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Abstract 

Efforts to reduce the global burden of bacterial disease and contend with escalating bacterial resistance 

are spurring innovation in antibacterial drug and biocide development and related technologies such as 

photodynamic therapy and photochemical disinfection.  Elucidation of the mechanism of action of these 

new agents and processes can greatly facilitate their development, but it is a complex endeavour.  One 

strategy that has been popular for many years, and which is garnering increasing interest due to recent 

technological advances in microscopy and a deeper understanding of the molecular events involved, is the 

examination of treated bacteria for changes to their morphology and ultrastructure.  In this review, we 

take a critical look at this approach.  Variables affecting antibacterial-induced alterations are discussed 

first.  These include characteristics of the test organism (eg. cell wall structure) and incubation conditions 

(eg. growth medium osmolarity).  The main body of the review then describes the different alterations 

that can occur.  Micrographs depicting these alterations are presented, together with information on agents 

that induce the change, and the sequence of molecular events that lead to the change.  We close by 

highlighting those morphological and ultrastructural changes which are consistently induced by agents 

sharing the same mechanism (eg. spheroplast formation by peptidoglycan synthesis inhibitors), and 

explaining how changes that are induced by multiple antibacterial classes (eg. filamentation by DNA 

synthesis inhibitors, FtsZ disruptors, and other types of agent) can still yield useful mechanistic 

information.  Lastly, recommendations are made regarding future study design and execution. 
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Introduction 

Humankind’s ability to control bacterial pathogens through the use of biocides (antiseptics, disinfectants 

and preservatives) and antibacterial drugs has greatly reduced the morbidity and mortality once associated 

with infectious disease.  Introduction of the antiseptic phenol in the 1860s, for example, helped prevent 

infection during surgery [1], disinfection of municipal drinking water with chlorine in the 1910s reduced 

waterborne disease [2], and introduction of antibacterial drugs in the 1930s drove down deaths from 

puerperal sepsis and other infections [3].  More recently, preservatives such as nisin, chlorhexidine, and 

butylparaben have, respectively, improved the safety of food, pharmaceutical, and cosmetic products [4].  

Efforts to develop new antibacterial drugs [5,6] and biocides [7,8] continue, accompanied by innovations 

in antimicrobial materials [9,10], photodynamic therapy [11], and photochemical disinfection [12,13].  

The impetus for this work varies.  Some seek to achieve improved antimicrobial efficacy [7] or safety 

[6,8], others more application-specific or user-specific needs such as improved biocompatibility and 

longer product lifespan for medical implants [9,10], or the ability to produce safe drinking water in parts 

of the world that are remote and/or economically disadvantaged [13].  Additional driving factors include 

the need to keep pace with drug resistance [5,6,11], confront the emerging threat of biocide tolerance 

[7,14], and protect the growing number of persons at increased risk of infection due to diabetes, 

HIV/AIDS etc. [5,6].  

 Elucidation of antibacterial mechanism of action is a key step in the development of new 

antibacterial drugs and is becoming increasingly important for biocides also.  In the case of antibacterial 

drugs, this information permits anticipation of problems relating to clinical safety and bacterial resistance 

[15].  Compounds disrupting the cytoplasmic membrane or electron transport chain, for example, are 

more likely to cause toxicity problems than those targeting the cell wall or other specifically bacterial 

structures.  Knowledge of mechanism of action also facilitates understanding of drug interactions [16], 

and allows optimization of drug structure and formulation [17].  For biocides, it is only relatively recently 

that their mechanisms of action have been studied in detail [14] but this information is important for 

several reasons too.  It permits optimization of activity and formulation as well as neutralization if 
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necessary [18], permits anticipation of safety problems [7], and allows biocides to be rationally selected 

or avoided depending on environmental conditions [19].  Knowledge of biocide mechanism of action is 

also considered essential to understanding biocide tolerance [14], and establishing whether or not biocide 

exposure elicits drug resistance (‘biocide-antibiotic cross-resistance’) [20].  This information is 

particularly important for those agents used at sublethal concentrations (eg. preservatives), where their 

antibacterial effect may depend upon inhibition of a single cellular target, and biocide tolerance is more 

likely to arise [21].  Lastly, for both drugs and biocides, knowledge of mechanism of action enables us to 

select combinations of agent that inhibit multiple cellular targets, thereby reducing the risk of resistance 

or tolerance emerging [22,23]. 

 Establishing the mechanism of action of a novel antibacterial compound or process is inherently 

difficult because the biochemical pathways of bacterial cells are closely interlinked and disturbance of 

any one system invariably affects many others [24].  The genomics era has furnished us with several 

advanced new methods of elucidating antibacterial mechanism of action, but these techniques have not 

yet been widely adopted.  In some settings, lack of specialized equipment or technical expertise may be a 

barrier to their use.  For other researchers, current limitations of the methods may be a disincentive.  

Transcriptional arrays, for example, generate complex patterns of results that can be difficult to interpret 

[15,25].  A forerunner of the molecular biology approach was the examination of bacteria treated with test 

agent for changes to their morphology and ultrastructure [24].  This strategy remains extremely popular 

among researchers investigating antibacterial mechanism of action, both as an early exploratory step [26-

30] and for confirmation of a suspected mechanism [31-33].  Requiring only access to an electron 

microscopy suite, it is an approach that is open to researchers in even relatively low resource settings.  

New and emerging technologies such as atomic force microscopy [34], live-cell time-lapse microscopy 

[35], and automated image analysis [35,36] are currently less accessible, but could potentially make 

microscopy-based investigation of mechanism of action more informative and efficient, and more 

attractive to industry. 
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 Despite the enduring appeal of using antibacterial-induced cytological changes as an indicator of 

mechanism of action, most of the primary research published on this topic has escaped critical review.  

One consequence of this is that the associated terminology has become confused, some authors using the 

same term to describe different observations (eg. ‘filament’ used to describe both elongated cells [37,38] 

and noncellular thread-like structures [39,40]) or coining many terms to describe the same observation 

(eg. ‘blebbing’ [41], ‘blistering’ [24], and ‘bubbling’ [42] used to describe outer membrane protrusions).  

Another problem, in part related to the first, is that it is unclear to what extent (a) different antibacterial 

agents with the same mechanism of action trigger the same alteration and (b) the same alteration can be 

triggered by antibacterial agents with different mechanisms of action.  The present review addresses the 

issues above, describes factors that can influence results, and, where information is available, explains the 

sequence of events that leads to the morphological or ultrastructural change.  Because the mechanism of 

action of experimental antibacterials such as curcumin have been misidentified in the past [15], only 

studies with well characterized antibacterial agents have been included in the review.  Studies with the 

nitrofurans antibiotics have been excluded because they attack multiple cellular targets [43], as have 

studies with bacteria resistant to the drug they were exposed to, since resistance mechanisms frequently 

induce ultrastructural changes of their own [44-46].   

 

Variables affecting antibacterial agent-induced morphological and ultrastructural changes 

When bacteria are treated with an antibacterial agent, the morphological and ultrastructural changes that 

occur depend not just on the identity of the antibacterial agent, but also on the concentration at which it is 

tested [36,47] and the duration of exposure [48,49].  Other variables known to influence results relate to 

the test organism and incubation conditions. 

 Bacterial factors affecting morphostructural changes include the cell wall structure of the test 

organism (Gram-positive vs Gram-negative) [50], the species that is used [51,52], the characteristics of 

the test strain (including its antibiotic susceptibility) [53,54], and the inoculum density [55,56].  Growth-

phase affects the size, shape, and cell wall thickness of bacteria even in the absence of antibacterial agent, 
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stationary phase cells being smaller [57,58], having a lower axial ratio [57], and a thicker cell wall [59,60] 

than logarithmically growing cells.  In studies examining the effects of antibacterial agents on bacteria, 

differences in the status (replicating vs nonreplicating or dying) [61,62] and age (new daughter cell 

undergoing elongation vs older cell undergoing division) [63] of individual cells at the time of exposure 

are thought to account for the heterogeneity of morphological changes observed within treated 

populations.  The relative proportions of these different cells within a bacterial population varies with 

growth phase.  In a population that is in stationary phase [64] or death phase [65], antibiotic exposure may 

not alter cell appearance at all.      

 Incubation conditions affecting morphostructural changes include the type of growth medium 

(broth vs agar) [66,67], the osmolarity of this medium [68,69], and the incubation temperature [66].  For 

example, antibacterial agent-induced filaments have a curved appearance when agar is used, and a straight 

appearance when a fluid medium is used [67].  Transient plasmolysis (ie. temporary retraction of the 

protoplast from the cell wall) occurs in growth media that are hyperosmotic, but without osmotic 

protectants like sucrose and MgSO4, antibacterial agent-induced spheroplasts [57] and protoplasts [69] 

may burst before observation is possible.   Regarding temperature, the incubation of bacteria below 37°C 

results in antibacterial-induced morphological changes taking place more slowly and appearing more 

clearly [66].   

 

Morphological and ultrastructural changes  

Spheroplast and protoplast formation 

In bacteriology, the terms ‘spheroplast’ and ‘protoplast’ are used to describe cells that have lost their 

peptidoglycan layer.  Without this rigid, shape-determining structure, membrane tension causes the 

bacteria to acquire a spherical shape.  Spheroplasts are Gram-negative bacteria that have lost their 

peptidoglycan layer but not their outer membrane, whereas protoplasts lack both a peptidoglycan layer 

and an outer membrane, either because they were formed from Gram-positive bacteria, or because their 

outer membrane has been stripped away [70].  Various agents convert bacteria into these altered forms, 
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with the peptidoglycan synthesis inhibitor penicillin G [71] and the peptidoglycan digesting enzyme 

lysozyme [72] among the first discovered.  The significance of these early observations, incidentally, was 

not lost on researchers at Merck, Fujisawa or Sankyo, all three companies developing screens for cell-

wall synthesis inhibiting antibiotics based on spheroplast formation [73].  Spheroplasts and protoplasts, 

when observed by microscopy, appear as large, round and smooth refractile bodies (Fig. 1) [61].  Because 

they lack a peptidoglycan layer, spheroplasts and protoplasts are osmotically sensitive and rapidly lyse 

when transferred to hypotonic media [53,74]. 

 Undoubtedly, the most well-known and well-studied class of spheroplast-inducing peptidoglycan 

synthesis inhibitors is the β-lactams.  In Escherichia coli, β-lactam-induced spheroplast formation is due 

to inhibition of penicillin binding proteins 1a and 1b (PBPs 1a and 1b) [75-77].  PBPs 1a and 1b are 

required for peptidoglycan synthesis, and inhibition of these enzymes, in the absence of peptidoglycan 

hydrolase inhibition, is thought to explain spheroplast formation [75].  For β-lactams which have a higher 

affinity for E. coli PBPs 1a and 1b than PBP2 or PBP3, some examples being amoxycillin, cephaloridine, 

and cefsulodin, spheroplast formation is the primary morphological response to antibiotic treatment [76].  

In cephaloridine-treated E. coli, spheroplast formation is observable between 1xMIC and 16xMIC, with 

1xMIC cephaloridine converting over 20% of cells to spheroplasts in just 60 minutes [77].  For β-lactams 

which preferentially target E. coli PBP2 and/or PBP3, other morphological changes (‘ovoid cells’, 

‘localized swelling’ and ‘filaments’) occur at low antibiotic concentrations, with spheroplasts only 

becoming evident when antibiotic concentration is increased to a point where PBPs 1a and 1b become 

bound [76,78].  The β-lactam induced formation of spheroplasts and protoplasts occurs, not just in E. coli, 

but in many species of Gram-negative [36,53,74,79-83] and Gram-positive bacteria [69,84].  However, 

because PBP nomenclature is species-dependent [85,86], and because relatively few studies have 

determined the affinity of their test β-lactam(s) for the PBPs of their test species, the relationship between 

spheroplast formation and inhibition of a specific PBP is less clearly defined for these species than E. 

coli.   
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 Examples of spheroplast-inducing disruptors of peptidoglycan synthesis outside the β-lactam 

class include the MurA inhibitor fosfomycin [73], the MurC inhibitor glycine [74,87], the Alr and Ddl 

inhibitor cycloserine [73], the MraY inhibitor mureidomycin [73,88], the D-alanyl-D-alanine binding 

antibiotic vancomycin [89], the transglycosylase inhibitors ensanchomycin, prenomycin [73], and 

moenomycin [90], and the transpeptidase inhibitor lactivicin [91].  Depriving cells of diaminopimelic acid 

[57] or inhibiting its incorporation into the cell wall using malioxamycin [73] also triggers spheroplast 

formation.  Lysozyme, which enzymatically degrades peptidoglycan by hydrolysing the glycosidic bonds 

between N-acetyl muramic acid and N-acetyl-D-glucosamine, causes protoplast formation in Gram-

positive cells [92].  In Gram-negative bacteria, peptidoglycan is shielded by the outer membrane [93], and 

lysozyme cannot induce spheroplast formation unless a membrane permeabilizer such as lactoferrin or 

EDTA is also present [74,92,94].  Other peptidoglycan hydrolyzing enzymes that induce protoplast 

formation include N,O-diacetylmuramidase [95] and lysostaphin [96]. 

 Having established that digestion of peptidoglycan or inhibition of its synthesis frequently results 

in spheroplast or protoplast formation, the next logical question is whether any other antibacterial 

mechanisms induce this change too.  Perhaps not surprisingly, antibacterial agents that inhibit pathways 

directly upstream of peptidoglycan synthesis sometimes induce spheroplast formation.  Fosmidomycin 

and phosphoenolpyruvate are two examples.  Fosmidomycin inhibits the non-mevalonate pathway, and is 

thought to cause spheroplast formation by preventing synthesis of the cell wall carrier lipid undecaprenyl-

phosphate [73].  Pentalenolactone inhibits the glycolytic pathway, and is thought to induce spheroplast 

formation by preventing synthesis of the MurA substrate phosphoenolpyruvate [73].  In some cases, 

inhibition of protein synthesis (or upstream inhibition of the folic acid synthesis required to produce 

amino acids) also causes spheroplast formation.  Spheroplasting has been reported in bacteria treated with 

chloramphenicol [61,97], oxytetracycline [39], several aminoglycoside antibiotics (kanamycin, 

streptomycin, and tobramycin) [61,97], trimethoprim [51] and sulfamethoxazole [97].  That these 

spheroplasting effects are attributable to inhibition of folic acid and protein synthesis, and not a second 

mechanism targeting peptidoglycan synthesis, has been confirmed, respectively, by rescue with folinic 
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acid [51] and mutant studies [97].  Neither DNA nor RNA synthesis inhibition generates spheroplasts, at 

least in the case of novobiocin [80], nalidixic acid [98], ciprofloxacin, or rifampicin [83].   

 

Ovoid cells 

‘Ovoid cells’ is a term used to describe bacterial rods that have decreased in length and become oval- or 

round-shaped during antibacterial treatment [75,99].  Nomenclature in the literature varies, some authors 

referring to them as‘round forms’ [76,100], ‘round cells’ [63,101,102], ‘spherical forms’, ‘spherical cells’ 

[54,78,103], or ‘coccoid forms’ [104,105].  In a few papers, these descriptors are used interchangeably 

with the term ‘spheroplast’ [54,101,102] but this is incorrect.  Unlike spheroplasts, ovoid cells are 

osmotically stable [63,75,76,100,106].  This difference can be demonstrated by comparing impression 

smears of the antibiotic-treated bacteria overlaid with drops of distilled water or 0.85% (w/v) NaCl [53], 

or by performing the antibiotic treatment itself in media with and without osmotic support [69].  There are 

morphological differences also.  Ovoid cells typically lack the near-perfect spherical shape and smooth 

surface of spheroplasts [36], and are more likely to be found in cell arrangements than as individual cells 

[36] (Fig. 2). 

 Ovoid cell formation occurs when bacteria are treated with some types of β-lactam antibiotic.  In 

E. coli and Pseudomonas aeruginosa, this change in shape has been attributed to inhibition of the enzyme 

PBP2 [75,101].  Inhibition of PBP2 leads to cessation of lateral wall peptidoglycan synthesis and 

permanent activation of septal wall peptidoglycan synthesis, resulting in daughter cells that comprise of 

two poles with no cylindrical peptidoglycan to separate them [63,107].  β-Lactams that preferentially 

inhibit PBP2 can induce ovoid cell formation rapidly (within 1.5 to 2 hours) over quite a wide range of 

antibiotic concentrations (≤0.5xMIC to ≥2xMIC ) [108].  Examples include imipenem [54,101,103], 

mecillinam [75,106,108], and thienamycin [109].  For β-lactams whose affinity for PBP2 and PBP3 is 

similar, a different morphological change (‘localized swelling’) occurs [76,101] and this will be discussed 

later in the review.  Under increasing β-lactam concentrations, ovoid cells are typically observable until 

PBPs 1a and 1b [76,78,101] or PBPs 2 and 3 [85,110] become saturated, at which point the cells form 
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spheroplasts and / or lyse depending on the PBPs affected and the osmolarity of the medium.  The β-

lactam induced formation of ovoid cells has been reported, not just in E. coli and P. aeruginosa, but in 

many species of Gram-negative bacteria including Acinetobacter baumanii [102], Klebsiella pneumoniae 

[54], Proteus mirabilis [54,111], and Serratia marcescens [54].  Again however, because PBP 

nomenclature is species-dependent [86], and because relatively few studies have determined the affinity 

of their test β-lactam(s) for the PBPs of their test organism(s), ovoid cell formation has not been attributed 

to inhibition of a specific PBP in these organisms. 

 Ovoid cell formation also occurs if the proteins that regulate PBP2 localization are disrupted.  

Inhibition of the cytoskeletal protein MreB by S-(3,4-dichlorobenzyl)isothiourea [112,113] or its 

derivative 1,2,3,4-tetrahydro-1,3,5-triazine [114] converts cells of E. coli and P. aeruginosa into ovoid 

forms.  This morphological change is detectable over a range of antibacterial concentrations (0.25xMIC to 

4xMIC) [114], and has been confirmed to occur in cells where MreB has been inactivated through 

mutation [107].  Mutational inactivation of proteins MreC, MreD and RodA, which associate with MreB 

to recruit PBP2 and other key enzymes, also generates ovoid cells [63,107].   

 Possible ovoid cells have been reported too in bacteria treated with low or sub-MIC levels of the 

folic acid synthesis inhibitors aminopterin [104] and trimethoprim [51].  The focus of these early studies 

was on filaments and spheroplasts rather than ovoid cells though, and in the absence of any detailed 

descriptions or micrographs of the antifolate-induced ovoid cells, it is not clear to what extent they 

resemble the forms induced by PBP2 inhibitors and disruptors. 

 

Filamentation 

When rod-shaped bacteria (or, in some cases, cocci) produce peptidoglycan for their lateral wall but not 

their septal wall during growth, the cells become abnormally long (Fig. 3).  This phenomenon is generally 

referred to as ‘cell elongation’ or ‘filamentation’.  Use of the two terms varies between studies 

[37,39,49,56,81].  For example, some authors use ‘elongation’ to describe cells that are up to 5 times their 

normal length, and ‘filaments’ to describe longer cells [56].  Other authors prefer the term ‘short filament’ 



11 

 

to refer to bacteria up to 15 µm in length, and ‘long filament’ for cells in excess of 15 µm [37].  In this 

review, we will use the latter (less precise but more user-friendly) nomenclature.  In the absence of 

antibacterial agents or other stressors, filamentation occurs at a low frequency in bacterial populations 

[115,116] (~4-8% short filaments and 0-5% long filaments in 1- to 8-hour cultures [116]), and has been 

observed in both logarithmically growing and stationary phase cells [57].  Increased cell length offers 

protection against protozoan predation [117] and phagocytosis by neutrophils [49,118] because it makes 

ingestion of the cells more difficult.  The frequency and magnitude of this filamentation increases when 

bacteria are treated with various physical and chemical agents. 

 Filamentation can occur following inhibition or disruption of peptidoglycan synthesis.  In β-

lactam-treated cells of E. coli and P. aeruginosa, this change has been attributed to inhibition of PBP3 

[75,119].  PBP3 crosslinks peptidoglycan at the septal wall but not the lateral wall, so inhibition of this 

enzyme results in cell elongation without division [58,86].  Cefuroxime and ceftazidime, which have a 

higher affinity for PBP3 than PBPs 1a, 1b or 2 [76,120], cause E. coli and P. aeruginosa to form 

filaments relatively quickly (within 3-4 hours) at low antibiotic concentrations (0.008xMIC to 1xMIC), 

with spheroplast formation or lysis becoming observable at 0.5xMIC and increasing at higher 

concentrations [54,76,120].  This transition from filaments to spheroplasts or lysis also increases with 

duration of antibiotic exposure [55].  The β-lactam induced formation of filaments occurs, not just in E. 

coli and P. aeruginosa, but in many species of Gram-negative bacteria [49,53,65,74,81,121-123] and a 

limited number of Gram-positive bacteria [124-126].  In most cases it is bacilli that are affected, but 

filamentation has also been reported in some species of cocci [124,125,127], specifically those in the 

Streptococcus genus, which divide in just one plane.  The length of β-lactam-induced filaments varies 

with duration of exposure [49], but cells up to 93 µm have been reported [128].   

 Filamentation can also occur if DNA synthesis is inhibited [48,49] or DNA is damaged [129-131] 

by a process known as the SOS response.  This response represses septum formation until the DNA can 

be repaired, the delay preventing the transmission of damaged DNA to daughter cells [58].  Bacteria 

postpone septation by synthesizing protein SulA, an FtsZ inhibitor that halts Z-ring formation, thereby 



12 

 

stopping PBP3 recruitment and activation.  Examples of DNA disrupting agents that induce this SOS-

mediated filamentation include cosmomycin D [36], metronidazole [132], mitomycin C [131,133], 

nalidixic acid [98,131] and the fluoroquinolones [37,48,134], novobiocin [36], zidovudine [135], and UV 

light [129].  The fluoroquinolone ciprofloxacin induces filamentation rapidly (within 1 to 1.5 hours) over 

a wide range of concentrations (1xMIC to ≥33xMIC) [56,136], with mean filament length peaking at 

1xMIC to 10xMIC [56] and decreasing thereafter, probably due to inhibition of RNA and protein 

synthesis [136].  Similar concentration-response patterns have been observed with mitomycin C [133] and 

ofloxacin [49].  If bacteria are deprived of the nucleobase thymine by starvation [130], by treatment with 

the folic acid synthesis inhibitor trimethoprim [49,51,135], or by treatment with the folic acid analogue 

aminopterin [104], this also disrupts DNA synthesis and induces SOS-mediated filamentation [135].  As 

with fluoroquinolone-induced filamentation, trimethoprim-induced filamentation occurs over a wide 

range of concentrations (0.06xMIC to 1xMIC), peaking at 0.13xMIC and decreasing thereafter [49].  The 

length of filaments generated by DNA disruptors and antifolates varies with duration of exposure, but is 

broadly similar in both cases [137], with cells capable of reaching over 50 µm [104,137].  Direct 

obstruction of Z-ring formation by SulA and other FtsZ inhibitors, like the indirect obstruction of Z-ring 

formation caused by DNA disruptors and antifolates, generates very long SOS-like filaments [138,139].      

 Inhibition of protein synthesis [127,140-142] (or the RNA synthesis that precedes it [143]) can 

also induce filamentation, but from the available evidence this increase in cell length is much less than 

that caused by inhibitors of peptidoglycan or DNA synthesis [52,61,144].  For example, cells of E. coli 

treated with bactericidal levels of kanamycin undergo just a 1.6-fold increase in size after 3 hours, 

whereas cells treated with equivalent concentrations of ampicillin or norfloxacin undergo a 9.4-fold 

increase in the same timeframe [144].  In other studies, for example with gentamicin [83,145], amikacin 

[39] and chloramphenicol [39,49], any increase in cell length has been so insignificant as to go undetected 

or unreported.  The length of filaments generated by protein synthesis inhibitors varies with duration of 

exposure [146], but cells as long as 11 µm have been observed [61].  Membrane disruption by 

daptomycin [147] or polymyxin B  [39] can induce filamentation too but, again, these filaments are 
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comparatively short in length.  To our knowledge, no mechanisms have been proposed to explain why 

inhibition of protein synthesis or disruption of bacterial membranes leads to filament formation. 

 

Pseudomulticellular bacteria 

When cell separation is prevented in dividing cocci, this gives rise to cells with multiple septa (Fig. 4), 

cells that appear either swollen or elongated depending on whether the species divides in multiple planes 

[125,148] or just one [149,150].  Such bacteria have been variously described as ‘large multiseptate 

organisms’ [151], ‘pseudomulticellular bacteria’ [60,152], and ‘multicellular clusters’ [153].  The term 

‘aggregates’ is sometimes used also [154], but this is misleading because it implies the altered forms have 

arisen from cells coming together rather than cells failing to separate.  Given their outward appearance as 

abnormally large or long cells, pseudomulticellular bacteria could potentially be mistaken for spheroplasts 

or other phenotypes unless transmission electron microscopy (TEM) is performed to detect the multiple 

septa.  Antibacterial drugs known to induce this change include peptidoglycan synthesis inhibitors in the 

β-lactam [148,150,155] and glycopeptide [153] classes, the protein synthesis inhibitors chloramphenicol 

[60], lincomycin [125] and minocycline [156], and the folic acid synthesis inhibitor trimethoprim [157].   

 In β-lactam-induced pseudomulticellular bacteria, the septal wall is unusually thick (2- to 8-times 

thicker than in untreated bacteria) [125,158] and lacks the central dense layer present in phenotypically 

normal cells [125,127,158].  The peripheral cell wall appears unaltered except for occasional thickened 

areas [125,127,158].  These pseudomulticellular bacteria have been proposed to result either from β-

lactams inhibiting the peptidoglycan hydrolases required for septal lysis [152,158], or perhaps more 

likely, from β-lactams altering the cell wall composition and steric configuration in such a way that these 

enzymes cannot act [152].  This change has been widely reported in bacteria treated with sub-MIC levels 

(0.06xMIC to 0.5xMIC) of β-lactams [111,125,148,155,158], where it can occur within 3.5 hours [155] 

and remain observable up to 14 hours following exposure [125].  Prior to [151] or after [84] this window, 

septal wall thickening is detected but not pseudomulticellular bacteria.  Pseudomulticellular bacteria can 

also arise following treatment with supra-MIC levels (10xMIC) of β-lactams, but these are more short-
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lived, cell lysis occurring after 8 hours [150].  Both Gram-positive [150,158] and Gram-negative 

[125,127,148] cocci can be affected.  Pseudomulticellular bacteria with a similar appearance to those 

induced by β-lactams (ie. thickened septal walls but normal peripheral walls) have been observed 

following 2.5 hours treatment with 0.5xMIC vancomycin, these forms remaining observable at least 4.5 

hours following exposure [153].  This alteration in ultrastructure has been ascribed to vancomycin 

blocking the access of peptidoglycan hydrolases to their substrate [153] and to vancomycin directly 

inhibiting these hydrolases [159].   

 Inhibition of protein synthesis can generate pseudomulticellular forms too [60,125,156], but these 

bacteria differ in appearance from those generated by peptidoglycan synthesis inhibitors.  Both types of 

pseudomulticellular bacteria possess thickened septal cell walls, but a central dense layer remains 

observable in those induced by protein synthesis inhibition, and the peripheral walls exhibit thickening 

that is continuous, not sporadic [125,156].  The peripheral walls can be 3-to 4-times thicker than those in 

untreated control cells [155].  The above change in ultrastructure has been reported after treatment with 

sub-MIC and MIC levels of chloramphenicol [60], lincomycin [125], and minocycline [156].  Studies 

with other protein synthesis inhibitors have not detected pseudomulticellular bacteria [156,160], but 

antibiotic-treated cells in these studies were not examined until 24 hours after exposure, and this may 

simply have been too late for observation.  Chloramphenicol induces pseudomulticellular forms by 

reducing peptidoglycan hydrolase activity [60], possibly by inhibiting enzyme synthesis, but more likely 

by inhibiting synthesis of an effector required for enzyme activity [161].  Reduced peptidoglycan 

hydrolase activity has been observed with several protein synthesis inhibitors [161], so this is probably 

how lincomycin and minocycline induce pseudomulticellular forms too.  In contrast to the above findings 

with translation inhibitors, inhibition of the antecedent process of transcription appears not to induce 

pseudomulticellular bacteria [150,155], suggesting cells possess an adequate stock of mRNA, tRNA, and 

rRNA to synthesize the peptidoglycan hydrolase enzymes or effector molecules required for cell 

separation. 
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 The folic acid synthesis inhibitor trimethoprim has also been reported to induce 

pseudomulticellular bacteria [157].  Limited information is available, but the pseudomulticellular bacteria 

exhibited ‘continuous’ type peripheral cell wall thickening [157] characteristic of the protein synthesis 

inhibitors chloramphenicol, lincomycin and minocycline.  These observations, coupled with the absence 

of any reports of DNA or RNA disruptors inducing pseudomulticellular bacteria, suggest trimethoprim 

may act in a similar manner to chloramphenicol, its inhibition of folic acid synthesis preventing 

production of the amino acids [162] required for protein synthesis and peptidoglycan hydrolase activity.  

 In addition to the antibacterial drugs above, negatively charged polyelectrolytes such as Evans 

blue, divalent cations such as Mg
2+

, and various surfactants can generate pseudomulticellular bacteria 

[60].  For the anionic polyelectrolytes and divalent cations, this change is thought to occur through 

indirect inhibition of peptidoglycan hydrolases, perhaps due to an interaction with lipoteichoic acid, one 

of the structures that regulates these enzymes.  The surfactants Triton X-100 and sodium dodecyl sulfate 

induce pseudomulticellular bacteria by inactivating peptidoglycan hydrolases directly [60].  Additional 

evidence that pseudomulticellular bacteria form following disruption of cell wall synthesis and inhibition 

of peptidoglycan hydrolases is available in the form of mutant [125,152,163] and nutrient deprivation 

studies [149].  

 

Other forms of septal disruption 

In addition to the filaments and pseudomulticellular bacteria described above, there have been occasional 

reports of antibacterial agents inducing misshapen or otherwise aberrant septa.  Antibiotics eliciting these 

effects include the cytoplasmic membrane disruptor daptomycin [164] and the peptidoglycan synthesis 

inhibitors penicillin [69] and ramoplanin [165].  That these agents disrupt septum formation is not 

surprising given cell division requires both Z-ring formation at the cytoplasmic membrane, and septal 

peptidoglycan synthesis [166]. 
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Altered cell size 

After some treatments, bacterial cells have been reported to increase in size, decrease in size, or both 

increase and decrease in size.  Increased cell length (‘filamentation’) has already been discussed.  

Increases in the diameter of cocci can be difficult to interpret if detected by scanning electron microscopy 

(SEM) only [50,61].  If, however, the enlarged bacteria are examined in cross-section, the increase in size 

can usually be attributed to inhibition of cell separation (‘pseudomulticellular bacteria’) [127,158], or 

osmotic swelling (‘spheroplasts’ or ‘protoplasts’) [84].  Decreases in cell size (both rod diameter and 

length) have been detected in Legionella pneumophila treated with the peptidoglycan synthesis inhibitor 

ampicillin [141], and P. aeruginosa treated with the protein synthesis inhibitor erythromycin [167].  The 

cause(s) of these decreases in size was not established [141,167].  Lastly, a combination of both increased 

and decreased cell size has been observed in Staphylococcus aureus populations treated with novobiocin 

[168].  Cross-sections of the altered bacteria were not examined but it was speculated that the changes in 

size may be due to abnormal cell division [168]. 

 

Localized swelling 

Under some conditions, rod-shaped bacteria develop a localized swelling that is contained within an intact 

cell envelope and encircles the entire circumference of the cell (Fig. 5).  When the swelling is induced by 

disruption of peptidoglycan synthesis, it typically occurs at the mid-section of the cell [57,169], whereas 

swelling induced by disruption of protein synthesis has, to date, only been reported at the pole [141,170].  

This change in bacterial morphology has been described as ‘bulging’ by some authors [50,103,169] and 

‘swelling’ by others [55,171,172], with the terms ‘oval-centred cells’ [54], ‘sphero-rods’ [101], and 

‘spindle-shaped forms’ [57,173] used for rods with mid-cell swelling, and ‘bottle-shaped forms’ used for 

rods with polar swelling [57]. 

 Almost all reports of localized swelling have been in cells treated with β-lactams.  With β-lactam 

-induced swelling, the affected cells retain osmotic stability [75], and the rod-shaped part of the cell 

continues to increase in length as the swelling increases in diameter [101].  In E. coli and P. aeruginosa, 
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localized swelling has been attributed to simultaneous inhibition of PBP2 and PBP3 [54,75,101,103,173] 

and is thought to represent an intermediate form between ovoid cells and filaments [54,76].  β-Lactams 

with a similar affinity for PBPs 2 and 3, for example ampicillin and meropenem, can induce localized 

swelling rapidly (within 1-2 hours) [101,103,169,173].  Antibiotic concentrations capable of inducing this 

effect range from low sub-inhibitory (0.25xMIC) [173,174] to high supra-inhibitory concentrations 

(32xMIC) [55], the swelling remaining observable for as little as 3 hours or as long as 24 hours following 

initial antibiotic exposure [66,173].  Morphological changes that precede, coincide with, or follow the 

appearance of swelling vary depending on the relative affinity of the antibiotic for the PBPs of the test 

organism [76,101].  For example, treatment of P. aeruginosa with meropenem (PBP affinity 3>2>1) 

initially results in filament formation, followed by filaments with swelling at individual and then multiple 

points along the cell, and finally spheroplast formation and lysis [101].  β-Lactam-induced swelling has 

been detected, not just in E. coli and P. aeruginosa, but in multiple species of Gram-negative bacillus 

[54,66,82]. 

 A comparable morphological change to that described following β-lactam treatment has been 

reported in L. pneumophila and Helicobacter pylori treated with the protein synthesis inhibitors 

erythromycin [141] and rokitamycin [170].  Limited information is available, but the swelling (described 

by the authors as ‘bulbous distortions’ [141] and ‘enlargement of part of the bacterial cell’ [170]) was 

greatest at one pole and diminished in size closer to the midcell.  This morphological change was 

observed following treatment with sub-MIC levels of rokitamycin [170] and supra-MIC levels of 

erythromycin [141].     

 

Bulge formation 

Whilst the term ‘bulge’ is sometimes used to described the localized swelling already discussed, it is more 

commonly used to describe a different phenomenon.  In accordance with most authors [35,82,172,175], 

this review considers a bulge to be a protrusion from a single point in the cell surface, appearing unilateral 

when examined from above or in section, its centre located outside the normal boundaries of the cell (Fig. 
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6).  Localized swelling, by contrast, encircles the entire circumference of the rod, appearing bilateral in 

cross-section, its centre occurring at or close to the cell’s longitudinal axis (Fig. 5).  Confusingly, some 

authors refer to bulges (as defined above) as ‘blebs’ [61,176].  The present review, in accordance with 

authoritative papers on the subject, differentiates bulges from blebs on the basis that bulges involve the 

cytoplasmic membrane [35,57,172], and blebs are derived from just the outer membrane (Fig. 7) 

[143,171].  Bulges typically occur mid-cell or along the cylinder of the cell rather than at the poles 

[61,70,172].  A single bulge per cell is more frequently reported than multiple bulges per cell, but 

multiple bulges can occur (Suppl. Fig. 1) [57,61,124,177], sometimes to such an extent that the affected 

cells become raspberry-like in appearance [61].    

 Bulge formation precedes the appearance of spheroplasts (or, in the case of Gram-positive 

bacteria, protoplasts) [61,70,178], and the bulges themselves are sometimes referred to as ‘spheroplast-

like structures’ [50,82,174] or ‘emerging spheroplasts’ [83,178].  Bulges, like spheroplasts, can be 

osmotically sensitive [57], but are not always [124].  Like spheroplasts, they form following inhibition of 

peptidoglycan synthesis (by β-lactam [50,83,171,174] and glycopeptide antibiotics [172]), inhibition of 

protein synthesis (by tobramycin [61] and arbekacin [179]), and inhibition of folic acid synthesis (by 

sulphamethoxazole [61]).  Bulge formation is also triggered by the cytoplasmic membrane disrupting 

antibiotic daptomycin [176,177], which is not a known spheroplast inducer.  Like spheroplasts and 

protoplasts, bulge formation can occur in a wide range of Gram-negative [57,66,70,82,171] and Gram-

positive [61,124,176] species.  Bulges are observable after as little as 15 to 20 mins treatment with 

bactericidal levels of benzylpenicillin (~20xMIC) [57] or daptomycin (2xMIC) [176], and after 3 h 

treatment with inhibitory concentrations of tobramycin (1xMIC) or sulfamethoxazxole (1xMIC) [61].  

The bulges remain observable until the transition to spheroplast is complete or until they lyse [57,178], 

this occurring as early as 2.5 to 3.5 h after treatment [57] or as late as 24 h or more after treatment 

[66,83]. 

 Bulge formation has been attributed to an accumulation of crosslink defects in a small region of 

peptidoglycan creating a pore.  Because peptidoglycan synthesis is most active near the midcell position, 
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this is where most defects arise and where, therefore, pores tend to develop [172].  Above a certain size, 

the osmotic pressure differential drives the cytoplasmic membrane out through the pore, creating a bulge 

[175].  Sometimes, the cell wall cracks at the location of the crosslink defects, with the cytoplasmic 

membrane then bulging out of the crack [35,172,178].  In Gram-negative bacteria, the outer membrane 

supports some level of turgor pressure, delaying osmotic lysis of the bulge [35].  In sharp contrast to what 

is observed during ‘localized swelling’, increases in bulge diameter are accompanied by a decrease in the 

length of the rod-shaped part of the cell.  This is because bulges form out of existing cytosol and 

membranes rather than newly synthesized material [35].  Whilst β-lactam and glycopeptide antibiotics 

induce bulges by disrupting peptidoglycan synthesis directly, daptomycin does so indirectly.  Daptomycin 

has been shown to accumulate in the cytoplasmic membrane, causing a localized distortion that attracts 

the cell division protein DivIVA.  This, in turn, is thought to result in altered deployment of the cell wall 

synthetic machinery, and the generation of small ruptures in the peptidoglycan [176].  It has not yet been 

established how folic acid or protein synthesis inhibitors generate the peptidoglycan defects that precede 

bulge formation. 

 

Blebbing 

‘Blebs’ are protrusions localized to the outer membrane of the Gram-negative bacterial cell, an intact 

peptidoglycan layer and cytoplasmic membrane preventing extrusion of the cytoplasm (Fig. 7) [143,171].  

They are more readily detected by TEM than SEM [171].  Blebs can occur during normal growth of 

bacteria, but increase in number following treatment with certain antibiotics and biocides [180,181].  

Antibacterial agent-induced bleb formation has been reported in numerous Gram-negative species 

including E. coli [41,143,179,180,182], L. pneumophila [83,171], P. aeruginosa [142,181-183], and 

Salmonella Typhimurium [184].  Unlike bulges, which are typically observed as a single protrusion per 

cell (Fig. 6), blebs almost always occur as multiple protrusions per cell [171,182-184].  Blebs are also 

typically smaller than bulges (diameters of just 10-100nm) [26,184], though enlargement and 

peptidoglycan rupture during some treatments allows them to develop into bulges [179].  Bleb formation 
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occurs following treatment with membrane-active agents [24,41,181,184] and inhibitors of RNA [143] 

and protein synthesis [83,179,181].  All three types of agent also induce filamentation [39,142,143], and 

this can accompany the bleb formation [142,143].  Terms used synonymously with ‘blebbing’ include 

‘blistering’ [24], ‘bubbling’ [42], and ‘swelling’ [24]. 

 Disruption of the outer membrane by the antibiotic polymyxin B [41,171,180,184], the biocide 

chlorhexidine [24,184], and the chelating agent EDTA [181] all induce bleb formation.  In the case of 

polymyxin B, blebbing is induced at concentrations ranging from 1xMIC to ~12.5xMIC [41,171,180], the 

blebs appearing as early as 3 mins after treatment [184], and remaining observable as long as 5 h [171].  

Polymyxin B molecules carry a positive charge and hydrophobic fatty acid chain, features which allow 

them to interact with the negatively charged phosphate groups and hydrophobic fatty acids of lipid A 

present in the outer (lipopolysaccharide) layer of the outer membrane [184,185].  Intercalation of 

polymyxin B with the outer membrane results in an increase in its surface area and, because the 

membrane is tightly bound to peptidoglycan and unable to expand, this increased surface area is forced to 

fold outward giving rise to blebs [171].  

 Examples of RNA and protein synthesis inhibitors that induce blebbing include bicyclomycin 

[143], arbekacin [179], gentamicin [142,181-183], and erythromycin [83].  With the aminoglycoside 

gentamicin, blebbing is induced over a wide range of concentrations (1xMIC to 100xMIC [142,181]), 

sometimes appearing as early as 1 min following treatment [181].  The blebs remain observable until the 

bacteria lyse, this occurring after around 4 h following high concentration gentamicin treatments [142].  

Two mechanisms have been proposed to explain aminogycoside-induced disruption of the outer 

membrane.  According to the first mechanism, translational misreading produces various proteins that are 

abnormal in shape [182,186].  These defective proteins include secretory proteins, which become trapped 

during passage across the outer membrane [186], and outer membrane proteins, which do not fit correctly 

into the outer membrane [182,186].  According to the second mechanism, blebbing occurs due to 

aminoglycosides interacting directly with the outer membrane [183].  This and other membrane effects, it 
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is argued, occur independently of aminoglycoside uptake [183,187] or disruption of protein synthesis 

[181,183]. 

 

Peptidoglycan thickening 

The peptidoglycan component of the cell wall can become thicker during some antibacterial treatments 

(Figs. 4 and 8).  Drugs known to induce this change include those inhibiting peptidoglycan synthesis, 

RNA and protein synthesis, and folic acid synthesis.  Thickening has been reported most frequently in S. 

aureus [150,155] and Enterococcus faecalis [157,188], but can also occur in Gram-negative cocci 

[125,148] and Gram-positive bacilli [69,189]. 

 Peptidoglycan synthesis inhibitors cause thickening predominantly at the septal wall 

[69,125,127,148,151,153,155,165,190], and the thickened septa lack a central dense layer 

[125,127,153,158] (Fig. 4).  Drugs in the β-lactam class cause septal thickening over a wide range of 

concentrations (0.25xMIC to 10xMIC) [148,151,155,190], this first observable after as little as 90 mins 

[190], accompanied by inhibition of cell separation (‘pseudomulticellular bacteria’) after around 3.5 hours 

[155], and remaining observable as long as 16 hours following initial antibiotic exposure [84].  

Thickening is thought to be due to β-lactams inhibiting peptidoglycan crosslinking, this leading to a 

build-up of loose, non-structured material [84,190].  Thickening is most pronounced at the septum 

because this is where new wall synthesis is most vigorous [190].  Septal thickening has also been 

observed in bacteria treated with low concentrations of the peptidoglycan synthesis inhibitors vancomycin 

(0.5xMIC for 2-3 hours) [153] and ramoplanin (1xMIC for 3 hours) [165].  Higher concentrations, at least 

in the case of vancomycin (≥10xMIC), do not have this effect [165,190]. 

 Peptidoglycan thickening triggered by RNA and protein synthesis inhibitors always, to our 

knowledge, affects both the septal and peripheral walls.  Also, in most cells the septal wall retains its 

central dense layer (Fig. 8) [125,150,155,156,160,191].  Thickening occurs following ≥4 hours treatment 

with supra-inhibitory concentrations (3xMIC to 40xMIC) of RNA synthesis inhibitor (actinomycin [60] 

and rifampicin [150,155]), or ≥1 hours treatment with inhibitory or supra-inhibitory concentrations 
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(1xMIC to ~10xMIC) of protein synthesis inhibitor (chloramphenicol [60,189], puromycin [60], 

lincosamides [160,191], macrolides [156,160,191,192], and tetracyclines [156,193]; observable as long as 

24 hours following initial exposure [156,160]).  Amino acid starvation has a similar effect [59,189].  

RNA synthesis inhibitors, as stated earlier, appear not to induce pseudomulticellular bacteria [150,155], 

whereas many protein synthesis inhibitors do [60,125,156].  Protein synthesis inhibitors induce cell wall 

thickening by stopping enlargement of the cell wall surface [188,189], possibly by inhibiting synthesis of 

the peptidoglycan hydrolases needed to loosen the expanding walls [189,194].  This, in the absence of any 

accompanying decrease in synthesis or incorporation of peptidoglycan precursor, leads to thickening of 

the existing cell wall [188].  The thickening caused by RNA synthesis inhibitors, biochemical analyses 

would suggest, is not due to inhibition of transcription, but the knock on effect this has on protein 

synthesis [188]. 

 Limited information is available on cell wall thickening induced by the folic acid synthesis 

inhibitor trimethoprim.  As with protein synthesis inhibitors, trimethoprim-induced thickening occurs at 

both the peripheral and septal walls, it is continuous not sporadic, and is accompanied by the formation of 

pseudomulticellular bacteria.  This thickening was detected after 4 hours treatment with a sub-inhibitory 

concentration (0.75xMIC) of the antibiotic [157].  Given the similarities between these observations and 

those described for the protein synthesis inhibitors, it is conceivable that trimethoprim induces thickening 

by preventing synthesis of the amino acids required for peptidoglycan hydrolase production.     

 

Separation of cell envelope layers 

During some antibacterial treatments, the distance between the cytoplasmic membrane and outer 

membrane increases (Fig. 9), giving the appearance that the layers of the Gram-negative cell envelope 

have separated [83,142,146].  Agents known to induce this effect include those inhibiting the synthesis of 

folic acid (sulphadiazine and trimethoprim [195]), DNA (ciprofloxacin [48,83,196]), RNA (bicyclomycin 

[143], rifampicin [83], and rifabutin [196]) and protein (chloramphenicol [146], clarithromycin [196], and 

aminoglycosides [142,182]), and those hydrolyzing or inhibiting the synthesis of peptidoglycan or 
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arabinogalactan (lysozyme and EDTA [195], β-lactams [49,83,89,148], vancomycin [89], and ethambutol 

[196]).  Because the peptidoglycan layer is thin in these organisms (sometimes just a monolayer [197]), it 

is difficult to visualize by TEM.  This leaves it unclear whether the increase in distance between the two 

membranes is due to the outer membrane detaching from the peptidoglycan (as suggested by some 

authors [148,195]), or the cytoplasmic membrane retracting from the peptidoglycan (as suggested by 

others [146]).  Both scenarios are conceivable.  An agent reducing the integrity of the peptidoglycan layer 

(directly or indirectly) is likely to cause outer membrane detachment, because Braun’s lipoproteins use 

peptidoglycan to anchor the outer membrane in place.  Also, an agent reducing cytoplasmic membrane 

integrity (directly or indirectly) would cause a decrease in osmotic pressure that could result in 

cytoplasmic membrane retraction.  A third possibility is that the increase in distance between the two 

membranes represents, not cell envelope separation, but an expansion of the periplasmic space 

[49,89,196].  This might be expected to occur if, for example, an antibacterial agent triggered increased 

endotoxin [49] or β-lactamase [198] production.  

 

Intracellular vacuoles 

When round-shaped electron-transparent areas develop in the cytoplasm of bacterial cells during 

treatment, these are usually described as ‘intracellular vacuoles’ (Fig. 10) [48,83,199].  These areas are 

often surrounded by a membrane [48,143], but not always [146].  Small numbers of intracellular vacuoles 

are sometimes detectable during normal bacterial growth [83,146], but increase in frequency during 

antibacterial treatment.  Synonymous terms include ‘vacuole-like structures’ [174], ‘cytoplasmic vesicles’ 

[83,141], and ‘holes’ [195].  Like the separation of cell envelope layers described above, intracellular 

vacuoles form during treatment with a wide range of antibacterial agents.  This includes agents inhibiting 

the synthesis of folic acid (sulphadiazine [195] and trimethoprim [49,195]), DNA (ciprofloxacin 

[48,83,196] and norfloxacin [48]), RNA (bicyclomycin [143]) and protein (amikacin [200], 

chloramphenicol [146], and clarithromycin [196]), and agents hydrolyzing or inhibiting the synthesis of 
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peptidoglycan or arabinogalactan (lysozyme and EDTA [195], β-lactams [49,66,83,141,174,199], and 

ethambutol [196]).  It is not clear how or why vacuoles form during antibacterial treatment.   

 

Reduction in the number of ribosomes 

Several studies have observed decreases in ribosome numbers (Fig. 11) in cross-sections of bacteria 

treated with inhibitors of protein (amikacin, gentamicin, chloramphenicol, and quinupristin/dalfopristin) 

[127,200,201] and peptidoglycan synthesis (ampicillin and cephalothin) [202].  Reliable quantification of 

this ultrastructural change is inherently difficult because the proportion of the nucleoid that is visible 

varies from one cross-section to another.  In a cross-section containing a lot of the nucleoid, there will be 

less space for ribosomes, and the ribosome count will be lower.  One study, probably recognizing this 

problem, performed ribosome counts of multiple electron micrographs [202].  Various hypotheses have 

been proposed to explain decreased ribosome number including (a) a direct interaction between the 

antibacterial agent and the ribosomes, and indirect effects such as (b) the antibacterial agent reducing 

cellular growth rate (thereby reducing the cell’s need to synthesize ribosomes), and (c) a defect in the cell 

envelope (located outwith that part of the cell that is visible in the cross-section) allowing influx of liquid 

and / or efflux of ribosomes [202]. 

 

Peri-mortem observations 

Some peri-mortem changes in bacterial ultrastructure are common to many antibacterial agents.  For 

example, cell wall breakage (Suppl. Fig. 2) has been observed following treatment of bacteria with 

inhibitors of DNA synthesis (norfloxacin [48]), protein synthesis (amikacin [200], erythromycin [141], 

gentamicin [181], and quinupristin/dalfopristin [203]), and peptidoglycan synthesis (several β-lactams 

[55,83,141]).  Likewise, leakage of cell contents (Suppl. Fig. 3) has been observed in bacteria treated with 

inhibitors of DNA synthesis (ciprofloxacin [83] and norfloxacin [48]), RNA synthesis (rifampicin [83]), 

protein synthesis (amikacin [200] and quinupristin/dalfopristin [203]), and peptidoglycan synthesis 

(ramoplanin [165] and several β-lactams [55,83,141]).  Bacteria with a collapsed or deflated appearance 
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(Suppl. Fig. 4) are presumed to be cells that have lost their intracellular contents [83,141,174].  These 

have been observed following treatment with inhibitors of DNA synthesis (ciprofloxacin [83]), RNA 

synthesis (rifampicin [83]), protein synthesis (erythromycin, fusidic acid, lincomycin [168], tetracycline 

[36], and tobramycin [204]), and peptidoglycan synthesis (several β-lactams [55,83,141,174]).  Lastly, 

‘ghost cells’, a term used to describe lysed bacteria devoid or near-devoid of cytoplasm  (Fig. 12), have 

been observed following treatment with inhibitors of DNA synthesis (ciprofloxacin [52] and norfloxacin 

[48]), RNA synthesis (bicyclomycin [143]), protein synthesis (clarithromycin [196], erythromycin 

[83,141], gentamicin [181], and quinupristin/dalfopristin [203]), and peptidoglycan and arabinogalactan 

synthesis (ramoplanin [165], several β-lactams [55,78,83,120,141], and ethambutol [196]).  Like the 

separation of cell envelope layers (Fig. 9) or appearance of intracellular vacuoles (Fig. 10), it seems 

unlikely that any of these peri-mortem changes, when observed in isolation, could be useful in identifying 

antibacterial mechanism of action.  In the case of ghost cells (Fig. 12), it is unlikely that these could even 

be used as a particularly sensitive indicator of bactericidal activity, as some bactericidal events (eg. cell 

death in daptomycin- or ciprofloxacin-treated S. aureus [164,205]) occur without lysis. 

 

Concluding remarks 

This survey of the literature has shown that a number of morphological and ultrastructural changes are 

induced, apparently quite consistently, by antibacterial agents sharing the same mechanism of action.  For 

example, membrane-active agents frequently induce blebbing, inhibitors of peptidoglycan synthesis 

frequently induce the formation of spheroplasts and protoplasts, inhibitors of protein synthesis frequently 

induce a decrease in ribosome number, and inhibitors of DNA synthesis frequently induce filamentation 

(Table 1).  If an unknown test agent was examined under a sufficiently broad range of experimental 

conditions (different concentrations, treatment durations etc.), it is conceivable that some of the above 

cytological changes could be quite sensitive indicators of antibacterial mechanism of action.  Those 

observations induced by just a subset of agents in an antibacterial class, for example the ovoid cell 

formation induced by some peptidoglycan synthesis inhibitors (Table 1), might even be useful in 
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implicating molecular targets.  Where the main problem with this microscopy-based approach lies is the 

lack of specificity.  Most morphological and ultrastructural changes are induced by more than one 

antibacterial mechanism of action.  Cell envelope separation and vacuole formation, for example, are 

induced by inhibitors of nearly every known bacterial target (Table 1).  In some cases, this problem could 

be resolved by considering other antibacterial-induced alterations occurring at around the same time.  For 

example, decreases in ribosome number are induced by both protein and peptidoglycan synthesis 

inhibitors, but peripheral wall peptidoglycan thickening (of the continuous type) only occurs when protein 

synthesis is targeted (Table 1).  In other cases, additional considerations such as the magnitude of the 

change or the ability to induce the change in mutant strains could permit differentiation.  For example, 

filamentation is induced by many mechanisms of action, but cell length only dramatically increases when 

PBP3, DNA, FtsZ or folic acid synthesis is targeted and, in these longer filaments, neither DNA nor FtsZ 

disruptors induce spheroplast formation (Table 1).  DNA synthesis inhibitors could then be distinguished 

from FtsZ inhibitors based on their inability to induce filamentation in SulA
- 
(SOS-negative) bacteria (eg. 

E. coli JD26285 [206]). 

 The present paper has a number of strengths and limitations.  It is, to our knowledge, the first 

review to look at antibacterial agent-induced morphological and ultrastructural changes as potential 

indicators of mechanism of action.  To provide readers with as full a picture as possible, over 200 primary 

sources were consulted, articles identified from PubMed and extensive hand searches performed without 

date restrictions.  All of the terminology encountered in these sources was carefully disambiguated by 

comparing the authors’ text and micrographs.  These terms, together with definitions, similes, and visual 

references, have been presented here and in the electronic supplementary material.  Information on 

infrequent and isolated observations is presented in the electronic supplementary material too.  Set against 

the aforementioned strengths are the following limitations.  Although the review focused on well-

characterized antibacterial agents, the possibility that some of these agents have a second mechanism of 

action cannot be excluded.  As stated in the blebbing section, for example, there is evidence that 

aminoglycosides target not just protein synthesis but also the outer membrane [183].  A second limitation 
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is that most of the research described examined treated bacteria at just one or two time-points.  It is 

conceivable that cell wall breakage and other apparently non-specific observations might be more 

informative if viewed in chronological sequence, rather than in isolation.  Lastly, whilst efforts were made 

to take into account those variables known to affect antibacterial agent-induced cytological changes, the 

possibility that additional unknown variables exist cannot be ignored.             

 For future studies using microscopy to investigate antibacterial mechanism of action, there are 

opportunities to improve experimental design and reporting, and make this approach more informative.  

Performing antibacterial treatments not just in standard growth media but also in osmotically stabilized 

media is a simple step that would increase the likelihood of spheroplasts / protoplasts being detected.  If 

sections and surfaces of bacteria were both examined, for example by TEM and SEM, this would allow 

changes to be definitively identified and more accurately measured.  Phenotypes such as spheroplasts and 

pseudomulticellular forms or bulges and blebs can be difficult to distinguish from SEM images alone.  

Also, shape changes can be difficult to observe, and filamentation difficult to measure if just TEM is 

used.  When selecting test species, Gram-negative and Gram-positive bacteria should both be included to 

permit the detection of cell wall-specific changes such as blebbing, and increase the likelihood of 

peptidoglycan thickening reaching detectable levels.  Concentration and duration of test drug or biocide 

treatments should be clearly stated, and a rationale for their selection included.  Excessively high 

concentrations should be avoided to permit, where possible, the separation of primary and secondary 

antibacterial effects, and treated bacteria should be examined sufficiently frequently to detect all 

cytological changes.  Other variables affecting antibacterial-induced changes, described in detail at the 

start of this review, should be carefully considered too.  Moving on to data collection, the risk of bias 

could be reduced by blinding observers to treatment conditions.  Lastly, greater use could be made of 

open-source software such as ImageJ for measuring changes in bacterial size, wall thickness, and other 

parameters.  
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Fig. 1  Scanning electron micrographs of (a) untreated Escherichia 

coli JP5128, and (b) cells of the same strain treated with 200 µg/mL 

chloramphenicol for 3h (this concentration and time-frame selected 

because it achieved near-complete inhibition of protein synthesis).  

Arrow shows the location of a spheroplast.  Bar = 1 µm.  Images 

from [97] courtesy of Antimicrobial Agents and Chemotherapy 

(ASM) 

 

 

 

 

 

 

 

 
Fig. 2  Scanning electron micrographs of (a) untreated Pseudomonas 

aeruginosa MB3286, and (b) cells of the same strain treated with 2 

µg/mL (2xMIC) imipenem for 3h.  All of the treated bacteria have 

changed to ovoid cells.  Magnification = x9,000.  Images from [101] 

courtesy of Innate Immunity (SAGE Publications) 

 

 
 



49 

 

 
Fig. 3  Scanning electron micrographs of (a) untreated Pseudomonas aeruginosa X48 , and (b) cells of the same strain treated with 32 µg/mL 

(2xMIC) of the β-lactam BL-P1654 for 4h, and transmission electron micrographs of (c) untreated Escherichia coli ATCC 11303, and (d) 

cells of the same strain treated with 0.1 µg/mL (1xMIC) mitomycin C for 2h.  The number and length of filamentous cells has increased 

following treatment.  Magnification for (a) = x2,700, (b) = x2,200, (c) = x18,000, and (d) = x18,000.  Images (a) and (b) from [67] courtesy 

of Antimicrobial Agents and Chemotherapy (ASM), and (c) and (d) from [133] courtesy of Journal of Bacteriology (ASM) 

 

 

 

 

 

 

 

 

 
Fig. 4  Transmission electron micrographs of (a) untreated 

Staphylococcus aureus ATCC 6538P, and (b) cells of the same 

strain treated with 0.027 µg/mL (0.33xMIC) cephaloridine for 6 h.  

Treatment has inhibited cell separation, resulting in a 

pseudomulticellular form.    Magnification for (a) = x23,500 and (b) 

= x21,500.  Bar = 1 µm.  Images from [125] courtesy of 

Antimicrobial Agents and Chemotherapy (ASM) 
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Fig. 5  Scanning electron micrographs of (a) untreated Pseudomonas aeruginosa MB3286, and (b) cells of the same strain treated with 2 

µg/mL (2xMIC) meropenem for 6 h, and transmission electron micrographs of (c) untreated Escherichia coli ATCC 12407, and (d) cells of 

the same strain treated with 5 µg/mL (~3xMIC) ampicillin for 1h.  Arrows show the location of localized swelling.  Magnification for (a) = 

x9,000, (b) = x14,000, (c) = x27,500, and (d) = x27,000.  Bar = 0.25 µm.  Images (a) and (b) from [101] courtesy of Innate Immunity (SAGE 

Publications), and images (c) and (d) from [169] courtesy of the Journal of Bacteriology (ASM) 

 

 
 

 

 

 

 

 

 
Fig. 6  Scanning electron micrographs of (a) untreated Legionella pneumophila ATCC 33153, and (b) cells of the same strain treated with 

1000 µg/mL (40xMIC) penicillin for 5 h, and negatively stained electron micrographs of (c) untreated L. pneumophila Nottingham N7, and 

(d) cells of the same strain treated with 1280 µg/mL (20xMIC) methicillin for 24h.  Arrows show the location of bulge formation.  Bar for (a) 

= 0.2 µm, (b) = 0.4 µm, (c) = 0.5 µm, and (d) = 0.5 µm.  Images (a) and (b) from [171] and images (c) and (d) from [83], all courtesy of the 

Journal of Medical Microbiology (MicroSoc) 
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Fig. 7  Scanning electron micrographs of (a) untreated Legionella pneumophila ATCC 33153, and (b) cells of the same strain treated with 

1600 µg/mL (10xMIC) polymyxin B for 5 h, and transmission electron micrographs of (c) untreated Escherichia coli ATCC 11303, and (d) 

cells of the same strain treated with 25 µg/mL (~12.5xMIC) polymyxin B for 30 mins.  Arrows show the location of some of the blebs.  All 

bars = 0.2 µm.  Images (a) and (b) from [171] courtesy of the Journal of Medical Microbiology (MicroSoc), and images (c) and (d) from 

[180] courtesy of the Journal of Bacteriology (ASM) 

 

 

 

 

 

 

 

 

 
Fig. 8  Transmission electron micrographs of (a) untreated 

Staphylococcus aureus ATCC 6538P , and (b) cells of the same 

strain treated with 0.03 µg/mL (3xMIC) rifampicin for 4h.  Both the 

septal and peripheral portions of the wall appear thickened 

following treatment.  Bar = 1 µm.  Images from [155] courtesy of 

Reviews of Infectious Diseases (Oxford University Press) 
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Fig. 9  Transmission electron micrographs of (a) untreated 

Enterobacter cloacae NCTC 1005 , and (b) cells of the same strain 

treated with 12.5 µg/mL (0.83xMIC) trimethoprim for 4h.  Arrow 

shows where the layers of the cell envelope appear to have 

separated.  Bar for (a) = 0.5 µm and (b) = 0.25 µm.  Images from 

[195] courtesy of the Journal of Medical Microbiology (MicroSoc) 

 

 

 

 

 

 

 

 

 
Fig. 10  Transmission electron micrographs of (a) untreated 

Enterobacter cloacae NCTC 1005 , and (b) cells of the same strain 

treated with 12.5 µg/mL (0.83xMIC) trimethoprim for 4h.  Many of 

the bacterial cells have developed intracellular vacuoles following 

treatment.  Both bars = 1 µm.  Images from [195] courtesy of the 

Journal of Medical Microbiology (MicroSoc) 
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Fig. 11  Transmission electron micrographs of (a) an untreated 

clinical isolate of Proteus mirabilis and (b) cells of the same isolate 

treated with 0.78 µg/mL (0.5xMIC) ampicillin for 3h.  The number 

of ribosomes has decreased following treatment.  Bar = 1 µm.  

Images from [202] courtesy of Proceedings of the Society for 

Experimental Biology and Medicine (SAGE Publications) 

 

 

 

 

 

 

 

 

 
Fig. 12  Transmission electron micrographs of (a) untreated 

Staphylococcus aureus ATCC 25923 and (b) cells of the same strain 

treated with 0.2 µg/mL (0.5xMIC) quinupristin/dalfopristin for 24h.  

Arrows show the location of ghost cells.  Magnification for (a) and 

(b) = x37,000.  Images from [203] courtesy of the Journal of 

Antimicrobial Chemotherapy (Oxford University Press) 
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Table 1  Summary of the various changes that are observed in antibacterial-treated cells, with alterations in the morphology of the whole cell described first, then alterations in 

surface morphology and underlying ultrastructure, and lastly peri-mortem changes 

Alteration Brief description 

 

Antibacterial agents that trigger the alteration 

Spheroplasts and 

protoplasts 

Bacteria that have become large, spherical, smooth, and 

osmotically sensitive due to loss of their peptidoglycan layer  

 

 Agents disrupting peptidoglycan integrity (eg. lysozyme) or synthesis (eg. β-

lactams), or inhibiting pathways directly upstream of peptidoglycan synthesis such as 

the non-mevalonate pathway (eg. fosmidomycin) 

 Inhibitors of protein (eg. chloramphenicol) or folic acid (eg. trimethoprim) synthesis 

 

Ovoid cells  

 

Formerly rod-shaped bacteria that have decreased in length due 

to inhibition of lateral wall peptidoglycan synthesis 

 

 Agents disrupting the peptidoglycan-synthesizing enzymes responsible for lateral 

wall synthesis (eg. imipenem; inhibits E. coli PBP2) or the cytoskeletal proteins that 

recruit these enzymes [eg. S-(3,4-dichlorobenzyl)isothiourea; inhibits E. coli MreB] 

 

Filamentation Bacteria that have become abnormally long and which lack septa 

due to inhibition of septal wall peptidoglycan synthesis 

 

Extensive filamentation (cells capable of growing to lengths of ≥50 µm)  

 Agents disrupting the peptidoglycan-synthesizing enzymes responsible for septal 

wall synthesis (eg. cefuroxime; inhibits E. coli PBP3) or the cytoskeletal proteins 

that recruit these enzymes (eg. berberine; inhibits FtsZ) 

 Agents disrupting DNA integrity (eg. UV light), DNA synthesis (eg. ciprofloxacin), 

or the folic acid synthesis needed for thymine production (eg. trimethoprim) 

 

Limited filamentation (cells capable of growing to lengths of ~11 µm) 

 Agents inhibiting RNA (eg. bicyclomycin) or protein (eg. kanamycin) synthesis 

 Membrane-active agents (eg. polymyxin B)    

 

Pseudomulticellular 

bacteria 

 

Bacteria that have become enlarged or elongated and which 

possess multiple septa as a consequence of failing to separate 

following cell division   

 

 Peptidoglycan synthesis inhibitors (eg. β-lactams) 

 Peptidoglycan hydrolase inhibitors (eg. Triton X-100) 

 Inhibitors of protein (eg. chloramphenicol) or folic acid (eg. trimethoprim) synthesis 

 

Other forms of 

septal disruption 

 

Mis-shapen or otherwise aberrant septa  Peptidoglycan synthesis inhibitors (eg. penicillin) 

 Cytoplasmic membrane disruptors (eg. daptomycin) 

Localized swelling 

 

A protrusion that (a) encircles the entire mid-section or pole of 

the bacterial cell, (b) has its centre located at or close to the cell’s 

longitudinal axis, and (c) is derived from all layers of the cell 

envelope (including the cytoplasmic membrane) 

 

Mid-section swelling 

 Agents disrupting the peptidoglycan-synthesizing enzymes responsible for septal and 

also lateral wall synthesis (eg. meropenem; inhibits P. aeruginosa PBP2 and PBP3) 

 

Polar swelling  

 Protein synthesis inhibitors (eg. erythromycin) 

 

Bulge formation 

 

A protrusion that (a) emanates from a single point in the bacterial 

cell surface, (b) has its centre located outside the normal 

boundaries of the cell, and (c) is derived from all layers of the 

cell envelope (including the cytoplasmic membrane) 

 

 Peptidoglycan synthesis inhibitors (eg. β-lactams) 

 Inhibitors of protein (eg. tobramycin) or folic acid (eg. sulphamethoxazole) synthesis 

 Cytoplasmic membrane disruptors (eg. daptomycin) 



55 

 

Blebbing 

 

Protrusions that (a) emanate from individual points in the 

bacterial cell surface, (b) have their centres located outside the 

normal boundaries of the cell, and (c) are derived from just the 

outer membrane of the Gram-negative cell 

 

 Outer membrane disruptors (eg. polymyxin B) 

 Inhibitors of RNA (eg. bicyclomycin) or protein (eg. gentamicin) synthesis 

 

Peptidoglycan 

thickening 

 

Septal peptidoglycan thickening accompanied by either (a) loss 

of the septal central dense layer and sporadic peripheral wall 

peptidoglycan thickening or (b) retention of the septal central 

dense layer and continuous peripheral wall peptidoglycan 

thickening 

 

With loss of septal central dense layer and sporadic peripheral wall thickening 

 Peptidoglycan synthesis inhibitors (eg. β-lactams) 

 

With retention of septal central dense layer and continuous peripheral wall thickening 

 Inhibitors of RNA (eg. actinomycin) or protein (eg. chloramphenicol) synthesis 

 Folic acid synthesis inhibitors (eg. trimethoprim) 

 

Separation of cell 

envelope layers 

 

An increase in distance between the cytoplasmic membrane and 

outer membrane of the Gram-negative cell envelope   

 Folic acid synthesis inhibitors (eg. sulphadiazine) 

 DNA synthesis inhibitors (eg. ciprofloxacin) 

 RNA synthesis inhibitors (eg. bicyclomycin) 

 Protein synthesis inhibitors (eg. chloramphenicol) 

 Agents disrupting peptidoglycan integrity (eg. lysozyme and EDTA) or synthesis 

(eg. β-lactams) 

 Arabinogalactan synthesis inhibitors (eg. ethambutol)  

 

Intracellular 

vacuoles 

 

Round-shaped electron-transparent areas present in the bacterial 

cytoplasm 

 

 Folic acid synthesis inhibitors (eg. sulphadiazine) 

 DNA synthesis inhibitors (eg. ciprofloxacin) 

 RNA synthesis inhibitors (eg. bicyclomycin) 

 Protein synthesis inhibitors (eg. amikacin) 

 Agents disrupting peptidoglycan integrity (eg. lysozyme and EDTA) or synthesis 

(eg. β-lactams) 

 Arabinogalactan synthesis inhibitors (eg. ethambutol)  

 

Reduction in the 

number of 

ribosomes 

 

A decrease in the number of ribosomes present in the bacterial 

cytoplasm 

 Protein synthesis inhibitors (eg. amikacin)  

 Peptidoglycan synthesis inhibitors (eg. ampicillin) 

Peri-mortem 

observations 

 

Various changes including cell wall breakage, leakage of cell 

contents, a collapsed or deflated appearance, and ghost cells 

 DNA synthesis inhibitors (eg. norfloxacin) 

 RNA synthesis inhibitors (eg. bicyclomycin) 

 Protein synthesis inhibitors (eg. amikacin) 

 Peptidoglycan synthesis inhibitors (eg. β-lactams) 

 Arabinogalactan synthesis inhibitors (eg. ethambutol)  

 

Note: A more extensive list and detailed description of the cytological changes that occur is available in the main body of the journal article and electronic supplementary material.   
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Electronic supplementary material 

Infrequent or isolated observations made following treatment of bacterial cells with antibacterial agents  

Some antibacterial agent-induced changes have been described in just a small number of studies.  For 

example, polymorphism has been reported in bacteria following inhibition of peptidoglycan synthesis [1], 

and branching has been detected following inhibition of peptidoglycan [2,3] and protein synthesis [4].  

Bending has been observed following disruption of the cytoplasmic membrane [5], twisting has been 

reported following inhibition of DNA synthesis [6], and surface striations have been detected in 

mycobacteria following inhibition of arabinogalactan synthesis [7].  Lastly, decreases in ribosome size 

have been observed following inhibition of protein synthesis [8], and increases in ribosome size have 

been observed following inhibition of either DNA or RNA synthesis [6].  The possibility that the above 

changes are being reported infrequently because they are only triggered by a limited number of 

antibacterial agents cannot be excluded.  However, other factors may also be at play.  For example, 

surface striations are only detectable by atomic force microscopy and this technology is not yet in 

widespread use.  Other changes, for example alterations in ribosome size, are quite subtle and may be 

going unnoticed. 
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Supplementary Fig. 1  Scanning electron micrographs of (a) an 

untreated clinical isolate of Staphylococcus aureus and (b) cells of 

the same isolate treated with 8 µg/mL (8xMIC) daptomycin for 4 h.  

Arrows show the location of multiple bulges.  Bar = 1 µm.  Images 

from [9] courtesy of the Journal of Medical Microbiology 

(MicroSoc) 

 

 

 

 

 

 

 

 

 

 
Supplementary Fig. 2  Transmission electron micrographs of (a) 

untreated Pseudomonas aeruginosa A1, and (b) cells of the same 

strain treated with 64 µg/mL (64xMIC) cefsulodin for 16 h.  Arrows 

show the location of cell wall breakage.  Bar = 0.5 µm.  Images 

from [10] courtesy of the Journal of Medical Microbiology 

(MicroSoc) 
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Supplementary Fig. 3  Scanning electron micrographs of (a) 

untreated Escherichia coli JP5128, and (b) cells of the same strain 

treated with 200 µg/mL chloramphenicol for 3h (this concentration 

and time-frame selected because it achieved near-complete 

inhibition of protein synthesis).  Arrow shows the location of 

probable leakage of cell contents.  Bar = 1 µm.  Images from [11] 

courtesy of Antimicrobial Agents and Chemotherapy (ASM)  

 

 

 

 

 

 

 

 

 
Supplementary Fig. 4  Scanning electron micrographs of (a) an 

untreated clinical isolate of Staphylococcus aureus, and (b) cells of 

the same isolate treated with 3 µg/mL (10xMIC) fusidic acid for 1h.  

Treated bacteria have a collapsed or deflated appearance.  Bar = 1 

µm.  Images from [12] courtesy of Microbiology (MicroSoc)  
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