Processes

Table 2 and 3 shows metadata that summarizes the rec-
ommended multitenancy patterns recommended patterns for
achieving isolation between tenants based on the two cloud
deployment scenarios considered in this study. Table 2 captures
Scenario 1 - Concurrent release of large instant loads, while
Table 3 captures Scenario 2 - Data locking during release of
large instant loads. The key used in constructing the table
is as follows: (i) the symbol X means that the pattern is
recommended; (ii) the symbol × means that the pattern is not
recommended; and (iii) the symbol - implies that there is no
difference in effect, and so any of the three patterns can be

used.
Most version control systems are generally not known to

consume much of IT resources such as CPU and memory.
However, there is still room to optimize the utilization of IT
resources which would guarantee a high degree of multite-
nancy isolation under varying request arrival rates and lock
duration. Several of the problems that occur in version control
relates to the fact that version control systems usually create
additional copies of files on the repository (especially the ones
that use the native operating system (OS) filesystem directly).
This adversely affects performance because these files occupy
more disk space than they actually use, and the OS spends a lot
of time seeking across many files on the disk. We summarize
the recommended patterns for scenario 1 (i.e., high variability
in requests arrival rate) as follows.
(i) Response times - Version control systems create additional
files on the repository. These files could grow very fast,
resulting in a situation where more time is spent searching
across large disks. Based on our analysis, we recommend
dedicated component for carrying out version control process
since it is the least influenced among the three patterns.
(ii) One aspect where the error% (i.e., unacceptably slow
response times) of request is of importance is when committing
large number of files to a repository that is directly based on the
native OS filesystem (e.g., FSFS). Delays usually arise when
finalizing a commit operation, which could cause tenant’s
request to time out while waiting for the response [7]. Under
this situation, we recommend the shared component, especially
when there is low bandwidth or slow network connection.
(iii) Throughput of other tenants decreased in response to
an increase in response times. We recommend the shared
component pattern when the component that is being shared
resides in a remote repository. However, when the repository
is closer, then the dedicated component is better.
(iv) CPU - version control processes is not sensitive to CPU
usage. However, we do recommend the dedicated component
in a situation where there is need to move data (e.g., using the
svnadmin dump and svnadmin load subcommands) from one
repository into another or switching from a repository that uses
a database (e.g., Berkeley DB or MySQL) to one that does not
use a database (e.g., FSFS). Another issue that has to be taken
into consideration is when accessing a repository over a slow
or low bandwidth network. If the data is large in size, it usually
pays to compress it, but this is bound to consume much CPU.
In order to guarantee multitenancy isolation, we recommend
the shared component component.
(v) Version control process does not consume much memory
and so files can be accessed over a network filesystem with
ease. However when data is moved to and from the repository
in the form of large instant loads, then we would not recom-
mend a shared component.
(vi) The size of a repository could grow very large due to
creation of additional copies of version data. This could lead
to high disk I/O consumption when carrying out disk intensive
operations. Based on our analysis, there would be not much
difference in disk I/O consumption if either tenant-isolated or
dedicated component is used. However, we would recommend
dedicated component for exclusive access in order to reduce
contention and high disk I/O consumption rate.
(vii)System load showed no influence/variability on any of the
patterns.

One approach to solving the problem of saving disk

TABLE 2. Recommended multitenancy patterns for as per Scenario 1-
Concurrent release of large instant loads

Patterns Resp.
time

Error% Thro. CPU Mem. Disk Sys.
Load

Shared Com-
ponent

× X X × × × -

Tenant-
isolated
Component

× × × × X X -

Dedicated
Component

X × × X X X -

TABLE 3. Recommended multitenancy patterns for Scenario 2- Lock
Duration

Patterns Resp.
time

Error% Thro. CPU Mem. Disk Sys.
Load

Shared Com-
ponent

× X × X × X -

Tenant-
isolated
Component

X × × X X × -

Dedicated
Component

X × X × × X -

space in a version control system is called packing. It entails
concatenating all the files of a completed shard into a single
pack file and then removing the per-revision files. This
approach does have one major drawback, that is, the packing
process has to obtain the required locks before performing
this process. This could lead to high response times and
high resource consumption. In the following we summarize
the recommended patterns for optimizing performance and
resource utilization for a version control process that involves
some form of locking.
(i) Response times - Recommend tenant-isolated component
and dedicated component.
(ii Throughput - Throughput of other tenants decreased
in response to an increase in response times. However,
we recommend dedicated component when accessing the
component that is being shared.
(iii) Error% - Recommend the shared component when there
is low bandwidth or slow network connection.
(iv) CPU - Dedicated component is not recommended for
long running processes that may block other tenants from
accessing a component that is being shared.
(v) Memory consumption- shared component is not
recommended when using memory intensive applications.
Tenant-isolated was better than dedicated even though both
changed significant from pre-test to post test.
(vi) Disk I/O - recommends dedicated component. However,
for complex and long running processes the shared component
would be better.
(vii) There is no meaningful difference in any of the patterns.

8. Recommendations

Based on the experience we have gathered while working
with cloud-hosted GSD tools and consulting with experts on
a number of software projects, we present in the following
various options within a version control system that could be
explored to implement multitenancy isolation at the file based
level. In addition, we also present factors that could influence

the degree of isolation between tenants.
Most version control systems (e.g., Subversion) recognize

the existence of a system-wide configuration area. This gives
system administrators the ability to establish defaults for all
users on a given machine. The first time the svn command-
line client is executed, it creates a per-user configuration area.
On Unix-like systems, this area appears as a directory named
.subversion in the user’s home directory. This feature can be
used to implement a low - medium degree of isolation between
tenants based on, for example, shared component or tenant-
isolated component.

In subversion, unversioned files resulting from program
compilation can be excluded using Subversion global-ignores
(i.e., a whitespace-delimited list of names of files and direc-
tories not displayed unless they are versioned). Examples of
default values are: *.o *.lo *.la *.al .libs *.so *.so.[0-9]* *.a .
A Similar feature named ‘Enable Filtering” in the File System
SCM plugin can be used to either include or exclude certain
files (in the form of wildcard) while uploading or downloading
to the repository. This feature can be used to implement a very
high degree of isolation using the dedicated component.

The following factors could influence the degree of multi-
tenancy isolation and care should be taken to avoid them when
implementing multitenancy in a version control system:
(1) It is less safe when a version control system is used with
a repository storage through a shared filesystem. For example,
in Subversion it is safe as a single server-process running as
one user.
(2) Most version control systems (e.g, subversion and Git)
store additional copies of data on the local machine, which
can be an issue for large projects or files, or if developers
work on multiple branches simultaneously. There are features
within most version control systems that can help to save disk
space. For example, the “Clear Workspace” feature on the File
System SCM plugin can be used to delete all existing files/sub-
folders in workspace before checking-out. In Subversion, there
are several options such as deltification, representation sharing,
removal of dead transactions and packing FSFS filesystems.

9. Limitations of the Study

The study used (an open-source) FileSystem SCM plugin
to trigger the version control process. This means that the focus
is not on a particular version control tool but on the software
development process (i.e., version control). The number of
requests sent to the application component was within the
limit of the private cloud used (i.e., Ubuntu Enterprise Cloud).
Therefore, the results of this study applies to private clouds
and should not be generalized to large public clouds.

In this study, multitenancy isolation was implemented on
the application level of the cloud stack by capturing the tenant-
id associated with requests and re-routing them to different
components configured for each tenant. This approach is very
useful in a resource constrained environment where duplicating
the deployment of the VM instance for each tenant is costly, for
instance in terms of time, bandwidth and resource consumption
(i.e., using a large number or size of VM instance).

This study assumes that a small number of users sends
multiple request across the network; it would be interesting to
replicate this study in a large private cloud infrastructure (using
other version control tools like Subversion) to investigate the
effect of a large number of users. The most common challenge

while conducting experiments was that of insufficient memory
and file or directory permission issues (e.g., when setting FTP
request configurations). This problem becomes more acute
when moving the VM image instance (whose file permission
had been set on a local machine) to the cloud infrastructure.
Therefore it is necessary to get repository ownership and
permissions right before conducting the experiments.

10. Conclusion and Future Work

In this study, we have implemented multitenancy by apply-
ing COMITRE (Component-based approach to Multitenancy
Isolation through Request Re-routing), to contribute to litera-
ture on multitenancy isolation for cloud-hosted Version Control
Systems by showing how to evaluate the degree of isolation
between tenants enabled by multitenancy patterns.

We implemented three multitenancy patterns (i.e., shared
component, tenant-isolated component and dedicated compo-
nent) by modifying the FileSystem SCM Plugin (integrated
within Hudson) and deploying it as a Virtual Machine (VM)
instance to the Ubuntu Enterprise Cloud (UEC) private cloud.
The study revealed that dedicated component provides the
highest degree of isolation between tenants (compared to
shared component and tenant-isolated component) especially
with respect to error% (i.e., the percentage of errors with unac-
ceptably slow response times) and throughput. Response times,
CPU and memory consumption had the most negative impact
on tenant isolation when exposed to demanding deployment
conditions (e.g, large instant loads) for all the multitenancy
patterns. We have also provided a summary of recommended
multitenancy patterns and their implications for GSD tools
and processes based on different cloud deployment scenarios.
The study recommends that during version control, the shared
application component should reside in a repository on a cloud
infrastructure with a high-speed connection and a reasonably
large CPU and memory size.

We also plan to apply COMITRE to another case study
involving an bug tracking system (e.g., Bugzilla) in a robust
cloud infrastructure. Thereafter, we will use cross-case analysis
and narrative synthesis to synthesis the findings of three case
studies involving Global Software Development tools and
processes.

11. Acknowledgment

This research was supported by the Tertiary Education
Trust Fund, Nigeria, and Robert Gordon University, UK.

12. References

[1] C. Fehling, F. Leymann, R. Retter, W. Schupeck, and
P. Arbitter, Cloud Computing Patterns. Springer, 2014.

[2] L. Ochei, A. Petrovski, and J. Bass, “Evaluating degrees
of multitenancy isolation: A case study of cloud-hosted
gsd tools,” 2015 IEEE International Conference on Cloud
and Autonomic Computing (ICCAC).

[3] L. C. Ochei, A. Petrovski, and J. Bass, “Evaluating
degrees of tenant isolation in multitenancy patterns: A
case study of cloud-hosted version control systems (vcs),”
2015 International Conference on Information Society (i-
Society 2015).

[4] J. Portillo-Rodriguez, A. Vizcaino, C. Ebert, and M. Pi-
attini, “Tools to support global software development
processes: a survey,” in Global Software Engineering
(ICGSE), 2010 5th IEEE International Conference on.
IEEE, 2010, pp. 13–22.

[5] L. Ochei, A. Petrovski, and J. Bass, “Taxonomy of de-
ployment patterns for cloud-hosted applications: A case
study of gsd tools,” 2015, seventh International Con-
ference on Cloud Computing, Grids, and Virtualization
(CLOUD COMPUTING 2015).

[6] F. Lanubile, “Collaboration in distributed software devel-
opment,” in Software Engineering. Springer, 2009, pp.
174–193.

[7] B. Collins-Sussman, B. Fitzpatrick, and M. Pilato, Ver-
sion control with subversion (For Subversion 1.7: Com-
piled from r4561). O’Reilly, 2011.

[8] R. Krishna and R. Jayakrishnan, “Impact of cloud
services on software development life cycle,” in Soft-
ware Engineering Frameworks for the Cloud Computing
Paradigm. Springer, 2013, pp. 79–99.

[9] L. Bass, P. Clements, and R. Kazman, Software Architec-
ture in Practice, 3/E. Pearson Education India, 2013.

[10] J. Vlissides, R. Helm, R. Johnson, and E. Gamma,
“Design patterns: Elements of reusable object-oriented
software,” Reading: Addison-Wesley, vol. 49, p. 120,
1995.

[11] C. J. Guo, W. Sun, Y. Huang, Z. H. Wang, and B. Gao,
“A framework for native multi-tenancy application devel-
opment and management,” in E-Commerce Technology
and the 4th IEEE International Conference on Enter-
prise Computing, E-Commerce, and E-Services, 2007.
CEC/EEE 2007. The 9th IEEE International Conference
on E-Commerce Technology. IEEE, 2007, pp. 551–558.

[12] S. Walraven, T. Monheim, E. Truyen, and W. Joosen,
“Towards performance isolation in multi-tenant saas ap-
plications,” in Proceedings of the 7th Workshop on Mid-
dleware for Next Generation Internet Computing. ACM,
2012, p. 6.

[13] R. Krebs, A. Wert, and S. Kounev, “Multi-tenancy per-
formance benchmark for web application platforms,” in
Web Engineering. Springer, 2013, pp. 424–438.

[14] R. Krebs, C. Momm, and S. Kounev, “Architectural
concerns in multi-tenant saas applications.” CLOSER,
vol. 12, pp. 426–431, 2012.

[15] J. Bass, “How product owner teams scale agile methods
to large distributed enterprises,” Empirical Software En-
gineering, pp. 1–33, 2014.

[16] Hudson. Files found trigger. [Online: accessed
in October 2014 from http://wiki.hudson-
ci.org//display/HUDSON/Files+Found+Trigger].

[17] MSDN. Multi-tenant data architecture. Mi-
crosoft Corporation. [Online]. Available:
https://msdn.microsoft.com/en-gb/library/hh534480.aspx

[18] Oracle. Oracle database concepts: Intro-
duction to the multitenancy architecture.
[Online: accessed in December 2105 from
https://docs.oracle.com/database/121/CNCPT/cdblogic.htm
CNCPT89248]. Oracle Corporation.

[19] D. Kroenke and D. J. Auer, Database concepts. Prentice
Hall, 2012.

[20] E. Bauer and R. Adams, Reliability and availability of
cloud computing. John Wiley & Sons, 2012.

	OA: GREEN
	OA Logo:
	AUTHORS: OCHEI, L.C., PETROVSKI, A. and BASS, J.M.
	TITLE: Evaluating degrees of isolation between tenants enabled by multitenancy patterns for cloud-hosted version control systems (VCS).
	YEAR: 2015
	Publisher citation: OCHEI, L.C., PETROVSKI, A. and BASS, J.M. 2015. Evaluating degrees of isolation between tenants enabled by multitenancy patterns for cloud-hosted version control systems (VCS). International journal of intelligent computing research [online], 6(3), pages 601-612. Available from: http://dx.doi.org/10.20533/ijicr.2042.4655.2015.0075
	OpenAIR citation: OCHEI, L.C., PETROVSKI, A. and BASS, J.M. 2015. Evaluating degrees of isolation between tenants enabled by multitenancy patterns for cloud-hosted version control systems (VCS). International journal of intelligent computing research, 6(3), pages 601-612. Held on OpenAIR [online]. Available from: https://openair.rgu.ac.uk/
	Version: AUTHOR ACCEPTED
	Publisher: INFONOMICS SOCIETY
	Series: International journal of intelligent computing research (IJICR)
	ISSN:
	eISSN: 2042-4655
	Set statement:
	License: BY-NC-ND 4.0
	License URL: https://creativecommons.org/licenses/by-nc-nd/4.0
	CC Logo:
		2016-09-27T15:02:45+0100
	OpenAIR at RGU

