ROBERT GORDG N This publication is made
freely  available under
UNIVERSITY A@E@@EEN GRﬂopen access.

AUTHOR(S): ZARB, M., HUGHES, J. and RICHARDS, J.

TITLE: Further evaluations of industry-inspired pair programming communication guidelines
with undergraduate students.

YEAR: 2015

Publisher citation: ZARB, M., HUGHES, J. and RICHARDS, J. 2015. Further evaluations of industry-inspired pair programming
communication guidelines with undergraduate students. In Proceedings of the 46th ACM technical
symposium on computer science education (SIGCSE 2015): keep connected, keep committed, keep
computing, 4 - 7 March 2015, Kansas City, USA. New York: ACM [online], pages 314-319. Available from:
https://doi.org/10.1145/2676723.2677241.

OpenAlIR citation: ZARB, M., HUGHES, J. and RICHARDS, J. 2015. Further evaluations of industry-inspired pair programming
communication guidelines with undergraduate students. In Proceedings of the 46th ACM technical
symposium on computer science education (SIGCSE 2015): keep connected, keep committed, keep
computing, 4 - 7 March 2015, Kansas City, USA. New York: ACM, pages 314-319. Held on OpenAIR [online].
Available from: https://openair.rgu.ac.uk.

Publisher copyright statement:

This is the _ AUTHOR ACCEPTED  yersion of proceedings originally published by ACM
and presented at 46th ACM technical symposium on computer science education (SIGCSE 2015): keep connected, keep committed, keep computing, 4 - 7 March 2015, Kansas City, USA.
(ISBN ___ 9781450329668 . |SBN ; ISSN ).

© Zarb | ACM 2015. This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The
definitive Version of Record was published in SIGCSE 2015, http://dx.doi.org/10.1145/2676723.2677241.

OpenAlR takedown statement:

Section 6 of the “Repository policy for OpenAIR @ RGU” (available from http://www.rgu.ac.uk/staff-and-current-
students/library/library-policies/repository-policies) provides guidance on the criteria under which RGU will
consider withdrawing material from OpenAlIR. If you believe that this item is subject to any of these criteria, or for
any other reason should not be held on OpenAlIR, then please contact openair-help@rgu.ac.uk with the details of
the item and the nature of your complaint.

This publication is distributed under a CC__ BY-NC4.0  jicense.

https://creativecommons.org/licenses/by-nc/4.0 @

Digitally signed by OpenAIR at RGU
NAIR al

OpenAlR at RGU &

mail
Date: 2017.04.14 14:23:40 +0100'




Further Evaluations of Industry-Inspired Pair Programming
Communication Guidelines with Undergraduate Students

Mark Zarb

School of Computing Science
Robert Gordon University
Aberdeen, Scotland
+44 (0)1224 262 768

m.zarb@rgu.ac.uk

ABSTRACT

Pair programming has several benefits when it is successfully
used by students and experts alike. However, research shows that
novice pairs find the necessary pair communication to be one of
the main challenges in adopting this process. A set of industry-
inspired pair programming guidelines have been derived and
evaluated from qualitative examinations of expert pairs, with the
aim of helping novice programmers communicate within their
pair. This research describes a further evaluation of these
guidelines with a number of student pairs, and demonstrates how
novice pairs who were exposed to the guidelines became
comfortable communicating with their partners.

Categories and Subject Descriptors
K.3.2 [Computer and Information Science Education]:
Computer science education.

General Terms
Measurement, Performance, Experimentation, Human Factors,
Standardization.

Keywords
Pair programming; communication skills; software engineering;
collaboration; students; CS education research study.

1. INTRODUCTION

Pair programming is a method that describes two programmers
working together, usually sharing a keyboard and a computer.
Typically, each member of the pair takes on a different role,
swapping roles frequently: the driver creates the code while the
navigator reviews it [11]. Pair programming requires pairs to
communicate frequently, which leads the pair to experience
certain benefits over “solo” programming, such as greater
enjoyment, and increased knowledge distribution [2].

Janet Hughes
School of Computing
University of Dundee

Dundee, Scotland
+44 (0)1382 385 195

j.z.hughes@dundee.ac.uk

John Richards
IBM T.J. Watson Research Center
Yorktown Heights
New York, USA
+1 914 945 2632

ajtr@us.ibm.com

Novices find communication to be a barrier when they are pair
programming [9, 11], and industry-inspired guidelines have been
presented as a possible solution [17]. These guidelines have been
evaluated [16], with initial results showing that pairs who had
been exposed to the guidelines reported an improved
communication experience whilst debugging existing code.

This research presents a follow-up study that evaluates the
guidelines with novice pairs beyond debugging. In the study
reported in this paper, pairs were responsible for coding solutions
to given problems. Therefore the aim is to find out whether these
guidelines can have a positive impact on the communication
experience of pairs who are actively creating new code.

2. BACKGROUND

Due to the nature of pair programming, communication - both
verbal and non-verbal - occurs nearly continuously. Williams and
Kessler [12] write that effective communication is “paramount”,
and Sharp and Robinson [8] describe pairing as a highly
communication-intensive process. Within the classroom, pair
programming is seen as being generally valuable [1, 12]. Students
working in pairs have been found to be more satisfied with their
work output, solve problems faster than non-paired students, and
have improved team effectiveness. Paired students are also more
likely to complete CS courses when compared to their solo
counterparts, gain an improved comprehension of unfamiliar
topics, and enjoy increased levels of confidence [3, 4, 9, 13, 14].

Many programmers approach their first pairing experience with
scepticism, having doubts about their partner’s working habits
and programming style, and about the added communication
demands that this programming style requires [13]. In a pilot
study, approximately 50% of first-time novice pair programmers
reported that they perceived communication to be the main
problem with the pairing process [7]. Many authors simply state
that communication is an issue; few studies have investigated
which aspects of communication within an agile team are most
problematic [8, 10].

2.1 Pair Programming Guidelines

Industry-inspired pair programming guidelines had earlier been
created with the aim of delivering concise, industry-derived
instructions to novice pairs to improve their understanding of
successful pair communication. The creation of these guidelines
has been previously reported in [15] and [17], with preliminary
qualitative studies suggesting that the guidelines could help
improve novice pairs’ experienced intra-pair communication. A
previous study has shown that when debugging code, pairs who



were exposed to these guidelines had a more positive
communication experience [16].

Appendix 1 provides a summary of these guidelines.

3. EVALUATION

Results obtained from a previous study [16] suggest that use of
the guidelines led to an improved communication experience
when pairs were engaged in a debugging task. The study reported
here aims to understand whether the guidelines could also help
improve the communication experience in a task where pairs are
creating new code.

Quantitative data was to be gathered, with the following
hypotheses as per the original study:

e  Exposure to the pair programming guidelines positively
impacts the pair’s success rate.

e  Exposure to the pair programming guidelines leads to
an improvement in the pair’s ease of communication.

e  Exposure to the pair programming guidelines positively
affects the way partners contribute to the pairing
session.

3.1 Methodology
3.1.1 Materials

One of the summer school programmes at the University of
Dundee’s School of Computing uses a custom programming tool
that has been developed to teach programming topics: the
Abstract Programming Environment (APE)'. The APE tool runs
on the NetBeans IDE and provides a graphical front-end (Figure
1) which can be manipulated using Java code. This allows
students to ‘see’ what they are programming. Note that the
contrast in Figure 1 has been adjusted to make the image suitable
for printing.

€ .

Fanning .
Figure 1: The APE graphical front-end

The APE tool consists of several challenges (or ‘maps’) in which
students need to move the character around, eating a number of
dots; students must write this movement using Java code. Once all
the dots have been eaten, the ‘map’ is considered complete, and
students can move on to the next one.

I The APE tool was created by Heron and Belford (see
http://monkeys.imaginary-realities.com) and used  with
permission.

3.1.2 Participants

Participants were recruited from the School of Computing at the
University of Dundee. An e-mail was circulated to all students,
asking for their participation in exchange for a small
compensation in the form of vouchers. A total of 28 participants
were recruited (first-year undergraduates: 10 students; third-year
undergraduates: 18 students). All had previously used Java as a
programming language as part of their courses.

Pairs were arranged so that each pair consisted of students at the
same year of study. Within each year, 50% of the pairs were
randomly allocated to a group that would be exposed to the
guidelines (n = 7 pairs), leaving the rest of the sample (n = 7
pairs) as a control group.

3.1.2.1 Previous Pairing Experience

Each participant was asked to complete a post-test survey
immediately following their participation in the study consisting
of questions relating to the individual’s experience with solo
programming, pair programming, and previous pair programming
experience with their session’s partner. These results were
analysed to understand group tendencies and variance, as reported
in Table 1 below and analysed using Mann-Whitney U tests.

Table 1: Students’ Programming Experience

Exposed Non-Exposed
Group Group
M SD M SD
Solo Programming 3.7 2.17 2.7 1.86
Experience (years)
Pair Programming 0.3 0.59 0.2 0.41
Experience (years)

The data show that the groups had somewhat different levels of
experience; on average, more individuals in the “exposed” pairs
had solo programming experience. This difference may
complicate interpreting further results. Few students reported
previous experience with pair programming — furthermore, any
reported experience was limited to a number of months, or ‘since
the start of the semester’. Statistical tests were carried out to
establish whether the differences between the two groups were
significant and whether they might cause the results to be biased:

No significant differences in ‘solo’ programming experience were
found between the experimental and control groups: U = 125, z =
1.266, p = 0.227 (p > 0.05).

Similarly, no significant differences in pair programming
experience were found between the experimental and control
groups: U=106.5,z=0.427, p=0.670 (p > 0.05).

While some caution is warranted, these results suggest that further
analysis should not be unduly complicated by what appears to be
a small difference in prior experience.

3.1.2.2 Perceived Benefits of Pair Programming
Likert scale data from the post-test surveys were analysed to
determine whether there were any significant statistical
differences reported between the students who were exposed to
the guidelines and those who were not.




As each individual completed their own post-test survey, the
population consisted of 28 students, 14 of whom were exposed
and 14 students who were not.

Shapiro-Wilk tests were carried out to understand whether the

data being analysed were normally distributed. FEase of

Communication scores for both exposed and unexposed groups
were not normally distributed (p < 0.05). Similarly, scores for
Perceived Partner Contribution for both groups were not
normally distributed (p < 0.05). As the data are not normally
distributed for both sets of scores, non-parametric tests were used.

Students were asked to rate the statement ‘I feel pair
programming is more beneficial than solo programming’ on a 5-
point Likert scale.

The exposed group (M=4.5, SD=0.52) and the control group
(M=4.1, SD=0.62) report similar scores. As observed in previous
studies, there was no significant difference in perceived pair
programming benefit between exposed students (Mdn = 4.0) and
unexposed students (Mdn =4.5), U= 133, z=1.834, p =0.067.

These results show that following the session, the student
perception was that pair programming was more beneficial than
solo programming, regardless of whether they were exposed to the
guidelines or not.

3.1.3 Procedure

The study was carried out during a 4-week period during the
students’ second semester of study. Pairs were invited to the test
room separately, and on different days. The test room was
equipped with one laptop, and consisted of a camera and a voice
recorder. Ten APE maps were chosen at random for the students
to solve. All pairs were given a maximum time-limit of 45
minutes to solve as many maps as they could in a sequential order.
During this time, the recording equipment was switched on, and
the researcher left the room.

Pairs were provided with a list of basic instructions to move the
character (Table 2), but were free to implement solutions using
any programming technique at their disposal (e.g. in this study,
students have used for loops and do..while loops to move the
character. Some of the pairs were also observed to write a parser,
which allowed for a more domain-specific way of telling the
character how to move across the map).

Table 2: Basic instructions for the APE tool

Instruction What it does

main.move(); Makes the yellow character move one
space forward in whatever direction is

being faced.

main.turnLeft(); Makes the character turn 90 degrees to

the left.

main.turnRight(); Makes the character turn 90 degrees to

the right.

Each pair was responsible for the whole programming process:
from discussing possible solutions, to attempting to implement the
correct code and testing it.

Both the control group and the test group followed the process
described above; prior to the task, pairs within the test group were
also exposed to the pair programming guidelines by watching a

short 3-minute video? which showed an experienced pair applying
the guidelines in three separate scenarios. This video was
supplemented by a printed copy of the guidelines (Appendix 1),
which was left with the pair for reference.

Following the test period, the researcher would return, log the
number of programs completed by the pair, and distribute the
post-test surveys, which were completed individually by the
members of the pair. The five-question survey was based on the
survey used in [16], and was used to collect data from the
individual developers immediately after their debugging session.
This data was used to determine if there was any significant
difference between the groups that could bias the results. Each
survey consisted of Likert-scale questions relating to their
experience with communication and partner contribution during
the test, as well as questions on the student’s experience with
programming. These were used to measure central tendencies and
variance within the groups, in order to ascertain that there were no
significant differences between the groups that would threaten the
validity of the work.

3.2 Results

Three measures were taken for each pair, based on the measures
taken in [16]: success was measured by the number of programs
completed successfully (when compared to the number of
programs attempted); ease of communication and perceived
partner contribution were measured using the post-test Likert
scales as discussed above.

3.2.1 Successfully Completed Programs

Following the test period, the number of tasks attempted was
noted by the researcher, and scored at a later date. Each attempt
was scored by the researcher, and also compiled, to see if the
correct result was produced (i.e. if each map was solved
successfully). The total number of successfully completed tasks
was then noted for each pair.

An independent-samples t-test was run to determine if there were
differences in completion scores between pairs who were exposed
to the pair programming guidelines (n = 7), and those who were
not (n = 7). The tasks completed for each level of exposure were
normally distributed, as assessed by Shapiro-Wilks test (p > 0.05),
and there was homogeneity of variances, as assessed by Levene’s
Test for Equality of Variances (p = 0.903).

The exposed pairs completed a slightly greater number of tasks
(4.0 = 1.00) than the unexposed pairs (3.3 £ 0.76). The difference
is not statistically significant: t(12) =-1.508, p = 0.158.

This result shows that exposing pairs to the guidelines does not
increase their chances of successfully completing their tasks:
exposure does not improve success rate at least for this short
programming task.

3.2.2 Ease of Communication

‘Ease of Communication’ was reported as a Likert scale on the
post-test survey in response to the following statement: “During
this session, I found communicating with my partner to be easy”.
The scale ranged from 1 (strongly disagree) to 5 (strongly agree).
The post-test survey results relating to ease of communication

2 A copy of this video is available at the following URL:
http://youtu.be/ONnYCT LlJio. Should this link be broken,
please contact the lead author.



were analysed, and descriptive statistics were used to further
understand the results (Table 3).

Table 3: Descriptive Statistics for Ease of Communication

Exposed Not Exposed

M SD M SD

EBascof 4.9 0.27 4.0 0.78
Communication

It can be seen that the students who were exposed to the
guidelines reported a higher score than students who were not,
with a lower variance.

As the data used is extracted from Likert scales, a Mann-Whitney
U test was used for its analysis [6]. This test was run to determine
any differences in ease of communication between the exposed
group, and the control group.

There was a statistically significant difference in ease of
communication scores between exposed students (Mdn = 5.0) and
unexposed students (Mdn = 4.0), U= 169, z=3.721, p = 0.001.

In this case, p < 0.05, therefore the null hypothesis (the
distribution of the pair’s ease of communication is equal across
the two groups) was rejected.

3.2.3 Perceived Partner Contribution

‘Perceived Partner Contribution’ was reported as a Likert scale on
the post-test survey in response to the following statement: “Rate
your partner’s contribution to today’s session”. The scale ranged
from 1 (no participation) to 5 (excellent). Descriptive statistics
were used to gain an overview of detail (Table 4).

Table 4: Descriptive Statistics for Perceived Partner

Contribution
Exposed Not Exposed
M SD M SD
Perceived
Partner 49 0.36 3.9 1.07
Contribution

It can be seen that typically, students who were exposed to the
guidelines rate their partner’s contribution to be quite high, with
low variance.

A Mann-Whitney U test was run to determine if there were
differences in Perceived Partner Contribution between the
exposed and unexposed groups. There was a statistically
significant difference in perceived partner contribution scores
between exposed students (Mdn = 5.0) and unexposed students
(Mdn =4.0), U=146,z=2.587, p =0.027.

In this case, p < 0.05, therefore the null hypothesis (the
distribution of the pair’s perceived partner contribution is equal
across the two groups) was rejected.

3.3 Driver-Navigator Role Preference

As part of the post-test surveys for this study, students were asked
to indicate which role they had experienced for the duration of the
session of the study.

Results were as follows:
* 9 students indicated that they were drivers;
* 11 students indicated they were navigators;

» 8 students ticked both boxes, indicating that they
experienced both roles during the session.

This data shows that more students indicated they performed as
the navigator over the driver role, with an approximate ratio of
45:55.

The data was then explored on a ‘pair-by-pair’ basis, giving the
following results:

* 9 pairs consisted of a driver and a navigator;

» 2 pairs consisted of a navigator and an individual who
indicated they had experienced both roles;

* 3 pairs consisted of both members within the pair indicating
they experienced both roles.

The first and last responses are consistent with the typical role
relationships in pair programming, and with what students are
taught: a pair consists of a driver and a navigator, and these roles
should be switched often (although switching often in a short 45-
minute coding session is not highly likely).

The second statement does not fit this pattern, showing that whilst
one member of the pair was a permanent navigator, the second
member of the pair found it necessary to switch between the two
roles. A review of the audio files was performed. It revealed that
in both cases, the driver would sometimes stop typing, and
brainstorm possible solutions and next steps with the navigator.
Following this, he or she would go back to driving the session. It
is possible that during these brainstorming sessions, the driver felt
that he or she was also navigating, and thus felt they had
experienced both roles during the session. It is unclear as to why
the driver felt the need to switch back-and-forth between the roles,
or why their navigator did not take over the driver role, but this
hints at possible pair programming dynamics that may exist
outside of the traditional ‘driver-navigator’ claim.

3.4 Discussion
The data gathered from this study supports the following
hypotheses:

1. The distribution of the pair’s ease of communication
scores differs with exposure to the guidelines; i.e. pairs who
were exposed to the guidelines reported significantly higher
scores for ease of communication than the control group.

2. The distribution of the pair’s perceived partner
contribution scores differs with exposure to the guidelines;
i.e. pairs who were exposed to the guidelines reported
significantly higher scores for perceived partner contribution
than the control group.

3. The mean number of completed tasks for pairs who were
exposed to the guidelines and pairs who were not exposed is
equal in the population; i.e. there was no significant
difference in the number of completed programs between
pairs who were exposed to the guidelines, and the control
group.
These results show that the guidelines may help improve students’
experience of communication within their pair. It is posited that
this stronger ‘partner contribution’ was due to the fact that
individual members of the pair were more confident



communicating their ideas (possibly due to the additional advice
provided by the guidelines) and contributed more successfully as
a result.

Furthermore, the use of the guidelines may support students in
dealing with issues and barriers that typically arise during pair
programming sessions in a structured way. However, whilst these
guidelines can be seen to aid the pairs’ perceived communication,
there is no evidence to suggest that the guidelines have any impact
on student success, at least in such a short programming session.

3.5 Limitations and Further Work

These findings are limited by the subject sample (from a single
institution), and a relatively small sample group. A sample size of
28 participants gives a margin of error of 18.51% (CI: 95%).

The margin of error could be reduced by running this study with
more participants (e.g. with 50 participants, the margin of error
drops to 13.84%). Increasing the sample size could give evidence
to further support these conclusions, and allow these results to be
further generalised beyond the scope of this study.

Finally, data from the post-test surveys on the distribution of
driver-navigator roles reported in section 3.3 shows that on some
occasions, pairs did not work in pairs consisting of one driver and
one navigator, and hints that these roles may be more fluid based
on the situation currently being tackled. Similar work can be seen
in [5]. A study considering possible pair dynamics outside the
traditional driver-navigator roles would allow for further
understanding of these pair dynamics, and how certain
combinations may impact successful collaboration.

4. CONCLUSION

Previous research indicates that the pair programming guidelines
help novice pairs communicate more effectively whilst working
on debugging tasks. The research presented in this paper shows
that the guidelines contribute to greater communication
effectiveness when students are creating new code; significant
differences were identified between the students who had been
exposed to the guidelines and the control group when considering
the individual members’ perceptions of (i) their experienced
communication and (ii) their partner’s contribution to the session.

5. ACKNOWLEDGMENTS

The authors would like to thank all the student pairs who have
contributed time, effort and invaluable feedback towards
evaluating these guidelines.

6. REFERENCES

[1] Begel, A. and N. Nagappan. Pair programming: what's in it
Jfor me? in Proceedings of the Second ACM-IEEE
international symposium on Empirical sofiware engineering
and measurement. 2008: ACM.

[2] Bryant, S., P. Romero, and B. du Boulay, The Collaborative
Nature of Pair Programming, in Extreme Programming and
Agile Processes in Software Engineering, P. Abrahamsson,

M. Marchesi, and G. Succi, Editors. 2006, Springer
Berlin/Heidelberg. p. 53-64.

[3] McDowell, C., B. Hanks, and L. Werner, Experimenting with
pair programming in the classroom. SIGCSE Bull., 2003.
35(3): p. 60-64.

[4] Nagappan, N., et al. Improving the CS1 experience with pair
programming. in ACM SIGCSE Bulletin. 2003: ACM.

[5] Plonka, L., et al., Collaboration in pair programming:
driving and switching, in Agile Processes in Software
Engineering and Extreme Programming. 2011, Springer. p.
43-59.

[6] Ryu, E. and A. Agresti, Modeling and inference for an
ordinal effect size measure. Statistics in Medicine, 2008.
27(10): p. 1703-1717.

[7] Sanders, D., Student Perceptions of the Suitability of Extreme
and Pair Programming, in Extreme Programming
Perspectives, M. Marchesi, et al., Editors. 2002, Addison-
Wesley Professional. p. 168-174.

[8] Sharp, H. and H. Robinson, Three ‘C’s of agile practice:
collaboration, co-ordination and communication, in Agile
Software Development. 2010, Springer. p. 61-85.

[9] Srikanth, H., et al., On Pair Rotation in the Computer
Science Course, in Proceedings of the 17th Conference on
Software Engineering Education and Training. 2004, IEEE
Computer Society. p. 144-149.

[10] Stapel, K., et al., Towards Understanding Communication
Structure in Pair Programming, in Agile Processes in
Software Engineering and Extreme Programming, A. Sillitti,
et al., Editors. 2010, Springer Berlin Heidelberg. p. 117-131.

[11] Williams, L. and R. Kessler, A/l I really need to know about
pair programming I learned in kindergarten.
Communications of the ACM, 2000. 43(5): p. 108-114.

[12] Williams, L. and R. Kessler, Pair Programming Illuminated.
2002: Addison-Wesley Longman Publishing Co., Inc. 288.

[13] Williams, L., et al., Strengthening the Case for Pair
Programming. 1IEEE Software, 2000. 17(4): p. 19-25.

[14] Williams, L., et al., In Support of Pair Programming in the
Introductory Computer Science Course. Computer Science
Education, 2002. 12(3): p. 197-212.

[15] Zarb, M., Developing a coding scheme for the analysis of
expert pair programming sessions, in Proceedings of the 3rd
annual conference on Systems, programming, and
applications: software for humanity. 2012, ACM: Tucson,
Arizona, USA. p. 237-238.

[16] Zarb, M., J. Hughes, and J. Richards, Evaluating Industry-
Inspired Pair Programming Communication Guidelines with
Undergraduate Students in Proceedings of the 45th ACM
technical symposium on Computer Science Education. 2014,
ACM: Atlanta, GA, USA.

[17] Zarb, M., J. Hughes, and J. Richards, Industry-inspired
guidelines improve students' pair programming
communication, in Proceedings of the 18th ACM conference
on Innovation and technology in computer science
education. 2013, ACM: Canterbury, England, UK. p. 135-
140.



The Pair Programming Guidelines

Appendix 1

{IN0 1J9 U23q 2ARY
Y3 yey) SuIkJLoA
yiom Suryphue
2101} S ({SULIDA0D

‘ST 103unod djey ueo
sysnoy) oA Suroro A
"PoJoBISIP pUE PaIoq
Surwoo9q IojeSiaeu

‘poojsIopun
A11adoad uoaq aaey
suonsaggns InoA aIns

*9p0d A} 03 ANQLIIUOD
jey) suonsagsns ayew

*SUOI}O. JUALIND INOK
uo paseq SUONSITInS pauLIoful ONeU
J01e31ARU o) d[ay [[1Mm SIY) ‘spy3not

InoK 9SI[eQIOA NOA JT "puey Je sk}
oy Suryoeoidde a1e nok moy Jo asuas
Ie9[0 © 0ABY PUB ‘SUDIOM A[OATIOR

55110 wmwmﬂwwm% oA sysu yoym | oxew oy Kyunyzoddo | o} Yoof Ajpane ‘SunwweiSord a1 1OA Jep mowy 03 Jojeiaen mo“wwmm_o
A SO OUS © “U0010s oY) U0 A[WOpUEI s1yy 9sn ‘Gunopnw ST IOALIP ) IS[IYAL oy djoy 03 spuoy SIYL Suid&y :
- wc;:.v aq [L.n0& Suryo17o 918 NOA JI Se ST IOALIP ) JT :(1010S1apu 2y 10f) | 2Te NOKIS|IYM SuLtonnw £4q u_awcﬁa
oours ﬁmosm v_mE L YOO UBD 31 JU[IS USY M “(40pp31avu 2y 40f) 10§ — [EQI0A d10U1 2q 03 A1) *9p0d
o : “(42414p 243 10f) INOA IM3oN1s 0} MOY| Jnoqe Junjury}
(01w 31au 2y} 10) 10 SurrwesSord axe nok JS[IyA
:(42414p Y] 10f)
joedunr [enuojod 1s933ng -
“10A0 "oupred moKk Joensip "premioy wow:msMooﬁmMNowwﬂw ﬂw \M%m_mﬂm i
pue 1940 pajeadar [11 SH SE “o]11/d b U] o atp asout pumsiapun u 9poo msoioagao;o y -
Aquessecounn 100 S8 2as J1, nod yym uonsonb | djoy ueo oje3s JuoLINd AJ11eSS909U JOU Op NOA JeY) P : oy
: ® 0) SuiA[da1 proae 9y Jo 3uipueisiopun uo 3unjIom are A3y} suonoe :SMO[[0}
SUOISSNOSIP Je[IUIS . . souIpPpINy
0} A1y — A[orerpaurut uMmo INOA | IO ‘oewr A9y Jey) suonsagIns | se 9q pInod o[oLo [enusiod e (sFuryy Suruue
e 08 mBMM/ ot s3ury) urejdxo skempy Jo uonejardiour ue Aue noqe uonesyLIe[d Jo 93uel © noqe eorunwwod rueld
vomm%omﬁwvmmmww\/uwm “[eONILIO ST pUviSLopun SurRyyO Surop pue 103 10uIed INOK Sk 0} 901J [99J ‘SAJeIS Y}
mo. 10U B o.x&z j.uop [ 10 mouy | Suikes st 1oupred ok | 01 93e31S9Y JoU Op ‘93e)S Aue 1y Ul USYA\ "PIBMIOJ JIOM INOA QALIP
J.uop T Kes 0) SutuIed T JeyM INOQe JUIy L, 0} NOA MO[JE [[IM JBY) S9IE)S [NJasn
10q I8 SMIIAJI PUE SUOIISIZInG
padu Kew ‘ssa1doxd
ysop ok woyy | 1oupred ok pue nok 3Yew 0} JopIo I sdajs .
sdons Keme yjem AjreorsAyd yorym ‘dapoadsiad | U wwamomma uayM [e03 ] it s i watcond o xwoﬁo
) pInoys no£ yorgm Surmp yso1y © 0} peaj ugo | PUR 110K IN0GE Iy 0} A1l ysag e yjl 19 E [*oe)
1xou Junso33ns oo d qrels ysey e Ajnuopy - 0] NOA MO[[e [[IM SIY ], ‘puey je
210J2q 9p0o /323JOO/OUT | SUORUSISAUOD HEALL ‘ d mok SINSSI A1) 03 Paje[aIun pue d1doj-}Jo SourppIny
39 9P 10y yyea1q 0} (nydpay | pue saxol Sursn snooy ~HoM SnotasId o : bt ol Sunae)say

a3 peas 03 doeds
Joupred 1ok oa1D

11 puy Aew noA ‘roupred
INOA YA JUSWAITeSIP
ur aJe noA J|

S.Quo Sumyealq "SIy}
SSTWSIP J0U Op ‘SNd0J
yea1q 03 Sundwone
st 1outed oA 1

MI1A21 pue sdays Jo 91dnoo
Jse[ 10K uo yoeq Joo]

:0)

jdwone ‘0Feys siyy Surmorog

A19191dwod Juryjowos 3urssnosip Aq
SNo0jJ IN0A ea1q A[eAnoe ‘ssaijord
0} Wdds jouued pue porrad Juerrs €
ul yonys a1e oupred 1noA pue nok J|




	coversheetConferences
	ZARB 2015 Further evaluations of industry-inspired

	OA: GREEN
	OA Logo: 
	AUTHORS: ZARB, M., HUGHES, J. and RICHARDS, J.
	TITLE: Further evaluations of industry-inspired pair programming communication guidelines with undergraduate students.
	YEAR: 2015
	Publisher citation: ZARB, M., HUGHES, J. and RICHARDS, J. 2015. Further evaluations of industry-inspired pair programming communication guidelines with undergraduate students. In Proceedings of the 46th ACM technical symposium on computer science education (SIGCSE 2015): keep connected, keep committed, keep computing, 4 - 7 March 2015, Kansas City, USA. New York: ACM [online], pages 314-319. Available from: https://doi.org/10.1145/2676723.2677241.
	OpenAIR citation: ZARB, M., HUGHES, J. and RICHARDS, J. 2015. Further evaluations of industry-inspired pair programming communication guidelines with undergraduate students. In Proceedings of the 46th ACM technical symposium on computer science education (SIGCSE 2015): keep connected, keep committed, keep computing, 4 - 7 March 2015, Kansas City, USA. New York: ACM, pages 314-319. Held on OpenAIR [online]. Available from: https://openair.rgu.ac.uk.
	Version: AUTHOR ACCEPTED
	Publisher: ACM
	Conference: 46th ACM technical symposium on computer science education (SIGCSE 2015): keep connected, keep committed, keep computing, 4 - 7 March 2015, Kansas City, USA.
	ISBN: 9781450329668
	eISBN: 
	ISSN: 
	Set statement: © Zarb | ACM 2015. This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version of Record was published in SIGCSE 2015, http://dx.doi.org/10.1145/2676723.2677241.
	License: BY-NC 4.0
	License URL: https://creativecommons.org/licenses/by-nc/4.0
	CC Logo: 
		2017-04-14T14:23:40+0100
	OpenAIR at RGU




