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SELFBACK - Activity Recognition for
Self-management of Low Back Pain

Sadig Sani, Nirmalie Wiratunga, Stewart Massie and Kay @oop

Abstract Low back pain (LBP) is the most significant contributor to gedaved with
disability in Europe and results in significant financialtdosEuropean economies.
Guidelines for the management of LBP have self-manageniémia cornerstone,
where patients are advised against bed rest, and to remtare.da this paper,
we introduce 8LFBACK 1, a decision support system used by the patients them-
selves to improve and reinforce self-management of LBRPFBACK uses activity
recognition from wearable sensors in order to automayictermine the level of
activity of a user. This is used by the system to automaticitermine how well
users are adhering to prescribed physical activity guidsliImportant parameters
of an activity recognition system include windowing, fe@extraction and classi-
fication. The choices of these parameters for theFBACK system are supported
by empirical comparative analyses which are presentedisnpiper. In addition,
two approaches are presented for detecting step countsrioulation activities
(e.g walking and running) which helps in determining atyivintensity. Evaluation
shows the 8LFBACK system is able to distinguish between five common daily
activities with 0.9 macro-averaged F1 and detect step sowith 6.4 and 5.6 root
mean squared error for walking and running respectively.

1 Introduction

Low back pain (LBP) is a common, costly and disabling cooditihat affects all
age groups. It is estimated that up to 90% of the populatidirhave LBP at some
point in their lives, and the recent global burden of disesisdy demonstrated that
LBP is the most significant contributor to years lived witlsathility in Europe [5].
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Robert Gordon University, e-mai{s.sani, n.wiratunga, s.massie, k.cogj@rgu.ac.uk
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Non-specific LBP (i.e. LBP not attributable to serious p&thy) is the fourth most
common condition seen in primary care and the most commounuskeletal con-
dition seen by General Practitioners [11], resulting instabtial costimplications to
economies. Direct costs have been estimated in one studgm8122% of all health
expenditure [12], and in another as 0.4-1.2% of GDP in th@gean Union [7]. In-
direct costs, which are largely due to work absence, hava betmated as $50
billion in the USA and $11 billion in the UK [7]. Recent pulflisd guidelines for
the management of non-specific LBP [3] have self-manageatdin¢ir cornerstone,
with patients being advised against bed rest, and advisexuirtain active, remain at
work where possible, and to perform stretching and strengtiy exercises. Some
guidelines also include advice regarding avoiding londques of inactivity.

Sedentary Notifications
B

4= Daily Activity Summary

\Z L . !
Sitting Activity Duration Freq Intensity
Walking o | Sitting 480 12
L Standing 120 27
Running
Walking 65 13 2

Standing
Sitting

Activity Recognition
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Achievement Feedback

Running 0 0 0

Guidelines

Fig. 1 Overview of LFBACK system.

SELFBACK is a monitoring system designed to assist the patiemteiciding
and reinforcing the appropriate physical activities to agaLBP after consulting
a health care professional in primary care. Sensor datanncmusly read from
a wearable device worn by the user, and the user’s actidtiesecognised in real
time. An overview of the activity recognition componentsioé SELFBACK sys-
tem is shown in Figure 1. Guidelines for LBP recommend thaépés should not be
sedentary for long periods of time. Accordingly, if thel$BACK system detects
continuous periods of sedentary behaviour, a notificasogiven to alert the user.
At the end of the day, a daily activity profile is also genedathich summarises
all activities done by the user over the course of the day.ififegmation in this
daily profile also includes the durations of activities afodt,ambulation activities
(such as moving from one place to another e.g. walking andings, the counts
of steps taken. The system then compares this activity prifithe recommended



SELFBACK- Activity Recognition for Self-management of Low Ba&kin

guidelines for daily activity and produces feedback to infehe user how well they
have adhered to these guidelines.

The main contribution of this paper is the Discreet Cosirensform based fea-
ture extraction applied to physical activity recognitioegented in Section 4 and
its evaluation on real data presented in Secti&riThe data collection method in-
troduced in this paper is also unique, in that it demonsiratav a script-driven
method can be exploited to avoid the demand on manual tiptisor of sensor
data streams (see Section 3). Related work and conclusiersdso discussed and
appear in Sections 2 and 6.

2 Related work in Activity Recognition

Physical activity recognition is the computational diseguvof human activity from
sensor data. Here we focus on sensor input from a tri-ax@dlammeter mounted
on a person’s wrist. Activity recognition is receiving ieasing interest in the areas
of health care and fitness [13]. This is largely motivated iy meed to find cre-
ative ways to encourage physical activity in order to contiiathealth implications
of sedentary behaviour which is characteristic of todagpipation. In the &LF-
BACK project accurate analysis of daily physical activityides the generation of
feedback and intervention to help patients better adhguestecribed guidelines.

A tri-axial accelerometer sensor measures changes inexatieh in 3 dimen-
sional space [13]. Other types of wearable sensors havebalso proposed e.g
gyroscope. A recent study compared the use acceleromgtesagpe and mag-
netometer for activity recognition [17]. The study foune tpyroscope alone was
effective for activity recognition while the magnetometdone was less useful.
However, the accelerometer still produced the best agtigitognition accuracy.
Other sensors that have been used include heart rate mfigiotight and tem-
perature sensors [16]. However, these are typically usainbination with the
accelerometer rather than independently.

Some studies have proposed the use of a multiplicity of acorleters [15, 4]
or combination of accelerometer and other sensor typesglaicdifferent locations
on the body. These configurations however have very limitadtjiczal use outside
of a laboratory setting. In addition, limited improvemehéve been reported from
using multiple sensors for recognising every day actisif@ which may not jus-
tify the inconvenience, especially as this may hinder tlad-weorld adoption of the
activity recognition system. For these reasons, someesalp. [14] have limited
themselves to using single accelerometers which is alscetbe for &LFBACK.

Another important consideration is the placement of thesserseveral body lo-
cations have been proposed e.g. thigh, hip, back, wristaklé aMany comparative
studies exist that compare activity recognition perforosaat these different loca-
tions [4]. The wrist is considered the least intrusive lamatand has been shown

2 Code and data associated with this paper are accessibléftpsy/github.com/selfback/activity-
recognition
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to produce high accuracy especially for ambulation and uppéy activities [14].
Hence, this is the chosen sensor location for our system.

Many different feature extraction approaches have begugsed for accelerom-
eter data for the purpose of activity recognition [13]. Mokthese approaches in-
volve extracting statistics e.g. mean, standard devigfiercentiles etc. on the raw
accelerometer data (time domain features). Other work haars that frequency
domain features extracted from applying Fast Fourier Toanss (FFT) to the raw
data to be beneficial. Typically this requires a further poepssing step applied to
the resulting FFT coefficients in order to extract featuheg theasure characteris-
tics such as spectral energy, spectral entropy and donfireaptency [8]. Although
these approaches have produced good results, we use a ppkaheh that directly
uses coefficients obtained from applying Discrete Cosia@dfiorms (DCT) on the
raw accelerometer data as features. This is particuldriyaive as it avoids further
preprocessing of the data to extract features to genersttmnices for the classifiers.

3 Data Collection

Training data is required in order to train the activity rgoiion system. A group
of 20 volunteer participants was used for data collectidhvélunteers were either
students or staff of Robert Gordon University. The age rasfgearticipants is 18
54 years and the gender distribution is 52% Female and 48%.Ndalta collection
concentrated on the activities provided in Table 1

Activity Name |Description

Walking Slow |Walking at self-selected slow pace
Walking Norma|Walking at self-selected normal pace
Walking Fast |Walking at self-selected fast pace

Jogging Jogging on a treadmill at self-selected speed

Up Stairs Walking up 4 - 6 flights of stairs

Down Stairs  |Walking down 4 - 6 a flights of stairs

Standing Standing relatively still

Sitting Sitting still with hands either on the desk or rested at the|si
Lying Lying down relatively still on a plinth

Table 1 Details of Activities used in our data collection script.

These set of activities were chosen because they représerdarige of normal
daily activities typically performed by most people. In &ath, three different walk-
ing speeds (slow, normal and fast) were included in ordeatetan accurate esti-
mate of the intensity of the activities performed by the ulslmtifying intensity of
activity is important because guidelines for health and-weing include recom-
mendations for encouraging both moderate and vigorousgadysctivity [1].
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Data was collected using the Axivity Ax3 tri-axial accelereter® at a sampling
rate of 100Hz. Accelerometers were mounted on the wristsadigipants using
specially designed wristbands provided by Axivity. Papiémts were provided with
scripts which contained related activities e.g. sitting &nng. The scripts guided
participants on what activity they should do, how long thkgidd spend on each
activity (average of 3 minutes) and any specific details om tiey should perform
the activity e.g. sit with your arms on the desk.

Three claps are used to indicate the start and end of eaeityadhe three claps
produce distinct spikes in the accelerometer signal whiakenit easy to detect the
start and end of different activities in the data. This hétpsimplify the annotation
of the accelerometer data, by making it easy to isolate tbioses of the data that
correspond to specific activities. This allows the secttortse easily extracted and
aligned with the correct activity label from the script aswh in Figure 2.

i b |
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Fig. 2 Example of Activity Annotation with claps used to separdtess transitions.

4 Activity Recognition Algorithm

The SLFBACK activity recognition system uses a supervised macheaening
approach. This approach consists of 4 main steps which @meowing, labelling,
feature extraction and classifier training, as illustrateigure 3.

4.1 Windowing

Windowing is the process of partitioning collected tramithata into smaller por-
tions of lengthl, and here specified in seconds. Figure 4 illustrates how awnd
ing is applied to the 3-axis accelerometer data streagngandz. Windows are

3 http://axivity.com/product/ax3



Sadiq Sani, Nirmalie Wiratunga, Stewart Massie and Kay @oop
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Fig. 3 SELFBACK activity recognition algorithm steps.

overlapped by 0.5 of their length along the data stream.&adftr each partitioned
window, w, is used to generate an instance for activity classificatiénen choos-

ing |, our goal is to find the window length that best balances betwaecuracy
and latency. Shorter windows typically produce less adeuaativity recognition

performance, while longer windows produce latency, asra¢weconds worth of
data need to be collected before a prediction is made. A catipa analysis of

increasing window sizes ranging from 2 to 60 seconds is ptedén Section 5.

Lok py, /l“'\f."r;vJA

Fig. 4 lllustration of accelerometer data windowing.

4.2 Labelling

Once windows have been extracted, each window needs to beiatesl with a
class labelc € C. By default, this is the label of the activity stream from alnihe
window was extracted. Recall from Section 3 tl@twas 9 classes (see Table 1),
and can be thought of constituting a hierarchical strucageshown in Figure 5.
However, we observed that the more granular the activitgliglihe more activity
recognition accuracy suffers. In the case of some closédyee classes e.g. sitting
and lying, it is very difficult to distinguish between thesasses from accelerometer
data recorded from a wearable on the wrist. This is becauis¢ nvovement tends
to be similar for these activities. Also, for activity clessdistinguished by intensity
(i.e. walking slow, walking normal and walking fast) the sgalistinction between
these activity classes can be more subjective than objed@igcause the pace of
walking is self-selected; one participant’'s slow walkingcp might better match
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Fig. 5 Activity class hierarchy.

another’s normal walking pace. Alternatively we also cdes|C| equal to 5 classes
by using the first level of the hierarchy (shaded nodes) withttsee raising of leaf
nodes (whereby leaf nodes are grouped under their parea) roealuation results
for activity recognition with botHC| values are presented in Section 5.

4.3 Feature Extraction

The 3-axis accelerometer data streaxng,andz, when partitioned according to the
sliding window method as detailed in Section 4.1 generasesjaence of partitions
with each partition constituting a tripl®,, y; andz. These triples form the content
for each of the training and testing instances. Accordimglgh constituent can be
represented as a real-valued vectar,(xi1, . . ., X ), of measurements collected over
regular time intervals, wheles the window length. Similarly witly andz.

DCT is applied to each axis (in essence each windowed parkitj y; andz) to
obtain a set of DCT coefficients which are an expression obthggnal accelerom-
eter data in terms of a sum of cosine functions at differetjdencies [10]. Accord-
ingly the DCT vector representations,= DCT(x), y' = DCT(y) andz' = DCT(2),
are obtained for each constituent in an instance. Addilipmee derive a further
magnitude vectom = {my,...,m; } of the accelerometer data for each instance as
a separate axis, wheng; is defined in equation 1.

mj = /X4 + Y3+ 7, 1)

As with x’, y" andZ, we also apply DCT tan to obtainm’ = DCT(m). This means
that our representation of a training instance consiste®phir({x’,y’,Z’,m’},c),
wherec is the corresponding activity class label as detailed iniGec4.2. Includ-
ing the magnitude in this way helps to train the classifier ¢oldss sensitive to
changes in orientation of the sensing device. Note thatdké#icients returned after
applying DCT are combinations of negative and positive vadlies. For the pur-
pose of feature representation, we are only interesteceimidignitude of the DCT
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coefficients, irrespective of (positive or negative) sigacordingly for each DCT
coefficient e.gx;;, we maintain its absolute valy; .

DCT compresses all of the energy in the original data stredmas few coeffi-
cients as possible and returns an ordered sequence of @#fisuch that the most
significant information is concentrated at the lower indicé the sequence. This
means that higher frequency DCT coefficients can be disdamithout losing in-
formation. On the contrary, this might help to eliminates®iThus, in our approach
we also retain a subset of theoefficients and as proposed in [10] we retain the first
48 coefficients out of. The final feature representation is obtained by concatenat
ing the absolute values of the first 48 coefficientsofy’, Z andm’ to produce a
combined feature vector of length 192. An illustration abtfeature selection and
concatenation appears in Figure 6.

Class: c€C X =
Y’ (I
7 Class: c€C
‘ . ‘ IS
m

Generate x’ y’ 7’ m
Generate single vector
Separate to form an
vectors instance

x

W

s
DCT il
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<
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L /
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Fig. 6 Feature extraction and vector generation using DCT.

4.4 Step Counting

An important piece of information that can be provided folbasfation activities is a
count of the steps taken. This information has a number o&ladé uses. Firstly, step
counts provide a convenient goal for daily physical adfittealth research has sug-
gested a daily step count of 10,000 steps for maintainingsaaige level of phys-
ical health [6]. A second benefit of step counting is that dvides an inexpensive
method for estimating activity intensity. Step rate thdk have been suggested
in health literature that correspond to different activitiensities. For example, [1]
identified that step counts of 94 and 125 steps per minuteegpond to moder-
ate and vigorous intensity activities respectively for emd 99 and 135 steps per
minute correspond to moderate and vigorous intensity iiesvfor women. Ac-
cordingly, step counts are likely to provide a more objectiveasure for activity
intensity in the ELFBACK system than classifying different walking speeds.édjer
we discuss two commonly used approaches involving frequanalysis and peak
counting algorithms for inferring step counts from acceteeter data specific to
ambulation activity classes.
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4.4.1 Frequency Analysis

The main premise of this approach is that frequency anadysislking data should
reveal the heel strike frequency (i.e. the frequency withcivhthe foot strikes the
ground when walking) which should give an idea of the numlisteps present in
the data [2]. For walking data collected from a wrist-worn@lerometer, one or two
dominant frequencies can be observed, heel strike frequeshich should always
be present, and the arm swing frequency which may sometimabdent. Convert-
ing accelerometer data from the time domain to the frequelcyain using FFT
enables the detection of these frequencies. For step oguliis approach seeks
to isolate the heel strike frequency. Accordingly, the stepnt can be computed as
a function of the heel strike frequency. For example, fogfirency values in Hertz
(cycles per second), the step count can be obtained by fyirtythe identified heel
strike frequency with the duration of the input data strearseiconds.

4.4.2 Peak Counting

The second approach involves counting peaks on low-paseefiltaccelerometer
data where each peak corresponds to a step. This procdsstisated in Figure 7.
For filtering, we use a Butterworth low-pass filter with a fuegcy threshold of
2 Hz for walking and 3 Hz for running. The low-pass filter is thegpplied onm,

» Low-pass » Count 16
filter Peaks Steps

m stream from
ambulation activity

Fig. 7 Step counting using peak counting approach.

which is the magnitude axis of the accelerometer signalioétsby combining the
X, y andz axes. Here we expect to filter all frequenciesrinhat are outside of the
range for walking and running respectively. In this way, ahginges in acceleration
left in m can be attributed to the effect of walking or running. A peakirating
algorithm is then deployed to count the peaksminvhere the number of peaks
directly corresponds to the count of steps.
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5 Evaluation

In this section we present results for comparative studiashave guided the de-
velopment of the BLFBACK activity recognition system. Firstly, an analysis of
how window size and feature representation impact the @ffawess of human ac-
tivity recognition is presented. Thereafter, we explore letassification granularity
is affected by inter-class relationships and how that in tmpacts model learning.
A question closely related with classification granulargyhow to determine the
activity intensity. For ambulation activities, step raseai very useful heuristic for
achieving this. Accordingly, we present comparative rssidr two step counting
algorithms.

Our experiments are reported using a dataset of 20 userkidieas are con-
ducted using a leave-one-person-out methodology i.e. earis used for testing
and the remaining 19 are used for training. In this way, weteséng the general
applicability of the system to users whose data is not irediid the trained model.
Performance is reported using macro-averaged F1. SVM @ fsseclassification
after a comparative evaluation demonstrated its F1 scode06 to be superior to
that of KNN, decision tree, Nave Bayes and Logistic Regoesdy more then 5%,
12%, 25% and 3% respectively.

5.1 Feature Representation and Window Size

For feature representation, we compare DCT, statistioed tlomain and FFT fre-
guency domain features. Here time domain features are edifnoim [19]. Figure 8
plots F1 scores for increasing window sizes from 2 to 60 sgedor each feature
representation scheme. The best F1 score is achieved withH&@ures with a win-

0.95
0.9
0.85
0.8
0.75
0.7
0.65
0.6

2 3 5 10 20 30 40 60

——DCT ===freqdomain -— time domain

Fig. 8 Activity recognition performance at different window size
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dow size of 10 (F1=0.906). It is interesting to note that maittime or frequency
domain features can match performance to that of directlygudCT coefficients
for representation. Overall there is a 5% gain in F1 scordls BCT compared to
the best results of the rest.

5.2 Classification Granularity

Recall from Section 4.2 that data was collected relative different activities.
Here we analyse classification accuracy with focus on icl&ss relationships. In
particular we study the separability of classes to establisich specific classes are
best considered under a more general class of activity.

lying|sitting|standingjogging|upstairsdown stairgwalk fasfwalk normalwalk slow
lying 115| 127 8 0 0 0 0 0 1
sitting 84 | 161 4 2 1 0 0 0 0
standing 6 6 212 2 2 0 0 0 11
jogging 0 0 0 284 1 0 0 1 0
up stairs 0 0 3 8 92 7 7 11 30
down stairs| 1 0 1 5 31 89 5 4 8
walk fast 0 0 1 21 3 1 157 53 6
walk norma| 0 0 1 4 11 3 48 141 41
walk slow 0 1 7 3 23 4 0 32 181

Table2 Confusion matrix for 9-class activity classification.

Overall F1 score for activity classification using 9 classsains low at 0.688.
Its confusion matrix is provided in Table 2, where the colsmepresent the pre-
dicted classes and the rows represent the actual classese €tamination of the
matrix shows that the main contributors to this low F1 scoestae to classification
errors involving activities lying, walking normal and ugss. For instance we can
see that for the activity class lying, only 115 instancescameectly classified and
125 instances are incorrectly classified as sitting. Sityil84 instances of sitting
are incorrectly classified as lying. This indicates a gneditecrimination confusion
between lying and sitting which can be explained by wrist emoent alone being
insufficient to differentiate between these activitieshvatwrist worn accelerome-
ter. However, both sitting and lying does represent sedgbihaviour and as such
could naturally be categorised under the more general $&geanass. A similar ex-
planation follows for walking normal, where 48 instances iacorrectly classified
as walking fast and 41 as walking slow. Accelerometer datavidking at differ-
ent speeds will naturally be very similar. Also, the sameking speed is likely to
be different between participants due to the subjectiviberent in users judgment
about their walking speeds. In addition, a user may unnkéywary their pace while
trying to adhere to a specific walking speed under data da@leconditions. Again
these reasons make it more useful to have the three walkewgdsprombined into
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one general class called Walking and have walking speed gtad@s a separate
function of step rate. Regarding walking upstairs, we cantkat it is most con-
fused with walking slow but also suggests difficulties wiiffetentiating between
walking normal, walking fast and jogging. Many of these esrare likely to be ad-
dressed by taking into account inter-class relationsloifierim more general classes
instead of having too many specialised classes.

sedentarystandingjogging| stairgwalking
sedentary 490 7 2 1 3
standing 17 205 2 1 14
jogging 0 0 283 0 3
stairs 3 0 9 0223 67
walking 3 5 24 31| 679

Table 3 Confusion matrix for 5-class activity classification.

Accordingly with the 5 class problem we have attempted t@oige class mem-
bership under more general classes to avoid the inhereltgicha of discriminating
between specialised classes (e.g. between normal and d#ishg). Accordingly
there is a sedentary class combining sitting and lying elss stairs class to cover
both upstairs and downstairs and a single walking clasgimgrtogether all differ-
ent paces of walking speeds (See Figure 5). Jogging andiSgareanain as distinct
classes as before.

As expected results in Table 3 shows that, 4 of the 5 classesHiascores greater
than 0.9 with only Stairs achieving a score of 0.8. This iteisiflr more acceptable
than that achieved with the 9 class problem. The relativelyel F1 score with
Stairs is due to 67 instances being incorrectly classifiedaking. This highlights
the difficulty with differentiating between walking on a flairface versus walking
up or down stairs. However apart from the inclination of thdace there is no other
characteristic that can help differentiate these seemsiglilar movements.

5.3 Step Counting

This final sub-section presents an evaluation of our steptoay algorithms. For
this, we collected a separate set of walking and runningwlgiteknown actual step
counts. This was necessary because actual counts of stepsaterecorded for
the initial dataset collected. In total, 19 data instancesevcollected for walking
and 11 for running. For walking, participants were asked &kwp and down a
corridor while counting the number of steps they took froartso finish. Reported
step counts for walking range from 244 to 293. Participaetsqgugmed a number
of different hand positions which included walking with nmal hand movement,
with hands in trouser pocket and carrying a book or coffee.riiajking data also
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included one instance of walking down as set of stairs (82s$tand one instance
of walking up a set of stairs (78 steps).

Running data was collected on a treadmill. Participantewequested to run
on a treadmill at a self-selected speed for a self-selectedtion of time. Here
also, three claps were used to mark the start and end of tméngisession. Two
participants standing on the side were asked to count tips gteaddition to the
runner, due to the difficulty that may be involved in runnimglaounting steps at
the same time. Reported step counts for running range frédmd 810.

The objective of this evaluation is to match, for each dassaince, the count of
steps predicted by each algorithm, to the actual step coaotsded. Root means
squared error (RMSE) is used to measure performance. Bebatis step counting
algorithms do not require any training, all 30 data instanare used for testing.
Evaluation results are presented in Table 4. Generally itseful to have mean
squared error values that are below 10 for step counts. Oweraan see that better
performance is observed from the Peak Counting method ttisibas been set as
the default step counting approach for tr. SBACK system.

Sep Counting Approach| RMSE Walking| RMSE Running
Frequency Analysis (11.245 6.250
Peak Counting 6.374 5.576

Table 4 Performance of step counting approaches measured usirtdiRan Squared Error.

6 Conclusion

This paper focuses on the activity recognition part of tseFBACK system which
helps to monitor how well users are adhering to recommendiégdghysical activity
for self-management of low back pain. The input into thevtgtrecognition system
is tri-axial accelerometer data from a wrist-worn sensor.

Activity recognition from the input is achieved using a suypged machine learn-
ing approach. This is composed of 4 stages: windowing, fe&xiraction, labelling
and classifier training. Our results show that a window sfZHdseconds is best for
identifying SELFBACK activity classes and highlighted the inherent chajleim
differentiating between similar movement classes (sudyiag with sitting and dif-
ferent paces of walking) using a wrist-worn sensor. Our aggi to using Discreet
Cosine Transform to represent instances achieved a 5%fidassn performance
gain over time and frequency domain feature representatibigorithms to infer
step counts from ambulation data suggests a simple pealkicgapproach follow-
ing a low pass filter applied to the magnitude of the tri-agliala to be best. Future
work will explore techniques for recognising a larger setlghamically changing
activities using incremental learning and semi-supedvaggproaches.
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