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Abstract: We demonstrate pulsed, photopumped multimode laser emission in the visible 

spectral range from rhodamine B dye dissolved in various solvents. The laser emission is 

characterized by a well-defined, low threshold pump power at which the emission spectral 

intensity dramatically increases and collapsed into several dominant laser modes with reduced 

mode spacing and spectral width. The modes were found to originate from the subcavities 

formed by the plane-parallel walls of the cuvette containing the gain medium. The cavity 

lasing spectral structure and the numbers of longitudinal modes were easily controlled by 

changing the solvents. A shift in the emission spectra has been also observed by changing the 

solvents will allow a limited range of tuning of laser emission wavelength. We also 

determined the gain coefficient and stimulated emission cross-section for the Rh B dye 

dissolved liquid laser system. A detailed discussion of the solvent effect in the lasing 

characteristics of Rh B in different solution is explained along with the computational data. 

 

1. Introduction 
The first laser was built in 1960 by Maiman [1], 44 years after Einstein’s discovery of stimulated emission. Six 

years after, the first dye laser was realized by Sorokin and Lankard [2].The ultra-wide wavelength tuning range 

and the ability to generate both narrow linewidth continuous wave output and ultra-short pulses make dye lasers 

an ideal coherent source for spectroscopy [3]. Generally, laser dyes are complex organic molecules containing 

long chains of conjugated double bonds. The complex molecular structure will leads to many vibrational and 

rotational energy levels within a single electronic state. Therefore, laser dyes often have strong and wide 

absorption bands in the UV and visible region [4-5]. Liquid dye lasers are the first material systems used to 

study the laser action and other optical processes in microcavities. In liquid dye lasers, tuning of the laser 

wavelength is performed either by changing the concentration of the dye, concentration tuning or by changing 

the optical path length in the cavity. To change the optical path of the cavity, the solvent of the dye can be 

changed, thereby changing the refractive index in the cavity. This method is so called solvent tuning. One 

should keep in mind that by changing the solvent, other properties of the fluid which can affect the laser 

wavelength may be changed due to the interaction between dye molecules and the solvent molecules. 

The solvent plays an important role in photophysical properties of laser dye. In this paper, we analysis the 

solvent effects on the laser emission characteristics for Rhodamine B (Rh B) laser dye. In our study, Rh B dye is 

dissolved in different solvents such as ethanol, methanol, butanol, ethylene glycol and glycerol, which are 

pumped longitudinally with short light pulses of several energies [6-7]. Apart from its particularly large cross 

section, it has high photochemical stability, which is important in practice to withstand multiple excitation 

cycles with a pulsed pump laser. Organic laser dyes typically show a large fluorescence yield ranging from 

about 0.6 to near the optimum 1.0. Figure 1 shows the absorption spectra of Rh B with a concentration of 5×10
-4

 

mol/dm
3
, which is dissolved in ethanol, butanol and glycerol respectively. These spectra were measured in a 

cuvette of diameter 0.1 cm using a UV-VIS spectrophotometer (Jasco V-570). The absorption spectra exhibit a 

solvatochromic shifts after exchange between one solvent to another. Due to the electron redistribution within 

the solvent molecules, the energy difference between the ground state and excited states will vary.  

mailto:jaison.peter@gmail.com


 
     Fig. 1. Absorption spectra of Rh B dye (5 X 10-4 mol/dm3) dissolved in various solvent. Inset shows the molecular formula of Rh B. 

 
Fig. 2. Florescence spectra of Rh B dye dissolved in methanol with different concentration. Inset shows red-shift of peak fluorescence with 

the concentration of Rh B. 

Figure 2 shows the tuning of emission wavelength peak with variation in the dye concentration in methanol. The 

peak emission wavelength of Rh B dye with 1 ×10
-4

 mol/dm
3
 concentration is found to be at 589 nm. By 

increasing the concentration of Rh B, the peak wavelength shows a clear redshift and at 5 × 10
-3

 mol/dm
3
 

concentration the emission peak is at 624 nm. Due to Stokes shift, the shorter wavelength of emission spectrum 

is absorbed by Rh B molecule and re-emit to the higher wavelength. The increase in concentration will increase 

the interaction between the dye molecules and the fluorescence light will result the shifting of the emitted 

fluorescence peak towards the longer wavelength region. This type of concentration dependent red-shift was 

also reported by F. P Schafer [3]. These types of tuning of the emission wavelength by changing the 

concentration of the dye are generally known as concentration tuning. The inset of figure 2 shows the redshift of 

emission spectra as a function of dye concentration. From this, it is clear that the lasing wavelength is tunable 

over a wide range (589-624 nm) due to the overlap of absorption and emission spectra of Rh B dye. However, 

after a particular dye concentration, the shift tends to exhibit saturation behavior.  

2. Experimental setup 

To observe lasing from the different dye solution, we used the second harmonic output of a Q-switched 

Nd:YAG laser that emits pulses of 8 ns duration at a repetition rate of 10 Hz as the excitation source. The pump 

power was adjusted with neutral density filters, and focused by a cylindrical lens into a 0.2 mm × 4 mm stripe 

transverse to a quartz cuvette of 1 cm inner length that contained dye solution. The schematic of the 

experimental setup is shown in the left inset of figure 3. This optical setup induces amplified spontaneous 

emission (ASE) along with the gain guiding and laser emission. The parallel windows of the quartz cuvette will 

provide the optical feedback, which is necessary for laser action. The emissions guided along the excitation 

stripe were collected from the side of the cuvette using a collecting fiber, and were then spectrally analyzed 

using a spectrometer and a charge coupled device. All the investigations were done in Rh B dye solutions with a 

constant dye concentration of 5×10
-4

 mol/dm
3
 in different solvents, while all the experimental conditions such as 

pump power, ambient temperature, excitation length of the gain medium and mode of collection remained the 

same. 

3. Photophysical properties of dye 

The unique features of dye lasers are directly linked to the molecular structure and the photophysical properties 

of organic dye molecules. The complex molecular structure also leads to many vibrational and rotational levels 

within the single electronic state. The effective homogeneous line-broadening mechanism due to the collision 

with solvent molecules smears these sublevels into unresolved overlapping bands. The homogeneous broadened 



spectra of dye molecules enable very efficient channeling of pump power into narrow band laser emission. Dye 

laser can be considered as a classical four level system (for simplicity, just neglect the triplet state). Under 

optical excitation, dye molecules are pumped from ground state S0 (ν = 0) to some vibrational-rotational 

sublevels in the first excited singlet state S1 (ν’ ≠ 0) as marked as I in figure 3 (This vertical line represent the 

absorption line of dye molecule). The dye molecules in this level will quickly relax to the bottom of S1 (ν = 0) 

(the lowest rotational-vibrational sublevel). This non-radiative decay process happens on the time scale of a few 

pico-seconds or less (This is represented by II). This energy lost in the process contribute to the heating of 

solvents. From the upper laser level, dye molecules can undergo either spontaneous emission or stimulated 

emission into some rotational-vibrational sublevel in S0 (ν ≠ 0) marked as III. This vertical line represent the 

emission line of dye molecules. Due to fast non-radiative decay, the molecules are quickly relax into the bottom 

of the ground state S0 (ν = 0) within a few pico-seconds marked as IV. 

 

Fig. 3. Typical energy level diagram of dye molecule. 

When the properties of the solvent changes such as refractive index (n) and dielectric constants (ε), the ground 

and excited state of the dye to be stabilized instantaneously by movements of electron within the solvent 

molecules. This electron redistribution results a change in energy difference between the ground and excited 

states. The stokes shift is related to the orientation polarizability term Δf, which is also known as solvent 

polarity function. The value of Δf can be measured by, 

                                          (
   

    
  

    

     
)                                                                      (1) 

The difference in two terms (first term is depends on the polarizability and second term depends on the RI) 

accounts for the spectral shifts due to re-orientation of the solvent molecules. Hence the energy state difference 

between the excited state and ground state of the dye is sensitive to the different properties of the solvents. 

4. Computational data 

The geometry of Rhodamine B was optimized with Density Functional Theory (DFT) and the highest occupied 

molecular orbital  (HOMO) and lowest unoccupied molecular orbital (LUMO) of the molecule in gas phase was 

calculated using B3LYP exchange correlation functional [8-9] and 6-31+G(d) basis set implemented in 

Gaussian 09 suite of codes [10]. The stationary points are characterized by frequency analysis. The solvent 

effects were included by Conductor-like Polarizable Continuum Model (CPCM) [11-12] solvation model. The 

vertical excitation energy and oscillator strength of Rhodamine B in different solvent are listed in table 1 and 

have been broadened with Gaussian function (Δλ=40 nm). On comparing the TDDFT/ PCM calculated data 

with experimental results we demonstrate the accuracy of the TDDFT/ PCM approach for calculating vertical 

transition energy.  

Table 1. Vertical excitation data of Rhodamine B in different solvent 

Solvent State Main character Wavelength (nm) Oscillator strength (f) 

Ethanol State 1 H            L 538.65 1.1666 

State 2 H-1            L 426.94 0.0466 

State 3 H-2            L 373.58 0.0165 

Methanol State 1 H              L 539.84 1.1725 

State 2 H-1           L 427.24 0.0464 

State 3 H-2           L 369.54 0.0623 

Butanol State 1 H             L 536.54 1.1558 

State 2 H-1          L 426.44 0.0469 

State 3 H-2           L 381.60 0.0048 



 

However, the experimental and theoretically calculated energy gap shows a difference. This is because the 

calculation was done in gas phase while the absorption spectrum is taken in liquid phase. (More details are given 

in supporting information). The vertical excitation results using the computational method will give some 

accurate data of the photophysical properties in different environments. 

5. Result and discussions 

To study the emission characteristics from the dye dissolved in butanol, the emission spectra were recorded for 

various pump power. When the pump power was increased, the amplified spontaneous emission spectrum 

collapsed into multiple narrow lines as shown in figure 4. In the laser spectrum, each emission line had a 

linewidth less than 0.1 nm. Such a spectral narrowing cannot be found in ordinal ASE in which the linewidth 

gradually decreases to several nanometers [13]. A clear threshold behavior in the emission versus excitation 

intensities plot and a second decrease in the linewidth at higher excitation intensity indicated the onset of laser 

action (Right inset of figure 4). The strongly modulated laser spectrum with numerous evenly spaced peaks 

clearly indicates the resonant modes. Above the threshold, the total emission intensity increased much more 

rapidly with the excitation pump power. As the pump power increased, the lasing action occurred in the 

direction of the highest gain parallel to the excitation stripe. For increasing pump powers, the absorption 

decreases and the fluorescence grows due to the increased population inversion, thus the gain grows. Due to 

Stokes shift, the gain maximum grows and moves towards the higher energy side (smaller wavelengths). The 

gain maximum is very important since it has a big influence on the spectral position of the laser mode. Ideally, if 

all cavity modes have the same loss, the laser mode is the cavity mode which is positioned closest to the gain 

maximum. Similar blue-shift with the pump power has been also observed in various dye lasers systems [14-

15]. 

 

 
Fig. 4. Lasing spectrum of Rh B solution in Butanol at a pump power of 15 mW. Left inset shows the schematic of experimental setup and 

right inset shows the emission intensity and FWHM of emission band versus pump power. 

The spectral peak intensity of the polymer ring laser is positioned at the maximum of optical gain which in 

turn corresponds to the photo-luminescent spectrum peak [15] around 590 nm. A large number of sharp lines 

can be seen within the fluorescent emission profile. The lasing modes are spectrally narrow with a FWHM of 

0.05 nm with a pump power of Pth×4 (~ 15 mW), where Pth is the lasing threshold pump power. When the pump 

power is higher than the lasing threshold (Pth×1.2) lasing modes appear in the longer wavelength range (593–

596 nm) of the photo-luminescence spectra of the gain medium. When the pump power is further increased, the 

lasing modes with high intensities start to develop on the shorter wavelength region of the spectra. The number 

of lasing modes and the resonant mode intensities increase with pump power as can be clearly seen in figure 5. 

The blue-shift as a function of pump power is attributable to the transfer of mode energy to that of the shorter 

wavelength side, which has gotten a large gain coefficient. However, the magnitude of this transition of energy 

gets saturated after a particular pump power. 



 
Fig. 5. The graph illustrates the lasing output intensities of Rh B dye (5 X 10 -4 mol/dm3) dissolved in butanol at different pump power. The 

spectrum moves towards shorter wavelengths with growing pump power. 

The net gain of the dye doped laser system was generally measured by the variable stripe length (VSL) 

method. An adjustable slit was used to select the central portion and vary the width of the pump beam. The 

output intensity have been measured by, 

 ( )   
   ( )

 ( )
 (  ( )   ),                             (2) 

where g(λ) (=g’(λ)-α, α is the loss coefficient) is the net gain coefficient, g’(λ) is the internal gain coefficient 

due to stimulated emission process and l is the length of the pumped stripe. The value of the gain can be 

determined by plotting the emission intensity as a function of pumped stripe length and fitting the resulting 

curve to the expected dependence given by the equation 2. The systematic measurements of the intensity of the 

emitted light as a function of stripe length for three different pump power at 3 mW, 15 mW and 20 mW 

respectively have been shown in figure 6. 

The black line in fig.6 is a fit of the data to equation 2, which yields a net gain of 7.2 cm
-1

 at a pump power 

of 3 mW (<Pth). Above Pth, the measured gain is 34 cm
-1

 and 42.1 cm
-1

 by fitting the data using blue and red line 

for 15 and 20 mW respectively. In the equation 2, we are not considered the gain saturation and thus the net gain 

coefficient only those subsets of data for which gain saturation is not evident. 

 
Fig. 6. Dependence of the emission intensity on stripe length at three different pump power for dye dissolved in butanol as 3, 15 and 20 mW 

respectively. The solid lines are fits to the data using equation 2. 

One of another important optical quantity used to characterize a laser medium is stimulated emission cross-

section (σe). The value of σe can be derived from the emission spectrum E(λ) (which was not shown for the 

simplicity) by using [md11] 

                                                                                ( )       ,                       (3) 

where c is the speed of light in free space, m is the refractive index of the medium (solvent), τ is the 

fluorescent life time and it is assumed to be 2 ns. From the equation 3, we could obtained the value of σe ~ 8 × 

10
-18 

cm
-1

.  

In our lasing experiment, external feedback at the cuvette sides might have encouraged the lasing action. It 

was expected that both the stimulated emission along with the gain guiding and the external feedback at the 

cuvette sides would induce a high gain for the laser action [16]. The occurrence of mode structure from dye 

solution was also reported by Guang et al, where the laser emission was attributed to the Fresnel reflection 

feedback from the two parallel optical windows of the cuvette [17]. Thus the partial reflectance from the 

window of the cuvette produces the effect of a Fabry-Perot etalon and provides the optical feedback necessary 



for laser emission. In this case four subcavities are involved for cavity lasing; the cavity lasing wavelength 

should fulfil the following resonant conditions [18]: 

 [       (     )]        
                                         
                (        )        

                                                                                    (        )                                                   (4) 

where L is the length of the medium, n’ is the refractive index (RI) of quartz, l1 and l2 are the thickness of the 

cuvette, n is the RI of the gain medium and K1, K2, K3 and K4 are arbitrary integers [17]. The resonance condition 

providing the shortest spectral periodicity is obtained by the subtraction of the condition 1 and 3, which results 

                                                                                                                                                        (5) 

where K = K1-K3.The above equation is equivalent to the maximum transmission condition of the a Fabry-Perot 

etalon with an equivalent optical thickness of      . This implies that the cavity lasing spectrum will be 

modulated by this equivalent Fabry–Perot etalon provide the optical feedback necessary for laser emission. For 

the lasing spectrum the wavelength spacing between two adjacent modes is given by 

         
 

     
⁄                                                  (6) 

where λ is the average lasing wavelength. Substituting for refractive index of quartz, n’ as 1.46, the average 

lasing wavelength λ as 593 nm and the ∆λ obtained from our studies with a cuvette of 1 cm path length as 0.09 

nm. The thickness of the first parallel window is measured as ~1.1± .03 mm. The estimated value of   is found 

to be 1.15 mm at different position of the cuvette, which is in close agreement with the observed value.  

The dye medium is found to be sensitive to the polarity and refractive index (RI) of the solvent in its nature 

of laser emission. The interaction between the solvents and the dye molecules affects the energy difference 

between the ground state and excited states. This energy difference is described by the Lippert equation. Most of 

the laser dyes are polar in nature and excitation into their low lying excited singlet state will be accompanied by 

an increase in the dipole moment. Hence the solvent polarity has a decisive role in shifting the laser 

wavelengths. In most of the cases, increasing the solvent polarity will shift the gain curve towards the longer 

wavelength side which is known as Stokes shift [19]. The emission spectra are recorded for different solvents 

such as Ethanol, Butanol, and Glycerol with fixed dye concentration of 5×10
-4

 mol/dm
3
 as shown in figure 7. All 

the experimental conditions remained the same throughout the investigations with an ambient temperature of 

21º C. The result shows a correlation between the physical characteristics such as RI, polarity of the different 

solvents and the multimode laser emission from the cavity. From the figure one could observe that the change in 

solvents introduces a corresponding shift in emission spectra. From ethanol to butanol the shift is approximately 

4 nm, and from ethanol to glycerol the shift is approximately 6 nm. These types of shift in the emission 

spectrum with change in the solvent will allow a limited range of tuning of emission wavelengths. However, the 

spectral width and spacing between the adjacent lasing modes does not depends on the nature of the solvents but 

it is mainly depends on structure of the cavity. 

 
Fig. 7. Three measured laser spectra using Rh B dissolved (5 X 10 -4 mol/dm3) in ethanol, butanol and glycerol as the active gain medium, 
respectively with a pump power of 15 mW. The change of solvent introduces an over-all shift of the output spectra due to a shift of the gain-

spectrum of the dissolved laser dye. 

For a detailed analysis of the effect of solvent in the lasing characteristics of Rh B laser dye, the dye is also 

dissolved in different solvents such as methanol, toluene and ethylene glycol with the fixed dye concentration of 

5 X 10
-4

 mol/dm
3
. Interesting results were obtained and theses showed that the shift in emission spectrum is not 

only depends upon the value of RI and polarity of solvents but also the lower threshold population inversion [5] 

given by the solvents molecules. For the non-polar solvents like toluene, a deviation is observed from the polar 

and dipole aprotic solvents. This is due to the fact that toluene has a comparatively lower quantum yield and 



high RI, which is almost higher than the quartz cuvette. Hence the reflection coefficient of the surface is also 

important for the lasing characteristics. Table 2 summarizes RI of the different solvents, polarity, peak 

wavelength, and number of lasing modes of Rh B dye dissolved in various solvents. From the table the laser 

emission is observed to be red-shifted in Ethylene Glycol solution which is less polar and RI as compared to 

Glycerol. This may be attributed to the more viscous nature of Glycerol, which may reduce the molecules 

interaction between dye and solvent molecules. The increased interaction between the dye molecules and the 

fluorescent light will result the shifting of emission wavelength toward the longer wavelength region. From this 

we can also conclude that the laser emission from the dye solution is not only depends on the RI and polarity of 

the solvent but also depends on the other nature of solvents such as viscosity and higher quantum efficiency or 

lower cavity loss of the solvents. 

Table 2. Comparison of RI, polarity, emission peak, number of modes for different solvents [20-24]. 

Solvent name RI Polarity Emission peak 

(nm) 

Number of lasing 

modes 

Dielectric 

constant (ε) 

Methanol 

Ethanol 

Butanol 

Ethylene Glycol 

Glycerol 

Toluene 

1.33 

1.36 

1.39 

1.43 

1.47 

1.49 

5.1 

5.2 

3.9 

5.4 

5.8 

2.4 

590 

591 

594 

598 

596 

585 

26 

24 

42 

46 

62 

(Only ASE) 

32.7 

24.5 

-- 

37 

42.5 

2.38 

 

Fig. 7 shows a typical lasing spectrum from Rh B dissolved in methanol. The lasing peaks were 

considerably modulated as a clustered pattern. The resonance condition providing the widest spectral periodicity 

is obtained by the subtraction of the last two condition of Eqn. 3, which results, 

                                                                           (      )                                                                        (7) 

Where K = (K3 –K4 ).From Eqn. 4 the modulation period can be determined by, 

                                                                            
 

   (      )
⁄                                                                (8) 

From the equation we can observed that the modulation period is inversely proportional to the difference in the 

wall thickness (      )of the cuvette. The measured mode spacing    is ~ 1.2 nm which is in good agreement 

with the calculated value of mode spacing (~ 1.19 nm), where (      ) is estimated as 100 µm. 

 

 
Fig. 8. Resonant modulation of laser modes of Rh B dye dissolved in methanol at a pump power of 15 mW. Inset shows the enlarged view 

of the variation in the thickness of the two walls of the cuvette. 

The photograph of the CCD image taken for two walls of a cuvette is given in fig.8 inset, which clearly 

indicates the change in thickness of the different walls of the cuvette. The obtained laser emission spectra are 

modulated by the superposition of the laser modes due to optical thickness of      and difference in the wall 

thickness   (      ) as shown in figure 8. We therefore attribute the appearance of emission spectra to a 

resonant modulation of the two type’s laser resonant modes within the cavity. 

6. Conclusion 

Multimode laser emissions from Rh B laser dye in different solvents are investigated. The features of the mode 

structure in the emission spectra are employed to study the effects of solvents on the laser emission of the dye. 

The laser modes are found to originate from the subcavities formed by the plane parallel walls of the cuvette 

containing the gain medium. Changing solvent will allow a shift in the emission wavelength, which will allow a 

limited range of tuning of emission wavelength. The amount of shift in emission wavelength depends on the 



different physical property of the solvents, such as polarity, refractive index, viscosity etc. The solvatochromic 

and Stokes-shift of Rh B in various solvents were successfully compared to experimental data with 

computational data. In our study we also determined the gain coefficient and stimulated emission cross-section 

of the Rh B dye laser system. The dye dissolved methanol solution will also provide a modulated laser emission 

due to two set of laser resonance achieved by the difference in the wall thickness of the cuvette. 
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Supporting information from the computational data 
Ethanol 

Excited State   1:      Singlet-A      2.3018 eV  538.65 nm  f=1.1666  <S**2>=0.000 

     127 ->128         0.70556 

 This state for optimization and/or second-order correction. 

 Total Energy, E(TD-HF/TD-KS) =  -1881.06720673     
 Copying the excited state density for this state as the 1-particle RhoCI density.  

 Excited State   2:      Singlet-A      2.9040 eV  426.94 nm  f=0.0466  <S**2>=0.000 

     122 ->128        -0.15299 
     126 ->128         0.67817  

 Excited State   3:      Singlet-A      3.3188 eV  373.58 nm  f=0.0165  <S**2>=0.000 

     123 ->128         0.11108 
     125 ->128         0.69264 

Methanol 
Excited State   1:      Singlet-A      2.2967 eV  539.84 nm  f=1.1725  <S**2>=0.000 

     127 ->128         0.70557 

 This state for optimization and/or second-order correction. 
 Total Energy, E(TD-HF/TD-KS) =  -1881.06825969     

http://www.kabusa.com/Dielectric-constants.pdf
http://www.engineeringtoolbox.com/refractive-index-d-1264.html


 Copying the excited state density for this state as the 1-particle RhoCI density.  

 Excited State   2:      Singlet-A      2.9020 eV  427.24 nm  f=0.0464  <S**2>=0.000 

     122 ->128        -0.13151 

     123 ->128        -0.12255 

     126 ->128         0.67846  
 Excited State   3:      Singlet-A      3.3551 eV  369.54 nm  f=0.0623  <S**2>=0.000 

     122 ->128        -0.10262 

     123 ->128        -0.22352 
     124 ->128         0.11430 

     125 ->128         0.64617 

Butanol 

Excitation energies and oscillator strengths:  
 Excited State   1:      Singlet-A      2.3108 eV  536.54 nm  f=1.1558  <S**2>=0.000 

     127 ->128         0.70555 

 This state for optimization and/or second-order correction. 
 Total Energy, E(TD-HF/TD-KS) =  -1881.06530285     

 Copying the excited state density for this state as the 1-particle RhoCI density.  

 Excited State   2:      Singlet-A      2.9074 eV  426.44 nm  f=0.0469  <S**2>=0.000 
     122 ->128        -0.16965 

     126 ->128         0.67760  

 Excited State   3:      Singlet-A      3.2491 eV  381.60 nm  f=0.0048  <S**2>=0.000 
     125 ->128         0.70233 
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