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number ranging from 10  to 10 . Hammou et al., 2004 and McBrain, 1997 investigated temperature and mass concentration 
gradient induced laminar flow in an enclosure. They used single phase modelling approach for the transport of fluid 
mixture.  It is fairly recently that a number of works have appeared on buoyancy driven flows in enclosures filled with 
varying numbers of solid objects. Unlike porous medium, these objects are not in contact with each other but are close 
enough to influence the transfer processes significantly (Das and Reddy, 2006; Laguerre et al., 2009). Most of such works 
are limited to steady state two dimensional laminar flow of Rayleigh number ranging from 10  to 109, although the higher 
values of Rayleigh number are likely to be turbulent.  The flow development is further complicated by the evidence that 
radiation also plays an important role (Behnia et al., 1990; Iyi et al., 2012) in establishing the flow.  
      An important aspect of the above type of flow which has not been investigated in detail is the effect on heat and mass 
transfer due to the wall proximity of blockages. This issue has many practical engineering applications such as natural 
drying of wood stacks (Kadem et al., 2011 ), cold storage stacking (Laguerre et al., 2005 ) or location of venetian blinds in 
double skin facade (Ji et al., 2007). The objectives of this paper are hence to look at typical features of the heat and mass 
transfer for variable proximity of the solid objects. The issue of emissivity for radiation simulation has also been explored. 

2. Flow domain 

      The geometrical configuration used in this investigation is similar to the cavity used in the experimental study conducted by 
Laguerre et al., 2009. As shown in Figure 1, this is a two-dimensional rectangular cavity with aspect ratio of 2:1 (H/L) and 
contains objects which occupy about 15% of the total cavity volume. The authors have provided data for temperature profiles 
along the mid-height (y/H=0.5) and along x=6.6 cm (or  = 6.6) near the cold wall of the cavity. Vertical velocity and relative 
humidity profiles measured at the mid-height and mid-width (x/L=0.5) of the cavity were also reported. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Geometry and the coordinates (dimensions are in cm) 

 
Based on the temperature differentials of the vertical walls the Rayleigh number was found to be 1.45 x 109. For this work, 

the distance of the first column of objects from both the hot and cold walls were varied ( = 0.033, 0.05, 0.066, 0.08 and 0.116 
m). The distances between the other columns, ‘c’, varies negligibly and hence the effect due to internal re-distribution is ignored. 
 
3. Numerical method 
 
      Calculations were carried out using the commercial CFD package of  ANSYS FLUENT (2010) software. The methodology 
involves the iterative solution of the Navier-Stokes equations along with continuity and energy equation on collocated variables 
within a structured-unstructured mesh configuration. Humidity has been considered as a separate phase and hence another scalar 
transport equation for species transport has been incorporated. To model the turbulence stresses, a two-equation low-Re eddy-
viscosity turbulence model (Launder-Sharma, 1974) has been chosen. Systematic grid dependency tests were carried out and the 
final results were obtained with 90,500 cells with a y+ value of just below 1. For a coarser mesh density of 64,600 the average 
Nusselt number showed very small variation as can be seen in Table 1.  Initial natural convection flow field was established for a 
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Rayleigh number of 106 using an incompressible unsteady solver with a time step of 0.002s. This flow field was later used an 
initial condition for the higher Rayleigh number of 1.45 x 109. A typical run on a single Intel core 2Duo E6600 2.4 GHz 
processor took about 8 hours of computing time.  
      The boundary conditions considered for the simulations are similar to those given in the experimental paper of Laguerre et 
al., (2009). The temperatures of the hot, cold, top and bottom walls were fixed at 21, 1.2, 14.4 and 13.7oC respectively. The 
constant vapour mass fraction is maintained at the bottom horizontal wall and a constant mass fraction equal to the saturation 
value at the cold wall was specified. No slip boundary conditions have been imposed for all the solid surfaces. To simulate 
radiation, Discrete Ordinate Method (FLUENT 2010) has been chosen with humid air treated as absorbing-emitting and non-
scattering gray medium and the walls are all assumed as gray diffuse. 
 
4.  Results and discussion 
 
      The velocity and turbulence intensity contours shown in Figure 2 (a) and (b) respectively, demonstrate clearly that the main 
air flow is confined within the boundary layer so that the objects close to the walls interact with the viscous layer. This 
observation further highlights the importance of using a low-Re model. It can also be seen that there are other streams of flows of 
varying (smaller) magnitude. Such a flow pattern was also verified and reported in the experimental work of Laguerre et al., 
2005 and can be seen in Figure 2. 

 
Fig.  2.  (a) Velocity magnitude and (b) Turbulence intensity for  = 6.6 cm 

 
Double-diffusive phenomenon is governed by the total density stratification consisting of thermal and concentration 

contributions. These two stratifications often act in opposite directions with unstable thermal stratification promoting turbulence, 
while the stable concentration gradient tends to dampen turbulent fluctuations. In this study, thermal stratification is dominant 
and is likely to promote turbulence. Specification of the flow regime for such transitional Rayleigh number of 1.45 x 109 
associated with heat and mass transfer appears to be quite confusing. To resolve this uncertainty surrounding the flow regime 
characterisation, preliminary numerical investigation was conducted with Launder-Sharma model to show if the domain is 
predominantly laminar or turbulent. The temperature profile near the cold wall (x = 6.6 cm) is presented in Fig. 3a, and the 
relative humidity (RH) distribution along the mid-width (x/L = 0.5) is presented in Fig. 3b. Both results, laminar and turbulent 
are plotted against the experimental data which supports our assumption of incorporating a turbulence model in the calculations.  

 

             
 

Fig. 3. Comparison with experimental data: laminar vs turbulent prediction (  = 6.6 cm) 
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4.1 Choice of equivalent emissivity 
 
      The choice of emissivity is very critical when modelling radiation heat transfer and, even for this type of moderate 
temperature difference, the effect of radiation has been found to be fairly significant (Iyi et al., 2012). The 2D simplification of 
an inherently 3D radiation heat transfer also raises issues with the accuracy of the data produced by 2D simplification of domain.  
According to Laguerre et al., 2009 an equivalent emissivity of  = 0.58 can be shown to mimic the radiation heat transfer 
between three surfaces having emissivities of 0.9 (somewhat similar to the treatment of radiation shield). However, no numerical 
evidence is provided in support of the above. We have scrutinized this assumption and a comparison of temperature for a 2D vs. 
3D domain is presented in Fig. 4. It can be seen that the predicted temperatures at x/L=0.5 for  = 0.9 (3D) and  = 0.58 (2D) are 
in fairly close agreement justifying the 2D treatment. The  = 0.9 (2D) is shown for comparison which also highlights the 
significant influence of radiation for this flow. All of the calculations reported in this paper were obtained with  = 0.58. 

 
Fig. 4. Emissivity sensitivity for temperature prediction (  = 6.6 cm) 

 
4.2 Wall heat transfer 
 
      Average and local heat transfer data are compared in terms of an average Nusselt number and local Nusselt (Nulocal) number 
computed at each wall. The average Nusselt number which is a combination of heat transfer due to convection and radiation 
were separately calculated by taking integral averages of heat fluxes using FLUENT post-processing tools. Similarly the local 
Nusselt numbers were obtained using the local heat flux at each node. Table 1 shows the average Nusselt number for different  
values and Fig. 5 shows local variations for three cases (for clarity). 
 

                
                 
 

Fig. 5. Variation of local Nusselt number along the (a) Hot wall and (b) Top wall 
 

 
Table 1: Variation of Average Nusselt Number 

(Italicised data for  = 0.066 are for coarse mesh of 64,600 cells) 
 

 (m) Bottom wall Hot wall Top wall Cold wall 
0.033 33.8 82 10.4 105.5 
0.05 34.1 105.3 7.3 132.1 
0.066 30.5(30.4) 111.6 (111.3) 3.9(3.8) 138.2(137.8) 
0.08 30.4 113.9 2.7 141.5 
0.12 29.1 118.5 1.7 146 
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    The table also shows that the total heat transfer is significantly low for the smallest  value. For other values, the average Nu 
demonstrates a small but monotonic increase of the heat transfer. The local variations of Nu along the hot wall display the 
proximity effect very clearly. It also shows that with larger  values, the Nu numbers tend to smooth out. The fact that =3.3 cm 
shows markedly small value of heat transfer  may be partly related to the fact that turbulence is greatly suppressed due to 
blockage of the upward and downward flow of fluids along the hot and cold walls respectively. The turbulent viscosity ratio, 

ratio (ratio of turbulent eddy viscosity divided by the molecular viscosity) in Fig. 6a-b, highlights  that turbulence is greatly 
reduced as the objects come closer to the walls and supports the multi-zone configuration of flow as suggested by among others, 
Griffiths and Chen, 2003. For smaller , ratio is almost close to the core value and hence not shown. 
 

                             
 

Fig.  6.  Turbulent viscosity ratio at the mid-height; (a) near cold wall, (b) near hot wall 
 
4.3 Influence of proximity on mass transfer 
 
      Detailed analyses were carried out on the vapour mass flow distributions at various locations of the flow domain. Typical 
plots of mass fraction, m (g/kg) and buoyancy number, N, defined as the ratio of mass to temperature induced buoyancy, are 
plotted in Figs. 7 and 8.  It can be seen that the mass fraction of vapour increases for the smaller  values. This is due to the 
smaller gap available for the flow and is essentially a redistribution of the moisture content throughout the flow domain. The 
buoyancy number, N, measures the contribution to buoyancy of the variation in vapour concentration. The concentration 
gradient is due to difference in the relative molecular mass between the dry air and water vapour. At 20 oC, the relative molecular 
mass of dry air is 28.97 kg/kg-mol, whilst for saturated air it is 28.71 kg/kg-mol. As expected the effect due to mass induced 
buoyancy is small and corresponds to the trend in Fig. 7. 
 

     
 

          Fig. 7. Mass fraction along the mid-height .                           Fig. 8. Buoyancy number along the mid-height 
 

The effective diffusion coefficient, Deff  of vapour is shown in Fig. 9a-b at the mid-height. The variations and nature of these 
curves are very similar to the viscosity ratio curves presented in Figure 6a-b, highlighting the fundamental similarity in the 
diffusive transport mechanisms of momentum and concentration. 
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Fig. 9.  Effective diffusion coefficient of vapour at mid-height; (a) near cold wall, (b) near hot wall 

 
5. Conclusions 
 
The following conclusions can be made from the work presented above: 
 The flow field is characterised by low turbulence near the walls while the core area is essentially a stagnant region.  
 Given that an appropriate equivalent emissivity is obtained, a 2D simplification of a 3D domain is possible to save 

computational effort.  
 Wall proximity can be seen to affect the overall heat transfer via flow field. The effect of turbulence is greatly reduced as the 

gap between the walls and the solid objects become smaller.  
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