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Abstract—The Uncapacitated Location-Allocation problem
(ULAP) is a major optimisation problem concerning the deter-
mination of the optimal location of facilities and the allocation
of demand to them. In this paper, we present two novel prob-
lem variants of Non-Linear ULAP motivated by a real-world
problem from the telecommunication industry: Uncapacitated
Location-Allocation Resilience problem (ULARP) and Uncapac-
itated Location-Allocation Resilience problem with Restrictions
(ULARPR). Problem sizes ranging from 16 to 100 facilities by 50
to 10000 demand points are considered. To solve the problems, we
explore the components and configurations of four Genetic Algo-
rithms [1], [2], [3] and [4] selected from the ULAP literature. We
aim to understand the contribution each choice makes to the GA
performance and so hope to design an Optimal GA configuration
for the novel problems. We also conduct comparative experiments
with Population-Based Incremental Learning (PBIL) Algorithm
on ULAP. We show the effectiveness of PBIL and GA with
parameter set: random and heuristic initialisation, tournament
and fined_grained tournament selection, uniform crossover and
bitflip mutation in solving the proposed problems.

Key words: uncapacitated facility location problem;
uncapacitated  facility  location  resilience  problem;
uncapacitated facility location resilience problem with
restrictions; genetic algorithm; population-based incremental
learning algorithm.

I. INTRODUCTION

Location-Allocation Problems (LAP) are concerned with
allocating locations to a set of facilities to service a set
of customers in such a way as to optimise a cost func-
tion, subject to a set of constraints. LAP has been well-
researched, and there are many formulations. LAP is, in
general, combinatorial problems and so the number of so-
lutions increases exponentially with problem size, defined
by the number of facilities and customers. It is well-known
that LAP are NP-hard [1] and so approximate optimisation
algorithms are typically applied for large problem instances.
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Many metaheuristic methods have been proposed for LAP,
including tabu search (TS) [5], simulated annealing (SA)
[6], hybridization of simulated annealing and random de-
scent method [7], Variable neighborhood search.[8], Genetic
algorithms (GA) [9], [10][11],[12],[13],[1],[2],[3].[4], [14],
[15],[16], Bees algorithm [14], Clustering search (CS) method
using Simulated annealing (SA) [17], hybrid Particle swarm
optimisation algorithm [18], hybrid intelligent algorithms [19].

One important LAP constraint is whether or not each
facility has a limited capacity for the number of customers
it can serve. We can, therefore, classify LAP into capacitated
problems (CLAP), where the capacity constraint applies, and
uncapacitated problems (ULAP) where the limitation does not
apply, that is each facility is unconstrained in the number of
customers that it can service. In this paper, we are principally
interested in ULAP, and in particular, in two novel non-
linear ULAPs motivated by a real-world problem from the
telecommunications industry. The new problems are described
in Section II.

Among the most successful algorithms applied to ULAP
are genetic algorithms, in particular the work presented in
[11, [2], [3] and [4]. Although all four approaches have the
basic core of a GA, they differ in component and configuration
choices. These are presented in section III-B. Our aim in this
paper is to understand the contribution each choice makes to
the GA performance and so hope to design an optimal GA
configuration for the novel problems.

GAs are known to be good at locating global optimum due
to their ability to explore a function space from multiple points
in parallel [20]. However, their convergence rate usually is
slower than conventional optimisation techniques. Moreover,
the problem of genetic drift (one of the mechanisms by which
the population converges to a single member due to the
stochastic nature of the selection operator [21]) can cause loss
of diversity within the population. Once diversity is lost, the
crossover operator becomes inefficient in traversing the search



space. Although mutation can be used to add diversity in the
population, its impact is limited [21].

For this reason, we also explore the effectiveness of
Population-Based Incremental Learning (PBIL) [22] on ULAP.
PBIL is a simple Estimation of Distribution Algorithm (EDA).
EDAs iteratively construct and sample probabilistic models of
good solutions and have been efficiently applied to challenging
combinatorial problems in recent years. Our motivation in
selecting PBIL is twofold: it has the potential benefits of an
EDA but with a lightweight (univariate) modelling cost; and
we observe that specifically for the novel ULAP formulations
proposed, useful problem knowledge can be encoded directly
into the probabilistic model. To the best of our knowledge,
this is the first time PBIL has been applied to ULAP.

The paper is organised as follows: ULAP problem defini-
tions are presented in section II. A detailed description of
the selected algorithms is presented in section III. Section IV
describes our experiments and an analysis of the results. Our
final conclusions are presented in section V.

II. PROBLEM DEFINITIONS AND MATHEMATICAL MODELS
A. Uncapacitated Location-Allocation problem (ULAP)

Let A = ay,as,...... an be a set of m facility sites, and
B =b,b,...... b, be a set of n customers. The aim of ULAP
is to connect all customers in B to selected sites from A so
that every customer is connected to exactly one facility. The
service cost between customer b; and location a; is defined as
d;; and a facility opening cost ¢; is assigned to every facility
location a;. In ULAP, facilities are assumed to provide an
unlimited amount of service, that is they can serve any number
of customers.

The objective function shown as equation (1) minimizes the
sum of overall service costs and fixed costs of establishing a
facility. Constraint (2) ensures that a customer can only be
assigned to one facility while constraint (3) reflects the binary
nature of variables x;; where z;; = 1 means customer b; is
connected to facility a; located at potential site a;. x;; = 0
means otherwise.

MinZ(ci*min(l,Zwij)) + szijdij (1)
j=1

i=1 j=li=1
Subject to: .
D wy =1, 2)
i=1
x5 € {0,1}, V4,4 3)

B. Two real-world variants

In this paper, we propose two additional variants to ULARP,
inspired by real-world cases. We consider a service company
that supplies data services to its customers. The company
needs to decide optimal locations out of a set of m facilities
sites to establish new facilities in addition to existing ones
to effectively supply customers demand within a specified
region. In addition to the cost ¢; for opening a new facility, a
running facility cost of h; is considered. Also, the company

needs to decide which existing facilities to shut down due to
unprofitability and where to reassign customers serviced by
a facility if the decision is made to close it down. There is
an associated cost of e; for shutting down a facility and a
reassignment cost of g;;, for moving customer b; from facility
a; to facility ay.

In these real-world variants, the overall bandwidth demand
at a specific facility impacts the associated cost. To accom-
modate all the customers allocated to a facility, its core
bandwidth needs to be adapted, resulting in a cost calculated
by the function f;(x), which is a step cost function. The core
bandwidth to be used at a facility is the smallest value from the
set S = {s1, 82, ...,84} of all core bandwidths available that
can accommodate the sum of all facility’s customer expected
bandwidths. Each core bandwidth is associated with a cost
pq-The expected bandwidth of a customer b; is denoted as w;

Finally, to ensure resiliency and uninterrupted service sup-
ply, the company needs to decide on the best backup con-
nection for customers. The objective of the company is to
minimise the total costs of opening new facilities, shutting
down profitless facilities, reassigning customers, service cost
of main customer connections, service cost of customers
backup connections and the running costs of facilities.

Two non-linear problem variants are presented. The first
model is not restricted to the number of facilities that can be
opened to service customer demand. In the second problem,
an additional constraint on the maximum number of opened
facilities is considered.

1) Uncapacitated Location-Allocation Resilience Problem
(ULARP): ULARP aims to connect all customers in B to
selected sites from A so that every customer is connected to
one main facility and a second facility that serves as a backup
connection.

As expressed in Equation (4), the objective is to minimise
the total cost of opening facilities, cost of closing facilities,
cost of moving customers between facilities, service cost sub-
ject to main customer allocation, service cost subject to backup
customer allocation, facility running cost and bandwidth-
related costs.

Additional decision and problem variables that were not
considered in ULAP are introduced.The cost of moving a
customer b; from facility a; to facility ay is denoted as g,
while the service cost of customer b; to backup facility a; is
denoted as d;;.
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2) Uncapacitated Location-Allocation Resilience Problem
with Restrictions (ULARPR): Unlike ULARP, which has no
restrictions on the number of facilities that can be opened
ULARPR presents restriction on facilities to be opened. To
maintain operating convenience and economic reasons of
budget constraint the company decides to limit the maximum
number of facilities that can be opened to A facilities among
the set of all facility sites. The objective remains the same as
the objective of ULARP presented in (4). However, we intro-
duce a new constraint shown in (8) that limits the maximum
number of facilities. In this paper and based on the real-world
case study, A is set to 34.

imin(l,ixﬁ) <A 3
i=1 j=1

III. PROPOSED METHODS

In this section, we describe the algorithms used in the
paper and the choices made to configure and parameterise
their various components. All of the methods use a common
problem representation and so can be directly compared to the
same search space.

A. Problem Representation

Possible solutions to the ULAP are assessed based on
the facility and service costs. Nevertheless, considering the
capacity of the facilities are not limited, once the locations
have been determined, the highest performance is achieved

when each customer employs the facility giving the least
expensive service. Therefore for ULAP, a solution to the
problem is wholly determined by the choices to place a facility
or not at each of the m locations.

We therefore select a binary representation, denoted () =
(q1,q2, e enee ,qm) of length m where m is the number of
locations. Any subset A’ of the facility locations corresponds
to a unique solution Q(A’) defined as follows:

1

0; otherwise

: when a; € A’

Q(A"); = { 9

That is, Q(A’); = 1 when a facility is placed at potential
site a;, and Q(A’); = 0 otherwise.

For a given solution Q(A’), we may calculate the optimal
service cost d for customer b; as

d; = min{di,j\ai S A/} (10)

Customer b; is therefore allocated to facility j with service
cost d;.

B. Genetic Algorithm

In this subsection, we describe the different choices for
configuring components and parameters of a Genetic Algo-
rithm (GA) that we have drawn from the ULAP literature. For
reference, pseudocode showing how the components combine
as a GA is presented as Algorithm 1.

Initialisation: Two choices are available for initialisation of
the population of solutions: Random initialisation, which sam-
ples representation space with uniform probability and Heuris-
tic initialisation, which uses the ClassiInitialiaser method de-
scribed in [1]. Heuristic initialisation uses a classification index
t which is the ratio of facility costs to service costs to generate
an initial population focused on regions of the search range
where optimal solutions are anticipated to be.

Selection: Three selection methods are employed ; Tour-
nament Selection [1]; Fine-Grained Tournament Selection
(FGTS) [3][4]; and Roulette-Wheel Selection [2]. FGTS al-
lows tournaments of different sizes to be used for selection
within a single evolutionary cycle. This is controlled by a
real-valued parameter Fj,,., which is the desired average
tournament size.

CrossOver: Two crossover operators are used: One Point
Crossover [3][2][4] and Uniform Crossover [1].

Mutation: Two mutation operators are used: Bitflip
Mutation [3][2][4] [1]; and Partial Space Search [1]. Partial
Space Search searches the solution space around the mutating
solution that is likely to contain a good solution.



Algorithm 1 Genetic Algorithm pseudo-code

(1) initialise population of solutions;

(2) set termination criteria to false;

while (termination criteria are false) do
(3) select solutions for reproduction;
(4) apply crossover;
(5) apply mutation;
(6) evaluate the fitness of new solutions;
(7) update population;
(8) evaluate termination criteria;

end while

(9) return population;

C. Population-Based Incremental Learning

Population-based Incremental Learning (PBIL) was origi-
nally introduced by Baluja [22] [23]. PBIL is a method that
merges simple GAs with competitive learning. The crossover
operator is taken away in PBIL, and the population role
is redefined. PBIL keeps a real-valued probability vector
(pv) from which solutions are generated. The pv controls
the arbitrary bitstrings generated by PBIL, and it’s used to
create other individuals through learning. Learning in PBIL
consists of using the current probability distribution to create N
individuals [24]. The generated individuals are assessed based
on an objective function. The pv is then updated using the
fittest individuals. This increases the likelihood of generating
individuals that are alike to the fittest individuals. The pv of
PBIL is often initialised with a 0.5 probability, ensuring an
equal chance of producing a 1 or 0. During the exploration
process, the values in the pv divert from 0.5, towards 0.0
or 1.0. The PBIL implementation used for this experiment
was presented by Baluja in [25]. The pseudo-code of PBIL is
presented below.

Algorithm 2 Population-based Incremental learning Algo-
rithm pseudo-code
1 Initialise probability vector pv with 0.5;
while (!StopCondition()) do
2 Generate a population using the pv;
3 Evaluate solutions and find best and worst individuals
based on fitness;
4 Update pv towards "Best” individual.
5 Update pv away from “Worst” individual;
5 Perform mutation on pv;
6 Generate a new population using updated pv;
end while

IV. NUMERICAL EXPERIMENTS

Both GAs and PBIL parameters were set following pre-
liminary experiments. The values thus determined for the
GAs are crossover rate of 0.9, a mutation rate of 0.2. Pa-
rameters for PBIL includes positive learning rate of 0.2,
the negative learning rate of 0.054, mutation probability of
0.02 and mutation amount of 0.05. Both GAs and PBIL
have a population size of 50. Though the four main GAs

presented in literature used different fitness evaluations, we
employ the standard fitness evaluation budget for all GAs.
Different fitness evaluations are set for the different problems
based on preliminary experiments. 20000 fitness evaluations
for ULAP and 5000 for ULARP and ULARPR. In the results
presented we present each possible parameter permutation of
a GA under parameter set (ps). Each ps is represented as
number/initialiser/selection/crossover/mutation where number
represent one of the 24 parameter permutation of a GA,
initialiser can be random (r) or ClassInitialiser (c), selection
can be tournament (t), fined-grained tournament (f) or roulette
wheel (rw), crossover can be uniform (u) or one-point (1p)
and mutation can be bitflip (b) or partial space search (p).

The base problem (ULAP) presented in section II-A was
solved using the benchmark problem set from OR-Library
[26]. The problem set constitutes benchmark instances for
comparing computational efficiencies of different algorithms
for ULAP. It is made up of 15 instances ranging from small
to large instances. Small instances include Cap71 to Cap74
which has 16 facilities by 50 demand or customer points. The
medium instances include Capl101 to Capl104 which contains
25 facilities and 50 demand points and Capl31 to Capl34
containing 50 facilities and 50 demand points. The largest
of these instances are CapA to CapC which is made up of
100 facilities by 1000 demand points. Below we present and
discuss the ranking results for the best five ps on ULAP. We
then compare the performance of the best ps against PBIL on
ULAP.

Table I presents the ranking results for the best 5 ps for all
15 instances of ULAP. The results presented for each problem
instance is average over 20 runs. The ranking is obtained
using the Friedman ranking test. Under data, we present all
15 instances of ULAP. Mean gives the overall average over
20 runs of each ps on all 15 problem instances. “std” is
the standard deviation obtained. Mean rank gives the overall
ranking average for all ps on all 15 problem instances whiles
”pos” indicates the overall performance of a ps. If all results
obtained for a problem instance are highlighted in bold, this
means that the optimal value for the problem instance was
obtained for all 20 runs by each algorithm.

From table I, it can be seen that ps 2/c/t/u/b gives the best
results 10 out of 15 times with a mean ranking of 4.63 based
on the Friedman ranking test with a 99% confidence level.
However, in comparing the mean results using the Unpaired
t-test with a confidence level of 95%, the differences in results
obtained by the first five parameter permutations are not sta-
tistically significant, meaning that the results produced by all
five algorithms on ULAP within a set budget of 20000 fitness
evaluations are satisfactory. ps 2/c/t/u/b is the same parameter
combination of components presented in [1] where similar
good results are recorded. Out of the top 5 parameter per-
mutations, the first 3 initialised their solutions classInitialiser.
This shows that on the basic linear problem classInitialiser
can estimate the number of facilities to be opened hence



TABLE I
RANKING RESULTS OF GAS

\ Q & ©

o S * \Q\&\ \\‘\&0 o
Instance 71 9.33E+05 | 9.33E+05 | 9.33E+05 | 9.33E+05 | 9.33E+05
Instance 72 | 9.78E+05 | 9.78E+05 | 9.78E+05 | 9.78E+05 | 9.78E+05
Instance 73 | 1.01E+06 | 1.01E+06 | 1.01E+06 | 1.01E+06 | 1.01E+06
Instance 74 | 1.03E+06 | 1.03E+06 | 1.03E+06 | 1.03E+06 | 1.03E+06
Instance 101 7.97E+05 | 7.97E+05 | 7.97E+05 | 7.97E+05 | 7.97E+05
Instance 102 | 8.55E+05 | 8.55E+05 | 8.55E+05 | 8.55E+05 | 8.55E+05
Instance 103 8.94E+05 | 8.94E+05 | 8.94E+05 | 8.94E+05 | 8.94E+05
Instance 104 | 9.29E+05 | 9.29E+05 | 9.29E+05 | 9.29E+05 | 9.29E+05
Instance 131 7.95E+05 | 7.94E+05 | 7.95E+05 | 7.94E+05 | 7.94E+05
Instance 132 8.52E+05 | 8.52E+05 | 8.52E+05 | 8.52E+05 | 8.52E+05
Instance 133 | 8.94E+05 | 8.94E+05 | 8.94E+05 | 8.94E+05 | 8.94E+05
Instance 134 | 9.30E+05 | 9.29E+05 | 9.29E+05 | 9.29E+05 | 9.31E+05
Instance A 1.72E+07 | 1.74E+07 | 1.73E+07 | 1.75E+07 | 1.80E+07
Instance B 1.31E+07 | 1.31E+07 | 1.32E+07 | 1.32E+07 | 1.33E+07
Instance C 1.18E+07 | 1.20E+07 | 1.18E+07 | 1.20E+07 | 1.21E+07
Mean | 3.54E+06 | 3.56E+06 | 3.54E+06 | 3.58E+06 | 3.62E+06
std | 5.54E+06 | 5.59E+06 | 5.56E+06 | 5.63E+06 | 5.73E+06
Mean Rank 4.63 5.60 5.67 5.77 6.40
Pos 1st 2nd 3rd 4th 5th

focusing the search in an area where there is the likelihood of
finding good solutions. All five algorithms employed uniform
crossover making it the best crossover parameter for ULAP.
This is because uniform crossover maintains good genes of
individuals whiles exploring the search space. Tournament
selection and Bitflip mutation proved to be the ideal selection
and mutation operators for the basic ULAP problem. All in
all, the combination of these four parameters offers the best
results regarding solution accuracy and reliability on the basic
ULAP.

In table II, a comparative result is presented between the
best GA and PBIL (PBIL is initialised with a probability
vector of 0.5). The figures in parentheses in the first column
under data show the test instance. Ps show the parameter
set of the best GA and PBIL. Freq Shows the number of
times the algorithm achieves the known optimum value for
the problem instance. Average relative percentage deviation
(ARPD) is a special form of standard deviation expressed
as a percentage which tells whether the regular standard
deviation of results is small or large when compared to the
know optimum mean. It is calculated as

n

ARPD = (>

=0

((Algorithm; — Best) * 100))
Best

Y

Where Best is the known optimum. Average shows the
mean value of 20 runs for each data instance. Sd Shows the
standard deviation from the mean over 20 runs. Optimal is
the known optimum value of each problem instance. Best and
worst are, respectively, the best and worst values obtained by

each algorithm on each data instance out of 20 runs. The Fes
is the total number of solutions evaluated. Fes is used as the
stopping condition for the algorithms for each run. SD of Fes
is the standard deviation from the mean of fitness evaluation
over 20 runs. The parameters and figures highlighted in bold
are the best parameter set, corresponding average and best
Fes respectively.

Results of GA and PBIL on ULAP presented in I shows
a healthy performance of the two algorithms on the presented
data instances (Cap71, 102, 132 & A). The table shows
that optimal solutions are achieved by both GA and PBIL
with high accuracy for the relatively small instance. However,
this accuracy seems to drop with larger instances. Still, GA
outperforms PBIL by the number of frequency that it obtained
the optimal values for medium and large instances. Even
though the difference of average results achieved by both
algorithms is considered to be not statistically significant based
on statistical testing (Unpaired t-test), GA completed almost
all it’s running in less Fes than PBIL. Making GA the best
of the two on the basic ULAP in-terms of solution accuracy
and reliability. A run distribution diagram of GA and PBIL
for Cap71, Capl32 and CapA are presented in fig. 1, 2 & 3.

Fes in fig 1 & 2 is considered not statistically significant
for the small and medium problem instance. The difference,
however, grows bigger with an exponential increase in the
problem size. This is seen in fig. 3. This is evident that
GA performs better than PBIL on larger instances for the
basic ULAP problem. The poor performance of PBIL in
comparison to GA on ULAP can be attributed to the random



TABLE I

COMPARATIVE RESULTS BETWEEN GA AND PBIL

[
SR & e S o & ¢ s &
71 [ 2icifuib | 20 | 0.00 | 933E+05 0.00 [ 9.33E+05 | 9.33E+05 | 4.88E+02 | 1.59E+02
PBIL | 20 | 0.00 | 9.33E+05 0.00 | 9.33E+05 | 9.33E+05 | 5.83E+02 | 1.72E+02
102 | 2/c/iulb | 20| 0.0 | 8.55E+05 0.00 | 8.55E+05 | 8.55E+05 | 1.85E+03 | 1.77E+03
PBIL | 19| 001 | 8.55E+05 | 276E+02 | 8.55E+05 | 8.56E+05 | 2.65E+03 | 4.29E+03
132 | 2ic/fub | 16| 0.01 | 852E+05 | 1.98E+02 | 8.51E+05 | 851E+05 | 6.98E+03 | 7.32E+03
PBIL | 13| 005 | 8.52E+05 | 7.87E+02 | 8.51E+05 | 8.55E+05 | 1.06E+04 | 7.78E+03
A | 2fc/tiul> | 11| 0388 | L73E+07 | 448E+05 | 1.72E+07 | 1.81E+07 | L.30E+04 | 7.76E+03
PBIL | 4| 200 | 1.75E+07 | 3.86E+05 | 1.72E+07 | 1.84E+07 | 1.82E+04 | 4.42E+03
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Fig. 1. Run length distribution of Cap 71
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Fig. 2. Run length distribution of Cap 132

initialisation (0.5) of PBIL. Because the search is unfocused
due to the random initialisation, PBIL oscillates for a while
and then converges to an optimum value due to some random
factor. GA, on the other hand, makes use of uniform crossover
and bitflip mutation to improve on solution quality.

The problem described in sections II-B1 and II-B2 are new
variants inspired by real-world cases with no known optimal
values. The problem set includes a single problem instance

Fig. 3. Run length distribution of Cap A

with 100 facilities by 10000 demand points. Since results
of GAs ps and PBIL are non-deterministic, every benchmark
instance is solved 20 times by each algorithm. To be able to
access the performance of each algorithm, a budget of 5000
Fes is used. The set budget is based on results of preliminary
experiments. For table III and table 1V, Rank indicates the
overall performance of an algorithm. Each table holds three
different experiments conducted using different probability
values to initialise PBIL and GAs.

In the first experiment, it is assumed that there is no prior
knowledge of the problem hence we initialised PBIL using
a probability vector of 0.5, and the same value is used to
initialise GA ps with a random initialiser. Giving each facility
a 50% chance of being opened.

In the second experiment, we introduce some problem
knowledge into the initialisation process. We are restricted to
a maximum number of 34 facilities to open however we do
not know which facilities are to be opened. Hence we initialise
PBIL with a probability vector of 0.34, and the same is done
for ps with a random initialiser. This is to help focus the search
of the algorithms within a specified area of the search space
where good solutions for the problem are likely to exist.

In the third experiment, we assume that there already exist
29 opened facilities and there is an associated high cost of
shutting any of these facilities down. We are only allowed to
have a maximum of 34 facilities opened. To help ensure that



the already opened facilities stay open to avoid incurring the
cost of shutting down, we set a stronger probability vector for
the first 29 facilities of 0.85 chance of staying opened and the
remaining five facilities get a 0.15 chance of being opened.
The same setting is used for ps with random initialisation.
Results obtained for the Top 5 Algorithms on ULARP and
ULARPR are presented in tables III & IV respectively.

TABLE III
COMPARATIVE RESULTS ON ULARP
® Q@Q' Yf" S Q_‘v‘&'
ULARP with 0.5
1/r/tlu/b 15 | 9.91E+07 | 1.86E+04 st
PBIL 15 | 991E+07 | 3.42E+04 | 2nd
9/r/flu/b 12 | 9.91E+07 | 3.41E+04 | 3rd
10/c/flu/b 1 | 9.93E+07 | 2.68E+05 | 4th
13/r/th/p 1 | 9.94E+07 | 2.46E+05 | 5th
ULARP with .34
9/r/flu/b | 20 | 9.91E+07 0| Ist
1/r/t/u/b 18 | 9.91E+07 | 4.15E+04 | 2nd
PBIL 16 | 991E+07 | 4.21E+04 | 3rd
10/c/flu/b 1 | 9.93E+07 | 2.68E+05 | 4th
13/r/fhu/p 1 | 9.94E+07 | 2.13E+05 | 5th
ULARP with .85 & 0.15
9/r/flu/b 19 | 9.91E+07 | 8.73E+03 Ist
1/r/t/u/b 19 | 9.91E+07 | 2.87E+04 | 2nd
PBIL 12 | 991E+07 | 1.89E+05 | 3rd
10/c/flu/b 1 | 9.93E+07 | 2.68E+05 | 4th
13/t/flu/p 1 | 9.94E+07 | 2.29E+05 | 5th
TABLE IV
COMPARATIVE RESULTS ON ULARPR
e & p x
ULARPR with 0.5
1/r/t/a/b 1 | 1.61E+08 | 1.08E+06 | st
2/c/t/u/b 1| 1.61E+08 | 8.75E+05 | 2nd
9/r/f/u/b 1 | 1.62E+08 | 2.08E+06 | 3rd
10/c/flu/b 1 | 1.63E+08 | 2.38E+06 | 4th
PBIL 1 | 1.64E+08 | 1.17E+06 | 5th
ULARPR with .34
1/r/t/u/b 1 | 1.61E+08 | 3.16E+05 | Ist
9/r/flu/b 1| 1.61E+08 | 9.02E+05 | 3nd
2/c/t/u/b 1| 1.61E+08 | 8.75E+05 | 3rd
13/t/flu/p 1 | 1.62E+08 | 1.62E+06 | 4th
10/c/flu/b 1| 1.63E+08 | 2.38E+06 | 5th
ULARPR with .85 & 0.15

1/r/t/u/b 1 | 1.61E+08 | 6.99E+05 | st
2/c/t/u/b 1| 1.61E+08 | 8.75E+05 | 2nd
9/r/flu/b 1 | 1.62E+08 | 1.49E+06 | 3rd
10/t/flu/p 1 | 1.63E+08 | 2.38E+06 | 4th
13/t/fhalp 1 | 1.63E+08 | 1.62E+06 | 5th

Results of ULARP presented in tab:table3 shows ps1/t/t/u/b
and ps 9/t/f/u/b outperforming all other algorithms. A look
at these two best algorithms shows similarities in the pa-
rameters the employ; random initialisation, uniform crossover
and bitflip mutation. These parameters combine to offer the
best results on ULARP. Fine-grained tournament selection is
employed in three of the top five algorithms for each of the
initialisations making it the best selection method for tackling
ULARP. This is because Fine-grained tournament selection
allows the ratio between exploration and exploitation to be set
precisely. This is essential as the ratio between exploration
and exploitation governs the search process in a GA. It is
very effective on large problem size as it allows tournaments
with a different number of competitors to be held within one
step of the selection. This allows for a good chance for the
best individuals in the population to be selected for mating
[27]. PBIL shows good performance and provides satisfactory
results for ULARP on all initialisations.

Similar results are observed in table IV, with ps: 1/t/t/u/b
outperforming all other algorithms. However, PBIL failed
to appear in the top five of 3 initialisations for ULARPR.
The overall performance of PBIL on ULARP and ULARPR
can be attributed to the small fixed learning rate. Due to
the nature of the problem size, a small fixed learning rate
allows PBIL to explore better the search space which in turn
introduces diversity into the population. However, this often
comes at a cost as the diversity often delays the convergence of
PBIL. Varying the learning rate for PBIL as the problem size
changes can be essential to ensure a good trade-off between
exploitation and exploration.

TABLE V
COMPARISON OF PBIL RESULTS oN ULARP AND ULARPR
& & W $
ULARP
0.5 15 | 991E+07 | 3.42E+04
0.34 16 | 9.91E+07 | 4.21E+04
0.85 12 | 9.91E+07 | 1.89E+05
ULARPR
0.5 1 | 1.64E+08 | 1.17E+06
0.34 1 | 1.64E+08 | 1.51E+06
0.85 1 | 1.66E+08 | 2.14E+06

Table V gives the performance of PBIL on ULARP and
ULARPR. Results achieved for all three initialisations for
ULARP is considered as not statistically significant. The
best result was achieved when PBIL was initialised with a
probability vector of 0.34 where it achieved an 80% frequency
rate. The worst result for the three initialisations was obtained
when PBIL was initialised with a probability vector of 0.85 &
0.15. This could be attributed to the biased initialisation where
a stronger chance was given to the first 29 facilities to stay
open. This means that if the cost of connecting customers to
the first 29 facilities is costly, then that will affect the overall
results obtained by PBIL on ULARP.



Results obtained by PBIL using pv of 0.5 and 0.34 is
considered to be not statistically significant. However, results
achieved when PBIL is initialised with a pv of 0.85 & 0.15 is
considered to be statistically significant in comparison to pv of
0.5 and 0.34. This is because even though PBIL is initialised
with a pv of 0.5 or 0.34. PBIL is allowed to find the best
facilities out of the defined scope to open. When initialised
with a pv of 0.85 & 0.15, the strong biased drive of keeping
the first 29 facilities open affects the overall results obtained.

V. CONCLUSION AND FUTURE WORK

In this paper, we compare the performance of 24 parameter
permutation of a GA and PBIL on the basic linear ULAP
problem and two new Non-linear version of ULAP with three
different initialisation probability. Computational experiments
on all 16 problem instances show that for the basic ULAP,
ps: 2/c/t/ha/b offers the best performance. This is because the
Classlnitializer can estimate the number of facilities required
to be opened and configures the initial population in the
area of the search space where a good solution is likely to
exist. Uniform crossover helps maintain the good genes of
individuals whiles exploring the search space. It can produce
acceptable solutions concerning solution quality and reliability.

For more extensive problems of ULARP and ULARPR
ps:1/t/tlu/b and ps 9/t/f/u/b produces acceptable solutions
concerning solution quality and reliability and hence offers the
best performance for solving the new problem variants. On all
3 pv initialiasations, the results obtained by ps:1/r/t/u/b and
ps 9/r/f/u/b are considered to be statistically insignificant. The
satisfactory performance of ps:1/t/t/u/b, ps: 9/r/f/u/b and PBIL
on a large data instance of 10000 demand points show that they
can be extended to tackle more significant data problems.

In this paper, we focused on the static variants of ULAP
which are formulated with consideration to some current
parameter values involving facility costs and demand level.
However, if changes can be defined for such values, then
planning with consideration to future adjustment in locating
facilities to serve changing demand becomes an important
factor. For this reason, future work will focus on modelling
the dynamic variant of ULAP where the evaluation of a fixed
solution incorporates dynamic or time-varying aspects of the
problem.
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