

AUTHOR(S):

TITLE:

YEAR:

Publisher citation:

OpenAIR citation:

Publisher copyright statement:

OpenAIR takedown statement:

 This publication is made
freely available under
________ open access.

This is the ______________________ version of an article originally published by ____________________________
in __
(ISSN _________; eISSN __________).

This publication is distributed under a CC ____________ license.

__

Section 6 of the “Repository policy for OpenAIR @ RGU” (available from http://www.rgu.ac.uk/staff-and-current-
students/library/library-policies/repository-policies) provides guidance on the criteria under which RGU will
consider withdrawing material from OpenAIR. If you believe that this item is subject to any of these criteria, or for
any other reason should not be held on OpenAIR, then please contact openair-help@rgu.ac.uk with the details of
the item and the nature of your complaint.

Musings on Misconduct: A Practitioner Reflection on the

Ethical Investigation of Plagiarism within Programming

Modules

Michael James Heron 	

Robert Gordon University 	

Aberdeen 	

Scotland 	

m.j.heron1@rgu.ac.uk 	

Pauline Belford 	

Dundee and Angus College 	

Arbroath 	

Scotland 	

pauline.belford@gmail.com 	

ABSTRACT
Tools for algorithmically detecting plagiarism have become very
popular, but none of these tools offers an effective and reliable
way to identify plagiarism within academic software
development. As a result, the identification of plagiarism within
programming submissions remains an issue of academic
judgment. The number of submissions that come in to a large
programming class can frustrate the ability to fully investigate
each submission for conformance with academic norms of
attribution. It is necessary for academics to investigate
misconduct, but time and logistical considerations likely make it
difficult, if not impossible, to ensure full coverage of all solutions.
In such cases, a subset of submissions may be analyzed, and these
are often the submissions that have most readily come to mind as
containing suspect elements. In this paper, the authors discuss
some of the issues with regards to identifying plagiarism within
programming modules, and the ethical issues that these raise. The
paper concludes with some personal reflections on how best to
deal with the complexities so as to ensure fairer treatment for
students and fairer coverage of submissions.

Categories and Subject Descriptors
K.7.4 [Professional Ethics]: Codes of ethics; Codes of good
practice; Ethical dilemmas.

General Terms
Security; Human Factors; Legal Aspects

Keywords
Plagiarism; Programming; Teaching; Ethics; Morality;
Attribution; Academic Misconduct; Education

1. INTRODUCTION
As a necessary part of evaluating student work, teaching
professionals must assess its originality and conformance with
institutional rules of attribution. Plagiarism is an unfortunate
occurrence within student work, and thankfully as best as can be

ascertained still a minority phenomenon. Automated tools such
as turnitin [3] have allowed for much plagiarism to be
automatically identified and the original sources to be located,
and the provision of such tools to students for self-assessment
even discourages attempts to submit problematic work in the first
place [7][8].

Within software engineering, and specifically the field of
programming, dealing with plagiarism is much more difficult.

Standard tools such as turnitin do not offer facilities for checking
the originality of software solutions. While tools such as MOSS
[1][5] exist as an attempt to detect similarity in code there are
elements that are unique to software development that limit the
utility of such automated routines. In the end, it is down to an
academic to analyze the code, and usually within the tight time
constraints implied by assessment boards and other formal duties.
As such, not every submission will receive the same amount of
critical attention. Those submissions that are most suspect will
receive the greatest amount of effort with regards to investigation.
Given the relatively fine-balanced mesh of issues that determine
the quality and originality of programming code, the designation
of a submission as suspect is often a matter of academic judgment.
This presents numerous ethical issues for those who must ensure
the integrity of assessments.
In this paper, the authors reflect upon these ethical issues as a
professional educator. This paper does not offer a better system
for dealing with potential plagiarism in software development
modules – there exists, at this time, no obvious alternative to that
of relying on the academic judgment of subject matter experts.
However, this paper intends for the discussion to help illuminate
some of the important considerations that such a state of affairs
raises. The authors hope that fuller understanding of the problem
helps ensure that students are given the fairest possible
consideration when such incidents are investigated.

2. GOOD PRACTISE AS PLAGIARISM
In many ways, it is difficult to truly render a verdict of
‘plagiarism’ in software development without first invalidating
many of the fundamental lessons we attempt to impart to students
regarding how programming works in the real world. Some of
these issues are already well understood – we work within a
medium where vocabulary and syntactic construction of the
simplest elements is ritualistic to the point of incantation.
Programmers cannot simply extemporize or add lyrical flourishes
to an argument to underscore a clever point. We must work
within the constraints of the programming language’s grammar.
Programmers, working on the underlying bones of a program, are
limited to three key forms of expression – linear, loop and
selection. There are only so many ways to write a for loop or an

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Ethicomp ’10, September 7–9, 2015, Leicester, United Kingdom.
Copyright 2015 ACM 1-58113-000-0/00/0010 …$15.00.

SIGCAS Computers & Society | Sept 2015 | Vol. 45 | No. 3 438

if statement, and certain standard cultural conventions regarding
names for variables and layout of code have taken deep root in
both professional and educational instruction. Consider for
example the names i and j as counter variables – while we may all
acknowledge how ineffective these names are, as part of a
common vocabulary of programming they are hard to ignore.
Not only is the structure of a program often impossible for us to
meaningfully alter, but so too often are the unspoken
assumptions that we absorb via osmosis through exposure to a
larger, established community of practice. As part of that
community of practice, we absorb understanding – first informal
and then gradually formalized into standards – about how code
should be written. We discourage experimentation with format,
layout and even the name of variables because such things
represent bad practice [10]. In this way, we sanctify certain
plagiaristic practices, turning them from vice to virtue.

Taking a step back from the raw bones of individual statements
and structures, a common component of programming courses
tends to be some kind of formal instruction in the topic of
algorithms. We teach students to understand Big O notation and
explain the relative merits of bubble versus quick versus merge
sorts. During these discussions, we underscore why we use
algorithms. Rather than attempting to reinvent the wheel, we
rely on tried and tested solutions to complicated problems
because these tend to be more reliable than more original and
creative solutions. If the syntax and conventions of
programming limit the vocabulary of a programmer, algorithms
work to constrain computational creativity.
When students gain a little more appreciation of the way that
object orientation works, we may introduce them to the wider
world of design patterns, explaining loftily that design patterns
are to objects as algorithms are to processes. We go through the
classic architectural relationships implied by the most widely
used patterns, showing scenarios in which they can be used and
encouraging students to consider where to apply them in their
own code. ‘They may not be the best solutions, but they’re
good solutions – battle tested solutions’, we say. We grade our
students abilities to both interpret design patterns in the work of
others, and apply them to their own projects. In this way, we
place shackles even on the way in which objects within a
program are expected to communicate.

We stress the value of reusability, often honoured more in the
breach than in the observance in the real world, and nod
approvingly when reusable code is produced by our students.
We favourably grade that code which tightly conforms to
general design principles such as encapsulation, remarking with
good grace that the submission offers good scope for reuse in
other programs. We make a big point of arguing the
importance of maintainability, stressing that most of software
development is in maintenance and that good programs can not
only be reused in their current form but refactored to work in
other areas too. We encourage, certainly in later years, the use
of external libraries to do the heavy lifting in problem domains
where students cannot reasonably be expected to ‘roll their own’
solutions.

We may do all of these things, or some of these things, or none
of these things – every academic has their own set of developer
battle-scars that experience has cut into their skins, and the way
in which particular messages will be emphasised will be a
function of this. However, the reality of what it means to
develop software, and the lessons we teach students about the
development of code, is often starkly incompatible with how we

treat code which honours the lessons that we have taught.
Students often do not realise that what they are doing could be
construed as plagiarism because in many ways it’s just
following the advice they’ve been given about how code should
be written.

3. PLAGIARISM IN PROGRAMMING
It is here where academic judgment becomes an important, and
ethically troublesome tool. It is the responsibility of an academic
to assess a piece of work in its entirety and form a judgment as to
the level of originality shown in a submission. Depending on how
strict we wish to be about definitions, it is reasonable to argue that
all programming is plagiarism to one degree or another. A
University of which I am aware and which will not be named,
once formalised its institution-wide plagiarism policy with a
requirement that students attribute every single thing that they
didn’t write themselves. This was held to be the case even if it
came from their own lecturer’s slides and that failure to do so
would be considered a breach of academic conduct.
This policy was constructed without reference to the School of
Computing, who would have pointed out that this mean that every
single program produced by every single student in every single
module would require every single line of code to reference some
standard text in programming. This purely as a consequence of
the limitations of grammar imposed upon practitioners. Even
firm policies regarding attribution of ‘anything not in a lecturer’s
slides’ are inconsistently applied – why for example do we need
an attribution from Stack Overflow, but not one for using a whole
set of Javascript tools such as jQuery? Why do we need to cite a
string tokenization tool we grabbed from Unity Answers, but
nobody needs us to cite an Abstract Factory? Why is it okay to
use a graphical asset from the Unity Store, but not a tutorial on the
Unity website? The edge cases here are many because of the
need to find the right point in the spectrum between ‘attribute
every line’ and ‘attribute nothing’.

The problem is further complicated by the many ways in which
plagiarism might be reflected within software code, and the
degree to which software development is an incremental process.
A program of ten thousand lines may have an incredible structural
dependency on a handful of objects at the core of a vast class
relationship. Classes may be incredibly light at the core but
become much denser the more specialised they become. A piece
of code may be complex in its functionality but marginal in its
effect, and vice versa. Unlike in an essay where each word
should plant a step in one ongoing journey (ideally), a computer
program is more like the schematic for a complicated machine
through which information will flow in unpredictable ways.

Plagiarism then might be in individual lines of code, in the
collection of code into functions or objects, or in the relationship
between classes and objects. It might be in the way in which an
Application Programming Interface (API) is exposed, and
arguments have been made that this should even extend to the
order and type of parameters sent into functions [9]. It can also
be easily masked by students looking to mislead an academic or
just by those who didn’t realise that what they were doing strayed
into plagiarism at any point. Within my own university, we focus
on attribution as the differentiator between ‘good software
development’ and ‘plagiarism’, but that presupposes that students
are aware that there is a need for attribution at all. In the
process of diligent software development, a student may refactor a
piece of code taken from elsewhere to add in features, remove
unnecessary complications, or simply make it consistent with the
context in which it is placed. Thus, while they are benefitting

SIGCAS Computers & Society | Sept 2015 | Vol. 45 | No. 3 439

from a solution they have found elsewhere, they gradually smudge
over its original ‘alien’ conventions and bring them into line with
the conventions they themselves use. The cracks between the two
sets of code are plastered over, and if done well there will be no
sign that there was ever a crack there to begin with. Thus, the
plagiarism becomes, through adaptation, completely invisible.
That does not mean it was never there, but the skill and
knowledge required to both understand the code and refactor it for
consistency is in itself a very valuable programming skill.
However, attribution would still be necessary to acknowledge the
intellectual debt that the submission owes to the original author,
even if there is no trace of the original code left. In my experience
students rarely go to the effort of consciously (or indeed, blissfully
unconsciously) covering their tracks – they just don’t realise that
what they are doing constitutes a need for attribution [4].
In many cases, code might not simply be taken from an online or
offline source but written collaboratively with other students. In
such collaborations, it is rare that the effort is invested equally
amongst all participants, and often the stronger students give
more assistance than we might desire to their weaker colleagues.
However, one of the key benefits that comes from a formal
educational experience is the social context in which study is
placed. We expect students to discuss their work with each
other, plan out solutions, confer on tricky sections, and so on.
All of this is useful team-building and group-work – elements
that we often work to explicitly stress within core elements of a
curriculum. However, we still do expect when work is
submitted that it is meaningfully distinct for each individual.
Within the constraints of software development though, this can
be difficult and students often lack the skills required to make a
meaningful judgment on what constitutes distinctly original
work. We expect this work to be different in more than just a
few variable names or function names, but no matter how we
may stress this we are still operating in an environment where
the skills to make that judgment may be lacking.

Thus, we see multiple submissions of what is essentially the
same code, with only minor surface details changed. Here then
is plagiarism which is merely a virtue taken too far into vice –
there is often no intent to deceive, or the effort to hide the source
of code would be performed more diligently. Students too in
these circumstances often confuse the difficulty they had with
the work with the academic’s likely judgment on individual
effort. They may not realise that the fact it took four hours to
write a loop doesn’t mean that it looks like four hours of effort
to the person grading it.
In the experiences I have had with student counts of plagiarism,
of which there have been many, only a very small fraction of
them have left me feeling that there was a genuine attempt to
obtain through deceit credit for work that they had not done.
Instead, it tends to be one of the following:

1. Believing they were more responsible for the code that
they submitted than a dispassionate review of the
contribution would reasonably conclude.

2. Being unaware of the need for attribution in an
environment where reuse, generalisation and reliance
on external libraries is permitted, and even
encouraged.

3. Not appreciating the line between healthy
collaboration with colleagues and plagiarising from
class-mates.

4. Not fully understanding the expected attributional
difference between exemplar material written by their

lecturer and provided within the context of a course
and those external resources which may be mentioned
as ‘further reading’.

Clear communication of these issues helps, but it presupposes
again that students believe that the communication applies to
them, and that they’ll remember it when it comes time to submit
the work they have done. In the latter case, the stress of deadlines
and the worry over the degree to which a submission meets a
coursework brief can be distracting enough that attribution may
simply be a distant thought in a head already full to bursting.

That is not to say that we should not take a strong position on
work that is judged to have been plagiarised, but instead to outline
some of the complexities that come with ruling that a piece of
work is plagiarised at all. Reasonable people can disagree on the
extent to which a piece of programming code represents original
work, acceptable modification of the work of others, or outright
plagiarism. When it’s difficult for subject matter experts to agree
on all the details, it is especially difficult for students who lack the
training and understanding of the wider context that experience
provides in slow, gradual accumulation.

4. IDENTIFICATION OF PLAGIARISM
Within the process of identifying plagiarism, we must resort to
academic judgment to determine when a submission has fallen
over the line between ‘good practice’ and ‘intentional or
unintentional deceit’. The number of submissions that we must
routinely analyse along with the intricate complexities of each
individual submission mean that we can only ever truly, feasibly,
investigate a proportion of these. Tools for automating detection
are, for software code, lacking in the sophistication to pick up on
anything other than the most overt use of external sources. Thus,
we must choose a sample only. In the next section, this paper
will discuss some of the ethical implications of this selective
analysis.

Informal suspicions may be initially raised in a number of ways.
This paper will outline these in turn before moving on to the ways
in which the original source for code may be located. Of a
necessity, we will not be too specific about the full range of ways
in which plagiarism may be identified as the task is already
difficult enough without adding additional elements of challenge.
Much of the process must be shrouded behind a kind of ‘security
through obscurity’ model.
One of the things that happens for the majority of students within
software engineering degrees is that a faculty builds, from the
ground up, an understanding of programming. We lay the
foundations of their understanding, choose the examples, and
structure the assessments. Within a faculty we might cover a
broad range of skills and styles, but there is often a link between
early and late parts of the curriculum embedded in a single
individual. The one that teaches first year programming may
also be the one that teaches second year programming. If that is
not the case, the necessity of understanding the context of a
student’s overall experience of a topic means that lecturers will be
aware of what is done in the pre and co-requisite modules that
describe their own course’s academic context.

We also sample the code that students write during practical
exercises, often seeing the evolution of coursework as it is
moulded from rough sketch to polished artefact. We likely have
a hand in that evolution, offering suggestions here, corrections
there, and an occasional helpful hand in tracking down
misbehaving subsystems. This kind of ongoing familiarity means

SIGCAS Computers & Society | Sept 2015 | Vol. 45 | No. 3 440

that we can see the way each individual student writes code, and
we can see the degree to which it harmonizes with the way in
which we’ve been teaching the topic. Everyone has their own
particular quirks when teaching programming – some favour
associative arrays, some prefer arrays of objects. Some prefer the
strict architecture of a formally designed class model. Others
prefer a looser, ad hoc arrangement of code. Some favour certain
design patterns, others make use of language features that obviate
their requirement. It is impossible to be a programmer without
picking up some developmental quirks that represent the best
solutions that have evolved from long, hard experience. On top of
these are entirely ornamental quirks such as the way in which
variables are named, or the use of camelCase versus
underscores_in_names.
Within the courses we teach, many of these quirks will be
communicated to students in the form of exemplar code, lecture
content, or the occasional aside delivered as part of an informal
discussion. These quirks in turn make their way into student
submissions to a greater or lesser degree. My own propensity to
use the word ‘bing’ as a temporary variable name has mentally
mutilated any number of my students. I apologise if anyone
reading this has had to deal with the consequences. As a result,
the code that is produced by the students will tend to take on a
signature that is similar to the one demonstrated by their
instructors, and ongoing familiarity with what they are doing
within the labs will make that signature known to their lecturers.
It’s something like our own personal accent – it doesn’t
uniquely identify us, but it will certainly be something people
use to differentiate.

Thus, when code is submitted that doesn’t conform to the
signature we are expecting, it creates the first sense that
something may be wrong with the code that is provided. It
might be written with unusual formatting, strange variable
names, or even in a structure that is entirely inconsistent with
what we may have taught. In a module on using HTML5, we
may find jQuery being used rather than the canvas we had been
discussing; in a module on PHP, we may find that an old, clunky
version of the mysql interface functions were used rather than
the up to date mysqli libraries we had advocated. Such things
don’t necessarily mean that a student has taken their submission
from another source, but do raise the suspicion that something
unusual has been going on.

Rarely is it the case that such incidents spread throughout the
entirety of a submission – what is more common is the
discordant tone of two different styles clashing with each other.
We are expecting to hear one accent, and suddenly in the middle
of a sentence it switches to another – it has exactly that kind of
jarring impact when we encounter it, and it too is a sign that
something unusual has happened with a submission.

Sometimes it’s not an especially jarring accent change, but
instead a remarkable quality change – if the majority of a
program is of dubious quality, but it surrounds a core that is
beautifully written and designed, then we must treat the
submission with suspicion. Similarly, if there is a beautifully
designed program that just happens to be of dubious quality in
those aspects of the brief that were least likely to be present in
an online forum, we must consider the possibility of some form
of plagiarism. Often, when writing assessments, a lecturer
might use a standard ‘stock exercise’ that is well understood and
easily communicated. In such occasions, a common tactic to
dissuade students from using the first online solution they can
find is to modify the specifics of the exercise to include aspects

that are unusual. Thus, students may find the core of the
solution but be left with the task of bashing at it until it does
what the lecturer has thrown into the brief as a complicating
factor. It is at these points of stress that we can often see the
suggestion of some kind of code adaption.

Sometimes the suspicious aspect comes in with a student who
dramatically over-accomplishes in functional requirements that
were never part of the brief, but under-accomplishes in
requirements that were. Such unusual prioritization of
development time is suggestive that at least some of the
submission may have come from a template which did not
precisely map on to the requirements as outlined or emphasized.

As a result of familiarity with students during ongoing instruction,
we also build up a reasonably good mental profile of which
students are especially capable, and which require our additional
support. Those students most needing support are usually also
those that produce code with which we are the most familiar as we
spend a greater proportion of our time working our way through it
with them. When a student with whom we have been spending
much of our time suddenly submits a piece of work that we
strongly suspect is beyond their demonstrated capabilities, then
that flags up our interest.

Suspicion however is not sufficient for conviction, and having had
their attention drawn to a piece of work a lecturer must ascertain
whether their suspicions are grounded. This is often a
straightforward matter of finding an especially distinctive piece of
code and throwing it into Google. A distinctive piece of code is
usually one that is sufficiently complex that its presence acts as a
fingerprint for some other project elsewhere on the internet.
Students may, as a result of submitting such code, change variable
names, the order of invocation of certain statements, or the values
associated with variables. However, other pieces of code are less
pliable – especially if they implement formulae or make heavy use
of structural systems of the host language. In those cases where
Google can’t throw any light on the matter, the search must move
on to other sources such as GitHub or other code archival sites.
If that doesn’t work, it’s possible to attack the problem from the
other direction and execute a search for what you’d look for if you
were trying to find a solution to your own coursework exercise.
Sometimes the code is taken from a particularly obscure location,
but it is rare that it takes too long to track down the original source
of the code. In those cases where the code does not seem to exist,
then it’s necessary to consider the other plausible routes for the
source.

More and more commonly these days, we must consider the
source of a submission as being that of an essay mill [2][6].
Sadly, in such events where the providence of code may not be
identified with online checking we must resort to whatever
internal mechanisms we may have available to ascertain student
understanding of their own submissions. My own preferred route
is through a mini-viva, in which students are asked to explain how
their submission works, and to outline the process through which
they may have developed it. On occasion, such a mini-viva
results in a student giving a considered and confident explanation
that resolves any lingering uncertainty about the authorship of the
work. Often too, the viva reveals a lack of understanding that
likewise settles the issue in the other direction.

5. THE ETHICAL IMPLICATIONS OF
INVESTIGATING PLAGIARISM
Having outlined the ways in which plagiarism may manifest itself
within programming submissions, and discussed some of the ways

SIGCAS Computers & Society | Sept 2015 | Vol. 45 | No. 3 441

in which plagiarism may be detected by academics, we must turn
to the ethical implications that are raised by such methods. If we
are to truly treat students fairly, we must be aware of the troubling
aspects of a process like this and examine where we can make
systemic and procedural improvements to alleviate some of the
issues.
First we must address the nature of student expectation – as
discussed above, my own experience is that by and large students
simply do not believe they are doing anything wrong. No matter
how we may codify submission requirements, or inculcate a need
to attribute, students often have a difficulty in seeing where the
line between ‘good software engineering’ and ‘academic
misconduct’ lies. There is a sector-wide inconsistency in how we
teach software engineering principles, and how we treat students
who adhere to principles of re-use. It is not that, as a sector, we
do not communicate the importance of attribution – it is that
students, as a general grouping, are often unaware of what should
be attributed. The fact that there is rarely any obvious intention
to deceive suggests one of two possibilities. The first is that
students simply don’t take any pride in their cheating, or have
very low expectations of their lecturers. I don’t believe, generally
speaking, this to be true – it is not that there is little effort to
obfuscate code, it is that there is often no effort to obfuscate. To
the authors of this paper, that argues for the second interpretation
– that such submissions are evidence of a lack of understanding,
driven in part by the uneasy tension between plagiarism and
sensible software engineering.

Solutions to such problems must stem simply beyond lectures on
plagiarism and academic misconduct – students can easily give a
word for word definition of plagiarism, and their responsibilities
in that regard. It is not in the communication of the rules that we
find problems, but rather in the interpretation.

With this in mind, we must always, first and foremost, look to
whether we are properly contextualising the lessons of software
engineering within their academic context. We should include
discussions of what authorship means within software engineering
and the day to day importance that attribution and sourcing plays
in developing computer programs. We must also ensure that
students take the necessary time to reflect upon the implications of
their own submissions. Requiring students to formally
acknowledge that the code they have submitted is entirely their
own work, perhaps via a formal cover sheet, gives an opportunity
for pause before uploading or sending the work. That pause might
be what’s needed to make them think ‘Oh, I’ll just put that
attribution in, just in case’.

When assessing a submission for discords and disharmony as
discussed above, we must also be mindful of the fact that in some
cases we may have had only a small impact on the development of
a student’s personal signature. Students may have learned how to
code outside our classes, and may indeed have arrived in the
classroom with their own largely fully formed signature. If a
signature is comprised of bad practice, our job may be to break it
down and rebuild it in a better form. We must be mindful that any
disharmonious elements in a code submission may be as a result
not of external parties influencing a submission, but instead our
own influence impacting on an already existing coding style. We
must be careful to assess all submissions on their own merits, in
the context of a student’s own academic journey. Failing to do so
could potentially subject a student to a harrowing hearing on
academic misconduct where their own lack of a confident voice is
used as evidence against them.

Similarly, as part of regular lab exposure to students we may find
our own code making its way gradually into a submission as we
explain how to address a problem or deal with a persistent error.
Such ad hoc instruction tends to make the rounds amongst other
students within that social circle, as it is usually perceived to be a
‘lecturer approved’ solution. It’s important that as we provide
such additional support to students that we realize that it is likely
to be repeated in other submissions as the work is discussed and
analyzed. If we are forgetful of what we have told our students,
this can look very much like a whole group of students copying
each other. In reality it is a piece of ad hoc support that we
ourselves provided that has been traded around a class in response
to others having the same problem. In such cases, we must be
careful of alleging any misconduct at all – in real terms, there is
little difference between students using our lecture notes and using
the code that we may have provided, in passing, as part of private
classroom discussions. Consider if we might, under other
circumstances, have simply written the code out on a whiteboard
for the class rather than doled it out to one or two individuals in
the course of class discussions. In such cases, how do we even
attribute authorship when it was not actually the student who was
the source of the code?
When identifying submissions as being suspect or including
elements worthy of deeper investigation, we must consider
whether or not our own investigation has a bias built into it. We
are unlikely to indifferently find submissions where the plagiarism
has been done well - when students have managed to successfully
marry disparate elements into a coherent and harmonious whole.
When we identify work that seems to be sourced from elsewhere,
we must be mindful to not simply focus on the low-hanging fruit
else we run the risk of punishing those who try the least to
obfuscate a submission. In addition to picking up on courseworks
that are problematic, I advocate subjecting an additional random
sampling of all submissions to an in-depth investigation even
where there is no suspicion of wrong-doing. While such
investigation rarely yields results, it has on occasion uncovered an
especially clever piece of academic misconduct that would
otherwise have gone unchallenged. In addition, it ensures that it is
not only academic suspicion that leads to investigation – while
such judgment is vital in uncovering plagiarism like this, it is also
difficult to disassociate from the context of a student cohort. We
cannot be sure that we are not letting personal likes or dislikes
have influence on the investigation process. We cannot know
how widespread plagiarism is within our modules – we can only
say how often we notice it. By ensuring we sample beyond the
obvious suspects, we can build our own confidence that the work
we would otherwise have passed without comment is
academically sound.

We must also be careful in ensuring that we are fairly
representative of how we search out plagiarism. As discussed
above, it may be extremely difficult to source code that comes
from an essay mill, whereas a standard online tutorial may take
only a few minutes of searching. This creates something of a
class divide in investigating plagiarism, where those who can
afford to buy ‘off the shelf’ solutions to class exercises are
simultaneously inoculated against proper academic inquiry into
the providence of code. When searching out the sources of work,
we should look not only for the source of code, but also for
incidences in which our course-works themselves have been
floated online. Often, a search for a few indicative phrases from
our own coursework briefs will reveal a request for a solution on
an essay mill site, and this can be enough to raise real concerns
regarding the authorship of submissions. An in-depth

SIGCAS Computers & Society | Sept 2015 | Vol. 45 | No. 3 442

investigation of a student submission involves taking in a number
of sources, and it would be unethical to do so without considering
what financial solvency may permit in terms of covering the true
source of code authorship.

In the sourcing process too, we must be mindful of the fact that
there may be several sources which have been synthesized into a
single submission – it’s unusual that only one source is ever the
single canonical reference point for all incidences of plagiarism.
It’s not enough to simply find a bit of code and say ‘gotcha’. It’s
necessary to forensically outline the source of code statements
and consider whether the welding of disparate elements may
reflect sufficient mastery of the topic in and of itself to be worth
credit. For my own purposes, when I suspect plagiarism I will
go through each line of a submission and comment out those that
come from an external source. Where adjustments have been
made, such as changing the name or value of variables, I will
comment those changes too. The result is a review of the code
that allows for me to specifically reference lines of code and link
them back to their original source. That which is left is, as best I
can tell, the student’s original contribution to the work. On
occasion, when mitigating factors have been taken into account,
that original contribution can turn out to be sufficient to pass a
module. Whether that is an appropriate outcome is something
that must be assessed on a case by case basis, but this forensic
deconstruction is a process that both serves to solidify an
argument for academic misconduct as well as more effectively
frame the student’s own contribution to the work.

This forensic examination of the code can serve as a valuable
part of a formal or informal viva on the providence of a
submission. However, here we must be careful – academic
regulations may not permit a viva to be used as an additional,
unannounced format of assessment. Often as part of an
academic misconduct hearing there will be some viva element in
which students may be asked to explain their code, but this is
different to simply getting people in to ask about what they did.
The possibility of later examination via viva should be
announced in course books and module descriptors. It would be
unethical to assess based on hidden criterion within a course, and
likewise unethical to offer no guidance as to who is likely to be
selected to perform. Linked to this is an issue of stigma if the
only people asked to present their work orally are those who
have likely plagiarized – in such cases, the invitation alone is
enough to overlay a degree of suspicion amongst students. Thus,
if vivas are to be conducted they should include a random
sampling of students who are under no suspicion of plagiarism.
Not only does this mitigate the stigmata issue, it also ensures that
there is a control group against whom performance can be
calibrated. The fact that a student cannot communicate clearly
the code they are suspected of having not written may not mean
anything when students under no suspicion also cannot clearly
communicate! We must be careful to not prejudge the result,
and equally careful not to stack the deck against students.
In the event that a student’s work fails all possible good faith
considerations, my own preference during hearings of academic
misconduct is that the student be provided access to the full
annotated transcripts of their code. While to a certain extent this
allows an opportunity for students to shape the narrative of their
explanation, in most cases the evidence is reasonably cut and
dried. All that providing the code ahead of time does in that
respect is allow for students to consider the evidence outside of
the fraught, and often stressful, environment of an academic
misconduct hearing. My own feelings on this matter is that it is
much better to hear a considered explanation, even when it may

be manufactured. The alternative is an explanation that is a
result of stress, worry and the discomfiture that comes from
misconduct being alleged. In the latter cases, we cannot
reasonably expect that students can acquit themselves under such
conditions even in those situations where they may have a
reasonable explanation. In none of the academic misconduct
hearings I have been responsible for initiating has there been an
explanation that made me feel as if the student had been
incorrectly targeted. However, if there was such a plausible
explanation, I would like to hear it rationally put forward without
the additional stresses implied by a formal academic hearing. In
some cases, being presented with the evidence alone may be
sufficient to make a student acknowledge the work that they
submitted was substantively influenced by external sources.

6. CONCLUSION
The lack of any realistically effective mechanism for
algorithmically detecting code plagiarism means that even now
the process of identifying academic misconduct is one tied up in
issues of academic judgment. However, in identifying
submissions that have the hallmarks of external influence, we
must be careful not to allow our own plagiarism antennae to
override our ethical duty of care to our students.
Within software engineering as a discipline, and particularly
within the topic of programming, many of the normal conventions
of plagiarism simply do not hold – we work within very limited
vocabularies and even within limited structural flexibility. The
good practice of software engineering too is in many ways an
exhortation towards plagiarism – we endorse, as a field, principles
of re-use and the application of generalized solutions to problems
rather than encouraging individuals to solve them anew each time.
Our reference to algorithms, standardized data types, and design
patterns creates a powerful impression that we have a preference,
as a field, for standard solutions. Our own conventions regarding
attribution too are loose and ill-defined, and may even be
impossible to honour within complex environments where
authorship may be an emergent property. None of this excuses
academic misconduct, but it does help situate it within a context
that makes it easier to explain.

When we are suspicious of a submission, the process through
which we go is often bespoke and ad hoc – we perceive
disharmony in submissions, or find things written in ways that are
entirely alien to the structure we have inculcated into our students.
It is those submissions which most trigger those reactions that are
likely to receive the most attention in terms of further
investigation, and this has a risk of skewing the results towards
those who are least likely to be intentionally attempting to
mislead.

We must be mindful then to ensure that the plagiarism
investigations that we perform are not only focused where we
have suspicions, but also where we have no reason to assume
dishonesty at all. Plagiarism which is the best well-executed is
almost by definition the least likely to trigger our initial
suspicions. As a result we should be careful not to give the clever
plagiarists a free ride while we focus our attention on those who
simply did not understand the obligations of attribution.

7. REFERENCES
[1] Aiken, A. (2005). Moss: A system for detecting software

plagiarism. University of California–Berkeley. [Available
from See www.cs.berkeley.edu/aiken/moss. html].

SIGCAS Computers & Society | Sept 2015 | Vol. 45 | No. 3 443

[2] Bartlett, T. (2009). Cheating goes global as essay mills
multiply. The Chronicle of Higher Education, 55(28), A1.

[3] Batane, T. (2010). Turning to Turnitin to Fight Plagiarism
among University Students. Educational Technology &
Society, 13(2), 1-12.

[4] Gullifer, J. M., & Tyson, G. A. (2014). Who has read the
policy on plagiarism? Unpacking students' understanding of
plagiarism. Studies in Higher Education,39(7), 1202-1218.

[5] Kim, D., Han, Y., Cho, S. J., Yoo, H., Woo, J., Nah, Y., ... &
Chung, L. (2013, March). Measuring similarity of windows
applications using static and dynamic birthmarks. In
Proceedings of the 28th Annual ACM Symposium on
Applied Computing (pp. 1628-1633). ACM.

[6] Mahmood, Z. (2009). Contract cheating: a new phenomenon
in cyber-plagiarism. Communications of the IBIMA, 10(12),
93-97.

[7] Marsh, B. (2004). Turnitin.com and the scriptural enterprise
of plagiarism detection. Computers and Composition, 21(4),
427-438.

[8] Savage, S. (2004). Staff and student responses to a trial of
Turnitin plagiarism detection software. In Proceedings of the
Australian Universities Quality Forum.

[9] Turner, J. (2012). Developer Week in Review: Are APIs
Intellectual Property? In Radar. [Available online at
http://radar.oreilly.com/2012/05/api-oracle-googlecopyright-
c.html]

[10] Zoubi, Q., Alsmadi, I., & Abul-Huda, B. (2012, May). Study
the impact of improving source code on software metrics. In
Computer, Information and Telecommunication Systems
(CITS), 2012 International Conference on (pp. 1-5). IEEE.

SIGCAS Computers & Society | Sept 2015 | Vol. 45 | No. 3 444

	HERON 2015 Musings on misconduct
	coversheetJournalArticles
	HERON 2015 Musings on misconduct

	musings on misconduct

	OA: GREEN
	OA Logo:
	AUTHORS: HERON, M.J. and BELFORD, P.
	TITLE: Musings on misconduct: a practitioner reflection on the ethical investigation of plagiarism within programming modules.
	YEAR: 2015
	Publisher citation: HERON, M.J. and BELFORD, P. 2015. Musings on misconduct: a practitioner reflection on the ethical investigation of plagiarism within programming modules. ACM SIGCAS computers and society [online], 45(3), pages 438-444. Available from: http://dx.doi.org/10.1145/2874239.2874304
	OpenAIR citation: HERON, M.J. and BELFORD, P. 2015. Musings on misconduct: a practitioner reflection on the ethical investigation of plagiarism within programming modules. ACM SIGCAS computers and society, 45(3), pages 438-444. Held on OpenAIR [online]. Available from: https://openair.rgu.ac.uk
	Version: AUTHOR ACCEPTED
	Publisher: ACM
	Series: ACM SIGCAS computers and society
	ISSN: 0095-2737
	eISSN:
	Set statement: © 2015 ACM. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published in ACM SIGCAS computers and society, 45(3), 2015 http://dx.doi.org/10.1145/2874239.2874304
	License: BY-NC-ND 4.0
	License URL: https://creativecommons.org/licenses/by-nc-nd/4.0
	CC Logo:
		2016-11-24T13:09:50+0000
	OpenAIR at RGU

