

AUTHOR(S):

TITLE:

YEAR:

Publisher citation:

OpenAIR citation:

Publisher copyright statement:

OpenAIR takedown statement:

 This publication is made
freely available under
________ open access.

This is the ___________________ version of proceedings originally published by _____________________________
and presented at __
(ISBN __________________; eISBN __________________; ISSN __________).

This publication is distributed under a CC ____________ license.

__

Section 6 of the “Repository policy for OpenAIR @ RGU” (available from http://www.rgu.ac.uk/staff-and-current-
students/library/library-policies/repository-policies) provides guidance on the criteria under which RGU will
consider withdrawing material from OpenAIR. If you believe that this item is subject to any of these criteria, or for
any other reason should not be held on OpenAIR, then please contact openair-help@rgu.ac.uk with the details of
the item and the nature of your complaint.

Further Evaluations of Industry-Inspired Pair Programming

Communication Guidelines with Undergraduate Students
Mark Zarb Janet Hughes John Richards

School of Computing Science
Robert Gordon University

Aberdeen, Scotland
+44 (0)1224 262 768

School of Computing
University of Dundee

Dundee, Scotland
+44 (0)1382 385 195

IBM T.J. Watson Research Center
Yorktown Heights
New York, USA
+1 914 945 2632

m.zarb@rgu.ac.uk j.z.hughes@dundee.ac.uk ajtr@us.ibm.com

ABSTRACT

Pair programming has several benefits when it is successfully

used by students and experts alike. However, research shows that

novice pairs find the necessary pair communication to be one of

the main challenges in adopting this process. A set of industry-

inspired pair programming guidelines have been derived and

evaluated from qualitative examinations of expert pairs, with the

aim of helping novice programmers communicate within their

pair. This research describes a further evaluation of these

guidelines with a number of student pairs, and demonstrates how

novice pairs who were exposed to the guidelines became

comfortable communicating with their partners.

Categories and Subject Descriptors

K.3.2 [Computer and Information Science Education]:

Computer science education.

General Terms

Measurement, Performance, Experimentation, Human Factors,

Standardization.

Keywords

Pair programming; communication skills; software engineering;

collaboration; students; CS education research study.

1. INTRODUCTION
Pair programming is a method that describes two programmers

working together, usually sharing a keyboard and a computer.

Typically, each member of the pair takes on a different role,

swapping roles frequently: the driver creates the code while the

navigator reviews it [11]. Pair programming requires pairs to

communicate frequently, which leads the pair to experience

certain benefits over “solo” programming, such as greater

enjoyment, and increased knowledge distribution [2].

Novices find communication to be a barrier when they are pair

programming [9, 11], and industry-inspired guidelines have been

presented as a possible solution [17]. These guidelines have been

evaluated [16], with initial results showing that pairs who had

been exposed to the guidelines reported an improved

communication experience whilst debugging existing code.

This research presents a follow-up study that evaluates the

guidelines with novice pairs beyond debugging. In the study

reported in this paper, pairs were responsible for coding solutions

to given problems. Therefore the aim is to find out whether these

guidelines can have a positive impact on the communication

experience of pairs who are actively creating new code.

2. BACKGROUND
Due to the nature of pair programming, communication - both

verbal and non-verbal - occurs nearly continuously. Williams and

Kessler [12] write that effective communication is “paramount”,

and Sharp and Robinson [8] describe pairing as a highly

communication-intensive process. Within the classroom, pair

programming is seen as being generally valuable [1, 12]. Students

working in pairs have been found to be more satisfied with their

work output, solve problems faster than non-paired students, and

have improved team effectiveness. Paired students are also more

likely to complete CS courses when compared to their solo

counterparts, gain an improved comprehension of unfamiliar

topics, and enjoy increased levels of confidence [3, 4, 9, 13, 14].

Many programmers approach their first pairing experience with

scepticism, having doubts about their partner’s working habits

and programming style, and about the added communication

demands that this programming style requires [13]. In a pilot

study, approximately 50% of first-time novice pair programmers

reported that they perceived communication to be the main

problem with the pairing process [7]. Many authors simply state

that communication is an issue; few studies have investigated

which aspects of communication within an agile team are most

problematic [8, 10].

2.1 Pair Programming Guidelines
Industry-inspired pair programming guidelines had earlier been

created with the aim of delivering concise, industry-derived

instructions to novice pairs to improve their understanding of

successful pair communication. The creation of these guidelines

has been previously reported in [15] and [17], with preliminary

qualitative studies suggesting that the guidelines could help

improve novice pairs’ experienced intra-pair communication. A

previous study has shown that when debugging code, pairs who

were exposed to these guidelines had a more positive

communication experience [16].

Appendix 1 provides a summary of these guidelines.

3. EVALUATION
Results obtained from a previous study [16] suggest that use of

the guidelines led to an improved communication experience

when pairs were engaged in a debugging task. The study reported

here aims to understand whether the guidelines could also help

improve the communication experience in a task where pairs are

creating new code.

Quantitative data was to be gathered, with the following

hypotheses as per the original study:

 Exposure to the pair programming guidelines positively

impacts the pair’s success rate.

 Exposure to the pair programming guidelines leads to

an improvement in the pair’s ease of communication.

 Exposure to the pair programming guidelines positively

affects the way partners contribute to the pairing

session.

3.1 Methodology

3.1.1 Materials
One of the summer school programmes at the University of

Dundee’s School of Computing uses a custom programming tool

that has been developed to teach programming topics: the

Abstract Programming Environment (APE)1. The APE tool runs

on the NetBeans IDE and provides a graphical front-end (Figure

1) which can be manipulated using Java code. This allows

students to ‘see’ what they are programming. Note that the

contrast in Figure 1 has been adjusted to make the image suitable

for printing.

Figure 1: The APE graphical front-end

The APE tool consists of several challenges (or ‘maps’) in which

students need to move the character around, eating a number of

dots; students must write this movement using Java code. Once all

the dots have been eaten, the ‘map’ is considered complete, and

students can move on to the next one.

1 The APE tool was created by Heron and Belford (see

http://monkeys.imaginary-realities.com) and used with

permission.

3.1.2 Participants
Participants were recruited from the School of Computing at the

University of Dundee. An e-mail was circulated to all students,

asking for their participation in exchange for a small

compensation in the form of vouchers. A total of 28 participants

were recruited (first-year undergraduates: 10 students; third-year

undergraduates: 18 students). All had previously used Java as a

programming language as part of their courses.

Pairs were arranged so that each pair consisted of students at the

same year of study. Within each year, 50% of the pairs were

randomly allocated to a group that would be exposed to the

guidelines (n = 7 pairs), leaving the rest of the sample (n = 7

pairs) as a control group.

3.1.2.1 Previous Pairing Experience
Each participant was asked to complete a post-test survey

immediately following their participation in the study consisting

of questions relating to the individual’s experience with solo

programming, pair programming, and previous pair programming

experience with their session’s partner. These results were

analysed to understand group tendencies and variance, as reported

in Table 1 below and analysed using Mann-Whitney U tests.

Table 1: Students’ Programming Experience

 Exposed

Group

Non-Exposed

Group

 M SD M SD

Solo Programming

Experience (years)

3.7 2.17 2.7 1.86

Pair Programming

Experience (years)

0.3 0.59 0.2 0.41

The data show that the groups had somewhat different levels of

experience; on average, more individuals in the “exposed” pairs

had solo programming experience. This difference may

complicate interpreting further results. Few students reported

previous experience with pair programming – furthermore, any

reported experience was limited to a number of months, or ‘since

the start of the semester’. Statistical tests were carried out to

establish whether the differences between the two groups were

significant and whether they might cause the results to be biased:

No significant differences in ‘solo’ programming experience were

found between the experimental and control groups: U = 125, z =

1.266, p = 0.227 (p > 0.05).

Similarly, no significant differences in pair programming

experience were found between the experimental and control

groups: U = 106.5, z = 0.427, p = 0.670 (p > 0.05).

While some caution is warranted, these results suggest that further

analysis should not be unduly complicated by what appears to be

a small difference in prior experience.

3.1.2.2 Perceived Benefits of Pair Programming
Likert scale data from the post-test surveys were analysed to

determine whether there were any significant statistical

differences reported between the students who were exposed to

the guidelines and those who were not.

As each individual completed their own post-test survey, the

population consisted of 28 students, 14 of whom were exposed

and 14 students who were not.

Shapiro-Wilk tests were carried out to understand whether the

data being analysed were normally distributed. Ease of

Communication scores for both exposed and unexposed groups

were not normally distributed (p < 0.05). Similarly, scores for

Perceived Partner Contribution for both groups were not

normally distributed (p < 0.05). As the data are not normally

distributed for both sets of scores, non-parametric tests were used.

Students were asked to rate the statement ‘I feel pair

programming is more beneficial than solo programming’ on a 5-

point Likert scale.

The exposed group (M=4.5, SD=0.52) and the control group

(M=4.1, SD=0.62) report similar scores. As observed in previous

studies, there was no significant difference in perceived pair

programming benefit between exposed students (Mdn = 4.0) and

unexposed students (Mdn = 4.5), U = 133, z = 1.834, p = 0.067.

These results show that following the session, the student

perception was that pair programming was more beneficial than

solo programming, regardless of whether they were exposed to the

guidelines or not.

3.1.3 Procedure
The study was carried out during a 4-week period during the

students’ second semester of study. Pairs were invited to the test

room separately, and on different days. The test room was

equipped with one laptop, and consisted of a camera and a voice

recorder. Ten APE maps were chosen at random for the students

to solve. All pairs were given a maximum time-limit of 45

minutes to solve as many maps as they could in a sequential order.

During this time, the recording equipment was switched on, and

the researcher left the room.

Pairs were provided with a list of basic instructions to move the

character (Table 2), but were free to implement solutions using

any programming technique at their disposal (e.g. in this study,

students have used for loops and do..while loops to move the

character. Some of the pairs were also observed to write a parser,

which allowed for a more domain-specific way of telling the

character how to move across the map).

Table 2: Basic instructions for the APE tool

Instruction What it does

main.move(); Makes the yellow character move one

space forward in whatever direction is

being faced.

main.turnLeft(); Makes the character turn 90 degrees to

the left.

main.turnRight(); Makes the character turn 90 degrees to

the right.

Each pair was responsible for the whole programming process:

from discussing possible solutions, to attempting to implement the

correct code and testing it.

Both the control group and the test group followed the process

described above; prior to the task, pairs within the test group were

also exposed to the pair programming guidelines by watching a

short 3-minute video2 which showed an experienced pair applying

the guidelines in three separate scenarios. This video was

supplemented by a printed copy of the guidelines (Appendix 1),

which was left with the pair for reference.

Following the test period, the researcher would return, log the

number of programs completed by the pair, and distribute the

post-test surveys, which were completed individually by the

members of the pair. The five-question survey was based on the

survey used in [16], and was used to collect data from the

individual developers immediately after their debugging session.

This data was used to determine if there was any significant

difference between the groups that could bias the results. Each

survey consisted of Likert-scale questions relating to their

experience with communication and partner contribution during

the test, as well as questions on the student’s experience with

programming. These were used to measure central tendencies and

variance within the groups, in order to ascertain that there were no

significant differences between the groups that would threaten the

validity of the work.

3.2 Results
Three measures were taken for each pair, based on the measures

taken in [16]: success was measured by the number of programs

completed successfully (when compared to the number of

programs attempted); ease of communication and perceived

partner contribution were measured using the post-test Likert

scales as discussed above.

3.2.1 Successfully Completed Programs
Following the test period, the number of tasks attempted was

noted by the researcher, and scored at a later date. Each attempt

was scored by the researcher, and also compiled, to see if the

correct result was produced (i.e. if each map was solved

successfully). The total number of successfully completed tasks

was then noted for each pair.

An independent-samples t-test was run to determine if there were

differences in completion scores between pairs who were exposed

to the pair programming guidelines (n = 7), and those who were

not (n = 7). The tasks completed for each level of exposure were

normally distributed, as assessed by Shapiro-Wilks test (p > 0.05),

and there was homogeneity of variances, as assessed by Levene’s

Test for Equality of Variances (p = 0.903).

The exposed pairs completed a slightly greater number of tasks

(4.0 ± 1.00) than the unexposed pairs (3.3 ± 0.76). The difference

is not statistically significant: t(12) = -1.508, p = 0.158.

This result shows that exposing pairs to the guidelines does not

increase their chances of successfully completing their tasks:

exposure does not improve success rate at least for this short

programming task.

3.2.2 Ease of Communication
‘Ease of Communication’ was reported as a Likert scale on the

post-test survey in response to the following statement: “During

this session, I found communicating with my partner to be easy”.

The scale ranged from 1 (strongly disagree) to 5 (strongly agree).

The post-test survey results relating to ease of communication

2 A copy of this video is available at the following URL:

http://youtu.be/ONnYCT_LJio. Should this link be broken,

please contact the lead author.

were analysed, and descriptive statistics were used to further

understand the results (Table 3).

Table 3: Descriptive Statistics for Ease of Communication

 Exposed Not Exposed

 M SD M SD

Ease of

Communication
4.9 0.27 4.0 0.78

It can be seen that the students who were exposed to the

guidelines reported a higher score than students who were not,

with a lower variance.

As the data used is extracted from Likert scales, a Mann-Whitney

U test was used for its analysis [6]. This test was run to determine

any differences in ease of communication between the exposed

group, and the control group.

There was a statistically significant difference in ease of

communication scores between exposed students (Mdn = 5.0) and

unexposed students (Mdn = 4.0), U = 169, z = 3.721, p = 0.001.

In this case, p < 0.05, therefore the null hypothesis (the

distribution of the pair’s ease of communication is equal across

the two groups) was rejected.

3.2.3 Perceived Partner Contribution
‘Perceived Partner Contribution’ was reported as a Likert scale on

the post-test survey in response to the following statement: “Rate

your partner’s contribution to today’s session”. The scale ranged

from 1 (no participation) to 5 (excellent). Descriptive statistics

were used to gain an overview of detail (Table 4).

Table 4: Descriptive Statistics for Perceived Partner

Contribution

 Exposed Not Exposed

 M SD M SD

Perceived

Partner

Contribution

4.9 0.36 3.9 1.07

It can be seen that typically, students who were exposed to the

guidelines rate their partner’s contribution to be quite high, with

low variance.

A Mann-Whitney U test was run to determine if there were

differences in Perceived Partner Contribution between the

exposed and unexposed groups. There was a statistically

significant difference in perceived partner contribution scores

between exposed students (Mdn = 5.0) and unexposed students

(Mdn = 4.0), U = 146, z = 2.587, p = 0.027.

In this case, p < 0.05, therefore the null hypothesis (the

distribution of the pair’s perceived partner contribution is equal

across the two groups) was rejected.

3.3 Driver-Navigator Role Preference
As part of the post-test surveys for this study, students were asked

to indicate which role they had experienced for the duration of the

session of the study.

Results were as follows:

• 9 students indicated that they were drivers;

• 11 students indicated they were navigators;

• 8 students ticked both boxes, indicating that they

experienced both roles during the session.

This data shows that more students indicated they performed as

the navigator over the driver role, with an approximate ratio of

45:55.

The data was then explored on a ‘pair-by-pair’ basis, giving the

following results:

• 9 pairs consisted of a driver and a navigator;

• 2 pairs consisted of a navigator and an individual who

indicated they had experienced both roles;

• 3 pairs consisted of both members within the pair indicating

they experienced both roles.

The first and last responses are consistent with the typical role

relationships in pair programming, and with what students are

taught: a pair consists of a driver and a navigator, and these roles

should be switched often (although switching often in a short 45-

minute coding session is not highly likely).

The second statement does not fit this pattern, showing that whilst

one member of the pair was a permanent navigator, the second

member of the pair found it necessary to switch between the two

roles. A review of the audio files was performed. It revealed that

in both cases, the driver would sometimes stop typing, and

brainstorm possible solutions and next steps with the navigator.

Following this, he or she would go back to driving the session. It

is possible that during these brainstorming sessions, the driver felt

that he or she was also navigating, and thus felt they had

experienced both roles during the session. It is unclear as to why

the driver felt the need to switch back-and-forth between the roles,

or why their navigator did not take over the driver role, but this

hints at possible pair programming dynamics that may exist

outside of the traditional ‘driver-navigator’ claim.

3.4 Discussion
The data gathered from this study supports the following

hypotheses:

1. The distribution of the pair’s ease of communication

scores differs with exposure to the guidelines; i.e. pairs who

were exposed to the guidelines reported significantly higher

scores for ease of communication than the control group.

2. The distribution of the pair’s perceived partner

contribution scores differs with exposure to the guidelines;

i.e. pairs who were exposed to the guidelines reported

significantly higher scores for perceived partner contribution

than the control group.

3. The mean number of completed tasks for pairs who were

exposed to the guidelines and pairs who were not exposed is

equal in the population; i.e. there was no significant

difference in the number of completed programs between

pairs who were exposed to the guidelines, and the control

group.

These results show that the guidelines may help improve students’

experience of communication within their pair. It is posited that

this stronger ‘partner contribution’ was due to the fact that

individual members of the pair were more confident

communicating their ideas (possibly due to the additional advice

provided by the guidelines) and contributed more successfully as

a result.

Furthermore, the use of the guidelines may support students in

dealing with issues and barriers that typically arise during pair

programming sessions in a structured way. However, whilst these

guidelines can be seen to aid the pairs’ perceived communication,

there is no evidence to suggest that the guidelines have any impact

on student success, at least in such a short programming session.

3.5 Limitations and Further Work
These findings are limited by the subject sample (from a single

institution), and a relatively small sample group. A sample size of

28 participants gives a margin of error of 18.51% (CI: 95%).

The margin of error could be reduced by running this study with

more participants (e.g. with 50 participants, the margin of error

drops to 13.84%). Increasing the sample size could give evidence

to further support these conclusions, and allow these results to be

further generalised beyond the scope of this study.

Finally, data from the post-test surveys on the distribution of

driver-navigator roles reported in section 3.3 shows that on some

occasions, pairs did not work in pairs consisting of one driver and

one navigator, and hints that these roles may be more fluid based

on the situation currently being tackled. Similar work can be seen

in [5]. A study considering possible pair dynamics outside the

traditional driver-navigator roles would allow for further

understanding of these pair dynamics, and how certain

combinations may impact successful collaboration.

4. CONCLUSION
Previous research indicates that the pair programming guidelines

help novice pairs communicate more effectively whilst working

on debugging tasks. The research presented in this paper shows

that the guidelines contribute to greater communication

effectiveness when students are creating new code; significant

differences were identified between the students who had been

exposed to the guidelines and the control group when considering

the individual members’ perceptions of (i) their experienced

communication and (ii) their partner’s contribution to the session.

5. ACKNOWLEDGMENTS
The authors would like to thank all the student pairs who have

contributed time, effort and invaluable feedback towards

evaluating these guidelines.

6. REFERENCES
[1] Begel, A. and N. Nagappan. Pair programming: what's in it

for me? in Proceedings of the Second ACM-IEEE

international symposium on Empirical software engineering

and measurement. 2008: ACM.

[2] Bryant, S., P. Romero, and B. du Boulay, The Collaborative

Nature of Pair Programming, in Extreme Programming and

Agile Processes in Software Engineering, P. Abrahamsson,

M. Marchesi, and G. Succi, Editors. 2006, Springer

Berlin/Heidelberg. p. 53-64.

[3] McDowell, C., B. Hanks, and L. Werner, Experimenting with

pair programming in the classroom. SIGCSE Bull., 2003.

35(3): p. 60-64.

[4] Nagappan, N., et al. Improving the CS1 experience with pair

programming. in ACM SIGCSE Bulletin. 2003: ACM.

[5] Plonka, L., et al., Collaboration in pair programming:

driving and switching, in Agile Processes in Software

Engineering and Extreme Programming. 2011, Springer. p.

43-59.

[6] Ryu, E. and A. Agresti, Modeling and inference for an

ordinal effect size measure. Statistics in Medicine, 2008.

27(10): p. 1703-1717.

[7] Sanders, D., Student Perceptions of the Suitability of Extreme

and Pair Programming, in Extreme Programming

Perspectives, M. Marchesi, et al., Editors. 2002, Addison-

Wesley Professional. p. 168-174.

[8] Sharp, H. and H. Robinson, Three ‘C’s of agile practice:

collaboration, co-ordination and communication, in Agile

Software Development. 2010, Springer. p. 61-85.

[9] Srikanth, H., et al., On Pair Rotation in the Computer

Science Course, in Proceedings of the 17th Conference on

Software Engineering Education and Training. 2004, IEEE

Computer Society. p. 144-149.

[10] Stapel, K., et al., Towards Understanding Communication

Structure in Pair Programming, in Agile Processes in

Software Engineering and Extreme Programming, A. Sillitti,

et al., Editors. 2010, Springer Berlin Heidelberg. p. 117-131.

[11] Williams, L. and R. Kessler, All I really need to know about

pair programming I learned in kindergarten.

Communications of the ACM, 2000. 43(5): p. 108-114.

[12] Williams, L. and R. Kessler, Pair Programming Illuminated.

2002: Addison-Wesley Longman Publishing Co., Inc. 288.

[13] Williams, L., et al., Strengthening the Case for Pair

Programming. IEEE Software, 2000. 17(4): p. 19-25.

[14] Williams, L., et al., In Support of Pair Programming in the

Introductory Computer Science Course. Computer Science

Education, 2002. 12(3): p. 197-212.

[15] Zarb, M., Developing a coding scheme for the analysis of

expert pair programming sessions, in Proceedings of the 3rd

annual conference on Systems, programming, and

applications: software for humanity. 2012, ACM: Tucson,

Arizona, USA. p. 237-238.

[16] Zarb, M., J. Hughes, and J. Richards, Evaluating Industry-

Inspired Pair Programming Communication Guidelines with

Undergraduate Students in Proceedings of the 45th ACM

technical symposium on Computer Science Education. 2014,

ACM: Atlanta, GA, USA.

[17] Zarb, M., J. Hughes, and J. Richards, Industry-inspired

guidelines improve students' pair programming

communication, in Proceedings of the 18th ACM conference

on Innovation and technology in computer science

education. 2013, ACM: Canterbury, England, UK. p. 135-

140.

Appendix 1: The Pair Programming Guidelines

G
iv

e
y

o
u

r
p

ar
tn

er

sp
ac

e
to

 r
ea

d
 t

h
e

co
d

e
b

ef
o

re

su
g

g
es

ti
n

g
 n

ex
t

st
ep

s.

M
ak

e
a

n
o

te
 o

f

p
re

v
io

u
sl

y
 d

is
cu

ss
ed

su
g

g
es

ti
o

n
s

an
d

re
v

ie
w

s
so

 t
h

at

si
m

il
ar

 d
is

cu
ss

io
n

s

ar
e

n
o

t
u

n
n

ec
es

sa
ri

ly

re
p

ea
te

d
 o

v
er

 a
n

d

o
v

er
.

(f
o

r
th

e
n

a
vi

g
a

to
r)

:

T
h

in
k

 a
h

ea
d

,
si

n
ce

y
o

u
’l

l
b

e
d

ri
v

in
g

 i
n

a
sh

o
rt

 w
h

il
e:

 w
h

at

is
 t

h
e

cu
rr

en
t

co
u

rs
e

o
f

ac
ti

o
n

 n
o

t

co
v

er
in

g
?

Is
 t

h
er

e

an
y

th
in

g
 w

o
rt

h

v
er

if
y

in
g

 t
h

at
 m

ig
h

t

h
av

e
b

ee
n

 l
ef

t
o

u
t?

If
 y

o
u

 a
re

 i
n

d
is

ag
re

em
en

t
w

it
h

 y
o

u
r

p
ar

tn
er

,
y

o
u

 m
ay

 f
in

d
 i

t

h
el

p
fu

l
to

 b
re

ak
 f

o
r

lu
n

ch
/c

o
ff

ee
/e

tc
.

–

d
u

ri
n

g
 w

h
ic

h
 y

o
u

 s
h

o
u

ld

p
h

y
si

ca
ll

y
 w

al
k

 a
w

ay

fr
o

m
 y

o
u

r
d

es
k

.

L
ea

rn
in

g
 t

o
 s

ay
 I

 d
o

n
’t

kn
o

w
 o

r
I

d
o

n
’t

u
n

d
er

st
a

n
d

 i
s

cr
it

ic
al

.

A
lw

ay
s

ex
p

la
in

 t
h

in
g

s

im
m

ed
ia

te
ly

 –
 t

ry
 t

o

av
o

id
 r

ep
ly

in
g

 t
o

 a

q
u

es
ti

o
n

 w
it

h
 y

o
u

’l
l

se
e

in
 a

 w
h

il
e,

 a
s

th
is

 w
il

l

d
is

tr
ac

t
y

o
u

r
p

ar
tn

er
.

(f
o

r
th

e
d

ri
ve

r)
:

W
h

en
 s

il
en

t,
 i

t
ca

n
 l

o
o

k

as
 i

f
y

o
u

 a
re

 c
li

ck
in

g

ra
n

d
o

m
ly

 o
n

 t
h

e
sc

re
en

,

w
h

ic
h

 r
is

k
s

y
o

u
r

n
av

ig
at

o
r

b
ec

o
m

in
g

b
o

re
d

 a
n

d
 d

is
tr

ac
te

d
.

V
o

ic
in

g
 y

o
u

r
th

o
u

g
h

ts

ca
n

 h
el

p
 c

o
u

n
te

r
th

is
.

If
 y

o
u

r
p

ar
tn

er
 i

s

at
te

m
p

ti
n

g
 t

o
 b

re
ak

fo
cu

s,
 d

o
 n

o
t

d
is

m
is

s

th
is

.
B

re
ak

in
g

 o
n

e’
s

fo
cu

s
u

si
n

g
 j

o
k

es
 a

n
d

p
ri

v
at

e
co

n
v

er
sa

ti
o

n
s

ca
n

 l
ea

d
 t

o
 a

 f
re

sh

p
er

sp
ec

ti
v

e,
 w

h
ic

h

y
o

u
 a

n
d

 y
o

u
r

p
ar

tn
er

m
ay

 n
ee

d
.

T
h

in
k

 a
b

o
u

t
w

h
at

y
o

u
r

p
ar

tn
er

 i
s

sa
y

in
g

an
d

 d
o

in
g

.
O

ff
er

in
g

an
 i

n
te

rp
re

ta
ti

o
n

 o
f

y
o

u
r

o
w

n

u
n

d
er

st
an

d
in

g
 o

f
th

e

cu
rr

en
t

st
at

e
ca

n
 h

el
p

m
o

v
e

th
e

w
o

rk

fo
rw

ar
d

.

(f
o

r
th

e
n

a
vi

g
a

to
r)

:

If
 t

h
e

d
ri

v
er

 i
s

m
u

tt
er

in
g

,
u

se
 t

h
is

o
p

p
o

rt
u

n
it

y
 t

o
 m

ak
e

su
re

 y
o

u
r

su
g

g
es

ti
o

n
s

h
av

e
b

ee
n

 p
ro

p
er

ly

u
n

d
er

st
o

o
d

.

F
o

ll
o

w
in

g
 t

h
is

 s
ta

g
e,

 a
tt

em
p

t

to
:

-
L

o
o

k
 b

ac
k

 o
n

 y
o

u
r

la
st

co
u

p
le

 o
f

st
ep

s
an

d
 r

ev
ie

w

y
o

u
r

p
re

v
io

u
s

w
o

rk
;

-
Id

en
ti

fy
 a

 f
re

sh
 s

ta
rt

;

-
T

ry
 t

o
 t

h
in

k
 a

b
o

u
t

y
o

u
r

en
d

g
o

al
 w

h
en

 s
u

g
g

es
ti

n
g

 n
ex

t

st
ep

s
in

 o
rd

er
 t

o
 m

ak
e

p
ro

g
re

ss
.

A
t

an
y

 s
ta

g
e,

 d
o

 n
o

t
h

es
it

at
e

to

as
k

 y
o

u
r

p
ar

tn
er

 f
o

r

cl
ar

if
ic

at
io

n
 a

b
o

u
t

an
y

su
g

g
es

ti
o

n
s

th
at

 t
h

ey
 m

ak
e,

 o
r

ac
ti

o
n

s
th

ey
 a

re
 w

o
rk

in
g

 o
n

th
at

 y
o

u
 d

o
 n

o
t

n
ec

es
sa

ri
ly

u
n

d
er

st
an

d
.

(f
o

r
th

e
n

a
vi

g
a

to
r)

:

W
h

il
st

 t
h

e
d

ri
v

er
 i

s

p
ro

g
ra

m
m

in
g

,
ac

ti
v

el
y

 l
o

o
k

 t
o

m
ak

e
su

g
g

es
ti

o
n

s
th

at

co
n

tr
ib

u
te

 t
o

 t
h

e
co

d
e.

If
 y

o
u

 a
n

d
 y

o
u

r
p

ar
tn

er
 a

re
 s

tu
ck

 i
n

a
si

le
n

t
p

er
io

d
 a

n
d

 c
an

n
o

t
se

em
 t

o

p
ro

g
re

ss
,

ac
ti

v
el

y
 b

re
ak

 y
o

u
r

fo
cu

s

b
y

 d
is

cu
ss

in
g

 s
o

m
et

h
in

g
 c

o
m

p
le

te
ly

o
ff

-t
o

p
ic

 a
n

d
 u

n
re

la
te

d
 t

o
 t

h
e

is
su

es

at
 h

an
d

.
T

h
is

 w
il

l
al

lo
w

 y
o

u
 t

o

ta
ck

le
 t

h
e

p
ro

b
le

m
 w

it
h

 a
 f

re
sh

o
u

tl
o

o
k

.

 S
u

g
g

es
ti

o
n

s
an

d
 r

ev
ie

w
s

ar
e

b
o

th

u
se

fu
l

st
at

es
 t

h
at

 w
il

l
al

lo
w

 y
o

u
 t

o

d
ri

v
e

y
o

u
r

w
o

rk
 f

o
rw

ar
d

.
W

h
en

 i
n

th
es

e
st

at
es

,
fe

el
 f

re
e

to

co
m

m
u

n
ic

at
e

ab
o

u
t

a
ra

n
g

e
o

f

th
in

g
s;

 a
 p

o
te

n
ti

al
 c

y
cl

e
co

u
ld

 b
e

as

fo
ll

o
w

s:

-
R

ev
ie

w
 p

re
v

io
u

s
co

d
e

-
S

u
g

g
es

t
an

 i
m

p
ro

v
em

en
t

-
R

ev
ie

w
 m

et
h

o
d

s
to

 b
e

ch
an

g
ed

-
S

u
g

g
es

t
p

o
te

n
ti

al
 i

m
p

ac
t

(f
o

r
th

e
d

ri
ve

r)
:

W
h

il
st

 y
o

u
 a

re
 p

ro
g

ra
m

m
in

g
 o

r

th
in

k
in

g
 a

b
o

u
t

h
o

w
 t

o
 s

tr
u

ct
u

re
 y

o
u

r

co
d

e,
 t

ry
 t

o
 b

e
m

o
re

 v
er

b
al

 –
 f

o
r

ex
am

p
le

,
b

y
 m

u
tt

er
in

g
 w

h
il

st
 y

o
u

 a
re

ty
p

in
g

.
T

h
is

 t
en

d
s

to
 h

el
p

 t
h

e

n
av

ig
at

o
r

to
 k

n
o

w
 t

h
at

 y
o

u
 a

re

ac
ti

v
el

y
 w

o
rk

in
g

,
an

d
 h

av
e

a
cl

ea
r

se
n

se
 o

f
h

o
w

 y
o

u
 a

re
 a

p
p

ro
ac

h
in

g
 t

h
e

ta
sk

 a
t

h
an

d
.

If
 y

o
u

 v
er

b
al

is
e

y
o

u
r

th
o

u
g

h
ts

,
th

is
 w

il
l

h
el

p
 t

h
e

n
av

ig
at

o
r

m
ak

e
in

fo
rm

ed
 s

u
g

g
es

ti
o

n
s

b
as

ed
 o

n

y
o

u
r

cu
rr

en
t

ac
ti

o
n

s.

R
es

ta
rt

in
g

G
u

id
el

in
es

P
la

n
n

in
g

G
u

id
el

in
es

A
ct

io
n

G
u

id
el

in
es

	coversheetConferences
	ZARB 2015 Further evaluations of industry-inspired

	OA: GREEN
	OA Logo:
	AUTHORS: ZARB, M., HUGHES, J. and RICHARDS, J.
	TITLE: Further evaluations of industry-inspired pair programming communication guidelines with undergraduate students.
	YEAR: 2015
	Publisher citation: ZARB, M., HUGHES, J. and RICHARDS, J. 2015. Further evaluations of industry-inspired pair programming communication guidelines with undergraduate students. In Proceedings of the 46th ACM technical symposium on computer science education (SIGCSE 2015): keep connected, keep committed, keep computing, 4 - 7 March 2015, Kansas City, USA. New York: ACM [online], pages 314-319. Available from: https://doi.org/10.1145/2676723.2677241.
	OpenAIR citation: ZARB, M., HUGHES, J. and RICHARDS, J. 2015. Further evaluations of industry-inspired pair programming communication guidelines with undergraduate students. In Proceedings of the 46th ACM technical symposium on computer science education (SIGCSE 2015): keep connected, keep committed, keep computing, 4 - 7 March 2015, Kansas City, USA. New York: ACM, pages 314-319. Held on OpenAIR [online]. Available from: https://openair.rgu.ac.uk.
	Version: AUTHOR ACCEPTED
	Publisher: ACM
	Conference: 46th ACM technical symposium on computer science education (SIGCSE 2015): keep connected, keep committed, keep computing, 4 - 7 March 2015, Kansas City, USA.
	ISBN: 9781450329668
	eISBN:
	ISSN:
	Set statement: © Zarb | ACM 2015. This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version of Record was published in SIGCSE 2015, http://dx.doi.org/10.1145/2676723.2677241.
	License: BY-NC 4.0
	License URL: https://creativecommons.org/licenses/by-nc/4.0
	CC Logo:
		2017-04-14T14:23:40+0100
	OpenAIR at RGU

