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Abstract— this paper presents a novel and computationally fast 
method for automatic identification of symmetry profile from 
3D facial images. The algorithm is based on the concepts of 
computational geometry which yield fast and accurate results. 
In order to detect the symmetry profile of a human face, the tip 
of the nose is identified first. Assuming that the symmetry 
plane passes through the tip of the nose, the symmetry profile 
is then extracted. This is undertaken by means of computing 
the intersection between the symmetry plane and the facial 
mesh, resulting in a planner curve that accurately represents 
the symmetry profile. Experimentation using two different 3D 
face databases was carried out, resulting in fast and accurate 
results.  

Keywords: 3D Images, Features Extraction, Facial Symmetry,  
Computational Geometry. 

I.  INTRODUCTION  

In many applications, acquiring facial data and fitting a 
facial surface is usually based on 2D intensity images known 
as Image based facial modeling. These techniques, involve 
the utilization of one ore more 2D images of a given face to 
construct 3D facial surface. Therefore, such techniques 
usually involve two steps. The first is to extract certain 
features from the facial image[1] and the second step 
involves the construction of the 3D facial model[2-5]. 

The use of 3D images acquired by scanning devices has 
increased significantly in the past few years. This is mainly 
due to the recent developments leading to the availability of 
high quality 3D data capture systems. It is noteworthy to 
point out that 3D face images captured from 3D scanning 
devices usually tend to be more accurate and is capable of 
overcoming the problems inherent in geometry constructed 
from 2D image/s.  However, images captured through 3D 
scanning devices usually require some form of preprocessing 
stages before it can be utilized for various purposes.  For 
example, in the case of 3D images of human face, it is 
usually necessary to identify the central region of the face 
known as the facial mask. Such region, is important for wide 
range of applications such as 3D face recognition and 
authentication[3, 6-13], facial expression simulation[14-17] 
and facial surgery simulation[18]. A common method for 
determining the facial mask from the raw 3D facial data is 
based on the surface curvature[19], such as Gaussian 
curvature. The drawback of such approach is that the 

computation of accurate Gaussian curvatures requires 
sufficiently accurate data which should result in relatively 
smooth surfaces and such data cannot be always made 
available through scanning devices. 

In this paper we present a novel and computationally fast 
method for processing 3D facial images and automatic 
identifications of the symmetry profile of a human face. It is 
important to note that no assumption about the pose of the 
face has been made. In addition, no preprocessing steps are 
required.  

In the remaining parts of this paper, we discuss our 
algorithm in detail. In section 2 we review related literature. 
In section 3 we outline the main functions of our algorithm 
and explain some concepts and terminologies that are used in 
this paper. In the following section we will present 
experiments and results and will provide analysis to our 
results in terms of accuracy in recovering facial features and 
discuss computation time. Finally conclusions and future 
work will be presented. 

II. RELATED WORK 

One of the main challenges in processing and 
determining certain facial features for a given raw 3D facial 
mesh is due to the resulting scanned image, which usually 
contains unwanted geometry that need to be identified and 
discarded at a pre-processing stage as shown in Figure 1. In 
certain applications semi-automatic approaches have been 
introduced to overcome this problem[6, 7, 10, 12, 20, 21,22]. 
For example, BenAbdelkader et al. [20], used seven 
manually selected land-mark points.  Similarly in [21] it is 
required to identify several landmark points e.g.  nose tip and 
eye corners which can then be used to register the face.  

A key component within facial data is the symmetry 
characteristic that is defined by a symmetry plane which 
divides the face into two similar halves. Wide range of 
methods are available in the literature that deals with 
symmetry detection, in particular for 3D face shapes[6, 11, 
23-26].  

Sun et. al.[24], for example, assume that the symmetry 
plane passes through the center of mass of a given object and 
uses Extended Gaussian Image (EGI) based technique to 
detect reflection, and rotational symmetry of objects.  For 
facial data such assumption might not hold, especially that 
3D facial data acquired by laser scanners might be highly 



asymmetric since it would contain noise, and undesired 
geometry such as neck and the shoulder.  

Pan et. al.[23] uses a similar approach to  detect the 
symmetry plane of facial data and reported 95% of good 
results using two different databases of 3D facial scans [24]. 
Here, they had to simplify the facial data to 2000 vertices in 
order to obtain efficient computations. Zhang et al.[6] 
detected the pose of a raw mesh by means of Principle 
Component Analysis technique (PCA), and then detected the 
symmetry plane by determining certain facial features (e.g. 
nose ridge points). They reported that of 120 facial data 
utilized in their experiments 117 model were correctly 
characterized by its symmetry profiles and few feature points 
along the nose area, with an average processing time of 10 
seconds.  Wu et. al.[27] used a profile matching approach for 
face authentication. For symmetry analysis, an initial 
position of the symmetry plane needs to be interactively 
identified.  Colbry and Stockman[11] identified the 
symmetry plane of a facial scan by matching that scan with a 
mirror image of itself using face surface alignment algorithm 
assuming that pose variation is up to 10 degree in roll and 
pitch and up to 30 degree in yaw. 

 
 

 
Figure 1. Centroid point position for a facial scan almost always lies within 
the boundary of region of interest of a facial scan regardless of the 
unwanted parts that might exist in the images. 

 
Other techniques  for processing and characterizing facial 

features from 3D images include: the use of principal axes of 
inertia of the object[28], point signature techniques [9, 29], 
and PCA based techniques [13]. 

 

III.  MAIN METHOD 

A. Definitions  

 
3D images are either produced as point clouds or polygonal 
meshes (usually triangular).  A point cloud is simply a set of 

n  vertices 3{ | ,1 }i iV p p R i n= ∈ ≤ ≤ . A triangular mesh 
S on the other hand, includes the set of vertices and 
adjacency information and is defined as { , , }S V E F= , 
where E  is a set of edges defined as 

{( , ) | , }i j i jE p p p p V= ∈ and F is a set of facets defined 

as {( , , ) | , , }i j k i j kF p p p p p p V= ∈ .  

The Euclidean distance between two points 1 2,v v  

denoted by 1 1 1 1v ( , , )x y z= , and 2 2 2 2v ( , , )x y z= is defined 
as

2 2 2
1 2 1 2 2 1 2 1 2 1( , ) ( ) ( ) ( )d v v v v x x y y z z= − = − + − + −

. If we Let if F∈ be a facet on the surface mesh defined by 

the triplets 0 1 2{ , , }if v v v=   then the circumference of the if  

is defined as 0 1 1 2 2 3( ) ( , ) ( , ) ( , )id f d v v d v v d v v= + + . Based 
on this arrangement we could approximate the tolerance 
value of the surface mesh as, 
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(1) 

 where nf  represents the number of facets in the 

triangular mesh, and ( )id f is the circumference of the thi  
facet and C is a constant computed based on an average 
estimation of the number of common edges between adjacent 
facets on the surface mesh.  

A normalized and registered raw mesh means that all 
values of the vertices are scaled to be in the range between 
0.0 and 1.0. In addition, the facial data is aligned with the 
Cartesian coordinate system, such that the nose tip is located 
at the origin and the face is looking towards the positive z-
axis.  

A plane is defined by a point and its normal vector, hence 
a plane will be denoted in the form of 0( , )npΠ where 0p  is 
a point on the plane, and n is its unit normal vector.   A 
reference depth plane is a plane that is used as the reference 
for measuring the depth of a given surface point on the mesh.  
The depth of any point denoted by 0 0 0 0( , , )p x y z= on the 
surface mesh is measured as the distance between that point 
and its projection on depth plane Π which is defined as 
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where the normal vector of the plane is defined as 
n ( , , )x y zn n n= .  

A planner curve is defined as a set of points on the 3D 
space that belongs to the mesh, and intersects a certain plane. 
The length of a planner curve is defined as 

11
( )

m

i i ii
d v v +=

+∑ , where  1( )i i id v v ++ is the Euclidean 

distance between the two positions points 1i iv v ++ , where 

1,i iv v + , are points positions on the planner curve, and 

1, mv v are the first and last point respectively on the curve.   
The 3D face is said to be symmetric, if there is a plane, 

such that the face is invariant under reflection about it.  
Essentially a symmetry plane will pass through the tip of the 
nose. Thus, if the tip of the nose and another two position 
points are identified on the face then one could define the 
symmetry plane. In fact there are several techniques that 
address the identification of nose feature points within range 
data (e.g. [30]).  

The centroid position of a facial surface mesh with 
n vertices is denoted by  ( , , )x y zc c c c=  where 



1 1 1

1 1 1
, , .

n n n

x i y i z ii i i
c x c y c z

n n n= = =
= = =∑ ∑ ∑ For a well 

characterized facial data set, the centroid point of a mesh 
usually lies within region of interest which includes the nose, 
eyes and mouth features. Thus, it is highly unlikely that such 
point would lie, outside such region, for example near the 
neck area, or the facial hair.  Figure 1.shows various 3D 
facial scans[31] with irregular outliers where the above 
assumption about the centroid position is still true.   

B. Method outline  

The tip of the nose is considered as one of the easiest 
feature points to recover from a facial image. In addition, we 
assume that the symmetry plane of the face passes through 
the tip of the nose. For human faces this is a very reasonable 
assumption which is widely accepted in research 
community[6, 13, 32]. Our methodology is focused on 
determining the symmetry plane based on the determination 
of the tip of the nose. The basic structure of the proposed 
algorithm is as follows,  

1. The central region of a 3D scan is initially 
approximated based on the center of mass and few 
extreme points.  

2. The tip of the nose is determined as the point on the 
facial surface with maximum perpendicular 
distance from a certain depth plane. 

3. Symmetry plane that passes through the pre-
determined nose tip is then determined.  

4. A planner curve that accurately represents the 
symmetry profile is then extracted.  

5. Few feature points are then automatically 
determined on the symmetry profile. These feature 
points include the nose bridge, lower part of the 
nose.   

6. The central region is then extracted, based on 
approximating the positions of the outer corners of 
the eyes.  

1) Nose tip Identification 
 

The first step in this process is to identify the tip of the 
nose. This is considered as the easiest point to recover on a 
facial scan. In order to determine this point, we fit a bilinear 
blended Coon’s surface patch. Coon’s patch is simply 
parametric surface defined by a given four boundary curves. 
For more information the reader is referred to[33]. The four 
boundaries of the Coon’s patch are determined based on the 
boundary curves that enclose an approximated central region 
of the face.  

In order to approximate the region of interest we take the 
centroid and all points that lie within a pre-determined 
distance from that point. It is important to highlight that the 
central region identified here is not an accurate 
representation of central region of the face. Rather it is an 
approximation which can be used to identify a “minimum” 

region of the face which can provide a smooth boundary on 
which it includes certain facial features and in particular the 
nose region. Once this region is approximated, its boundary 
is sorted and organized so that it represents the four 
boundary curves of a Coon’s patch. Finally, a surface patch 
within the boundary curves is interpolated based on Coon’s 
patch definition (see [33] for more information).  

Having the Coon’s surface generated as a reference to the 
facial points on an approximated central region, it becomes 
straightforward to recover an initial estimation of the nose tip 
as the one with the maximum depth from the patch. If we let 

'V to denote the set of all vertices within the approximated 
region of interest of the facial data and let C  denote the set 
of vertices of the Coon’s surface patch, then the initial 
approximation of the nose tip could be formulated as 
follows, 

 
max{ ( , ): ', }init i j i jNTIP d p e p V e C= ∀ ∈ ∈  (3) 

  
Provided that, min{ ( , ): }j i j je d p e e C= ∀ ∈ . Since the 

Coon’s surface is composed of relatively small number of 
vertices in order to keep computation to minimum, the above 
formulation only gives an approximation to the nose tip 
position.  To improve our approximation we fit a plane using 
the points ,je  recovered in Equation (3) and its neighbors 

0, 1j je e  and compute the nose tip position as the point with 

maximum depth from the constructed plane. Figure 2(b) 
illustrates this concept.  Assuming that the nose tip is 
denoted by TIPN , the constructed depth plane fitted is 

defined as depthΠ  and n  is the normal unit vector to the 

plane, then the tip of nose is formulated as follows, 
 

max{ ( , ) : '}TIP i depth iN d v v V= Π ∀ ∈  (4) 

  
where ( , )i depthd v Π  is the Euclidean distance between a 

point iv  on the surface of the face and the constructed depth 

plane depthΠ . 

  
(a) (b) 

Figure 2. Nose tip identification. (a) Initial estimation of nose tip based on 
depth measured relative the Coon’s patch. (b) Improving accuracy of nose 
tip positing based on fitting a plane.  
 

This procedure enables us to neutralize the facial data 
with the tip of the nose residing at the origin of a right hand 

Central region  

Nose 
 tip 

Coons  
Patch 

Depth  
plane 



coordinate system. In addition, the facial data can now be 
transformed in the Cartesian coordinate system with a 
rotation vector r defined by two points , uTIPN Nproj  that 
respectively represents the nose tip and its projection on the 
depth plane with normal unit vectoru . Thus, once we 
identify the nose tip correctly, we then rotate the facial data 
such that r becomes aligned with the z-axis of the Cartesian 
coordinate system.  

 
2) Symmetry Plane Detection  

 
To identify the symmetry plane, we assume that 

TIPN point lies on the symmetry plane. In addition, we let a 

point 1sp  be any arbitrary point that lies on the depth plane 

such that 1( ) ( )uns TIP s TIPN p N Nproj= − × −  

where 1( ), ( )uTIP s TIPN p N Nproj− − are two vectors such 

that  uNproj  is the projection of TIPN into the depth plane 

and ns  is the normal unit vector resulting from their cross-
product. Figure 3 illustrates this arrangement.  Cleary both 
depth plane and the initial symmetry plane with normal ns  
are perpendicular to each other. 

Assuming that the initial symmetry plane defined by the 
point 1sp  and its normal unit vector ns denoted as  

1( , )ns spΠ  and recalling that 1sp  is one of the points lying 
on the depth plane then we make the following observations,  

 
1. for a human face, the height dimension of the face 

is greater than its width  

2. it is clear that if the upper part of the face was 
considered, and the initial symmetry plane was 
rotated around the z-axis, then the planner curve 
that is identified as the intersection between the 
facial points and the initial symmetry plane with 
the minimum length  will be the symmetry profile.  

 

  
(a) (b) 

 
Figure 3 Symmetry plane  identification. (a) Facial surface with depth 
plane, and initial symmetry plane. (b) Initial symmetry plane results from 
the nose tip, its projection into depth plane, and an arbitrary point on the 
depth plane. 

Based on this arrangement, the initial symmetry plane is 
rotated by 2π   around the z-axis and computation is 
performed to verify the correct allocation of the symmetry 

plane. In order to perform the rotation, we compute an angle 
θ  where θ  is the angle by which the symmetry plane should 
be rotated each time.  Recall that, the facial data is already 
aligned within the Cartesian coordinate system with the nose 
tip residing at the origin. Therefore, if we assume that the 
initial symmetry plane is defined by the three 
points 1, ,TIP sN p Nproju and recalling that 1sp  is one point 
on the depth plane then θ  could be defined as 

2
1

2 2
cos ( )

t

d

S d
θ −=

+
, where 1( , )sd d p NTIP= , and tS is 

the tolerance value of the mesh. Defining θ  to be dependant 
on the tolerance value of the mesh makes it more accurate 
regardless of how meshes vary in terms of its density. In 
addition, rotation of the initial symmetry plane based on a 
very small value for θ  minimizes the error value of the 
detected symmetry plane. Based on θ , the number of 
rotations that need to be performed is then approximated as 

2
n

π
θ

= ,  Working out the degree of rotations and the 

number of rations to validate the symmetry plane, the 
algorithm proceeds as shown in Algorithm 1:  

 
Algorithm  1: Approximating Symmetry Plane 
Let 100.0, 100.0height length= − =  

Let 'V  be a subset of the facial data that represents an 
approximated central region of the face.  
While Number of rotation n≤    

1. Find 0 1, 'v v V∈  such that they both intersect 

initial symmetry plane at both ends of the central 
region. 
2. Let 0 1,p pv v  be the projected points of 

0 1,v v respectively into the depth plane, and 
construct an initial symmetry plane based on the 
three points 0 1, ,p TIP pv N v  

3. Find the planner curve ( )p l that is resulting 

from the intersection of the Facial points of the 
central region with the initial symmetry plane, 

and let lengthp    be the  length of its upper part  

4. If 

0 1( , )p p lengthd v v hieght and P length> < then set    

0 1( , )p p

length

height d v v

length P

=

=
, 

and store 0 1,v v , as possible candidate for 

symmetry plane points. 
End if 
rotate the initial symmetry plane by θ  

 
Repeat step 1. 
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Figure 4, provides an illustration for symmetry plane 
detection algorithm.   

 

   
(a) (b) (c) 

 
Figure 4 Improving symmetry plane identification.  (a) initial symmetry 
plane, (b) rotating symmetry plane and computing length of the curve. (c) 
the final symmetry profile.  

 
In order to analyze the symmetry profile extracted from 

the facial data, we fit a spline of the form 

i i iP C B=∑ where iB is a cubic polynomial and iC are 

the corresponding control points. This process of curve 
fitting to the extracted discrete symmetry profile data enables 
us to have a smooth curve passing through the discrete data.  
Once we have a smooth symmetry profile, we analyze the 
profile by identifying local extreme points that corresponds 
to the nose bridge and the lower point of the nose Figure 5.  

Based on the symmetry profile, a profile that passes 
through the nose bridge and through the eyes area can be 
extracted. Figure shows the relation between the cross-
sectional eyes profile which passes through the point NB 
(nose bridge), and the symmetry profile. 

 

 
Figure 5 Symmetry profile analysis. 

 

IV.  EXPERIMENTS AND RESULTS  

 
Testing the accuracy of the algorithm for detecting 

symmetry profile was carried out based on reflective 
symmetry. Figure 6 illustrates this approach, which is similar 
to the one used in [23] to detect a symmetry plane. As shown 
in Figure 6, it is assumed that ( , , )n x y zn n n= is the unit 

normal vector of the detected symmetry plane. If we define a 
set of points { }iP p= to be the set of vertices that exist at 

one side of the symmetry profile, and reflect these points 
around the symmetry plane, another set of Points Q , will be 
obtained. Assuming the facial data is perfectly symmetric 
and the identified symmetry plane is the correct one, then the 
average mid points of each point and its image { , }i ip q  

which is denoted by im  could be computed using the 

parametric equation of line ( )i i i im p q pα= + − where 
0.5α = and the average error value is computed as 

1

1
( , )

n

iErr d m
n

= Π∑ , where ( , )id mΠ is the distance 

between the i th mid point and the detected symmetry plane 
Π  in the Euclidean space.   

 

 
 

Figure 6 symmetry accuracy by calculating the midpoint between a surface 
point and its image around the symmetry plane.  

 
In order to test our algorithm, two experiments were 

carried out on a Pentium 4 machine with 512 MB of RAM 
and a CPU processor of 2.8GHz. The density of facial 
models varies from models with 2000 vertices up to 60,000 
vertices.   

In the first experiment we used a proprietary database 
with 95 different facial data models with various densities. 
80 models were correctly characterized (Figure 7).  

 

   

   
Figure 7 Visualizing correct identification of symmetry profile in 

different sample images. 



Correctness of characterization of the face was based on 
objective and subjective comparisons. Subjectively a 
symmetry profile and cross-sectional profiles could be 
evaluated according to the face model where such profiles 
must pass through central region of the face (see Figure 7). 
Based on the testing algorithm using reflective symmetry, it 
has turned out that detected symmetry plane with error 

values 310.0 10−> ×  are inaccurate.  Figure 8 shows the 
error rates computed for 10 different facial models with 
varying mesh densities. 

 

 
 

Figure 8 Error rates  of the detected symmetry profile for 10 different 
images with varying mesh densities.  

 
In the second experiment and in order to further test and 

verify the robustness of our algorithm especially for extreme 
cases we used 30 different images from GavabDB 3D 
database [31]. The images used from this database were 
chosen intentionally to contain irregular outliers such as part 
of the shoulders and hair. Figure 9 shows sample images of 
this database that were used in the second experiment. 
Applying our algorithm yields promising results where all of 
30 images were correctly characterized.  

 
 

 
Figure 9 Sample images from GavaDB database with correct identification 

of symmetry profile. 
 
In both experiments the average processing time of facial 

models to extract nose tip, symmetry profile and cross-
sectional profiles was 2.75 second/image. This time doesn’t 

include loading the image. Large images of more than 
50,000 vertices require 3.9 second to be processed.   

 
 
 

V. CONCLUSIONS AND FUTURE WORK  

 
In this paper we have described a technique to 

automatically process raw scanned data using non-iterative 
and fast computational algorithm.  

In addressing this problem we have decomposed the 
whole process into a set of sub problems that performs as a 
sequence. The process starts by characterizing the tip of the 
nose, as one of the most characterizing features on a face and 
relatively easy to recover. The symmetry plane is then 
extracted and analyzed to recover other facial feature points.  

In this work no simplification algorithms were used to 
simplify and reduce the data sets of the facial models for 
efficient computation. Instead, the algorithm is based on 
reducing the search space by discarding certain areas of the 
facial data based on some restrictions values. Average 
processing time for a given face is 2.5 seconds and 3.79 
seconds for a facial model of 60,000 vertices makes our 
approach acceptable in practices where timing is a critical 
issue. In addition, this relatively short-time processing leaves 
room for further improvement to our algorithm where noise 
in data could be addressed and further improve the results.  

One of the limitations of our algorithm is the method of 
approximating the central region. In most of the images that 
were incorrectly characterized, the problem was mainly due 
to the incorrect approximation of the central region. As part 
of our future plan, we will address this limitation. In addition 
we will further investigate the possibility of combining this 
technique with a proper detection and comparison algorithm 
and verify results using a larger scale database (e.g. Face 
Recognition Grand Challenge Database).  
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