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Retrofit buildings are becoming popular in the United Kingdom as well as many parts 

of the advanced economies.  Existing whole-life costing models have however, not 

proven to be robust enough to deal with building retrofit scenarios.  Recent research 

has made a case for the existence of revocability and disruption in building retrofit 

investments.  This paper evaluates the whole-life cost implication of revocability and 

disruption in office retrofit building projects.  The potential implication of 

revocability and disruption are evaluated based on probability and fuzzy logic 

principles respectively.  Two case study projects are selected to appraise the economic 

potentials of revocability and disruption.  It was found that the average cost of 

revocability relative to the initial capital cost can be up to 119% over a 60-year life.  It 

was also found that the average cost of disruption relative to the initial capital cost can 

be up to 12%.  Future studies will utilise sensitivity analysis in assessing the relative 

preference of building retrofit configurations in office building projects.  The external 

validity of this work is moderate, as the intention is to establish analytical 

generalisation rather than statistical generalisation for office retrofit building projects. 

Keywords: disruption, office buildings, retrofit, revocability, whole-life costing 

INTRODUCTION 

The retrofitting of buildings provides a sustainable opportunity to reduce primary 

energy-use (Holness, 2010), extend the life-expectancy (Menassa and Baer, 2014), 

reduce maintenance and operating costs, as well as improve thermal comfort of 

occupants (Ma et al., 2012).  Despite the social and environmental benefits of 

retrofitting, the economic costs of retrofit buildings are not exactly straight-forward 

(Gleeson et al., 2011).  At the heart of retrofitting is the strategic task of improving 

energy, waste and water efficiency in buildings (Dixon et al., 2014).  Energy-

efficiency however, tend to be the more pressing issue, especially due to fluctuating 

energy prices, falling oil prices, and growing interests in renewables. 

In recent times, whole-life appraisal has been more widely embraced in order to better 

integrate building design and out-turn costs (Flanagan and Jewell, 2005, Robinson and 

Symonds, 2015).  A whole-life scenario provides a holistic and sustainable outlook to 

appraising the economic implications of built facilities (Caplehorn, 2012), and hence 

                                                 

1 olubukolatokede@yahoo.com 



Tokede and Ahiaga-Dagbui 

332 

allows for a broader spectrum of variables to be examined.  There are however, some 

difficulties in evaluating the whole-life cost estimates of building retrofits, and these 

pertain mostly to defining the nature and type of economic uncertainties associated 

with such building typology (Menassa, 2011).  Some crucial uncertainties in costing 

of building retrofits relates to the savings estimations, energy-use measurements, 

weather-forecasts, changes in energy-consumption patterns, and system performance 

degradation.  Other primary variables of uncertainties in whole-life cost estimations 

across a building’s lifecycle include cash flow data, building-life period, investor’s 

commitment, component service-life, and future decisions (Ellingham and Fawcett, 

2006).  High levels of uncertainties generally tend to diminish the accuracy of cost 

forecasts, and there is therefore a need for increased robustness in the representation 

and processing of uncertainties in the whole-life costing methodology.   

Given the complex and intricate issues in whole-life cost modelling of office retrofit 

projects, identifying and evaluating the drivers of uncertainties provides an avenue for 

enhancing the integrity of whole-life costing models, and ultimately providing better 

decision-support for stakeholders.  A common concern on the performance of existing 

whole-life cost models relates to the difficulty in predicting future costs.  Ferry et al., 

(1999) reckons that the estimation of future costs in built facilities, is often a product 

of guess work, and will be dependent on a mix of personal preferences and policy 

standards.  In order to address these conceptual limitations in whole-life costing, it 

will be useful to appraise the implicit assumptions in existing models.  This procedure 

holds potential in enhancing robustness in the whole-life costing methodology.  It is 

also considered appropriate to focus on distinct strands of whole-life costing – future 

costs and initial costs.  The drivers of uncertainties in the future costs and initial costs, 

will be discussed under the concepts of revocability and disruption respectively: 

Revocability 

Economic revocability connotes the potential for variability in the future cost 

projections in a building over its estimated life.  Physical revocability implies that a 

certain level of efficiency or inefficiency is locked into a building.  The term 

‘revocability’ is attributable to Verbruggen et al., (2011).  However, other works have 

made implicit reference to the concept of revocability in a number of ways.  For 

instance, the Communities and Local Government (CLG, 2011) referred to 

revocability as “lock-in” syndrome in buildings.  Modelling revocability in whole-life 

cost scenarios comes across as a challenging task.  One approach to enhancing the 

capacity for physical revocability is by designing for flexibility and adaptability in 

buildings.  Economic revocability, which is the focus in this work, pertains mostly to 

future cost prospects in buildings.  Ellingham and Fawcett (2006) suggested an 

approach to evaluating economic revocability in buildings by representing cash flows 

over building’s life using the Negative Binomial Probability distribution.  Kishk et al., 

(2004) found that the choice of probability distribution function used in describing 

uncertainties associated with the input variables in whole-life costing, has no 

significant impact on the simulated output.  It is however admissible that the use of 

probability distribution in representing cash flow distribution is a promising and 

established approach in the whole-life costing of buildings.  Revocability, being an 

inherent driver of uncertainties in future costs will be appraised in this work. 

Disruption 

Disruption relates to the diminished building use, or un-usability, over a period of 

implementing a retrofit initiative.  The cost of disruption is a useful consideration 
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prior to deciding on a retrofit intervention.  Investments initiatives in retrofit scenarios 

tend to involve some levels of disruption to the normal operation of building 

occupants (Gleeson et al., 2011). Depending on the scale of disruption, this could 

significantly alter the business case of the entire retrofit project.  Verbruggen (2013) 

implied that, a robust scenario analysis will be vital in appraising the effects of 

disruption.  Gleeson et al., (2011) conducted a disruption analysis on retrofit 

interventions, and provided a 3-scale assessment of Low, Medium and High level of 

disruption for various retrofit interventions.  Gleeson et al., (2011) estimated the 

number of days of disruption for individual installation of retrofit technologies in a 

typical house building project, and suggested the time of disruption could range 

between 2 – 12 days.  For package retrofit installations, it is expected that project 

management considerations will impact on the effects of disruption in retrofit projects.  

Given that the effects of disruption are more readily defined in qualitative terms, the 

fuzzy logic approach will provide a systematic mechanism to evaluate and assess the 

effects of disruption in retrofit building projects. 

Bearing in mind, the growing interest in retrofit initiatives, it will be necessary to 

assess the long-term implications of revocability and disruption in buildings, with a 

view to evaluating their potential costs over the entire life of the building.  Menassa 

(2011) posits that a financial appraisal framework for retrofit initiatives does not yet 

exist.  It is therefore essential that whole-life cost modelling be re-oriented to provide 

a viable means for appraising retrofit building scenarios.  This study evaluates the 

whole-life cost implications of revocability and disruption in office retrofit building 

projects based on two case studies, using probability and fuzzy sets principles. 

Whole-life costing 

The application of whole-life costing in the UK began in the late 1950’s.  Goh and 

Sun, (2016) buttressed that whole-life costing allows the comparison of values which 

transcends problems of different lives, or different balances between capital and future 

costs.  According to Ashworth and Perara (2013), whole-life costing serves as an aid 

to long-term, rational and realistic decision outcomes in building investment 

appraisals.  The evidence from the built environment literature however, raises doubts 

on the ability of existing whole-life cost models to robustly appraise building projects.  

The distinct categories of existing whole-life costing models are the Standard whole-

life costing, and the New-Generation whole-life costing models.  The principles of 

these models, have been identified and discussed in Tokede et al., (2013).  The 

principal concerns regarding these existing whole-life costing approaches relate to the 

reliability of cost data (Ellingham and Fawcett, 2006), insufficient consideration of 

uncertainties (Caplehorn, 2012), and lack of robustness in model framework 

(Kirkham, 2014). 

A suggested improvements to the whole-life costing framework is the embodiment of 

whole-life cost decisions in an options framework (Menassa, 2011).  Figure 1 below 

captures the potential options embedded in buildings over their entire lives.  In Figure 

1, simple options tend to have little or no initial cost, and hence future costs, are not 

dramatically altered from the base-case scenario.  Examples of simple options, if 

exercised, include options to abandon, contract, expand, and ‘do-nothing’.  Compound 

options, on the other hand, if exercised, tend to involve more significant initial costs, 

and often have a more significant effect on the default future cost projections.  Retrofit 

options are arguably popular among compound-option types available, and thus have 

huge potentials in improving building performance and long-term cost savings. 
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Kishk et al., (2003) argues that the principles of whole-life costing are well developed 

in theory.  There is however, compelling evidence that this is not the case, and there is 

scope for improving on the theoretical weakness of existing whole-life cost modelling 

procedures, especially in emerging building typologies.  It has been inferred that 

whole-life costing involves a complex set of decision events, actions, outcomes, with 

significant interdependencies (Verbruggen et al., 2011, Verbruggen, 2013), and 

attempts to ignore uncertainties in the model framework will lead to sub-optimal 

models, fostering incorrect decisions (Gluch and Baumann, 2004).  The pervasive lack 

of confidence in existing whole-life cost models has fuelled recourse to gut-feeling 

and experience, rather than rely on the results from objective whole-life cost analysis 

(Ellingham and Fawcett, 2006).  Clift and Bourke (1999) reported that only about 

25% of organisations conduct whole-life costing prior to sanctioning building 

investments. 

 
Figure 1:  Mapping Whole-life Cost decisions in a Real-Options Framework 

RESEARCH METHOD 

This work adopts a realist perspective in investigating the issues in whole-life cost 

modelling.  In order to address the conceptual limitations in existing whole-life 

costing techniques, there is a pertinent need to examine the assumptions in the 

modelling framework.  These can be done by highlighting and identifying the 

phenomena that impacts on costs.Firstly, existing whole-life cost models are implicitly 

developed for new-build projects.  The Standard Whole-life costing model does not 

explicitly allow for possible variations in future costs over the estimated building life.  

Although, the New-Generation whole-life cost model recognises the effects of 

revocability, it does so in a simplistic manner, presuming dichotomous values of equal 

proportions in succeeding years .  Besides none of these models consider the 

economic effects of disruption.  A framework is presented, that adequately considers 

the implications of revocability and disruption.  It is anticipated that this will enhance 

the robustness of whole-life cost modelling in retrofit buildings.  The Case study 

method will provide a useful approach for assessing the effects of disruption and 

revocability in whole-life cost modelling. 

Evaluating the cost of disruption 

The potential for disruption in retrofit scenarios need to be considered prior to the 

sanctioning a retrofit initiatve (Holness, 2010).  The disruption analysis for retrofit 

initiatives conducted by Gleeson et al., (2011) provides a basis to estimate the 

disruption cost in retrofit buildings.  The cost of disruption is an inexact measure, and 
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requires a structured and systematic approach.  Ashworth (2004) advised that some 

form of human judgment will be useful in the whole-life cost modelling of buildings.  

The Factor Chart analysis presented in Figure 2 is proposed to evaluate the cost of 

disruption in office retrofit buildings. 

It is conceivable that the cost of disruption will depend on the economic use of the 

building.  Hence, it makes for logical reasoning to evaluate the respective cost of 

disruption over a plausible range.  Fuzzy logic has great potential in assisting 

scenarios where numerical valuations may be inexact or vaguely represented (Zadeh, 

2008).  This work adopts tolerance values (�j) specified by Ayyub and Klir (2006), as 

shown in Table 1.  The Low, Medium and High metrics of disruption, as previously 

suggested by Gleenson et al., (2011) will be considered as corresponding to different 

levels of uncertainties in the range of disruption.  In using fuzzy logic, lambda-cut sets 

are useful approaches in quantifying variables within a continuum. 

 
Figure 2: Factor Chart Analysis for Disruption Cost Evaluation 

Lambda-cut sets are interval-valued functions that contains all the elements of the 

parent set, whose membership grades in the set are greater or equal to the specified 

values of lambda.  Ammar et al,.  (2013) stated that the lambda-cuts of 0.2, 0.5, and 

0.8 provide measures analoguous to the 25%, 50% and 75% percentiles of 

distributions. 

 

An illustration of the procedures of evaluating the cost of disruption in “Retrofit 

Initiative A” is shown in fugure 3.  Based on fuzzy set values in Table 1, the 

disruption level of Retrofit Initiative A are estimated based on the disruption measures 

provided by Gleeson et al.  (2011). Using the max-min composition operator, the 

overall number of disrupted days can be computed into a lower, mean and upper 

estimate.  The individual days of disruption are computed based on the average daily 

income-earning potential of the building. 
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For a £700 per day, building The cost of disruption for installing Retrofit A can be 

approximated as: Cost of Disruption = (£2,200,    £3,300,    £3,800)  

Evaluating the cost of revocability 

The proposed method for evaluating the cost of revocability will follow three steps 

involving the derivation of the fuzzy relations matrix, aggregation of the fuzzy future 

cashflows, and the defuzzification of fuzzy future cash flow set.  These are explained: 

Derive Fuzzy Relations Matrix 

The Fuzzy Relations Matrix is derived based on the matrix properties of a cost 

framework (Ross, 2009).  The Standardized numerical coefficients of the Negative 

Binomial Probability distribution are transformed into matrix form.  The benefit of a 

matrix transformation is to facilitate the computation of the fuzzy-derived future cash 

flow, and maximise the information contained in the probability distribution.  The 

cosine amplitude formula is perhaps the best approach for transforming the numerical 

coefficients of the Negative Binomial distribution into a fuzzy relation matrix. 

Generate fuzzy future cash flows 

The future cash flows are estimated based on the binomial cash flow framework of the 

New-Generation Whole-life Costing model introduced by Ellingham and Fawcett 

(2006).  The revocability rate of 10% is used, originally intended to provide for the 

inflation rate in the work by Ellingham and Fawcett (2006).  The revocability rate 

implies a proportionate increase or decrease in future cost values in succeeding years.  

The future cost relations matrix is a product of aggregating the fuzzy future costs and 

the fuzzy binomial distributions. 

Defuzzify into three-point estimates 

Previous work by Morrell (1993) have implied that the benefit of risk modelling is 

diminished, if cost estimates are presented as precise single figures.  Many cost 

estimates however, still seek to achieve precision, at the expense of credibility (Ross, 

2009).  It was previously implied by Gluch and Baumann (2004) that the current 

practice of whole-life cost modelling, which provides a single estimate, for such 

diverse range of data allows for vulnerability in generating erroneous results.  The 
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defuzzification operator is a useful approach to providing a non-crisp value that 

represents the degree of satisfaction of the aggregated fuzzy number. 

CASE STUDY PROJECTS 

According to Gleeson et al.(2011), the case-study approach has been the most 

common method used in examining retrofit initiatives.  Two retrofit projects have 

been selected to appraise the effects of revocability and disruption in the whole-life 

cost framework.  The first project (Building A) is a Grade II listed one-storey building 

in the UK.  It was first constructed as a primary school in the 1930’s and has recently 

being converted into a multi-tenant office building complex.  The building comprises 

approximately 1,800m2 of gross internal floor area.  The second project (Building B) 

is an office retrofit building in the United States; 3-storeys tall, and is a typical 

masonry building unit with approximately 5,500m2 of gross internal floor area.  These 

buildings provide a useful context for assessing the whole-life costs of retrofit 

projects. 

The data on the selected retrofit projects were obtained from documents and reports 

on the projects, and these were supplemented with interviews with the project teams.  

The energy cost is perhaps the most variable element of the future costs.  Savings in 

energy costs also tend to be a key consideration in sanctioniong retrofit projects in 

buildings.  In order to obtain the energy use data in the retrofit buildings, dynamic 

energy simulation softwares were used to assess various retrofit building configuration 

permutations.  Wang et al., (2012) reckons that simulations tools are perhaps the most 

powerful methods available in providing abundant and detailed energy performance 

outputs for buildings.  The IES<VE> has been used to model building energy 

consumption levels  in Building A, while EnergyPlus has been used to model building 

energy consumption levels in Building B.  In addition to the energy costs, there are 

also other maintenance and operating costs in office buildings including repairs, 

insurance, cleaning and waste disposal.  The annual and maintenance costs were 

obtained from the building managers and owners of the respective projects. 

RESULTS AND DISCUSSION 

Table 2 and Table 3 below presents the components of the whole-life costs of 

Building A and B, over a 60-year period, based on the proposed methodology.  This 

work retains the separation of whole-life costing strands of initial costs and future 

costs.  The inclusion of the cost of revocability – an additional variable to the future 

costs, and disruption – an additional variable to the initial cost, in the whole-life 

costing framework of building retrofit projects does not simply emphasize the 

prospects of underestimation, but also highlights the opportunities for savings.  This 

approach provides a robust mathematical model that will be crucial for model 

validation and development. 

The inputs of the whole-life components are the declining discount rate, as specified 

by the HM-Treasury (2013), which translates into 3.5% over a 1 to 30-year period, 

and 3% over a 31 – 60-year period.  A revocability rate of 10% was adopted for both 

buildings, consistent with the work of Ellingham and Fawcett (2006).  The future 

costs are the aggregate sum of the utilities costs and the maintenance costs.  The ARC 

is obtained by dividing the percentage difference between the upper future cost (UFC) 

and lower future costs (LFC) over the life of the building, by the Standard Future 

Costs (SFC), obtained using the Standard whole-life costing framework.  The cost 
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values in Bulding A is reported in Table 2.  It can be seen that  the average cost of 

revocability can be up to 105%, over a 60-year life in Building A. 

 

Also, the average disruption cost (ADC) relative to the initial cost in Building A is 

obtained by computing the average of LDC, MDC and UDC, and dividiing this by the 

initial cost.  It can be seen from Table 2, that the ADC can be up to 12%.  From Table 

3, it is evident that the average cost of revocability (ARC) in Building B can be up to 

119% over a 60-year life.  While, the average cost of disruption relative to the initial 

cost can be up to 1.2% in Building B. 

 

It is reasonable to expect the cost of disruption, on average, to be more significant in 

the private sector establishments, compared to the public sector.  This due to the 

profit-drive, typical of the private sector.  The organisational goals, and scale of 

operation of organisation owning office buildings, will also influence the magnitude, 

and effects of the cost of disruption, in potential office retrofit building projects. 

Revocability embodies initiatives within the control of building occupiers, as well as 

external economic conditions.  Ellingham and Fawcett (2006) espoused on the 

external economic condition that influences the cost of revocability, which essentially 

refer to inflation.  However, revocability as described by Verbruggen (2013) can be 

exercised through internal factors such as raising building users’ awareness, on the 

cost of energy, and potential savings, drawing attention to energy-use, clear labelling 
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of switches and controls.  Previous studies have not made concerted attempts to 

evaluate revocability and disruption in whole-life cost scenarios.  Future studies will 

aim to conduct a sensitivity analysis on the whole-life cost assumptions in order to 

better appraise the effects of revocability and disruption over different building lives 

and discount rate values.  Future studies will also assess the relative preference of the 

building configruation permutations, and compare this with results from existing 

models. 

CONCLUSION 

This work evaluates the whole-life cost implication of disruption and revocability in 

office retrofit buildings.  It is argued that the lack of consideration of revocability and 

disruption in existing whole-life cost modelling suggest the potential for 

underestimation of the whole-life costs of office retrofit buildings.  This work 

proposed an approach for evaluating the cost of revocability and disruption using 

probability and fuzzy logic principles.  Two buildings – A and B, are used to appraise 

the effects of disruption and revocability.  It was found that in Building A and 

Building B respectively, the average cost of revocability can be up to 105% and 

119%, over a 60-year life, and the average cost of disruption relative to the initial cost 

can be up to 1.2% and 12%.  This work is limited in focusing on just two projects, and 

future work should include more samples.  This will provide building clients with 

clearer aspirational objectives on the whole-life economic performance of office 

retrofit building projects 
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