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Abstract 

Nephropathic cystinosis is a rare autosomal recessive disease characterised by 

raised lysosomal levels of cystine in the cells of all organs. It is treated by regular 

administration of the aminothiol, cysteamine.  Corneal crystal deposition is one of 

the most troublesome complications affecting patients and requires the hourly 

administration of cysteamine eye drops.  In an attempt to reduce this frequency 

and improve the treatment, the preformulation and evaluation of cysteamine 

containing gels is reported. Suitability for ophthalmic delivery was determined by 

analysis of rheology, bioadhesion, dissolution and stability. The results 

demonstrated that three polymers were suitable for ophthalmic delivery of 

cysteamine; namely sodium hyaluronate, hydroxyethyl cellulose and carbomer 

934. Sodium hyaluronate displayed optimum performance in the preformulation 

tests, being pseudoplastic (reduction in apparent viscosity under increasing shear 

rate), bioadhesive, releasing cysteamine over 40 minutes and displaying stability 

over time. In conclusion these results offer the possibility to formulate cysteamine 

in an ocular applicable gel formulation.   

 

Keywords: Cystinosis, Ophthalmic delivery, Gel, Cysteamine, Preformulation 

 

 
1. Introduction 

 

Nephropathic Cystinosis is a rare genetic disease, characterised by extremely high 

lysosomal levels of cystine, the oxidized dimer form of the amino acid cysteine 

and manifested by a general failure to thrive (Buchan, et al. 2012).  The 

accumulation of cystine as crystals in most tissues leads to the progressive 
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impairment and dysfunction of multiple organs, such as the pancreas, eye, brain 

and thyroid (Syres, et al. 2009).  Without treatment, this autosomal recessive 

disease can result in multi-organ failure and death before the onset of puberty 

(Gahl, 2009).  The main treatment for the disorder remains the administration of 

the aminothiol, cysteamine (figure 1) (as the bitartrate salt, Cystagon®)(Thoene, 

et al. 1995).  Cysteamine therapy produces rapid depletion of cystine from 

leukocytes, with minor side effects (Schneider, et al. 1976; Schneider 2004).   

 

Corneal crystal deposition is one of the most troublesome complications affecting 

patients with cystinosis and persists even as their prognosis improves and life 

expectancy increases.  Photophobia and, ultimately, blepharospasm affect the 

quality of life to such an extent that the slightest glimmer of sunlight can be 

debilitating.  In addition, crystal accumulation over a period of years can cause 

the formation of corneal scars, keratitis and cataracts, as well as band 

keratopathies (Gahl et al., 2000).  The oral form of Cystagon has no effect on 

depleting corneal crystals due to poor drug availability stemming from the absence 

of vasculature in the cornea (Gahl, et al. 1987; Gahl and Kuehl, 2000), thus 

cysteamine must also be administered topically in the form of eye drops.   

 

Compliance with the use of eye drops is a major issue however, as in order to 

achieve the maximum benefit in their current formulation these drops must be 

routinely administered every hour while awake (Gahl and Kuehl, 2000; Gahl, et 

al. 2007).  This is due to a low bioavailability commonly reported for topical eye 

treatments, with tissue contact time varying from 1-2 minutes (Gangrade, et al. 

1996; Jansook, et al. 2010; Le Bourlais, et al. 1998) to 5 minutes (McKenzie and 

Kay 2015; Robinson, 1989; Shell, 1984; Urtti and Salminen 1993).  This short 
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ophthalmic residence time is due to a multitude of protective mechanisms such as 

blinking and high tear fluid production and turnover (Ahmed and Patton, 1987; 

Kaur and Kanwar, 2002; Saettone and Salminen, 1995; Morrison et al, 2014; 

Morrison et al 2013).  The current drops, which contain 0.55% cysteamine 

hydrochloride in saline also cause frequent stinging and redness upon application 

(Gahl 2009). 

 

By formulating cysteamine as a bioadhesive ophthalmic gel with controlled drug 

release, it is hypothesised that administration frequency may be reduced, perhaps 

allowing once or twice-daily dosing instead of the current hourly requirement.  

These formulation changes may reduce the burden of treatment and improve 

compliance, producing long-term prevention of ophthalmic morbidity, such as 

blindness.  Hydrogels which are pseudoplastic, transparent and bioadhesive are 

highly desirable for topical ophthalmic application, and have the potential for less 

frequent application and improved patient compliance. 

 

2. Materials and methods 

 

Cysteamine hydrochloride (CH), hydroxyethyl cellulose (HEC), 

hydroxypropylmethyl cellulose (HPMC), xanthan gum (XG), potassium chloride, 

sodium chloride, sodium carbonate, calcium carbonate and magnesium chloride 

were purchased from Sigma, UK. Polyvinylpyrrolidone (PVP) was purchased from 

Fluka. Ellman’s Reagent, 5,5'-dithiobis(2-nitrobenzoate) (DTNB) was purchased 

from Molekula (Gillingham, UK).  Tris buffer (1M, pH7.4) was bought from Fisher. 

Carbomer 934 (C934) was purchased from Universal Biologicals, UK. Carbomer 

974 (C974) was purchased from Surfachem, UK. Sodium hyaluronate (HA) was 
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purchased from Aromantic (Moray, UK). Benzalkonium chloride (BZK) was 

purchased from Aldrich. Tubing membrane (12–14,000 kDa) was purchased from 

Visking, UK.  All other chemicals were of pharmaceutical grade. 

 

As part of initial pre-formulation work, potential gel carriers were screened for 

suitability as ophthalmic vehicles.  A literature review was undertaken, 

investigating the suitability of polymers available for ophthalmic use.  Inclusive 

parameters were non-toxicity in the eye, pseudoplastic rheology, bioadhesive 

nature, good optical clarity, stability and compatibility with cysteamine.  Eight gel 

carriers met these criteria. The eight gels were subjected to unmedicated pre-

formulation testing of rheology and optical clarity. The polymers were dissolved in 

water for injection (WFI) and neutralised to pH 7.4 with sodium hydroxide if 

required, and allowed to fully hydrate at 4˚C for 24 hours before testing.  The 

concentrations used corresponded to those used commercially (table 2).  This 

maintained the apparent viscosity of the gels within the limits tolerated by the 

eye. Gels which performed satisfactorily were loaded with 0.55%w/w CH and 

subjected to further testing: dissolution, bioadhesion, toxicity, stability and 

surface tension.  Unmedicated gels were used as controls. Simulated Lachrymal 

Fluid (SLF) at pH 7.4 was used to mimic tear fluid during tests.  It was also used 

in the production of the ophthalmic gels to provide additional buffering capacity.  

The following salts were weighed out and stirred in a 1 L volumetric flask: 

potassium chloride 0.179% w/v, sodium chloride 0.631% w/v, sodium carbonate 

0.218% w/v, calcium carbonate 0.004% w/v and magnesium chloride 0.005% 

w/v. Hydrochloric acid (0.1M) was used to adjust the pH to 7.4. Sorensen’s 

Modified Phosphate Buffer (SMPB) was also added to the gels to stabilise the gels 
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at pH7.4. It is one of the most common ophthalmic buffers used. Briefly, a solution 

of 0.2M monosodium phosphate and disodium phosphate was made in WFI. 

 

2.1 Rheology  

 

The rheological properties of the gel were studied using an Advanced Rheometer 

AR1000 from TA Instruments (Delaware, USA).  A 60 mm, 2° angle cone geometry 

was used, with a truncation value of 65 µm.  All measurements were made at 

34°C, the temperature at the corneal surface.  Continuous shear measurements 

were made initially, using a linear mode and a continuous ramp of 0-600 s-1, and 

600-0 s-1 over 20 minutes, to establish flow types such as Newtonian or 

pseudoplastic.   

 

Oscillatory measurements were performed on the gels to characterise the linear 

visco-elastic behaviour and relate the rheological parameters to molecular 

structure.  A linear mode was used with a frequency of 1-10 Hz, and 20 sample 

points.  The controlled variable was percentage strain.  The sample volume was 

approximately 1.5 ml.  All tests were performed in triplicate.   

 

2.2 Optical transmission 

 

The optical transmission of each gel was measured using a Cecil CE 3021 

Spectrometer (Cambridge, England).  The transmission was measured as a ratio 

of the amount of light unabsorbed by the gel to the total amount of light the gel 

was exposed to, expressed as a percentage.  A wavelength of 480 nm was used, 

the middle of human light wavelength perception.  The gels were measured with 
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1cm, 5mm and 2mm path lengths; although in situ they would be less than a 

millimetre thick.  The gels were referenced to deionised water at room 

temperature, which was taken as 100% transmission.  A figure greater than 90% 

was classed as transparent, between 10 and 90% as translucent, and less than 

10% as opaque (Buchan, et al. 2010).  Each test was performed in triplicate. 

 

2.3 Evaluation of cysteamine release via dissolution 

 

A 100 ml round-bottomed flask was held in a water bath, heated to 34°C.  To the 

flask 50 ml aqueous solution of SLF and Tris buffer (90:10) was added, and an 

equimolar quantity (to the concentration of cysteamine in the gel) of Ellman’s 

reagent was added, and this solution was stirred magnetically using an IKA RET 

basic hotplate stirrer (Staufen, Germany).  A dialysis membrane (12-14,000 kDa) 

containing 7 ml of the gel and, tied in a rod shape (length 2.23 cm; radius 1 cm, 

average of 3 measurements) to exclude air bubbles, was added to the flask at 

time zero.  The quantity of gel used was chosen to avoid reaching the limit of 

detection of the UV spectrometer. The medium was sampled every 2 minutes for 

the first ten minutes, every 5 minutes for an hour, and every 15 minutes after the 

first hour.  Samples were analysed at 440nm, the max for DTNB. Dissolution 

tests were performed in triplicate. 

 

2.4 Bioadhesion  

 

Bovine corneal tissue, which is reported as being similar in structure to the human 

cornea, was used as a control (Loch C, et al. 2012).  A Texture Analyser (Stable 

Micro Systems, Surrey, UK) was used to measure the force required to remove 
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the gel from an area of bovine cornea (Thirawong, et al. 2007).  Fresh bovine eyes 

were collected immediately after slaughter, and washed with deionised water.  The 

whole cornea was then excised and washed in SLF at room temperature.  Prior to 

testing, the corneas were placed on a tissue to remove excess fluid.  Cyanoacrylate 

glue was then used to attach a cornea to a 2 cm2 stainless steel plate.  Care was 

taken not to allow the glue to come into contact with the upper surface of the 

tissue.  Immediately after this, the steel plates were attached (in pairs) to the 

Texture Analyser, one positioned directly above the other.  Each gel sample was 

placed between the cornea samples and held together for 60 seconds; the force 

required to separate the plates was then measured (contact force of 0.05 N, 

contact time 60 s, probe speed 0.5 mm/s).  The force was plotted against distance; 

the area under the curve (AUC) being equal to the work of adhesion (Wad) 

(Thirawong, et al. 2007; Varum, et al. 2010).  Each individual test was undertaken 

nine times.  Statistical significance was determined using a Mann-Whitney test.   

2.5 Toxicity  

 

The effect of the gel carriers on healthy human fibroblasts was determined using 

an alamar Blue test (Fisher Scientific, UK).   

 

2.6 Stability testing 

 

A 12 week stability study was performed to elucidate the effect of storage 

containers and conditions on cysteamine oxidation.  Storage was at 4˚C or 21˚C, 

under air or nitrogen, in beakers, crimped bottles or sealed glass ampoules.  

Stability was quantified by measuring the cysteamine content in the gels using 
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Ellman’s reagent; cysteamine content over time was compared to 100% at the 

beginning of the test (T0). 

 

2.7 Surface tension  

 

Surface tension studies were performed using a torsion balance (Malvern Wells, 

UK).  Tests were performed on the C934 and HA gels in triplicate at 20˚C, with 

and without benzalkonium chloride to ascertain the effect of the preservative on 

the gel. 

 

3. Results 

 

As a result of the initial literature search, eight polymers were identified as suitable 

candidates for ophthalmic vehicles (Table 1).  The polymers were tested for light 

transmission and rheology.  The polymer concentrations used initially in this 

project were based on published values or commercial concentrations. 

 

As a result of the initial light transmission and rheology analysis, five gels were 

found to be most suitable for optical delivery: two grades of carbomer (934 and 

974), xanthan gum, sodium hyaluronate and HEC.  PVP and HPMC were eliminated 

due to unsuitable optical clarity and rheology.  The carrageenan became a solid 

mass upon cooling, and was therefore unsuitable for use in this project.  Also, PVP 

possessed a yellow colour which would be noticeable to the patient.   

 

The concentrations of the five gels were adjusted to obtain a gel within the desired 

viscosity range, i.e. 10 mPa.s – 30 mPa.s (Oechsner and Keipert, 1999; Zhu and 
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Chauhan, 2008) (table 2).  All five gels contained cysteamine hydrochloride at a 

concentration of 0.55% w/v as per the current eye drop.  Further analysis was 

performed to determine which of the five medicated gels was most suitable for 

ophthalmic delivery of cysteamine.  Benzalkonium chloride is the most widely used 

preservative in ophthalmic preparations (Lewis, et al. 2007; Marple, et al. 2004).  

More recently, the safety of this compound in the eye has been questioned, 

particularly in multiple-dose preparations (Baudouin, et al. 2010).  Alternatives 

include sodium perborate and polyquaternium 1.  Polyquaternium 1 is licensed for 

exclusive use by Alcon pharmaceticals for use in the eye, therefore sodium 

perborate was tested as an alternative to benzalkonium chloride.  Sodium 

perborate was also used as an alternative to benzalkonium choride, to determine 

any precipitation effect particularly for carbomer.  All of the gels’ parameters were 

unchanged except for hydroxyethyl cellulose and sodium hyaluronate which were 

four to five times more viscous, and carbomer 974 and xanthan gum, which were 

both 5-10% more optically clear.  It was therefore decided to continue testing 

using benzalkonium chloride as a preservative.   

 

3.1 Rheology  

 

The rheology measurements of the gels provide information about the nature of 

the gel structure.  All of the gels tested in Table 2 displayed a network like that of 

an ‘entangled solution’ apart from xanthan gum (Garrec and Norton 2012).    

 

3.2 Optical transmission  
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Concerns were expressed about gel opacity, particularly for carbomer 934, and as 

a result, optical path lengths of 2mm were also used (figure 2).  It is likely that, 

in vivo, the gels will be much thinner, in the region of 1.5 µm (Robinson and 

Mlynek, 1995).  As such, the optical clarity at this thickness should be greatly 

improved, reducing the initial blurred vision after installation and allowing the 

possibility of daytime administration. 

 

3.3 Toxicity  

 

The effect of the gel carriers on healthy human fibroblasts was determined using 

the alamar Blue assay (Figure 3).  All four of the gels tested displayed a non-toxic 

nature, similar to that of the control. 

 

3.4 Stability  

 

Long term stability tests were performed to elucidate the effect of storage 

containers and conditions on cysteamine oxidation.  Gels were stored at four 

different conditions, and the percentage CH remaining over time compared.  The 

order of oxidation stability was found to be: ampoules > crimped bottles > beakers 

(Table 3, Figure 5).   

 

3.5 Bioadhesion  

 

As a result of poor long-term stability, carbomer 974 and xanthan were eliminated 

from the study. Tests continued on the remaining three gels. Table 4 summarises 

the bioadhesion test results. 
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3.6 Dissolution  

 

Dissolution tests using sodium hyaluronate, carbomer 934 and HEC were 

performed in triplicate (Figure 4).  The three gel carriers each release cysteamine 

over a 45-50 minute period.   

 

3.7 Surface tension  

 

HEC was eliminated from the study at this point. Surface tension studies were 

performed using a torsion balance (Malvern Wells, UK) on the final two medicated 

gels, sodium hyaluronate and carbomer 934.  The surface tension of a liquid will 

give an indication of the wetting capabilities on the corneal surface.  A gel with a 

lower surface tension value will be able to spread more easily than a gel with a 

higher surface tension, and subsequent adhesion and absorption of the drug 

should therefore be improved (Abdelkader, et al. 2012).  As the surfactant 

benzalkonium chloride is used as a preservative, this should lower the surface 

tension further still.  Tests were performed on the two gels in triplicate at room 

temperature (20˚C), with and without benzalkonium chloride (Table 5).  

 

HEC and carbomer 934 were discounted, as neither gel demonstrated comparable 

long-term stability to sodium hyaluronate.  Therefore, the experiment and results 

which follow report only the sodium hyaluronate gel, at a concentration of 0.3% 

w/w, medicated with 0.55% w/w cysteamine hydrochloride. 

 

4. Discussion 
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Current understanding of ocular pharmacokinetics involves mixing of the eye 

drops with lachrymal fluid, produced at a rate of 0.5-2.2 Lmin-1, resulting in a 

short contact time with ocular tissue (Ahmed and Patton 1985; Ahmed and Patton 

1987).  Subsequent drainage towards the naso-lachrymal duct during blinking 

results in extensive elimination of the applied solution.  An ophthalmic gel may 

overcome these physical barriers and improve bioavailability through improved 

contact time with the corneal surface. 

 

Sodium hyaluronate is a biopolymer which is found throughout the human body 

in tissues such as skin, cartilage and vitreous humour (Sadhasivam, et al. 2013).   

It therefore provides an inherent biocompatibility with the eye (Chung, et al. 

2013).  It also promotes wound healing, and has been used commercially in 

artificial tears preparations for over 30 years (Kuo, 2005) with an established 

safety record.  It is a high-molecular weight polysaccharide (107 kDa) consisting 

of a backbone of alternating groups of (1-4) glucuronic acid and (1-3)-N-acetyl 

glucosamine (Sadhasivam, et al. 2013).   

 

The physical hydrogel formed during this project was both transparent and 

bioadhesive and these attributes are highly desirable for topical ophthalmic 

application.  In addition to these physico-chemical properties, the gel is isotonic 

due to the inclusion of SPMB buffer as an excipient, and exhibits a physiological 

pH of 7.4, minimising the potential for irritation.   

 

The gels demonstrated a bioadhesive nature (p<0.01), particularly for area under 

the curve (AUC) (Buchan, et al. 2010). Various theories of bioadhesion 
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mechanisms exist, however it is widely proposed that there are two main 

mechanisms once the surfaces initially come into contact. Physical bioadhesion 

likely occurs when the polymer chains become physically entangled with natural 

glycoproteins on the surface of the tissue. This physical interaction can be further 

strengthened with chemical bonding, the type of which is dependent on the 

polymer’s sub-groups (Thirawong, et al. 2007). The force required to remove the 

physical entanglements is measured as the AUC, while the force required to 

separate the probe and the plate measures the secondary chemical interactions.  

Bioadhesion is a useful property in an ophthalmic treatment, particularly for a 

chronic condition. By holding the active compound at the site of action for a 

prolonged period, the frequency which the eye drop needs to be administered may 

be reduced.  

It has been hypothesised that a viscosity of 12-15 mPa.s is optimal for ophthalmic 

delivery, demonstrated through in vivo work with rabbits (Rupenthal, et al. 2011).  

A viscosity of around 20 mPa.s is known to be acceptable to patients, and 

preparations for ophthalmic instillation such as eye gels should ideally be less than 

30 mPa.s to maximise patient comfort. The sodium hyaluronate gel possessed a 

viscosity of 14 mPa.s, which is within the acceptable range. The gels also 

demonstrated pseudoplastic flow, which is ideal for ophthalmic vehicles as it 

permits blinking without running out of the eye (Buchan, et al. 2010).  

 

Dissolution tests using sodium hyaluronate, carbomer 934 and HEC were 

performed in triplicate (Figure 3).  The three gel carriers each release cysteamine 

over a 45-50 minute period.  This extended release, in combination with the 

bioadhesive nature of the gel, may increase bioavailability compared to the current 
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eye drop. This may permit a reduction from the multiple dosing regimen currently 

experienced. 

 

Long term stability tests were performed to elucidate the effect of storage 

containers and conditions on cysteamine oxidation.  The order of oxidation stability 

was found to be: ampoules > crimped bottles > beakers (Table 3, Figure 5).  Some 

samples displayed a 65% improvement in stability over six weeks.  Historically, 

cysteamine preparations have been unstable at room temperature, and have been 

frozen to prolong shelf life (Bozdag, et al. 2008).  Many attempts have been made 

to overcome these stability issues, such as using prodrugs (Cairns, et al. 2008; 

Cairns, et al. 2008) and reformulation (Buchan, et al. 2012), however in this 

project cysteamine stability was improved through chemical synthesis and storage 

under nitrogen, and restriction to air.  

 

It has been reported that both carbomer 934 and hyaluronic acid possess 

antioxidative properties, and reduce the cell damage that would otherwise have 

been caused by benzalkonium chloride (Baudouin, et al. 2010).  In addition, 

sodium hyaluronate is used commercially in dry eye preparations (Table 1), and 

therefore will have a dual-action effect. 

 

The surface tensions of the two gels sodium hyaluronate and carbomer 934 are 

similar, and both gels demonstrate a large reduction in surface tension with the 

addition of benzalkonium chloride (table 5).  This will be a useful property in an 

ophthalmic formulation, and may facilitate drug absorption into the cornea.  In 

addition, benzalkonium chloride has a penetration enhancing effect due to corneal 

epithelial disruption, which can further promotes drug absorption (Abdelkader, et 
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al. 2012).  The analysis was performed at room temperature due to the logistics 

of encapsulating the entire texture analyser in a heated environment.  Due to the 

limitations of the use of ‘room temperature’ it would be worth investigating the 

effect of temperature on this parameter. 

 

5. Conclusions 

 

Polymer vehicles suitable for the ophthalmic delivery of CH have been 

investigated.  The candidate gel carriers have been through initial laboratory-

based characterisation, and the gel which possesses the most suitable 

characteristics for ophthalmic delivery of cysteamine determined.  Sodium 

hyaluronate demonstrated good optical transparency, a pseudoplastic rheology, 

significant bioadhesion, sustained release of CH, low surface tension, good long-

term stability and non-toxic characteristics. Sodium hyaluronate may be a suitable 

alternative to the current aqueous-based eye drop formulation of cysteamine. 
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Figure 1.  Cysteamine. 

 
 

 

Figure 2.  Effect of active addition upon the optical clarity of medicated sodium 

hyaluronate and carbomer 934 gels at different gel thicknesses. 

 

 

 

 

 

 

 

 

0

10

20

30

40

50

60

70

80

90

100

2 3 4 5 6 7 8 9 10

P
e

rc
e

n
ta

ge
 t

ra
n

sm
is

si
o

n

Path length (mm)

carbomer 934 CH sodium hyaluronate CH



26 
 

 

Figure 3.  Toxicity tests of the final four gels. 

 
 
Figure 4.  The release of cysteamine hydrochloride from the three gel carriers: 

sodium hyaluronate, hydroxyethyl cellulose and carbomer 934. 
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Figure 5. Percentage cysteamine HCL content over 12 week period. The sodium 

hyaluronate control was a beaker sealed with parafilm, maintained at 4°C. 
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Table 1.  Summary of the eight gels which were selected from the literature as suitable carriers, with the preformulation data. 

*G’ = elastic modulus 
ΔG” = viscous modulus 
†Tan delta = G”/G’ 

 
  

Unmedicated gel in aqueous solution, pH 7.4 Concentration: 
commercial preparation 
(%w/w) 

Optical 
transmission 1cm 
% (n = 3, ± SD) 

Optical transmission 
0.5cm % (n = 3, ± SD) 

Rheology 
(n = 3, ± SD) 

Gel structure/ viscosity  
mPa.s 
(n = 3, ± SD) 

Carbomer 934  
(Johnson ME, et al. 2008) 
Published work 

0.3 
 

71.9 (±0.89) 85.7 (±0.5) pseudoplastic G’* > G’’Δ, tan delta† <1 
Viscosity 150 (±0.05) 

Xanthan gum 
(Stewart, et al. 2002) 
Timolol GFS® 

0.3 
 

36 (±1.06) 58.9 (±0.64) Pseudoplastic 
thixotropic 

G’ > G’’, tan delta <1 
Viscosity 12 (± 0.0) 

Hydroxypropylmethyl cellulose (HPMC)  
(British Medical Association, Royal Pharmaceutical 
Society 2011) 
Genteal®, BionTears®, Tears Naturale Forte® 

0.3 
 

98.7 (±0.17) 99.2 (±0.06) Newtonian/ 
dilitant 

G’ < G’’, tan delta >1 
Viscosity 1.9 (± 0.06) 

Hydroxyethyl cellulose (HEC) 
(British Medical Association, Royal Pharmaceutical 
Society 2011) 
Minims® 

0.44 
 

99.9 (±0.06) 99.7 (±0.11) Pseudoplastic 
thixotropic 

G’ < G’’, tan delta >1 
Viscosity 63 (±0.02) 

Polyvinylpyrrolidone (PVP) 
(British Medical Association, Royal Pharmaceutical 
Society 2011) 

FreshKote® 

2 
 

98.8 (±0.06) 99.7 (±0.06) Dilitant G’ < G’’, tan delta >1 
Viscosity 1.6 (± 0.01) 

Ι-carrageenan 
(Bonferoni, et al. 2004) 
Published work 

1.5 
 

- - - - 

Sodium hyaluronate 
(British Medical Association, Royal Pharmaceutical 
Society 2011) 
Oxyal®, Ocusan®, Hycosan® 

0.1-0.2 
 

 100 (±0) 100 (±0) pseudoplastic G’ < G’’, tan delta >1 
Viscosity 10.7 (±0.03) 

Carbomer 974 
(British Medical Association, Royal Pharmaceutical 
Society 2011) 
Liquivisc® 

0.25 
 

94.0 (±0.52) 97.3 (±0.75) pseudoplastic G’ > G’’, tan delta <1 
Viscosity 260 (±0.06) 



29 
 

 
 

 
Table 2.  Overview of all 5 gels, medicated with 0.55% w/w cysteamine hydrochloride with benzalkonium chloride as 

preservative. 
 
OT = optical transmission 
G’ = elastic modulus 
G” = viscous modulus 
Tan delta = G”/G’ 

 

 

  

 Concentration 
(% w/w) 

OT 1cm % (±SD) OT 5mm % (±SD) OT 2mm % (±SD) Gel structure/viscosity  (mPa.s) 100% 
Dissolution 
(mins) 

Bioadhesion 
significant 

Carbomer 934 0.3 17 (±0.2) 38 (±0.51) 59 (±0.36) G’’ > G’, tan delta > 1 Viscosity 7 45 yes 
Carbomer 974 0.25 20 (±0.23) 40  (±0.06) 66 (±2.17) G’’ > G’, tan delta > 1 Viscosity 4 35 yes 
Xanthan gum 0.3 25 (±3.47) 54 (±2.42) 66 (±1.03) G’’ < G’, tan delta < 1 Viscosity 10 37 yes 
Hydroxyethyl cellulose 0.8 100 (±0) 100 (±0) 100 (±0) G’’ > G’, tan delta > 1 Viscosity 27 40 yes 
Sodium Hyaluronate 0.3 100 (±0) 100 (±0) 100 (±0) G’’ > G’, tan delta > 1 Viscosity 14 45 yes 
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Table 3.  Summary of the stability tests for the final five medicated gels. 
 

 Stability at 4°C, in a beaker sealed 

with film, darkness (control) 

Stability at 21°C, sealed 

container with sunlight 

Stability at 4°C in a crimped container, 

darkness (with nitrogen) 

Stability at 4°C in a crimped container, 

darkness (with minimal air exposure) 

Carbomer 934 100% @t0 
100% @t1week 
91% @t3weeks 
89% @t4weeks 
81% @t6weeks 
74% @t8weeks 
72% @T9weeks 
58% @t12weeks 
60% @t13weeks 

65% @t9weeks 100% @t0 
100% @t2weeks 
93% @t6weeks 
67% @t8weeks 
68% @t10weeks 
66% @t12weeks 
60% @t15weeks 
 

- 
 
 
 
 
 
 
 
 

Carbomer 974 100% @t0 
67% @t6days 

85% @t3weeks 
73% @t4weeks 
62% @t9weeks 

- - 
 

 
 
 

- 
 

 
 

Xanthan gum 100% @t0 
86% @t6days 
65% @t4weeks 
61% @t9weeks 

- - 
 
 
 

- 
 
 

Hydroxyethyl 
cellulose 

100% @t0 
88% @t1week 
81% @t2weeks 
69% @t3weeks 
67% @ t4weeks 
35% @t6weeks 
0% @t10weeks 

66% @t9weeks 100% @t0 
85% @t2weeks 
42% @t6weeks 
69% @t8weeks 
67% @t10weeks 
 

- 
 
 
 

Sodium 
hyaluronate 

100% @t0 
97% @t1week 
98% @t2weeks 
75% @t3weeks 
55% @t4weeks 
51%@t6weeks 
21% @t8weeks 
0% @t12weeks 

0% @t5weeks 100% @t0 
91% @t2weeks 
55% @t6weeks 
50% @t8weeks 
33% @t10weeks 
14% @t12weeks 
0% @t15weeks 
 

100% @t0 
100% @t2weeks 
100% @t3weeks 
100% @t4weeks 
100% @t5weeks 
94% @t8weeks 
90% @t9weeks 
90% @t10weeks 
88% @t14weeks 

77% @t16weeks 

 

 

mailto:51.32%25@t6weeks
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Table 4.  Summary of bioadhesion tests, n = 9.  
 

 Force (N) AUC 

Hyaluronic acid   
Tissue vs plain gel 0.034 0.026b 
Tissue vs gel with cysteamine HCl 0.048 0.053b 

Hydroxyethyl cellulose   

Tissue vs plain gel 0.03 0.026b 

Tissue vs gel with cysteamine HCl 0.082a 0.081b 

Carbomer 934   
Tissue vs plain gel 0.067b 0.205b 

Tissue vs gel with cysteamine HCl 0.107b 0.177a 
  p<0.05 a, p<0.01 b 
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Table 5.  Summary of the surface tensions of the gels, with and without benzalkonium chloride (n = 3). 

 

 Surface tension N/m 

(±SD) 

Sodium hyaluronate, cysteamine HCl, BZK 0.044 (±0.0003) 

Sodium hyaluronate, cysteamine HCl, without BZK 0.071 (±0.0001) 
Carbomer 934, cysteamine HCl, BZK 0.039 (±0.0001) 

Carbomer 934, cysteamine HCl, without BZK 0.073 (±0.0004) 
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