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 21 

Abstract: Solar energy is one of the renewable energy sources that has shown promising 22 

potential in addressing the world’s energy needs, particularly via the solar photovoltaic (PV) 23 

technology. However, the high cost of installation is still being considered as the main 24 

obstacle to the widespread adoption of solar PV system. The use of solar concentrators is one 25 

of the solutions that could help to produce lower cost solar PV systems. One of the existing 26 

concentrator designs is known as the rotationally asymmetrical dielectric totally internally 27 

reflecting concentrator (RADTIRC) which was developed in Glasgow Caledonian University 28 

(GCU) since 2010. This paper aims at optimising the existing RADTIRC prototype by 29 

increasing its electrical output whilst keeping the cost of the system at minimum. This is 30 

achieved by adopting a better material and a different technique to fabricate the concentrator. 31 

The optimised RADTIRC prototype was fabricated from polymethyl-methacrylate (PMMA) 32 

using injection moulding. It was found that the optimised RADTIRC-PV prototype generated 33 

an opto-electronic gain of 4.48 when compared with the bare cell under standard test 34 

conditions (STC). A comparison with the old prototype showed that the optimised 35 

RADTIRC-PV prototype increased the short circuit current by 13.57% under STC. 36 

 37 

Keywords: solar photovoltaic; solar concentrator; rotationally asymmetrical concentrator; 38 

rotationally asymmetrical dielectric totally internally reflecting concentrator. 39 

 40 
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1. Introduction 41 

 42 

Energy is essential in our daily life. It is needed not only to meet the social and 43 

economic development, but also to improve human welfare and health [1]. According to a 44 

recent report by the Energy Information Administration (EIA), the world's annual energy 45 

consumption is projected to rise to 812 EJ in 2035, more than twice the energy needed in 46 

1990. However, the rising trend of energy consumption contributes directly to increasing 47 

greenhouse gas (GHG) emissions – mainly due to the fact that the largest proportion of the 48 

energy supply comes from fossil fuels. The GHG emission traps the heat from being reflected 49 

back into the outer space and causes earth’s temperature to rise which subsequently results in 50 

climate change [2]. Countries around world experience extreme weather conditions (e.g. 51 

massive flood [3], severe draughts [4] and extreme rain, snow and hail [5]) as consequences 52 

of climate change. These events also trigger major changes on energy use in the built 53 

environment [6–8]. To mitigate the GHG emissions while satisfying the world’s energy 54 

needs, one of the options suggested by the Intergovernmental Panel on Climate Change 55 

(IPCC) is the  deployment of renewable energy (RE) technologies [1]. 56 

According to the IPCC, solar has ‘the largest technical potential’ when compared with 57 

other renewables [2]. To harness solar energy, one of the technologies that has been utilised 58 

is the solar photovoltaic (PV) system, which converts the sun energy directly into electricity. 59 

It was calculated theoretically by Luque and Hegedus [9] that a solar PV system with only 60 

10% conversion efficiency installed in 0.4% of the earth’s land area could meet all the energy 61 

demand (electricity, heat and transportation) in 2010.  62 

To date, it is estimated that the solar PV installation reached a cumulative capacity of 63 

177 GW worldwide [10]. The growing interest in developing zero energy buildings (ZEBs) 64 

[11,12] as well as the introduction of feed-in tariff scheme [13–16] catalysed the uptake of 65 

solar PV installation in many countries. However, although there has been an oversupply and 66 

declining prices of PV modules, the overall installation cost of a PV system in many 67 

countries is still considered very expensive. It is estimated that the usage of PV material 68 

which contributes to 73% [17] of the cost of the PV module, i.e. PV material contributes to 69 

32.85% of the overall installation cost. To achieve this reduction in PV material without 70 

compromising the PV module’s output performance, a number of researchers have suggested 71 

to incorporate a solar concentrator design in the PV module [18–22]. 72 

A concentrator works by focusing the solar energy from a large entrance aperture area 73 

to a smaller exit aperture area to which a solar PV cell is attached [22]. By adopting this 74 



approach, it is possible to minimise the usage of PV material significantly while maintaining 75 

the same electrical output. The concentrator can be fabricated using inexpensive materials 76 

such as plastic or mirrors, which offsets the cost of the displaced PV material [22]. 77 

Specifically for building integration, the PV technology that includes a low gain concentrator 78 

(gains < 10x) in the design is desirable since it has a wider half-acceptance angle to maximise 79 

the collection of sunlight throughout the day as well as to cater for variations of sun path 80 

throughout the year, hence eliminating the need for any mechanical sun tracking system. This 81 

low gain concentrator-PV is commonly known as low-concentration photovoltaics (LCPV) 82 

system. 83 

In the last few years, various LCPV designs have been demonstrated by many 84 

researchers. Sarmah et al. investigated the performance of a linear dielectric asymmetrical 85 

compound parabolic concentrator (ACPC) design and evaluated its performance indoor [23] 86 

and outdoor [24]. They concluded that the design achieved a maximum power ratio of 2.27 87 

when compared with a non-concentrating panel and could reduce the cost per unit power by 88 

20% [23]. Mallick and Eames [25] also demonstrated another variation of the dielectric 89 

ACPC achieving a power ratio of 2.01 and a theoretical cost reduction of 40% when 90 

compared with a non-concentrating module. Guiqiang et al. investigated a novel air-gap-lens-91 

walled compound parabolic concentrator (ALCPC) [26–29]. From the experiment, they 92 

demonstrated that the ALCPC generated comparable maximum output power when compared 93 

with a common mirror CPC but at the same time provided superior half-acceptance angle 94 

than a common mirror CPC - allowing the ALCPC to generate more electricity in a year [26]. 95 

They also claimed that the ALCPC design could reduce the overall cost significantly since it 96 

utilises between 20% and 25% of the dielectric material used by Mallick and Eames [25]. 97 

Muhammad-Sukki et al. [30–36] simulated the performance of an extrusion of a symmetrical 98 

dielectric totally internally reflecting concentrator (DTIRC) based on the maximum 99 

concentration method (MCM). The design could achieve a maximum optical concentration 100 

gain of 4.08 when compared with a bare cell [33] and could reduce the overall installation 101 

cost by 41% [34,35].  102 

Ramirez-Iniguez et al. [37] developed a novel rotationally asymmetrical dielectric 103 

totally internally reflecting concentrator (RADTIRC) with the aim of providing additional 104 

gain on two different axis, which increases the electrical output and reducing the usage of PV 105 

material, which subsequently reduces the overall cost of the system [38]. This design was 106 

created from the DTIRC based on the phase conserving method (PCM). One specific design 107 

was fabricated and evaluated both indoors and outdoors [39]. The computer-aided design 108 



(CAD) has a geometrical concentration gain of 4.9069, two half-acceptance angles of 30º 109 

along the north-south axis (z-axis) and 40º along the east-west axis (x-axis) respectively, a 110 

total height of 3 cm and  a square exit aperture with sides of 1 cm (see Figure 1) [39]. The 111 

concentrator was created using a silicon mould and the material used to produce the 112 

concentrator was a type of acrylic known as ‘6091’ (supplied from Renishaw Plc.) with a 113 

refractive index of 1.515 [39]. It was found that the design could achieve a maximum opto-114 

electronic gain of 4.2 when compared with a bare PV cell [39].  115 

 116 

 117 

Figure 1: Prototype RADTIRC dimensions [38]. 118 

 119 

 120 

Although the first prototype yielded good results, two problems were identified: (i) 121 

the dimensions of the concentrator were smaller than the design specifications due to the 122 

usage of a silicon mould (see Figure 2), and (ii) the material used in the prototype suffered 123 

from discoloration and photo degradation with time (from clear to yellowish colour as 124 

illustrated in Figure 3), which reduced its maximum power performance by 7.84% after 2 125 

years (from 72.03 mW to 66.38 mW), as presented in Figure 4. This paper aims to further 126 

optimise this RADTIRC prototype. In particular interest will be to adopt a better material and 127 

a different fabrication technique.  128 

 129 



 130 

Figure 2: The dimension comparison of the CAD file (left) and the actual one fabricated 131 

using a silicon mould (right). 132 

 133 

 134 

Figure 3: The first prototype of RADTIRC fabricated using the 6091 resin which suffered 135 

from discoloration and photo degradation after 2 years. 136 

 137 

 138 

Figure 4: The comparison of the RADTIRC-PV structure performance for experiments 139 

carried out in 2012 and 2014. 140 

 141 

Sections 2 and 3 explain about the material and the fabrication technique chosen to 142 

fabricate the optimised prototype respectively. Section 4 discusses in detail the assembly 143 

process of the optimised RADTIRC-PV structure. Afterwards, Section 5 presents the 144 



simulations that were carried out to evaluate the performance of the RADTIRC-PV structure. 145 

Subsequently, the experimental setup is laid out in Section 6 before presenting the 146 

experimental results in Section 7. Finally the conclusions and future works are presented at 147 

the end of the paper. 148 

 149 

2. Choosing the material for the optical concentrator 150 

 151 

There are a number of factors that need to be taken into account when choosing the 152 

material for any LCPV system. For any concentrator that is fabricated from a dielectric 153 

material, the requirement include [18]: 154 

i. The cost of the material must be cheaper that the cost of the displaced PV material. 155 

This ensures that the design can reduce the overall cost of installation; 156 

ii. The dielectric material must have excellent/high transmission and low absorption to 157 

ensure that all the light is transmitted to the solar cell. This will also reduce the optical 158 

loss in the system.  159 

iii. The dielectric material must have a higher mechanical strength than the encapsulation 160 

material to ensure that the concentrator can maintain its geometrical features. 161 

iv. The material must be durable – it must last long enough to match the longevity of the 162 

solar cell attached to it, which normally has a manufacturer guarantee of 163 

approximately 25 years. For this reason, it should have a high resistance to photo 164 

degradation. 165 

v. The weight of the material must be considered carefully to ensure that the weight of 166 

CPV panel is comparable to the traditional panel which will ease the installation; 167 

 168 

As indicated by Sarmah [18], many researchers in CPV systems have opted for a 169 

variety of dielectric materials to fabricate their concentrator designs. These include 170 

polycarbonate and polystyrene. He concluded that despite having excellent optical properties 171 

and mechanical strength, these materials have very poor resistance when exposed to 172 

prolonged outdoor conditions and suffered from photo degradation, unlike polymethyl-173 

methacrylate (PMMA) and polyurethane [18].  174 

PMMA has excellent transmittance property (minimum 92%) [40] and a high 175 

resistance to photo degradation [41,42]. Rainhart and Schimmel [41] presented the 176 

performance of an acrylic PMMA panel installed in Sandia Laboratories in Albuquerque, 177 

New Mexico for 17 years and 8 months. They indicated that ‘the decrease in optical 178 



transmission was surprisingly low’, a reduction of only 3%, making it a strong candidate as a 179 

material for LCPV. On top of that, PMMA is ‘adaptable to many fabrication techniques’ [41] 180 

including extrusion, diamond turning and moulding. Because of these factors, PMMA has 181 

been chosen for the fabrication of many LCPV designs, such as Fresnel lenses [43–45], CPCs 182 

[26,28,29,46], ACPCs [25,47], and luminescent solar concentrators (LSCs) [48–51]. Based 183 

on these facts, it is proposed that the material used for the optimised RADTIRC was PMMA. 184 

 185 

3. Choosing the fabrication technique 186 

  187 

To produce a solar concentrator, there are various fabrication techniques available to 188 

date. These include 3D printing, silicon moulding, injecting moulding and single diamond 189 

turning. It has been indicated earlier that the old prototype (studied by Muhammad-Sukki 190 

et.al [38,39])  was fabricated from a silicon mould and that this prototype shrinked.  191 

Therefore this technique is not considered in this paper. As for 3D printing, the machines can 192 

only utilise specific materials predefined by the printer manufacturers and PMMA is not 193 

listed as a compatible material to be used for 3D printing [52]. Therefore, this fabrication 194 

technique is not discussed here either. 195 

 196 

3.1 Injection moulding 197 

 198 

 Injection moulding is a fabrication technique in which a material is injected into the 199 

mould to produce the part(s) needed, and is considered as one of the best techniques in 200 

producing plastic type parts [53], i.e. thermoplastic and thermoset plastic [54]. The former 201 

can be heated and shaped many times (e.g. PMMA, polypropylene and polystyrene) while the 202 

latter can only be heated and shaped once (e.g. epoxy resin and polyester resin) [54]. This 203 

technique was employed to fabricate the ACPC design by Mallick and Eames [25] and the 204 

Fresnel lenses by Zhuang and Yu [55] and Languy et al. [56]. 205 

 Figure 5 helps to explain the general process of injection moulding [57]. First, the 206 

granulated plastic material is poured into the ‘hopper’ and is fed into the barrel. The presence 207 

of heater bands around the outside of the barrel increases the temperature of the barrel to melt 208 

the plastic materials according to the desired specifications. The melted plastic is then being 209 

pushed along the barrel by the rotating screw into the mould tool and pressure is applied to 210 

ensure that the melted materials filled all mould cavities. Afterwards, the melted material is 211 



allowed to cool and solidify accordingly. The final moulded part is then taken out by 212 

removing the moving platen from the fixed platen. 213 

 214 

 215 

Figure 5: The injection moulding process [57]. 216 

 217 

 218 

 The injection moulding technique offers several advantages compared with other 219 

plastic moulding techniques. Nanoplas Inc. has indicated some of these advantages which 220 

include [58]:  221 

i. the ability to produced detailed features and complex geometries since the machine 222 

can hold high pressure, unlike other techniques e.g. the silicon moulding;  223 

ii. producing the part(s) in a more efficient manner. Each design can be tailored 224 

according to the customer’s needs and is pre-programmed into the machine. This 225 

helps to expedite the moulding process, allowing more parts to be completed or 226 

manufactured in a single mould (i.e. save the cost of producing a different mould for a 227 

different part/design). In short, this technique offers  more cost effective and better 228 

mass production capabilities compared to other techniques. 229 

iii. producing a stronger part due to the capability of using fillers. During the injection 230 

moulding process, these fillers can be added into the mould which enhances the 231 

strength of the moulded part. This could not be done with 3D printing or with a single 232 

point diamond turning process. 233 

iv. the ability to utilise multiple plastic materials at the same time by utilising the built-in 234 

co-injection moulding programme. 235 

v. reducing the manufacturing cost since the whole process is carried out by a pre-236 

programmed machine which effective reduces the labour cost.  237 

 238 



Despite these advantages, it has one main disadvantage, which is the high initial 239 

tooling cost [59]. If the volume of production is minimal, it is not cost effective to use this 240 

manufacturing technique. The high initial cost can be ‘ignored’ if the part is intended for 241 

mass production [25]. The British Plastic Federation (BPF) shows that for a typical 242 

component1 fabricated from an injection moulding technique, the unit production cost drops 243 

from £1,000 to around £1 per unit if the number of production increases from 1,000 to 244 

1,000,000 units [53]. 245 

 246 

3.2 Single point diamond turning 247 

 248 

 The single point diamond turning (SPDT) is a fabrication process in which the part is 249 

cut from a block of material (known as ‘blank’) using a single-crystal diamond-cutting tool 250 

[60]. The diamond tip cuts the surfaces of the part very accurately down to 1 µm in size and 251 

at 1 nm in roughness [61]. This allows the final product to have a ‘very good optical surface’ 252 

[60]. This technique can be utilised to produce any desired part from various materials, 253 

including metal, crystal and plastic [60,61]. Some of the examples of concentrators fabricated 254 

using this technique include the CPC by Karp and Ford [62], the Fresnel lens by Allsop et al. 255 

[63] and the freeform concentrator by Fang et al. [64]. 256 

 The steps to produce any part by using the SPDT process are as follow [60]: (i) the 257 

‘blank’ is mounted on a specified fixture in the pre-programmed diamond turning machine; 258 

(ii) the appropriate diamond tool is selected depending on the material and the shape of the 259 

concentrator and subsequently mounted on the machine; (iii) the optical surface of the blank 260 

is machined into the desired concentrator shape, and (iv) the machined concentrator is 261 

cleaned to remove the cutting oils or solvents. 262 

 Rhorer and Evans [60] have listed some of the advantages of using the SPDT 263 

technique over other fabrication methods. These include: (i) the capability to produce good 264 

optical surfaces especially at the edges of the optical element; (ii) the ability to produce parts 265 

even from soft ductile materials, and (iii) the ease with which any free form optical element 266 

can be produced whether it is symmetrical or asymmetrical.  267 

 However, there are also some disadvantages of using this technique. The SPDT 268 

method has a high rejection rate mainly due to demanding requirement on accuracy and 269 

                                                           
1 It is not clear what ‘component’ was analysed by the BPF. However, the information is useful to demonstrate 

the reduction in unit cost when the component is produced in high volume. 



surface finish [61]. This method is also not suitable for mass production because of time and 270 

cost issues, i.e. it is time consuming to produce one part and the cost per unit is very 271 

expensive (between 100 and 1,000 times more expensive than  injection moulding at high 272 

volume) [61]. 273 

 Taking into account the pros and cons from both methods, and based on the advise 274 

from UK Optical Plastic Ltd. [65], it was decided that the optimised design were fabricated 275 

using the injection moulding technique. The main determining factor is the cost of 276 

production, i.e. it is intended that a larger CPV system that incorporates an array of the 277 

RADTIRC design to be fabricated and tested indoor and outdoor afterwards. In terms of 278 

performance, a detailed study by Huang [66] concluded that the injection moulding process is 279 

capable of producing an optical concentrator with high precision provided that accurate 280 

mould compensation and precise process control are in place. 281 

  282 

4. Assembly process of the RADTIRC-PV device 283 

 284 

4.1 Design of the RADTIRC 285 

 286 

 The optimised prototype of the RADTIRC was fabricated by UK Optical Plastic Ltd 287 

using injection moulding [65]. The company utilised an injection moulding machine known 288 

as BOY 35M [65]. The material chosen for the concentrators is a variation of PMMA known 289 

as Altuglas® V825T, which has a refractive index of 1.492 [67]. The concentrator has a total 290 

height of 3 cm, a square exit aperture of 1 cm by 1 cm, a geometrical concentration gain of 291 

4.9069, an index of refraction of 1.5, and two ‘design’ half-acceptance angles of ±40° along 292 

the x-axis and ±30° along the z-axis to cater for variation of sun path during the day and 293 

throughout the year. This optimised design follows the same RADTIRC specification of the 294 

one fabricated and tested by Muhammad-Sukki et al. [38,39]. The moulded RADTIRC was 295 

polished to an ‘acceptable’ degree and the final design is presented in Figure 6. 296 

 297 

                                                           
2 The index of refraction of the PMMA material is 1.49, which almost the same as the index of refraction of the 

RADTIRC design, which is 1.5. 



 298 

Figure 6: The final form of the optimised RADTIRC prototype. 299 

 300 

  301 

 It was important to measure the dimensions of the optimised design to check that 302 

shrinkage had not occurred. The entrance aperture of the optimised RADTIRC was measured 303 

using a Vernier gauge, and the measurements were compared with the CAD design (the 304 

desired design) and the old prototype and the results are indicated in Table 1. The negative 305 

reading indicates that the measured dimension is smaller than the desired dimension. The 306 

measurement along the y-axis of the optimised design is much closer to the desired 307 

measurement, with a deviation of only -2.50%, unlike the old prototype which showed a 308 

deviation of -3.26%. The possible reason of this small deviation is the over polishing on 309 

removing the injection points from the moulded concentrator. However, the reading along the 310 

x-axis of the optimised design is slightly larger than the desired measurement, approximately 311 

by 3.35%. This is contributed by the ‘flash’ - a very thin layer of excess material which 312 

typically appears between two surfaces of the mould. In conclusion, the dimension of the 313 

optimised design is much closer to the desired CAD design, and approximate area deviation 314 

of 0.8%, unlike the old prototype that has a deviation of -6.2%. 315 

 316 

 317 

 318 

 319 



Table 1: Measurements of the entrance apertures of the RADTIRCs. 320 

Description CAD 

design 

Old prototype Optimised prototype 

 Measured Percentage of 

change with 

respect to the 

CAD design 

Measured 

 

Percentage of 

change with 

respect to the 

CAD design 

 (cm) (cm) (%) (cm) (%) 

Along x-axis 2.206 2.14 -2.99% 2.28 3.35% 

Along y-axis 2.636 2.55 -3.26% 2.57 -2.50% 

 321 

 322 

4.2 Solar cell 323 

 324 

 The solar cells used for the test were supplied by Solar Capture Technologies Ltd, 325 

UK. The monocrystalline silicon wafer has Laser Grooved Buried Contact (LGBC) and is 326 

suitable for  LCPV applications (maximum solar concentration ratio of up to 10x) [68]. To 327 

produce suitable cells for the concentrators, a large silicon wafer with a size of 125 mm x 125 328 

mm is patterned and laser-grooved to produced bus bars and fingers. Each bus bar has a 329 

width of 1mm while each finger has a width of 0.714 mm. This wafer was then cut into 330 

smaller cells with each cell has dimensions of 1 x 1 cm. The process of cutting the silicon 331 

wafer into smaller cells introduced some errors in terms of the final sizes of the cells, as 332 

presented in Figure 7, with a width deviation of 13%. When the cell is permanently bound to 333 

the exit aperture of the concentrator, this deviation introduces some error in the experiment 334 

results. If the size of the active area of the solar cell is bigger than the exit aperture area of the 335 

concentrator, a higher opto-electronic gain is obtained. Meanwhile, if the size of the active 336 

area of the cell is smaller than the exit aperture of the concentrator, not all the concentrated 337 

rays reach the cell resulting in a lower opto-electronic gain. 338 

 339 



 340 

Figure 7: The 1 cm2 solar cell provided by the Solar Capture Technologies, showing (a) the 341 

schematic of the cell, and (b) the measured dimension of the cell. 342 

 343 

 344 

4.3. Assembly process 345 

 346 

For the initial test, only one optimised RADTIRC-PV device was constructed. This 347 

concentrator-PV cell structure was compared with a bare cell. First, two solar cells were 348 

tabbed with a flat lead free wire having dimensions of 0.1 mm thickness and 1 mm width. 349 

The tabbing wire was soldered using a soldering iron with a power of 81 W and at a working 350 

temperature of 350° C. The soldering process was carried out over a short period of time to 351 

avoid damaging the solar cells. Furthermore, the tabbing wire was soldered on the edge of the 352 

cells to maximise the active area of the cell. The tabbed cells were then glued on two separate 353 

glass substrates (70 mm x 70 mm x 40 mm). 354 

To permanently mount the RADTIRC on one of the solar cells, a silicon elastomer 355 

Sylgard-184® from Dow Corning was chosen as the binding material. This material also acts 356 

as an encapsulation material for the solar cell. It has excellent transmittance (94.4%) [69] and 357 

can be cured using a simple process [23,38]. The Sylgard-184® was prepared by mixing the 358 

supplied base and curing agent in a 10:1 weight ratio in a small beaker. The mixture is then 359 

placed in a vacuum chamber for 15 minutes to eliminate air bubbles. A Dow Corning Primer 360 

92-023 was applied on the solar cells for a better adhesion between the Sylgard and the cell.  361 

Once the Sylgard was free from air bubbles, the mixture was poured on top of the solar cell. 362 

Afterwards, the RADTIRC was placed carefully on top of the solar cells and the elastomer 363 

was left to cure for 48 hours under room temperature to ensure good binding between the 364 

concentrators and the cell. The photograph of the two samples (an RADTIRC-PV device and 365 

a bare solar cell) is presented in Figure 8. 366 

 367 



 368 

Figure 8: Photograph of an RADTIRC-PV structure and a bare solar cell. 369 

 370 

 371 

5. Simulation of the Optical Concentration Gain 372 

 373 

 Prior to carrying out the indoor experiments, an optical concentration analysis was 374 

carried out to determine theoretically the performance of the optimised RADTIRC-PV 375 

structure when exposed to the sun. The optical concentration gain, Copt is defined as [70,71]: 376 

 377 

 
(1) 

 378 

where βexit, βentrance  and Cg are the flux (in W) at the exit aperture, the flux (in W) at the 379 

entrance aperture and the geometrical concentration gain respectively. The ratio of the flux at 380 

the exit aperture to the flux at the entrance aperture is also known as the optical efficiency, 381 

ɳopt of a concentrator [70,71]. In theory, any rays within the acceptance angle of the 382 

concentrator will emerge at the exit aperture of the concentrator [70], i.e. the rays entering 383 

from the side profile of the concentrator are not being considered in the simulation. The 384 

analysis evaluates the gain performance of the concentrator when exposed to rays at different 385 

angles of incidence.  386 

First, the 3-D surface coordinates of an RADTIRC are generated from MATLAB® in 387 

a point cloud format. This file is then imported into GeoMagic® software to produce a CAD 388 

model from which an Initial Graphics Exchange Specification (IGES) format file model is 389 

obtained, such as the one illustrated in Figure 1. Subsequently, this IGES file is imported into 390 



an optical system design software called ZEMAX® to conduct the ray tracing analysis. A 391 

simulation using any optical system design software such as ZEMAX® is better than using a 392 

programming software (i.e. MATLAB®) because [19]: (i) it gives flexibility in analysing any 393 

optical devices; (ii) it can analyse a greater number of incoming rays which results in better 394 

resolution of the optical flux distribution; (iii) it shortens the simulation times significantly, 395 

and (iv) it provides better result representations at the end of the simulation. 396 

The setup for the ray tracing analysis in ZEMAX® is shown in Figure 9.  A square 397 

light source is selected to produce one million collimated rays and is configured to produce 398 

an incoming power of 1,000 W. The CAD file of the RADTIRC is placed at a distance of 38 399 

cm from the light source3. To calculate the number of rays at the entrance and exit aperture 400 

of the RADTIRC, two photo detectors are attached at both ends of the concentrator. The 401 

simulation is carried out by first, firing the rays perpendicular to the cell where the number of 402 

rays at the entrance and exit apertures are calculated and recorded. This is repeated by 403 

increasing the rays’ incidence angle by 5º from horizontal plane until a maximum angle of 404 

60º is reached. 405 

 406 

 407 

Figure 9: Ray tracing analysis conducted in ZEMAX®. 408 

                                                           
3 This distance is chosen to match the setup for the indoor experiment, which will be explained later in Section 

6. 



 409 

 410 

Figure 10 shows the optical concentration gain and the optical efficiency variations 411 

with angle of incidences of the optimised RADTIRC. From the simulations, it is observed 412 

that the concentrator provides a substantial gain within its ‘design’ half-acceptance angle, 413 

achieving a maximum value of 4.62 and an optical efficiency of 94.2% at normal incidence. 414 

The optimised RADTIRC achieved 90% of its peak optical concentration gain and optical 415 

efficiency values when the angle of incidence was ±16° along both the x and z-axes. These 416 

values reduced to half when the angle of incidence of the rays reached ±36° and ±30° along 417 

the x and z-axis respectively. It can also be observed that the optical concentration gain was 418 

always greater than 1 (the optical efficiency higher than 10%) when the angle of incidence 419 

was less than and equal to the value of the ‘design’ half acceptance angle. Beyond the 420 

‘design’ half-acceptance angle, both parameters reduce to 0.  421 

 422 

 423 

Figure 10: The optical concentration gain and the optical efficiency of the optimised 424 

RADTIRC. 425 

 426 

 427 

6. Experimental setup 428 

 429 

 The indoor experimental setup to evaluate the characteristic of the RADTIRC-PV 430 

structure is illustrated in Figure 11. A Class AAA solar simulator (Oriel® Sol3A Model 431 

94083A) from Newport Corporation equipped with an air mass (AM) 1.5G filter, was used to 432 

reproduce the spectral emission of the sun at the earth surface, providing uniform 433 



illumination with a low marginal error of ±2% within a 20 x 20 cm footprint. A variable slope 434 

base was placed approximately 38 cm beneath the solar simulator’s lamp and within the 435 

uniform illumination area of the lamp. The variable slope base was used together with a 436 

digital tilt meter to accurately measure the tilt angle of the base. A Keithley source meter 437 

(Model 2440) with 4-wire connections was utilised here to act as a high accuracy loading 438 

circuit [21,39]. The source meter was connected to a computer which has already installed the 439 

Lab Tracer 2.0 software from National Instruments® to measure the electrical output from 440 

the PV cells. The RADTIRC was placed on the variable slope base set at 0º inclination. 441 

Under the standard test conditions (STC), the solar simulator was configured to produce an 442 

irradiance of 1,000 W/m2 and the room temperature was maintained at 25°C. The irradiance 443 

can be varied by turning the integrated variable attenuator at the solar simulator and the 444 

irradiance reading can be measured using the PV reference cell system. The door and 445 

windows of the room were closed to avoid unwanted air flow and minimise temperature 446 

variations and the room windows had blinds to prevent unwanted light from entering the 447 

room. In order to obtain the current-voltage and power-voltage curves of the RADTIRC-PV 448 

cell (and of the bare cell) and from these characterize the angular variation of the 449 

optoelectronic gain of the concentrator, the sample (RADTIRC-PV or the non-concentrating 450 

cell) was exposed to the solar simulator light for short periods of time (approximately 5s) 451 

using a shutter. This was done to minimise the increase in the solar cell’s temperature which 452 

would have affected the readings of the open circuit voltage and the fill factor. For each 453 

measurement, the short circuit current (Isc), the open circuit voltage (Voc), the maximum 454 

current (Imax), the maximum voltage (Vmax), the maximum power (Pmax) and the fill factor 455 

(FF) were determined and recorded. The performance of the RADTIRC-PV structure and the 456 

non-concentrating cell were evaluated for these cases: (i) under STC at 0º inclination; (ii) 457 

under STC at different angles of incidence between -60º and 60º, and (iii) under various 458 

levels of solar radiation at 0º inclination. 459 

 460 



 461 

Figure 11: Indoor experimental setup. 462 

 463 

 464 

7. Indoor experimental results 465 

 466 

7.1 Characteristics of the optimised RADTIRC-PV structure under STC at 0º 467 

inclination 468 

 469 

 Figure 12 shows the current-voltage (I-V) and the power-voltage (P-V) characteristics 470 

of the RADTIRC-PV structure under the STC. From Figure 12, the short circuit current of the 471 

bare cell was recorded at 35.5 mA. However, the introduction of the RADTIRC in the design 472 

increased the short circuit current by a factor of 4.48 when compared with the bare cell, 473 

generating 159.0 mA. The maximum power on the other hand increased from 15.4 mW to 474 

75.9 mW when the RADTIRC-PV structure was compared with the bare cell, giving a 475 

maximum power ratio of 4.93. The experiment showed that the RADTIRC increased the fill 476 

factor from 77% to 78%. In terms of electrical conversion efficiency, the introduction of the 477 

optimised RADTIRC increases this value from 15.38 % to 15.45%. When the short circuit 478 

current from the optimised RADTIRC-PV design was compared with the old prototype, the 479 

short circuit current showed a superior reading, an increase of 13.57%. A similar trend was 480 

observed for the maximum power point reading where the optimised RADTIRC design 481 

increased the reading to 76 mW from only 66 mW generated by the old prototype. 482 

 483 



 484 

Figure 12: The I-V and P-V characteristic of the optimised RADTIRC-PV structure, old 485 

prototype, and the bare cell. 486 

 487 

 488 

7.2 The angular response of the RADTIRC under  STC 489 

 490 

The next part of the experiment consisted in characterising the angular response of the 491 

RADTIRC. This experiment evaluates the electrical performance of the system when the sun 492 

path varies throughout the day. Instead of tilting the source, the variable slope base was tilted 493 

from 0° to 60° at increments of 5°, with each tilt angle measured using the digital level meter.  494 

Figure 13 compares the short circuit currents generated by the RADTIRC-PV 495 

structure (the optimised design and the old prototype) with the ones generated by the bare cell 496 

for angles of incidence within the ±60º range. In general, the short circuit current showed a 497 

decreasing trend when the angle of incidence increased. In Figure 13, it was found that the 498 

optimised RADTIRC-PV structure achieved its maximum short circuit current at normal 499 

incidence, with the value of 0.159 A recorded. The optimised RADTIRC-PV structure 500 

achieved 90% of its peak short circuit value when the angle of incidence was ±20° along the 501 

x-axis and ±18° along the z-axis. This value reduced to half when the angle of incidence of 502 

the rays reached ±32° and ±28° along the x and z-axis respectively. When the angle of 503 

incidence was equal to the ‘design’ half-acceptance angles, the short circuit current was 504 

always higher than the one generated from the bare cell, as illustrated in Figure 13. Beyond 505 



this angle of incidence, the short circuit current continued to decrease eventually reaching 0 506 

A. The results from the experiment also indicate that within the ‘design’ half-acceptance 507 

angles, the optimised RADTIRC-PV structure produces much higher short circuit current 508 

than the old prototype, e.g. an increase of 13.57% at the normal angle of incidence. 509 

 510 

 511 

Figure 13: The short circuit currents generated from the optimised RADTIRC-PV structure, 512 

the old prototype and the bare cell. 513 

 514 

 515 

As for the bare cell, although the short circuit current value reduced when the angle of 516 

incidence increased, it showed a gradual drop from its peak value. It achieved 50% of its 517 

maximum short circuit current value when the angle of incidence was approximately ±60º. 518 

This reduction was contributed mainly due to the cosine effect4 [23,72]. 519 

There are two ways to investigate the performance of the concentrator. One is by 520 

looking at its opto-electronic gain, and the other is by analysing its optical efficiency. The 521 

opto-electronic gain measures the ratio of short circuit current produced from a CPV cell to 522 

the one generated from a non-concentrating cell [23,39,73]. The optical efficiency, on the 523 

other hand, is obtained by dividing the opto-electronic gain by the RADTIRC’s geometrical 524 

concentration ratio value [71,74]. A higher opto-electronic gain is desirable since it translates 525 

into a higher short circuit current, while a higher optical efficiency means that a higher 526 

                                                           
4 The cosine angle effect occurs when the surface of a flat solar cell is not normal to the sun radiation (in this 

case the solar simulator’s radiation). The effective value of the sun radiation on the cell reduces by the cosine 

of the angle between the sun and the cell’s normal [72]. 



percentage of the rays that fall on the front surface area are transmitted to the exit aperture of 527 

the concentrator. From the opto-electronic gain, the experimental half-acceptance angle of the 528 

RADTIRC-PV structure was determined, which is defined as the angle where the gain 529 

reached 90% of its peak value [74]. The opto-electronic gain and the optical efficiency of the 530 

optimised RADTIRC-PV structure are presented in Figures 14 and 15 respectively.  531 

 532 

 533 

Figure 14: The opto-electronic gain of the optimised RADTIRC-PV structure and the old-534 

prototype. 535 

 536 

 537 

For the optimised RADTIRC-PV structure, the maximum opto-electronic gain was 538 

obtained at normal incidence, with a value of 4.48, unlike the old prototype with only at 3.93. 539 

The optimised design achieved 90% of its peak opto-electronic gain value when the angle of 540 

incidence was ±20° along the x-axis and ±18° along the z-axis. This value reduced to half 541 

when the angle of incidence of the rays reached ±32° and ±28° along the x and z-axis 542 

respectively. When the angle of incidence was equal to the ‘design’ half-acceptance angles, 543 

the gain was always higher than 1, as indicated in Figure 14. Outside this incidence angle, the 544 

opto-electronic gain dropped gradually to 0. It can be concluded that within the ‘design’ half-545 

acceptance angles, the optimised RADTIRC-PV structure produces much higher opto-546 

electronic gain than the old prototype. 547 

 548 



 549 

Figure 15: The optical efficiency of the optimised RADTIRC-PV structure and the old 550 

prototype. 551 

 552 

 553 

A similar trend is observed when evaluating the optical efficiency of the RADTIRC-554 

PV structures, as illustrated in Figure 15. For the optimised RADTIRC-PV structure, the 555 

maximum optical efficiency was obtained at normal incidence, with a value of 91.3%, much 556 

higher than the value obtained from the old prototype of only 80.1%. The optimised design 557 

achieved 90% of its peak optical efficiency value when the angle of incidence was ±20° 558 

along the x-axis and ±18° along the z-axis. This value reduced to half when the angle of 559 

incidence of the rays reached ±32° and ±28° along the x and z-axis respectively. Outside this 560 

incidence angle, the optical efficiency dropped gradually to 0. It can be concluded that within 561 

the ‘design’ half-acceptance angles, the optimised RADTIRC-PV structure produces much 562 

higher optical efficiency than the old prototype. 563 

The opto-electronic gains and the optical efficiency trend were also compared with 564 

the optical results obtained from the simulation using the optical simulation software 565 

ZEMAX®, discussed previously in Section 5. The results from the experiments show good 566 

agreement with the simulation data, with a deviation of 3.5% at normal incidence. When the 567 

angle of incidence is between ±25º and ±35º, the deviation increases mainly attributed to rays 568 

impinging from the side profile of the concentrator being directed to the cell, which are not 569 

taken into account during the simulation. This deviation can also be attributed to several other 570 

factors, which include: (i) manufacturing errors causing the dimensions of the concentrator to 571 

differ from the actual design dimensions, uneven surfaces of the entrance aperture and over 572 

polishing on the profile of the side wall, and (ii) assembly errors during the soldering of the 573 



tabbing wire on the solar cells which reduced the effective area of each cell and misalignment 574 

between the solar cell and the exit aperture of the concentrator. 575 

In terms of the variation of the maximum power output with angle of incidence, a 576 

similar trend to the one obtained for the short circuit current was observed, as illustrated in 577 

Figure 16. The peak value of the maximum power was recorded at 75.9 mW and 15.4 mW 578 

from the optimised RADTIRC-PV structure and the non-concentrating cell respectively. This 579 

translates to a maximum power ratio (power gain) of 4.93. The maximum power generation 580 

of the optimised RADTIRC-PV structure reached 50% of its peak value when the angle of 581 

incidence was ±32º and ±28º along the x and z-axes, before gradually dropping to 0 W when 582 

the angle of incidence continued to increase. It can be observed that the optimised 583 

RADTIRC-PV structure produced a much higher maximum power output when compared 584 

with the old prototype (only 66.4 mW at peak value), an increment of 14.3%. As for the 585 

maximum power from the bare cell, the reduction of the maximum power was more gradual, 586 

achieving a 50% of the peak value when the angle of incidence was closer to ±60º. 587 

 588 

 589 

Figure 16: The maximum power generated from the optimised RADTIRC-PV structure and 590 

the old-prototype. 591 

 592 

 593 

7.3 Variation of solar irradiance at 0º inclination at 25°C. 594 

 595 

The experiment was repeated to evaluate the variation of the I-V and P-V 596 

characteristics under various levels of solar radiation. This investigation is helpful to evaluate 597 

the performance of the RADTIRC-PV structure in locations that have higher or lower 598 



average levels of solar irradiance. This was done by turning the variable attenuator control of 599 

the solar simulator to change its output from 800 W/m2 to 1,100 W/m2, at increments of 100 600 

W/m2.  The results are presented in Figures 17 and 18. Based on the findings from Sections 601 

7.1 and 7.2, it is concluded that the optimised RADTIRC-PV structure performs better than 602 

the old prototype. For this reason, this section only compares the performance of the 603 

optimised RADTIRC-PV structure with the non-concentrating cell.  604 

When the intensity of the solar simulator increased from 800 W/m2 to 1,100 W/m2, 605 

the short circuit current from both samples increased from 0.126 A to 0.169 A for the 606 

RADTIRC-PV structure and from 0.028 A to 0.039 A for the bare cell. In terms of maximum 607 

power, the change in the simulator’s intensities caused the reading from the samples to rise 608 

from 0.060 W to 0.082 W and from 0.012 W to 0.017 W for the RADTIRC-PV structure and 609 

the bare cell respectively. In general, the RADTIRC-PV structure produces a higher short 610 

circuit current and a higher maximum power when exposed to higher level of solar radiation, 611 

as expected, which is more desirable by the consumers when they want to reap higher 612 

financial return from the feed-in tariff scheme. However, the increase in irradiance coupled 613 

with the usage of a concentrator also increases the temperature of the PV cell, which will 614 

subsequently reduce the electrical performance [39,75] and even may cause accelerated aging 615 

of the PV cell [76]. It is therefore crucial for any LCPV system to have the right RADTIRC 616 

design and cooling system to ensure that the performance of the solar cell is at its optimum. If 617 

an RADTIRC design with higher gain is needed, the solar cell could be cooled by introducing 618 

a hybrid/thermal system (either using air or water), that utilises the co-generated heat to 619 

produce hot water and stimulate ventilation [30,38,77]. 620 

 621 



 622 

Figure 17: The I-V characteristic of the optimised RADTIRC-PV structure under various 623 

levels of irradiance. 624 

 625 

 626 

Figure 18: The P-V characteristic of the optimised RADTIRC-PV structure under various 627 

levels of irradiance. 628 

 629 

 630 

 631 



8. Conclusions 632 

 633 

 The aim of this paper is to carry out the first optimisation on the concentrator known 634 

as the RADTIRC developed by Ramirez-Iniguez et al. [37] at the GCU. Despite the first 635 

prototype yielding good results, two problems were identified: (i) the dimensions of the 636 

concentrator were smaller than the design specifications due to the usage of a silicon mould, 637 

and (ii) the material used in the prototype suffered a discoloration and photo degradation with 638 

time which reduced its maximum power performance by 7.84% after 2 years.  639 

 The criteria for choosing the most suitable material was presented and it was found 640 

that PMMA is one of the suitable materials to fabricate the concentrator – namely due to its 641 

excellence transmittance (92%) and high resistance to photo degradation properties [40–42]. 642 

Afterwards, two different fabrication methods were discussed, i.e. injection moulding and 643 

SPDT.  The former is chosen due to its cheaper cost to mass produce more concentrators (for 644 

future analysis) than the latter.  645 

The performance of optimised prototype was analysed by using ZEMAX® and it was 646 

found that the optimised prototype was capable of producing a peak optical concentration 647 

gain of 4.62 and a maximum optical efficiency of 94.2% at normal incidence. To verify the 648 

simulation results, controlled indoor experimental work was carried out and the setup and the 649 

results obtained from the experiments were presented in detail. It was found that the 650 

optimised RADTIRC-PV structure  generated an opto-electronic gain of 4.48 when compared 651 

with the bare cell under the STC. A comparison with the old prototype showed that the 652 

optimised RADTIRC-PV structure design increased the short circuit current by 13.57% under 653 

the STC. In terms of opto-electronic gain and optical efficiency, the results from the 654 

experiment showed good agreement with the simulation data, with a deviation of 3.5% at the 655 

peak value. This deviation can be attributed to several factors, which include (i) 656 

manufacturing errors causing the dimensions of the concentrator to differ from the actual 657 

design dimensions, uneven surfaces of the entrance aperture and over polishing on the profile 658 

of the side wall, and (ii) assembly errors during the soldering of the tabbing wire on the solar 659 

cells which reduced the effective area of each cell and misalignment between the solar cell 660 

and the exit aperture of the concentrator. 661 

Based on these findings, some future work that could be investigated include: (i) 662 

creating a small solar window incorporating an array of these RADTIRC design and evaluate 663 

its long term performance under real conditions; (ii) analysis of the effect of diffuse radiation 664 

on the concentrator, and (iii) effect of the temperature on the performance of the concentrator. 665 
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